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Two flavor chiral phase transition from nonperturbative flow equations
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We employ nonperturbative flow equations to compute the equation of state for two flavor QCD within an
effective quark meson model. This yields the temperature and quark mass dependence of quantities such as the
chiral condensate or the pion mass. A precision estimate of the universal critical equation of state for the
three-dimensionaD(4) Heisenberg model is presented. We explicitly connectQk4) universal behavior
near the critical temperature and zero quark mass with the physics at zero temperature and a realistic pion
mass. For realistic quark masses the pion correlation length ie&urns out to be smaller than its zero
temperature valud S0556-282198)06023-9

PACS numbgs): 12.39.Fe, 11.10.Hi, 11.10.Wx

. INTRODUCTION expresses the chiral condensatie)) as a function of tem-
) _ ) o ) perature and the average current quark méss (m,
Strong interactions in thermal equilibrium at high tem- 4 m /> This connects explicitly the universal critical be-
peratureT—as realized in early stages of the evolution of thepvior for T—T, and m—0 with the temperature depen-
Universe—differ in important aspects from the well tested o - ; i ;
vacuum or zero temperr)ature progerties. A phase transition %ence for a realistic valu@pn,s. Since our dlscussm_)nAcovers
o . e whole temperature ranges0l'<1.7T; we can fixmyys
some critical temperaturé. or a relatively sharp crossover such that the (zero temperatuje pion mass is m
may separate the high and low temperature phygids — m
Many experimental activities at heavy ion collidefg] =135 MeV. The condensatgly) plays here the role of an
search for signs of such a transition. It was realized early the@rder parameter. Its precise definition will be given in Sec.
the transition should be closely related to a qualitativell. Figure 1 shows our results fary)(T,m): Curve @)
change in the chiral condensate according to the general oBjyes the temperature dependencépf) in the chiral limit
servation that spontaneous symmetry breaking tends 10 Qa_ 0 Here the lower curve is the full result for arbitraFy
Gyvhereas the upper curve corresponds to the universal scaling
form of the equation of state for ti@(4) Heisenberg model.
We see perfect agreement of both curves Tosufficiently
close toT,=100.7 MeV. This demonstrates the capability of
ur method to cover the critical behavior and, in particular,

ing contributiong 3—5] pointed out that for sufficiently small
up and down quark massesy, and my, and for a suffi-
ciently large mass of the strange quank,, the chiral tran-
sition is expected to belong to the universality class of th

O(4) Heisenberg model. This means that near the critical, yon6qyce the critical exponents of tB§4) model. We
temperature only the pions and the sigma particle play a rolg ;e qeterminedcf. Sec. \j the universal critical equation
for the behavior of condensates and long distance correlauogf state as well as the non-universal amplitudes. This pro-

functions. It was suggestef#,5] that a large correlation . . — N

length may be responsible for important fluctuations or lea |de_|_s the J;UIJ fu_ln_ﬁtmnal dependence(o;f(szp)éT,m) f?r small

to a disoriented chiral condensa®]. This was even related ' '¢ anam. The curves ), (c) and (@) are tor non-

[4,5] to the spectacular “Centauro event§7] observed in vanishing values of the average current quark mias€urve
(c) corresponds tofy, or, equivalently, m,(T=0)

cosmic rays. The question how smai), andmy would have ' .
to be in order to see a large correlation length rneaand if =135 MeV. One observe; a crossover in the rarige
=(1.2-1.5).. TheO(4) universal equation of statepper

this scenario could be realized for realistic values of the cur-" ; bl imation in thi
rent quark masses remained, however, unanswered. The re&V® gives a reasonable approximation in this temperature

son was the missing link between the universal behavior ne F‘”qe-_The transition turns out to be much less dramatic than
T. and zero current quark mass on one hand and the kno Qr m=0. We have also plotted in curvé) the results for

physical properties aE=0 for realistic quark masses on the comparably —small - quark ~masses=1MeV, ie. m
other hand. =Mypyd10, for which theT=0 value ofm, equals 45 MeV.

It is the purpose of the present paper to provide this link The crossover is considerably sharper but a substantial de-

We present here the equation of state for two flavor ch/iation from the chiral limit remains even for such small

within an effective quark meson model. The equation of stat¢/@lueés ofm. In order to facilitate comparison with lattice
simulations which are typically performed for larger values

of m, we also present results fon_(T=0)=230 MeV in

*Current address: Center for Theoretical Physics, Massachusetts!Ve€ (d)'_ One may define a “pseudocritical t(_amper_ature”_
Institute of Technology, Cambridge, MA 02139. T, associated to the smooth crossover as the inflection point

Email address: Berges@ctp.mit.edu of (J«/z)(T) as usually done in lattice simulations. Our re-
"Email address: D.Jungnickel@thphys.uni-heidelberg.de sults for this definition ofT . are denoted b)Télc) and are
*Email address: C.Wetterich@thphys.uni-heidelberg.de presented in Table | for the four different values rfofor,
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FIG. 1. The plot shows the chiral condensdtiy) as a function of temperatur€. Lines (@), (b), (c), (d) correspond at zero
temperature tan,.= 0,45 MeV,135 MeV,230 MeV, respectively. For each pair of curves the lower one represents fhelépléndence of
() whereas the upper one shows for comparison the universal scaling form of the equation of stat©far)thieisenberg model. The
critical temperature for zero quark massTis=100.7 MeV. The chiral condensate is normalized at a skgte620 MeV.

equivalently, m,(T=0). The value for the pseudocritical m_*(T). [We will often callm,(T) the temperature depen-
temperature fom_=230 MeV compares well with the lat- dent pion mass since it coincides with the physical pion mass
tice results for two flavor QCIO(cf. Sec. . One should for T=0.] The plot form_(T) in Fig. 2 again shows the
mention, though, that a determination ©f; according to  second order phase transition in the chiral linit=0. For

this definition is subject to sizeable numerical uncertaintiesr < T_ the pions are massless Goldstone bosons whereas for
for large pion masses as the curve in Fig. 1 is almost Ilnea-|[->-|-C they form with the sigma particle a degenerate vector

around the inflection point for quite a large temperatureyt o(4) with mass increasing as a function of temperature.
range. A problematic point in lattice simulations is the eX-For =0 the behavior for small positiv& — T, is charac-
trapolation to realistic values ah, or even to the chiral (g/izeq by the critcal exponentv, ie. m_(T)
limit. Our results may serve here as an analytic guide. The:(f)*ch((T—Tc)/Tc)” and we obtain V:O.7877T &

overall picture shows the approximate validity of 9&4)  _( 270. Fonh>0 we find thatm_(T) remains almost con-
s_ca_lllng behavior over a large temperature mterval_m the Vigiant forT=<T, with only a very slight dip forT nearT./2.
cinity of and aboveT, once the(non-universalamplitudes  ror 7 7_ the correlation length decreases rapidly and for
are properly computed. _ o T>T, the precise value ofh becomes irrelevant. We see
A second important result of our investigations is the €M+ 4t the yniversal critical behavior nedg is quite smoothly
perature dependence of the space-like pion correlation leng nnected toT=0. The full functional dependence of
m_(T,m) allows us to compute the overall size of the pion

TABLE 1. The table shows the critical and "pseudocritical” ¢ ajation length near the critical temperature and we find
temperatures for various values of the zero temperature pion mas

— f_(T,o)=1.7m_(0) for the realistic valugh,, . This cor-
HereT(Y is defined as the inflection point 6§)(T) whereasT (2 {Tpc) ~(0) phys

is the [xcation of th ! f the si \ation | relation length is even smaller than the vacuufi=Q) one
getcel\gcatlon of the maximum of the sigma correlation lerigée 4 gives no indication for strong fluctuations of pions with

long wavelength. It would be interesting to see if a decrease
of the pion correlation length at and aboVgis experimen-

M 0 45 135 230 tally observable. It should be emphasized, however, that a
MeV tricritical behavior with a massless excitation remains pos-
sible for three flavors. This would not be characterized by the

(1)

The 100.7 =110 =130 =150 universal behavior of th®(4) model. We also point out that
MeV the present investigation for the two flavor case does not take
T 1007 113 128 . into account a speculative “effective restoration” of the

MeV axial U5(1) symmetry at high temperatuf&,8]. We will
comment on these issues in Sec. VI.
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FIG. 2. The plot shows,, as a function of temperatufiefor three different values of the average light current quark masshe solid

line corresponds to the realistic valde= rh,,,s whereas the dotted line represents the situation without explicit chiral symmetry breaking,
i.e.,m=0. The intermediate, dashed line assuniesiy, J10.

Our method is based on the effective average adfipn 1 ddq
[9] which is the generating functional of thé1 Green func- 5 f W@Di(Q)Rk(Q)@i(—Q)

tions in presence of an infrared cutdff In a thermal equi-

librium context I', depends also on temperature and de-g gqdded to the classical acti®[ ¢]. This cutoff appears in
scribes a coarse grained free energy as a functional gfe inverse “average propagator”

appropriate fields. Here ! corresponds to the coarse grain- 5

ing Igngth scale. Varying the_infra}red cutdffallows us to P(q)=q2+Zc}>lkRk(q)= q (1.4)
consider the relevant physics in dependence on some ' 1— _ q_z
momentum-like scale. The results for the order parameter ex k2

and correlation functions presented in this paper are obtained
by removing the infrared cutoff—0) in the end. For scalar which approachek? for g?<k?. Up to exponentially small
fields ®; thek dependence of the effective average action iscorrections the integration of the high momentum modes
given by an exact nonperturbative flow equatjdao] with g?>k? is not affected by the infrared cutoff. The
1 2 3Ry “renormalization group improvement'S)—T'{?) contains
ST @]=5 TN (NITP]+R) " —= (1.1 all contributions beyond one-loop and makes 1) exact.
Of course, it also turns the flow equation into a functional
wheret=In(k/A) with A an arbitrary momentum scale. Here differential equation which cannot be solved exactly in gen-
I'{?) denotes the matrix of second functional derivatives oféral. We emphasize that the flow equatidrd) is connected

T, with respect to the field components: to the Wilsonian renormalization group equatiphl—15
82T [ ] (often also called exact renormalization group equatiBi-
k

. (1.2  tensions of the flow equations to fermidiis®,17 and gauge
(@)o®'(—q’) fields[18—24) are available.
Since in most cases the flow equation can not be solved
exactly the capacity to devise useful truncations in a nonper-
Z(D‘que‘qz“‘2 turbative context becomes crucial. This requires first of all an
R(q)= T e (1.3 identification of the degrees of freedom which are most rel-
€ evant for a given problem. In the present paper we concen-
with Z  an appropriate wave function renormalization con-trateé on the chiral aspects of QCISpontaneous chiral sym-
stant to be specified later. In momentum space the trace cof?€ly breaking occurs through the expectation value of a
tains a momentum integration, Ff[d%/(2m)]Z;. The (complex scalar field®,, which transforms asN,N) under
flow equation(1.1) closely resembles a one-loop equation:
Indeed, replacin@“ﬁz) by the second functional derivative of
the classical actiorS{?), it corresponds to the one-loop re- IFor a study of chiral symmetry breaking in QED using related
sult for a theory where an infrared cutoff exact renormalization group techniques see RzH].

(N&);i[®1(9.0") = 5

and we employ a momentum dependent infrared cutoff
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the chiral flavor grouB U, (N) X SUg(N) with N the num- . 1 . ; ;
ber of light quark flavors. More precisely, the expectation Ne=l—5 f d*x tr(®j+7'P)
value

<(bab>=;05ab (15) Fk:J' d4x( Zw,kaaiﬁlpa

induces foroy#0 a spontaneous breaking of the chiral
group to a vector-like subgroup,SU (N)XSUg(N)
—SU,  r(N)=SUy(N). In addition, non-vanishing current _
quark massesn,,my,ms break the chiral group explicitly +hy?
and also lift theSU,,(N) degeneracy of the spectrum if they

are unequal. The physical degrees of freedom contained ifgre I is invariant under the chiral flavor symmetry
the field®,;, are pseudoscalar and scalar mesons which cag U,(2)X SUx(2) and the only explicit symmetry breaking
be understood as quark-antiquark bound states. It is obviougcag through the source tegm- . We will consider the
that any analytical description of the chiral transition has tog\ of the most general form ob), consistent with the
include at least part of thegpseudgscalar fields as the most symmetrieswithout any restriction to a polynomial form as

relevant degrees of freedom. . typically used in a perturbative cont¢xOn the other hand,
In the present work we use férsmaller than a "compos- g+ anproximations for the kinetic terms are rather crude and

iteness scale’ky, =600 MeV a description in terms 6Pa,  narameterized by only two running wave function renormal-
and quark degrees of freedom. The quarks acquire a constitis4ion constantsZq, and Z,,. The same holds for the

ent quark mas$/, through the chiral condensatg, which . . . N .
forms in our picture fork sz=400 MeV. This effective effectlve Yukawa couplingp,. The main approximations in
X this work concern

guark meson model can be obtained from QCD by “integrat-
ing out” the gluon degrees of freedom and introducing fields(i)  the simple form of the derivative terms and the

+Zg 13, PT* D]+ U (D, D7)

1+ys 1-ys
2 (Dab_ 2 (q)T)ab

¢b]. (1.6)

for composite operatorf26,22. This will be explained in Yukawa coupling, in particular, the neglect of higher
more detail in the first part of Sec. . In this picture the scale derivative termgand terms with two derivatives and
kg is associated to the scale at which the formation of me- higher powers ofb). This is partly motivated by the
sonic bound states can be observed in the flow of the effec- Observation that at the Scal% and for Sma” tem-
tive (momentum dependentour-quark interaction. We will peratures the possible strong non-localities related to
restrict our discussion in this paper to two flavor QCD with confinement affect most likely only the quarks in a
equal quark masses,=mg=rm. Since in this case the sca- momentum rangey?=< (300 MeV). Details of the

lar triplet a; and the pseudoscalar singl@tssociated with quark propagator and interactions in this momentum

| . )
the ') have typical masses arountl GeV we will neglect range are not very important in our contésee Sec.
them fork<kg . This reduces the scalar degrees of freedom I

of our effective model to a four component vector@f4), (ii)
consisting of the three pions and the “sigma resonance.”

We imagine that all other degrees of freedom besides the
quarks ¢ and the scalar® are integrated out. This is re-
flected in the precise form of the effective average action
Fk(p[ ¥, @] at the scalég which serves as an initial value for

the solution of the flow equation. The flow bf[ ,®] for

k<kg is then entirely due to the quark and meson fluctua-

tions which are not yet included ifi [,®]. Obviously,

the initial valuel“kq? may .be a qglte compllcated functional zﬁk =1. We therefore need as initial values at the skale

of ¢ and ® containing, in particular, important non-local @ . o

behavior. We will nevertheless use a rather simple truncatione scalar wave function renormahzatd}kk@ and the

in terms of standard kinetic terms and a most general form o$hape of the potentid), . We will make here the important

the scalar potentidl,, i.e3 assumption thaZ,  is small at the compositeness schle
(similarly to what is usually assumed in Nambu-Jona-
Lasinio-like models This results in a large value of the

. - ; Ca 5= 12— 1
2More precisely, because of the anomalduig(1) breaking in renormallzed_ Yukawa COUP“U@k—Zq),lkzzw‘thk- A large
QCD these mesons are significantly heavier than the remaining de/alue ofhy is phenomenologically suggested by the com-
grees of freedom in the range of scakeshere the dynamics of the parably large value of the constituent quark miks. The

model is strongly influenced by mesonic fluctuations. The situationatter is related to the value of the Yukawa coupling kor
becomes more involved if the model is considered at high tempera-, g and the pion decay constafit.=92.4 MeV by Mg

the neglect of interactions involving more than two
quark fields. This is motivated by the fact that the
dominant multi-quark interactions are already incor-
porated in the mesonic description. Six-quark interac-
tions beyond those contained effectivelylk, could

be related to baryons and play probably only a minor
role for the meson physics considered here.

We will choose a normalization af,® such thatzw,k<I>

ture which is discussed in Sec. V1. =hf,/2 (with h=h,_s), and M4=300 MeV implies
%0ur Euclidean conventiondif is rea) are specified in Ref§27, ~ h%/4m=3.4. For increasing the value of the Yukawa cou-
16]. pling grows rapidly fork=M,. Our assumption of a large
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initial value forhk(p is therefore equivalent to the assumption pose. This is the reason why we do not give results for

that the truncatiori1.6) can be used up to the vicinity of the ~overall quantities” like energy density or pressure as a
Landau pole oh,. The existence of a strong Yukawa cou- function of T. _ _ _
pling enhances the predictive power of our approach consid- 1S paper is organized as follows: In Sec. Il we review

erably. It implies a fast approach of the running couplings tothe linear quark meson model at vanishing temperature. We

partial infrared fixed point§27]. In consequence, the de- begin with an overview of the different scales appearing in

tailed form of U, becomes unimportant, except for the strong interaction physics. Subsequently, the flow equations
> for the linear quark meson model are introduced and their

value of one relevant parameter corresponding to the scalgpproximate partial fixed point behavior is discussed in de-

mass termmy . In this paper we fixmy ~such thatf, leading to a “prediction” of the chiral condensates ).
=92.4 MeV for m, =135 MeV. The possibility of such a In Sec. Il the exact renormalization group formulation of
choice is highly non-trivial sincé, can actually be predicted field theories in thermal equilibrium is given. It is demon-
[27] in our setting within a relatively narrow range. The strated how mass threshold functions in the flow equations
value f ,=92.4 MeV (for m_=135 MeV) sets our unit of smoothly decouple all massive Matsubara modes as the tem-
mass for two flavor QCD which is, of course, not directly perature increases, therefore leading to a “dimensional re-
accessible by observation. In addition fig¢. (or f,) the duction” of the model. Section IV contains our results for

. . . > : he linear quark meson model at non-vanishing temperature.
other input parameter used in this work is the constituen

) . _ ere we discuss th& dependences of the parameters and
quark masv which determines the scalg, at Whmhhk@ physical observables of the linear quark meson model in de-

becomes very large. We consider a range 300 M&V; tail for a temperature range<OT=<170 MeV including the
=350 MeV and find a rather weak dependence of our result§pseudacritical temperaturel, of the chiral transition. The
on the precise value d¥l,. We also observe that the limit critical behavior of the model nedr, and =0, wherem
hktpﬂoo can be considered as the lowest order of a systendenotes the light average current quark mass, is carefully
atic expansion irh;l which is obviously highly nonpertur- analyzed in Sec. V There we_presept the_universal scaling
@ form of the equation of state including a fit for the corre-
o . sponding scaling function. Also the universal critical expo-
A generalization of our method to the realistic case Ofanis and amplitude ratios are given there. The effects of
three light flavors is possm_le and work in this direction is in g44itional degrees of freedom of strong interaction physics
progress. For the time being we expect that many featurégq included in the linealO(4)-symmetric quark meson
found for N=2 will carry over to the realistic case, espe- noqe| are addressed in Sec. VI. Here we also comment on
cially the critical behavior foff —T. andm—0 (for fixed  itterences between the linear quark meson model and chiral
ms#0). Nevertheless, some quantities likgy)(T=0), the  perturbation theory. Some technical details concerning the
difference betweer, for realistic quark masses amd=0  quark mass term and the definition of threshold functions at
or the mass of the sigma resonanc& a0 may be modified. vanishing and non-vanishing temperature are presented in
This will also affect the non-universal amplitudes in the criti- three appendices.
cal equation of state and, in particular, the valu& of In the
picture of the two flavor quark meson model these changes
occur through an effective temperature dependence of the
initial values of couplings at the scalg, . This effect, which Before discussing the finite temperature behavior of
is due to the temperature dependence of effects from fluctuatrong interaction physics we will review some of its zero
tions not considered in the present work is discussed brieflfemperature features. This will be done within the framework
in Sec. VI. It remains perfectly conceivable that this addi-of a linear quark meson model as an effective description for
tional temperature dependence may result in a first ordeQCD for scales below the mesonic compositeness scale of
phase transition or a tricritical behavior for realistic values ofapproximatelyks, =600 MeV. Relating this model to QCD
m for the three flavor case. Details will depend on thein a semi-quantitative way in Sec. Il A will allow us to gain
strange quark mass. We observe, however, that the temperseme information on the initial value for the effective aver-
ture dependence in the limih— 0 involves forT<T. only = age action at the compositeness sdaje We emphasize,
information from the running of couplings in the range however, that the quantitative aspects of the derivation of the
<300 MeV. (The running fortk= 3T effectively drops outin  effective quark meson model from QCD will not be relevant
the comparison between the thermal equilibrium results antbr our practical calculations in the mesonic sector. This is
those forT=0.) In this range of temperatures our model related to the “infrared stability” for large Yukawa coupling
should be quite reliable. hy,, as discussed in the Introduction and which will be made
Finally, we mention that we have concentrated here onlyyyantitative in Sec. Il B.
on thed-dependent part of the effective action which is re-
lated to chiral symmetry breaking. Thk-independent part .
of the free energy also depends ®rand only part of this A. A short (scalg history of QCD
temperature dependence is induced by the scalar and quark For an evaluation of the trace on the right hand side of the
fluctuations considered in the present paper. Most likely, thélow equation(1.1) only a small momentum rangg®=k?
gluon degrees of freedom cannot be neglected for this purcontributes substantially. One therefore only needs to take

bative.

Il. THE QUARK MESON MODEL AT T=0
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into account those fluctuations which are important in this
momentum interval. Here we are interested in the description
of chiral symmetry breaking. The relevant fluctuations in re-
lation to this phenomenon may change with the s&asnd

we begin by summarizing the qualitatively different scale
intervals which appear for meson physics in QCD. Some of
this will be explained in more detail in the remainder of this
section whereas other aspects are well known. Details of this
discussion may also be found in Ref26-28. We will
distinguish five qualitatively different ranges of scales:

(1) At sufficiently high momentum scales, say,
k=k,=1.5 GeV
the relevant degrees of freedom of strong interactions are
qguarks and gluons and their dynamics is well described
by perturbative QCD.
For decreasing momentum scales in the range
kp=600 MeV<k=<k,=15 GeV (5)
the dynamical degrees of freedom are still quarks and
gluons. Yet, ak is lowered part of their dynamics be-
comes dominated by effective non-local four quark in-
teractions which cannot be fully accessed perturbatively.
(3) At still lower scales this situation changes dramatically.
Quarks and gluons are supplemented by mesonic bound
states as additional degrees of freedom which are formed
at a scalky, =600 MeV. We emphasize théat, is well
separated fromk 5cp=200 MeV where confinement sets
in and from the constituent masses of the quavks
=(300-350) MeV. This implies that below the com-

(2

PHYSICAL REVIEW B9 034010

Yukawa couplingh is fixed by the typical values of con-
stituent quark masseM ;=300 MeV to be h2/(4)
=3.4. One may therefore speculate that the domination
of the Yukawa interaction persists even for the interval

My=300 MeV=k=Kk, gg=400 MeV
below which the quarks decouple from the evolution of
the mesonic degrees of freedom altogether. Of course,
details of the gluonic interactions are expected to be cru-
cial for an understanding of quark and gluon confine-
ment. Strong interaction effects may dramatically change
the momentum dependence of the quark propagatd¢ for
andg? aroundAqcp. Yet, there is no coupling of the
gluons to the color neutral mesons. As long as one is
only interested in the dynamics of the mesons one is led
to expect that confinement effects are quantitatively not
too important.
Because of the effective decoupling of the quarks and
therefore of the whole colored sector the details of con-
finement have only little influence on the mesonic dy-
namics for scales

k=My=300 MeV.

Here quarks and gluons disappear effectively from the
spectrum and one is left with the pions. They are the
only particles whose propagation is not suppressed by a
large mass. For scales below the pion mass the flow of
the couplings stops.

Let us now try to understand these different ranges of

positeness scalley there exists a hybrid description in scales in more detail. We may startka=1.5 GeV where

(4)

term of quarksand mesons. It is important to note that we assume that all gluonic degrees of freedom have been
for scales not too much smaller thig chiral symmetry integrated out while we have kept an effective infrared cutoff
remains unbroken. This situation holds down to a scale~k, in the quark propagators. Details of this procedure were
K,sg=400 MeV at which the scalar meson potential de-outlined in Ref[22]. This results in a non-trivial momentum
velops a non-trivial minimum thus breaking chiral sym- dependence of the quark propagator and effective non-local
metry spontaneously. The meson dynamics within thgour and higher quark interactions. Because of the infrared
range cutoff the resulting effective action for the quarks resembles
closely the one for heavy quarkat least for Euclidean mo-
menta. The dominant effect is the appearance of an effective
quark potential similar to the one for the charm quark which
gescribes the effective four quark interactions.

K,sg=400 MeV=k=kq=600 MeV
is dominated by light current quarks with a strong

Yukawa couplingh?/(47)> a4(k) to mesons. We will

thus assume that the leading gluon effects are included \y/e next have to remove the infrared cutoff for the quarks,
belowk, already in the formation of mesons. Négse |, 0. This task can be carried out by means of the exact
also fluctuations of the light scalar mesons become iMyqy equation for quarks only, starting & with an initial
portant as their initially large renormalized mass ap'valuel“kp[w] as obtained after integrating out the gluons. A

proaches zero. Other hadronic bound states like VeCt%rst investigation in this directiof26] used a truncation with

MEsOons or baryons should have_ Masses larger than thoiechirally invariant four quark interaction whose most gen-
of the lightest scalar mesons, in particular n&ggg,

) . o eral momentum dependence was retained. A crucial point is,
and give therefore only subleading contributions to thest cqyrse, the initial value for this momentum dependence at
dynamics. This leads us to a simple linear model ofy ' The ansatz used in R4R26] is obtained by Fierz trans-
quarks and scalar mesons as an effective description qgrming the heavy quark potential and keeping, for simplic-
QCD for scales belovkg . ity, only the scalar meson channel while neglecting phe
As one evolves to scales beldwsg the Yukawa cou- meson and pomeron channels which are also present. The
pling decreases whereag increases. Of course, getting effective heavy quark potential was approximated there by a
closer toAcp it is no longer justified to neglect in the one gluon exchange term ay(kp) supplemented by a lin-
quark sector the QCD effects which go beyond the dy-early rising string tension term. This ansatz corresponds to
namics of the effective quark meson model in our trun-the four quark interaction generated by the flavor neutral
cation(1.6). On the other hand, the final IR value of the t-channel one gluon exchange depicted in Fig. 3 with an
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F o) i(ps) . variables or, more generally, a change of variah®§. In
Palpr) %i(ps) the context of QCD this amounts to the replacement of the
dominant part of the four quark interactions by scalar meson
fields with Yukawa couplings to the quarks. In turn, this
_— == substitutes the effective quark action at the ségleby the

Pt . . ) . .
effective quark meson action given in E@L.6) in the
() Fooo Introduction® The term in the effective potentiél Ko which
; — $i(p P . . _
¥i(p2) by(pa) ’ o is quadratic in®, qu):mﬁq) tr ®'d+--- | turns out to be
b~ L5GeV b = 600 MeV positive as a consequence of the attractiveness of the four
p = 1. ® e

quark interaction inducing it. Its value was found for the

FIG. 3. The left diagram represents the one gluon exchanggImple truncations used in Re6] to be mkq>2120 MeV.

t-channel contribution to the four quark vertex at the sdaje The higher order terms iy, cannot be determined in the

=1.5 GeV. Itis assumed here that the gluon propagator is modifiefour quark approximation since they correspond to terms in-
such that it accounts for the linearly rising term in the heavy quarkvolving six or more quark fields(Their values will not be
potential. The right diagram displays the scalar mesarhannel  needed for our quantitative investigations as is discussed in
exchange found at the compositeness skgle 600 MeV. Sec. 11 B) The initial value of the(bare Yukawa coupling
corresponds to the amputated Bethe-Salpeter wave function.
appropriately modified gluon propagator and quark gluomNeglecting its momentum dependence it can be normalized
vertex in order to account for the linearly rising part of the ;, qu,zl- Moreover, the quark wave function renormaliza-

potential tion Z,, is normalized to one at the scalg, for conve-
The evolution equation for the four quark interaction Canniencew'kOne mav add that we have refrainzed here for sim-
be derived from the fermionic version of E(L.1). It is by L Y a .
far not clear that the evolution of the effective four quark plicity from con3|d'er|ng four quark qperatorg W'Fh vectp rand
vertex will lead at lower scales to a momentum dependencBseudo-vector spin structure. Their inclusion is straughtfor_—
representing thestchannel exchange of colorless mesonic mzrgf?ggi\\;veoggiloenad to vector and pseudo-vector mesons in
bound states. Yet, at the compositeness scale ; C . .
In view of the possible large truncation errors made in
k=600 MeV (2.) Ref.[26] we will take Eq.(2.1) and the above value ciﬁkq)

only as order of magnitude estimates. Furthermore, we will
one findg 26] an approximate Bethe-Salpeter factorization ofassume, as motivated in the Introduction and usually done in
the four quark amplitude with precisely this property. ThislargeN. computations within the NJL model, that
situation is described by the right Feynman diagram in Fig.
3. In particular, it was possible to extract the amputated
Bethe-Salpeter wave function as well as the mesonic bound
state propagator displaying a pole-like structure in the
channel if it is continued to negative=(p; +py)®. Inthe  aq 5 consequence, the initial value of the renormalized
limit where the momentum dependence of the Bethe-Salpeter . o1 T
wave function and the bound state propagator is neglecte ukawa couplmghk(p=Zq,,kq)Zw,k(th(p is much larger than
the effective actior’, resemblebthe Nambu—Jona-Lasinio onhe and we will be able to exploit the infrared stable features

model[29,30. It is therefore not surprising that our descrip- ©f the flow equations. As a typical coupling we take,

tion of the dynamics fok<k, will parallel certain aspects =100 in order to simulate the limiy —. The effective

of the investigations of this model, even though we are nopotential U, (®) must be invariant under the chiral

bound to the approximations used typically in such studiesU, (N) X SUg(N) flavor symmetry. In fact, the axial

(largeN, expansion, perturbative renormalization group,anomaly of QCD breaks the Abelidh,(1) symmetry. The

etc). resultingU (1) violating multi-quark interactiofislead to
It is clear that for scalek<Kkq a description of strong correspondingU,(1) violating terms inU,(®). Accord-

interaction physics in terms of quark fields alone would beingly, the most general effective potentiay is a function of

rather inefficient. Finding physically reasonable truncationghe N+1 independentC and P conserving SU, (N)

of the effective average action should be much easier oncg SU,(N) invariants

composite fields for the mesons are introduced. The exact

renormalization group equation can indeed be supplemented "

by an exact formalism for the introduction of composite field p=tr &',

Zg <L 2.2

“Our solution of the flow equation foF with ZQ’k¢:0 (see SWe note that no double counting problem arises in this proce-

below) may be considered as a solution of the NJL model with adure.
particular form of the ultraviolet cutoff dictated by the shape of °©A first attempt for the computation of the anomaly term in the
R«(g?) as given in Eq(1.3). fermionic effective average action can be found in R84].
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1\ feature is an important ingredient for the predictive power of
Tiwtf(q)T‘I’— NP) , 1=2,.N, the model as far as the absolute size of the current quark
mass is concerned.
The quantities which are directly connected to chiral sym-
é=detd +detd’. (2.3 metry breaking depend on ttkedependent expectation value
(®)=09k as given by
For a given initial form ofU, all quantities in our truncation
of I' (1.6) are now fixed and we may follow the flow f; %
to k—0. In this context it is important that the formalism for dp
composite field§26] also induces an infrared cutoff in the
meson propagator. The flow equations are therefore exact
of the form (1.1), with quarks and mesons treated on an
equal footing. At the compositeness scale the quadratic term

of U, =mj, Tr ®'d+- - is positive and the minimum of e obtain the following expressions for phenomenological
Uy, therefore occurs fob=0. Spontaneous chiral symme- observables from Ed1.6) for® d=4

try breaking is described by a non-vanishing expectation

e
(=278 = 75— 2.5

|l§1 terms of the renormalized expectation value

Ook= chpl,zkgo,k (2.6

value(®) in absence of quark masses. This follows from the fri=200k,
change of the shape of the effective potentiglask flows .
from ke to zero. The large renormalized Yukawa coupling (Y= —25&@[2;}(’200',(—@,
rapidly drives the scalar mass term to negative values and
leads to a potential minimum away from the origin at some M q.x=heook .
scale k,sg<Kg such that finally (®)=0,#0 for k—0
[26,27]. This concludes our overview of the general features mﬁ m J
of chiral symmetry breaking in the context of flow equations m2  =Zo2 —2—=7,12 ,
for QCD. ' T ook 200k
We will concentrate in this work on the two flavor case —
(N=2) and comment on the effects of including the strange 2 oo Mg, M Ang? 27
quark in section 6. Furthermore we will neglect isospin vio- ok TRK o k¥ 0k :

lation and therefore consider a singlet source tgrpmopor-
tional to the average light current quark mads=3(m, Here we have defined the dimensionless, renormalized cou-
+mg). Due to theU (1) anomaly there is a mass split for plings
the mesons described . The scalar triplet4,) and the
pseudoscalar singlety() receive a large mass whereas the
pseudoscalar tripletsr) and the scalar singldis) remains
light. From the measured values,, ,m, =1 GeV it is evi- o
dent that a decoupling of these mesons is presumably a very h=Z43°Z,, .- (2.8
realistic limit” It can be achieved in a chirally invariant way ) ) ] ) ]
and leads to the well know®(4)-symmetric Gell-Mann— We w!l[ malnly_be mte_re'sted in the “physu;al values” of t_he
Levy linear sigma moddl32] which is, however, coupled to guantities(2.7) in the limit k— 0 where the infrared cutoff is
quarks now. This is the two flavor linear quark meson modefemoved, i.ef,=f .o, m2=mZ,_ o, etc. We point out
which we will study in the remainder of this work. For this that the formalism of composite fields provides the [j@k]
model the effective potentidl, is a function ofp only. to the chiral condensate)) since the expectation valug,

It remains to determine the sourgeas a function of the is related to the expectation value of a composite quark-
average current quark mass This is carried out in Appen- antiquark operator.
dix A and we obtain in our normalization wit#,, =1,

qu,: 1, B. Flow equations and infrared stability

2
_ k -
Me=Zok ra (p=205)),

At first sight, a reliable computation df,_,, seems a

j=2ﬁﬁ . (2.4) ye_ry_difficult task. Without a truncatioﬁk is described by_an

ko infinite number of parameterécouplings, wave function

renormalizations, etg.as can be seen If, is expanded in
It is remarkable that higher order terms do not influence thepowers of fields and derivatives. For instance, the sigma
relation betweepg andm. Only the quadratic ternﬁﬁq} en- mass is obtained as a zero of the exact inverse propagator,

ters which is in our scenario the only relevant coupling. Thislimy_o I'?(a)|o—(ay. which formally receives contribu-

7In thermal equilibrium at high temperature this decoupling is not °We note that the expressioii.7) obey the well known Gell-
obvious. We will comment on this point in Sec. VI. Mann—Oakes—Renner relation? f2= — 2im( ) + O(M?) [33].
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tions from terms inl", with arbitrarily high powers of de- 9
rivatives and the expectation valug. Realistic nonpertur- Sfu=—dut(d=2+7)pu’
bative truncations ofl’y which reduce the problem to a

manageable size are crucial. We will follow here a twofold

d . d ~
strategy: Blo(u’; me) +1g(u’ +2pu"; 7)

+2vy4

Physical observables like meson masses, decay constants, 1

etc., can be expanded in powers(cfirren} quark masses - 2d/2+1Nc|BF)d(§7)h2; W)
in a similar way as in chiral perturbation thed4]. To a

given finite order of this expansion only a finite number of

terms of a simultaneous expansion f in powers of Here vy '=29"17%[(d/2) and primes denote derivatives
derivatives andb are required if the expansion point is With respect tg. The number of quark colors is denoted as

chosen properly. Details of this procedure and some reN.. We will always use in the followindN.=3. Equation
sults can be found ifi35-37. (2.1 is a partial differential equation for the effective po-
tential u(t,p) which has to be supplemented by the flow

Because of an approximate partial IR fixed point behavioguation for the Yukawa coupling and exprgzssi((g?ds for the
of the flow equations in the symmetric regime, i.e. foranomalous dimensiongq, 7,. The symbold, I;”" de-
k,se<k<ky, the values of many parameters Bf for note boso_nic and fer_mioni_c mass thr_eshold functions,_ respec-
k—0 will be almost independent of their initial values at tively, which are defined in Appendix B. They describe the

the compositeness scdlg . For large enough, only a decoupling 01_‘ massjve mode_s and provide an important non-
@ erturbative ingredient. For instance, the bosonic threshold

Yinctions

. (2.1

few relevant parameters need to be computed accurate
from QCD. They can alternatively be determined from
phenomenology. Because of the present lack of an ex-

plicit QCD computation we will pursue the latter ap- Ao N+t6ho 1 o0y diq
proach. In(W; 79) = —,—"vq K (2m)0
1 JRy 1
In combination, these two points open the possibility for a XZ¢ . ot [P(D)+Kw]"* L (212

perhaps unexpected degree of predictive power within the
linear quark meson model. We wish to stress, however, that
a perturbative treatment of the model at hand, e.g., usiniivolve the inverse average propagatoP(q?)=g?
perturbative RG techniques, cannot be expected to yield re+ Z(’p}kRk(qZ) where the infrared cutoff is manifest. These
liable results. The renormalized Yukawa coupling is veryfunctions decrease-w™("*1) for w>1. Since typicallyw
large at the scal&g, . Even the IR value oh, is still rela-  =M?/k? with M a mass of the model, the main effect of the
tively big threshold functions is to cut off fluctuations of particles with
massedvI?>k?. Once the scalk is changed below a certain
mass threshold, the corresponding particle no longer contrib-
2My utes to the evolution and decouples smoothly.
h=0= f =6.5 (2.9 The dimensionless renormalized expectation vakie
i =2k? 924, o5y, With oo thek-dependent VEV ofb, may
be computed for eack directly from the condition2.5)

and h, increases wittk. The dynamics of the linear quark

meson model is therefore clearly nonperturbative for all

scalesk=kg . u’'(t, k)= Lk—(d+2)/22(£1k/25 €. (2.13
We will now turn to the flow equations for the linear 2k '

guark meson model. We first note that the flow equations for

I', andT',— 3 fd*x tr(JT® + d 7)) are identical. The source _ _ _ .

term therefore does not need to be considered explicitly an}lOt€ thatk=0 in the symmetric regime for vanishing source

only appears in the conditioi2.5) for (®). It is convenientfo  terM- Equation2.13 allows us to follow the flow ofic ac-

work with dimensionless and renormalized variables there€0rding to

fore eliminating all explicitk dependence. With

dm* d—2]e— 22t
AT g 2mn |[TeT AT 2le 25 W (e

UEE)=KTUp), P=Za k% (2.10 .14

and using Eq(1.6) as a first truncation of the effective av- with \=u"(t,x). We define the Yukawa coupling fgs
erage actiod’, one obtains the flow equatidit=In(k/ky)] =k and its flow equation read®7]
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) ) decouple oncé& becomes smaller thavl ; and the evolution
gt =(d=4+2n,+7e)h is then dominantly driven by the light Goldstone bosons.
This is also important for our approximation of neglecting
1., the residual gluonic interactions in the quark sector of the
PAULICCE Wﬂhp) model as outlined in Sec. Il A.
Most importantly, one finds that the system of flow equa-
eyl L2 _ tions exhibits an approximate IR fixed point behavior in the
—I11 §h K €gt 2Ny 0 | (- (2.19 symmetric regimdg27]. To see this explicitly we study the
flow equationg2.11), (2.14—(2.16 subject to the condition
Similarly, the scalar and quark anomalous dimensions ar&.2. For the relevant range ¢f bothu’(t,p) andu’(t,p)
inferred from +2pu”(t,p) are then much larger thgsh?(t) and we may
therefore neglect in the flow equations all scalar contribu-

—ZUdhA{ 31

_d tions with threshold functions involving these large masses.
No=" m'” Zo k This yields the simplified equationsl€ 4, v, *=3272)
_,ld 2.d ) J ~, Ne a1
_4E [410\ m, { €q, €5+ 2N K; 7g) ﬁu= —4u+(2+ ng)pu’ — Ezlg ) > ph? |,
1
+ 2d/2NCh2m£1F)d(§h2K; 77(//) ] ’ Ehz: n¢h2,
dt
=——InZz N
T e T 0= gzms (0N,
Uy 1
:23h2[3m(f25>d(§h2/<,eg:77(//,%) 7,=0. (2.17

(FB)d 1, _ Of course, it should be clear that this approximation is only
+my, Eh K, €qt 2Ny, 70 | 15 (210 valid for the initial range of running belowg before the
(dimensionless renormalized scalar mass squaraf(t,p

which is a linear set of equations for the anomalous dimen=0) approaches zero near the chiral symmetry breaking

sions. The threshold functiong™¢, md  m(P¥ and  scale. The syster2.17) is exactly soluble. Usingn{~*(0)
1:M2 1:M2 _ . . .

mEEB%f are also specified in Appendix B. v—velf\i/;rgjlch holds independently of the choice of the IR cutoff
The flow equations(2.11), (2.14—(2.16, constitute a

coupled system of ordinary and partial differential equations h,2

which can be integrated numerically. Here we take the effec- h2(t)=2Z4%(t)= ,

ftive current quark mass dependence_h@f Zyx a_nd Zyx 1— —Czh,zt

into account by stopping the evolution according to Egs. 8

(2.19, (2.16), evaluated for the chiral limit, below the pion

massm,.. (For details of the algorithm used here see Refs. _— e h2(t)

[38, 39.) One finds ford=4 that chiral symmetry breaking u(t,p)=e "u| e7p h2

indeed occurs for a wide range of initial values of the param-

eters including the presumably realistic case of large renor- NG tdre“"I(F)“ Ehz(t)”ezr 218

malized Yukawa coupling and a bare mass, of order 100 272 ) 0 |2 P ' :

MeV. Driven by the strong Yukawa coupling, the renormal-
ized mass termu’(t,p=0) decreases rapidly and goes
through zero at a scalk,sg not far belowk, . Here the
system enters the spontaneously broken regime and the

fective average po_tentlal develo_ps an absolute MINIMUNY e momentum implicit in the definition of the threshold
away from the origin. The evolution of the potential mini- function l(()F)A, (see Appendix B] Here u,(3)=u(0p) de-

2 _ 2
mum o, = K=«/2 “‘”.‘S out to be reason_ably stable alr(.3""d.ynotes, the effective average potential at the compositeness
beforek=m_ where it stops. We take this result as an indi- 2 B 5 . T
scale and; is the initial value oh“ atkg, , i.e. fort=0. For

cation that our truncation of the effective actibp leads at C . . I
simplicity we will use an expansion of the initial value ef-

least qualitatively to a satisfactory description of chiral sym-___* : _ -~
metry breaking. The reason for the relative stability of the IRfECt'Ve potentialy, (p) in powers ofp aroundp=0

behavior of the VEV(and all other couplingsis that the ®
quarks acquire a constituent magk,=hoy=300 MeV in u(p)= 2
the spontaneously broken regime. As a consequence they n=0

The integration over on the right hand side of the solution
or u can be carried out by first exchanging it with the one

ulm 0)
' f " (2.19

n
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TABLE Il. The table shows the dependence on the constituent quarkivhae$the input parameteis; , ﬁﬁ@/kﬁ, andj as well as some
of our “predictions.” The phenomenological input used here besMgss f ., =92.4 MeV, m, =135 MeV. The first line corresponds to the

values forM, and\, used in the remainder of this work. The other three lines demonstrate the insensitivity of our results with respect to the

precise values of these parameters.

My M ko m, ) (ko) (1 GeV) (Pu)(1GeV) 10
MeV h? MeV 3 MeV MeV MeV T MeVd MeV
303 1 618 0.0265 66.8 14.7 11.4 —(186)° 80.8
300 0 602 0.026 66.8 15.8 12.0 —(183)° 80.2
310 0 585 0.025 66.1 16.9 12.5 —(180)° 80.5
339 0 552 0.0225 64.4 195 13.7 —(174) 81.4

even though this is not essential for the forthcoming reason- u’ N,

ing. Expanding als®{™* in Eq. (2.18 in powers of its argu-
ment one finds fon>2

(n)
u™(t,0) _ 2(H)tu,” (0) N¢(=1)'(n—1)! F4(0)
th(t) h|2n 77_2 2n+2(n_2) n
X[1—e2n~2, (2.20

For decreasing— — = the initial valuesu(" become rapidly
unimportant andu(™/h?" approaches a fixed point. For
=2, i.e., for the quartic coupling, one finds

u?(0)

u@(t,0) Y
Po TR : (2.21)

1- g hit

leading to a fixed point valueuf®)/h?), =1. As a conse-

guence of this fixed point behavior the system loses all it
“memory” on the initial valuesu{"=?) at the compositeness
scaleky . This typically happens before the approximation.
u’(t,p),u’(t,p)+2pu”(t,p)>ph?(t) breaks down and the

~ ! — 2t 21\
u(t,p) _h,z_e h*(p—5 =
t 1
X f dre‘4’IgF)4(§h2(t)73e2r). (2.23
0

In other words, foh,— o the IR behavior of the linear quark
meson model will dependin addition to the value of the
compositeness scakg, and the quark mas#) only on one
parameterﬁﬁ(b. We have numerically verified this feature by

starting with different values fon{?(0). Indeed, the differ-
ences in the physical observables were found to be small.
This IR stability of the flow equations leads to a perhaps
surprising degree of predictive power. For definiteness we
will perform our numerical analysis of the full system of
flow equationg2.11), (2.14—(2.16 with the idealized initial
value u;(p)=u;(0)p in the limit h|2—>oo. It should be
stressed, though, that deviations from this idealization will
lead only to small numerical deviations in the IR behavior of
he linear quark meson model as long as the condit®®)
olds, say foh, =15 [27].

With this knowledge at hand we may now fix the remain-
ing three parameters of our modky; , ﬁﬁ@ andrm by using

solution (2.18 becomes invalid. Furthermore, the attractionf»=92.4 MeV, the pion masd ,=135 MeV and the con-
to partial infrared fixed points continues also for the range oftituent quark massl, as phenomenological input. Because
k where the scalar fluctuations cannot be neglected anymor€f the uncertainty regarding the precise valuvof we give
The initial value for the bare dimensionless mass parametdf Table Il the results for several valuesidf, . The first line

=2
u(0) M,
—_— = (2.22
hf kg
is never negligible(In fact, using the values fcrﬁﬁq) andkg
computed in Ref[26] one obtainsi /k§=0.036.) For

largeh, [and dropping the constant pieag0)] the solution
(2.18 therefore behaves with growiry as

N
Z@(t)z_ﬁt,

872
h2(t)=— <,

of Table Il corresponds to the choice bf; and\;=uy(«)
which we will use for the forthcoming analysis of the model
at finite temperature. As argued analytically above the de-
pendence on the value af is weak for large enough, as
demonstrated numerically by the second line. Moreover, we
notice that our results, and in particular the valuegj ofare
rather insensitive with respect to the precise valu#/gf. It

is remarkable that the values f&g and mhb are not very

different from those computed in Rg26]. As compared to

the analysis of Refl27] the present truncation df, is of a
higher level of accuracy: We now consider an arbitrary form
of the effective average potential instead of a polynomial
approximation and we have included the pieces in the thresh-
old functions which are proportional to the anomalous di-
mensions. It is encouraging that the results are rather robust
with respect to these improvements of the truncation.

034010-11



J. BERGES, D.-U. JUNGNICKEL, AND C. WETTERICH PHYSICAL REVIEW B9 034010

T T T T . .
500 - l
2
400 m ]
MeV
300 | |
200 |- ]
fx
MeV
L ]
0 1 : N L \ ,
0 0.5 1 15 > 25 3 5
m/ Mphys

FIG. 4. The plot showsn> (solid line) andf , (dashed lingas functions of the current quark massin units of the physical valuégpys.

Once the parameteks; , ﬁﬁ(p and are fixed there are a though, that this result is presumably not very accurate as we
number of “predictions” of the linear meson model which Nave employed in this work the approximation of using the
can be compared with the results obtained by other methodgoldstone boson wave function renormalization constant
or direct experimental observation. First of all one may com-2is0 for the radial mode. Furthermore, the explicit chiral
pute the value of at a scale of 1 GeV which is suitable for Symmetry breaking contribution tm; is certainly underes-
comparison with results obtained from chiral perturbationtimated as long as the strange quark is neglected. In any case,
theory[40] and sum rule§41]. For this purpose one has to We observe that the sigma meson is significantly heavier than
account for the running of this quantity with the normaliza-the pions. This is a crucial consistency check for the linear
tion scale fromkg, as given in Table Il to the commonly used duark meson model. A low sigma mass would be in conflict
value of 1 GeVim(1 GeV)=A"1(kg). A reasonable esti- With the numerous successes of chiral perturbation theory
mate of the factoA is obtained from the three loop running [34] which requires the decoupling of all modes other than

of i in the modified minimal subtractioMS) schemd41].  the Goltone bosons in the IR limit of QCD. The decoupling
For M,=300 MeV corresponding to the first two lines in of the sigma meson is, of course, equivalent to the limit
Table ?I its value isA=1.3. The results fom(1 GeV) are in —oo which formally describes the transition from the linear

acceptable agreement with recent results from other methodg the non-linear sigma model and which appears to be rea-

[40,41 even though they tend to be somewhat |arger.sonably well realized by the large IR values)obbtained in

Closely related to this is the value of the chiral condensate®Ur @nalysis. We also note that th? issue of the sigma mass is

closely connected to the value 6f , the value off  in the

— — - - hiral limit =0 also given in Table Il. To lowest order in
1GeV)=—AMR [f,Z5¥2,—2m]. (2249 ¢ : e

{y9)(1GeV) kol T2 k=0 1. 224 (f.— @)/t or, equivalently, infh one has

These results are quite non-trivial since not of‘n,l,yandﬁﬁ(b f m2
(0) .] m w

enter but also the computed IR valdg . We emphasize f =t =g =—. (2.25

in this context that there may be substantial corrections both ZopmG M,

in the extrapolation fronkg, to 1 GeV and in the factoa, )

[see Eq(A1)]. The latter is due to the neglected influence ofA larger value ofm, would therefore reduce the difference

the strange quark which may be important nkgr. These betweenf(,?) andf .

uncertainties have only little effect on the physics at lower In Fig. 4 we show the dependence of the pion mass and

scales as relevant for our analysis of the temperature effectgecay constant on the average current quark nrasthese

Only the value off which is fixed bym, enters here. curves depend very little on the values of the initial param-
A further more qualitative test concerns the mass of theeters as demonstrated in Table Il ). We observe a

sigma resonance or radial mode whose renormalized masslatively large difference of 12 MeV between the pion de-

squared may be computed according to €q7) in the limit ~ cay constants ath=r,,s and m=0. According to Eq.

k—0. From our numerical analysis we obtal_,=20 (2.25 this difference is related to the mass of the sigma

which translates intom,=430 MeV. One should note, particle and will be modified in the three flavor case. We will
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later find that the critical temperatufe for the second order T N+dno _, o di1g
phase transition in the chiral limit is almost independent of |n(W,E;7I¢>> =—7 Ud K " Tz f (2mi 1t
the initial conditions. The values o‘I(f) and T, essentially et
determine the non-universal amplitudes in the critical scaling 1 R (g 1
region(cf. Sec. \J. In summary, we find that the behavior of X(Zq) ot ) [P(q?)+Kow]"* *
our model for smalk is quite robust as far as uncertainties in ’
the initial conditions at the scalg, are concerned. We will (3.3
see that the difference of observables between non-vanishing

2_ 2 =2 _ H H
and vanishing temperature is entirely determined by the floWVherea“=do+q~ andqo=2mIT. Alist of the various tem-
of couplings in the range @k=<3T. perature dependent threshold functions appearing in the flow

equations can be found in Appendix C. There we also dis-
cuss some subtleties regarding the definition of the Yukawa
1. THERMAL EQUILIBRIUM AND DIMENSIONAL coupling and the anomalous dimensions fo# 0. In the
REDUCTION limit k=T the sum over Matsubara modes approaches the
] . ___ integration over a continuous rangefand we recover the
. Thg extension of flov_v equations to -therm-al equilibrium ¢4 temperature threshold functitﬂ(w; 7). In the oppo-
situations at non-vanishing temperatdras straightforward  giia |imit k<T the massive Matsubara modés-0) are sup-

[4?]' I.n the_EucI?ngnbformgllism nog'-.zero ]Eerrf’nper_atgre re'pressed and we expect to findda-1 dimensional behavior
sults in (anti-)periodic boundary conditions faffermionic) of Iﬂ. In fact, one obtains from Eq3.3)

bosonic fields in the Euclidean time direction with periodic-
ity 1/T [43]. This leads to the replacement

19w, T/k; 7o) =1%(W; g) for T<Kk,

f ddqf 2 TZf dd_qu 2y +q? 19(w, T/k; )zzvd’lld*(w- ) for T>k
(2—7T)CI(Q)—>|EZ Wﬁ(%()Q) (W TTKim0) =10 = =1 /2 -

(3.0 (3.4

For our choice of the infrared cutoff functid®,, Eq. (1.3,
in the trace in Eq(1.1) when represented as a momentumthe temperature dependent Matsubara modes in
integration, with a discrete spectrum for the zero componentd(w,T/k; 7,) are exponentially suppressed foF<k
whereas the behavior is more complicated for other threshold
functions appearing in the flow equatiofi®.11), (2.14—
. (3.2) (2.16). Nevertheless, all bosonic threshold functions are pro-
(21+1)wT for fermions. portional toT/k for T>k whereas those with fermionic con-
tributions vanish in this limif. This behavior is demonstrated

, ) . in Fig. 5 where we have plotted the quotients
Hence, forT>0 a four-dimensional QFT can be interpreted I4(w T/k)/I‘l‘(w) andl(lF)4(w T/k)/l(lF)4(W) of bosonic and

as a three-dimensional mode_:l W!th ea_ch_b_osonlc or fermlon"Fermionic threshold functions, respectively. One observes
degree of freedom now coming in an infinite number of cop

ies labeled by < 7 (Matsubara modesEach mode acquires that for k=T both threshold functions essentially behave as

an additional temperature dependent effective mass terfor zero temperature. For growing or decreasing this
2 . P penae . anges as more and more Matsubara modes decouple until
go(1). In a high temperature situation where all massiveg;

Matsubara modes decouple from the dynamics of the syste ally all massive modes are suppressed. The bosonic
. 4 < .

one therefore expects to observe an effective threemreShOId fgncthdl shows fork<T_the linear dependenpe

on T/k derived in EQ.(3.4). In particular, for the bosonic

dimensional theory with the bosonic zero modes as the onl% - . .
; xcitations the threshold function far<1 can be approxi-
relevant degrees of freedom. In other words, if the character=

; V-
istic length scale associated with the physical system is mchated with reasona?le accuracy By(w; ) for T/k,
larger than the inverse temperature the compactified Euclid-<(_)'25 and by (I/k.)ln(;’vjr 70) for T/k>0.25. The fermi-
ean “time” dimension cannot be resolved anymore. ThisONiC threshold function{™* ten to zero fok<T since there
phenomenon is known as “dimensional reductio4]. is no massless fermionic zero mode, i.e., in this limit all
The formalism of the effective average action automati-fermionic contributions to the flow equations are suppressed.
cally provides the tools for a smooth decoupling of the mas©On the other hand, the fermions remain quantitatively rel-
sive Matsubara modes as the sdals lowered fromks>T to ~ €vant up toT/k=0.6 because of the relatively long tail in
k<T. It therefore allows us to directly link the loW; four- ~ Fig. 5b). The transition from four to three-dimensional
dimensional QFT to the effective three-dimensional High- thres_hold functions leads tosamooth dimensional reduction
theory. The replacemer8.1) in (1.1) manifests itself in the ask is lowered fromk>T to k<T. Whereas fokk>T the
flow equations(2.11), (2.14—(2.16 only through a change
to T-dependent threshold functions. For instance, the dimen-
sionless functionsgj(w; 7¢) defined in Eq.(2.12 are re- %For the present choice &%, the temperature dependence of the
placed by threshold functions is considerably smoother than in R&].

207T for bosons,
go(h)=

034010-13
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FIG. 5. The plot shows the temperature dependence of the bosanand the fermionic(b) threshold functionsi‘l'(w,T/k) and
|(1F)4(W,T/k), respectively, for different values of the dimensionless mass terfiihe solid line corresponds tww=0 whereas the dotted
ones correspond o= 0.1, w=1 andw= 10 with decreasing size of the dots. Hork the bosonic threshold function becomes proportional
to T/k whereas the fermionic one ten to zero. In this range the theory with properly rescaled variables behaves as a classical three-
dimensional theory.

model is most efficiently described in terms of standard fourdn this regimel’,_ o corresponds to the free energy of clas-
dimensional fieldsb a choice of rescaled three-dimensional sical statistics and’,~, is a classical coarse grained free
variables®3=<b/ﬁ becomes better adapted flocT. Ac- energy.
cordingly, for high temperatures one will use a potential For our numerical calculations at non-vanishing tempera-
. ‘ ture we exploit the discussed behavior of the threshold func-
~ ~y, o~ K tions by using the zero temperature flow equations in the
Us(tpg) = Ut ), Pa=7 P @9 rangek=10T. For smaller values ok we approximate the
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FIG. 6. The expectation valuesd is shown as a function of temperatufefor three different values of the zero temperature pion mass.

infinite Matsubara sumigf. Eq.(3.3)] by a finite series such of the flow equationg2.11), (2.14—(2.16 (cf. Sec. Ill and
that the numerical uncertainty kt= 10T is better than 10%. Appendix Q by loweringk from kg to zero. For this range

This approximation becomes exact in the lirki€ 10T. of temperatures we use the initial values as given in the first
line of Table Il. This corresponds to choosing the zero tem-
IV. THE QUARK MESON MODEL AT T#0 perature pion mass and the pion decay constant (

=92.4 MeV form_= 135 MeV) as phenomenological input.
In Sec. Il A we have considered the relevant fluctuationsthe only further input is the constituent quark mads,
that contribute to the flow of in dependence on the scale which we vary in the rangé/ ,;=300-350 MeV. We ob-
K. In a thermal equilibrium situatiofiy also depends on the ggpye only a minor dependence of our resultsMypfor the
temperaturel” and one may ask for the relevance of thermalconsidered range of values. In particular, the value for the
fluctuations at a given scale In particular, for not t0o high  cyiical temperatureT, of the model remains almost unaf-
values ofT (cf. Sec. V) the “initial condition” I',  forthe  focteq by this variation.
solution of the flow equations should essentially be indepen- \we have plotted in Fig. 6 the renormalized expectation
dent of temperature. This will allow us to fiX, from phe-  yajye 20, of the scalar field as a function of temperature for
nomenological input & =0 and to compute the temperature three different values of the average light current quark mass
dependent quantities in the infraréd-¢ 0). We note that the m. [We remind that Z,(T=0)=f_.] For m=0 the order
thermal fluctuations which contribute to the right-hand sideparameterr, of chiral symmetry breaking continuously goes
of the flow equation for the meson potentfal1l) are effec- to zero for T—T,=100.7 MeV characterizing the phase
tively suppressed fof <k/4 (cf. Sec. Il). Clearly for T  transition to be of second order. The universal behavior of
=kgq/3 temperature effects become important at the composhe model for small — T, and smallf is discussed in more
iteness scale. We expect the linear quark meson model witfletail in Sec. V. We point out that the value ©f corre-
a compositeness scakg, =600 MeV to be a valid descrip- sponds tof{”’=80.8 MeV, i.e. the value of the pion decay
tion for two flavor QCD below a temperature of abdut constant form=0, which is significantly lower tharf .
170 MeV. =92.4 MeV obtained for the realistic valu@yyys. If we
We compute the quantities of interest for temperatdres would fix the value of the pion decay constant to be 92.4
=170 MeV by solving numerically th&-dependent version MeV also in the chiral limit h=0), the value for the critical
temperature would raise to 115 MeV. The nature of the tran-
sition changes qualitatively fah+ 0 where the second order
L°There will be an effective temperature dependence of in- transition is replaced by a smooth crossover. The crossover

duced by the fluctuations of other degrees of freedom besides tHOr & realisticiyn,sor m (T=0)=135 MeV takes place in a
quarks, the pions and the sigma which are taken into account her(€mperature rang@&=(120-150) MeV. The middle curve
We will comment on this issue in Sec. VI. For realistic three flavorin Fig. 6 corresponds to a value @fwhich is only a tenth of
QCD the thermal kaon fluctuations will become important Tor ~ the physical value, leading to a zero temperature pion mass
=170 MeV. m_,=45 MeV. Here the crossover becomes considerably
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FIG. 7. The plot shows the, as a function of temperatufE for three different values of the zero temperature pion mass.

sharper but there remain substantial deviations from the chi=135 MeV we ﬁndTEfc)zlzg MeV. At larger pion masses

ral limit even for such small quark massés=1 MeV. The  of about 230 MeV we observe no longer a characteristic
temperature dependence mf, has already been mentioned minimum for m, apart from a very broad, slight dip at

in the Introduction(see Fig. 2 for the same three values of ~90 MeV. A comparison of our results with lattice data is
m. As expected, the pions behave like true Goldstone bosongiven in Sec. V. In Fig. 8 we show the renormalized quartic
for M=0, i.e. their mass vanishes fr<T,. Interestingly,  coupling\ as a function of temperature for two fixed values
m, remains almost constant as a functionTofor T<T.  of the average current quark mass. The upper curve corre-
before it starts to increase monotonically. We therefore findsponds to the physical value @i or, equivalently,m_(T

for two flavors no indication for a substantial decreasengf ~ =0)=135 MeV whereas the lower curve showsfor
around the critical temperature. =0. One observes the vanishing of the renormalized quartic

The dependence of the mass of the sigma resonamce coupling in the chiral limit forT<T. as discussed above.
on the temperature is displayed in Fig. 7 for the above threqhe renormalized scalab® self interaction

values of m. In the absence of explicit chiral symmetry

breaking,m=0, the sigma mass vanishes fb=T.. For T #BU(p,T)

<T, this is a consequence of the presence of massless Gold- Us(T) =Z;3 :

stone bosons in the Higgs phase which drive the renormal-

ized quartic coupling\ to zero. In fact\ runs linearly with

k for T=k/4 and only evolves logarithmically fof <k/4. assumes a small negative value for realistic quark masses in

Oncern+0 the pions acquire a mass even in the spontanethe temperature rangd =35 MeV with 2U3(T)a3(T)

ously broken phase and the evolution)ofvith k is effec- =—0.5<\(T) and 2J3(T)03(T)28.O,8.5,1.5 for T

tively stopped ak~m_.. Because of the temperature depen-=280,120,160 MeV. We display(T) in Fig. 9 for the chi-

dence ofogk_o (cf. Fig. 6) this leads to a monotonically ral limit where one observes a discontinuity @g(T) at the

decreasing behavior ah, with T for T<T.. This changes critical temperaturd ..

into the expected monotonic growth once the system reaches Qur results for the chiral condensatgy) as a function

the symmetric phase for T>T;. For low enough one  of temperature for different values of the average current

may use the minimum ah,(T) for an alternative definition quark mass are presented in Fig. 1 in the Introduction. We

pf the (pseudo)critical temperature denoted iézc). Table | Wil compare(%p)(T,r”n) with its universal scaling form for

in the Introduction shows our results for the pseudocriticakhe O(4) Heisenberg model in Sec. V. Another interesting

temperature for different values ai or, equivalently, qguantity is the temperature dependence of the constituent

m,(T=0). For a zero temperature pion mass, quark mass. Figure 10 show#y(T) for Mm=0, m
=Mpnyd10 and =My, respectively. Its behavior is re-
lated to the temperature dependence of the renormalized or-

Usee Sec. II B for a discussion of the zero temperature sigmgler parameteroo(T)=oox—o(T) and the renormalized
mass. Yukawa couplingh(T)=h,_(T). The temperature depen-

5 (P=200(T) (4D
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FIG. 8. The plot shows the renormalized quartic scalar self coupliag a function of temperatuf® for the physical value ofn (solid
line) as well as form=0 (dashed ling

dence ofh in the chiral limit can be found in Fig. 11. Near temperature dependent pion mass. In this way we observe no
the critical temperature one notices a characteristic dip. Thisubstantial quark mass dependence of these quantities except
results from the long wavelength pion fluctuations through &or Z4,(T), and consequently fdu(T), in the vicinity of the
non-analytic behavior of the mesonic wave function renor-critical temperature. A more complete truncation would in-
malizationZ4(T)=Zg4 —o(T) which is displayed in Fig. 12. corporate field dependent wave function renormalization
There we also present the temperature dependence of teenstants and a field dependent Yukawa coupling.

fermionic  wave function  renormalization Z,(T) Our ability to compute the complete temperature depen-
=Z,=0(T). Away from the chiral limit we take the effec- dent effective meson potentidl is demonstrated in Fig. 13

tive quark mass dependencem{T), Zq «(T) andZ,, (T) where we display the derivative of the potential with respect
into account by stopping their evolution whirreaches the to the renormalized fieldg=(Z4p/2)Y? for different val-

T L] T T T T
0.05 | i
004 | i
Us - 0.03 | .

MeV™

002 F i
001 | i

0 1 1. 13 L 1 1

40 60 80 100 120 140 160 180
T/ MeV

FIG. 9. The plot shows the renormalizdef scalar self coupling); as a function of temperatufgin the chiral limit.
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FIG. 10. The plot shows the constituent quark milssas a function ofT for three different values of the average light current quark
massim. The solid line corresponds to the realistic vafue- fhy, s whereas the dotted line represents the situation without explicit chiral
symmetry breaking, i.em=0. The intermediate, dashed line assuniesiny, J10.

ues of T. The curves cover a temperature range We close this section with a short assessment of the va-

=(5-175) MeV. The first one to the left correspondsTto lidity of our effective quark meson model as an effective
=175 MeV and neighboring curves differ in temperature bydescription of two flavor QCD at non-vanishing temperature.
AT=10 MeV. One observes only a weak dependence offhe identification of qualitatively different scale intervals
dU(T)/d¢g on the temperature foF <60 MeV. Evaluated Which appear in the context of chiral symmetry breaking, as
for ¢pg= 0, this function connects the renormalized field ex- presented in Sec. Il A for the zero temperature case, can be
pectation value wittm_(T), the sourcgl and the mesonic generalized tar +#0: For scales below,, there exists a hy-
wave function renormalizatiod(T) according to brid description in terms of quarks and mesons. Kpsg
<k=600 MeV chiral symmetry remains unbroken where
JU(T) 2J ) X e )
(pr=00)= s —=40o(T)M(T). (4.2 the symmetry breaking scakgsg(T) decreases with increas
PR Zp(T) T ing temperature. Also the constituent quark mass decreases

T T T T T ¥ T T

0 20 40 60 80 100 120 140 160 180

T/ MeV

FIG. 11. The plot shows the Yukawa couplirig, as a function of temperatui® in the chiral limit.
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FIG. 12. The plot shows the scalésolid line) and quark(dashed ling wave function renormalization constani,(T) and Z,(T)
X 1072, respectively, as functions of temperatdrdor m=0.

with T (cf. Fig. 10. The running Yukawa coupling depends sector confinement effects which go beyond the dynamics of
only mildly on temperature folf <120 MeV (see Fig. 1L our present quark meson model. Here it is important to note
(Only near the critical temperature and for=0 the running  that the quarks remain quantitatively relevant for the evolu-
is extended because of massless pion fluctuajidds.the tion of the meson degrees of freedom only for scales
other hand, fok=<4T the effective three-dimensional gauge k=T/0.6 (cf. Fig. 5, Sec. ll). In the limit k<T/0.6 all fer-
coupling increases faster thanTat O leading to an increase mionic Matsubara modes decouple from the evolution of the
of Aqco(T) with T [18]. As k gets closer to the scale meson potential according to the temperature dependent ver-
Aqco(T) it is no longer justified to neglect in the quark sion of Eq.(2.11). Possible sizeable confinement corrections

1.2e¢407 T
1e+07 |-
8e+06 [

oU(T)/d¢r
MeV? cews |

4e+06 [

2e+06 |-

0 5 10 15 20 25 30 35 40 a5

ér/ MeV

FIG. 13. The plot shows the derivative of the meson potekti@l) with respect to the renormalized fieltk= (Z4p/2)? for different
values of T. The first curve on the left corresponds Te=175 MeV. The successive curves to the right differ in temperaturé by
=10 MeV down toT=5 MeV.
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TABLE lll. The table shows the critical exponents corresponding to the three-dimensional
0O(4)-Heisenberg model. Our results are denoted by “average action” whereas “FD” labels the exponents
obtained from the perturbation series at fixed dimension to seven [6&psThe bottom line contains lattice
Monte Carlo result$50].

v Y ) B Y
Average action 0.787 1.548 4.80 0.407 0.0344
FD 0.732) 1.444) 4.825) 0.381) 0.031)
MC 0.747990) 1.477198 4.85122) 0.383646) 0.025439)

to the meson physics may occurfycp(T) becomes larger  temperature and quark mass dependence of properties of the
than the maximum oM(T) and T/0.6. From Fig. 10 we chiral phase transition.
infer that this is particularly dangerous for smalin a tem- At the critical temperature and in the chiral limit there is
perature interval around,. Nevertheless, the situation is N0 scale present in the theory. In the vicinity Bf and for
not dramatically different from the zero temperature casémall enoughh one therefore expects a scaling behavior of
since only a relatively small range &fis concerned. We do the effective average potentiaj [45] and accordingly a uni-
not expect that the neglected QCD non-localities lead tdrersal scaling form of the equation of state. There are only
qualitative changes. Quantitative modifications, especialljwo independent scales close to the transition point which
for small fh and | T—T,| remain possible. This would only can be related to the deviation from the critical temperature,
effect the non-universal amplitudésee Sec. Y. The size of T—T¢, and to the explicit symmetry breaking through the
these corrections depends on the strengttnoh-loca) de-  quark massh. As a consequence, the properly rescaled po-
viations of the quark propagator and the Yukawa couplingential can only depend on one scaling variable. A possible
from the values computed in the quark meson model. choice for the parametrization of the rescaled “unrenormal-
ized” potential is the use of the Widom scaling variapé]

V. UNIVERSAL CRITICAL BEHAVIOR (T=T)IT,

- - - - X= W (5.1)
In this section we study the linear quark meson model in 0l e
the vicinity of the critical temperaturé. close to the chiral Here 3 is the critical exponent of the order parameigyin
limit M= 0. In this region we find that the sigma maus§1 IS the chiral limit fm=0 [see Eq.(5.5]. With U’(p=2?§)
much larger than the inverse temperatﬂl'rel, and one ob-  _, /(55 y the Widom scaling form of the equation of state
serves an effectively three-dimensional behavior of the h|grpeads[46]

temperature quantum field theory. We also note that the fer-

mions are no longer present in the dimensionally reduced j
system as has been discussed in Sec. lll. We therefore have -
to deal with a purely bosoni®©(4)-symmetric linear sigma ¢

model. At the phase transition the correlation length becomeghere the exponent is related to the behavior of the order
infinite and the effective three-dimensional theory is domi-parameter according to E¢6.7). The equation of statés.2)
nated by classical statistical fluctuations. In particular, thgs \yritten for convenience directly in terms of four-
critical exponents which describe the singular behavior ofgimensional quantities. They are related to the corresponding
various quantities near the second order phase transition agffective variables of the three-dimensional theory by appro-
those of the corresponding classical system. _ priate powers ofl .. The sourcg is determined by the av-
Many properties of this system are universal, i.e. theyerage current quark maésaSJZZﬁﬁ(bm. The mass term at

only depend on its symmetfyO(4)], the dimensionality of . 5 .
space(thred and its degrees of freedorfiour real scalar the compositeness scalﬁq), also relates the chiral conden-

components Universality means that the long-range proper-sate to the order parameter accordinq%p): —Zﬁﬁ(b(Fo
ties of the system do not depend on the details of the Specific gy The critical temperature of the linear quark meson
model like its short distance interactions. Nevertheless, iMi,qdel was found in Sec. IV to BE.=100.7 MeV.

portant properties as the value of the critical temperature are o scaling functiorf is univers?al up to the model spe-
non-universal. We emphasize that although we have to dedksic normalization ofx and itself. Accordingly, all models in

with an effectively three-dimensional bosonic theory, they,o same universality class can be related by a rescaling of
non-universal properties of the system crucially depend OR-  and T—T,. The non-universal normalizations for the

the details of the four-dimensional theory and, in particular,y ok meson model discussed here are defined according to
on the fermions.

Our aim is a computation of the critical equation of state f(0)=D, f(—-B YA)=0. (5.3
which relates for arbitraryf nearT, the derivative of the free
energy or effective potentidl to the average current quark We find D=1.82x10 %, B=7.41 and our result fog is
massi. The equation of state then permits to study thegiven in Table Ill. Apart from the immediate vicinity of the

200
T

5
) f(x) (5.2
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) avelageaction ' | ' ' ' | ] critical amplitudes and exponents. In the spontaneously bro-
i 0(4) scaling function] ken phase T<T,) and in the chiral limit we observe that the
- . renormalized and unrenormalized order parameters scale ac-
151 . 7 cording to
i | 200(T) T.—T\"?
i - ﬁ( :(25)1/2(—° ) ,
1.0H— | [ c
i | 205(T) _[Te—T\#
3py/é = o —
GrEDyT | ] 0 :B( c ) | 55
i Te Te
0.5 = , , .
- respectively, withE=0.814 and the value @ given above.
i average action In the symmetric phase the renormalized massm,
i | =m, and the unrenormalized mass=Z}’m behave as
0.0 R —
5 0 (@-myT. 5 MM o T Te)”
(7588 pyilss T =(&7) |
Cc Cc

FIG. 14. The figure shows a comparison of our results, denoted —
by “average action,” with results of other methods for the scaling m(T)
function of the three-dimensiondD(4) Heisenberg model. We T,
have labeled the axes for convenience in terms of the expectation
value o, and the sourcg of the corresponding four-dimensional where¢"=0.270,C*=2.79. ForT=T, and non-vanishing
theory. The constan® andD specify the non-universal amplitudes current quark mass we have
of the modelcf. Eq.(5.3)]. The curve labeled by “MC” represents

vI2

T-T.
: (5.9

:(C+)—1/2( T

c

a fit to lattice Monte Carlo data. The second order epsilon expan- ﬂ: —1/8 J_ e (5.7)
sion [49] and mean field results are denoted by’ “and “mf,” T. Tg '
respectively. Apart from our results the curves are taken from Ref.

[48]. with the value ofD given above.

Though the five amplitudeg, B, ¢*, C* andD are not
zero off(x) we find the following two parameter fitf. Ref.  universal there are ratios of amplitudes which are invariant
[47]) for the scaling function under a rescaling of; andT—T,. Our results for the uni-

versal amplitude ratios are
fa(X)=1.816<10"4(1+136.1)?(1+160.9x) .
R,=C'DB? 1=1.02,
X (1+160.90.9446")  Hy=2-A)x)y-2-4 X

(5.4) R,=(&")P"DMU*VB=0.852,

to reproduce the numerical results fbrand df/dx at the EYE=0.220. (5.8

1-2 % level with#=0.625(0.656, A=—0.490 (- 0.550)

for x>0 (x<0) andy as given in Table Ill. The universal Those for the critical exponents are given in Table Ill. Here

properties of the scaling function can be compared with rethe value of is obtained from the temperature dependent

sults obtained by other methods for the three-dimensionatersion of Eq.(2.16 (cf. Appendix Q at the critical tem-

O(4) Heisenberg model. In Fig. 14 we display our resultsPerature. For comparison, Table Il also gives the results

along with those obtained from lattice Monte Carlo simula-from the perturbation series at fixed dimension to seven loop

tion [48], second order eps”on expansimg] and mean order [51,52 as well as lattice Monte Carlo reSU|E§O]

field theory. We observe a good agreement of average actiohich have been used for the lattice form of the scaling

lattice and epsilon expansion results within a few percent fofunction in Fig. 143 There are only two independent ampli-

T<T.. AboveT, the average action and the lattice curve gotudes and critical exponents, respectively. They are related

quite close to each other with a substantial deviation fronPY the usual scaling relations of the three-dimensional scalar

the epsilon expansion and mean field scaling function. ~ O(N) model[52] which we have explicitly verified by the
Before we use the scaling functidi{x) to discuss the independent calculation of our exponents.

general temperature and quark mass dependent case, we conWe turn to the discussion of the scaling behavior of the

sider the limitsT =T, andm=0, respectively. In these limits chiral condensatéy ) for the general case of a temperature

the behavior of the various quantities is determined solely byand quark mass dependence. In Fig. 1 in the Introduction we

2we note that the question of a better agreement of the curves for'See also Ref53] and references therein for a recent calculation
T<T.or T>T_ depends on the chosen non-universal normalizatiorof critical exponents using similar methods as in this work. For high
conditions forx andf [cf. Eq. (5.3)]. precision estimates of the critical exponents see also Refs55.
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have displayed our results for the scaling equation of state ismaller than the lattice results of abqat0-150 MeV ob-
terms of the chiral condensate tained by extrapolating to zero quark mass in RB6]. We
point out that for pion masses as large as 230 MeV the con-

densate 4)(T) is almost linear around the inflection point
+J (5.9 for quite a large range of temperature. This makes a precise
determination ofT . somewhat difficult. Furthermore, Fig. 1

as a function of T/T,=1+x(/T3(x))¥8% for different shows that the scaling form @#/¢)(T) underestimates the

guark masses or, equivalently, different valuesjofThe slope qf the physical curve. Used asa fit withas a param-
curves shown in Fig. 1 correspond to quark masies0, eter this can lead to an overestimate of the pseudocritical

PRNN PN o A . temperature in the chiral limit. We also mention here the
M= Mph,d10, M mphyslandm 3'5mphy_50r’ equyalently, to results of Ref[57]. There two values of the pseudocritical
zero temperature pion masses,.=0, m_=45 MeV,

m_= 135 MeV andm_=230 MeV, respectivelycf. Fig. 4). temperature, T =150(9) MeV and Tyc=140(8), corre-

- . sponding to am=0.0125, 6¢°=5.54(2) and afm
One observes that the second order phase transition witha 2 . _
vanishing order parameter &, for M=0 is turned into a =0.00625, 63°=5.492), respectively(both for N,=8),

. were computed. These values show a somewhat stronger
smooth crossover in the presence of non-zero quark masses. P 9

The scaling form(5.9) for the chiral condensate is exact quark mass dependen_ce -650 ar!d were _used for a linear
only in the limit T—T., J—0. It is interesting to find the extrapolgnon to the chiral limit y|eld|ng'q—.128(9) Mev.

— The linear quark meson model exhibits a second order
range of temperatures and quark masses for whjah) ap- phase transition for two quark flavors in the chiral limit. As a
proximately shows the scaling behavi@.9). This can be  ,nsequence the model predicts a scaling behavior near the
inferred from a comparisofsee Fig. 1 with our full non- ¢yitical temperature and the chiral limit which can, in prin-
universal solution for thél andj dependence ofyy) as  ciple, be tested in lattice simulations. For the quark masses
described in Sec. IV. Fam,=0 one observes approximate used in the present lattice studies the order and universality
scaling behavior for temperaturds=90 MeV. This situa- class of the transition in two flavor QCD remain a partially
tion persists up to a pion massmf, =45 MeV. Even for the open question. Though there are results from the lattice giv-
realistic casem, =135 MeV, and to a somewhat lesser ex-ing support for critical scaling58,59 there are also recent
tent form, =230 MeV the scaling curve reasonably reflectssimulations with two flavors that reveal significant finite size
the physical behavior fof=T,.. For temperatures below effects and problems witt(4) scaling[60,61].
T., however, the zero temperature mass scales become im-
portant and the scaling arguments leading to universality V1. ADDITIONAL DEGREES OF FREEDOM
break down.

The above comparison may help to shed some light on the So far we have investigated the chiral phase transition of
use of universality arguments away from the critical tem-QCD as described by the line@(4) model containing the
perature and the chiral limit. One observes that for temperathree pions and the sigma resonance as well as the up and
tures above, the scaling assumption leads to quantitativelydown quarks as degrees of freedom. Of course, it is clear that
reasonable results even for a pion mass almost twice as lard@e spectrum of QCD is much richer than the states incorpo-
as the physical value. This in turn has been used for twéated in our model. It is therefore important to ask to what
flavor lattice QCD as theoretical input to guide extrapolationextent the neglected degrees of freedom like the strange
of results to light current quark masses. From simulationgluark, strangépseudgscalar mesongaxialjvector mesons,
based on a range of pion masses€3,/m,=<0.7 and tem- baryons, etc., ml_ght bellmportant for.the chlral dyngm|cs of
peratures &T=250 MeV a “pseudocritical temperature” QCD. Before doing so it is perhaps instructive to first look

of approximately 140 MeV with a weak quark mass dependnto the opposite direction and investigate the difference be-
dence is reported56]. Here the “pseudocritical tempera- tween the linear quark meson model described here and chi-

ral perturbation theory based on the non-linear sigma model
[34]. In some sense, chiral perturbation theory is the minimal
model of chiral symmetry breaking containing only the

J/T(3: 1/6

- JITe
<l//lp> - mk¢TC< f(X)

ture” T, is defined as the inflection point dipy) as a
function of temperature. The values of the lattice action pa

. . — A — 2
rameters used iip56] with Ny=6 weream=0.0125, 64 Goldstone degrees of freedom. By construction it is therefore

=5.415 andaim=0.025, 6(>=5.445. For comparison with | lid in th I K h
lattice data we have displayed in Fig. 1 the temperature ge™y va id in the spontaneously broken phase and cannot be

. . expected to yield realistic results for temperatures cloge. to
pendence of the chiral condensate for a pion mass .
a . or for the symmetric phase. However, for small temperatures
=230 MeV. From the free energy of the linear quark meso . ;
d nd momentum scalethe non-linear model is expected to

model we obtain in this case a pseudocritical temperature escribe the low-energy and low-temperature limit of QCD
about 150 MeV in reasonable agreement with the results o 9y b

Ref.[56]. In contrast, for the critical temperature in the chiral reliably as an expansion in powers of the light quark masses.

S . . : . For vanishing temperature it has been demonstrated recentl
limit we obtainT,=100.7 MeV. This value is considerably [36,37 that t?le regults of chiral perturbation theory can be Y
reproduced within the linear meson model once certain
higher dimensional operators in its effective action are taken

“n the literature also a different definition of the chiral conden- into account for the three flavor case. Moreover, some of the
sate is used, correspondingtgy)=—mz Tc[J/(T3(x))]1Y°. parameters of chiral perturbation theony,(...,Lg) can be

®
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FIG. 15. The plot displays the chiral condens{f&p) as a function ofl'/fﬁf). The solid line corresponds to our results for vanishing
average current quark mads=0 whereas the dashed line shows the corresponding three-loop chiral perturbation theory rdsylt for
=470 MeV.

expressed and therefore also numerically computed in terntsecome significant because of the intrinsic inability of chiral
of those of the linear model. For non-vanishing temperaturgerturbation theory to correctly reproduce the critical behav-
one expects agreement only for Iolvwhereas deviations ior of the system near its second order phase transition.
from chiral perturbation theory should become large close to Within the language of chiral perturbation theory the ne-
T.. Yet, even folT<T, small quantitative deviations should glected effects of thermal quark fluctuations may be de-
exist because of the contributions @bnstituent quark and ~ Scribed by an effective temperature dependence of the pa-
sigma meson fluctuations in the linear model which are nofameterFo(T). We notice that the temperature at which
taken into account in chiral perturbation theory. these corrections bepome important equals apprqmmately
From[62] we infer the three-loop result for the tempera- ©N€ third of the constituent quark malsk,(T) or the sigma

ture dependence of the chiral condensate in the chiral |imig1assm(,(T), respectively, in perfect agreement with Fig. 5.
for N light flavors s suggested by this figure the onset of the effects from

thermal fluctuations of heavy particles withTadependent

. . 2.1 T2 massmy(T) is rather sudden folf =my(T)/3. These con-
<¢¢//)(T)XPT=<¢¢>XPT(O)[ 1-———— siderations also apply to our two flavor quark meson model.
N 12Fg Within full QCD we expect temperature dependent initial
N2—1 [ T2 \2 values atkg .
- | == The dominant contribution to the temperature dependence
2N 12F L . .
0 of the initial values presumably arises from the influence of
T2\3 T the mesons containing strange quarks as well as the strange
+N(N2—1)(F> In = +O(T8). quark itself. Here the quantim_wﬁ(p seems to be the most
0 1

important one[The temperature dependence of higher cou-
(6.1)  plings like \(T) is not very relevant if the IR attractive be-
havior remains valid, i.e. iZq),kq) remains small for the range
of temperatures considered. We neglect a posdiblkepen-

dence of the current quark mass] In particular, for three
flavors the potentiall Ko contains a term

The scalel’; can be determined from thB-wave isospin
zero 7 scattering length and is given by';=(470
+100) MeV. The constarf, is (in the chiral limi) identi-
cal to the pion decay constaR=f{®’=80.8 MeV. In Fig.
15 we have plotted the chiral condensate as a function of
T/F, for both, chiral perturbation theory according to Eg. -~ (detd+detdN=—7, oD, Pygt-

. 2 @ P
(6.1) and for the linear quark meson model. As expected the 6.2
agreement for small is very good. Nevertheless, the antici- :
pated small numerical deviations present everlfeiT, due  which reflects the axidl 5(1) anomaly. It yields a contribu-
to quark and sigma meson loop contributions are manifestion to the effective mass term proportional to the expecta-
For larger values off, say for T=0.8f(") the deviations tion value(®.=os, i.e.
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1 APPENDIX A: THE QUARK MASS TERM

AMZ =— -7 os. 6.3
ko 2 Ykao®s ©3 In this appendix we determine the source

=diag(,.)q,-.-) @s a function of the average current quark
mass. In this context it is important to note that the source
does not depend on the IR cutoff scéleSincej is deter-

Both,?kq) and g, depend oT. We expect these corrections
to become relevant only for temperatures exceedip{T)/3
or My(T)/3. We note that the temperature dependent kao ined by the properties of the quark meson model at the

and strange quark ”.‘aSS‘W(T) and Ms(T)’ respectively, compositeness scakg, and also enters directly the value of
may be somewhat different from their zero temperature vaI-h ; hich is determined let 0. thi lai
ues but we do not expect them to be much smaller. A typicaﬁ € pion mass, wnich 1S determine » this Tefation
value for these scales is around 500 MeV. Correspondingl;ﬁ’rqv'des a bridge between the short'and_ long distance prop-
the thermal fluctuations neglected in our model should be€rties of the quark meson model. This will allow us to com-
come important fof =170 MeV. It is even conceivable that pute the chiral condensate/) or the parameteB, of chi-
a discontinuity appears ipg(T) for sufficiently highT (say ral perturbation theory34]. (We expect, however, sizeable
T=170 MeV). This would be reflected by a discontinuity in corrections when going from two to three flavors. They arise
the initial values of theD(4) model leading to a first order because of the relevance of strange quark physics at scales
transition within this model. Obviously, these questionsnearkg .) In a more general context we need the proportion-
should be addressed in the framework of the three flavoality coefficienta, between the sourcg, and the current
SUL(3)XSUg(3) quark meson model. Work in this direc- quark massmg, q=u,d,..., taken at the renormalization
tion is in progress. scalé® u=Kg:

We note that the temperature dependence(®) ¢ (T) is
closely related to the question of an effective high tempera- Zy
ture restoration of the axidl (1) symmetry[3,8]. The ' Jq=ﬂaqmq. (A1)
mass term is directly proportional to this combination, Hk
m?,(T) = m5(T)=3(T)e«(T) [35]. Approximate Ua(1)
restoration would occur ifps(T) or »(T) would decrease gqr 5 computation of the coefficieat, we need to look into
sizeably for largeT. For realistic QCD this question should the details of the introduction of composite meson fields in
be addres_seq bla th_ree flavor study. Wlthm_two flavor QCDQCD[26,28|. Let us assume that at the scilga part of the
the combinatiorv, ¢, is replaced by an effective anomalous QCD average action for quarkg, [] factorizes in the
mass term»{?). The temperature dependence @F)(T) " @

. . . ._quark bilinear

could be studied by introducing quarks and the axial
anomaly in the two flavor matrix model of R¢89]. We add
that this question has also been studied within full two flavor Yan(Q) = — f
QCD in lattice simulation$60,63,64. So far there does not
seem to be much evidence for a restoration of thg1)
symmetry neail . but no final conclusion can be drawn yet. such that

To summarize, we have found that the effective two fla-
vor quark meson model pre_sumably gives a good description rk¢[¢/,] =— qu,[X] +1“(((b[,r/,]_ (A3)
of the temperature effects in two flavor QCD for a tempera-
ture rangelr <170 MeV. Its reliability should be best for low
temperature where our results agree with chiral perturbatio
theory. However, the range of validity is considerably ex-
tended as cor_npared to chiral perturbation theory and in- Nf D® exp(—F [x+®])=1 (A%)
cludes, in particular, the critical temperature of the second @
order phase transition in the chiral limit. We have explicitly
connected the universal critical behavior for smal-T| into the path integral which formally defindy [#]. (Here

and small current quark masses with the renormalized couy s a field independent normalization facloThis effec-

plings atT=0 and realistic quark masses. The main quantitjvely replaces in Eq(A3) the term—F, [x] by®
tative uncertainties from neglected fluctuations presumably ®

concern the values dof® and T, which, in turn, influence
the non-universal amplitudds andD in the critical region.
We believe that our overall picture is rather solid. Where — — MV
applicable our results compare well with numerical simula<¥%)(#)=(#¥)x—o(x) [not to be confused with (yy)y

(3

d*p _ —
2m? 9P A Ys(P) ¥ra(pFa) (A2)

M\/e can then introduce meson fields by inserting the identity

We will occasionally use the notatiom(u), mg(u) or

tions of full two flavor QCD. E(W}k(,u:kq,)] in order to indicate the renormalization scale
If no argument is givenu=Kkg is assumed.
ACKNOWLEDGMENTS 18The summation over internal indices as well as the integration

over momenta has been suppressed. For complgég) similar
This work was supported by the Deutsche Forschungsgderms have to be supplemented in the expansion. See [Réf&8
meinschaft. We thank K. Rajagopal for very useful com-for a more detailed description. In our Euclidean conventions one
ments. has !~ +T* YrotLa-
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—Fk(P[X]+qu’[)(+q>] O(4)-symmetric  fermionic interaction ﬁﬁq) Tr xTy
IF [x] PF, [x] + 3N (Tr xTx)2 which leads to a meson potential
= qu) (q)+ 1 7 klX ?
dxan(Q) ab 2 IXan(A)Ixcd(d")

1_
, U =m2 Trofd+ -\ (Trd'd)2  (A10)
XD ap(q)Peg(q') +-- . (A5) e Ko 2 "ke

The original multi-quark interactior-Fy [ x] is canceled by  In the mesonic picture the quarks acquire masses through the

the lowest order term in the Taylor expansiondinInstead, ~ Yukawa coupling toP
we have substituted mesonic self-interactiéhg[ ] and
interactions between mesons and quarks corresponding to the
terms in the expansion which contain powergyand®. In
particular, we may specialize to the case where the derivative
terms in Fy, are small and consider a local forl’fﬁk(b where the second term arises from the higher order coupling
= [d*f,(x). A quark mass term is linear ig and trans- i Eq. (A9). Here (®),=diag(e,,¢q,-) is the expectation
lates into a source term fab: value at the coarse graining scdein the presence of the
source term andV,=diagM,,Mq,...). It is sufficient to

hy Ak
Mi=5— | 1+ = THO®)(®)y [(P)  (ALL)
Zyk My

Zyx Zyk specify the dependence b, on real diagonal field® .
2 t T e t t kg "
g T m+mix)——= T T(®'m+m'®) Then theg, are determined from the condition
! UESA Wiy — T 2
=—5T@Y+)'®)  (A6) aq)qq((pq)=2 Me, Mo, 2 @q |9q=Jq-  (AL2)
q

wherem=diag{m,,my,...). A factorizing four fermion inter-

action yields Identifying My, in Eq. (A11) with m(kg) one has
me Trx'xy—mz TroTd+m? Tr(dTy+xTd). v
® @ D Ko 2 __]q_ — — 2
(A7) 8q 1+ =2 @qr | = —=2mj +2)\k¢2 @y
mk(b qr (Pq @ qr
The second term corresponds to the Yukawa interaction with (A13)

hy =mg §. We can therefore extraet, from Eq. (A6) as ) o .
@ @ and we recover Eq(A8) or, in our normalization with

aqzzmﬁ(p' (A8) Z‘ﬂlkq):l’ hkq»:l'

We note that only the terms linear and quadratigimflu- J=Zﬁﬁdfn. (A14)
ence the value of,. We could either restrict the composite
fields from the beginning to the ones contained in the
O(4)-symmetric linearo-model or work with all the fields . ) R .
contained in a complex:22 matrix ®. In the latter case the '”f'”elge the relatlo'n bgtvyegnand m. iny the quadratic
anomaly term would contribute to both the masses and thEr™M Mk, enters which is in our scenario the only relevant
Yukawa coupling. The net result is the same V\fﬁ@ de- cgu_pling. This feature is an important ingredient for.the pre-
noting the relevant mass term for t4) vector. For our dictive power of the model as far as the absolute size of the
. = . s current quark mass is concerned. An appearance of higher
conventions W'thhkcpzl we have to normalize witlg order couplings inag would make it very hard to compute
=m[q,2- Finally an eight fermion interaction becomes this quantity. We emphasize that within our formalism there
is no difference of principle between the current quark mass
and the constituent quark mass. Whereas the current quark
massmg(kg) at the normalization scalg = kg corresponds
. to M« at the compositeness scalg the constituent quark
i, Tr T Tr(x '@+ dTx) +- . mass iSMq x_o. As k is lowered fromkg to zero one ob-
serves that the quark mass increases, similarly to the running
(A9) current quark mass. Once chiral symmetry breaking sets in at

We see here the appearance of terms quadratic in the quar}&e sc_alﬁkfoB,\tAhere ('jSMa large increase in the quark masses,
involving higher powers ofb. especially forM, andMgq. . .

There is an alternative, equivalent way of understanding '€ formalism of composite fields also provides the link
the relation betweeg and m,: The quark masses in the %26] to the chiral condensatey) since the expectation
picture with mesons must be equal at the sdajeto the  Vvalue(®) is related to the expectation value of a composite
current quark massmy(ke). Let us consider an quark-antiquark operator. Far=0 one hag28]

It is remarkable that higher order terrfs.g. ~fk¢) do not

1 1
5 My (TF X022 5 Ny (Tr @T0)2
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1
(@t (@ D= = g (o) + Mg(ko) + mikey)
(]

(A15)

with () (k) a suitably regularized operator normalized

a.t,LL:kq).

APPENDIX B: THRESHOLD FUNCTIONS

In this appendix we list the various definitions of dimen-
sionless threshold functions appearing in the flow equations

and the expressions for the anomalous dimensionsTfor

=0. They involve the inverse scalar average propagator

P(q) defined in Eqg.(1.4) and the corresponding fermionic
function P which can be chosen §87]

Pe(a)=P(a)=0*(1+rg(q))>. (B1)
We abbreviate
—? P(=P(q),P(X)=—P :9P—(9:9P
(B2)
etc., and use the formal definition
d 1 R, d 2 Pr dZ, 0] 9
T - Tx7, < F M (B3)
t Zey ot P Z,l+rg gt IPE
The bosonic threshold functions read
18(W; 79) = 13(W) — 70T (W)
= _n+ 5”'0k2n—df°odxxd/2—1
2 0
1 K )
R —(n+1)
X(Zcp,k pr (P+wk?)

19 (Wy,Wp;7¢)=I

d td
ny.Nn, ny ny(W1,W2) = 79l o (W1, Wp)

J

1 0
_ Z2(ni+ny—d 2—1
2k fo dxxd 5

—

X{(P+w;k?)"M(P+w,k?) "2} (B4)

wheren,n;,n,=0 is assumed. Fon#0 the functlonsld
may also be written as

1 w f]
dioy _ _ Zp2n—d 12-1 =
lh(W; 79) = = 5k fo dxxd o
X (P+wk?)™". (B5)
The  fermionic  integrals  1{7%w;7,)=1{%w)
—7,1{7%w) are defined analogously as

PHYSICAL REVIEW B9 034010

1579 w; ) = (n+ 8, k"¢

P
f A 1z¢k 1+F|rF
AZode] b yiey-0en (g
Furthermore one has &
nEBn)g(Wl W' 7y, Me)
=15y, wp) = 7,1 5wy, wa)
- %Tﬁfﬁf(wl.Wz)
— %kZ(nlJrnz)dfomdxxd/Zl %

1
% { [Pe(x) +k*wq]"[ P(X) + k?w,]"

d .
mnl,nz(WLWZv 7o)

d ~d
nZ(Wl Wp) — 77<I>mn1 ,nZ(Wl sW5)

J

1 ©
— _ T 12(ngtny,—1)—d 12
Sk jo dxxd p

—

P(x) P(x)

| PO+ KBW, ™ [P(x)+ K2w,]™
mi9w; 7,) = miD Y w) — 7,/ w)
3

1 ©
- _ _ 4—d 2+ 1
2k fo dxxd n

)2
(FB)d

(lew )_ 771//mn1 n,

d  1+rg(x)
>< _—2
X Pg(X) +kw

(FB)d
n1 Ny

(W1, W57y, 70)

FB)d
=my 5 (Wy,Wp)
(FB)d

— Mo mnl nz(leWZ)

:__kz(n1+n2 1)— df dXXd/Zai

[ 1+re(X) P(x) }
[Pe(X) + k2w, ]™ [P(X)+k*w,]" |

(B7)
The dependence of the threshold functions on the anomalous
dimensions arises from thederivative acting orZq, , and

Z,  Within R, andZ,, r ¢, respectively. We furthermore use
the abbreviations
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|g(7]q))z|g(0;77q)), tation of the scale dependence of the effective three-
dimensionalZy, , andZ,,, for T#0 momentum dependent
|§1F>d(77¢)5|§f>d(o;w) wave function renormalization constants of the four-
dimensional theory are required. This is a consequence of the
|2(W)E|g(w;0), fact that in the three-dimensional model each of the infinite
number of different Matsubara modes of a four-dimensional
19=19(0;0) (Bg)  bosonic or fermionic fieldp(Q) corresponds to a different
value of Qu=27IT or Qu=(21+1)=T, respectively, with
etc. and note that in four dimensions the integrals Q?=Q2+Q? andl e Z. We will therefore allow for momen-

tum dependent wave function renormalizations, i.e. for a ki-

4 _1(F4 _1(FB)4
12(0,0=157(0,0=1177(0.0 netic part ofl", of the form

=m{4(0)=my7*(0,0=1 (B9) 4%
kin _ 2y42 T
are independent of the particular choice of the infrared cut- T f (27-r)‘_]'{z‘1""(q )q” Tr(® (@) b (a)
off.

+Z, (92 (q) Y, (a)} (C3)

in momentum space.
In the O(4) model the evolution equation fatg (Q)
Non-vanishing temperature manifests itself in the flowmay then be obtained by considering a background field con-
equations(2.11), (2.14—(2.16 only through a change to figuration with a small momentum dependence,
T-dependent threshold functions. In this appendix we will A .
define these functions and discuss some subtleties regarding ®j(X)=¢dj1+ (Spe™ ¥+ 5¢*e9%)5p;  j=1,...,4
the definition of the anomalous dimensions and the Yukawa (C4
coupling forT#0. The corresponding=0 threshold func- supblemented b
tions can be found in Appendix B where also some of our P y
notation is fixed.
The flow equatior(2.1]) for the effective average poten-
tial involves a bosonic and a fermionic threshold functionE

whose generalization to finite temperature is straightforward; xpanding around this configuration at the minimum of the
9 P 9 effective average potentidl, we observe thatse corre-

APPENDIX C: TEMPERATURE DEPENDENT
THRESHOLD FUNCTIONS

Ya=1,=0; a=12. (C5)

+8 sponds to an excitation in the Goldstone boson direction. The
do,, = (N+ 800 V-1, 50 g415 : : L e (2)
(W, T; ng) = — v—k T exact inverse two-point functioli,”’ turns out to be block-
d diagonal with respect to scalar and fermion indices for this
o (d-32y-1 R (Y) configuration. It therefore decays into corresponding matri-
XZ«Z . dx ZtD,k—[P(y)+k2W]n+1' cesI'?) andI'?) acting in the scalar and fermion subspaces,

respectively. The scale dependence of the scalar wave func-
tion renormalization for non-vanishing is obtained from

75w T m0) = (e o) =248 Egs.(L.1) and(C3) for the configuratior(C4) as
d
X':l'—z oodxx(d73)/22*l izq) k(QZ): i o
e . a 32\ sp5p% 0 O(590@™)
Pe(YF) HZyxre(ye)] 1 5
[L+1e(ye)] [Pe(ye) +KW]™ XS T TG RO R
(CY
d -
whereT=T/k and —=Tr (F(FZk)WLRFk)_lERFk ]_(QHO)).
= 2
y=x+(2l7T)~, <o
YE=X+(21+1)*7°T2, (C2)

In the three-dimensional theory there is now a different sca-

The computation of the anomalous dimensiops, 7, lar wave function renormalizatiorZy, \ (Qo,Q) for each
and the flow equation for the Yukawa couplimgat non- ~Matsubara mod€,. As in the four-dimensional model for
vanishing temperature requires some care. The anomalods=0 we neglect the momentum dependence of the wave
dimensions determine the IR cutoff scale dependendg,gf  function renormalization constants and evaluggg, for 0
and Z, according to ne=—d; InZypy, n,=—3d;InZ,, =0 for each Matsubara mode. We will furthermore simplify
with t=In kK/kg, . It is important to realize that for a compu- the truncation of the effective average action by choosing the
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Matsubara zero-mode wave function renormalization confor further technical details we refer the reader to R&T].

stant for all Matsubara modes, i.e., approximate The fermion anomalous dimension and the flow equation

_ . for the Yukawa coupling can be obtained by considering a

Zy ((T)=Z4 (Q3=0Q°=0). (C7) field configuration
This is justified by the rapid decoupling of all massive Mat- NV S - i
y U : . (x)=¢8;; j=1...4,
subara modes within a small range lofor fixed T as dis-
cussed in Sec. Ill. This results in the express{@rlg for . —iOx
7ne but now with temperature dependent threshold functions Ya(X) = o€ '
(T=TIK) _ _
a(X)= €%, a=1,2. (C9)

mgl,nz(WLWz,Tr?ﬂap)
The derivation follows similar lines as for the scalar anoma-
g Wy Wy - 774>ﬁ1ﬁ Wy, Wy k) lous dimension discussed above._ For compqtational details
we refer the reader to Reff27]. An important difference as
compared toZy, ((Q) relates to the fact that there are no

= Ek2<n1+nzfl)fd+lk fermionic zero modes. It would therefore be inconsistent to
(d=1)vg defineZ,,(T) or hy(T) at Qu=0 if Q denotes the external
» 3 fermion momentum. Yet, we will again resort to the approxi-
XTY, | dxxd-v2 mation of using the same wave function renormalization
‘<z Jo ot constant and Yukawa coupling for all fermionic Matsubara
P(y) P(y) modes. For the same reason aqu;k(T) we will use for
‘ — — J this purpose the mode with the lowdstdependent mass, i.e.
[P(y) +kw]" [P(y) +kw,]" define

(Fyd, 5o (B, Sy (P S
my (W, T; ) =my 4w, T) — 5,My % (w, T ~ .
a p) =M W T) = 7MW T) Zw,k(|)_—Zw,k(Qg_—W2|2,Q2_—0),

= £k5 dM ~ 2 >
2" (d-1)ug hi(T)=h(Q5=7*T?,Q*=0), (C10
Y mdx)gdﬂ)/zyF where we have neglected a possible dependenbg o the
ez Jo external scalar momentum of the Yukawa vertex. This yields

. ) the expression&.15 and(2.16) for the flow ofh? and Ny
ﬁ i 1+re(ye) (C9 respectively, but now with th&-dependent threshold func-
x Pe(ye)+k*w tions

FB)d (FB)d

(Wl,Wz,T Ny Mo) =My 5 (W1,W2,T)_77cl>m(': d (Wl,Wz,Tr)_77¢m(1,FzB)d(W1,W2,:|‘—)

1 dvd 1 é 1+rF(yF) P(y)
— _ ZK2nytny—d-1 T d x(d=1)/ |
2 (d-1)vg T2, |, dx [Pr(ye) + k2w, 1™ [P(y) + K2w,] ™’

|(FB)d

_|(FB
n1 N2

FB)d
(WZI.!WZ-T 77:,//!"7(1)) ny nZ(WllWZ!T)_"?L//I( ) (

(FB

W1:W21T)_ Noly (W1-W21T)

1
[Pe(yg) + k2w, " P(y) + Kk*w,]"2 )

k2 np+ny)—d+1 Vd— 1'—7—2 dxx(d 32 7 J (
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