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Two flavor chiral phase transition from nonperturbative flow equations

J. Berges,* D.-U. Jungnickel,† and C. Wetterich‡
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We employ nonperturbative flow equations to compute the equation of state for two flavor QCD within an
effective quark meson model. This yields the temperature and quark mass dependence of quantities such as the
chiral condensate or the pion mass. A precision estimate of the universal critical equation of state for the
three-dimensionalO(4) Heisenberg model is presented. We explicitly connect theO(4) universal behavior
near the critical temperature and zero quark mass with the physics at zero temperature and a realistic pion
mass. For realistic quark masses the pion correlation length nearTc turns out to be smaller than its zero
temperature value.@S0556-2821~98!06023-8#

PACS number~s!: 12.39.Fe, 11.10.Hi, 11.10.Wx
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I. INTRODUCTION

Strong interactions in thermal equilibrium at high tem
peratureT—as realized in early stages of the evolution of t
Universe—differ in important aspects from the well test
vacuum or zero temperature properties. A phase transitio
some critical temperatureTc or a relatively sharp crossove
may separate the high and low temperature physics@1#.
Many experimental activities at heavy ion colliders@2#
search for signs of such a transition. It was realized early
the transition should be closely related to a qualitat
change in the chiral condensate according to the genera
servation that spontaneous symmetry breaking tends to
absent in a high temperature situation. A series of stimu
ing contributions@3–5# pointed out that for sufficiently smal
up and down quark masses,mu and md , and for a suffi-
ciently large mass of the strange quark,ms , the chiral tran-
sition is expected to belong to the universality class of
O(4) Heisenberg model. This means that near the crit
temperature only the pions and the sigma particle play a
for the behavior of condensates and long distance correla
functions. It was suggested@4,5# that a large correlation
length may be responsible for important fluctuations or le
to a disoriented chiral condensate@6#. This was even related
@4,5# to the spectacular ‘‘Centauro events’’@7# observed in
cosmic rays. The question how smallmu andmd would have
to be in order to see a large correlation length nearTc and if
this scenario could be realized for realistic values of the c
rent quark masses remained, however, unanswered. The
son was the missing link between the universal behavior n
Tc and zero current quark mass on one hand and the kn
physical properties atT50 for realistic quark masses on th
other hand.

It is the purpose of the present paper to provide this li
We present here the equation of state for two flavor Q
within an effective quark meson model. The equation of st
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expresses the chiral condensate^c̄c& as a function of tem-
perature and the average current quark massm̂5(mu

1md)/2. This connects explicitly the universal critical be
havior for T→Tc and m̂→0 with the temperature depen
dence for a realistic valuem̂phys. Since our discussion cover
the whole temperature range 0<T&1.7Tc we can fixm̂phys

such that the ~zero temperature! pion mass is mp

5135 MeV. The condensatêc̄c& plays here the role of an
order parameter. Its precise definition will be given in S

II. Figure 1 shows our results for̂c̄c&(T,m̂): Curve (a)

gives the temperature dependence of^c̄c& in the chiral limit
m̂50. Here the lower curve is the full result for arbitraryT
whereas the upper curve corresponds to the universal sc
form of the equation of state for theO(4) Heisenberg model
We see perfect agreement of both curves forT sufficiently
close toTc5100.7 MeV. This demonstrates the capability
our method to cover the critical behavior and, in particul
to reproduce the critical exponents of theO(4) model. We
have determined~cf. Sec. V! the universal critical equation
of state as well as the non-universal amplitudes. This p
vides the full functional dependence of^c̄c&(T,m̂) for small
T2Tc and m̂. The curves (b), (c) and (d) are for non-
vanishing values of the average current quark massm̂. Curve
(c) corresponds tom̂phys or, equivalently, mp(T50)
5135 MeV. One observes a crossover in the rangeT
5(1.2– 1.5)Tc . TheO(4) universal equation of state~upper
curve! gives a reasonable approximation in this temperat
range. The transition turns out to be much less dramatic t
for m̂50. We have also plotted in curve (b) the results for
comparably small quark masses.1 MeV, i.e. m̂
5m̂phys/10, for which theT50 value ofmp equals 45 MeV.
The crossover is considerably sharper but a substantial
viation from the chiral limit remains even for such sma
values ofm̂. In order to facilitate comparison with lattic
simulations which are typically performed for larger valu
of mp we also present results formp(T50)5230 MeV in
curve (d). One may define a ‘‘pseudocritical temperature
Tpc associated to the smooth crossover as the inflection p
of ^c̄c&(T) as usually done in lattice simulations. Our r
sults for this definition ofTpc are denoted byTpc

(1) and are
presented in Table I for the four different values ofm̂ or,

tts
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FIG. 1. The plot shows the chiral condensate^c̄c& as a function of temperatureT. Lines (a), (b), (c), (d) correspond at zero
temperature tomp50,45 MeV,135 MeV,230 MeV, respectively. For each pair of curves the lower one represents the fullT dependence of

^c̄c& whereas the upper one shows for comparison the universal scaling form of the equation of state for theO(4) Heisenberg model. The
critical temperature for zero quark mass isTc5100.7 MeV. The chiral condensate is normalized at a scalekF.620 MeV.
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equivalently, mp(T50). The value for the pseudocritica
temperature formp5230 MeV compares well with the lat
tice results for two flavor QCD~cf. Sec. V!. One should
mention, though, that a determination ofTpc according to
this definition is subject to sizeable numerical uncertain
for large pion masses as the curve in Fig. 1 is almost lin
around the inflection point for quite a large temperatu
range. A problematic point in lattice simulations is the e
trapolation to realistic values ofmp or even to the chiral
limit. Our results may serve here as an analytic guide. T
overall picture shows the approximate validity of theO(4)
scaling behavior over a large temperature interval in the
cinity of and aboveTc once the~non-universal! amplitudes
are properly computed.

A second important result of our investigations is the te
perature dependence of the space-like pion correlation le

TABLE I. The table shows the critical and ‘‘pseudocritical
temperatures for various values of the zero temperature pion m

HereTpc
(1) is defined as the inflection point of^c̄c&(T) whereasTpc

(2)

is the location of the maximum of the sigma correlation length~see
Sec. IV!.

mp

MeV
0 45 135 230

Tpc
~1!

MeV
100.7 .110 .130 .150

Tpc
~2!

MeV
100.7 113 128 —
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mp
21(T). @We will often call mp(T) the temperature depen

dent pion mass since it coincides with the physical pion m
for T50.] The plot for mp(T) in Fig. 2 again shows the
second order phase transition in the chiral limitm̂50. For
T,Tc the pions are massless Goldstone bosons wherea
T.Tc they form with the sigma particle a degenerate vec
of O(4) with mass increasing as a function of temperatu
For m̂50 the behavior for small positiveT2Tc is charac-
terized by the critical exponent n, i.e. mp(T)
5(j1)21Tc„(T2Tc)/Tc…

n and we obtainn50.787, j1

50.270. Form̂.0 we find thatmp(T) remains almost con-
stant forT&Tc with only a very slight dip forT nearTc/2.
For T.Tc the correlation length decreases rapidly and
T@Tc the precise value ofm̂ becomes irrelevant. We se
that the universal critical behavior nearTc is quite smoothly
connected toT50. The full functional dependence o
mp(T,m̂) allows us to compute the overall size of the pio
correlation length near the critical temperature and we fi
mp(Tpc).1.7mp(0) for the realistic valuem̂phys. This cor-
relation length is even smaller than the vacuum (T50) one
and gives no indication for strong fluctuations of pions w
long wavelength. It would be interesting to see if a decre
of the pion correlation length at and aboveTc is experimen-
tally observable. It should be emphasized, however, tha
tricritical behavior with a massless excitation remains p
sible for three flavors. This would not be characterized by
universal behavior of theO(4) model. We also point out tha
the present investigation for the two flavor case does not t
into account a speculative ‘‘effective restoration’’ of th
axial UA(1) symmetry at high temperature@3,8#. We will
comment on these issues in Sec. VI.

ss.
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TWO FLAVOR CHIRAL PHASE TRANSITION FROM . . . PHYSICAL REVIEW D 59 034010
FIG. 2. The plot showsmp as a function of temperatureT for three different values of the average light current quark massm̂. The solid
line corresponds to the realistic valuem̂5m̂phys whereas the dotted line represents the situation without explicit chiral symmetry brea
i.e., m̂50. The intermediate, dashed line assumesm̂5m̂phys/10.
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Our method is based on the effective average actionGk
@9# which is the generating functional of the 1PI Green func-
tions in presence of an infrared cutoffk. In a thermal equi-
librium context Gk depends also on temperature and d
scribes a coarse grained free energy as a functiona
appropriate fields. Herek21 corresponds to the coarse grai
ing length scale. Varying the infrared cutoffk allows us to
consider the relevant physics in dependence on s
momentum-like scale. The results for the order param
and correlation functions presented in this paper are obta
by removing the infrared cutoff (k→0) in the end. For scala
fields F i the k dependence of the effective average action
given by an exact nonperturbative flow equation@10#

]

]t
Gk@F#5

1

2
TrH ~Gk

~2!@F#1Rk!
21

]Rk

]t J ~1.1!

wheret5 ln(k/L) with L an arbitrary momentum scale. He
Gk

(2) denotes the matrix of second functional derivatives
Gk with respect to the field components:

~Gk
~2!! i j @F#~q,q8!5

d2Gk@F#

dF i~q!dF j~2q8!
~1.2!

and we employ a momentum dependent infrared cutoff

Rk~q!5
ZF,kq

2e2q2/k2

12e2q2/k2 ~1.3!

with ZF,k an appropriate wave function renormalization co
stant to be specified later. In momentum space the trace
tains a momentum integration, Tr5*@ddq/(2p)d#( i . The
flow equation~1.1! closely resembles a one-loop equatio
Indeed, replacingGk

(2) by the second functional derivative o
the classical action,Scl

(2) , it corresponds to the one-loop re
sult for a theory where an infrared cutoff
03401
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2 E ddq

~2p!d w i~q!Rk~q!w i~2q!

is added to the classical actionScl@w#. This cutoff appears in
the inverse ‘‘average propagator’’

P~q!5q21ZF,k
21 Rk~q!5

q2

12expH 2
q2

k2J ~1.4!

which approachesk2 for q2!k2. Up to exponentially small
corrections the integration of the high momentum mod
with q2@k2 is not affected by the infrared cutoff. Th
‘‘renormalization group improvement’’Scl

(2)→Gk
(2) contains

all contributions beyond one-loop and makes Eq.~1.1! exact.
Of course, it also turns the flow equation into a function
differential equation which cannot be solved exactly in ge
eral. We emphasize that the flow equation~1.1! is connected
to the Wilsonian renormalization group equation@11–15#
~often also called exact renormalization group equation!. Ex-
tensions of the flow equations to fermions@16,17# and gauge
fields @18–24# are available.

Since in most cases the flow equation can not be sol
exactly the capacity to devise useful truncations in a nonp
turbative context becomes crucial. This requires first of all
identification of the degrees of freedom which are most r
evant for a given problem. In the present paper we conc
trate on the chiral aspects of QCD.1 Spontaneous chiral sym
metry breaking occurs through the expectation value o
~complex! scalar fieldFab which transforms as (N̄,N) under

1For a study of chiral symmetry breaking in QED using relat
exact renormalization group techniques see Ref.@25#.
0-3
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J. BERGES, D.-U. JUNGNICKEL, AND C. WETTERICH PHYSICAL REVIEW D59 034010
the chiral flavor groupSUL(N)3SUR(N) with N the num-
ber of light quark flavors. More precisely, the expectati
value

^Fab&5s̄0dab ~1.5!

induces for s̄0Þ0 a spontaneous breaking of the chir
group to a vector-like subgroup,SUL(N)3SUR(N)
→SUL1R(N)[SUV(N). In addition, non-vanishing curren
quark massesmu ,md ,ms break the chiral group explicitly
and also lift theSUV(N) degeneracy of the spectrum if the
are unequal. The physical degrees of freedom containe
the fieldFab are pseudoscalar and scalar mesons which
be understood as quark-antiquark bound states. It is obv
that any analytical description of the chiral transition has
include at least part of these~pseudo!scalar fields as the mos
relevant degrees of freedom.

In the present work we use fork smaller than a ‘‘compos-
iteness scale’’kF.600 MeV a description in terms ofFab
and quark degrees of freedom. The quarks acquire a cons
ent quark massMq through the chiral condensates̄0 which
forms in our picture forkxSB.400 MeV. This effective
quark meson model can be obtained from QCD by ‘‘integr
ing out’’ the gluon degrees of freedom and introducing fie
for composite operators@26,22#. This will be explained in
more detail in the first part of Sec. II. In this picture the sc
kF is associated to the scale at which the formation of m
sonic bound states can be observed in the flow of the ef
tive ~momentum dependent! four-quark interaction. We will
restrict our discussion in this paper to two flavor QCD w
equal quark massesmu5md[m̂. Since in this case the sca
lar triplet a0 and the pseudoscalar singlet~associated with
the h8) have typical masses around2 1 GeV we will neglect
them fork,kF . This reduces the scalar degrees of freed
of our effective model to a four component vector ofO(4),
consisting of the three pions and the ‘‘sigma resonance.

We imagine that all other degrees of freedom besides
quarksc and the scalarsF are integrated out. This is re
flected in the precise form of the effective average act
GkF

@c,F# at the scalekF which serves as an initial value fo

the solution of the flow equation. The flow ofGk@c,F# for
k,kF is then entirely due to the quark and meson fluct
tions which are not yet included inGkF

@c,F#. Obviously,

the initial valueGkF
may be a quite complicated function

of c and F containing, in particular, important non-loca
behavior. We will nevertheless use a rather simple trunca
in terms of standard kinetic terms and a most general form
the scalar potentialUk , i.e.3

2More precisely, because of the anomalousUA(1) breaking in
QCD these mesons are significantly heavier than the remaining
grees of freedom in the range of scalesk where the dynamics of the
model is strongly influenced by mesonic fluctuations. The situa
becomes more involved if the model is considered at high temp
ture which is discussed in Sec. VI.

3Our Euclidean conventions (h̄k is real! are specified in Refs.@27,
16#.
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Ĝk5Gk2
1

2 E d4x tr~F†1†F!

Gk5E d4xH Zc,kc̄ai ]”ca

1ZF,k tr@]mF†]mF#1Uk~F,F†!

1h̄kc̄
aS 11g5

2
Fab2

12g5

2
~F†!abDcbJ . ~1.6!

Here Gk is invariant under the chiral flavor symmetr
SUL(2)3SUR(2) and the only explicit symmetry breakin
arises through the source term;m̂. We will consider the
flow of the most general form ofUk consistent with the
symmetries~without any restriction to a polynomial form a
typically used in a perturbative context!. On the other hand
our approximations for the kinetic terms are rather crude
parameterized by only two running wave function renorm
ization constants,ZF,k and Zc,k . The same holds for the
effective Yukawa couplingh̄k . The main approximations in
this work concern

~i! the simple form of the derivative terms and th
Yukawa coupling, in particular, the neglect of high
derivative terms~and terms with two derivatives an
higher powers ofF!. This is partly motivated by the
observation that at the scalekF and for small tem-
peratures the possible strong non-localities related
confinement affect most likely only the quarks in
momentum rangeq2&(300 MeV)2. Details of the
quark propagator and interactions in this moment
range are not very important in our context~see Sec.
II !.

~ii ! the neglect of interactions involving more than tw
quark fields. This is motivated by the fact that th
dominant multi-quark interactions are already inco
porated in the mesonic description. Six-quark intera
tions beyond those contained effectively inUk could
be related to baryons and play probably only a min
role for the meson physics considered here.

We will choose a normalization ofc,F such thatZc,kF

5h̄kF
51. We therefore need as initial values at the scalekF

the scalar wave function renormalizationZF,kF
and the

shape of the potentialUkF
. We will make here the importan

assumption thatZF,k is small at the compositeness scalekF

~similarly to what is usually assumed in Nambu–Jon
Lasinio-like models!. This results in a large value of th
renormalized Yukawa couplinghk5ZF,k

21/2Zc,k
21h̄k . A large

value of hkF
is phenomenologically suggested by the co

parably large value of the constituent quark massMq . The
latter is related to the value of the Yukawa coupling fork
→0 and the pion decay constantf p592.4 MeV by Mq
5h fp/2 ~with h5hk50), and Mq.300 MeV implies
h2/4p.3.4. For increasingk the value of the Yukawa cou
pling grows rapidly fork*Mq . Our assumption of a large

e-

n
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TWO FLAVOR CHIRAL PHASE TRANSITION FROM . . . PHYSICAL REVIEW D 59 034010
initial value forhkF
is therefore equivalent to the assumpti

that the truncation~1.6! can be used up to the vicinity of th
Landau pole ofhk . The existence of a strong Yukawa co
pling enhances the predictive power of our approach con
erably. It implies a fast approach of the running couplings
partial infrared fixed points@27#. In consequence, the de
tailed form of UkF

becomes unimportant, except for th

value of one relevant parameter corresponding to the sc
mass termm̄kF

2 . In this paper we fixm̄kF

2 such that f p

592.4 MeV for mp5135 MeV. The possibility of such a
choice is highly non-trivial sincef p can actually be predicted
@27# in our setting within a relatively narrow range. Th
value f p592.4 MeV ~for mp5135 MeV) sets our unit of
mass for two flavor QCD which is, of course, not direc
accessible by observation. In addition tom̄kF

2 ~or f p) the

other input parameter used in this work is the constitu
quark massMq which determines the scalekF at whichhkF

becomes very large. We consider a range 300 MeV&Mq

&350 MeV and find a rather weak dependence of our res
on the precise value ofMq . We also observe that the lim
hkF
→` can be considered as the lowest order of a syst

atic expansion inhkF

21 which is obviously highly nonpertur

bative.
A generalization of our method to the realistic case

three light flavors is possible and work in this direction is
progress. For the time being we expect that many featu
found for N52 will carry over to the realistic case, esp
cially the critical behavior forT→Tc and m̂→0 ~for fixed
msÞ0). Nevertheless, some quantities like^c̄c&(T50), the
difference betweenf p for realistic quark masses andm̂50
or the mass of the sigma resonance atT50 may be modified.
This will also affect the non-universal amplitudes in the cr
cal equation of state and, in particular, the value ofTc . In the
picture of the two flavor quark meson model these chan
occur through an effective temperature dependence of
initial values of couplings at the scalekF . This effect, which
is due to the temperature dependence of effects from fluc
tions not considered in the present work is discussed bri
in Sec. VI. It remains perfectly conceivable that this ad
tional temperature dependence may result in a first o
phase transition or a tricritical behavior for realistic values
m̂ for the three flavor case. Details will depend on t
strange quark mass. We observe, however, that the temp
ture dependence in the limitm̂→0 involves forT<Tc only
information from the running of couplings in the rangek
&300 MeV. ~The running fork*3T effectively drops out in
the comparison between the thermal equilibrium results
those for T50.) In this range of temperatures our mod
should be quite reliable.

Finally, we mention that we have concentrated here o
on theF-dependent part of the effective action which is r
lated to chiral symmetry breaking. TheF-independent par
of the free energy also depends onT and only part of this
temperature dependence is induced by the scalar and q
fluctuations considered in the present paper. Most likely,
gluon degrees of freedom cannot be neglected for this
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pose. This is the reason why we do not give results
‘‘overall quantities’’ like energy density or pressure as
function of T.

This paper is organized as follows: In Sec. II we revie
the linear quark meson model at vanishing temperature.
begin with an overview of the different scales appearing
strong interaction physics. Subsequently, the flow equati
for the linear quark meson model are introduced and th
approximate partial fixed point behavior is discussed in
tail leading to a ‘‘prediction’’ of the chiral condensate^c̄c&.
In Sec. III the exact renormalization group formulation
field theories in thermal equilibrium is given. It is demo
strated how mass threshold functions in the flow equati
smoothly decouple all massive Matsubara modes as the
perature increases, therefore leading to a ‘‘dimensional
duction’’ of the model. Section IV contains our results f
the linear quark meson model at non-vanishing temperat
Here we discuss theT dependences of the parameters a
physical observables of the linear quark meson model in
tail for a temperature range 0<T&170 MeV including the
~pseudo!critical temperatureTc of the chiral transition. The
critical behavior of the model nearTc and m̂50, wherem̂
denotes the light average current quark mass, is caref
analyzed in Sec. V. There we present the universal sca
form of the equation of state including a fit for the corr
sponding scaling function. Also the universal critical exp
nents and amplitude ratios are given there. The effects
additional degrees of freedom of strong interaction phys
not included in the linearO(4)-symmetric quark meson
model are addressed in Sec. VI. Here we also commen
differences between the linear quark meson model and ch
perturbation theory. Some technical details concerning
quark mass term and the definition of threshold functions
vanishing and non-vanishing temperature are presente
three appendices.

II. THE QUARK MESON MODEL AT T50

Before discussing the finite temperature behavior
strong interaction physics we will review some of its ze
temperature features. This will be done within the framewo
of a linear quark meson model as an effective description
QCD for scales below the mesonic compositeness scal
approximatelykF.600 MeV. Relating this model to QCD
in a semi-quantitative way in Sec. II A will allow us to gai
some information on the initial value for the effective ave
age action at the compositeness scalekF . We emphasize,
however, that the quantitative aspects of the derivation of
effective quark meson model from QCD will not be releva
for our practical calculations in the mesonic sector. This
related to the ‘‘infrared stability’’ for large Yukawa couplin
hkF

as discussed in the Introduction and which will be ma
quantitative in Sec. II B.

A. A short „scale… history of QCD

For an evaluation of the trace on the right hand side of
flow equation~1.1! only a small momentum rangeq2.k2

contributes substantially. One therefore only needs to t
0-5
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J. BERGES, D.-U. JUNGNICKEL, AND C. WETTERICH PHYSICAL REVIEW D59 034010
into account those fluctuations which are important in t
momentum interval. Here we are interested in the descrip
of chiral symmetry breaking. The relevant fluctuations in
lation to this phenomenon may change with the scalek and
we begin by summarizing the qualitatively different sca
intervals which appear for meson physics in QCD. Some
this will be explained in more detail in the remainder of th
section whereas other aspects are well known. Details of
discussion may also be found in Refs.@26–28#. We will
distinguish five qualitatively different ranges of scales:

~1! At sufficiently high momentum scales, say,
k*kp.1.5 GeV

the relevant degrees of freedom of strong interactions
quarks and gluons and their dynamics is well describ
by perturbative QCD.

~2! For decreasing momentum scales in the range
kF.600 MeV&k&kp.1.5 GeV

the dynamical degrees of freedom are still quarks a
gluons. Yet, ask is lowered part of their dynamics be
comes dominated by effective non-local four quark
teractions which cannot be fully accessed perturbativ

~3! At still lower scales this situation changes dramatica
Quarks and gluons are supplemented by mesonic bo
states as additional degrees of freedom which are form
at a scalekF.600 MeV. We emphasize thatkF is well
separated fromLQCD.200 MeV where confinement se
in and from the constituent masses of the quarksMq

.(300– 350) MeV. This implies that below the com
positeness scalekF there exists a hybrid description i
term of quarksand mesons. It is important to note tha
for scales not too much smaller thankF chiral symmetry
remains unbroken. This situation holds down to a sc
kxSB.400 MeV at which the scalar meson potential d
velops a non-trivial minimum thus breaking chiral sym
metry spontaneously. The meson dynamics within
range

kxSB.400 MeV&k&kF.600 MeV
is dominated by light current quarks with a stron
Yukawa couplinghk

2/(4p)@as(k) to mesons. We will
thus assume that the leading gluon effects are inclu
belowkF already in the formation of mesons. NearkxSB

also fluctuations of the light scalar mesons become
portant as their initially large renormalized mass a
proaches zero. Other hadronic bound states like ve
mesons or baryons should have masses larger than t
of the lightest scalar mesons, in particular nearkxSB,
and give therefore only subleading contributions to
dynamics. This leads us to a simple linear model
quarks and scalar mesons as an effective descriptio
QCD for scales belowkF .

~4! As one evolves to scales belowkxSB the Yukawa cou-
pling decreases whereasas increases. Of course, gettin
closer toLQCD it is no longer justified to neglect in th
quark sector the QCD effects which go beyond the
namics of the effective quark meson model in our tru
cation~1.6!. On the other hand, the final IR value of th
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Yukawa couplingh is fixed by the typical values of con
stituent quark massesMq.300 MeV to be h2/(4p)
.3.4. One may therefore speculate that the domina
of the Yukawa interaction persists even for the interv

Mq.300 MeV&k&kxSB.400 MeV
below which the quarks decouple from the evolution
the mesonic degrees of freedom altogether. Of cou
details of the gluonic interactions are expected to be c
cial for an understanding of quark and gluon confin
ment. Strong interaction effects may dramatically chan
the momentum dependence of the quark propagator fk
and q2 aroundLQCD. Yet, there is no coupling of the
gluons to the color neutral mesons. As long as one
only interested in the dynamics of the mesons one is
to expect that confinement effects are quantitatively
too important.

~5! Because of the effective decoupling of the quarks a
therefore of the whole colored sector the details of co
finement have only little influence on the mesonic d
namics for scales

k&Mq.300 MeV.
Here quarks and gluons disappear effectively from
spectrum and one is left with the pions. They are t
only particles whose propagation is not suppressed b
large mass. For scales below the pion mass the flow
the couplings stops.

Let us now try to understand these different ranges
scales in more detail. We may start atkp51.5 GeV where
we assume that all gluonic degrees of freedom have b
integrated out while we have kept an effective infrared cut
;kp in the quark propagators. Details of this procedure w
outlined in Ref.@22#. This results in a non-trivial momentum
dependence of the quark propagator and effective non-l
four and higher quark interactions. Because of the infra
cutoff the resulting effective action for the quarks resemb
closely the one for heavy quarks~at least for Euclidean mo
menta!. The dominant effect is the appearance of an effect
quark potential similar to the one for the charm quark wh
describes the effective four quark interactions.

We next have to remove the infrared cutoff for the quar
k→0. This task can be carried out by means of the ex
flow equation for quarks only, starting atkp with an initial
valueGkp

@c# as obtained after integrating out the gluons.
first investigation in this direction@26# used a truncation with
a chirally invariant four quark interaction whose most ge
eral momentum dependence was retained. A crucial poin
of course, the initial value for this momentum dependence
kp . The ansatz used in Ref.@26# is obtained by Fierz trans
forming the heavy quark potential and keeping, for simpl
ity, only the scalar meson channel while neglecting ther-
meson and pomeron channels which are also present.
effective heavy quark potential was approximated there b
one gluon exchange term;as(kp) supplemented by a lin-
early rising string tension term. This ansatz corresponds
the four quark interaction generated by the flavor neu
t-channel one gluon exchange depicted in Fig. 3 with
0-6
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TWO FLAVOR CHIRAL PHASE TRANSITION FROM . . . PHYSICAL REVIEW D 59 034010
appropriately modified gluon propagator and quark glu
vertex in order to account for the linearly rising part of t
potential.

The evolution equation for the four quark interaction c
be derived from the fermionic version of Eq.~1.1!. It is by
far not clear that the evolution of the effective four qua
vertex will lead at lower scales to a momentum depende
representing the (s-channel! exchange of colorless meson
bound states. Yet, at the compositeness scale

kF.600 MeV ~2.1!

one finds@26# an approximate Bethe-Salpeter factorization
the four quark amplitude with precisely this property. Th
situation is described by the right Feynman diagram in F
3. In particular, it was possible to extract the amputa
Bethe-Salpeter wave function as well as the mesonic bo
state propagator displaying a pole-like structure in thes
channel if it is continued to negatives5(p11p2)2. In the
limit where the momentum dependence of the Bethe-Salp
wave function and the bound state propagator is negle
the effective actionGkF

resembles4 the Nambu–Jona-Lasinio
model@29,30#. It is therefore not surprising that our descri
tion of the dynamics fork,kF will parallel certain aspects
of the investigations of this model, even though we are
bound to the approximations used typically in such stud
~large-Nc expansion, perturbative renormalization grou
etc.!.

It is clear that for scalesk&kF a description of strong
interaction physics in terms of quark fields alone would
rather inefficient. Finding physically reasonable truncatio
of the effective average action should be much easier o
composite fields for the mesons are introduced. The e
renormalization group equation can indeed be suppleme
by an exact formalism for the introduction of composite fie

4Our solution of the flow equation forGk with ZF,kF
50 ~see

below! may be considered as a solution of the NJL model with
particular form of the ultraviolet cutoff dictated by the shape
Rk(q

2) as given in Eq.~1.3!.

FIG. 3. The left diagram represents the one gluon excha
t-channel contribution to the four quark vertex at the scalekp

.1.5 GeV. It is assumed here that the gluon propagator is mod
such that it accounts for the linearly rising term in the heavy qu
potential. The right diagram displays the scalar mesons-channel
exchange found at the compositeness scalekF.600 MeV.
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variables or, more generally, a change of variables@26#. In
the context of QCD this amounts to the replacement of
dominant part of the four quark interactions by scalar me
fields with Yukawa couplings to the quarks. In turn, th
substitutes the effective quark action at the scalekF by the
effective quark meson action given in Eq.~1.6! in the
Introduction.5 The term in the effective potentialUkF

which

is quadratic inF, UkF
5m̄kF

2 tr F†F1¯ , turns out to be

positive as a consequence of the attractiveness of the
quark interaction inducing it. Its value was found for th
simple truncations used in Ref.@26# to be m̄kF

.120 MeV.

The higher order terms inUkF
cannot be determined in th

four quark approximation since they correspond to terms
volving six or more quark fields.~Their values will not be
needed for our quantitative investigations as is discusse
Sec. II B.! The initial value of the~bare! Yukawa coupling
corresponds to the amputated Bethe-Salpeter wave func
Neglecting its momentum dependence it can be normali
to h̄kF

51. Moreover, the quark wave function renormaliz

tion Zc,k is normalized to one at the scalekF for conve-
nience. One may add that we have refrained here for s
plicity from considering four quark operators with vector a
pseudo-vector spin structure. Their inclusion is straightf
ward and would lead to vector and pseudo-vector meson
the effective action.

In view of the possible large truncation errors made
Ref. @26# we will take Eq.~2.1! and the above value ofm̄kF

only as order of magnitude estimates. Furthermore, we
assume, as motivated in the Introduction and usually don
large-Nc computations within the NJL model, that

ZF,kF
!1. ~2.2!

As a consequence, the initial value of the renormaliz
Yukawa couplinghkF

5ZF,kF

21/2Zc,kF

21 h̄kF
is much larger than

one and we will be able to exploit the infrared stable featu
of the flow equations. As a typical coupling we takehkF

5100 in order to simulate the limithkF
→`. The effective

potential Uk(F) must be invariant under the chira
SUL(N)3SUR(N) flavor symmetry. In fact, the axia
anomaly of QCD breaks the AbelianUA(1) symmetry. The
resulting UA(1) violating multi-quark interactions6 lead to
correspondingUA(1) violating terms inUk(F). Accord-
ingly, the most general effective potentialUk is a function of
the N11 independentC and P conserving SUL(N)
3SUR(N) invariants

r5tr F†F,

a
f

5We note that no double counting problem arises in this pro
dure.

6A first attempt for the computation of the anomaly term in t
fermionic effective average action can be found in Ref.@31#.
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t i;trS F†F2
1

N
r D i

, i 52,...,N,

j5det F1det F†. ~2.3!

For a given initial form ofUk all quantities in our truncation
of Gk ~1.6! are now fixed and we may follow the flow ofGk
to k→0. In this context it is important that the formalism fo
composite fields@26# also induces an infrared cutoff in th
meson propagator. The flow equations are therefore exa
of the form ~1.1!, with quarks and mesons treated on
equal footing. At the compositeness scale the quadratic t
of UkF

5m̄kF

2 Tr F†F1¯ is positive and the minimum o

UkF
therefore occurs forF50. Spontaneous chiral symme

try breaking is described by a non-vanishing expectat
value^F& in absence of quark masses. This follows from t
change of the shape of the effective potentialUk ask flows
from kF to zero. The large renormalized Yukawa coupli
rapidly drives the scalar mass term to negative values
leads to a potential minimum away from the origin at so
scale kxSB,kF such that finally ^F&5s̄0Þ0 for k→0
@26,27#. This concludes our overview of the general featu
of chiral symmetry breaking in the context of flow equatio
for QCD.

We will concentrate in this work on the two flavor ca
(N52) and comment on the effects of including the stran
quark in section 6. Furthermore we will neglect isospin v
lation and therefore consider a singlet source term propor-
tional to the average light current quark massm̂[ 1

2 (mu
1md). Due to theUA(1) anomaly there is a mass split fo
the mesons described byF. The scalar triplet (a0) and the
pseudoscalar singlet (h8) receive a large mass whereas t
pseudoscalar triplet~p! and the scalar singlet~s! remains
light. From the measured valuesmh8 ,ma0

.1 GeV it is evi-
dent that a decoupling of these mesons is presumably a
realistic limit.7 It can be achieved in a chirally invariant wa
and leads to the well knownO(4)-symmetric Gell-Mann–
Levy linear sigma model@32# which is, however, coupled to
quarks now. This is the two flavor linear quark meson mo
which we will study in the remainder of this work. For th
model the effective potentialUk is a function ofr only.

It remains to determine the source as a function of the
average current quark massm̂. This is carried out in Appen-
dix A and we obtain in our normalization withZc,kF

51,

h̄kF
51,

52m̄kF

2 m̂. ~2.4!

It is remarkable that higher order terms do not influence
relation between andm̂. Only the quadratic termm̄kF

2 en-

ters which is in our scenario the only relevant coupling. T

7In thermal equilibrium at high temperature this decoupling is
obvious. We will comment on this point in Sec. VI.
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feature is an important ingredient for the predictive power
the model as far as the absolute size of the current qu
mass is concerned.

The quantities which are directly connected to chiral sy
metry breaking depend on thek-dependent expectation valu
^F&k5s̄0,k as given by

]Uk

]r
~r52s̄0,k

2 !5


2s̄0,k
. ~2.5!

In terms of the renormalized expectation value

s0,k5ZF,k
1/2 s̄0,k ~2.6!

we obtain the following expressions for phenomenologi
observables from Eq.~1.6! for8 d54

f p,k52s0,k ,

^c̄c&k522m̄kF

2 @ZF,k
21/2s0,k2m̂#,

Mq,k5hks0,k ,

mp,k
2 5ZF,k

21/2
m̄kF

2 m̂

s0,k
5ZF,k

21/2 

2s0,k
,

ms,k
2 5ZF,k

21/2
m̄kF

2 m̂

s0,k
14lks0,k

2 . ~2.7!

Here we have defined the dimensionless, renormalized c
plings

lk5ZF,k
22 ]2Uk

]r2 ~r52s̄0,k
2 !,

hk5ZF,k
21/2Zc,k

21h̄k . ~2.8!

We will mainly be interested in the ‘‘physical values’’ of th
quantities~2.7! in the limit k→0 where the infrared cutoff is
removed, i.e.f p5 f p,k50 , mp

2 5mp,k50
2 , etc. We point out

that the formalism of composite fields provides the link@26#

to the chiral condensatêc̄c& since the expectation values̄0
is related to the expectation value of a composite qua
antiquark operator.

B. Flow equations and infrared stability

At first sight, a reliable computation ofGk→0 seems a
very difficult task. Without a truncationGk is described by an
infinite number of parameters~couplings, wave function
renormalizations, etc.! as can be seen ifGk is expanded in
powers of fields and derivatives. For instance, the sig
mass is obtained as a zero of the exact inverse propag
limk→0 Gk

(2)(q)uF5^F& , which formally receives contribu-

t
8We note that the expressions~2.7! obey the well known Gell-

Mann–Oakes–Renner relationmp
2 f p

2 522m̂^c̄c&1O(m̂2) @33#.
0-8
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TWO FLAVOR CHIRAL PHASE TRANSITION FROM . . . PHYSICAL REVIEW D 59 034010
tions from terms inGk with arbitrarily high powers of de-
rivatives and the expectation values0 . Realistic nonpertur-
bative truncations ofGk which reduce the problem to
manageable size are crucial. We will follow here a twofo
strategy:

Physical observables like meson masses, decay cons
etc., can be expanded in powers of~current! quark masses
in a similar way as in chiral perturbation theory@34#. To a
given finite order of this expansion only a finite number
terms of a simultaneous expansion ofGk in powers of
derivatives andF are required if the expansion point
chosen properly. Details of this procedure and some
sults can be found in@35–37#.

Because of an approximate partial IR fixed point behav
of the flow equations in the symmetric regime, i.e. f
kxSB,k,kF , the values of many parameters ofGk for
k→0 will be almost independent of their initial values
the compositeness scalekF . For large enoughhkF

only a

few relevant parameters need to be computed accura
from QCD. They can alternatively be determined fro
phenomenology. Because of the present lack of an
plicit QCD computation we will pursue the latter ap
proach.

In combination, these two points open the possibility fo
perhaps unexpected degree of predictive power within
linear quark meson model. We wish to stress, however,
a perturbative treatment of the model at hand, e.g., us
perturbative RG techniques, cannot be expected to yield
liable results. The renormalized Yukawa coupling is ve
large at the scalekF . Even the IR value ofhk is still rela-
tively big

hk505
2Mq

f p
.6.5 ~2.9!

and hk increases withk. The dynamics of the linear quar
meson model is therefore clearly nonperturbative for
scalesk<kF .

We will now turn to the flow equations for the linea
quark meson model. We first note that the flow equations
Gk and Gk2 1

2 *d4x tr(†F1F†) are identical. The source
term therefore does not need to be considered explicitly
only appears in the condition~2.5! for ^F&. It is convenient to
work with dimensionless and renormalized variables the
fore eliminating all explicitk dependence. With

u~ t,r̃ ![k2dUk~r!, r̃[ZF,kk
22dr ~2.10!

and using Eq.~1.6! as a first truncation of the effective av
erage actionGk one obtains the flow equation@ t5 ln(k/kF)#
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]t
u52du1~d221hF!r̃u8

12vdH 3l 0
d~u8;hF!1 l 0

d~u812r̃u9;hF!

22d/211Ncl 0
~F !dS 1

2
r̃h2;hcD J . ~2.11!

Here vd
21[2d11pd/2G(d/2) and primes denote derivative

with respect tor̃. The number of quark colors is denoted
Nc . We will always use in the followingNc53. Equation
~2.11! is a partial differential equation for the effective po
tential u(t,r̃) which has to be supplemented by the flo
equation for the Yukawa coupling and expressions for
anomalous dimensionshF , hc . The symbolsl n

d , l n
(F)d de-

note bosonic and fermionic mass threshold functions, resp
tively, which are defined in Appendix B. They describe t
decoupling of massive modes and provide an important n
perturbative ingredient. For instance, the bosonic thresh
functions

l n
d~w;hF!5

n1dn,0

4
vd

21k2n2dE ddq

~2p!d

3
1

ZF,k

]Rk

]t

1

@P~q2!1k2w#n11 ~2.12!

involve the inverse average propagatorP(q2)5q2

1ZF,k
21 Rk(q

2) where the infrared cutoff is manifest. Thes
functions decrease;w2(n11) for w@1. Since typicallyw
5M2/k2 with M a mass of the model, the main effect of th
threshold functions is to cut off fluctuations of particles wi
massesM2@k2. Once the scalek is changed below a certai
mass threshold, the corresponding particle no longer con
utes to the evolution and decouples smoothly.

The dimensionless renormalized expectation valuek
[2k22dZF,ks̄0,k

2 , with s̄0,k thek-dependent VEV ofF, may
be computed for eachk directly from the condition~2.5!

u8~ t,k!5


A2k
k2~d12!/2ZF,k

21/2[eg . ~2.13!

Note thatk[0 in the symmetric regime for vanishing sourc
term. Equation~2.13! allows us to follow the flow ofk ac-
cording to

d

dt
k5

k

eg12kl H @hF2d22#eg22
]

]t
u8~ t,k!J

~2.14!

with l[u9(t,k). We define the Yukawa coupling forr̃
5k and its flow equation reads@27#
0-9
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d

dt
h25~d2412hc1hF!h2

22vdh4H 3l 1,1
~FB!dS 1

2
h2k,eg ;hc ,hFD

2 l 1,1
~FB!dS 1

2
h2k,eg12lk;hc ,hFD J . ~2.15!

Similarly, the scalar and quark anomalous dimensions
inferred from

hF[2
d

dt
ln ZF,k

54
vd

d H 4kl2m2,2
d ~eg ,eg12lk;hF!

12d/2Nch
2m4

~F !dS 1

2
h2k;hcD J ,

hc[2
d

dt
ln Zc,k

52
vd

d
h2H 3m1,2

~FB!dS 1

2
h2k,eg ;hc ,hFD

1m1,2
~FB!dS 1

2
h2k,eg12lk;hc ,hFD J , ~2.16!

which is a linear set of equations for the anomalous dim
sions. The threshold functionsl n1 ,n2

(FB)d , mn1 ,n2

d , m4
(F)d and

mn1 ,n2

(FB)d are also specified in Appendix B.

The flow equations~2.11!, ~2.14!–~2.16!, constitute a
coupled system of ordinary and partial differential equatio
which can be integrated numerically. Here we take the eff
tive current quark mass dependence ofhk , ZF,k and Zc,k
into account by stopping the evolution according to E
~2.15!, ~2.16!, evaluated for the chiral limit, below the pio
massmp . ~For details of the algorithm used here see Re
@38, 39#.! One finds ford54 that chiral symmetry breaking
indeed occurs for a wide range of initial values of the para
eters including the presumably realistic case of large ren
malized Yukawa coupling and a bare massm̄kF

of order 100
MeV. Driven by the strong Yukawa coupling, the renorm
ized mass termu8(t,r̃50) decreases rapidly and goe
through zero at a scalekxSB not far belowkF . Here the
system enters the spontaneously broken regime and th
fective average potential develops an absolute minim
away from the origin. The evolution of the potential min
mum s0,k

2 5k2k/2 turns out to be reasonably stable alrea
beforek.mp where it stops. We take this result as an in
cation that our truncation of the effective actionGk leads at
least qualitatively to a satisfactory description of chiral sy
metry breaking. The reason for the relative stability of the
behavior of the VEV~and all other couplings! is that the
quarks acquire a constituent massMq5hs0.300 MeV in
the spontaneously broken regime. As a consequence
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decouple oncek becomes smaller thanMq and the evolution
is then dominantly driven by the light Goldstone boson
This is also important for our approximation of neglectin
the residual gluonic interactions in the quark sector of
model as outlined in Sec. II A.

Most importantly, one finds that the system of flow equ
tions exhibits an approximate IR fixed point behavior in t
symmetric regime@27#. To see this explicitly we study the
flow equations~2.11!, ~2.14!–~2.16! subject to the condition
~2.2!. For the relevant range ofr̃ both u8(t,r̃) andu8(t,r̃)
12r̃u9(t,r̃) are then much larger thanr̃h2(t) and we may
therefore neglect in the flow equations all scalar contrib
tions with threshold functions involving these large mass
This yields the simplified equations (d54, v4

21532p2)

]

]t
u524u1~21hF!r̃u82

Nc

2p2 l 0
~F !4S 1

2
r̃h2D ,

d

dt
h25hFh2,

hF5
Nc

8p2 m4
~F !4~0!h2,

hc50. ~2.17!

Of course, it should be clear that this approximation is o
valid for the initial range of running belowkF before the
~dimensionless! renormalized scalar mass squaredu8(t,r̃
50) approaches zero near the chiral symmetry break
scale. The system~2.17! is exactly soluble. Usingm4

(F)4(0)
51 which holds independently of the choice of the IR cuto
we find

h2~ t !5ZF
21~ t !5

hI
2

12
Nc

8p2 hI
2t

,

u~ t,r̃ !5e24tuI S e2tr̃
h2~ t !

hI
2 D

2
Nc

2p2 E
0

t

dre24r l 0
~F !4S 1

2
h2~ t !r̃e2r D . ~2.18!

@The integration overr on the right hand side of the solutio
for u can be carried out by first exchanging it with the o
over momentum implicit in the definition of the thresho
function l 0

(F)4 ~see Appendix B!.# Here uI( r̃)[u(0,r̃) de-
notes the effective average potential at the compositen
scale andhI

2 is the initial value ofh2 at kF , i.e. for t50. For
simplicity we will use an expansion of the initial value e
fective potentialuI( r̃) in powers ofr̃ aroundr̃50

uI~ r̃ !5 (
n50

` uI
~n!~0!

n!
r̃n ~2.19!
0-10
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TABLE II. The table shows the dependence on the constituent quark massMq of the input parameterskF , m̄kF

2 /kF
2 and as well as some

of our ‘‘predictions.’’ The phenomenological input used here besidesMq is f p592.4 MeV,mp5135 MeV. The first line corresponds to th
values forMq andl I used in the remainder of this work. The other three lines demonstrate the insensitivity of our results with respe
precise values of these parameters.

Mq

MeV

l I

hI
2

kF

MeV

m̄kF

2

kF
2

1/3

MeV

m̂~kF!

MeV

m̂~1 GeV!

MeV
^c̄c&~1 GeV!

MeV3

f p
~0!

MeV

303 1 618 0.0265 66.8 14.7 11.4 2(186)3 80.8
300 0 602 0.026 66.8 15.8 12.0 2(183)3 80.2
310 0 585 0.025 66.1 16.9 12.5 2(180)3 80.5
339 0 552 0.0225 64.4 19.5 13.7 2(174)3 81.4
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even though this is not essential for the forthcoming reas
ing. Expanding alsol 0

(F)4 in Eq. ~2.18! in powers of its argu-
ment one finds forn.2

u~n!~ t,0!

h2n~ t !
5e2~n22!t

uI
~n!~0!

hI
2n 1

Nc

p2

~21!n~n21!!

2n12~n22!
l n
~F !4~0!

3@12e2~n22!t#. ~2.20!

For decreasingt→2` the initial valuesuI
(n) become rapidly

unimportant andu(n)/h2n approaches a fixed point. Forn
52, i.e., for the quartic coupling, one finds

u~2!~ t,0!

h2~ t !
512

12
uI

~2!~0!

hI
2

12
Nc

8p2 hI
2t

~2.21!

leading to a fixed point value (u(2)/h2)* 51. As a conse-
quence of this fixed point behavior the system loses all
‘‘memory’’ on the initial valuesuI

(n>2) at the compositenes
scalekF . This typically happens before the approximati
u8(t,r̃),u8(t,r̃)12r̃u9(t,r̃)@ r̃h2(t) breaks down and the
solution ~2.18! becomes invalid. Furthermore, the attracti
to partial infrared fixed points continues also for the range
k where the scalar fluctuations cannot be neglected anym
The initial value for the bare dimensionless mass param

uI8~0!

hI
2 5

m̄kF

2

kF
2 ~2.22!

is never negligible.~In fact, using the values form̄kF

2 andkF

computed in Ref.@26# one obtainsm̄kF

2 /kF
2 .0.036.) For

largehI @and dropping the constant pieceuI(0)# the solution
~2.18! therefore behaves with growingutu as

ZF~ t !.2
Nc

8p2 t,

h2~ t !.2
8p2

Nct
,
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u~ t,r̃ !.
uI8~0!

hI
2 e22th2~ t !r̃2

Nc

2p2

3E
0

t

dre24r l 0
~F !4S 1

2
h2~ t !r̃e2r D . ~2.23!

In other words, forhI→` the IR behavior of the linear quar
meson model will depend~in addition to the value of the
compositeness scalekF and the quark massm̂) only on one
parameter,m̄kF

2 . We have numerically verified this feature b

starting with different values foruI
(2)(0). Indeed, the differ-

ences in the physical observables were found to be sm
This IR stability of the flow equations leads to a perha
surprising degree of predictive power. For definiteness
will perform our numerical analysis of the full system o
flow equations~2.11!, ~2.14!–~2.16! with the idealized initial
value uI( r̃)5uI8(0)r̃ in the limit hI

2→`. It should be
stressed, though, that deviations from this idealization w
lead only to small numerical deviations in the IR behavior
the linear quark meson model as long as the condition~2.2!
holds, say forhI*15 @27#.

With this knowledge at hand we may now fix the rema
ing three parameters of our model,kF , m̄kF

2 andm̂ by using

f p592.4 MeV, the pion massMp5135 MeV and the con-
stituent quark massMq as phenomenological input. Becau
of the uncertainty regarding the precise value ofMq we give
in Table II the results for several values ofMq . The first line
of Table II corresponds to the choice ofMq andl I[uI9(k)
which we will use for the forthcoming analysis of the mod
at finite temperature. As argued analytically above the
pendence on the value ofl I is weak for large enoughhI as
demonstrated numerically by the second line. Moreover,
notice that our results, and in particular the value of, are
rather insensitive with respect to the precise value ofMq . It
is remarkable that the values forkF and m̄kF

are not very
different from those computed in Ref.@26#. As compared to
the analysis of Ref.@27# the present truncation ofGk is of a
higher level of accuracy: We now consider an arbitrary fo
of the effective average potential instead of a polynom
approximation and we have included the pieces in the thre
old functions which are proportional to the anomalous
mensions. It is encouraging that the results are rather ro
with respect to these improvements of the truncation.
0-11
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FIG. 4. The plot showsmp
2 ~solid line! and f p ~dashed line! as functions of the current quark massm̂ in units of the physical valuem̂phys.
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Once the parameterskF , m̄kF

2 andm̂ are fixed there are a

number of ‘‘predictions’’ of the linear meson model whic
can be compared with the results obtained by other meth
or direct experimental observation. First of all one may co
pute the value ofm̂ at a scale of 1 GeV which is suitable fo
comparison with results obtained from chiral perturbat
theory @40# and sum rules@41#. For this purpose one has t
account for the running of this quantity with the normaliz
tion scale fromkF as given in Table II to the commonly use
value of 1 GeV:m̂(1 GeV)5A21m̂(kF). A reasonable esti-
mate of the factorA is obtained from the three loop runnin
of m̂ in the modified minimal subtraction (MS) scheme@41#.
For Mq.300 MeV corresponding to the first two lines
Table II its value isA.1.3. The results form̂(1 GeV) are in
acceptable agreement with recent results from other meth
@40,41# even though they tend to be somewhat larg
Closely related to this is the value of the chiral condensa

^c̄c&~1 GeV![2Am̄kF

2 @ f pZF,k50
21/2 22m̂#. ~2.24!

These results are quite non-trivial since not onlyf p andm̄kF

2

enter but also the computed IR valueZF,k50 . We emphasize
in this context that there may be substantial corrections b
in the extrapolation fromkF to 1 GeV and in the factoraq
@see Eq.~A1!#. The latter is due to the neglected influence
the strange quark which may be important nearkF . These
uncertainties have only little effect on the physics at low
scales as relevant for our analysis of the temperature effe
Only the value of which is fixed bymp enters here.

A further more qualitative test concerns the mass of
sigma resonance or radial mode whose renormalized m
squared may be computed according to Eq.~2.7! in the limit
k→0. From our numerical analysis we obtainlk50.20
which translates intoms.430 MeV. One should note
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e
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though, that this result is presumably not very accurate as
have employed in this work the approximation of using t
Goldstone boson wave function renormalization const
also for the radial mode. Furthermore, the explicit chi
symmetry breaking contribution toms

2 is certainly underes-
timated as long as the strange quark is neglected. In any c
we observe that the sigma meson is significantly heavier t
the pions. This is a crucial consistency check for the lin
quark meson model. A low sigma mass would be in confl
with the numerous successes of chiral perturbation the
@34# which requires the decoupling of all modes other th
the Goltone bosons in the IR limit of QCD. The decouplin
of the sigma meson is, of course, equivalent to the limitl
→` which formally describes the transition from the line
to the non-linear sigma model and which appears to be
sonably well realized by the large IR values ofl obtained in
our analysis. We also note that the issue of the sigma ma
closely connected to the value off p

(0) , the value off p in the
chiral limit m̂50 also given in Table II. To lowest order in
( f p2 f p

(0))/ f p or, equivalently, inm̂ one has

f p2 f p
~0!5



ZF
1/2ms

2 5
f pmp

2

ms
2 . ~2.25!

A larger value ofms would therefore reduce the differenc
betweenf p

(0) and f p .
In Fig. 4 we show the dependence of the pion mass

decay constant on the average current quark massm̂. These
curves depend very little on the values of the initial para
eters as demonstrated in Table II byf p

(0) . We observe a
relatively large difference of 12 MeV between the pion d
cay constants atm̂5m̂phys and m̂50. According to Eq.
~2.25! this difference is related to the mass of the sigm
particle and will be modified in the three flavor case. We w
0-12
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TWO FLAVOR CHIRAL PHASE TRANSITION FROM . . . PHYSICAL REVIEW D 59 034010
later find that the critical temperatureTc for the second orde
phase transition in the chiral limit is almost independent
the initial conditions. The values off p

(0) and Tc essentially
determine the non-universal amplitudes in the critical sca
region~cf. Sec. V!. In summary, we find that the behavior o
our model for smallk is quite robust as far as uncertainties
the initial conditions at the scalekF are concerned. We wil
see that the difference of observables between non-vanis
and vanishing temperature is entirely determined by the fl
of couplings in the range 0,k&3T.

III. THERMAL EQUILIBRIUM AND DIMENSIONAL
REDUCTION

The extension of flow equations to thermal equilibriu
situations at non-vanishing temperatureT is straightforward
@42#. In the Euclidean formalism non-zero temperature
sults in ~anti-!periodic boundary conditions for~fermionic!
bosonic fields in the Euclidean time direction with period
ity 1/T @43#. This leads to the replacement

E ddq

~2p!d f ~q2!→T(
l PZ

E dd21qW

~2p!d21 f „q0
2~ l !1qW 2

…

~3.1!

in the trace in Eq.~1.1! when represented as a momentu
integration, with a discrete spectrum for the zero compon

q0~ l !5H 2lpT for bosons,

~2l 11!pT for fermions.
~3.2!

Hence, forT.0 a four-dimensional QFT can be interpret
as a three-dimensional model with each bosonic or fermio
degree of freedom now coming in an infinite number of co
ies labeled byl PZ ~Matsubara modes!. Each mode acquire
an additional temperature dependent effective mass t
q0

2( l ). In a high temperature situation where all mass
Matsubara modes decouple from the dynamics of the sys
one therefore expects to observe an effective thr
dimensional theory with the bosonic zero modes as the o
relevant degrees of freedom. In other words, if the charac
istic length scale associated with the physical system is m
larger than the inverse temperature the compactified Euc
ean ‘‘time’’ dimension cannot be resolved anymore. Th
phenomenon is known as ‘‘dimensional reduction’’@44#.

The formalism of the effective average action automa
cally provides the tools for a smooth decoupling of the m
sive Matsubara modes as the scalek is lowered fromk@T to
k!T. It therefore allows us to directly link the low-T, four-
dimensional QFT to the effective three-dimensional highT
theory. The replacement~3.1! in ~1.1! manifests itself in the
flow equations~2.11!, ~2.14!–~2.16! only through a change
to T-dependent threshold functions. For instance, the dim
sionless functionsl n

d(w;hF) defined in Eq.~2.12! are re-
placed by
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l n
dS w,

T

k
;hFD[

n1dn,0

4
vd

21k2n2dT(
l PZ

E dd21qW

~2p!d21

3S 1

ZF,k

]Rk~q2!

]t D 1

@P~q2!1k2w#n11

~3.3!

whereq25q0
21qW 2 andq052p lT. A list of the various tem-

perature dependent threshold functions appearing in the
equations can be found in Appendix C. There we also d
cuss some subtleties regarding the definition of the Yuka
coupling and the anomalous dimensions forTÞ0. In the
limit k@T the sum over Matsubara modes approaches
integration over a continuous range ofq0 and we recover the
zero temperature threshold functionl n

d(w;hF). In the oppo-
site limit k!T the massive Matsubara modes (lÞ0) are sup-
pressed and we expect to find ad21 dimensional behavior
of l n

d . In fact, one obtains from Eq.~3.3!

l n
d~w,T/k;hF!. l n

d~w;hF! for T!k,

l n
d~w,T/k;hF!.

T

k

vd21

vd
l n
d21~w;hF! for T@k.

~3.4!

For our choice of the infrared cutoff functionRk , Eq. ~1.3!,
the temperature dependent Matsubara modes
l n
d(w,T/k;hF) are exponentially suppressed forT!k

whereas the behavior is more complicated for other thresh
functions appearing in the flow equations~2.11!, ~2.14!–
~2.16!. Nevertheless, all bosonic threshold functions are p
portional toT/k for T@k whereas those with fermionic con
tributions vanish in this limit.9 This behavior is demonstrate
in Fig. 5 where we have plotted the quotien
l 1
4(w,T/k)/ l 1

4(w) and l 1
(F)4(w,T/k)/ l 1

(F)4(w) of bosonic and
fermionic threshold functions, respectively. One obser
that for k@T both threshold functions essentially behave
for zero temperature. For growingT or decreasingk this
changes as more and more Matsubara modes decouple
finally all massive modes are suppressed. The boso
threshold functionl 1

4 shows fork!T the linear dependenc
on T/k derived in Eq.~3.4!. In particular, for the bosonic
excitations the threshold function forw!1 can be approxi-
mated with reasonable accuracy byl n

4(w;hF) for T/k
,0.25 and by (4T/k) l n

3(w;hF) for T/k.0.25. The fermi-
onic threshold functionl 1

(F)4 ten to zero fork!T since there
is no massless fermionic zero mode, i.e., in this limit
fermionic contributions to the flow equations are suppress
On the other hand, the fermions remain quantitatively r
evant up toT/k.0.6 because of the relatively long tail i
Fig. 5~b!. The transition from four to three-dimension
threshold functions leads to asmooth dimensional reductio
as k is lowered fromk@T to k!T. Whereas fork@T the

9For the present choice ofRk the temperature dependence of t
threshold functions is considerably smoother than in Ref.@42#.
0-13
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FIG. 5. The plot shows the temperature dependence of the bosonic~a! and the fermionic~b! threshold functionsl 1
4(w,T/k) and

l 1
(F)4(w,T/k), respectively, for different values of the dimensionless mass termw. The solid line corresponds tow50 whereas the dotted

ones correspond tow50.1, w51 andw510 with decreasing size of the dots. ForT@k the bosonic threshold function becomes proportio
to T/k whereas the fermionic one ten to zero. In this range the theory with properly rescaled variables behaves as a classi
dimensional theory.
ur
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e
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nc-
the
model is most efficiently described in terms of standard fo
dimensional fieldsF a choice of rescaled three-dimension
variablesF35F/AT becomes better adapted fork!T. Ac-
cordingly, for high temperatures one will use a potential

u3~ t,r̃3!5
k

T
u~ t,r̃ !; r̃35

k

T
r̃. ~3.5!
03401
-
l
In this regimeGk→0 corresponds to the free energy of cla
sical statistics andGk.0 is a classical coarse grained fre
energy.

For our numerical calculations at non-vanishing tempe
ture we exploit the discussed behavior of the threshold fu
tions by using the zero temperature flow equations in
rangek>10T. For smaller values ofk we approximate the
0-14
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FIG. 6. The expectation value 2s0 is shown as a function of temperatureT for three different values of the zero temperature pion ma
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infinite Matsubara sums@cf. Eq. ~3.3!# by a finite series such
that the numerical uncertainty atk510T is better than 1024.
This approximation becomes exact in the limitk!10T.

IV. THE QUARK MESON MODEL AT TÞ0

In Sec. II A we have considered the relevant fluctuatio
that contribute to the flow ofGk in dependence on the sca
k. In a thermal equilibrium situationGk also depends on th
temperatureT and one may ask for the relevance of therm
fluctuations at a given scalek. In particular, for not too high
values ofT ~cf. Sec. VI! the ‘‘initial condition’’ GkF

for the
solution of the flow equations should essentially be indep
dent of temperature. This will allow us to fixGkF

from phe-

nomenological input atT50 and to compute the temperatu
dependent quantities in the infrared (k→0). We note that the
thermal fluctuations which contribute to the right-hand s
of the flow equation for the meson potential~2.11! are effec-
tively suppressed forT&k/4 ~cf. Sec. III!. Clearly for T
*kF/3 temperature effects become important at the comp
iteness scale. We expect the linear quark meson model
a compositeness scalekF.600 MeV to be a valid descrip
tion for two flavor QCD below a temperature of abou10

170 MeV.
We compute the quantities of interest for temperatureT

&170 MeV by solving numerically theT-dependent version

10There will be an effective temperature dependence ofGkF
in-

duced by the fluctuations of other degrees of freedom besides
quarks, the pions and the sigma which are taken into account h
We will comment on this issue in Sec. VI. For realistic three flav
QCD the thermal kaon fluctuations will become important forT
*170 MeV.
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of the flow equations~2.11!, ~2.14!–~2.16! ~cf. Sec. III and
Appendix C! by loweringk from kF to zero. For this range
of temperatures we use the initial values as given in the
line of Table II. This corresponds to choosing the zero te
perature pion mass and the pion decay constantf p

592.4 MeV formp5135 MeV) as phenomenological inpu
The only further input is the constituent quark massMq

which we vary in the rangeMq.300– 350 MeV. We ob-
serve only a minor dependence of our results onMq for the
considered range of values. In particular, the value for
critical temperatureTc of the model remains almost una
fected by this variation.

We have plotted in Fig. 6 the renormalized expectat
value 2s0 of the scalar field as a function of temperature f
three different values of the average light current quark m
m̂. @We remind that 2s0(T50)5 f p .# For m̂50 the order
parameters0 of chiral symmetry breaking continuously goe
to zero for T→Tc5100.7 MeV characterizing the phas
transition to be of second order. The universal behavior
the model for smallT2Tc and smallm̂ is discussed in more
detail in Sec. V. We point out that the value ofTc corre-
sponds tof p

(0)580.8 MeV, i.e. the value of the pion deca
constant form̂50, which is significantly lower thanf p

592.4 MeV obtained for the realistic valuem̂phys. If we
would fix the value of the pion decay constant to be 92
MeV also in the chiral limit (m̂50), the value for the critical
temperature would raise to 115 MeV. The nature of the tr
sition changes qualitatively form̂Þ0 where the second orde
transition is replaced by a smooth crossover. The crosso
for a realisticm̂physor mp(T50)5135 MeV takes place in a
temperature rangeT.(120– 150) MeV. The middle curve
in Fig. 6 corresponds to a value ofm̂ which is only a tenth of
the physical value, leading to a zero temperature pion m
mp545 MeV. Here the crossover becomes considera

he
re.
r
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FIG. 7. The plot shows thems as a function of temperatureT for three different values of the zero temperature pion mass.
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sharper but there remain substantial deviations from the
ral limit even for such small quark massesm̂.1 MeV. The
temperature dependence ofmp has already been mentione
in the Introduction~see Fig. 2! for the same three values o
m̂. As expected, the pions behave like true Goldstone bos
for m̂50, i.e. their mass vanishes forT<Tc . Interestingly,
mp remains almost constant as a function ofT for T,Tc
before it starts to increase monotonically. We therefore fi
for two flavors no indication for a substantial decrease ofmp

around the critical temperature.
The dependence of the mass of the sigma resonancems

on the temperature is displayed in Fig. 7 for the above th
values of m̂. In the absence of explicit chiral symmetr
breaking,m̂50, the sigma mass vanishes forT<Tc . For T
,Tc this is a consequence of the presence of massless G
stone bosons in the Higgs phase which drive the renorm
ized quartic couplingl to zero. In fact,l runs linearly with
k for T*k/4 and only evolves logarithmically forT&k/4.
Oncem̂Þ0 the pions acquire a mass even in the sponta
ously broken phase and the evolution ofl with k is effec-
tively stopped atk;mp . Because of the temperature depe
dence ofs0,k50 ~cf. Fig. 6! this leads to a monotonically
decreasing behavior ofms with T for T&Tc . This changes
into the expected monotonic growth once the system rea
the symmetric phase for11 T.Tc . For low enoughm̂ one
may use the minimum ofms(T) for an alternative definition
of the ~pseudo-!critical temperature denoted asTpc

(2) . Table I
in the Introduction shows our results for the pseudocriti
temperature for different values ofm̂ or, equivalently,
mp(T50). For a zero temperature pion massmp

11See Sec. II B for a discussion of the zero temperature sig
mass.
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5135 MeV we findTpc
(2)5128 MeV. At larger pion masse

of about 230 MeV we observe no longer a characteris
minimum for ms apart from a very broad, slight dip atT
.90 MeV. A comparison of our results with lattice data
given in Sec. V. In Fig. 8 we show the renormalized quar
couplingl as a function of temperature for two fixed valu
of the average current quark mass. The upper curve co
sponds to the physical value ofm̂ or, equivalently,mp(T
50)5135 MeV whereas the lower curve showsl for m̂
50. One observes the vanishing of the renormalized qua
coupling in the chiral limit forT<Tc as discussed above
The renormalized scalarF6 self interaction

U3~T!5ZF
23 ]3U~r,T!

]r3 „r52s̄0
2~T!… ~4.1!

assumes a small negative value for realistic quark masse
the temperature rangeT&35 MeV with 2U3(T)s0

2(T)
.20.5!l(T) and 2U3(T)s0

2(T).8.0,8.5,1.5 for T
580,120,160 MeV. We displayU3(T) in Fig. 9 for the chi-
ral limit where one observes a discontinuity ofU3(T) at the
critical temperatureTc .

Our results for the chiral condensate^c̄c& as a function
of temperature for different values of the average curr
quark mass are presented in Fig. 1 in the Introduction.
will compare^c̄c&(T,m̂) with its universal scaling form for
the O(4) Heisenberg model in Sec. V. Another interesti
quantity is the temperature dependence of the constitu
quark mass. Figure 10 showsMq(T) for m̂50, m̂
5m̂phys/10 and m̂5m̂phys, respectively. Its behavior is re
lated to the temperature dependence of the renormalized
der parameters0(T)[s0,k50(T) and the renormalized
Yukawa couplingh(T)[hk50(T). The temperature depen
a

0-16
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FIG. 8. The plot shows the renormalized quartic scalar self couplingl as a function of temperatureT for the physical value ofm̂ ~solid
line! as well as form̂50 ~dashed line!.
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dence ofh in the chiral limit can be found in Fig. 11. Nea
the critical temperature one notices a characteristic dip. T
results from the long wavelength pion fluctuations throug
non-analytic behavior of the mesonic wave function ren
malizationZF(T)[ZF,k50(T) which is displayed in Fig. 12
There we also present the temperature dependence o
fermionic wave function renormalization Zc(T)
[Zc,k50(T). Away from the chiral limit we take the effec
tive quark mass dependence ofhk(T), ZF,k(T) andZc,k(T)
into account by stopping their evolution whenk reaches the
03401
is
a
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the

temperature dependent pion mass. In this way we observ
substantial quark mass dependence of these quantities e
for ZF(T), and consequently forh(T), in the vicinity of the
critical temperature. A more complete truncation would
corporate field dependent wave function renormalizat
constants and a field dependent Yukawa coupling.

Our ability to compute the complete temperature dep
dent effective meson potentialU is demonstrated in Fig. 13
where we display the derivative of the potential with resp
to the renormalized fieldfR5(ZFr/2)1/2, for different val-
FIG. 9. The plot shows the renormalizedF6 scalar self couplingU3 as a function of temperatureT in the chiral limit.
0-17
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FIG. 10. The plot shows the constituent quark massMq as a function ofT for three different values of the average light current qua
massm̂. The solid line corresponds to the realistic valuem̂5m̂phys whereas the dotted line represents the situation without explicit ch
symmetry breaking, i.e.,m̂50. The intermediate, dashed line assumesm̂5m̂phys/10.
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ues of T. The curves cover a temperature rangeT
5(5 – 175) MeV. The first one to the left corresponds toT
5175 MeV and neighboring curves differ in temperature
DT510 MeV. One observes only a weak dependence
]U(T)/]fR on the temperature forT&60 MeV. Evaluated
for fR5s0 this function connects the renormalized field e
pectation value withmp(T), the source and the mesonic
wave function renormalizationZF(T) according to

]U~T!

]fR
~fR5s0!5

2

ZF
1/2~T!

54s0~T!mp
2 ~T!. ~4.2!
03401
f

We close this section with a short assessment of the
lidity of our effective quark meson model as an effecti
description of two flavor QCD at non-vanishing temperatu
The identification of qualitatively different scale interva
which appear in the context of chiral symmetry breaking,
presented in Sec. II A for the zero temperature case, ca
generalized toTÞ0: For scales belowkF there exists a hy-
brid description in terms of quarks and mesons. ForkxSB

<k&600 MeV chiral symmetry remains unbroken whe
the symmetry breaking scalekxSB(T) decreases with increas
ing temperature. Also the constituent quark mass decre
FIG. 11. The plot shows the Yukawa coupling,h, as a function of temperatureT in the chiral limit.
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FIG. 12. The plot shows the scalar~solid line! and quark~dashed line! wave function renormalization constants,ZF(T) and Zc(T)
31022, respectively, as functions of temperatureT for m̂50.
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with T ~cf. Fig. 10!. The running Yukawa coupling depend
only mildly on temperature forT&120 MeV ~see Fig. 11!.
~Only near the critical temperature and form̂50 the running
is extended because of massless pion fluctuations.! On the
other hand, fork&4T the effective three-dimensional gaug
coupling increases faster than atT50 leading to an increas
of LQCD(T) with T @18#. As k gets closer to the scal
LQCD(T) it is no longer justified to neglect in the quar
03401
sector confinement effects which go beyond the dynamic
our present quark meson model. Here it is important to n
that the quarks remain quantitatively relevant for the evo
tion of the meson degrees of freedom only for sca
k*T/0.6 ~cf. Fig. 5, Sec. III!. In the limit k!T/0.6 all fer-
mionic Matsubara modes decouple from the evolution of
meson potential according to the temperature dependent
sion of Eq.~2.11!. Possible sizeable confinement correctio
FIG. 13. The plot shows the derivative of the meson potentialU(T) with respect to the renormalized fieldfR5(ZFr/2)1/2 for different
values ofT. The first curve on the left corresponds toT5175 MeV. The successive curves to the right differ in temperature byDT
510 MeV down toT55 MeV.
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TABLE III. The table shows the critical exponents corresponding to the three-dimens
O(4)-Heisenberg model. Our results are denoted by ‘‘average action’’ whereas ‘‘FD’’ labels the expo
obtained from the perturbation series at fixed dimension to seven loops@51#. The bottom line contains lattice
Monte Carlo results@50#.

n g d b h

Average action 0.787 1.548 4.80 0.407 0.0344
FD 0.73~2! 1.44~4! 4.82~5! 0.38~1! 0.03~1!

MC 0.7479~90! 1.477~18! 4.851~22! 0.3836~46! 0.0254~38!
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to the meson physics may occur ifLQCD(T) becomes larger
than the maximum ofMq(T) and T/0.6. From Fig. 10 we
infer that this is particularly dangerous for smallm̂ in a tem-
perature interval aroundTc . Nevertheless, the situation
not dramatically different from the zero temperature ca
since only a relatively small range ofk is concerned. We do
not expect that the neglected QCD non-localities lead
qualitative changes. Quantitative modifications, especi
for small m̂ and uT2Tcu remain possible. This would only
effect the non-universal amplitudes~see Sec. V!. The size of
these corrections depends on the strength of~non-local! de-
viations of the quark propagator and the Yukawa coupl
from the values computed in the quark meson model.

V. UNIVERSAL CRITICAL BEHAVIOR

In this section we study the linear quark meson mode
the vicinity of the critical temperatureTc close to the chiral
limit m̂50. In this region we find that the sigma massms

21 is
much larger than the inverse temperatureT21, and one ob-
serves an effectively three-dimensional behavior of the h
temperature quantum field theory. We also note that the
mions are no longer present in the dimensionally redu
system as has been discussed in Sec. III. We therefore
to deal with a purely bosonicO(4)-symmetric linear sigma
model. At the phase transition the correlation length becom
infinite and the effective three-dimensional theory is dom
nated by classical statistical fluctuations. In particular,
critical exponents which describe the singular behavior
various quantities near the second order phase transition
those of the corresponding classical system.

Many properties of this system are universal, i.e. th
only depend on its symmetry@O(4)#, the dimensionality of
space~three! and its degrees of freedom~four real scalar
components!. Universality means that the long-range prop
ties of the system do not depend on the details of the spe
model like its short distance interactions. Nevertheless,
portant properties as the value of the critical temperature
non-universal. We emphasize that although we have to
with an effectively three-dimensional bosonic theory, t
non-universal properties of the system crucially depend
the details of the four-dimensional theory and, in particu
on the fermions.

Our aim is a computation of the critical equation of sta
which relates for arbitraryT nearTc the derivative of the free
energy or effective potentialU to the average current quar
massm̂. The equation of state then permits to study t
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temperature and quark mass dependence of properties o
chiral phase transition.

At the critical temperature and in the chiral limit there
no scale present in the theory. In the vicinity ofTc and for
small enoughm̂ one therefore expects a scaling behavior
the effective average potentialuk @45# and accordingly a uni-
versal scaling form of the equation of state. There are o
two independent scales close to the transition point wh
can be related to the deviation from the critical temperatu
T2Tc , and to the explicit symmetry breaking through th
quark massm̂. As a consequence, the properly rescaled
tential can only depend on one scaling variable. A poss
choice for the parametrization of the rescaled ‘‘unrenorm
ized’’ potential is the use of the Widom scaling variable@46#

x5
~T2Tc!/Tc

~2s̄0 /Tc!
1/b . ~5.1!

Hereb is the critical exponent of the order parameters̄0 in
the chiral limit m̂50 @see Eq.~5.5!#. With U8(r52s̄0

2)
5/(2s̄0) the Widom scaling form of the equation of sta
reads@46#



Tc
3 5S 2s̄0

Tc
D d

f ~x! ~5.2!

where the exponentd is related to the behavior of the orde
parameter according to Eq.~5.7!. The equation of state~5.2!
is written for convenience directly in terms of fou
dimensional quantities. They are related to the correspond
effective variables of the three-dimensional theory by app
priate powers ofTc . The source is determined by the av
erage current quark massm̂ as52m̄kF

2 m̂. The mass term a

the compositeness scale,m̄kF

2 , also relates the chiral conden

sate to the order parameter according to^c̄c&522m̄kF

2 (s̄0

2m̂). The critical temperature of the linear quark mes
model was found in Sec. IV to beTc5100.7 MeV.

The scaling functionf is universal up to the model spe
cific normalization ofx and itself. Accordingly, all models in
the same universality class can be related by a rescalin
s̄0 and T2Tc . The non-universal normalizations for th
quark meson model discussed here are defined accordin

f ~0!5D, f ~2B21/b!50. ~5.3!

We find D51.8231024, B57.41 and our result forb is
given in Table III. Apart from the immediate vicinity of the
0-20
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TWO FLAVOR CHIRAL PHASE TRANSITION FROM . . . PHYSICAL REVIEW D 59 034010
zero of f (x) we find the following two parameter fit~cf. Ref.
@47#! for the scaling function

f fit~x!51.81631024~11136.1x!2~11160.9ux!D

3„11160.9~0.9446uD!21/~g222D!x…g222D

~5.4!

to reproduce the numerical results forf and d f /dx at the
1–2 % level withu50.625 ~0.656!, D520.490 (20.550)
for x.0 (x,0) andg as given in Table III. The universa
properties of the scaling function can be compared with
sults obtained by other methods for the three-dimensio
O(4) Heisenberg model. In Fig. 14 we display our resu
along with those obtained from lattice Monte Carlo simu
tion @48#, second order epsilon expansion@49# and mean
field theory. We observe a good agreement of average ac
lattice and epsilon expansion results within a few percent
T,Tc . AboveTc the average action and the lattice curve
quite close to each other with a substantial deviation fr
the epsilon expansion and mean field scaling function.12

Before we use the scaling functionf (x) to discuss the
general temperature and quark mass dependent case, we
sider the limitsT5Tc andm̂50, respectively. In these limits
the behavior of the various quantities is determined solely

12We note that the question of a better agreement of the curve
T,Tc or T.Tc depends on the chosen non-universal normaliza
conditions forx and f @cf. Eq. ~5.3!#.

FIG. 14. The figure shows a comparison of our results, deno
by ‘‘average action,’’ with results of other methods for the scali
function of the three-dimensionalO(4) Heisenberg model. We
have labeled the axes for convenience in terms of the expecta
value s̄0 and the source of the corresponding four-dimensiona
theory. The constantsB andD specify the non-universal amplitude
of the model@cf. Eq. ~5.3!#. The curve labeled by ‘‘MC’’ represents
a fit to lattice Monte Carlo data. The second order epsilon exp
sion @49# and mean field results are denoted by ‘‘e’’ and ‘‘mf,’’
respectively. Apart from our results the curves are taken from R
@48#.
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critical amplitudes and exponents. In the spontaneously b
ken phase (T,Tc) and in the chiral limit we observe that th
renormalized and unrenormalized order parameters scale
cording to

2s0~T!

Tc
5~2E!1/2S Tc2T

Tc
D n/2

,

2s̄0~T!

Tc
5BS Tc2T

Tc
D b

, ~5.5!

respectively, withE50.814 and the value ofB given above.
In the symmetric phase the renormalized massm5mp

5ms and the unrenormalized massm̄5ZF
1/2m behave as

m~T!

Tc
5~j1!21S T2Tc

Tc
D n

,

m̄~T!

Tc
5~C1!21/2S T2Tc

Tc
D g/2

, ~5.6!

wherej150.270,C152.79. ForT5Tc and non-vanishing
current quark mass we have

2s̄0

Tc
5D21/dS 

Tc
3D 1/d

~5.7!

with the value ofD given above.
Though the five amplitudesE, B, j1, C1 andD are not

universal there are ratios of amplitudes which are invari
under a rescaling ofs̄0 andT2Tc . Our results for the uni-
versal amplitude ratios are

Rx5C1DBd2151.02,

R̃j5~j1!b/nD1/~d11!B50.852,

j1E50.220. ~5.8!

Those for the critical exponents are given in Table III. He
the value ofh is obtained from the temperature depende
version of Eq.~2.16! ~cf. Appendix C! at the critical tem-
perature. For comparison, Table III also gives the res
from the perturbation series at fixed dimension to seven l
order @51,52# as well as lattice Monte Carlo results@50#
which have been used for the lattice form of the scal
function in Fig. 14.13 There are only two independent amp
tudes and critical exponents, respectively. They are rela
by the usual scaling relations of the three-dimensional sc
O(N) model @52# which we have explicitly verified by the
independent calculation of our exponents.

We turn to the discussion of the scaling behavior of t
chiral condensatêc̄c& for the general case of a temperatu
and quark mass dependence. In Fig. 1 in the Introduction

or
n

13See also Ref.@53# and references therein for a recent calculati
of critical exponents using similar methods as in this work. For h
precision estimates of the critical exponents see also Refs.@54, 55#.
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have displayed our results for the scaling equation of stat
terms of the chiral condensate14

^c̄c&52m̄kF

2 TcS /Tc
3

f ~x!
D 1/d

1 ~5.9!

as a function ofT/Tc511x„/Tc
3f (x)…1/bd for different

quark masses or, equivalently, different values of. The
curves shown in Fig. 1 correspond to quark massesm̂50,
m̂5m̂phys/10, m̂5m̂phys andm̂53.5m̂phys or, equivalently, to
zero temperature pion massesmp50, mp545 MeV,
mp5135 MeV andmp5230 MeV, respectively~cf. Fig. 4!.
One observes that the second order phase transition w
vanishing order parameter atTc for m̂50 is turned into a
smooth crossover in the presence of non-zero quark ma

The scaling form~5.9! for the chiral condensate is exa
only in the limit T→Tc , →0. It is interesting to find the
range of temperatures and quark masses for which^c̄c& ap-
proximately shows the scaling behavior~5.9!. This can be
inferred from a comparison~see Fig. 1! with our full non-
universal solution for theT and  dependence of̂c̄c& as
described in Sec. IV. Formp50 one observes approxima
scaling behavior for temperaturesT*90 MeV. This situa-
tion persists up to a pion mass ofmp545 MeV. Even for the
realistic case,mp5135 MeV, and to a somewhat lesser e
tent for mp5230 MeV the scaling curve reasonably reflec
the physical behavior forT*Tc . For temperatures below
Tc , however, the zero temperature mass scales become
portant and the scaling arguments leading to universa
break down.

The above comparison may help to shed some light on
use of universality arguments away from the critical te
perature and the chiral limit. One observes that for tempe
tures aboveTc the scaling assumption leads to quantitative
reasonable results even for a pion mass almost twice as
as the physical value. This in turn has been used for
flavor lattice QCD as theoretical input to guide extrapolat
of results to light current quark masses. From simulatio
based on a range of pion masses 0.3&mp /mr&0.7 and tem-
peratures 0,T&250 MeV a ‘‘pseudocritical temperature
of approximately 140 MeV with a weak quark mass dep
dence is reported@56#. Here the ‘‘pseudocritical tempera
ture’’ Tpc is defined as the inflection point of^c̄c& as a
function of temperature. The values of the lattice action
rameters used in@56# with Nt56 were am̂50.0125, 6/g2

55.415 andam̂50.025, 6/g255.445. For comparison with
lattice data we have displayed in Fig. 1 the temperature
pendence of the chiral condensate for a pion massmp

5230 MeV. From the free energy of the linear quark mes
model we obtain in this case a pseudocritical temperatur
about 150 MeV in reasonable agreement with the result
Ref. @56#. In contrast, for the critical temperature in the chir
limit we obtainTc5100.7 MeV. This value is considerabl

14In the literature also a different definition of the chiral conde

sate is used, corresponding to^c̄c&52m̄kF

2 Tc@/„Tc
3f (x)…#1/d.
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smaller than the lattice results of about~140–150! MeV ob-
tained by extrapolating to zero quark mass in Ref.@56#. We
point out that for pion masses as large as 230 MeV the c
densatê c̄c&(T) is almost linear around the inflection poin
for quite a large range of temperature. This makes a pre
determination ofTc somewhat difficult. Furthermore, Fig.
shows that the scaling form of^c̄c&(T) underestimates the
slope of the physical curve. Used as a fit withTc as a param-
eter this can lead to an overestimate of the pseudocrit
temperature in the chiral limit. We also mention here t
results of Ref.@57#. There two values of the pseudocritic
temperature,Tpc5150(9) MeV and Tpc5140(8), corre-
sponding to am̂50.0125, 6/g255.54(2) and am̂
50.00625, 6/g255.49(2), respectively~both for Nt58),
were computed. These values show a somewhat stro
quark mass dependence ofTpc and were used for a linea
extrapolation to the chiral limit yieldingTc5128(9) MeV.

The linear quark meson model exhibits a second or
phase transition for two quark flavors in the chiral limit. As
consequence the model predicts a scaling behavior nea
critical temperature and the chiral limit which can, in pri
ciple, be tested in lattice simulations. For the quark mas
used in the present lattice studies the order and univers
class of the transition in two flavor QCD remain a partia
open question. Though there are results from the lattice
ing support for critical scaling@58,59# there are also recen
simulations with two flavors that reveal significant finite si
effects and problems withO(4) scaling@60,61#.

VI. ADDITIONAL DEGREES OF FREEDOM

So far we have investigated the chiral phase transition
QCD as described by the linearO(4) model containing the
three pions and the sigma resonance as well as the up
down quarks as degrees of freedom. Of course, it is clear
the spectrum of QCD is much richer than the states incor
rated in our model. It is therefore important to ask to wh
extent the neglected degrees of freedom like the stra
quark, strange~pseudo!scalar mesons,~axial!vector mesons,
baryons, etc., might be important for the chiral dynamics
QCD. Before doing so it is perhaps instructive to first lo
into the opposite direction and investigate the difference
tween the linear quark meson model described here and
ral perturbation theory based on the non-linear sigma mo
@34#. In some sense, chiral perturbation theory is the minim
model of chiral symmetry breaking containing only th
Goldstone degrees of freedom. By construction it is theref
only valid in the spontaneously broken phase and canno
expected to yield realistic results for temperatures close toTc
or for the symmetric phase. However, for small temperatu
~and momentum scales! the non-linear model is expected t
describe the low-energy and low-temperature limit of QC
reliably as an expansion in powers of the light quark mass
For vanishing temperature it has been demonstrated rece
@36,37# that the results of chiral perturbation theory can
reproduced within the linear meson model once cert
higher dimensional operators in its effective action are ta
into account for the three flavor case. Moreover, some of
parameters of chiral perturbation theory (L4 ,...,L8) can be

-
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FIG. 15. The plot displays the chiral condensate^c̄c& as a function ofT/ f p
(0) . The solid line corresponds to our results for vanishi

average current quark massm̂50 whereas the dashed line shows the corresponding three-loop chiral perturbation theory resultG1

5470 MeV.
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expressed and therefore also numerically computed in te
of those of the linear model. For non-vanishing temperat
one expects agreement only for lowT whereas deviations
from chiral perturbation theory should become large close
Tc . Yet, even forT!Tc small quantitative deviations shoul
exist because of the contributions of~constituent! quark and
sigma meson fluctuations in the linear model which are
taken into account in chiral perturbation theory.

From @62# we infer the three-loop result for the temper
ture dependence of the chiral condensate in the chiral l
for N light flavors

^c̄c&~T!xPT5^c̄c&xPT~0!H 12
N221

N

T2

12F0
2

2
N221

2N2 S T2

12F0
2D 2

1N~N221!S T2

12F0
2D 3

ln
T

G1
J 1O~T8!.

~6.1!

The scaleG1 can be determined from theD-wave isospin
zero pp scattering length and is given byG15(470
6100) MeV. The constantF0 is ~in the chiral limit! identi-
cal to the pion decay constantF05 f p

(0)580.8 MeV. In Fig.
15 we have plotted the chiral condensate as a function
T/F0 for both, chiral perturbation theory according to E
~6.1! and for the linear quark meson model. As expected
agreement for smallT is very good. Nevertheless, the antic
pated small numerical deviations present even forT!Tc due
to quark and sigma meson loop contributions are manif
For larger values ofT, say for T*0.8f p

(0) the deviations
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become significant because of the intrinsic inability of chi
perturbation theory to correctly reproduce the critical beh
ior of the system near its second order phase transition.

Within the language of chiral perturbation theory the n
glected effects of thermal quark fluctuations may be
scribed by an effective temperature dependence of the
rameterF0(T). We notice that the temperature at whic
these corrections become important equals approxima
one third of the constituent quark massMq(T) or the sigma
massms(T), respectively, in perfect agreement with Fig.
As suggested by this figure the onset of the effects fr
thermal fluctuations of heavy particles with aT-dependent
massmH(T) is rather sudden forT*mH(T)/3. These con-
siderations also apply to our two flavor quark meson mod
Within full QCD we expect temperature dependent init
values atkF .

The dominant contribution to the temperature depende
of the initial values presumably arises from the influence
the mesons containing strange quarks as well as the str
quark itself. Here the quantitym̄kF

2 seems to be the mos

important one.@The temperature dependence of higher co
plings like l(T) is not very relevant if the IR attractive be
havior remains valid, i.e. ifZF,kF

remains small for the range

of temperatures considered. We neglect a possibleT depen-
dence of the current quark massm̂.# In particular, for three
flavors the potentialUkF

contains a term

2
1

2
n̄kF

~det F1det F†!52 n̄kF
wsFuuFdd1¯

~6.2!

which reflects the axialUA(1) anomaly. It yields a contribu-
tion to the effective mass term proportional to the expec
tion value^Fss&[ws , i.e.
0-23
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Dm̄kF

2 52
1

2
n̄kF

ws . ~6.3!

Both, n̄kF
andws , depend onT. We expect these correction

to become relevant only for temperatures exceedingmK(T)/3
or Ms(T)/3. We note that the temperature dependent k
and strange quark masses,mK(T) and Ms(T), respectively,
may be somewhat different from their zero temperature v
ues but we do not expect them to be much smaller. A typ
value for these scales is around 500 MeV. Correspondin
the thermal fluctuations neglected in our model should
come important forT*170 MeV. It is even conceivable tha
a discontinuity appears inws(T) for sufficiently highT ~say
T.170 MeV). This would be reflected by a discontinuity
the initial values of theO(4) model leading to a first orde
transition within this model. Obviously, these questio
should be addressed in the framework of the three fla
SUL(3)3SUR(3) quark meson model. Work in this direc
tion is in progress.

We note that the temperature dependence ofn̄(T)ws(T) is
closely related to the question of an effective high tempe
ture restoration of the axialUA(1) symmetry@3,8#. The h8
mass term is directly proportional to this combinatio
mh8

2 (T)2mp
2 (T). 3

2 n̄(T)ws(T) @35#. Approximate UA(1)
restoration would occur ifws(T) or n̄(T) would decrease
sizeably for largeT. For realistic QCD this question shoul
be addressed by a three flavor study. Within two flavor Q
the combinationn̄kws is replaced by an effective anomalou
mass termn̄k

(2) . The temperature dependence ofn̄ (2)(T)
could be studied by introducing quarks and the ax
anomaly in the two flavor matrix model of Ref.@39#. We add
that this question has also been studied within full two fla
QCD in lattice simulations@60,63,64#. So far there does no
seem to be much evidence for a restoration of theUA(1)
symmetry nearTc but no final conclusion can be drawn ye

To summarize, we have found that the effective two fl
vor quark meson model presumably gives a good descrip
of the temperature effects in two flavor QCD for a tempe
ture rangeT&170 MeV. Its reliability should be best for low
temperature where our results agree with chiral perturba
theory. However, the range of validity is considerably e
tended as compared to chiral perturbation theory and
cludes, in particular, the critical temperature of the seco
order phase transition in the chiral limit. We have explici
connected the universal critical behavior for smalluT2Tcu
and small current quark masses with the renormalized c
plings atT50 and realistic quark masses. The main qua
tative uncertainties from neglected fluctuations presuma
concern the values off p

(0) and Tc which, in turn, influence
the non-universal amplitudesB andD in the critical region.
We believe that our overall picture is rather solid. Whe
applicable our results compare well with numerical simu
tions of full two flavor QCD.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungs
meinschaft. We thank K. Rajagopal for very useful co
ments.
03401
n

l-
al
y,
-

r

-

,

l

r

-
n
-

n
-
-

d

u-
i-
ly

-

e-
-

APPENDIX A: THE QUARK MASS TERM

In this appendix we determine the source
5diag(ju ,jd ,...) as a function of the average current qua
massm̂. In this context it is important to note that the sour
 does not depend on the IR cutoff scalek. Since is deter-
mined by the properties of the quark meson model at
compositeness scalekF and also enters directly the value o
the pion mass, which is determined atk50, this relation
provides a bridge between the short and long distance p
erties of the quark meson model. This will allow us to com
pute the chiral condensate^c̄c& or the parameterB0 of chi-
ral perturbation theory@34#. ~We expect, however, sizeabl
corrections when going from two to three flavors. They ar
because of the relevance of strange quark physics at sc
nearkF .) In a more general context we need the proportio
ality coefficient aq between the sourceq and the current
quark massmq , q5u,d,..., taken at the renormalization
scale15 m5kF :

q5
Zc,kF

h̄kF

aqmq . ~A1!

For a computation of the coefficientaq we need to look into
the details of the introduction of composite meson fields
QCD @26,28#. Let us assume that at the scalekF a part of the
QCD average action for quarksGkF

@c# factorizes in the
quark bilinear

xab~q!52E d4p

~2p!4 g̃~p,q!c̄Lb~p!cRa~p1q! ~A2!

such that

GkF
@c#52FkF

@x#1GkF
8 @c#. ~A3!

We can then introduce meson fields by inserting the iden

NE DF exp~2FkF
@x1F#!51 ~A4!

into the path integral which formally definesGkF
@c#. ~Here

N is a field independent normalization factor.! This effec-
tively replaces in Eq.~A3! the term2FkF

@x# by16

15We will occasionally use the notationm̂(m), mq(m) or

^c̄c&(m)[^c̄c&k50(m) @not to be confused with ^c̄c&k

[^c̄c&k(m5kF)# in order to indicate the renormalization scalem.
If no argument is givenm5kF is assumed.

16The summation over internal indices as well as the integra
over momenta has been suppressed. For complexxab(q) similar
terms have to be supplemented in the expansion. See Refs.@26,28#
for a more detailed description. In our Euclidean conventions

hasxab
† ;1g̃* c̄RbcLa .
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2FkF
@x#1FkF

@x1F#

5
]FkF

@x#

]xab~q!
Fab~q!1

1

2

]2FkF
@x#

]xab~q!]xcd~q8!

3Fab~q!Fcd~q8!1¯ . ~A5!

The original multi-quark interaction2FkF
@x# is canceled by

the lowest order term in the Taylor expansion inF. Instead,
we have substituted mesonic self-interactionsFkF

@F# and
interactions between mesons and quarks corresponding t
terms in the expansion which contain powers ofx andF. In
particular, we may specialize to the case where the deriva
terms in FkF

are small and consider a local formFkF

5*d4x fkF
(x). A quark mass term is linear inx and trans-

lates into a source term forF:

2
Zc,kF

g̃
Tr~x†m1m†x!→2

Zc,kF

g̃
Tr~F†m1m†F!

52
1

2
Tr~F†1†F! ~A6!

wherem5diag(mu ,md ,...). A factorizing four fermion inter-
action yields

m̄kF

2 Tr x†x→m̄kF

2 Tr F†F1m̄kF

2 Tr~F†x1x†F!.

~A7!

The second term corresponds to the Yukawa interaction w
h̄kF

5m̄kF

2 g̃. We can therefore extractaq from Eq. ~A6! as

aq52m̄kF

2 . ~A8!

We note that only the terms linear and quadratic inx influ-
ence the value ofaq . We could either restrict the composi
fields from the beginning to the ones contained in
O(4)-symmetric linears-model or work with all the fields
contained in a complex 232 matrixF. In the latter case the
anomaly term would contribute to both the masses and
Yukawa coupling. The net result is the same withm̄kF

2 de-

noting the relevant mass term for theO(4) vector. For our
conventions with h̄kF

51 we have to normalize withg̃

5m̄kF

22. Finally an eight fermion interaction becomes

1

2
l̄kF

~Tr x†x!2→
1

2
l̄kF

~Tr F†F!2

1l̄kF
Tr F†F Tr~x†F1F†x!1¯ .

~A9!

We see here the appearance of terms quadratic in the qu
involving higher powers ofF.

There is an alternative, equivalent way of understand
the relation between and mq : The quark masses in th
picture with mesons must be equal at the scalekF to the
current quark mass mq(kF). Let us consider an
03401
the

ve

th

e

e

rks

g

O(4)-symmetric fermionic interaction m̄kF

2 Tr x†x

1 1
2 l̄kF

(Tr x†x)2 which leads to a meson potential

UkF
5m̄kF

2 Tr F†F1
1

2
l̄kF

~Tr F†F!2. ~A10!

In the mesonic picture the quarks acquire masses through
Yukawa coupling toF

Mk5
h̄k

Zc,k
S 11

l̄k

m̄k
2 Tr^F†&k^F&kD ^F&k ~A11!

where the second term arises from the higher order coup
in Eq. ~A9!. Here ^F&k5diag(wu ,wd ,...) is the expectation
value at the coarse graining scalek in the presence of the
source term andMk5diag(Mu ,Md ,...). It is sufficient to
specify the dependence ofUkF

on real diagonal fieldsFqq .

Then thewq are determined from the condition

]UkF

]Fqq
~wq!52S m̄kF

2 1l̄kF(
q8

wq8
2 Dwq5q . ~A12!

Identifying Mk5kF
in Eq. ~A11! with m(kF) one has

aqS 11
l̄kF

m̄kF

2 (
q8

wq8
2 D 5

q

wq
52m̄kF

2 12l̄kF(
q8

wq8
2

~A13!

and we recover Eq.~A8! or, in our normalization with
Zc,kF

51, h̄kF
51,

52m̄kF

2 m̂. ~A14!

It is remarkable that higher order terms~e.g.;l̄kF
) do not

influence the relation between and m̂. Only the quadratic
term m̄kF

2 enters which is in our scenario the only releva

coupling. This feature is an important ingredient for the p
dictive power of the model as far as the absolute size of
current quark mass is concerned. An appearance of hig
order couplings inaq would make it very hard to comput
this quantity. We emphasize that within our formalism the
is no difference of principle between the current quark m
and the constituent quark mass. Whereas the current q
massmq(kF) at the normalization scalem5kF corresponds
to Mq,k at the compositeness scalekF the constituent quark
mass isMq,k50 . As k is lowered fromkF to zero one ob-
serves that the quark mass increases, similarly to the run
current quark mass. Once chiral symmetry breaking sets
the scalekxSB there is a large increase in the quark mass
especially forMu andMd .

The formalism of composite fields also provides the li
@26# to the chiral condensatêc̄c& since the expectation
value ^F& is related to the expectation value of a compos
quark-antiquark operator. Forl̄50 one has@28#
0-25
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^F&k1^F†&k52
1

m̄kF

2 ^c̄c&k~kF!1mq~kF!1mq
†~kF!

~A15!

with ^c̄c&k(kF) a suitably regularized operator normalize
at m5kF .

APPENDIX B: THRESHOLD FUNCTIONS

In this appendix we list the various definitions of dime
sionless threshold functions appearing in the flow equati
and the expressions for the anomalous dimensions foT
50. They involve the inverse scalar average propaga
P(q) defined in Eq.~1.4! and the corresponding fermioni
function PF which can be chosen as@27#

PF~q!5P~q![q2
„11r F~q!…2. ~B1!

We abbreviate

x5q2, P~x![P~q!,Ṗ~x![
]

]x
P~x!,

]̂

]t
Ṗ[

]

]x

]̂

]t
P,

~B2!

etc., and use the formal definition

]̂

]t
[

1

ZF,k

]Rk

]t

]

]P
1

2

Zc,k

PF

11r F

]@Zc,kr F#

]t

]

]PF
. ~B3!

The bosonic threshold functions read

l n
d~w;hF!5 l n

d~w!2hF l̂ n
d~w!

5
n1dn,0

2
k2n2dE

0

`

dxxd/221

3S 1

ZF,k

]Rk

]t D ~P1wk2!2~n11!

l n1 ,n2

d ~w1 ,w2 ;hF!5 l n1 ,n2

d ~w1 ,w2!2hF l̂ n1 ,n2

d ~w1 ,w2!

52
1

2
k2~n11n2!2dE

0

`

dxxd/221
]̂

]t

3$~P1w1k2!2n1~P1w2k2!2n2% ~B4!

where n,n1 ,n2>0 is assumed. FornÞ0 the functionsl n
d

may also be written as

l n
d~w;hF!52

1

2
k2n2dE

0

`

dxxd/221
]̂

]t

3~P1wk2!2n. ~B5!

The fermionic integrals l n
(F)d(w;hc)5 l n

(F)d(w)

2hc ľ n
(F)d(w) are defined analogously as
03401
s

or

l n
~F !d~w;hc!5~n1dn,0!k

2n2d

3E
0

`

dxxd/221
1

Zc,k

PF

11r F

3
]@Zc,kr F#

]t
~P1wk2!2~n11!. ~B6!

Furthermore one has

l n1 ,n2

~FB!d~w1 ,w2 ;hc ,hF!

5 l n1 ,n2

~FB!d~w1 ,w2!2hc ľ n1 ,n2

~FB!d~w1 ,w2!

2hF l̂ n1 ,n2

~FB!d~w1 ,w2!

52
1

2
k2~n11n2!2dE

0

`

dxxd/221
]̂

]t

3H 1

@PF~x!1k2w1#n1@P~x!1k2w2#n2J
mn1 ,n2

d ~w1 ,w2 ;hF!

[mn1 ,n2

d ~w1 ,w2!2hFm̂n1 ,n2

d ~w1 ,w2!

52
1

2
k2~n11n221!2dE

0

`

dxxd/2
]̂

]t

3H Ṗ~x!

@P~x!1k2w1#n1

Ṗ~x!

@P~x!1k2w2#n2J
m4

~F !d~w;hc!5m4
~F !d~w!2hcm̌4

~F !d~w!

52
1

2
k42dE

0

`

dxxd/211
]̂

]t

3S ]

]x

11r F~x!

PF~x!1k2wD 2

mn1 ,n2

~FB!d~w1 ,w2 ;hc ,hF!

5mn1 ,n2

~FB!d~w1 ,w2!2hcm̌n1 ,n2

~FB!d~w1 ,w2!

2hFm̂n1 ,n2

~FB!d~w1 ,w2!

52
1

2
k2~n11n221!2dE

0

`

dxxd/2
]̂

]t

3H 11r F~x!

@PF~x!1k2w1#n1

Ṗ~x!

@P~x!1k2w2#n2 J .

~B7!

The dependence of the threshold functions on the anoma
dimensions arises from thet derivative acting onZF,k and
Zc,k within Rk andZc,kr F , respectively. We furthermore us
the abbreviations
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l n
d~hF![ l n

d~0;hF!,

l n
~F !d~hc![ l n

~F !d~0;hc!

l n
d~w![ l n

d~w;0!,

l n
d[ l n

d~0;0! ~B8!

etc. and note that in four dimensions the integrals

l 2
4~0,0!5 l 2

~F !4~0,0!5 l 1,1
~FB!4~0,0!

5m4
~F !4~0!5m1,2

~FB!4~0,0!51 ~B9!

are independent of the particular choice of the infrared c
off.

APPENDIX C: TEMPERATURE DEPENDENT
THRESHOLD FUNCTIONS

Non-vanishing temperature manifests itself in the flo
equations~2.11!, ~2.14!–~2.16! only through a change to
T-dependent threshold functions. In this appendix we w
define these functions and discuss some subtleties rega
the definition of the anomalous dimensions and the Yuka
coupling forTÞ0. The correspondingT50 threshold func-
tions can be found in Appendix B where also some of o
notation is fixed.

The flow equation~2.11! for the effective average poten
tial involves a bosonic and a fermionic threshold functi
whose generalization to finite temperature is straightforwa

l n
d~w,T̃;hF!5

~n1dn,0!

2

vd21

vd
k2n2d11T̃

3(
l PZ

E
0

`

dxx~d23!/2ZF,k
21 ] tRk~y!

@P~y!1k2w#n11 ,

F !d~w,T̃;hF!5~n1dn,0!
vd21

vd
k2n2d11

3T̃(
l PZ

E
0

`

dxx~d23!/2Zc,k
21

3
PF~yF!

@11r F~yF!#

] t@Zc,kr F~yF!#

@PF~yF!1k2w#n11

~C1!

whereT̃5T/k and

y5x1~2lpT!2,

yF5x1~2l 11!2p2T2. ~C2!

The computation of the anomalous dimensionshF , hc
and the flow equation for the Yukawa couplingh at non-
vanishing temperature requires some care. The anoma
dimensions determine the IR cutoff scale dependence ofZF,k
and Zc,k according tohF52] t ln ZF,k , hc52] t ln Zc,k
with t5 ln k/kF . It is important to realize that for a compu
03401
t-

ll
ing
a

r

:

us

tation of the scale dependence of the effective thr
dimensionalZF,k and Zc,k for TÞ0 momentum dependen
wave function renormalization constants of the fou
dimensional theory are required. This is a consequence o
fact that in the three-dimensional model each of the infin
number of different Matsubara modes of a four-dimensio
bosonic or fermionic fieldf(Q) corresponds to a differen
value of Q052p lT or Q05(2l 11)pT, respectively, with
Q25Q0

21QW 2 andl PZ. We will therefore allow for momen-
tum dependent wave function renormalizations, i.e. for a
netic part ofGk of the form

Gk
kin5E ddq

~2p!d $ZF,k~q2!q2 Tr„F†~q!F~q!…

1Zc,k~q2!c̄~q!gmqmc~q!% ~C3!

in momentum space.
In the O(4) model the evolution equation forZF,k(Q)

may then be obtained by considering a background field c
figuration with a small momentum dependence,

F j~x!5wd j 11~dwe2 iQx1dw* eiQx!d j 2 ; j 51,...,4
~C4!

supplemented by

ca5c̄a50; a51,2. ~C5!

Expanding around this configuration at the minimum of t
effective average potentialUk we observe thatdw corre-
sponds to an excitation in the Goldstone boson direction.
exact inverse two-point functionGk

(2) turns out to be block-
diagonal with respect to scalar and fermion indices for t
configuration. It therefore decays into corresponding ma
cesGSk

(2) andGFk
(2) acting in the scalar and fermion subspac

respectively. The scale dependence of the scalar wave f
tion renormalization for non-vanishingT is obtained from
Eqs.~1.1! and ~C3! for the configuration~C4! as

]

]t
ZF,k~Q2!5

1

QW 2 S lim
dwdw*→0

d

d~dwdw* !

3H 1

2
TrF ~GSk

~2!1Rk!
21

]

]t
RkG

2TrF ~GFk
~2!1RFk!

21
]

]t
RFkG J 2~QW→0!D .

~C6!

In the three-dimensional theory there is now a different s
lar wave function renormalizationZF,k(Q0 ,QW ) for each
Matsubara modeQ0 . As in the four-dimensional model fo
T50 we neglect the momentum dependence of the w
function renormalization constants and evaluateZF,k for QW
50 for each Matsubara mode. We will furthermore simpli
the truncation of the effective average action by choosing
0-27
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Matsubara zero-mode wave function renormalization c
stant for all Matsubara modes, i.e., approximate

ZF,k~ T̃!5ZF,k~Q0
250,QW 250!. ~C7!

This is justified by the rapid decoupling of all massive Ma
subara modes within a small range ofk for fixed T as dis-
cussed in Sec. III. This results in the expression~2.16! for
hF but now with temperature dependent threshold functi
(T̃5T/k)

mn1 ,n2

d ~w1 ,w2 ,T̃;hF!

5mn1 ,n2

d ~w1 ,w2 ,T̃!2hFm̂n1 ,n2

d ~w1 ,w2 ,T̃!

52
1

2
k2~n11n221!2d11

dvd21

~d21!vd

3T̃(
l PZ

E
0

`

dxx~d21!/2
]̂

]t

3H Ṗ~y!

@P~y!1k2w1#n1

Ṗ~y!

@P~y!1k2w2#n2J
m4

~F !d~w,T̃;hc!5m4
~F !d~w,T̃!2hcm̌4

~F !d~w,T̃!

52
1

2
k52d

dvd21

~d21!vd

3T̃(
l PZ

E
0

`

dxx~d21!/2yF

3
]̂

]t S ]

]x

11r F~yF!

PF~yF!1k2wD 2

. ~C8!
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For further technical details we refer the reader to Ref.@27#.
The fermion anomalous dimension and the flow equat

for the Yukawa coupling can be obtained by considering
field configuration

F j~x!5wd j 1 ; j 51,...,4,

ca~x!5cae2 iQx,

c̄a~x!5c̄aeiQx; a51,2. ~C9!

The derivation follows similar lines as for the scalar anom
lous dimension discussed above. For computational de
we refer the reader to Ref.@27#. An important difference as
compared toZF,k(Q) relates to the fact that there are n
fermionic zero modes. It would therefore be inconsistent
defineZc,k(T̃) or hk(T̃) at Q050 if Q denotes the externa
fermion momentum. Yet, we will again resort to the appro
mation of using the same wave function renormalizat
constant and Yukawa coupling for all fermionic Matsuba
modes. For the same reason as forZF,k(T̃) we will use for
this purpose the mode with the lowestT-dependent mass, i.e
define

Zc,k~ T̃!5Zc,k~Q0
25p2T2,QW 250!,

hk~ T̃!5hk~Q0
25p2T2,QW 250!, ~C10!

where we have neglected a possible dependence ofhk on the
external scalar momentum of the Yukawa vertex. This yie
the expressions~2.15! and~2.16! for the flow ofh2 andhc ,
respectively, but now with theT-dependent threshold func
tions
m1,2
~FB!d~w1 ,w2 ,T̃;hc ,hF!5m1,2

~FB!d~w1 ,w2 ,T̃!2hFm̂1,2
~FB!d~w1 ,w2 ,T̃!2hcm̌1,2

~FB!d~w1 ,w2 ,T̃!

52
1

2
k2~n11n2!2d21

dvd21

~d21!vd
T̃(

l PZ
E

0

`

dxx~d21!/2
]̂

]t H 11r F~yF!

@PF~yF!1k2w1#n1

Ṗ~y!

@P~y!1k2w2#n2J ,

l n1 ,n2

~FB!d~w1 ,w2 ,T̃;hc ,hF!5 l n1 ,n2

~FB!d~w1 ,w2 ,T̃!2hc ľ n1 ,n2

~FB!d~w1 ,w2 ,T̃!2hF l̂ n1 ,n2

~FB!d~w1 ,w2 ,T̃!

52
1

2
k2~n11n2!2d11

vd21

vd
T̃(

l PZ
E

0

`

dxx~d23!/2
]̂

]t H 1

@PF~yF!1k2w1#n1@P~y!1k2w2#n2J .

~C11!
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