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Another look at pp scattering in the scalar channel
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We set up a general framework to describepp scattering below 1 GeV based on chiral low-energy
expansion with possible spin-0 and -1 resonances. Partial wave amplitudes are obtained with theN/D method,
which satisfy unitarity, analyticity, and approximate crossing symmetry. A comparison with the phase shift
data in theJ50 channel favors a scalar resonance near ther mass.@S0556-2821~99!00901-7#

PACS number~s!: 13.75.Lb, 12.39.Fe, 14.40.Cs
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I. INTRODUCTION

Although quantum chromodynamics has long been
cepted as the fundamental theory of the strong interact
the spectrum of hadrons composed of light quarks still po
many unanswered questions. Even below 1 GeV, the
controversy on the existence of thes meson, an isospin-0
scalar boson strongly coupled to thepp system, remains
unanswered. Recently, there have been some renewed
ests in this problem both theoretically@1–11# and experi-
mentally @12–14#. Some analyses favor the existence ofs.
The particle reappeared in the Particle Data Group comp
tion @15# as ‘‘f 0~400–1200! or s ’’ after an absence for more
than two decades, though it is cautiously stated that ‘‘
interpretation of this entry as a particle is controversia
There is no good agreement on its mass among the re
studies. For example, To¨rnqvist and Roos@7# have used a
‘‘unitarized quark model’’ to fit the meson-mesonS wave
amplitudes and claimed the existence of a very broads with
a mass of;860 MeV. Ishidaet al. @11# fit the pp S wave
amplitudes to anS matrix model and find thes mass of
585620 MeV. Although these results seem conclus
within their frameworks, the disagreement of the deriveds
mass may imply that quantitative conclusions are qu
model dependent, casting some doubt in the very existe
of s. In any case, it is not easy to assess how mod
independent are their conclusions.

In this paper, we look at this problem from a somewh
different point of view. We try to minimize the necessa
model assumptions by a simple approach which only
sumes the chiral flavor symmetry and general constraints
the amplitudes such as analyticity, unitarity, and cross
symmetry. We notice that crossing symmetry is not tak
into account in the recent works discussed above.

As we put more emphasis on theoretical transparency
aiming at a perfect fit to the data, we concentrate onpp
scattering below 1 GeV and work in the chiral limit wit
massless pions. Since the pions are the Goldstone boso
the spontaneously broken SU(2)3SU(2) symmetry, the
form of the pion interactions is tightly constrained at lo
energies by the symmetry. If we expand thepp elastic scat-
tering amplitude arounds5t50, chiral symmetry demand
the amplitude vanishes ats5t50 and the linear terms ins, t
are determined in terms of the pion decay constantf p . These
0556-2821/99/59~3!/034005~9!/$15.00 59 0340
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and terms in higher order ins, t can be described systemat
cally if one uses the machinery of the chiral Lagrangian.

Although this expansion around the origin gives a go
description of the amplitude at low energies, it breaks do
when one approaches the mass of the lowest-lying had
~resonances! other than pions. These resonances mani
themselves as a pole on the second sheet in the scatt
amplitude. We are thus led to start with a simple form of t
amplitude which has relevant poles~corresponding to pos
sible spin-0 isospin-0s and spin-1 isospin-1r resonances!
and has the behavior consistent with chiral symmetry~low-
energy theorem!.

If there is a resonance in thes channel, the same reso
nance is also exchanged in thet andu channels because o
crossing symmetry. In a study of strongly interacting Hig
sector@16# we found that the crossed-channel exchange o
vector resonance has a large reflection in theJ50 partial
wave. In most of the recent model studies of thes meson,
this effect is not explicitly taken into consideration.1 It is one
of the motivations of this work to assess the importance
the crossed channelr exchange in the scalar channel.

As we are concerned with the strong interaction, the a
plitude constructed in this way tend to violate unitarity ne
the pole. To obtain a unitary amplitude, we first project
partial waves~we will be concerned withJ50 and J51
channels!, and use theN/D method to unitarize the partia
wave amplitudes. This method gives amplitudes which
the correct analytic properties with cuts on the real axis.
this respect, it is superior to theK matrix or Pade´ unitariza-
tion scheme. Although the procedure is not exactly cross
symmetric, the deviation from the symmetry is controll
and mostly limited to the region near the pole.

In Sec. II, we summarize the general characteristics of
pp elastic scattering amplitude and set up our chirally sy
metric ‘‘model-independent’’ amplitude with possible pole
Two simple cases, ‘‘nos ’’ and ‘‘degenerater –s ’’ are dis-
cussed in detail. In Sec. III, we calculate the partial wa

1The importance of the crossed channel exchanges has also
emphasized in Ref.@17# based on the original works@6,18#. Our
result withr exchange agrees qualitatively with the correspond
result in Ref.@6#.
©1999 The American Physical Society05-1
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KEIJI IGI AND KEN-ICHI HIKASA PHYSICAL REVIEW D 59 034005
amplitudes from the invariant amplitudes in Sec. II. Unita
zation of the amplitudes is performed using theN/D method.
Relation of our method to the low-energy chiral expansion
clarified in Sec. IV. In Sec. V, we determine the paramet
in the amplitudes and compare them with the phase s
data. We summarize and conclude with some remarks in
VI.

II. CHARACTERISTICS OF pp AMPLITUDE

The pp system has three independent isospin chann
In terms of Mandelstam variables, the invariant amplitu
for the processp i1p j→pk1p l has the form

Mi jk l ~s,t !5A~s,t !d i j dkl 1A~ t,s!d ikd j l 1A~u,t !d i l d jk ,
~2.1!

where i , j , . . . ,51,2,3 are isospin indices@with p65(p1

6 ip2)/A2, p05p3]. The variables is the c.m. energy
squared,t52s(12cosu)/2 and u52s(11cosu)/2 with
cosu denoting the c.m. scattering angle. Note thats1t1u
50. There is only one analytic functionA(s,t) because of
crossing symmetry. It satisfiesA(s,t)5A(s,u) due to Bose
symmetry. The last term in Eq.~2.1! thus may be rewritten
asA(u,s)d i l d jk .

Chiral symmetry low energy theorem demands thatA be-
haves nears5t50 as

A~s,t !5
s

f p
2

1O~s2,st,t2!, ~2.2!

wheref p'93 MeV is the pion decay constant. The structu
of the second term will be discussed later.

The expansion breaks down by the existence of a re
nance. We expect that possible lowest-lying resonances
in I 5J50 and I 5J51 channels. In the narrow width ap
proximation, the contribution of these resonances may
written as

A~s,t !5
gs

2s

ms
22s

~2.3!

for the scalar exchange~we write s in the numerator instead
of a constant, to be consistent with the low-energy theor
this corresponds to adding a contact interaction such as
in the s model! and

A~s,t !5gr
2S s2u

mr
22t

1
s2t

mr
22uD ~2.4!

for the vector exchange~the numerator is the minimal depen
dence to assure spin 1 and has the same form as the g
boson exchange!.

The tail of these exchange amplitude contributes to
slope of the amplitude at the origin. If we assume that th
two resonances saturate the low-energy theorem, we fin

gs
2

ms
2 1

3gr
2

mr
2 5

1

f p
2 . ~2.5!
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This condition, applied to the electroweak symmetry bre
ing, has been used in our previous study of the strongWW
scattering@16#, in which we have obtained partial wave am
plitudes consistent with unitarity and analyticity. For hadr
physics, it turns out that the condition is too strong to expl
the observed width of ther meson. Even if one maximize
the vector coupling and includes the enhancing effect of u
tarization, the resulting width is too small by;20%. Thus
we are led to relax the condition~2.5! to increase therpp
couplinggr . This may be done by subtracting theO(s) part
from the exchange amplitudes and add a suitableO(s) term
to A(s,t) instead. This procedure gives

A~s,t !5
s

f p
2 1

gs
2s2

ms
2~ms

22s!
1

gr
2

mr
2 S t~s2u!

mr
22t

1
u~s2t !

mr
22u D .

~2.6!

At the lowest order, ther width may be reproduced if one
takesgr around the KSRF value@19# gr

25mr
2/2f p

2 . The price
to pay is the worse high-energy behavior.

Expanding Eq.~2.6! to second order, we have

A~s,t !.
s

f p
2 1

gs
2s2

ms
4 1

gr
2

mr
4 ~22s21t21u2!. ~2.7!

This will be used later in matching with chiral Lagrangian
To assess the possible existence ofs, we will compare

the two cases~1! no s (r only! and~2! degenerater –s. We
now discuss motivations for these choices.

~1! No s meson.In the nonrelativistic quark model, th
lowest-lying S wave mesons are pseudoscalar (p, h) and
vector (r, v). Scalar mesons areP wave states and ar
expected to have similar masses as the otherP wave states,
the axial vector and tensor mesons which lie in the 120
1300 MeV range. As we will be concerned with the scatt
ing amplitude below 1 GeV, such mesons in this mass ra
have small effect and we can simply takegs50 to illustrate
this case. We may recall that the pion electromagnetic fo
factor is rather well described@20# by the hypothesis ofr
dominance. The coupling ofr to pions given by the KSRF
relation @19#

gr
25

mr
2

2 f p
2 ~2.8!

reproduces ther width quite well.
~2! Degenerater –s. Since the light quarks are esse

tially massless compared to the QCD scale, there is no
son that nonrelativistic quark model reliably describe t
spectrum. In the string-type picture of hadrons, the spect
of the states has a tower structure and the vector meso
accompanied by a scalar daughter. This situation in the
row width approximation is realized in the Veneziano amp
tude @21#.

The degeneracy ofr ands is also suggested in the frame
work of nonlinear realization of the SU(2)3SU(2) chiral
flavor symmetry developed by Weinberg@22#. Algebraiza-
tion of the Adler-Weisberger sum rule results in the ma
matrix structure with this degeneracy, again in the narr
5-2
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width ~largeNcolor) limit. The couplingsgr andgs are found
to be equal and has the same strength as the KSRF cou

gs
25gr

25
mr

2

2 f p
2 . ~2.9!

The Veneziano amplitude also givesgr5gs but the size
of the coupling is different, as we will now discuss. Th
Venezianopp scattering amplitude takes a simpler form f
the charge eigenstatesp1p2→p1p2. With the constraints
of chiral symmetry, it reads@23#

B4~s,t !52
2mr

2

p f p
2

G@~12s/mr
2!/2#G@~12t/mr

2!/2#

G~u/2mr
2!

.

~2.10!

Vanishing of the amplitude ats5t50 demands that the in
tercept of the Regge trajectory is 1/2, and the overall coe
cient is determined by the scale of chiral symmetry break
f p . The invariant amplitudeA is related to Eq.~2.10! by the
relationA(s,t)5@B4(s,t)1B4(s,u)2B4(t,u)#/2.

As is well known, the amplitude~2.10! has an infinite
number of poles both in thes and t channels. The lowest
lying poles are ats5mr

2 and t5mr
2 , at which the amplitude

behaves as

B4~s,t !;5
2mr

2

p f p
2

~mr
21t !

~mr
22s!

~s;mr
2!,

2mr
2

p f p
2

~mr
21s!

~mr
22t !

~t;mr
2!.

~2.11!

Expanding Eq.~2.11! in partial waves, one finds that a scal
and a vector state are degenerate atmr . The corresponding
couplings are

gs
25gr

25
mr

2

p f p
2 . ~2.12!

The chiral Veneziano amplitude may be approximated by
form ~2.6! with appropriate couplings and masses in the
ergy region of our interest, where the higher poles have sm
effect.

III. PARTIAL WAVE AMPLITUDES

The invariant amplitude can be expanded in terms of p
tial waves for states having definite isospinI:

aIJ~s!5
1

64pE21

1

d cosu PJ~cosu!M ~ I !~s,t !, ~3.1!

with t52s(12cosu)/2 and

M ~ I 50!53A~s,t !1A~ t,s!1A~u,s!, ~3.2a!

M ~ I 51!5A~ t,s!2A~u,s!, ~3.2b!
03400
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M ~ I 52!5A~ t,s!1A~u,s!. ~3.2c!

Elastic unitarity requires ImaIJ
21(s)521 and the amplitude

can be written in terms of the phase shiftd IJ as

aIJ5eid IJsind IJ . ~3.3!

Inelastic channels (4p, . . . ,) areknown to be negligible
below theKK̄ threshold@24,25#, in accordance with the ex
pectation based on chiral symmetry@thepp→4p cross sec-
tion starts at the order;s4/(4p f p)8].

We project the subtracted pole amplitude~2.6! into partial
waves, which we denote byaIJ

° . We find

a00
° 5

1

16pH s

f p
2 1gs

2@ 3
2 f r~s/ms

2 !1 f 0s~s/ms
2 !#

12gr
2f 0r~s/mr

2!J , ~3.4a!

a20
° 5

1

16pF2
s

2 f p
2 1gs

2 f 0s~s/ms
2 !2gr

2f 0r~s/mr
2!G ,

~3.4b!

a11
° 5

1

16pH s

6 f p
2 1gs

2 f 1s~s/ms
2 !

1gr
2@ 1

3 f r~s/mr
2!1 f 1r~s/mr

2!#J , ~3.4c!

where

f r~x!5
x2

12x
, ~3.5a!

f 0s~x!5
1

x
log~11x!211

x

2
, ~3.5b!

f 0r~x!5S 1

x
12D log~11x!212

3

2
x, ~3.5c!

f 1s~x!5
1

xS 2

x
11D log~11x!2

2

x
2

x

6
, ~3.5d!

f 1r~x!5S 1

x
12D S 2

x
11D log~11x!2

2

x
242

x

6
.

~3.5e!
5-3
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These functions may alternatively be obtained from thena
functions defined in@16#, Eq. ~13! by subtracting theO(x)
term. Nearx50, these functions behave as

f r~x!.x2, ~3.6a!

f 0s~x!.
1

3
x2, ~3.6b!

f 0r~x!.2
2

3
x2, ~3.6c!

f 1s~x!.2
1

6
x2, ~3.6d!

f 1r~x!.
1

6
x2. ~3.6e!

For large values of the couplings, these amplitudes ba
violates unitarity near the resonances. We use theN/D
method to obtain amplitudes satisfying elastic unitarity a
analyticity. This method is superior toK matrix or Pade´ uni-
tarization scheme in that it automatically provides an am
tude having correct analytic behavior. We thus write

aIJ5
NIJ

DIJ
, ~3.7!

and use singleN/D iteration by settingNIJ5aIJ
° @given by

Eq. ~3.4!#. The denominator function is determined by an
lyticity

Im DIJ~s!52NIJ~s!u~s! ~3.8!

~we assume the contribution of inelastic channels is not
portant!, which symbolically gives

DIJ~s!52
1

pE0

` ds8

s82s
NIJ~s8!. ~3.9!

SinceNIJ(s);s at s→`, the dispersion integral has to b
subtracted twice. One of the subtraction constants is fixed
the normalization conditionDIJ(0)51 ~remember that our
amplitudeaIJ

° is constructed to be exact nears50, which
requires this condition!, and the second constant determin
theO(s) behavior ofDIJ(s) as will be discussed later.

To write down the explicit functional form ofD, we de-
fine the functionda(x) with the property

discda~x![da~x1 i e!2da~x2 i e!52p i f a~x!u~x!
~3.10!

by
03400
ly

d

i-

-

-

y

s

da~x!1~calogR1ca8 !x5xE
0

R dy

y~y2x!
f a~y! ~R→`!,

~3.11!

where we demandda(x);x2 near x50. This is accom-
plished by separating theO(x) term of the integral as the
second term in the left-hand side~LHS! of Eq. ~3.11!.
Though the integral diverges logarithmically forR→`,
da(x) thus defined is finite in this limit. We find

dr~x!52
x2

12x
log~2x!, ~3.12a!

d0s~x!5
1

x
L~x!1S 12

x

2D log~2x!211
x

4
,

~3.12b!

d0r~x!5S 1

x
12DL~x!1S 11

3

2
xD

3 log~2x!212
7

4
x, ~3.12c!

d1s~x!5
1

xS 2

x
11DL~x!1S 2

x
1

x

6D
3 log~2x!2

2

x
2

1

2
1

x

36
, ~3.12d!

d1r~x!5S 1

x
12D S 2

x
11DL~x!1S 2

x
141

x

6D
3 log~2x!2

2

x
2

9

2
2

35

36
x, ~3.12e!

with

L~x!52Li2~2x!2 log~2x!log~11x!, ~3.13!

and

cr521, c0s5
1

2
, c0r52

3

2
, c1s5c1r52

1

6
,

~3.14!

cr850, c0s8 52
1

4
, c0r8 5

7

4
, c1s8 52

1

36
, c1r8 5

35

36
.

~3.15!
5-4
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Then we can write

N005
1

16pH s

f p
2 1gs

2@ 3
2 f r~s/ms

2 !1 f 0s~s/ms
2 !#

12gr
2f 0r~s/mr

2!J , ~3.16a!

N205
1

16pF2
s

2 f p
2 1gs

2 f 0s~s/ms
2 !2gr

2f 0r~s/mr
2!G ,

~3.16b!

N115
1

16pH s

6 f p
2 1gs

2 f 1s~s/ms
2 !1gr

2@ 1
3 f r~s/mr

2!

1 f 1r~s/mr
2!#J , ~3.16c!

D00512d008 s2
1

16p2H 2
s

f p
2 logS 2s

m2 D1gs
2@ 3

2 dr~s/ms
2 !

1d0s~s/ms
2 !#12gr

2d0r~s/mr
2!J , ~3.17a!

D20512d208 s1
1

16p2F2
s

2 f p
2 logS 2s

m2 D
1gs

2d0s~s/ms
2 !2gr

2d0r~s/mr
2!G , ~3.17b!

D11512d118 s2
1

16p2H 2
s

6 f p
2 logS 2s

m2 D1gs
2d1s~s/ms

2 !

1gr
2@ 1

3 dr~s/mr
2!1d1r~s/mr

2!#J . ~3.17c!

The coefficientdIJ8 corresponds to the second subtracti
constant and depends implicitly onm, which cancels the
explicit m dependence of the amplitudes.

TheN/D unitarization breaks crossing symmetry becau
it treats thes channel distinctly from the other channels. T
deviation from symmetry is proportional toD21, because
the N function is crossing symmetric by construction. Th
our unitarized amplitude is approximately crossing symm
ric away from the resonance.

Our procedure apparently gives three independent s
traction constants. However, there can be at most two in
pendent ones. To see this, we now turn to the discussio
pp scattering in the chiral Lagrangian language.

IV. CHIRAL LAGRANGIAN UP TO 4 ORDER

Interactions of pions at low energies can be described
the chiral Lagrangian, an effective Lagrangian with nonl
early realized chiral symmetry, which is an expansion in
number of derivatives. The Lagrangian with terms up to
order]4 takes the form@in the exact SU(2)3SU(2) limit we
are working#
03400
e

t-

b-
e-
of

y
-
e
e

L5L21L4 , ~4.1!

L25
f p

2

4
Tr~]mU†]mU !, ~4.2a!

L45L1@Tr~]mU†]mU !#21L2Tr~]mU†]nU !Tr~]mU†]nU !,
~4.2b!

with

U5exp~ ip it i / f p!, ~4.3!

where p i ( i 51, 2, 3! denotes the pion field andt i is the
Pauli matrix. The parameters in Eq.~4.1! are in principle
calculable from QCD, but in practice can be regarded
parameters to be determined from experiments.

The tree levelpp scattering amplitude derived from th
Lagrangian~4.1! is

A~s,t !5
s

f p
2 1

8s2

f p
4 L11

4~ t21u2!

f p
4 L2 . ~4.4!

Comparing the tree chiral amplitude~4.4! with the subtracted
pole amplitude~2.6!, we identify

L15
gs

2 f p
4

8ms
4 2

gr
2f p

4

4mr
4 , L25

gr
2f p

4

4mr
4 . ~4.5!

It may be seen that the two coefficients reflect the underly
dynamics. The scalar exchange givesL250, and the vector
exchange is characterized by the relationL11L250. In the
r-s degenerate case with equal couplings, we have 2L1
1L250.

Independent determination of these parameters has
done using theD wave pp phase shift@26# or K→ppl n
decays@27#. These data exclude the caseL250. The other
two cases ofr only and degenerater-s are compatible with
the data.

At O(s2), the contribution of one-loop graphs with theL2
vertices has to be included:

A~s,t !5
1

16p2f p
4 H 1

2
s2F1

e
2 logS 2s

m2 D G
1

1

6
t~ t2u!F1

e
2 logS 2t

m2 D G
1

1

6
u~u2t !F1

e
2 logS 2u

m2 D G
1

5

9
s21

13

18
~ t21u2!J . ~4.6!

We have used dimensional regularization withD5422e
spacetime dimensions.~In the usual convention, 1/e should
be interpreted as 1/e2gE1 ln 4p.! Notice that the one-loop
amplitude contains terms required by unitarity and analy
ity at O(s2). The logarithmic divergences can be absorb
into the parameterLi as
5-5
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L1
r ~m!5L11

1

16p2

1

24S 1

e
11D , ~4.7a!

L2
r ~m!5L21

1

16p2

1

12S 1

e
11D , ~4.7b!

where we have followed the renormalization prescription
Gasser and Leutwyler@26#. The amplitude in terms of the
renormalized parameters is

A~s,t !5
s

f p
2 1

8s2

f p
4 L1

r 1
4~ t21u2!

f p
4 L2

r 1
1

16p2f p
4

3F2
1

2
s2logS 2s

m2 D2
1

6
t~ t2u!logS 2t

m2 D
2

1

6
u~u2t !logS 2u

m2 D1
2

9
s21

7

18
~ t21u2!G .

~4.8!

This gives the general form of the amplitude up to ord
O(s2) compatible with chiral symmetry. Expanding th
O(E4) chiral amplitude~4.8! into partial waves, we find for
J<1

a005
1

16pH s

f p
2 1

s2

f p
4 F44

3
L1

r 1
28

3
L2

r

1
1

16p2S 2 log
2s

m2 2
7

18
log

s

m2 1
17

12D G J , ~4.9a!

a205
1

32pH 2
s

f p
2 1

s2

f p
4 F16

3
L1

r 1
32

3
L2

r

1
1

16p2S 2
1

2
log

2s

m2 2
11

18
log

s

m2 1
17

12D G J ,

~4.9b!

a115
1

96pH s

f p
2 1

s2

f p
4 F28L1

r 14L2
r

1
1

16p2S 2
1

6
log

2s

m2 1
1

6
log

s

m2 1
1

9D G J .

~4.9c!

Now we are ready to discuss the connection with the p
tial waves obtained in Sec. III. Since chiral symmetry allo
only two independentO(s2) parameters, the three coeffi
cients d008 , d208 , and d118 cannot be arbitrary. Expandinga
5N/D obtained in the previous section up toO(s2), we
have
03400
f

r

r-

a00.
1

16pH s

f p
2 1s2 Fd008

f p
2

1
11gs

2

6ms
4 2

4gr
2

3mr
4

2
1

16p2f p
4 logS 2s

m2 D G J , ~4.10a!

a20.
1

32pH 2
s

f p
2 1s2 Fd208

f p
2

1
2gs

2

3ms
4 1

4gr
2

3mr
4

2
1

32p2f p
4 logS 2s

m2 D G J , ~4.10b!

a11.
1

96pH s

f p
2 1s2 Fd118

f p
2

2
gs

2

ms
4 1

3gr
2

mr
4

2
1

96p2f p
4 logS 2s

m2 D G J . ~4.10c!

Comparing Eq.~4.10! with Eq. ~4.9!, we immediately find
that the log(2s) terms obtained here are just as given by t
general chiral Lagrangian, although logs terms are absent in
Eq. ~4.10!. The appearance of the former terms is the res
of s channel unitarity and analyticity of theN/D amplitudes.
The latter terms, which reflects the crossed channel singu
ity, are not incorporated in our procedure which is not e
actly crossing symmetric. The effect of these logarithm
terms is unimportant if we choosem to be aroundmr , since
the coefficient is small. Neglecting the logarithmic and r
lated constant terms, we may identify

3

4
d008 f p

2 1
11gs

2 f p
4

8ms
4 2

gr
2f p

4

mr
4 511L1

r 17L2
r , ~4.11a!

3

4
d208 f p

2 1
gs

2 f p
4

2ms
4 1

gr
2f p

4

mr
4 54L1

r 18L2
r , ~4.11b!

d118 f p
2 2

gs
2 f p

4

ms
4 1

3gr
2f p

4

mr
4 528L1

r 14L2
r . ~4.11c!

This gives one consistency condition for the three subtr
tion coefficients

5d208 54~d008 1d118 !, ~4.12!

which has to hold regardless of the dynamics. In addition,
can impose the dynamics-dependent relation between
chiral Lagrangian parameters discussed below Eq.~4.5! on
L1

r andL2
r in Eq. ~4.11!. We find

1

11
d008 52

1

6
d118 5

1

4
d208 ~4.13!

for scalar only (gr50),
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1

4
d008 52

1

9
d118 52

1

4
d208 ~4.14!

for vector only (gs50), and

4d008 5d118 5d208 ~4.15!

for the equal contribution of both (gs /ms
25gr /mr

2). These
conditions reduce the number of independent subtrac
constants to 1.

V. COMPARISON WITH DATA

Let us first discuss theP wave amplitudea11. Experimen-
tally, this amplitude is dominated by ther resonance. Since
the existence ofr is well established and the parameters
well measured, we use the massmr5769 MeV and width
151 MeV as inputs~as well asf p593 MeV!. Since we work
in the chiral limit, we correct the measuredr width for theP
wave phase space factorb3 to obtain the ideal widthGr

5187 MeV. We find that the result for theS wave is not
sensitive to the inclusion of this correction.

The subtraction constantd118 may be fixed for a given se
of model parameters (gr , gs) by the condition that the uni
tarized amplitude gives the correct widthGr . For a unita-
rized amplitudea, we define the width by

d

ds
a21~s!U

s5m2

52
1

mG
, ~5.1!

where the massm is defined bya(m2)5 i . This gives for the
N/D amplitude

Gr5
Gr

0

ReD11~mr
2!

, ~5.2!

where

FIG. 1. TheI 5J51 pp phase shift. The solid curve is for onl
r exchange with the KSRF coupling, and the dashed~dotted! curve
for degenerater ands with the Veneziano~KSRF/Weinberg! cou-
pling. The latter two curves are almost indistinguishable.
03400
n

e

Gr
05

gr
2mr

48p
. ~5.3!

We thus obtain

d118 mr
2512

gr
2mr

48pGr
1

mr
2

96p2f p
2 log

mr
2

m2

2
1

16p2Fgs
2Red1s~mr

2/ms
2 !1gr

2S 3p2

4
2

257

36 D G .
~5.4!

In the ‘‘r only’’ case, we can drop the term withd1s in Eq.
~5.4!. In the degenerate casems5mr with gs5gr , Eq. ~5.4!
simplifies to

d118 mr
2512

gr
2mr

48pGr
1

mr
2

96p2f p
2

3 log
mr

2

m2 2
gr

2

16p2S p22
173

18 D . ~5.5!

FIG. 2. TheI 5J50 pp phase shift with~a! r exchange only;
~b! degenerates and r exchanges for the KSRF/Weinberg
~dashed!, Veneziano~dot-dash!, and intermediategr

250.45mr
2/2f p

2

~solid! couplings. Some experimental data are also shown.
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This procedure gives aP wave phase shift with ther
mass and width reproducing the experimental value. It m
be thought as renormalizing the coupling with the ‘‘o
shell’’ r width, though not in the sense of conventional pe
turbative expansion. Shown in Fig. 1 is theP wave phase
shift for three cases,r only for Kawarabayashi-Suzuki
Riazuddin-Fayyazuddin~KSRF! coupling~2.8! and degener-
ate r –s for Veneziano~2.12! and KSRF-Weinberg~2.9!
couplings. The difference in the ‘‘bare’’ couplinggr gives
very slight change in the phase shift. There is a small diff
ence in the region away from the resonance depend
whether thes exists or not.

We can now determine the two other subtraction co
stantsd008 andd208 from the relations discussed at the end
the previous section: Eq.~4.14! for the r-only case, Eq.
~4.15! for the degenerate case. It is then possible to calcu
the twoJ50 phase shifts using these parameters.

In Fig. 2~a!, we show the calculatedI 5J50 phase shift
in the r only scenario for three choices ofgr ~KSRF/
Weinberg, Veneziano, and an intermediate couplinggr

2

50.45mr
2/ f p

2 ). The experimental data@25,28–30# are also

FIG. 3. The I 52, J50 pp phase shift with~a! r exchange
only; ~b! degenerates and r exchanges for the KSRF/Weinber
~dashed!, Veneziano~dot-dash!, and intermediategr

250.45mr
2/2f p

2

~solid! couplings. Some experimental data are also shown.
03400
y

-

r-
g

-
f

te

plotted. Although the reflection of the crossed channelr ex-
change gives a substantial effect, it can account only ab
half of the observed phase shift. The phase shift in the
generater-s scenario for the same couplings is shown
Fig. 2~b!. The agreement with the data is reasonable. I
rather difficult to determine the best value of the coupli
from this data.

The phase shift for the exotic channelI 52, J50 is
shown in Fig. 3 with the experimental data@31–36#. The r
exchange@Fig. 3~a!# gives slightly larger phase shifts tha
the data. Unlike theI 50 phase shift, the result is very sen
sitive to the magnitude of the coupling, especially for dege
erater-s exchanges@Fig. 3~b!#. The intermediate coupling
of gr

2.0.45mr
2/ f p

2 reproduces the data quite well.

VI. CONCLUSIONS

We have proposed a general ‘‘model-independen
framework of thepp scattering based on chiral low-energ
expansion and possible resonances in theI 5J50 andI 5J
51 channels. To cope with the strong interaction of pio
we use theN/D formalism to obtain partial wave amplitude
which satisfy unitarity, analyticity, and approximate crossi
symmetry. The result is compared to the experimental ph
shift data and we find preference for as resonance with a
mass similar to ther meson. Withouts, the r exchange in
the crossed channel can give substantial reflection in the
lar channel, but the effect is not large enough to explain
measured phase shift.

In this work, we have examined two clearcut cases withr
only, and degenerater-s with the same coupling strengths
There is certainly some room to improve the fit if we rega
the s mass and coupling as free parameters. It is also de
able to include the effect of the pion mass, which we ha
neglected in the present study. These questions will be
dressed in a future study.

Theoretically,pp scattering is the simplest laboratory o
the low-energy strong interaction. Unfortunately, no new e
periment has been done since early 1980’s and the mos
cent result is in some disagreement with older data.~We note
that more recent experiments on thes meson utilize
‘‘Pomeron-Pomeron’’ scattering orpp̄ annihilation.! New
experiments with more precision are clearly desirable. S
tematic uncertainties may also be reduced. In fact, the ex
ing data involve some extrapolation because they are
tracted from the reactionpN→ppN. It would be much
more welcome if direct beam-beampp experiment can be
done.
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