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We set up a general framework to describer scattering below 1 GeV based on chiral low-energy
expansion with possible spin-0 and -1 resonances. Partial wave amplitudes are obtained Mifh thethod,
which satisfy unitarity, analyticity, and approximate crossing symmetry. A comparison with the phase shift
data in theJ=0 channel favors a scalar resonance neaptheass[S0556-282199)00901-7

PACS numbses): 13.75.Lb, 12.39.Fe, 14.40.Cs

I. INTRODUCTION and terms in higher order ig t can be described systemati-
cally if one uses the machinery of the chiral Lagrangian.
Although quantum chromodynamics has long been ac- Although this expansion around the origin gives a good
cepted as the fundamental theory of the strong interactiordescription of the amplitude at low energies, it breaks down
the spectrum of hadrons composed of light quarks still posewhen one approaches the mass of the lowest-lying hadrons
many unanswered questions. Even below 1 GeV, the olgresonancesother than pions. These resonances manifest
controversy on the existence of the meson, an isospin-0 themselves as a pole on the second sheet in the scattering
scalar boson strongly coupled to ther system, remains amplitude. We are thus led to start with a simple form of the
unanswered. Recently, there have been some renewed i”t%rmplitude which has relevant polésorresponding to pos-
ests in this problem both theoreticallf—-11] and experi-  gjpje spin-0 isospin-Gr and spin-1 isospin-p resonances
mentally[12-14. Some analyses favor the existencesof .4 has the behavior consistent with chiral symmeéow-
The particle reappeared in the Particle Data Group Comp”aénergy theorein

tion [15] as “f(400-1200 or o™ after an absence for more If there is a resonance in thechannel, the same reso-

.than two Qecades,_ though it is caut|_ously stated that_ tr,],enance is also exchanged in thandu channels because of
interpretation of this entry as a particle is controversial.

There is no good agreement on its mass among the receﬁrtOSSing symmetry. In a study of strongly interacting Higgs
studies. For example, “Foqist and Roog7] have used a sector[16] we found that the crossed—(_:han_nel exchange of a
“unitarized quark model” to fit the meson-mesdwave vector resonance has a large reflection in dke0 partial
amplitudes and claimed the existence of a very broadith ~ Wave. In most of the recent model studies of theneson,
a mass of~860 MeV. Ishidaet al. [11] fit the 77 S wave this effect is not explicitly taken into consideratibit.is one
amplitudes to arS matrix model and find ther mass of of the motivations of this work to assess the importance of
585-20 MeV. Although these results seem conclusivethe crossed channgl exchange in the scalar channel.
within their frameworks, the disagreement of the derived ~ AS we are concerned with the strong interaction, the am-
mass may imply that quantitative conclusions are quitephtude constructe_d in th|§ way tenq to violate Unitarity near
model dependent, casting some doubt in the very existendg€ Pole. To obtain a unitary amplitude, we first project to
of o. In any case, it is not easy to assess how modelpartial waves(we will be concerned withJ=0 andJ=1
independent are their conclusions. channely and use théN/D method to unitarize the partial
In this paper, we look at this problem from a somewhatvave amplitudes._This met_hod gives amplitudes Which has
different point of view. We try to minimize the necessary the correct analytic properties with cuts on the real axis. In
model assumptions by a simple approach which only asthls respect, it is superior to the matrlx_ or Padeunitariza- _
sumes the chiral flavor symmetry and general constraints ofon scheme. Although the procedure is not exactly crossing
the amplitudes such as analyticity, unitarity, and crossingymmetric, the deviation from the symmetry is controlled
symmetry. We notice that crossing symmetry is not takerfnd mostly limited to the region near the pole.
into account in the recent works discussed above. In Sec. Il, we summarize the general characteristics of the
As we put more emphasis on theoretical transparency thafi 7 €lastic scattering amplitude and set up our chirally sym-
aiming at a perfect fit to the data, we concentraterom  Metric “model-independent” amplitude with possible poles.
scattering below 1 GeV and work in the chiral limit with Two simple cases, “n@” and “degeneratep—o™ are dis-
massless pions. Since the pions are the Goldstone bosons@#ssed in detail. In Sec. Ill, we calculate the partial wave
the spontaneously broken SUEPU(2) symmetry, the
form of the pion interactions is tightly constrained at low
energies by the symmetry. If we expand the elastic scat-  1The importance of the crossed channel exchanges has also been
tering amplitude around=t=0, chiral symmetry demands emphasized in Ref.17] based on the original worki$,18]. Our
the amplitude vanishes at=t=0 and the linear terms ig t  result withp exchange agrees qualitatively with the corresponding
are determined in terms of the pion decay constantThese result in Ref[6].
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amplitudes from the invariant amplitudes in Sec. Il. Unitari- This condition, applied to the electroweak symmetry break-
zation of the amplitudes is performed using D method. ing, has been used in our previous study of the strdiy
Relation of our method to the low-energy chiral expansion isscattering16], in which we have obtained partial wave am-
clarified in Sec. IV. In Sec. V, we determine the parameterglitudes consistent with unitarity and analyticity. For hadron
in the amplitudes and compare them with the phase shifphysics, it turns out that the condition is too strong to explain
data. We summarize and conclude with some remarks in Sethe observed width of thg meson. Even if one maximizes
VI. the vector coupling and includes the enhancing effect of uni-
tarization, the resulting width is too small by20%. Thus
Il. CHARACTERISTICS OF #a AMPLITUDE we are led to relax the conditiof2.5) to increase the 7w
couplingg,, . This may be done by subtracting tti¥s) part

The 7 system has three independent isospin channelg,om the exchange amplitudes and add a suitdl(s) term
In terms of Mandelstam variables, the invariant amplitude, A(s,t) instead. This procedure gives

for the processr' + 7/— 7¥+ 7/ has the form

s g2s? 92 (t(s—u) u(s—t)
Mijk/(s,t):A(S,t)aij5k/+A(t,S)5ik5]'/+A(U,t)5i/5jk, A(S,t):—zﬁ'—Wﬁ'—z > +— .
fo mo(m;—s) m\ mi—t m—u
(2.1 p P P 2.6
wherei,j, ...,=1,2,3 are isospin indicepnith 7= = (7!

+i72)/\2, 7°==%]. The variables is the c.m. energy At the lowest order, the width mayzt_)e rzgeprgduced if-one
squared,t=—s(1—cos#)/2 and u=—s(1+cosf)2 with takesg, around the KSRF valug9] g,=m/2f7 . The price
cosé denoting the c.m. scattering angle. Note thait+u  © Pay is the worse high-energy behavior.

=0. There is only one analytic functiof(s,t) because of Expanding Eq(2.6) to second order, we have

crossing symmetry. It satisfie®(s,t) =A(s,u) due to Bose s 22 2

symmetry. The last term in E¢2.1) thus may be rewritten A(s,t)= — + g"_4+ g—’i(—252+t2+u2). (2.7)

aSA(U,S)(si/szk. fﬂ' o o

Chiral symmetry low energy theorem demands thdte- o . ) _ ) .
haves neas=t=0 as This will be used later in matqhmg with Chll’a|. Lagrangian.
To assess the possible existenceoofwe will compare
s the two casegl) no o (p only) and(2) degeneratp—o. We
A(s,t)= — + O(s?%,st,t?), (2.2 now discuss motivations for these choices.

2
w (1) No o meson.In the nonrelativistic quark model, the
lowest-lying S wave mesons are pseudoscalar, () and

wheref .~93 MeV is the pion decay constant. The structure, o .y (0, ). Scalar mesons ar® wave states and are

of the second term will be discussed later.

in 1=J=0 andl=J=1 channels. In the narrow width ap-
proximation, the contribution of these resonances may b
written as

ing amplitude below 1 GeV, such mesons in this mass range
fiave small effect and we can simply tatze=0 to illustrate
this case. We may recall that the pion electromagnetic form

92s factor is rather well describef®0] by the hypothesis op
A(s,t)= + (2.3 dominance. The coupling gf to pions given by the KSRF
m;—s relation[19]

for the scalar exchangeve write s in the numerator instead m2
of a constant, to be consistent with the low-energy theorem; gz=—’; (2.8
this corresponds to adding a contact interaction such as that m

in the o mode) and reproduces the width quite well.

—u s—t (2) Degeneratep—o. Since the light quarks are essen-

) (2.4  tially massless compared to the QCD scale, there is no rea-
son that nonrelativistic quark model reliably describe the
spectrum. In the string-type picture of hadrons, the spectrum
of the states has a tower structure and the vector meson is

ompanied by a scalar daughter. This situation in the nar-

S
A(s,t)=g> +
(s g”( mo—t  m2—u
for the vector exchang@he numerator is the minimal depen-
dence to assure spin 1 and has the same form as the ga

boson exchange , R . : ) ;
X . : ro dth approximation is realized in the Veneziano ampli-
The tail of these exchange amplitude contributes to thquévev[vzll] pproximation 1 1zed! Z Pl

tslope of the amplltL:de ?t :Ee lorlgln. If Wetﬁssume thatf?hgse The degeneracy gf ando is also suggested in the frame-
Wo resonances saturate the low-energy theorem, We ind - \or of nonlinear realization of the SU()SU(2) chiral

2 2 flavor symmetry developed by Weinbefg2]. Algebraiza-
g, 39 1 . . g
S+ —= . (2.5  tion of the Adler-Weisberger sum rule results in the mass
m, m, f7 matrix structure with this degeneracy, again in the narrow
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width (largeNcgyoy) limit. The couplingsy, andg,, are found MU=2=A(t,5)+A(u,s). (3.20
to be equal and has the same strength as the KSRF coupling
_ mf) Elastic unitarity requires Ira,_Jl(s)= —1 and the amplitude
9,=9,= 572 (2.9  can be written in terms of the phase shift as
The Veneziano amplitude also givgs=g, but the size a,,=€%sing,, . (3.3

of the coupling is different, as we will now discuss. The
Venezianom scattering amplitude takes a simpler form for
the charge eigenstates” 7~ — 7" 7~. With the constraints Inelastic channels (#, ...,) areknown to be negligible

of chiral symmetry, it readf23] below theKK threshold[24,25, in accordance with the ex-
) ) ) pectation based on chiral symmetitiie w7— 47 cross sec-

2m, T[(1—s/my)/2]I[(1—t/m;)/2] tion starts at the orders*/(4xf ).

wff, F(u/2m§) We project the subtracted pole amplitu@e6) into partial

(2.10  waves, which we denote by, . We find

B4(S,t) = —

Vanishing of the amplitude a=t=0 demands that the in-
tercept of the Regge trajectory is 1/2, and the overall coeffi- S 2 3 5 5
cient is determined by the scale of chiral symmetry breaking 200~ 7| 72 +gs[3f (s/m2)+fo,(s/m?)]
f .. The invariant amplitudé is related to Eq(2.10 by the i
relation A(s,t) =[Ba(s,t) + B4(s,u) — B,(t,u)]/2. 2 2
As is well known, the amplitudé2.10 has an infinite +2g,fo,(s/my) 1, (3.4a
number of poles both in the andt channels. The lowest-
lying poles are as=m’ andt=m?, at which the amplitude

behaves as o 1 S 20 2 2
aZO:E - EZ_ + ga'an'(S/mo') - gpfOp(S/mp) ’
2m2 (m2+t) ”
Lz s~m?) (3.4b
w2 (m2—s) -
Ba(s,t)~ 2m§ (m’2)+5) 5 (211 . 1 s 5 5
—_— (t~m). =———+
2r1 2 2
Expanding Eq(2.11) in partial waves, one finds that a scalar +gp[§fr(s/mp)+flp(s/mp)]], (3.40
and a vector state are degeneratengt The corresponding
couplings are
) where
m
2_2__p
95=9, pr g (2.12 ,
_ _ _ _ f(0=7—, (3.59
The chiral Veneziano amplitude may be approximated by the X
form (2.6) with appropriate couplings and masses in the en-
ergy region of our interest, where the higher poles have small 1 «
effect. foo(X) = log(1+x)—1+ 3, (3.5b
I1l. PARTIAL WAVE AMPLITUDES
The invariant amplitude can be expanded in terms of par- (1 3
tial waves for states having definite isospin fop(¥)=| L +2]log(1+x)—1— 37X, (3.50
1 (1
a;(s)= %J d cosd Py(cosd) M V(s,t), (3.1) 1/2 5 %
-t fr,(0 =~ ;+1)Iog(1+x)—;—g, (3.50
with t= —s(1—cos#)/2 and
MU=9=3A(s,t)+A(t,5) +A(U,S), 3.2 1 2 2 X
( ) ( ) ( ) ( a flp(X)Z ;4—2 ;4—1 |Og(1+X)—;—4—6.
MU=D=A(t,5)—A(u,s), (3.2b (3.50
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These functions may alternatively be obtained from nhe R dy
functions defined if16], Eq. (13) by subtracting the)(x) da(X) +(Culog R+ CL)X=XL Yy—x)
term. Nearx=0, these functions behave as

faly)  (R—e),
(3.11

2
Fr(X)=x%, (3-68  \yhere we demandi,(x)~x2 near x=0. This is accom-

plished by separating th&(x) term of the integral as the
1 second term in the left-hand siddHS) of Eq. (3.11.
foa(X)=§X2, (3.6D  Though the integral diverges logarithmically f&— o,
d,(x) thus defined is finite in this limit. We find

2
Fop(X) =~ 3% (3.69 NG
dr(x)=— 7 l0g(—x), (3.123
f15(%) L2 (3.60
o(X)=—=Xx%, .
1 ° d 1L L(x)+|1 X I 1+ X
0s(¥) = 2 L(X) 5 /109(—x) 7
1, (3.12b
flp(x):gx . (3.68
For large values of the couplings, these amplitudes badly _ E+ e E
violates unitarity near the resonances. We use Ni® dop(X) X 2JL+| 1 2%
method to obtain amplitudes satisfying elastic unitarity and
analyticity. This method is superior # matrix or Padeuni- Xlog(—x)—1— ZX (3.129
tarization scheme in that it automatically provides an ampli- 47
tude having correct analytic behavior. We thus write
N d 1 2+1 L(x)+ 2
aIJ=D_I‘], (37) 10'(X)_; ; (X) ; g
13
- . B B o . 2 1 X
and use singleN/D iteration by settingN,;=a,, [given by Xlog(=x)= =5+ 35 (3.129
Eq. (3.4)]. The denominator function is determined by ana-
lyticity
1 2 2 X
ImD;(s)=—Ny3(s) 6(s) (3.8 Ay, ()= L +2[| L +1LOO+| L +4+ ¢
(we assume the contribution of inelastic channels is not im- 2 9 35
portany, which symbolically gives xlog(—=x)= 2 =5~ 3% (3.12¢
1 (= d¢ with
D)= — | NS, (3.9
mJos' —s

SinceN,;(s)~s at s—», the dispersion integral has to be L(x)=—Lis(=x)—log(=x)log(1+x), ~ (3.13

subtracted twice. One of the subtraction constants is fixed by
the normalization conditio;(0)=1 (remember that our and
amplitudea,; is constructed to be exact nes#0, which
requires this condition and the second constant determines

the O(s) behavior ofD,;(s) as will be discussed later. N 1 _ 3 1
To write down the explicit functional form o, we de- G=7h G730 CopT 735 CwTCLT TG
fine the functiond ,(x) with the property (3.19
discd, (x)=d (x+ie)—d, (x—i€e)=2mif ,(X) 0();)3 0 , , 1 7 , 1 3
' ¢ =0, Co,=—7+ Cop=7+ Cio=" 35 Cip=3g"
4 P4 36 P36
by (3.19
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Then we can write L=Ly+ Ly, 4.2
Noo= et o + 2138 (s/m2)+ fo,(s/m3)] =
00~ 16| 12+ Jot 218 T Tos(SIMy L= T(3,UT9"V), (4.29
+ 2g§f0p(s/m§)] , (3168  L,=Ly[Tr(a,U%9#U)12+L,Tr(d,UTa,U)Tr(s#UTo"V),
(4.2b
1 S with
— 2 2 2 2
NZO_Eli_FET+go'f00'(S/mo')_gpfOp(S/mp) : B y ;
(3.16H U=expin'7If,), (4.3
1 (s where 7' (i=1, 2, 3 denotes the pion field and is the
NlFF{—;+gifla(s/mi)wtgg[%fr(s/mf,) Pauli matrix. The parameters in E¢.1) are in principle
7| 617 calculable from QCD, but in practice can be regarded as
parameters to be determined from experiments.
+flp(s/m§)]], (3.169 The tree levelr# scattering amplitude derived from the
Lagrangian(4.l) is
, 1 S —S s 882 4A(t?+u?
Doo=1—djs— 16772[ — 2“)9(? +g(2,[§dr(s/m§) A(s,t)= f_2+ f—4|—1+ ( f4 ) L,. (4.4
+dj (s/mz)]+2g2d0 (s/mz)}, (3.173 Comparing the tree chiral amplitudé.4) with the subtracted
M prEeRT pole amplitude(2.6), we identify
, L L[ s [-s 9ot 9ot g3f%
Doo=1—dys+ W[_ FEJOQ(F) L= 8’ am?” 2:4m;‘,' (4.5
+ gidog(S/m%,) _ gzdop(s/mz) , (3.17H It may _be seen that the two coeffici_ents reflect the underlying
L P dynamics. The scalar exchange gites=0, and the vector

exchange is characterized by the relation+-L,=0. In the

+g§dlg(s/m§) ilirzgggenerate case with equal couplings, we halg 2

Independent determination of these parameters has been
done using théd wave 77 phase shiff26] or K— w7/ v
decays[27]. These data exclude the casg=0. The other
two cases op only and degeneraie- o are compatible with
The coefficientd|; corresponds to the second subtractionthe data.
constant and depends implicitly om, which cancels the At O(s?), the contribution of one-loop graphs with tiig
explicit « dependence of the amplitudes. vertices has to be included:

The N/D unitarization breaks crossing symmetry because

1 S —S
Dy=1-dus— 12| ~ a—ff"’g(;f

+gg[%dr(s/mg)erlp(s/mg)]]. (3.179

it treats thes channel distinctly from the other channels. The A(s,t) = e 1 lo S
deviation from symmetry is proportional © — 1, because ' 167721‘:'; 27 |e 9 w?
the N function is crossing symmetric by construction. Thus

our unitarized amplitude is approximately crossing symmet- 1 1 B

. + <t(t—u)|——log| —
ric away from the resonance. 6 € M

Our procedure apparently gives three independent sub-
traction constants. However, there can be at most two inde-
pendent ones. To see this, we now turn to the discussion of
7rar scattering in the chiral Lagrangian language.

1 1 (—u)
+6U(U—t) Z—|Og 7

5 13
Y2 2 2
+s+18(t+u)

5 . (4.6

IV. CHIRAL LAGRANGIAN UP TO @* ORDER

Interactions of pions at low energies can be described byVe have used dimensional regularization with=4—2e¢
the chiral Lagrangian, an effective Lagrangian with nonlin-spacetime dimension$ln the usual convention, &/should
early realized chiral symmetry, which is an expansion in thebe interpreted as &/ yg+In4.) Notice that the one-loop
number of derivatives. The Lagrangian with terms up to theamplitude contains terms required by unitarity and analytic-
orderd* takes the fornjin the exact SU(2xSU(2) limitwe ity at O(s?). The logarithmic divergences can be absorbed
are working into the parametek; as
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Li(u)=L,+ ! 13+1
1 17 167224\ € ’
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1[5 Z[d(’)o g7 4g)

20 T6m| 127° |12 6mi  3m!
1 —-s
1 1/1
- — ———7100| —= 4.1
Ly(u)=Lo+ 1677212(E+1)’ 1671.2f:1T 09( Mz)“ (4.109
’ 2 2
where we have followed the renormalization prescription of _ 1] s %) 29, 49,
Gasser and Leutwyldi26]. The amplitude in terms of the 207327 2 2 3m;  3m;

renormalized parameters is

8s? 4(t2+u?)

S r
A(s,t)= f_2+ f_4Ll+

m w

X

1 | —u
—gu(u—t)og;g 9

f4 L2+ 16772f4
1 2 s| 1 |
—5Slog 7 —gt(t—u) og

2
+ 8%+

] , (4.10b

11967 | £2 2 my my

o

o )
96m21% 09\ uZ

] . (4.109

Comparing Eq.(4.10 with Eqg. (4.9, we immediately find
that the log{-s) terms obtained here are just as given by the

This gives the general form of the amplitude up to ordergeneral chiral Lagrangian, although Isterms are absent in
O(s") compatible with chiral symmetry. Expanding the gq. (4.10. The appearance of the former terms is the result

O(E*) chiral amplitude(4.8) into partial waves, we find for

J=1

1 s+52 44, 28,
aoo—EE i3 1" 32

N 1 | -s 7I S+
16772 0g /~L2 18 0og MZ

16 = 32
—Li+ =L

1 s 2
B 3173

a20=ﬁ E+ E

NN 1o
1672 299,77 18992

—l =+

s &
7+ 7
27

—8Li+4L)

1 )

+

Now we are ready to discuss the connection with the par
tial waves obtained in Sec. lll. Since chiral symmetry allows
only two independent)(s?) parameters, the three coeffi-
cientsdyg, djyp, anddj; cannot be arbitrary. Expanding
=N/D obtained in the previous section up @(s?), we

have

1 1
16772( ~glo9z gl 2t g

of s channel unitarity and analyticity of tié/D amplitudes.
The latter terms, which reflects the crossed channel singular-
ity, are not incorporated in our procedure which is not ex-
actly crossing symmetric. The effect of these logarithmic
terms is unimportant if we chooge to be aroundn,, since

the coefficient is small. Neglecting the logarithmic and re-
lated constant terms, we may identify

3 1g3f7  gfs
Zd60f37+ S —#=11Lr1+7L'2, (4.113

o P

3 o 9nfe
ngof§7+ 92W+%’;]—4:4L;+8L;, (4.11b

o p

2¢4 2¢4

g()'f’ﬂ 3g f7T
dif2— =+ —2 T =—8L +4L}. 4.11
11 7 mi m;)l 1 2 ( O

This gives one consistency condition for the three subtrac-
tion coefficients

5d50=4(dgo+d1y), (4.12
which has to hold regardless of the dynamics. In addition, we
can impose the dynamics-dependent relation between the

chiral Lagrangian parameters discussed below (Bd) on
L} andL} in Eq. (4.12. We find

1 ! 1 ! 1 !
1_1d00: - gdnzzdzo (4.13

for scalar only §,=0),
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R D 150 T .
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I j L © Cason 83 ]
150 — — 125 [— D Grayer 75 B —
L 4 r O Grayer 756 C b
L i r % Protopopescu 73 ]
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FIG. 1. Thel =J=1 =7 phase shift. The solid curve is for only 150 P — T — ]
p exchange with the KSRF coupling, and the dastuedted curve + Alekseeva 82 % ]

. . . © Ci 83 i
for degenerate and o with the VeneziandKSRF/Weinbery cou- 125 6 Grayer 75 B 3
pling. The latter two curves are almost indistinguishable. o Srayer 75 ¢ ]
Protopopescu 73 i

100

1, 1., 1 5 3 B

ZdOO: - §d11= - Zdzo (4.19 b . ]

= E

for vector only @,=0), and ©

50 — —

4dgo=d1,=d3g (4.19 C ]

25 — —

for the equal contribution of bothg(,/m2=g,/m?2). These ‘ . ]

conditions reduce the number of independent subtractio o R T (bl) ]

constants to 1. 0.4 0.6 0.8 1
Vs [GeV]

V. MPARISON WITH DATA
co SO FIG. 2. Thel=J=0 @ phase shift with@ p exchange only;

Let us first discuss the wave amplitudea,;. Experimen-  (b) degeneratec and p exchanges for the KSRF/Weinberg
tally, this amplitude is dominated by theresonance. Since (dashed Veneziano(dot-dash, and intermediatey?’=0.45m>/2f2
the existence op is well established and the parameters are(solid) couplings. Some experimental data are also shown.
well measured, we use the masg=769 MeV and width 9
151 MeV as inputgas well asf ,.=93 MeV). Since we work Fo:gp_mﬂ (5.3
in the chiral limit, we correct the measurgpdwidth for theP P 487 '
wave phase space fact@® to obtain the ideal width”,
=187 MeV. We find that the result for th® wave is not
sensitive to the inclusion of this correction.

The subtraction constant; may be fixed for a given set dilmﬁz 1-
of model parametersy(,, g,,) by the condition that the uni-

We thus obtain

gm, _m, m
48aT, " 96m212 092

tgrizded arr;_pli;ude givgsf_the ﬁorre%t r:/vll)dfhj For a unita- , s N 2 257
rized amplitudea, we define the width by ~16.2 g;Redy,(my/mg)+gy 2 38|
d 1
d—sa’l(s) =— ﬁ, (5.1) (5.4
s=m? In the “p only” case, we can drop the term with, ;. in Eq.
where the masmis defined bya(m?)=i. This gives for the (S?r.:glilf?etshfodegenerate cage,=m, with g, =g, , Eq.(5.4
N/D amplitude
2 2
g:m m
0 ’ 2__1 _ PP P
P te _ (5.2 R T
’ ReDyy(m) ) )
xlogmp— o [ 2 173 (5.5
where g,uz 1672 18/ '
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or ] plotted. Although the reflection of the crossed channek-
L @ | change gives a substantial effect, it can account only about
i | half of the observed phase shift. The phase shift in the de-
—10— — generatep-o scenario for the same couplings is shown in
[ ] Fig. 2(b). The agreement with the data is reasonable. It is
o s . rather difficult to determine the best value of the coupling
= L B from this data.
3 L % } The phase shift for the exotic channkek2, J=0 is
- N ~_ 1 shown in Fig. 3 with the experimental ddtdl—36. The p
| o+ Cotten 71 . . § exchangdFig. 3@)] gives slightly larger phase shifts than
] N\, NS the data. Unlike thé =0 phase shift, the result is very sen-
[ 5 Prop \\ ] sitive to the magnitude of the coupling, especially for degen-
- N 1 eratep-o exchangegFig. 3(b)]. The intermediate coupling
ol L v v v Lo v vy o 0 3 of g2~0.45m%/f2 reproduces the data quite well.
0 VI. CONCLUSIONS
We have proposed a general “model-independent”
- framework of thewr s scattering based on chiral low-energy
—lorT expansion and possible resonances inlthd=0 andl=J
- - =1 channels. To cope with the strong interaction of pions,
%" i we use theN/D formalism to obtain partial wave amplitudes
= 20— which satisfy unitarity, analyticity, and approximate crossing
o i symmetry. The result is compared to the experimental phase
e \ shift data and we find preference forearesonance with a
_gol_ 9% Hoogand7s \, B mass similar to the meson. Withoutr, the p exchange in
L X e N 1 the crossed channel can give substantial reflection in the sca-
[ O Welkerar \\ ] lar channel, but the effect is not large enough to explain the
L | | y . measured phase shift.
T Y In this work, we have examined two clearcut cases with
Vs [GeV] only, and degenerate- o with the same coupling strengths.

There is certainly some room to improve the fit if we regard
FIG. 3. Thel=2, J=0 = phase shift with() p exchange the o mass and coupling as free parameters. It is also desir-
only; (b) degenerater and p exchanges for the KSRF/Weinberg able to include the effect of the pion mass, which we have
(dashed| Veneziano(dot-dash, and intermediatgZ=0.45m2/2f2  neglected in the present study. These questions will be ad-
(solid) couplings. Some experimental data are also shown. dressed in a future study.
i . . . Theoretically,7r7 scattering is the simplest laboratory of
This procedure gives ® wave phase shift with the e jow-energy strong interaction. Unfortunately, no new ex-
mass and width reproducing the experimental value. It mayeriment has been done since early 1980’s and the most re-
be thought as renormalizing the coupling with the “on- cent result is in some disagreement with older datée note
shell” p width, though not in the sense of conventional per-inat more recent experiments on the meson utilize
Shif for hroe casesy only for KawarabayashiSusck. POeron-Pomeron” scattering opp amitiation) New
Riazuddin-FayyazudditkSRP coupling(2.8) and degener- exper!ments Wlt'h more precision are clearly desirable. Sys—
ate p—o for Veneziano(2.12 and KSRF.-Weinberqz 9 f[ematlc urjcertalntles may also be _reduced. In fact, the exist-
' ' ing data involve some extrapolation because they are ex-

Sglrjpls'ﬂgﬁ't Tr?e dlff_eretr:ce ;]n the h't;tar'lgh Cou_pllrg;p glﬁeds_ﬁ tracted from the reactiomrN— 77N. It would be much
y slight change in the phase shilt. There Is a small di €l more welcome if direct beam-beamm experiment can be

ence in the region away from the resonance dependlngone

whether theo exists or not. '
We can now determine the two other subtraction con-

stantsdg, andd;, from the relations discussed at the end of

the previous section: Eq4.14) for the p-only case, Eq.

(4.19 for the degenerate case. It is then possible to calculate We would like to thank M. and T. Ishida for providing the

the twoJ=0 phase shifts using these parameters. numerical w7 phase shift data, and M. Chanowitz and M.
In Fig. 2(@), we show the calculatel=J=0 phase shift Tanabashi for stimulating discussion. K. H. is supported in

in the p only scenario for three choices @, (KSRF/  part by the Grant-in-Aid for Scientific Resear@@rant Nos.

Weinberg, Veneziano, and an intermediate couplg@ 08640343 and 106402480om the Japan Ministry of Educa-

=0.45m§/f2). The experimental datf25,28-3( are also tion, Science, Sports, and Culture.
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