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We propose a method for a QCD based calculation of one-particle inclusive decays of the-febnX or
B—D*X. It is based on the heavy mass limit and a short distance expansion of the amplitudes, which yield a
power series in the parameterMLi for the spectra and i|7t\QCDmb/(mb—mc)2 for the rates. We study the
leading term of this expansion for the case of the semileptonic d&ay® X|* v. [S0556-282(99)05601-5

PACS numbsds): 13.20.He, 12.39.Hg

I. INTRODUCTION where |X) are momentum eigenstates with momentpgm
and H.¢; the relevant part of the weak Hamiltonian. The

Over the past ten years significant progress has been maélenction G depends on the invariant mab&®= (pg— pp)>
in the theoretical description of heavy flavor dechyk The  of the statgX) which ranges between
application of the hg expansion ng being the mass of the
heavy quarkallows us to perform QCD based calculations, ) 5
which in some cases yield model independent results. The O=M"<(mg—mp)~, ()
additional symmetries of the infinite mass limit, the so called
heavy quark symmetriei2], reduce the uncertainties due to where we have neglected the pion mass as well as the lepton

unknown hadronic matrix elements significantly, and correc- asses. This functiofs is related to the decav rate under
tions to this infinite mass limit have been studied extensivel)}.n - IS functl : y u

using the framework of heavy quark effective theoryconsideration by

(HQET) [3].
The heavy mass expansion has been applied to various - 1
classes of decays. As far as exclusive decays are concerned dI'(B—DX)= ﬁdCDgG(MZ) 3
B

the main progress has been achieved for semi-leptonic de-
cays, while exclusive non-leptonic decays still have not sim-
plified through the heavy mass limit.

The other side are the fully inclusive decays, the rates o
which can be obtained as a power series inglby means of meson. 5 . .
an operator product expansi®®@PB and subsequent appli-  1he region close t°~0 is dominated by a few reso-
cation of HQET[4]. Here semi-leptonic as well as the non- Nances(the = and p states in the non-leptonic casand
leptonic processes may be described, allowing us to compuf@vay from this region one can expect duality to hold. In
lifetimes and branching ratios. The pattern is well repro-particular, this should be true in the limit in which,, m.
duced by the 1, expansion, although some open problems—, since in almost all available phase space we Have
remain[5]. >Aqcp-

Up to now no attempt has been made to apply similar In technical terms this means that we are going to set up a
methods to one-particle inclusive decays, such Bs short distance expansion for the quan@yM?). The pro-
—DXI"v or B—=DX andB—D* X. Obviously the standard cedure is similar as the one for inclusive decays, we write
method as in the inclusive case does not work in a naive
way, since in the final state[a or aD* is projected out, and .
the same set-up as in the inclusive case will not work. G(M2)=E f d4x<B(pB)|Heff(x)|D(p5)X>

In the present paper we propose a method which allows us X

Yvhered@g is the phase space element of the final shite

to compute one-particle inclusive rates, based on QCD. The

main ingredients are similar as in the fully inclusive case. In X(D(pp)X|Her(0)[B(Ps)) @
the next section we shall describe the method and then dis-
cuss its application to semi-leptonic decays. and make use of the fact that, and m, are both large
scales. We make these scales explicit by redefining the heavy
Il. DESCRIPTION OF THE METHOD quark fields inH,; by
We shall consider first decays of the foBa-DX (i.e. a
b— c—transition) and thus study the expression b(x)=b,(x)e" ™ ¢c(x)=c, (x)e"M'* (5
2y — N(n— 2
G(M )—; |(B(pg)|Her|D(pp)X)| where the velocities are defined gg=mgv and pp
= mDU ! .
X (2m)*8%(pg—Pp—Px) oy Inserting this yields
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FIG. 1. lllustration of the short distance expansion of ).

‘ , pansion involves dimension 6 operators and we shall discuss
G(M2)=; f d*xe™! (Mo~ Mev ) in the present paper only this contribution. If we consider
only this leading term, we may even replace the operdiprs
><<B(v)|ﬁeff(x)|5(v’)x> andccll by static HQET quarks. In the following this replace-
ment is understood.
x(ﬁ(v')xme”(o”s(v)), (6) The corrections to be expected can easily be estimated.

Since the full momentum transfer@=M + k wherek is the
where Hqy; is obtained fromHq¢; by the replacements ~ sum of the residual momenta of the hedgndc quark, the
_>bU andc_>cv, . Equation(6) shows that the |arge momen- corrections to the |eading term Originate typlcally from
tum entering the game is,v —m’.

The next step is a short distance expansion of the matrix ~2_ ,2 2 N_m2
element appearing in E@6) yielding a power series in in- Q*=M"+2M-k+ O(Agep) =M M2
verse powers of the large momenti=myv —mgp’: 9)

1+ oo

* and hence the corrections involve typically matrix elements
G(M?)= 2 X C"(u)(B(pg)|O"B(Pa)lu- () of the form

The operators) (" depend on the final stal@-meson and 2)(: (B(v)|[c, Th,][D(v")X)}D(v")X|

are the analogue of the production operators as they appear

in heavy quarkonia productiof6] or in one-particle inclu- X(M-iD)[b,I''c, 1|B(v)) (10)
sive production ire™ e~ annihilation[7]. They are local and

have the generic structure where D is the covariant derivative of QCD. This matrix

element will be of ordeM-vAqcp and consequently the
01"= [c,/b,]ID(v ) X)(D(")XI[B,I"c,], (g MeModworks asong as

2M v

whereI'(") denotes a combination of Dirac matrices and co- M2 Aqep=l. (1)
variant derivatives.

The matrix elements of thé@ (" between stati®® meson M2 andM -v are not independent variables, since they both
states are universal functions of the velocity produce’.  can be expressed in terms of the velocity produeb’.
We shall not give a detailed proof of factorization of the EliminatingM -v one obtains
matrix elements into long and short distance contributions,
rather we are aiming at a phenomenological analysis of the Agco mﬁ—mi
one-particle inclusive semi-leptonic decays. We remark that m, M2
the method is not as rigorous as in the case of fully inclusive

decays, where the heavy mass expansion is derived by ahd hence it is obvious that the expansion breaks down for
operator product expansion. However, Fig. 1 makes the akery smallM2. Here again a similar situation occurs as in
gument plausible. Fav? large enough the large momentum the inclusive semi-leptonic decays, where the endpoint re-
flows through the statéX) and we assume that parton- gion may be described in terms of a shape function.
hadron duality holds for this part of the diagram, and hence On the other hand one may ask whether the short distance
we can compute this part in perturbative QCD. expansion works at all, and thus it is instructive to insert the
The dimension of O in (7) is n+6 and hence maximal value forM? which is possible in a decay. One
cM/c{"* 1 is of the orderM. The leading term of the ex- finds that the parameter

+1

<1, (12)
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ZAQCD
My —Mc

should be small compared to unity. Inserting the pessimistic
value Agcp=500 MeV one finds that this parameter is
about 1/3, which justifies our approach for the spectra at lea
close to maximaM?. In order to get the total rates an inte-

gration over the phase space of Demeson has to be per-

formed. The details depend on the process under consider-
ation, but the typical size of the corrections can be estimated
by computing some arbitrary phase space average. Choosing

a phase space measure as

— - M?
dd=2mydp
VI(me+mp)*=MZ][(me—my)? = M?]
(13
which yields very simple integrals we find
—M-v
[ o
N <M-v> N M2 myAgep 1
Qcp\ 5 [/ —4qcp = ~7
Ve fda (mb_mc)2 4
(14

justifying the short distance expansion also for the rates.
The second type of corrections are the QCD radiative cor-
rections which can be computed systematically. They will be
of the orderag(M?) and hence will be small enough to be
treated perturbatively. As usual, the logarithms
ag(M?)In(M?) can be resummed by renormalization group
methods; for the leading terms this will be done in Sec. Il
In the present paper we study only the leading term of the
expansion and focus on applications to weak interactions. In
this case we need to consider a matrix element of a
dimension-six operator involving the left handed currents.

PHYSICAL REVIEW D59 034003

Using

b,M(1- ys)c, =(my—mc)b,c, — (My+m)b, ysC, -

(18)
ye can write the leading order contribution as
2
G(M?)= 5 |Vey| *4mgmol (Mg —Mp) (v -v”)
+(mg+mp)?7p(v-v’)
—M?(py(v-v")+ 7alv-v"))] (19

where we have defined non-perturbative matrix elements as

4mBmDns<v-v'>=§ (B(v)|[c,/b,]ID(v")X)
X(D(v")X|[b,c,/1|B(v))  (20)
—4mBman<v-v'>=§ (B(v)|[c, ysb,]ID(v")X)

X(D(v")X|[b,¥sC,1|B(v))

v")=2, (B(v)|[c, ¥*b,]|D(v")X)

X

4mgmp ny(v
X(D(v")X|[b,7,¢, 1IB(v))
4mgmp WA(U'U/):; <B(v)|[a,/7“75bv]|5(v’)x>

X{(D(v")X|[b, ¥, ¥5C,1|B(v)).

Once radiative corrections are taken into account, these op-

We consider the leptonic case in some detail; inserting th€aors mix with the corresponding operators whereotad

well known effective Hamiltonian for semi-leptonic decays
we find

2 G'2: 2
G(M ): 7lvcb| P,LLV(M)

x; (B(v)|[c,r y*(1— ¥s)b,]|D(v")X)

X(D(v")X|[b,y" (1~ ¥5)C, 1|B(v)),

whereP ,, is a tensor originating from contracting the lepton
fields in the effective Hamiltonian. This tensor only depends
on the vectoMM and hence has the form

(15

P.(M)=A(M?)(M?g,,—M ,M,)+B(M?)M M

e

Neglecting the lepton masses, we obtain, at the tree level,

A(M?)=— 1 O(M?) andB(M?)=0 (17
37 )

the c quark are coupled to a color octet:

4mBmDps<v~v'>=§ (B(v)|[c, T?b,]|D(v")X)

X(D(v")X|[b, T, 1|B(v)) (21)
—4mBmDpp<v-v’>=§ (B(v)|[c, ¥sT?,]|D(v")X)

X(D(v")X|[b,ysT,1|B(v))

4mBmDpv<v-v'>=§ (B(v)|[c, ¥*T?,]|D(v")X)

X(D(v")X|[b,y, T, 1|B(v))

4mBmDpA<v-v'>:§ (B(v)|[c, ¥*¥5T2b,]|D(v")X)

X(D(v")X|[b, 7, ¥sT3C, 1|B(v)).
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Note that we are using parton-hadron duality and {bsis v v v v v v
expressed in terms of QCD degrees of freedom and thus thi
matrix elementgp; are nonvanishing.

IIl. RENORMALIZATION GROUP IMPROVEMENT

Under renormalization the matrix elemeri0),(21) be-
come scale dependent quantitiegv-v’,u),pi(v-v', 1.
We chose to construct the short distance expansion at al
intermediate scale=1/2(m,+ m,), where both thé andc
quark are treated as static fields described by the HQET.
However, the typical scale of the hadronic matrix elements is
a low hadronic scalge= A . Using the renormalization group

the matrix elements can be scaled from the matching soale
down to the low scale\. In our numerical analysis we use
ag(A)=1, whereag(w) is the one loop expression for the ' o v v
running coupling constant.

To this end one has to renormalize the operators

v v v v v v

FIG. 2. Feynman diagrams contributing to the one loop anoma-
lous dimensions. The blob represents generically the operators cor-
. . . . responding to they; andp; .

O{Y'=2 [c, Tib,]ID(")X)(D(v)X|[b,T'ic, ] , o _
X function renormalization of the heavy quark fields

0®

ag 1 ,
7112(?>(Nc_ N_C)K(U'U ),
=§ [c, TiT%,]1|D(v")X)(D(v")X|[b,T'i T, ]

as) )

23 Yis= (W 2K(v-v")

where I';=1,ys5,7,,7,Ys.- Because of heavy quark spin ag\ 1 ,

symmetry mixing occurs only between singlet and octet op- Y81= (;)5 Nt 1|K(v-v"),

erators corresponding to one specific Dirac structlife ¢

That means a basis closing under renormalization is given by

oM and0® for every individuali (%) 2 '
i O; y individuali. . yes=| —|——K(v-v") (25)
The mixing properties of the operators translate into that 7/ Nc

of their matrix elements. Therefore we can formulate the hereN.=3 is th ber of col d

renormalization group equation directly in terms of the WNereNe IS the number ot colors an

ni(v-v',u) andp;(v-v’,u) as follows:

K(o-v) =100 Rer(v-0)], r(m=m 2D
v'v )=1—Uv'V rv-v y Mz)=———
! — ! ! 22_1
mﬂi(v'v )= yuni(v-v' m)+ yigei(v-v', m) (26)
24
24 The functionr(v-v’) typically appears in the anomalous
dimensions of velocity changing heavy quark currdiis
mpi(wv’,,u): verni(v-v' )+ yagpi(v-v', ) In our case only the real part ofv-v') shows up in the

anomalous dimensions, since the corresponding Feynman
amplitudes contribute to the forward matrix element of a
Hermitian operator which has to be real. Note that individual
geynman diagrams develop imaginary p&8&$®] which drop
8ut in the sum.

Solving Eq.(24) we express the matrix elemenys, p; at

the scalem in terms of their value at an arbitrary scate

Since we restrict ourselves to the leading logarithmic ap
proximation, it suffices to know the one loop anomalous di-
mensions. These are given by the divergent parts of th
Feynman diagrams shown in Fig. 2 supplemented by wav

!Note that at least to one loop order the renormalization properties

Ei(v-v")=n(v-v',m=Cyv-v’, i(v-v',
of these operators are identical to those of the operators '( )= )=Cul )il 2

oW=[c, Tib,I[b,Iic, 1, +Cg(v-v", w)pi(v-v', 1)
®_re [T Tb.T . Téc., _
. O =le, T'Tb,]ib, 11T, ] . .(23 Ri(v-v")=pi(v-v',m)=Cgyv-v" 1) 7i(v-v", 1)
since the UV behavior is independent of the states, includindthe
appearing in the final state. +Cgg(v-v' , u)pi(v-v', 1). (27)

034003-4



ONE-PARTICLE INCLUSIVE SEMILEPTONICB DECAYS PHYSICAL REVIEW D59 034003

The coefficient function€;;(v-v',u) are given by The Wilson coefficient€,, andC,5 have been given in Eq.
(298).
. , To get some expression for the functioms and p;(i
Culv-v' p)= ﬁ+ 1- N2 {v-v'p) =S,P,V,A) we first observe that ai-v’=1 the inclusive
C C

rate is saturated by the exclusive decays into the lowest-lying
, 2 , spin symmetry doubldd andD*. Furthermore, at this point
Caglv-v'p)= N—C(l—g(v~v ) (28) only the 5 contribute, sinc€4(v-v’ =1)=0. TheD* sub-
sequently decays int® mesons and thus at-v’'=1 the
sum of the exclusive rates f@—DI*v andB—D*I* v is
equal to the one-particle inclusive semi-leptonic rd&de
—DI*vX, which is again equal to the fully inclusive rate
1 B—Xg *v. In other words, at this point there are no decays
Coglv-v',p)=1+ F(é(uv’,,u)— 1) into other charmed hadrons th@nmesons.
¢ Off this point things become more complicated. However,
where as far as the total rates are concerned, still the exclusive
decaysB—DI"v and B—D*|*v saturate the fully inclu-
sive rateB— Xl T v at a level of about 70%. Since tfi2*
decay all intoD mesons, it is certainly a good starting point
to approximate thep; by something one obtains from the
with Bo=(33—2N;)/12 andN;=3 for three active quark sum of the exclusive decays. In other words, we shall express
flavors. the 7, in terms of the Isgur-Wise functiof2].

Note that in the case of semi-leptonic decays only the The approximation we are going to use corresponds to
functionsE;(v-v’) are needed, since in leading log approxi- some kind of factorization assumption formulated for
mation(LLA) there are no octet contributions at the match-G(Mz)_ The functionsy, are defined by the matrix elements
ing scale. (20) and we shall approximate these matrix elements. How-

ever, as with the usual factorization, our approximation is not
IV. ONE-PARTICLE INCLUSIVE SEMI-LEPTONIC a scale invariant concept, and hence we have to define, at
DECAYS which scale it should hold. At a small hadronic scaleve
We shall first try to understand the data on the dedays replace in(20)

—DXI*v. In order to do this we need to have some idea
about the matrix elementg; andp;(i=S,P,V,A) which are
defined in Eqs(20) and(21). We shall work to leading order

1/(1
Cai(v-v',u)= ZNC(Q—l)(Z(v-v’,M)—l)

(N/2Bg)K(v-v")
as(um) oo

ag( a)

{(v-v' u)=

in the 1M expansion and hence identify.= mp=mp» and 2 <B(v)|[€,,,1“ibv]|5(v’)x>
mp=mg. X

We are aiming at the energy spectrum of heneson in
the one-particle inclusive decays of the tyBeaﬁxl*v. ><<5(U')X|[EFinr]|B(v)>|M=A

The rate is obtained by integrating over the phase space of

the D. Taking into account renormalization one gets — =
J J —(B(v)[¢, Tib,[D(v")) -

2

dr 1 mg B B
d_yzz_nhG(Mz)ﬁvyz—l (29) X<D(v,)|vaiCU'|B(U)>|’u:A
G|2: 2,3 N B(o) S Tb. Do/ )Y (D*
:12773|Vcb| mgy?—1 Y%)( (0)[cy Tiby[D(v")Y(D*))] o=
X[(mg—mp)?Es(y)+(Mg+mp)*Ep(y) X(D(v")Y(D*)|b,TiC, |B(v))] ,-» (31)
v I~v n=
~MZ(E\(y) +Ea(y))]

wherey=v-v' and theE;(i=S,P,V,A) are the renormal- WhereY(S*) is defined byﬁ*—>5Y(5*), i.e.,Y(S*) is

ization group invariant combinations of th andp; either a pion or a photon originating fromDet decay. In the

following we shall call this replacement factorization, since
it is closely related to the factorization assumption known
+Cigv-v' w)pi(v-v',m). (300  from non-leptonic decays. We get, again schematically

Ei(v-v')=Cy(v-v",u)mi(v-v', 1)

034003-5
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; (B(v)|[c, T'ib,]|D(v")X)

X(D(v")X|[b,'ic, 1IB())] 1= 2
—(B(v)|c,/ Tib,[D(v"))] =

X(D(v")|b,T'ic, [B(v))] ,-A
+% (B(v)|c, Tiby|D*(v",€))] 1=

X(D*(v',€)[b,Tic, [B(v))|1=a
X Br(D* —DY(D*)) (32)

where the sum runs over the polarization states ofxheln

PHYSICAL REVIEW D59 034003

(36)

(112B0) yhn(v-v')
Calo-v’ )= as(,u)> 0)¥hn(v-v
sV )=

ag(m)

where

1 1
Yhh(U'U')ZE<Nc— N—C>(1—v-v’r(v-v'))- (37

The factorization assumption yields expressions for the
matrix elementsy; at the small scalé\, but it does not tell
us anything about the color octet contributigns It is well
known that factorization should hold in the limN,—o°.
This fact is indeed reflected in thid. dependence of the

Eg. (32) we have used the narrow width approximation for Wilson coefficients, since

the D* in the intermediate state.

The matrix elements appearing in the factorized expres-
sion (32) can all be expressed in terms of the Isgur-Wise

function:

(B(v)[c, Tib,[D(v"))],,
1
= ZVmBmDTr{75(1+715)Fi(1+Iﬁ')75}5(0'U’,M)
<B(U)|€v’ribv|5*(vrv€)>|,u

1
= ZVmBmD*Tr{75(1+Ié)Fi(1+w,)é}f(v'UIaM)
(33

From this we get

PR G0l
T G

+c¥(v-v')Br(D*—>DX(D*))] (34)

where
ci(v-v' |Tr{y5<1+ué>r (1+4") ys}|?
1
o (v-0")= gz 2 [Triys(L+H)Mi(1+8) &

andX(v-v') is the renormalization group invariant combi-

nation
X(w-v")=Cs(v-v',u)é(v-v',pu). (39

The Wilson coefficientC(v-v’,u) renormalizing theb,

||m Clgz I|m Cg]_:o

Ng— Ne—o

Ng—

||m Cllz |C3|2

NC—>m

and thus the dimension 6 operators renormalize as products
of dimension 3 currents and factorization becomes scale in-
dependent. This does still not tell us much aboutghebut
a natural assumption is that they are of the ordéf:1and
hence we shall take; to be constant withp;(v-v’,u)
=1/Nc . This simple ansatz, ignoring a possible dependence
onv-v’, does not introduce large uncertainties for the one-
particle inclusive semi-leptonic decays, since gheare only
induced through radiative corrections.

In the following we shall consider the decays of tBé

and theB®, both of which contain & quark undergoing a
semi-leptonic transitiorb—cl * ». In the heavy mass limit
for thec quark the final states involvingaquark O° or D *
state$ are suppressed, since this would involvea pair
creation. To leading order in b the possible decays are
thus

B*—=D%*yX, BY*—=D ITuvX (39
B Do%*vX, BO—D ITuX.

Since many of thd mesons originate frorD* decays we

—c, current is known to two loops, but since we computedhave to take into account the relevant branching ratios of the
Cn andClg only to one loop, it is sufficient to insert the one D* mesons into thé mesons of different charge. We use

loop result

[10]
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Br(D* ~—D®X ~68%, BID* —D X)~32% — C A —

( —D"X) 0 ( — ) 0(40) E\B,ODO(y)Z 121(y )Br(D**—>D°X)
Cs(y,A)

Br(D*°—D%X)~100%

1
_ _ X5y = DIX(y)[?
and hence we can have the following decay chains

. Br(D* % D°X) o 1
BY*—D*% "y — B*—DY%TpX +C18(y’A)N_C
Br(D* ~—D"X)
B°—D* |Ty - B°—D I1twyX (41 — Cu(y,A _
(41) ,?\ODO( )= — 121(y )Br(D**—>D°X)
Br(D* ~—DOX) Ci(y,A)

BO—D* | Ty — BO—>50|+VX,

1
— 2
where the arrow indicates that—in addition to the direct de- ><2(y+2)(y+ DXyl

cay channeB— DI * v—the exclusive mode on the left-hand 1
side (LHS) contributes to the one-particle inclusive rate on +Cug(y,A) — (43
the RHS weighted with the branching ratigk). Nc
We shall label theg; for the different decay mode89)
with a superscript indicating the initid and the finaD ~ and
meson. Taking into account thi#* branching ratiog40) we

arrive at the following expressions for ti involved in the gop-, . Culy,A) 1 ) ) 1
(44)
P~ Culy,A) 1 1
3=,y a0 DX Caly ) o
3y, ¢ 80D~ Cu(y,A) . -
ESP (y)=—o""Br(D* —D"X)
B+50 C]_]_(y,A) 1 2 2 1 C3(y!A)
P ( )Zmz(y —1)[X(y)| +018(V,A)N—C L L
o X3P = DIX)+ Caly, M) g
oo Cu(y,A) 1
V=G 2 DX
34 0 Cu(y,A)[1 B B
EV® (y)=—5 | 5(y+1)=Br(D* =D X)
1 C3(y,A)
+C18(y’A)N_C
1 1
Xz(yz—l))|X(Y)|2+C18(V,A)N—
£8Py YV Ly o)y )
) Ci(y.A) 2 oy A)
1 ES (y)=— 2D g pr-pox)
><|X(y)|2+Cls()/,/\)N—C- (42) Ca(y,A)
1 1
In the B® decays we have to take into account thé& - ><§(y+2)(y+ 1)|X(y)|?+ Clg(y,A)N—c.

branching ratios as

Note that atv~v’=i we have simBIy the sum of the gclu-
sive channelsB—DI*» and B—D*|"v, where theD*

component is weighted with the approprid® branching
EB°D% )=C11(y'A)Br(D*‘—>5°X) ratios, since hereC;;=Cz=1 and C,4=0. Off the point
P Cg(y,A) v-v'=1 we still haveC,;/(C3)?~1 but there is also an
additional contribution from the octet contributiops. As
1, 2 we shall see, these additional contributions are consistent
Xy 1)|X(y)] with the data, despite our crude estimate.
Inserting these lengthy expressions into the master for-
mula (29) one obtains expressions for the one-particle inclu-

sive energy spectra of thB mesons. To leading order in

0/0 1
ESP(y)= Cls(y,A)N—
C

1
+Cls(y’A)N_C
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0.4 ‘ TABLE |. Comparison of our results with data. To get branch-
ing ratios, we usedrg+= 7g0=1.55 ps. HereD** denotes any
final state with & meson which does not come from the exclusive

03 [ | decays listed in rows three and four. The last two rows are com-

iRl mented on in the text.
T? \\?;\\\\ Mode Br (theory) Br (data from[10])
202 S el 1 B—D IwX 2.2% (2.7:0.8)%
T ~. RN J—
5 e S Tl B—DY%*tyX 6.7% (7.0:1.4)%
N ] B—D I*p (1.5+0.5)%
o1 TR T~ B°—D *Iy (4.68+0.25)%
-------------------- B_D* | v (3.5£0.6)% (2.70.7)%
B—nonDI*v (0.6£0.4)%
O I I
1 1.2 1.4 1.6 o
4 A; running up to the matching scata yields a significant

FIG. 3. Decay spectra of the one-particle inclusive decays. Sohgontnbutmn from gluon exchanges. We interpret these con-
line: B—~D I*vX; dotted line: B—D% *vX; dashed line:B mbutlons asB—D**|*v where D** now stands for all
— (D~ +DYI*vX, dashed-dotted lineB®— (D~ +D* )| *». D-meson final _states, which do not originate froB
—DI*y or BD*|*p. Although the ansatz for the octet
]_/mC the energy of thed* meson is equa| to the energy of matrix elementp; is extremely S|mple we obtain a reason-

the D meson originating from the dec&* —DX sinceXis  able number, namely BB—D**1"»)~32%xBr(B
soft of the order l'h —>XE| JrV) where we UseBr(B—>x<| +V) (104i 04)%

In order to actually obtain numbers one needs the Isguffom [10]. From Fig. 3 it is obvious that the
Wise function as an input. A good fit to the experimentalD** -contribution vanishes at-v’'=1 as required by the
data is obtained already with a linear function, which is fittedheavy quark limit.
to the renormalization group invariakiy) The last row of Table | gives the branching ratio for de-
cays which do not have B meson in the final state, rather
some other charmed hadron. The only other ground state

In Fig. 3 we plot the spectra of th® meson for the hadron is aXC so this should be the branching ratio Br

X(y)=1—a(y—1) with a=0.84 [11]. (45)

combined rates —AXI*y for which we obtain BrB—AXI"v)=6%
XBr(B—Xg *v). This is what one would expect on the
£(8—>D7|+ X) = E £(8+—>D* +1X) basis of the naive reasoning that a heavy quark hadronizes
dy v 2\ dy v into a baryon with a branching ratio of about ten percent.
dr
+ d—y(B°—>D‘I +vX)) V. CONCLUSIONS

Exclusive semi-leptonic as well as fully inclusive decays
dr — . o+ of heavy hadrons have a well established basis in QCD.
_(BHD /TrX)= 2 d_y(B =D vX) While in the former case it is the heavy mass limit of QCD,
formulated as an effective theofiAQET), in the latter case
it is the heavy mass limit combined with parton-hadron du-
ality, formulated as an operator-product expansion.

On the other side there are the exclusive non-leptonic de-
and compare it to the sum of the exclusive dec®f% cays, where no theoretically solid basis for a calculation of
—D 1"y andB°—D* | Ty, branching ratios exists. However, these decays are of prime

One may also integrate the spectra to obtain a total rataterest with respect t€ P violation and the determination
for the one-particle inclusive semi-leptonic processes. Irof the CKM matrix. In this field the heavy mass limit has not
Table | we compare the rates we obtain from our approaclrought any significant progress.
with the experimental data frofri0]. In this work we have set up a QCD based description for

Table | and also Fig. 3 exhibit a few interesting features.one-particle inclusive decays. The basic ingredients are the
First of all the experimental data are well reproduced. Furheavy mass limit and a short distance expansion. We obtain
thermore, although we have used the assump{8# our  operators similar to the ones describing heavy quarkonia pro-
result is not simply the sum of the inclusive decags duction or one particle inclusive processes. We have formu-

—DI*vandB—D*| ", since Eq(32) is a scale dependent lated this method for decays of the tyBe»SX whereXin
statement. We assume that Eg2) holds at the small scale principle can be any state.

dr _
0 0 +
+ gy (8D | vX))
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We have applied this method to one-particle inclusivegriginate not from the exclusive modd—DI* v and B

semi-leptonic decays of the for@—DXI* v, studying the  _,p*|* . This is in accordance with the experimental data
leading order in the operator-product expansion. Higher Orqiving us some confidence in our method.

der terms are suppressed by inverse powers of a large scale T approach suggested in the present paper opens the

(rjelated o the heavyt quadrlf rr:asses.f‘l’q Iﬁ?gmg prder,dall the%ﬁ)or to a QCD based description of one-particle inclusive
ecays are parametrized in terms of eight functipnandp; processes; it is not limited to semi-leptonic decays. In par-

which depend on the velocities of tileand theD meson.  ticylar, the non-perturbative functiong andp; are universal

The main problem is to obtain these non-perturbative;ng should also describe other one-particle inclusive pro-
functionsz; andp; and we employed the fact that the inclu- -ggges.

sive semi-leptonic decays are dominated by the two channels

B—DI*v andB—D*|*». Using this as a starting point we

may obtain four of the unknown functiorfthe %;) in terms ACKNOWLEDGMENTS

of the Isgur-Wise function with a well motivated factoriza-
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