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Power spectrum estimators for large CMB datasets
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Forthcoming high-resolution observations of the cosmic microwave background radiation will generate data
sets many orders of magnitude larger than have been obtained to date. The size and complexity of such data
sets present a very serious challenge to analyzing them with existing or anticipated computers. Here we present
an investigation of the currently favored algorithm for obtaining the power spectrum from a sky-temperature
map—the quadratic estimator. We show that, while improving on a direct evaluation of the likelihood function,
current implementations still inherently scale as the equwaleﬁI(N ) in the number of pixels or worse, and
demonstrate the critical importance of choosing the right |mplementat|on for a particular data set.
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PACS numbd(s): 98.70.Vc, 98.80.Es

[. INTRODUCTION space—for example by maximum gradient ascent—typically
requiresO(Ny) likelihood evaluations at each of many steps.
Over the next ten years a number of ground-basedMoreover, calculating the curvature of the likelihood func-
balloon-borne and satellite observations of the cosmic microtion at its maximum by discrete differencing requires further
wave backgroundCMB) are planned with sufficient resolu- O(N2) likelihood evaluations. Overall such calculations
tion to determine the CMB power spectrum up to multipolesscale asO(N?) in size andO(N2N3 p) In time, and become
| ~1000 or more(for a general review of forthcoming obser- hopelessly intractable for any of "the anticipated data sets.
vations seg1]). According to current theory this will pro- However, it is worth noting that where it is possible, exhaus-
vide us with the locations, amplitudes, and shapes of théve direct evaluation does have the advantage of giving the
Doppler peaks, and hence the values of the fundamental cofisll probability distribution rather than just the maximum
mological parameters to unprecedented accuracy. The CMBnd its variance.
will then have lived up to its promise of being an extremely  There have been a number of attempts to improve on this
powerful discriminant between cosmological models scaling—for example by using quadratic estimafidrg], by
In preparation for these data sets considerable effort igransforming to the signal-to-noise eigenbd&i by using
being put into developing ways of extracting the informationapproximations for the determinaf@], or by assuming azi-
they contain. Typically the raw data are cleaned and conmuthally symmetric nois¢as is expected from the Micro-
verted into a time-ordered data set. This is then turned into @ave Anisotropy ProbéMAP) satellitd [7]. However, none
sky temperature map, and the map analyzed to find its powefas yet provided a way to search a high dimensional multi-
spectrum. Having obtained the power spectrum of the datpole bin parameter space under an arbitrarily complex data
set we can compare it with the predictions of any class oket in fewer tharD(N3) operations. In this work we discuss
cosmological models to determine the most likely values ofne two proposed |mplementat|ons of quadratic estimation,
the parameters associated with that class. While it would alsg|ar,fymg the full scaling behavior of each and hence dem-

be possible to estimate such cosmological parameters dinstrating the circumstances under which each should be
rectly from the data, this would require the assumption of g,ge(.

class of models during the data analysis. We therefore
choose to provide the more generic result of the power spec-
trum.

We consider the analysis of aN, pixel map from a Any observation of the CMB contains both signal and
simple pointing experiment for multipolessd <N, in bins  noise
1<b=N,—i.e. we determine the location of and the curva-
ture about the peak of the maximum likelihood function of Aj=si+n; @
the binned power spectrum coefficiernty,. Traditionally
this has been done by directly evaluating the likelihood func-at each pixel. For independent noise and zero-mean signal
tion £(C) over the bin parameter space to locate its maxithe covariance matrix of the data,
mum (for example for the COBE daf&], with the additional
refinement of using a complete set of cut-sky basis functions M=(AATY=(ssT)+(nn"), 2
in place of the incomplete spherical harmonicEhe fastest
general solution uses Cholesky decomposition of the dates symmetric, positive definite and dense. Given any binned
covariance matrix, costin@(Nf)) in size ancD(Ng) intime  power spectrunC, and a shape paramet€f within each
for a single point in the bin parameter space. Searching thibin such that

II. MAXIMUM LIKELIHOOD ANALYSIS
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C= C|Sbe leb, 3 TABLE I. Sc.aling.in the calcu.lation of the Fisher matifxfor
the two quadratic estimator algorithms Afirst two rows, A2 (last

. . . . three rows.
we can construct the signal covariance matrix; for a simple

pointing experiment this is

Term Memory Operations
Np
21+1 R 2 3
Sii’E<SiSi’>:bZO —1 CiBPi(cos 6;/) X=M"toe b O(NNp) O(NoNp)
No I+1 >T<r[xlfx|x—b1’1( V\?fb, O(()IEIZIEI) ) 8%’32
— sp2 3 1= I I Np I'Np
2 Co2y Tz CIBIPICOSA) @ g ON)  O(NiNy)
Tz 251 VLI O(N{) O(N})
whereB, is the multipole beam map angj; is the angular
separation of pixels,i’. Taking the CMB fluctuations to be 5 5
Gaussian, consistent with inflationary cosmologies, the prob- 9°In L _ } LEVES 9°S M-1
ability of the observed data set given the assumed power dCLdCy 2 dCLdCy
spectrum is then
2M 1 i M-t 75 M~tA
e~ ATMTTAR2 aCy, dCy»
C(C)EP(MC):(277)Np2|M|12' 5 - 25 -
. _ _ ™ ac,ac,,
Assuming a uniform prior, so tha®(C|A)=P(A|C), the
most likely power spectrum will be that which maximizes —Mfla—SMfl ) 9
L(C), with covariance matrix@ where JCp dCyr )" ©
. 9L Now if instead of the computationally intensive full curva-
[Q low=~ 7575~ : (6)  ture matrix we settle for its much simpler ensemble average
DT I C=Cpax (i.e. the Fisher information matfixwe have
2
ll. QUADRATIC ESTIMATORS Fop = — ﬂ = l T M 7l<9_SM 71‘9_3
dCpdCh/ [ 2 dCp dCp
We review the derivation of the quadratic estimator given (10)

by Bond, Jaffe and Knox5]. For an alternative derivation,
see Tegmark4]. Since we are primarily interested in finding and Eq.(8) reduces to
the maximum of£, and evaluating its curvature matrix at

i ' dln L
this maximum, we solve SC—F-1 (11)
aC
dln L
c 0 (7)  Note that this procedure both locates the maximum and gen-

erates théalbeit approximatedcovariance matrid 1.

The most computationally expensive calculation here is
the evaluation of the Fisher matrix, for which two methods
have been proposed. Noting that, from E4), the derivative

iteratively by the Newton-Raphson method. Starting from
some(sufficiently good target power spectrui@ the correc-

tion matrix for each bin,
#In L] tainL 9S 2141
- —_ - _ 2
5C o2 9C (8 ﬁ_Cb_leEb T CB2P,, (12)
gives rapid convergence to the maximumaf is independent of iterative step, Bond, Jaffe and Kk

Taking the logarithm and repeatedly differentiating Eq.calculate them explicitly and solve

(5),

M Xb = ﬁ_Cb (13)

1
In £=— E(ATM “IA+Tr{In M]+N,ln 27)
column by column for each bin. The first two rows of Table

Jince 1 JS S | show the cost of evaluating the Fisher matrix this way.
ne_=2 ATMl—MlA—Tr[Ml—D Alternatively, Tegmark[4] has pointed out that each
C, 2 dCy dCyp (NpxN,) Legendre polynomial matrix can be factorized
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TABLE Il. Size and time costs for the calculation of the Fisher md#rifor archetypal datasets on a SUN
Ultra Il for the two quadratic estimator algorithms Al, A2.

Size Time
Al A2 Al A2

Dataset No Ny N, O(NpN2)  O(N’) O(NpNJ)  O(NNy)
COBE 16 30 30 240 Mb 8 Mb 15 min 1 min
MAXIMA-1/ 104 30 1000 24 Gb 8 Tb 10 days 20 yr
BOOMERANG N. AMERICA

MAXIMA-2/ 10° 30 1000 24Tb 8 Th 30 yr 200 yr
BOOMERANG ANTARCTICA

MAP 10° 1000 1000 8Pb 8Th 1 Myr 2 kyr
PLANCK 10 1000 1000 800 Pb 8 Th 1 Gyr 20 kyr

into the product of the correspondipbl,x (21 +1)] spheri-
cal harmonic matrix and its transpose;

21+1 .
?PFYM (14

where
[Yilim=Yim(6;, ) (15

for the real spherical harmoni,, in the direction of pixel.
Now

JS
Fo IEEb CBYY Y[ (16)

and we can use the invariance of the trace of a product of

matrices under cyclic permutations to rewrite Et0) as

> 2 CiCiBBj,

leb ey

1
Foor =5

XTLYLM YD (YEMTY)TT (1)
and solve
MX, =Y, (18
column by column for each multipole, and
Zy =YX/ (19

for each pair of multipoles, and hence each pair of bins. Th

Fisher matrix this way.

For CMB observations we havg,<N,, so that the first
algorithm (A1) scales a®©(N,N?) in size andO(N,N3) in
time. Similarly N,2> Ny, with approximate equality for all-
sky maps, so that the second algorittiy2) scales aQ(Nf‘)
in size andO(N,“Np) in time. Table Il shows the implica-

assumption has been made about binning in the Microwave
Anisotropy ProbgMAP) and PLANCK data sets.

Finally we should note that these results are for a single
iteration of the quadratic estimator. Given the nature of the
algorithm(i.e. Newton-Raphson, with no guaranteed conver-
gence and our lack of prior knowledge of the shape of the
likelihood function, it is hard to make concrete statements
about the number of iterations required to achieve conver-
gence to a given accuracy. However, our experience to date
with the COBE, MAXIMA and BOOMERANG data sets
suggests that it is at most very weakly dependent on the size
of the data set, with data sets spanning 3 orders of magni-
tude, all requiring 5—10 iterations to achieve convergence at
the 1% level starting from a flat spectrum.

IV. CONCLUSIONS

We have implemented two algorithms using the quadratic
estimator as a means of determining the maximum likelihood
power spectrum and its covariance matrix from a pixelized
map of the CMB. Despite some previous claims, and in line
with the assertion of Bond, Jaffe and Knjd, while each is
an improvement on the direct evaluation of the likelihood
function, neither scales better in time th@(Ng) in the
number of pixels in the map. Ultimately the advantage of
each is in a reduction of the scaling prefactor as compared
with direct evaluation.

Comparing the two algorithms it is apparent that the
choice of which to use for a particular data set is critical—
with timings differing by up to a factor of 1000. Broadly
speaking, observations of small patches of the sky, where

®,> /N, , should be analyzed using A1, while all-sky maps,
last three rows of Table | show the cost of evaluating tth' P y g y map

ith N;~ N, should be analyzed using A2.

All timings have been scaled from a small data set ana-
lyzed on a SUN Ultra Il. Two further considerations imme-
diately apply.

(i) Moving to parallel architectures will give a significant
reduction in these timings. Implementation of each algorithm
on the 512 processor Cray T3E at NERSC indicates that the

tions for a range of future experiments, scaled from impleimprovement can be up to a factor of 1000. However, this
mentations of each algorithm applied to an unbinned reducedoes assume that we continue to keep all the necessary ma-

Cosmic Background ExploréCOBE) data set. Note that no

trices simultaneously in core; any reduction to vector opera-
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tions, relocation to disc, or recalculation will dramatically lated data sets in advance of the observations, improved al-
reduce this improvement. gorithms are still essential.
(i) The data sets under consideration will be obtained
incrementally over the next 10 years. We should therefore
take into consideration Moore’s law—that computer power ACKNOWLEDGMENTS
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