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Power spectrum estimators for large CMB datasets
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Forthcoming high-resolution observations of the cosmic microwave background radiation will generate data
sets many orders of magnitude larger than have been obtained to date. The size and complexity of such data
sets present a very serious challenge to analyzing them with existing or anticipated computers. Here we present
an investigation of the currently favored algorithm for obtaining the power spectrum from a sky-temperature
map—the quadratic estimator. We show that, while improving on a direct evaluation of the likelihood function,
current implementations still inherently scale as the equivalent ofO(Np

3) in the number of pixels or worse, and
demonstrate the critical importance of choosing the right implementation for a particular data set.
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I. INTRODUCTION

Over the next ten years a number of ground-bas
balloon-borne and satellite observations of the cosmic mic
wave background~CMB! are planned with sufficient resolu
tion to determine the CMB power spectrum up to multipo
l;1000 or more~for a general review of forthcoming obse
vations see@1#!. According to current theory this will pro
vide us with the locations, amplitudes, and shapes of
Doppler peaks, and hence the values of the fundamental
mological parameters to unprecedented accuracy. The C
will then have lived up to its promise of being an extreme
powerful discriminant between cosmological models@2#.

In preparation for these data sets considerable effor
being put into developing ways of extracting the informati
they contain. Typically the raw data are cleaned and c
verted into a time-ordered data set. This is then turned in
sky temperature map, and the map analyzed to find its po
spectrum. Having obtained the power spectrum of the d
set we can compare it with the predictions of any class
cosmological models to determine the most likely values
the parameters associated with that class. While it would
be possible to estimate such cosmological parameters
rectly from the data, this would require the assumption o
class of models during the data analysis. We theref
choose to provide the more generic result of the power sp
trum.

We consider the analysis of anNp pixel map from a
simple pointing experiment for multipoles 2< l<Nl in bins
1<b<Nb—i.e. we determine the location of and the curv
ture about the peak of the maximum likelihood function
the binned power spectrum coefficientsCb . Traditionally
this has been done by directly evaluating the likelihood fu
tion L(C) over the bin parameter space to locate its ma
mum~for example for the COBE data@3#, with the additional
refinement of using a complete set of cut-sky basis functi
in place of the incomplete spherical harmonics!. The fastest
general solution uses Cholesky decomposition of the d
covariance matrix, costingO(Np

2) in size andO(Np
3) in time

for a single point in the bin parameter space. Searching
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space—for example by maximum gradient ascent—typica
requiresO(Nb) likelihood evaluations at each of many step
Moreover, calculating the curvature of the likelihood fun
tion at its maximum by discrete differencing requires furth
O(Nb

2) likelihood evaluations. Overall such calculation
scale asO(Np

2) in size andO(Nb
2Np

3) in time, and become
hopelessly intractable for any of the anticipated data s
However, it is worth noting that where it is possible, exhau
tive direct evaluation does have the advantage of giving
full probability distribution rather than just the maximum
and its variance.

There have been a number of attempts to improve on
scaling—for example by using quadratic estimation@4,5#, by
transforming to the signal-to-noise eigenbasis@5#, by using
approximations for the determinant@6#, or by assuming azi-
muthally symmetric noise@as is expected from the Micro
wave Anisotropy Probe~MAP! satellite# @7#. However, none
has yet provided a way to search a high dimensional mu
pole bin parameter space under an arbitrarily complex d
set in fewer thanO(Np

3) operations. In this work we discus
the two proposed implementations of quadratic estimati
clarifying the full scaling behavior of each and hence de
onstrating the circumstances under which each should
used.

II. MAXIMUM LIKELIHOOD ANALYSIS

Any observation of the CMB contains both signal a
noise

D i5si1ni ~1!

at each pixel. For independent noise and zero-mean si
the covariance matrix of the data,

M[^DDT&5^ssT&1^nnT&, ~2!

is symmetric, positive definite and dense. Given any binn
power spectrumCb and a shape parameterCl

s within each
bin such that
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Cl5Cl
sCb , l Pb, ~3!

we can construct the signal covariance matrix; for a sim
pointing experiment this is

Sii 8[^sisi 8&5 (
b50

Nb 2l 11

4p
ClBl

2Pl~cosu i i 8!

5 (
b50

Nb

Cb(
l Pb

2l 11

4p
Cl

sBl
2Pl~cosu i i 8! ~4!

whereBl is the multipole beam map andu i i 8 is the angular
separation of pixelsi ,i 8. Taking the CMB fluctuations to be
Gaussian, consistent with inflationary cosmologies, the pr
ability of the observed data set given the assumed po
spectrum is then

L~C![P~DuC!5
e2DTM21D/2

~2p!Np/2uM u1/2. ~5!

Assuming a uniform prior, so thatP(CuD)}P(DuC), the
most likely power spectrum will be that which maximize
L(C), with covariance matrixQ where

@Q21#bb8[2
]2L

]Cb]Cb8
U

C5Cmax

. ~6!

III. QUADRATIC ESTIMATORS

We review the derivation of the quadratic estimator giv
by Bond, Jaffe and Knox@5#. For an alternative derivation
see Tegmark@4#. Since we are primarily interested in findin
the maximum ofL, and evaluating its curvature matrix a
this maximum, we solve

] ln L
]C

50 ~7!

iteratively by the Newton-Raphson method. Starting fro
some~sufficiently good! target power spectrumC the correc-
tion

dC52F]2ln L
]C2 G21 ] ln L

]C
~8!

gives rapid convergence to the maximum ofL.
Taking the logarithm and repeatedly differentiating E

~5!,

ln L52
1

2
~DTM 21D1Tr@ ln M #1Npln 2p!

] ln L
]Cb

5
1

2 S DTM 21
]S

]Cb
M 21D2TrFM 21

]S

]Cb
G D
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]2 ln L
]Cb]Cb8

5
1

2 S DTFM 21
]2S

]Cb]Cb8
M 21

22M 21
]S

]Cb
M 21

]S

]Cb8
M 21GD

2TrFM 21
]2S

]Cb]Cb8
M 21

2M 21
]S

]Cb
M 21

]S

]Cb8
G D . ~9!

Now if instead of the computationally intensive full curva
ture matrix we settle for its much simpler ensemble aver
~i.e. the Fisher information matrix!, we have

Fbb852 K ]2ln L
]Cb]Cb8

L 5
1

2
TrFM 21

]S

]Cb
M 21

]S

]Cb8
G

~10!

and Eq.~8! reduces to

dC5F21
] ln L

]C
. ~11!

Note that this procedure both locates the maximum and g
erates the~albeit approximated! covariance matrixF21.

The most computationally expensive calculation here
the evaluation of the Fisher matrix, for which two metho
have been proposed. Noting that, from Eq.~4!, the derivative
matrix for each bin,

]S

]Cb
5(

l Pb

2l 11

4p
Cl

sBl
2Pl , ~12!

is independent of iterative step, Bond, Jaffe and Knox@5#
calculate them explicitly and solve

MXb5
]S

]Cb
~13!

column by column for each bin. The first two rows of Tab
I show the cost of evaluating the Fisher matrix this way.

Alternatively, Tegmark@4# has pointed out that eac
(Np3Np) Legendre polynomial matrix can be factorize

TABLE I. Scaling in the calculation of the Fisher matrixF for
the two quadratic estimator algorithms A1~first two rows!, A2 ~last
three rows!.

Term Memory Operations

Xb5M21
]S

]Cb
;b O(NbNp

2) O(NbNp
3)

Tr@XbXb8# ;b,b8 O(Np
2) O(Nb

2Np
2)

Xl5M 21Yl ; l O(Nl
2Np) O(Nl

2Np
2)

Zll 85Yl
TXl 8 ; l ,l 8 O(Nl

4) O(Nl
4Np)

Tr@Zll 8Zll 8
T

# ; l ,l 8 O(Nl
2) O(Nl

4)
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TABLE II. Size and time costs for the calculation of the Fisher matrixF for archetypal datasets on a SU
Ultra II for the two quadratic estimator algorithms A1, A2.

Dataset Np Nb Nl

Size Time

A1
O(NbNp

2)
A2

O(Nl
4)

A1
O(NbNp

3)
A2

O(Nl
4Np)

COBE 103 30 30 240 Mb 8 Mb 15 min 1 min
MAXIMA-1/ 10 4 30 1000 24 Gb 8 Tb 10 days 20 yr
BOOMERANG N. AMERICA
MAXIMA-2/ 10 5 30 1000 2.4 Tb 8 Tb 30 yr 200 yr
BOOMERANG ANTARCTICA
MAP 106 1000 1000 8 Pb 8 Tb 1 Myr 2 kyr
PLANCK 107 1000 1000 800 Pb 8 Tb 1 Gyr 20 kyr
t
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into the product of the corresponding@Np3(2l 11)# spheri-
cal harmonic matrix and its transpose;

2l 11

4p
Pl5YlYl

T ~14!

where

@Yl # im5Ylm~u i ,c i ! ~15!

for the real spherical harmonicYlm in the direction of pixeli .
Now

]S

]Cb
5(

l Pb
Cl

sBl
2YlYl

T ~16!

and we can use the invariance of the trace of a produc
matrices under cyclic permutations to rewrite Eq.~10! as

Fbb85
1

2 (
l Pb

(
l 8Pb8

Cl
sCl 8

s Bl
2Bl 8

2

3Tr@~Yl 8
T M 21Yl !~Yl 8

T M 21Yl !
T# ~17!

and solve

MXl5Yl ~18!

column by column for each multipole, and

Zll 85Yl
TXl 8 ~19!

for each pair of multipoles, and hence each pair of bins. T
last three rows of Table I show the cost of evaluating
Fisher matrix this way.

For CMB observations we haveNb!Np , so that the first
algorithm ~A1! scales asO(NbNp

2) in size andO(NbNp
3) in

time. Similarly Nl
2>Np , with approximate equality for all-

sky maps, so that the second algorithm~A2! scales asO(Nl
4)

in size andO(Nl
4Np) in time. Table II shows the implica

tions for a range of future experiments, scaled from imp
mentations of each algorithm applied to an unbinned redu
Cosmic Background Explorer~COBE! data set. Note that no
02730
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assumption has been made about binning in the Microw
Anisotropy Probe~MAP! and PLANCK data sets.

Finally we should note that these results are for a sin
iteration of the quadratic estimator. Given the nature of
algorithm~i.e. Newton-Raphson, with no guaranteed conv
gence! and our lack of prior knowledge of the shape of t
likelihood function, it is hard to make concrete stateme
about the number of iterations required to achieve conv
gence to a given accuracy. However, our experience to
with the COBE, MAXIMA and BOOMERANG data sets
suggests that it is at most very weakly dependent on the
of the data set, with data sets spanning 3 orders of ma
tude, all requiring 5–10 iterations to achieve convergenc
the 1% level starting from a flat spectrum.

IV. CONCLUSIONS

We have implemented two algorithms using the quadra
estimator as a means of determining the maximum likeliho
power spectrum and its covariance matrix from a pixeliz
map of the CMB. Despite some previous claims, and in l
with the assertion of Bond, Jaffe and Knox@5#, while each is
an improvement on the direct evaluation of the likeliho
function, neither scales better in time thanO(Np

3) in the
number of pixels in the map. Ultimately the advantage
each is in a reduction of the scaling prefactor as compa
with direct evaluation.

Comparing the two algorithms it is apparent that t
choice of which to use for a particular data set is critical
with timings differing by up to a factor of 1000. Broadl
speaking, observations of small patches of the sky, wh
Nl@ANp , should be analyzed using A1, while all-sky map
with Nl;ANp , should be analyzed using A2.

All timings have been scaled from a small data set a
lyzed on a SUN Ultra II. Two further considerations imm
diately apply.

~i! Moving to parallel architectures will give a significan
reduction in these timings. Implementation of each algorit
on the 512 processor Cray T3E at NERSC indicates that
improvement can be up to a factor of 1000. However, t
does assume that we continue to keep all the necessary
trices simultaneously in core; any reduction to vector ope
2-3
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tions, relocation to disc, or recalculation will dramatica
reduce this improvement.

~ii ! The data sets under consideration will be obtain
incrementally over the next 10 years. We should theref
take into consideration Moore’s law—that computer pow
doubles every 18 months—to allow for corresponding
creases in available memory and speed. Current trend
not, however, suggest any significant increase in the t
parallel processor time (O(104) hours! available to us.

Taken together, we can conclude that these algorith
judiciously applied, will be sufficient to analyze 104 pixel
data sets immediately, the 105 pixel data sets expected in th
next 2 years some 6 years from now, and the 106 pixel data
sets expected in 5–10 years only 16 years from now. H
ever, since we would like to be able to analyze not only
actual data sets as soon as they are obtained, but also
el
e
.

L.
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lated data sets in advance of the observations, improved
gorithms are still essential.
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@3# K. M. Górski, Astrophys. J. Lett.430, L85 ~1994!; K. M.
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