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We examine the AdS-CFT correspondence when gauge theory is considered on a compactified space with
supersymmetry-breaking boundary conditions. We find that the corresponding supergravity solution has a
negative energy, in agreement with the expected negative Casimir energy in the field theory. The stability of
the gauge theory would imply that this supergravity solution has minimum energy among all solutions with the
same boundary conditions. Hence we are led to conjecture a new positive energy theorem for asymptotically
locally anti—de Sitter spacetimes. We show that the candidate minimum energy solution is stable against all
quadratic fluctuations of the metrigS0556-282098)07824-2

PACS numbgs): 11.25.Mj, 04.20.Jb, 04.56¢h, 11.25.Hf

[. INTRODUCTION asymptotically flat spacetimes it does not: These boundary
conditions allow nontrivial zerf9] and negativg¢10] energy
There is growing evidence for a remarkable corresponsolutions. In particularfor a fixed size circle at infinity
dence between string theory in anti—de SittadS) space- there are nonsingular solutions to Einstein’s vacuum field
time and conformal field theorfCFT) [1,2,3. In particular, ~€quations with arbitrarily negative energy. Therefore, this
type-lIB superstring theory on AdSS’ is believed to be Sector of the theory is completely unstable.
completely equivalent toV=4 super-Yang-Mills theory in It is important to determine whether a similar instability
four dimensions[1]. For many applications, it suffices to arises for spacetimes which are asymptotically locally AdS.
consider just the low energy limit of the superstring theory,From a mathematical viewpoint, this seems rather likely
namely, supergravity. There is a well-defined total energy fof12]. Negatively curved spaces tend to be less constrained
any spacetime which asymptotically approaches AdS spacéban those with positivéor zerg curvature[13]. One expects
time [4], and part of the correspondence is that this energyhat anything that is true for asymptotically flat spacetimes
agrees with energy in the gauge theory. For solutions whictghould also be true for asymptotically AdS spacetimes. Of
approach AdS Spacetime g|oba||y, there are positive energ(}OUrse, if the result were true for the AdS case, it would have
theorems which ensure that this energy cannot be negati&€erious consequences in the context of the AdS-CFT corre-
[5], in agreement with the stability of the gauge theoryspondence. A straightforward interpretation would be that
vacuum. the supergravity analysis is making the rather dramatic pre-
Witten [6] has suggested that one can describe ordinargliction that the nonsupersymmetric, strongly coupled gauge
(i_e_, nonsupersymmetDi(Yang_Mi”S gauge theory by com- theory is unstable. However, another pOSSlblllty is that this
pactifying one direction on a circle and requiring antiperi- 'esult is an indication that the correspondence fails with non-
odic boundary conditions for the fermions around the circle SUPersymmetric boundary conditions. In the latter case, it
In this case, the additional fermions and scalars would acwould spoil the hope of using supergravity to learn about
quire large masses, leaving the gauge fields as the only logrdinary gauge theory.
energy degrees of freedom. On the supergravity side, this We will show that there is a static nonsingular solution
proposal corresponds to considering spacetimes which afé0 Einstein’s equation with negative cosmological constant
asymptotically AdS locally, but not globally. That is, one With these boundary conditions which hasgativetotal en-
spatial direction is compactified on a circle asymptotically. If€rgy. Rather than invalidate the AdS-CFT correspondence,
the spacetime topology is globally a simple product with anthis particular solution has a natural interpretation in the
S! factor, the standard approachs should still yield a ~ gauge theory. Since supersymmetry is broken by antiperiodic
positive energy theorersee, e.9.[7,8]). However, if one boundary conditions on the fermions, the gauge theory on
considers more general topologies, e.g., for which theS"xXR?is expected to have a negative Casimir energy. Com-
asymptotic circle is contractible in the interior, those tech-Paring the negative energy computed from supergravity and
niques will not apply and hence it is uncertain if a positive
energy theorem will hold. It is known that in the case of
1This general result applies for any theory involving Einstein
gravity in higher dimensions, includireyperstring theory10]. The
*Email address: gary@cosmic.physics.ucsb.edu closely related positive action conjecture is also false for spacetimes
"Email address: rcm@hep.physics.mcgill.ca which are only locally asymptotically Euclideqml].
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the Casimir energy in the weakly coupled gauge theory, wespacetimé. This definition is very general and works for

find close agreement. They have the same dependence on btith asymptotically flat and asymptotically AdS spacetimes.

parameters and disagree only by an overall factor of 3/4. Let us illustrate this definition with a few examples. Con-

This is similar to the factor of 3/4 that was noticed previ- sider the Schwarzschild-AdS solution in four dimensions:

ously in comparisons of the entropy of the near-extremal

three-branegl4]. We will show that in fact these two factors

have the same origin. ds*=
The key question is whether the solution described above

is the lowest energy solution with these boundary conditions.

If so, there must be a new positive energy theorem whickyhere| s related to the negative cosmological constant by
ensures that the energy of all solutions is greater than qr_ _3/A  consider a spatial slice of constantin this
equal to this negative value, with equality only for our par—space. At fixedr, one has a round two-sphere with arka

ticular solution. At first sight, this seems very unlikely, since —_ 4,2 The integral of the trace of the extrinsic curvature
the solution we discuss does not have constant curvaturgy this sphere is easily computed as

supersymmetry, or any other distinguishing property which

2

r r
—+1——0)dt2+
12 r

r? ot
|—2+1— - dr?+r2dQ,,

(2.2

have previously characterized minimum energy solutions in

general relativity. Nevertheless, we will present evidence in f K=n*3,A=

favor of this new positive energy theorem. We will show that

the solution is a local minimum of the energy: i.e., it is stable

to small fluctuations. The existence of this new theorem caivheren” is the unit radial vector normal to the sphere. The

be viewed as a highly nontrivial prediction of the AdS-CFT background or reference spacetime is just anti—de Sitter

correspondence. A complete proof would provide strong evispace, i.e., Eq(2.2) with r,=0. At fixed t, the boundary

dence for the correspondence. surface in the background with the same intrinsic geometry
The outline of this paper is as follows. In the next section,as above is again a two-sphere at the same value of the radial

we review the definition of energy for spacetimes that arecoordinater. Thus [K, is simply given by Eq«(2.3) with

asymptotically AdS. In Sec. lll, we present our solutionsfo=0. In either case is constant on the sphere and asymp-

with negative total energy and discuss their relation to thdotically approachedN=r/l. Substituting these expressions

CFT. Section IV contains the statement of the new positivénto Eq. (2.1) yields E=ry/2G, as expectedwhere G, is

energy conjecture and some evidence in favor of it. In SedNewton’s constant in four dimensions

V, we consider some generalizations of the conjecture, and This calculation is easily extended to arbitrary dimensions

further discussion is given in Sec. VI. with the black hole metric

5 12
r fo
|—2+1—T> 87, (2.3

r? ro|\P !
IIl. ENERGY IN ANTI —de SITTER SPACETIME d2= — _2+ 1— TO> dt2
The definition of total energy for spacetimes which !
asymptotically approach AdS spacetime was first discussed r2 po\p-1]71
in Ref. [4]. In the following, we will adopt an equivalent +—+1- —°> dr2+r2de, (2.9
definition derived il 15] (see alsd16]). The total energy in | r

general relativity is always defined relative to a background

solution which has a time translation symmetry. Let thewhere d{}, is the metric on a unitp-sphere and
norm of the timelike Killing field b& —N2. The energy de- —P(p+1)/2A. Also note thatp=2 for the above metric.
pends only onN and on the metric of a spacelike surface The final result for the energy is

which asymptotically approaches the background geometry.

12=

Starting from the action and deriving the Hamiltonian, keep- E— PQLyp Pl 2.5
ing track of surface terms, one finfi&5] 167Gy, o '
E= N(K—K 2.1 where

p+1
— 1)/2
QP—ZW(D+) /F(T

where the integral is over a surface near infinky,s the
trace of the extrinsic curvature of this surface, atyis the
trace of the extrinsic curvature of a surface with the samds the area of a unitp-sphere and Gp,, is the
intrinsic geometry in the background or reference(p+2)-dimensional Newton’s constant.

Next consider the following asymptotically AdS metrics:

2When there is more than one timelike Killing field, there are
additional conserved quantities. The energy is then one componentTo leading orderN will be the same for both the given metric
of a conserved vectofor tensoy. We will focus on one timelike and the background space. Higher order differences betiveerd
component and call it the energy. Ng will not affect the result for the enerdy5].
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r2 rg*t _ tum to zero, these constraints reduce to the condition that the
d32=|—2 —|1-w dt?+ (dx)? scalar curvature vanish. As initial data, we consider the Eu-
clidean Reissner-Nordsimo metric
1 I dr2 2.6 2m o q?\ 7t
+|1- -1 — dr?, .
rpti re (2.6 dSZZ(l—T'Fr—Z d72+(1—T+r—2 dl’2+l’2d02.
wherei=1, ... p. For certain values op, these metrics 3.

arise in the near-horizon geometrymbranegsee, e.g/1]). . . : . o 5 2
With ry=0, these metrics correspond to AdS space in horo:ro avoid a conical singularity at=r..=m-+ ym*—q’, we

spheric coordinateL7]. Once again we consider a surface J5 B 0N BIMZ I S0 LD T8 TR e
of constant. If we introducev, as the coordinate volume of thg Eielsteingtensor i)é. roportional to the Maxwell stress ten-
the surfaces parametrized kY then the area of a surface at brop

) . P ~p D . sor, which is trace free in four dimensions. We now analyti-
fixed larger is simplyA=rPV,/IP. Computing the energy as I . h . . . d
before yields cally continue the parametgr—iq. (Since we are intereste

only in the metric(3.1) and do not include a Maxwell field,

we do not have to worry about the latter becoming com-
_ PVp PPl 2.7) plex) It is now clear that we can take the mass parameter
P 167-er+2Ip+2 o ' m< 0 without the metric becoming singular. Since the size

of the circle at infinity is just the period aof which depends
Ep/V, corresponds to the energy density of the field theoryon bothm and g, one can keep this fixed an becomes
in the CFT-AdS correspondence. arbitrarily negative. In fact, one finds, for a fixed period, that

There is a slight subtlety in computing the mass of thethe curvature remains bounded as the mass becomes increas-

above metricg2.6). If the directions along the brane are  ingly negative. Therefore one may conclude that such toroi-
not identified(i.e., are noncompagtthen the constamiy can  dal compactifications in asymptotically flat spacetimes are
be changed by rescaling the coordinates X' in an appro- unstable. In theories with fermions, this instability only
priate way. Hence the enerd2.7) is not well defined. This arises in the sector where the spin structure is asymptotically
is not surprising, since the energy is conjugate to asymptoti@ntiperiodic on one of the'Sactors. Aside from this restric-
time translations, and so if one rescales the time, the enerdion, the analysis applies quite generally to any theory in-
should changé.n the following, we will be interested in the Volving Einstein gravity in higher dimensions, including su-
case where at least one of the spatial directions is compactperstring theory 10].
fied. If we fix the periodicity of the circlgécorresponding to We now want to know if an analogous result holds for
fixing the size of the circle in the gauge thepryhenr, spacetimes which are asymptotically AdS. The first thing to
cannot be rescaled. However, when some of ttis are  try is an obvious generalization of the above procedure using
compactified, the background spacetime with=0 has a the Euclidean AdS Reissner-Nordstrometric. When the
conical singularity atr =0. We will not worry about this charge in the latter is analytically continued, the metric be-
singularity, since it is likely that string theory resolves it COMes
without changing the asymptotic form of the metric, which is

. _ 2 2
all that is needed to compute the energy. More importantly, d<2= r_+1_ M r_O)de
the lower energy solution we describe in the next section is 12 ror?
completely nonsingular. .2 S I
+ |—2+1——1——2 dr2+r2dQ,. (3.2
I1l. NEGATIVE ENERGY SOLUTIONS rr

We begin by reviewing the negative energy solutions inAs before, this satisfies the vacuum constraifmsw with
the asymptotically flat conteXf.0]. It is easy to describe the negative cosmological constauiftthe momenta are set equal
initial data for these negative energy solutions. For five-to zero. However, there is an important difference with the
dimensional solutions, the initial data consist of a four-asymptotically flat case. In E3.2), the proper length of the
dimensional Riemannian manifold which asymptotically ap-circles parametrized by grows withr. This means that the
proaches the flat metric ort8R3. Of course, within general area of the surface at infinity grows like® just like the
relativity, these initial data must satisfy a number of con-uncompactified five-dimensional AdS spacetime. As a result,
straint equations. However, if we set the conjugate momenthe mass is determined by thé/r2 terms in the metric,
rather than the, /r term. The appropriate physical boundary
conditions—see the discussion in Sec. V-require thatO.

“In the full asymptotically flap-brane solution, this is not a prob- Thus this construction only yields the following one-

lem, since the scale faris picked out by the requirement thatbe ~ Parameter family of finite energy initial data:

a unit time translation at infinity. It is this time which corresponds 9 2 1

2 2
o

to time translation in the gauge theory. In the previous metéic$, 2= r +1— dr2+ +1— 0 dr2+r2dQ
the scale of is fixed by requiring the spheres of constant radius to 12 r? T 12 r? 2
have an area given by’Q) ;. (3.3
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Note that one cannot change the sigr fvithout introduc-  sincer is implicitly related tog through Eq.(3.4) and the
ing a naked singularity at=0. With the above sign, the definition of r, . Forr >I, ri=r4/I?=7%5/8* and so
radial coordinate is restricted te=r , , wherer , isthe larg- one obtain$

est root ofr$ +12(r2 —r3)=0. To avoid a conical singular-

. . o . . 415
ity atr=r,, 7is identified with period 'l

4G.B%

(3.10

2
3 2aler

B 2r2 412 349

Through the AdS-CFT correspondence, this analysis
should be related to a gauge theory orkS! where $ has
The metric(3.3) can also be obtained by analytically con- radius I, St has periodB, and supersymmetry-breaking
tinuing the five-dimensional Schwarzschild AdS solution andboundary conditions are imposed along tte Bor small,
restricting oneself to the equatorial plane of the threethis is expected to have a negative Casimir energy density
spheres. One might thus expect that its mass would be pogproportional tog~* (at least at weak couplingHence the

tive. However, we now show that it is negative. total energy would be negative and proportional3o®, in
The area of a surface at larges agreement with the above supergravity calculation.
/ The preceding calculations can be extended to arbitrary
r? rg vz dimensions with the initial data metric
A=4mr2pB —+1-— (3.5
I r 2 p—1
r ro )
i : H dSZZ —+1- (— dT
The integral of the extrinsic curvature becomes |2 r

r3 2

I'o
—t+2r——
12 r

f K=4mB : (3.6) +

r2 ro\P~1]?
—+1—(—°) ] dr2+r2dQ, 4,

The background metric is simply E.3) with ry=0, which (319
is  four-dimensional hyperbolic space with periodic which satisfies the constraint equatiof®*VR=—p
identifications’ In this reference space, we need to choose p+1)/12. Again, the geometry smoothly closes off @t
bgun(ilary surface with the sam% intrinsic geometry as the:r+, which is now the largest root ofr?*1+]2
S°X S at fixedr above. For the Sgeometry to agree, the , .p-1_ .p-1y_ . e s . :
radial coordinate of the surface in the background must bér+ fo ) =0, provided thatris identified with period
the same as in the original spacetime. For the proper dis-

2

tances along the'Sactors to agree, the periodicity efn the B= 4;T| v . (3.12
backgrounds, is related tog by (p+1ri+(p—1)I?

r2 ré) 12 r2 12 The final result for the energy is

—+1-—| B=|=+1| Bo. 3.7

2 2 12 __Qp,lﬁrg*1~_ Qp_q [ 4m \PrL2el

~ 5

The integral of the extrinsic curvature in the background is 167Gp. 2l 16mGp.p |pH1 B

simply (313

where the final formula again holds for large . Where
(3.9 applicable, these results should be related to a quantum field
' theory on 8~ 1x S Again, a negative energy proportional
to B8P can be expected to arise through the Casimir effect in
Using Eq.(3.7), N=r/I, and the definition of the energy, Eq. the field theory.
(2.1), one finds that To make a more precise comparison of the energy in AdS
spacetime and the gauge theory, it would be useful to have
Bré an example of a solution with negative energy that asymp-
E=- 4G4l (3.9 totically had topology R™*x St. This is easily obtained by a
double analytic continuation of the near-extrempdirane so-
From this, one clearly sees that the energy is negative, but lution (2.6). That is, we analytically continue this metric with
is difficult to see the dependence on the size of the cifcle botht—i7 andxP—it. In the following, we will refer to this
spacetime as thAdS soliton The metric becomes

r3
|—2+2r

f Ko=4mBo

SEven though the spacetime resulting from these initial data is
locally AdS, it is not globally static. So extra restrictions are needed SFor a giveng, there is another solution to E¢®.4) with a smaller
to ensure energy conservation. This will not be the case for ouvalue ofr ., but it corresponds to a configuration for which the
main example discussed below. energy which is less negative.
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1
rg*

l_
rp-*—l
1 i e dr?

J’_ — R—
YEY A

where there are nowp—1 x"s. Again, the coordinate is
restricted tor=r, and » must be identified with perio@
=471%/(p+1)r, to avoid a conical singularity at=r.

d7?+(dx)?~dt?

(3.19

Note that this spacetime metric is globally static and com
pletely nonsingular. For fixedandr, the area of a surface is

rp-%—l

1/2
0
A: rp+l) I’pBVp_1/|p,

whereV,,_; denotes the volume of the transverse 1 x"s.
The appropriate background is E&.14 with ry= 0, which

PHYSICAL REVIEW D 59 026005

72 N?

3 E. (3.18

Pgauge- —

Thus we find that the negative energy density of the super-
gravity solution is precisely 3/4 of the Casimir energy of the
weakly coupled gauge theory. This is very reminiscent of
earlier results showing that the entropy of the near-extremal
three-brane is precisely 3/4 the entropy of the weakly
coupled gauge theory at the same temperdtid¢

In retrospect, it is not surprising that the ground state
energies differ by exactly the same factor as the thermal
entropies, as both results can be derived as different interpre-
tations of a common Euclidean calculation. On the field
theory side, consider the Euclidean functional integral for the
(weakly coupledl Yang-Mills theory on $xR? where the
circle has periogs and antiperiodic boundary conditions for
the fermions. One natural interpretation is as a thermal field
theory calculation at temperatur@™ !, and the partition

corresponds to AdS space with periodic identifications. It isfunction yields the free energy @&y = —log Zy), . Alter-

easy to see that for the backgrourd = (p/l)A. Follow-

natively, one may interpret one of the noncompact directions

ing the above procedure, the energy is again found to bas Euclidean timég. In this case the same partition func-

negative:

rb* v, _
gm0 FVor (3.15

167G, P2

Using the above relation betweepand g, this result can be
rewritten as

p+1

4
p+1

E=

p
Vp-il ( (3.16

167G, 6"

For certain values gf, we can express this in terms of the

string theory couplingy and Ramond-Ramond charble For
example, for the three-brarme=3, we havel*=4xgN and
Gs is the ten-dimensional Newton’s consta6,=8m%g?,
divided by the volume of a five sphere of radilisAs
=31°. We thus obtain an energy density

tion, evaluated between two surfaces separated by a large
difference of Euclidean timétg, yields the ground state
energy asAtgEyy=—logZyy . On the supergravity side,
consider the Euclidean instanton obtained by analytically
continuing the AdS soliton metri3.14) with t—itg. This
instanton is, of course, identical to that obtained from the
black hole metrid2.6) with t—i 7 and identifyingr with the
appropriate periogs. (We also trivially renameP=tg.) In

the latter context, the instanton describes a thermal equilib-
rium of the black hole[20] at temperature8~ !, and the
Euclidean action is interpreted as giving the black hole con-
tribution to the free energy g8Fg,=1. On the other hand,

in the context of the AdS soliton, the same Euclidean action
is simply related to the total energi.16 via AtgE=1.
Now from the analysis of three-branfgb4] (p=3), it fol-
lows that when the temperatures of the black hole and Yang-
Mills theory are equated, their free energies are related by

E w2 N? Fen=7 Fwm (3.19
PSUGRA=Y 2= a z° (3.17 4
Vzﬁ 8 ﬁ4
and hence
We wish to compare this with the ground state energy of
the gauge theory on'SR?, where the length of thelSs g. |= 3 (—10g Zuy) (320
This can only be calculated directly at weak gauge coupling, 4 9 Zvm)- )

where, to leading order, it reduces to the problem of deter-

mining the Casimir energy of the free field theory. The fieldHence, from the preceding discussion, it also follows that we
theory iSN=4 super-Yang Mills, which contains an SN  must find the same factor in relating the total energies,
gauge field, six scalars in the adjoint representation, and theke 3/4Ey,,, and the energy densities above, as well.
superpartner fermions. In the present case, the latter fermions The factor of 3/4 discrepancy between the two calcula-
are antiperiodic on the'SThe stress-energy tensor for this tions does not contradict the AdS-CFT correspondence.
theory may be found if18]. The leading order Casimir en- Rather, the supergravity res.17) corresponds to the en-
ergy may be calculated by point-splitting the fields in theergy density of the gauge theory in a regime of strong cou-
energy density(i.e., Ty;) with the appropriate free-field pling. To extrapolate the AdS results to weak coupling, one
Green'’s function and then removing the vacuum divergencenust include all of the higher ordéin the string scalecor-
before taking the limit of coincident fieldsl9]. The final rections to the geometry induced by type-IIB string theory.
result is The leading order correction to E€B.14) has recently been
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computed iM21]. The net effect is that the Euclidean action dence is understood in the most detail. The AdS soliton met-

became more negative. Thus from the preceding discussioric (3.14) then becomes

as expected, the energy and energy density of the corre-

sponding AdS soliton becomes slightly more negative, im- 2 rg

proving the agreement with the weak coupling res(8t48. d§=|—2 1- s
In order to construct these negative energy solutions

(3.14), we needp=1 so that there will be one spatial direc-

tion in Eq. (2.6) to analytically continue. The case=1, +

corresponding to three spacetime dimensions, is special. All

solutions have constant curvature and hence are locally AdS. o s ,

The metric(2.6) with p=1 is the (nonrotating Barados- wherer=r, and 7 has period3= w1 “/r,. For the remainder

Teitelbeim-ZanelliBTZ) black hole[22]. We showed above of this section, we will use Eq. (4.1) as our reference metric
that if you take the positive mass black hole and doubleam.j measure energy relative to e W'”. consider merics
analytically continue, then you get a solution with less mas%’vhICh asymptotically approach E¢d.1) in the sense that,

than the zero-mass black hole. However, it is known that®" larger,
three-dimensional AdS spacetime itself has less mass than

the M =0 black hole[22]. In fact, as we will now show, the

double analytically continued black hole is precisely AdS

globally, with no extra identifications. We start with the

black hole metriq2.6) with p=1

d72+ (dxb)2+ (dx?)2—dt?

4.1

g,uvzgp,v—’_ h,u.l/!

hay:O(r72)1 har:O(r74)v

h,=0(r % with a,y#r. 4.2

2 2 2 2

(3.2)

0 1.2 20 4y2
dt+2 2dr+|2dx.

2
I r<—rg

By rescalingt,r,x, we can sety=1. Now analytically con-
tinue int andx as before to get

r2 r2 -t r2
_ 2 2 2
dsz———|2 dt+(—|2—1> dr +(—|2—1)d7.
(3.22

Finally, setp?=r?—12 and¢= 7/| to put this metric into the
standard AdS form

2

p—+1)dt2+
|2

2 -1
P + 1) dp?+ p2d 2.

B
(3.23

Note that after the analytic continuationshould be periodi-
cally identified to avoid a conical singularity. In E(B.23),
this is simply the statement thdtis an angle with the stan-

4=

ré—r r Derivatives ofh,, are required to fall off one power faster.

In Eg. (4.2, g, denotes the AdS solito4.1) (or metrics
obtained from it as indicated belgpwNote that even though
these boundary conditions allow metrics with different con-
stantsr, asymptotically, the periodicity of is fixed.

The AdS-CFT correspondence, together with the expected
stability of the nonsupersymmetric gauge theory, suggests
that the energy of any solution with these boundary condi-
tions should be positive relative to E@L.1). Hence we are
led to formulate a new positive energy conjecture. Below, we
present three different forms of this conjecture, starting with
the most general and becoming more specialized. The sim-
pler conjectures may be easier to prove, but would still be of
great interest.

Conjecture 1.Consider all solutions to ten-dimensional
type-1IB supergravity satisfying E¢4.2) [with g,,, denoting
the product of Eq(4.1) with a five-sphere of radiul§. Then
E=0, with equality if and only ifg,,,=g,,, .

The self-dual five-form must be nonzero to satisfy the
asymptotic boundary conditions. If we make the reasonable
assumptions that the other supergravity fields will only in-
crease the energy and spacetimes which are not direct prod-

dard periodicity of Zr. ucts with S will also have higher energy, then the above

conjecture can be reduced from ten dimensions to five as
follows.

Conjecture 2Consider all solutions to Einstein’s equation
in five dimensions with cosmological constant=—6/7

The above qualitative and quantitative agreements besatisfying Eq.(4.2) [with g,, denoting the metrid4.1)].
tween AdS energy and Casimir energy in the CFT seem tdhenE=0, with equality if and only ifg,,=g,, .
support the AdS-CFT correspondence in the nonsupersym- In the above conjectures, the solutions are required to
metric case. A crucial question though is whether the AdShave at least one nonsingular spacelike surface, since other-
soliton (3.14) is the lowest energy solution with the given wise one could easily construct counterexamples with naked
boundary conditions. The aforementioned agreement wouldingularities. If we assume that there is a surface with zero
be put in peril by the existence of metrics with even lowerextrinsic curvaturdi.e., a moment of time symmetrythen
energies. the constraint equations reduce to the statement that the sca-

For definiteness, let us focus on tipe=3 case in the lar curvature is constant. We thus obtain the following.
following. This corresponds to the near-horizon geometry of Conjecture 3.Given a nonsingular Riemannian four-
Dirichlet three-branes, for which the AdS-CFT correspon-manifold with R= — 1212 satisfying Eq.(4.2) [with g, de-

IV. NEW POSITIVE ENERGY THEOREM?

A. Conjectures
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noting the metric on &= constant surface in E¢4.1)], then ~ satisfying the above boundary conditions. For the moment
E=0 with equality if and only ifg,,=g,, . we will work with the generall-dimensional case and later
As we mentioned in the Introduction, at first sight thesespecialize tod=5. In order thag,,, be still a solutionh,,,
conjectures seem unlikely to be true. The solutiéri) does ~must satisfy an equation which may be represented as a lin-
not have constant curvature, supersymmetry, or any othearized Einstein equation with a nonlinear source term. Writ-
special property usually associated with minimum energyten in this form, the terms nonlinear hy,, may be taken to
solutions in general relativity. It is possible that the abovedefine the energy-momentum density of the gravitational
conjectures fail, but there is another solution of minimumfield, T#”. By virtue of the field equations, this density is
energy. However, this is unlikely, since one expects thecovariantly conserved in the background metric, i.e.,
minimum energy solution to be static and translationally in-y_T#*=0. Now given a Killing vectog* of the background
variant around the circle. One could then double analyticallysolution, one finds then tha¥,&” is a covariantly conserved
continue this metric to produce a new black hole solutioncyrrent and hence
The “black hole uniqueness theoremgwhich have not
been proved for this case, but still are believed to be)true 1
would then imply that this solution must be identical to Eq. EO=5c d?1x\gTo, 8" (4.9
(2.6) with p=3, which corresponds to the analytic continu-

ation of Eq.(4.1). Furthermore, previous experience would s 5 conserved charge. §f is a timelike vector, this quantity
suggest that there are time-dependent solutions of arbitrarilyefines the Killing energy, i.e., the mass of the new metric
negative energy—see, e.¢10]. (4.3 with respect to the background solution. Further,
Nevertheless, in this section we present some evidencgphpott and Desef4] show that the integrand of E¢4.4) is
that the above conjectures are indeed true. First, we note thgt otg divergence, and sB(£) may be written as a flux
under perturbations of the metri@.1), the energy is un- ntegral over a §— 2)-dimensional surface at infinity. The
changed to first order. This result in fact applies for anygetails of this calculation are not important here: however,
metric that is globally statif23] and can be seen as follows. \ye note that with this flux integral form one may show that
The .grawta'uonall Hamiltonian is a function of the spatial tpig Killing energy(4.4) agrees with our previous definition
metric and conjugate momentum, and takes the formys ine energy(2.1) [15].
H(gij ,71)=JN*C,+E, whereN* is the lapse-shift vector |hstead, we wish to constru&(¢) (or rather the energy
andC,, are the constraints. Suppose we start with a staligiensity ) directly to second order in the fluctuatiohs, .
solution and choosi* to generate evolution along the time appott and Desef4] turn to the framework of canonical
translation symmetry. Consider the variationtfwith re-  gravity for this purpose. One may view their construction as
spect tog;; . On the one hand, this ig ", which vanishes eyaluating the second order term in the field equations by
since the background is static. On the other hand, the varignaking a third order expansion of the action with a judicious
tion of the constraint will vanish whenever the perturbationchgice of variables. The canonical variables provide a judi-
solves the linearized constraints. Hence the variation of thgjoys choice for several reasons. First, since one wishes to
energy must also vanish. Sinéeis independent of the con-  focus onT?,, the third order expansion need only be carried
jugate momenta, this is sufficient to establish that the energyyt for terms linear in the lapse or shift, and quadratic in the
IS an extremum. spatial metric and conjugate momenta. Second, for the
present background solutions of interest, we will be evaluat-
B. Perturbative stability ing H on a time-symmetric slice, and so the background
While we have established that the mass of the AdS soliMomentum variables vanish. Finally, the background-shift
ton is an extremum, we would like to show that it is ac:tu(,:‘"yvector.also vanishes in the solutions considered here. The net
a global minimum. Unfortunately, given tHeonsupersym- esult is that one must calculate
metric) spin structure on the asymptotic geometry, we cannot —

apply the spinor techniques [24] and[5] to argue that this N S T
is the case. Instead, we must be satisfied with showing that '*~— _\/E Qi m = g5 ™~ 9( R—=2A)),
the AdS soliton gives a local minimum of the AdS energy (4.5)

functional. Our perturbative approach here follows that of

[4], where the stability of the AdS spacetime itself was con-with the quantity in square brackets evaluated to second or-

sidered. We refer the interested reader to there for a detaileger in the deviations of the spatial methig and the conju-

discussion of the technique. Their general analysis is baseghte momentum deviations!. Here (“"YR is the intrinsic

on the construction of conserved charges for background s@urvature scalar of the initial data surface. For convenience,

lutions with Killing symmetries, in particular a time transla- the following gauge conditions are imposed on the fluctua-

tion symmetry, and hence may be applied to the AdS solitontjon fields[4]:

One begins by dividing the metriglobally) in a manner

similar to Eq.(4.2): piizozDihij , (4.6)
=g,,+h,,, 4.3 —

=G 49 whereD!' is the (d—1)-dimensional covariant derivative on

whereg,,, is the AdS soliton andh,,, represents a deviation the initial data surface with the background metric. The de-
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viations are also required to satisfied the constraint equations r2 r4
to linear order, which imposes dszz—2 1— —Z dr?+ (dx)?+ (dx?)?
I r
h';=0=D;p'l. (4.7) ra\ "tz
+1-—| —dr? (4.1
r r

One can see that together E¢6.6) and(4.7) ensure that the
fluctuations are transverse and traceless with respect to thg the following, we will actually refer all indices to the

background metric. Evaluating E€t.5) subject to these con-  4pyious orthonormal frame. Now the curvature of this spatial

straints, one arrives at the expresgion slice is given by
1 1 — — 1 — 1
HZN[\/—:P”piﬁJg(kahij)z (4)Rrrfr:—|—2(1—3)’), <4)R1212=—|—2(1—Y),
g
+ 1 (d-DRijklp b — L (d-DRiipy. p.k 4.8 =y 1 D o=y =y
2 iNk— 5 whi“| |- (4.8 R7171:_|_2(1+Y): Rr22=""Rr1r1=""Rizr2,
(4.12

Here it is immediately apparent that the momenta make %/herey=r4/r4 Now the potential term in Eq(4.8) be-
manifestly positive contribution to the energy density. COmes o '

Hence, if we are interested in lowering the energy of the
background solution, we should s@t=0 and focus on the 1 o
spatial metric fluctuations. For the latter, there is a gradient U= 5 (‘“YRUh; h;,—“RThyh*)
energy density, which is also positive, and a potential energy 2

density, whicha priori has no definite sign. If we consider

the background to be anti—de Sitter space, for which 1
9 P e {(2=y)[(h,1)%+(h,2)?+ (1) %+ (h;2)?]

1D 1 _— = — 2 2
(=1 ijkI:_I_z(gikng_gilgjk)a (4.9 +2(1+y)(h;)*+2(hyp)
+ Udiag(hrrahrr ihllthZ)}- (4-13)
the potential becomes Given that Gsy=<1, we see that the potential ensures the
stability of all fluctuations in the off-diagonal components of
d-3 - the metric. Now, in evaluating the potential for the diagonal
U=+ e hijh", (410  fluctuations, we first impose the traceless condition of Eq.

(4.7 with h,=—h_—hy;—hy. Then defining V2
=(h,,,hq1,h,)), the remaining potential terms may be writ-
where |2=—(d—2)(d—1)/2A. Hence, in AdS space, the ten as
potential energy and hence the total energy contribution of
the spatial metric fluctuations are also manifestly positive, 1
and we may conclude that AdS space is perturbatively stable. Udiag™ = Vau VP, (4.19
Of course, spinor techniqud®4] allow one to show that 2l
AdS space is in fact the absolute minimum energy state
within that sector of the theory, i.e., for solutions which ad-Where
mit asymptotically constant spinors. The AdS soliton is not
included in this sector, as the spin structure on the
asymptotic boundary differs. Further, the latter metric does Up=2| 1+y 2-y 1-2y| (4.15
not have a Riemann tensor with the maximally symmetric 1+y 1-2y 2-y
form of Eq. (4.9.

As for our conjecture, the remainder of the discussion wil
be restricted to the AdS soliton with=3, i.e., spacetime
d|.mer.1$|ond—5. !n this case, the metric on a constant time No=2(1+Y), N.=5—y+(9+6y+33y2)2
slice in Eq.(4.1) is 4.16

2+2y 1+y 1+y

It is straightforward to determine the eigenvalues of this ma-
trix to be

One easily shows thaty and\ , are positive in the range of

"One must integrate by parts to arrive at this expression: howeveiiterest, i.e., &sy<1, and h_ence the correqunding eigen-
the above boundary conditiori4.2) will ensure the vanishing of vectors correspond to manifestly stable metric fluctuations.
any boundary contributions. The most interesting case is that)f for which one finds
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A_>0 for 0O<y<3, butA_<O0 for 3<y=<1. Hence the po- While our estimate of the gradient contribution may seem

tential energy density for this eigenvector, crude, a more detailed examination shows that in fact it
512 greatly underestimates the energy. Properly evaluating the
—1+5y—(9+6y+33y°) covariant derivatives in Eq4.19, accounting for the tensor

Vi=(v_,1,1) with v_=

2(1+y) ' properties of the fluctuations, adds more positive terms to
(4.17  this expression, which are roughly the same order of magni-
tude as those considered, i.4%/12. Further, we have not
Sccounted for the gauge-fixing constrafdté) in our calcu-

lations. This constraint fixes the form of the profile for the

. o .~ fluctuation considered above throufth;, =0, which is the
dominated by this eigenmode and only have support in thl%)nly nontrivial component. One finds that the profile must

small region near =ro seem to have the potential to be decay more slowly than estimated above, but that it cannot
unstable, i.e., lower the energy of the background solution\./ani;;] atv=1/2 Réther it has infinite su 'ort vanishing as
However, for such fluctuations, there is a competition be- Yy ) ' pport, 9

4 . . . . .
tween the manifestly positive gradient contributions and thellr In the asymptotic region. While this dep(eases the_ local
potential terms in the energy densi@.8). We argue below gradient energy density, it also adds a positive potential en-

that the former terms dominate and hence these fluctuatiorfg 3Y density in thg regiop<1/2. Hence_the final CO.nCIUS'O”.

are also stable. at th(_ase fluctuations are stable remains correct in a detailed
Imagine that we are considering a metric fluctuationanalys's'

which we might characterize 38=A(r)V? , whereA(r) is

a profile, which we assume takes its maximumr atr, V. GENERALIZATIONS

monotonically decreases, in order to minimize the gradient

energy, and vanishes outside 2% ,. The potential energy

density (4.14) becomesU = (A%/212)\ _(2+v2). With the

assumption that the profile takes its maximunr atry, the

minimum of the potential energy density is

becomes negative in a small region near the center of th
space, i.e.r4<2rg.
Thus metric fluctuations with a form where tihg; are

Although we have focused on the cgse 3 above, one
can extend the conjecture to other dimensions, including the
p=>5 case which is directly related to four-dimensional non-
supersymmetric gauge theorigd. We believe the solutions
(3.149 for all p are perturbatively stable, although a detailed
analysis of the fluctuations has not yet been carried out.

2 2
Unin=U(r=ro)=—8(2v3—3) A(|r—20)2 _3_713A(Ir20) . o gf)nsider the following modificatiofi25] of the metric
4.189 o
While the complete expression far for this fluctuation has d<2= — f—l— (r_O)pl dt2
a complicated analytic form, for the purpose of the reader’'s |2 r

intuition we note that to within an accuracy of a few percent

one may approximate this expression in the region of inter-

est, i.e., 3<y<1, by the simple expressiot=U,y,

(2y—1)A(r)?/A(ro). So if one imagined that the profile

was constant, the potential energy density would decrease

linearly as a function of, reaching zero ay=1/2. where
We estimate the gradient energy as follows:

2

d
da§=(1+p2)dz2+1p +p%d0, , (5.2

T=%(5h)2=%[2+v2_+(2+v_)2](5A)2, (4.19 +p?

where we further estimate the gradient of the profile by itsS the metric on g-dimensional unit hyperboloid. This met-
maximumA(r,) divided by the proper distance betwegn ric is also a solution of Einstein’s equation with negative
=1 andy=1/2, i.e., between=ry andr =24 ,. The latter cosmolpgical constant and is asympt(_)tically AdS. It is_ un-
distance turns out to Helog(v2+1)/2=0.441. In the region  usual since the black hole meti(.1) (without any analytic

of interesty _ varies from—1 aty=1/2 to 1-v3=—0.73 at  continuation can have negative ener¢®5]. Indeed, the en-

y=1, and so we will simply fix it toy_= —1 in our estimate  €ray is still given by Eq(2.9 (with 2, denoting the area of
of T. Hence we arrive at the following estimate: the unit hyperbolic spafg but now one can let the param-
eterr] ! be negative and still have a horizon. There is, how-
A(rg)? ever, a minimum energy possible for the black hole. For
Taverage=5.14———. (420  example, in the case=3, this occurs when?= —1%/4, cor-

responding to an energy

Comparing Egs(4.18 and (4.20, we see that this average

gradient energy already exceeds the minimum value of the

potential energy. Hence it must be that these potentially un-28one can either compactify this space, so that its area is finite, or
stable metric fluctuations in fact have a positive total energywork with the energy density.
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3120, energy densities, discussed here, extends to agreement of all
E=- 64mG. " (5.3 of the components of the stress teng#]. In the example of
> the gauge theory on!SR?, one finds that the factor of 3/4

The Hawking temperature of these minimum energy bIacI{elaﬂng the energy densities calculated with supergravity and

holes is zero. Are they the minimum energy configura’tionsfn the Weqkly coupled gauge theory is, in fact,_ an overall
with these boundary conditions? fact_or relating the full stress tensors calculated in these two
One can double analytically continue this mettie;ir regimes.

and z—it. As usual,7 must be periodically identified with It IS examining the f_uII stress-energy tensor which moti-
period vated in part our choice of physical boundary conditions

(4.2) in the positive energy conjecture and in our discussions
2 in the earlier sections. For example, if one retainsrthe
Aqler . . . !
= (5.4  termin our first negative energy _examr([éZ), one might
(p+ 1)ri —(p—1)I? expect that the energy would be divergent. One finds though
that there is a precise cancellation in the calculation so that
so that a constant time surface asymptotically approaches thiee final result remains exactly the same as in E39),
product of hyperbolic space and a circle. The energy is agaiwhich was derived for;=0. This is also true for the trans-
given by Eq.(3.13 and hence is negative for positive values lationally invariant solutions. However, if one considers the
of rg’l. For Iargerg’l, the energy is the same as the metricfull boundary stress tensor, a nonvanishingproduces di-
(3.11), since the size of the circle is much smaller than thevergences in the spatial components of the stress energy. One
scale of the curvature on the orthogonal space. should expect that a less symmetric choice of the initial data
One might conjecture that the metri¢s1) represent the surface would yield an energy density which mixes the vari-
minimum energy configurations for these boundary condi-ous components of the latter tensor and, hence, diverges. Our
tions. Since these solutions are static, they are extrema of th#hysical boundary condition.2), which rule out including
energy. It is likely that they are also local minima of the r;#0, ensure that the energy density will remain finite for
energy. In fact the calculations in Sec. IV show that this isany choice of time slicing.
the case fop=3. This is due to the remarkable fact thatthe A precise comparison of the supergravity and gauge
components of the curvature of E@&.1) (in an orthonormal theory energies was only attempted for 3 because this is
frame are identical to Eq.(2.4). If one analytically contin- the case in which the AdS-CFT correspondence is best un-
ues int andz and restricts oneself to a constant time surfacederstood. For this dimension, we only considered the AdS
the curvatures are still the same. Since the potential term igoliton solution, which corresponds to the gauge theory on
the quadratic fluctuations depends only on the curvature, i8"XR% However, one might also consider the initial data
will again be positive. (3.3, which would correspond to the gauge theory on
From the CFT viewpoint, the above metrics should de-S'xS%. We calculated the supergravity ener¢§.9 and
scribe the CFT on a product oft &nd a hyperbolic space. need only translate it to a gauge theory expression, as in
Since the scalars couple to the curvature, a negative curvgoing between Eqg¢3.15 and(3.17). The final result is that
ture space would seem to lead to an instabffitythus, in  Eq. (3.9 yields
this case, the apparent stability of the supergravity solution
seems in contrast to the expected CFT result. We do not yet w2 N2
have a resolution of this puzzle. PSUGRA= ~ g 3 F(B8%12), (6.1)

VI. DISCUSSION _ o _
where the function satisfi¢s(0)= 1. Hence, to leading order

We have shown that the AdS solitdB.14) has lower for small 8, the energy density is precisely the same as for
energy than AdS space with periodic identifications. Rathes!xR? This is not surprising as this result is valid in the
than producing a contradiction with the recently conjecturedimit where the radius of the sphere is much bigger than the
AdS-CFT correspondence, these results find close agreemegiriod of the circle)> 8, and so the Sfactor looks essen-
with the negative Casimir energy of nonsupersymmetric fielgja|ly like a flat R2 on the latter scale. One should note that
theory on SxXRP™1. this energy is measured relative to the standard AdS back-

Since the AdS soliton has extended translational symmeground with periodic identifications, which naturally in-
try, one can define not just the total energy, but a full boundgjudes the curved®actor in its asymptotic geometry. Thus
ary stress-energy tensor. One finds that the agreement in thigis negative energy does not include the positive contribu-

tion which might be expected to appear as the Casimir en-
ergy of the two-sphere. It is not difficult to calculate the
®This provides a counterexample to the popular idea that if twacOmMplete function
metrics have the same curvature, they are locally isometric. The

covariant derivatives of the curvature are different, showing that the 2 2
X ) : . . : 1 2X 2X 4x
metrics are indeed inequivalent. We thank S. Ross for discussions(x)= — | 1+ 1— — 1+ 1—— | +—|.
on this point. 16 ? w? w?
0we thank J. Maldacena for pointing this out. (6.2
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Taylor expandingF for small x would yield higher order stable against fluctuations of many of the bosonic supergrav-
corrections to the energy density. It would be interesting taty fields, e.g., the dilaton, and Neveu-Schwarz and Ramond-
see to what extent the coefficients of the higher order term&amond antisymmetric tensors. While our perturbative cal-
are reproduced in the weakly coupled regime of the gaugéulations have not produced a precise spectrum, they do
theory. This function is only defined for< 7%/2 since these Verify that a positive mass gap exists for the metric fluctua-
are the allowed values 82/12 from Eq. (3.4). [The solu- tions, i.e., the spin-2 glueballs. It is interesting that among
tions (3.3 only exist if the circle is small enoughThis the metric excitations, our calculations indicate that the low-
suggests that there might be a jump in the ground state e$St energy staté.e., the mode described as potentially un-

r f the stronal | heor 1 analo- stable must ir! fact contain a scalar contributidgwith re-
30%){5 ?0 tthz SGtr?)sg-%V?glejr?-ﬁsegs#e?:ettrzﬁs)illic;gasai,s?ussce):d spect to R3_) which should actually decouple as the ultraviolet
in [3]. regulator is remov_ed. _

Lest the reader imagine that the AdS-CFT correspondence
uarantees the local stability of @#itatio supergravity solu-
port the AdS-CFT correspondence even in the nonsupersy jons, we recall tha; this is npt th.e case. Typically, there are

many unstable stationary points in the scalar potential of the

metric case. But this is true only if the AdS soliton is the gauged supergravity theory—see, e[@0]. For these sta
I t luti ith the gi iti By . . B ! ' :
OWEsSt energy soltion Wi e given boundary conditions tionary points, there will be an AdS background, but the

This gives rise to a new type of positive energy conjecture.

Although this conjecture seems unlikely to be true from acosmological constant will have a value such that supersym-

purely mathematical standpoint, we have presented evidendBeY .i.s completely broken. In the supergravity analysis, the
to support it, by showing that ihe AdS soliton is indeed amstablllty arises because some of the scalars have curvature

local minima of the energyfor the casep=3). It is natural coupl_ings which excee(_j the Breitenlohner-_Freedman bound
to extend this conjecture to other dimensions and otheL31]; €., sc_alar fluctuations ground the stationary point have

dnasses which aréoo) negative. It would be interesting to
determine what the corresponding physics in the gauge
theory is.

The agreement of the negative energy of the AdS soliton
with the expected negative Casimir energy appears to su

vious section.

Our analysis of the perturbative stability of the AdS soli-
ton with respect to metric fluctuations is closely related to
the recent calculations of glueball masses in laXg&CD
[28]. General arguments have been given that massless su- We thank G. Gibbons and the participants of the String
pergravity fields propagating on the AdS soliton backgrounduality program at the Institute for Theoretical Physics,
will have a discrete spectrufit]. Further, by the AdS-CFT Santa Barbara, for helpful discussions. G.T.H. was supported
correspondence, these fluctuations should correspond to vaiit part by NSF Grant No. PHY95-07065. R.C.M. was sup-
ous glueball states in the lardgauge theory6,29). In the  ported in part by NSERC of Canada and Fonds FCAR
context of our first form of the conjecture, the given calcu-du Quéec. Both G.T.H. and R.C.M. were supported by NSF
lations of glueball spectrg28] verify that the AdS soliton is  Grant No. PHY94-07194 while at the ITP.
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