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AdS-CFT correspondence and a new positive energy conjecture for general relativity
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We examine the AdS-CFT correspondence when gauge theory is considered on a compactified space with
supersymmetry-breaking boundary conditions. We find that the corresponding supergravity solution has a
negative energy, in agreement with the expected negative Casimir energy in the field theory. The stability of
the gauge theory would imply that this supergravity solution has minimum energy among all solutions with the
same boundary conditions. Hence we are led to conjecture a new positive energy theorem for asymptotically
locally anti–de Sitter spacetimes. We show that the candidate minimum energy solution is stable against all
quadratic fluctuations of the metric.@S0556-2821~98!07824-2#
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I. INTRODUCTION

There is growing evidence for a remarkable corresp
dence between string theory in anti–de Sitter~AdS! space-
time and conformal field theory~CFT! @1,2,3#. In particular,
type-IIB superstring theory on AdS53S5 is believed to be
completely equivalent toN54 super-Yang-Mills theory in
four dimensions@1#. For many applications, it suffices t
consider just the low energy limit of the superstring theo
namely, supergravity. There is a well-defined total energy
any spacetime which asymptotically approaches AdS sp
time @4#, and part of the correspondence is that this ene
agrees with energy in the gauge theory. For solutions wh
approach AdS spacetime globally, there are positive ene
theorems which ensure that this energy cannot be nega
@5#, in agreement with the stability of the gauge theo
vacuum.

Witten @6# has suggested that one can describe ordin
~i.e., nonsupersymmetric! Yang-Mills gauge theory by com
pactifying one direction on a circle and requiring antipe
odic boundary conditions for the fermions around the circ
In this case, the additional fermions and scalars would
quire large masses, leaving the gauge fields as the only
energy degrees of freedom. On the supergravity side,
proposal corresponds to considering spacetimes which
asymptotically AdS locally, but not globally. That is, on
spatial direction is compactified on a circle asymptotically
the spacetime topology is globally a simple product with
S1 factor, the standard approaches@5# should still yield a
positive energy theorem~see, e.g.,@7,8#!. However, if one
considers more general topologies, e.g., for which
asymptotic circle is contractible in the interior, those tec
niques will not apply and hence it is uncertain if a positi
energy theorem will hold. It is known that in the case
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asymptotically flat spacetimes it does not: These bound
conditions allow nontrivial zero@9# and negative@10# energy
solutions. In particular~for a fixed size circle at infinity!,
there are nonsingular solutions to Einstein’s vacuum fi
equations with arbitrarily negative energy. Therefore, t
sector of the theory is completely unstable.1

It is important to determine whether a similar instabili
arises for spacetimes which are asymptotically locally Ad
From a mathematical viewpoint, this seems rather lik
@12#. Negatively curved spaces tend to be less constrai
than those with positive~or zero! curvature@13#. One expects
that anything that is true for asymptotically flat spacetim
should also be true for asymptotically AdS spacetimes.
course, if the result were true for the AdS case, it would ha
serious consequences in the context of the AdS-CFT co
spondence. A straightforward interpretation would be t
the supergravity analysis is making the rather dramatic p
diction that the nonsupersymmetric, strongly coupled ga
theory is unstable. However, another possibility is that t
result is an indication that the correspondence fails with n
supersymmetric boundary conditions. In the latter case
would spoil the hope of using supergravity to learn abo
ordinary gauge theory.

We will show that there is a static nonsingular soluti
~to Einstein’s equation with negative cosmological consta!
with these boundary conditions which hasnegativetotal en-
ergy. Rather than invalidate the AdS-CFT corresponden
this particular solution has a natural interpretation in t
gauge theory. Since supersymmetry is broken by antiperio
boundary conditions on the fermions, the gauge theory
S13R2 is expected to have a negative Casimir energy. Co
paring the negative energy computed from supergravity

1This general result applies for any theory involving Einste
gravity in higher dimensions, includingsuperstring theory@10#. The
closely related positive action conjecture is also false for spaceti
which are only locally asymptotically Euclidean@11#.
©1998 The American Physical Society05-1



w
n
/

vi-
a

s

ov
n
ic

r
ce
tu
ic

i
i

a
le

ca
T
v

n
ar
ns
th
iv
e
an

ch
s
t

n
he

ce
tr
p

m
ce

r
es.
n-
:

by

re

he
itter

try
adial

p-
s

ns

s:

re
ne c

GARY T. HOROWITZ AND ROBERT C. MYERS PHYSICAL REVIEW D59 026005
the Casimir energy in the weakly coupled gauge theory,
find close agreement. They have the same dependence o
parameters and disagree only by an overall factor of 3
This is similar to the factor of 3/4 that was noticed pre
ously in comparisons of the entropy of the near-extrem
three-branes@14#. We will show that in fact these two factor
have the same origin.

The key question is whether the solution described ab
is the lowest energy solution with these boundary conditio
If so, there must be a new positive energy theorem wh
ensures that the energy of all solutions is greater than
equal to this negative value, with equality only for our pa
ticular solution. At first sight, this seems very unlikely, sin
the solution we discuss does not have constant curva
supersymmetry, or any other distinguishing property wh
have previously characterized minimum energy solutions
general relativity. Nevertheless, we will present evidence
favor of this new positive energy theorem. We will show th
the solution is a local minimum of the energy: i.e., it is stab
to small fluctuations. The existence of this new theorem
be viewed as a highly nontrivial prediction of the AdS-CF
correspondence. A complete proof would provide strong e
dence for the correspondence.

The outline of this paper is as follows. In the next sectio
we review the definition of energy for spacetimes that
asymptotically AdS. In Sec. III, we present our solutio
with negative total energy and discuss their relation to
CFT. Section IV contains the statement of the new posit
energy conjecture and some evidence in favor of it. In S
V, we consider some generalizations of the conjecture,
further discussion is given in Sec. VI.

II. ENERGY IN ANTI –de SITTER SPACETIME

The definition of total energy for spacetimes whi
asymptotically approach AdS spacetime was first discus
in Ref. @4#. In the following, we will adopt an equivalen
definition derived in@15# ~see also@16#!. The total energy in
general relativity is always defined relative to a backgrou
solution which has a time translation symmetry. Let t
norm of the timelike Killing field be2 2N2. The energy de-
pends only onN and on the metric of a spacelike surfa
which asymptotically approaches the background geome
Starting from the action and deriving the Hamiltonian, kee
ing track of surface terms, one finds@15#

E52
1

8pG E N~K2K0!, ~2.1!

where the integral is over a surface near infinity,K is the
trace of the extrinsic curvature of this surface, andK0 is the
trace of the extrinsic curvature of a surface with the sa
intrinsic geometry in the background or referen

2When there is more than one timelike Killing field, there a
additional conserved quantities. The energy is then one compo
of a conserved vector~or tensor!. We will focus on one timelike
component and call it the energy.
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spacetime.3 This definition is very general and works fo
both asymptotically flat and asymptotically AdS spacetim

Let us illustrate this definition with a few examples. Co
sider the Schwarzschild-AdS solution in four dimensions

ds252S r 2

l 2
112

r 0

r D dt21S r 2

l 2
112

r 0

r D 21

dr21r 2dV2 ,

~2.2!

where l is related to the negative cosmological constant
l 2523/L. Consider a spatial slice of constantt in this
space. At fixedr, one has a round two-sphere with areaA
54pr 2. The integral of the trace of the extrinsic curvatu
of this sphere is easily computed as

E K5nm]mA5S r 2

l 2
112

r 0

r D 1/2

8pr , ~2.3!

wherenm is the unit radial vector normal to the sphere. T
background or reference spacetime is just anti–de S
space, i.e., Eq.~2.2! with r 050. At fixed t, the boundary
surface in the background with the same intrinsic geome
as above is again a two-sphere at the same value of the r
coordinater. Thus *K0 is simply given by Eq.~2.3! with
r 050. In either case,N is constant on the sphere and asym
totically approachesN.r / l . Substituting these expression
into Eq. ~2.1! yields E5r 0/2G4 as expected~where G4 is
Newton’s constant in four dimensions!.

This calculation is easily extended to arbitrary dimensio
with the black hole metric

ds252F r 2

l 2
112S r 0

r D p21Gdt2

1F r 2

l 2
112S r 0

r D p21G21

dr21r 2dVp , ~2.4!

where dVp is the metric on a unitp-sphere andl 25
2p(p11)/2L. Also note thatp>2 for the above metric.
The final result for the energy is

E5
pVp

16pGp12
r 0

p21, ~2.5!

where

Vp52p~p11!/2Y GS p11

2 D
is the area of a unit p-sphere and Gp12 is the
(p12)-dimensional Newton’s constant.

Next consider the following asymptotically AdS metric

nt3To leading order,N will be the same for both the given metri
and the background space. Higher order differences betweenN and
N0 will not affect the result for the energy@15#.
5-2
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AdS-CFT CORRESPONDENCE AND A NEW POSITIVE . . . PHYSICAL REVIEW D 59 026005
ds25
r 2

l 2 F2S 12
r 0

p11

r p11Ddt21~dxi !2G
1S 12

r 0
p11

r p11D 21 l 2

r 2 dr2, ~2.6!

where i 51, . . . ,p. For certain values ofp, these metrics
arise in the near-horizon geometry ofp-branes~see, e.g.,@1#!.
With r 050, these metrics correspond to AdS space in ho
spheric coordinates@17#. Once again we consider a surfa
of constantt. If we introduceVp as the coordinate volume o
the surfaces parametrized byxi , then the area of a surface
fixed larger is simplyA5r pVp / l p. Computing the energy a
before yields

Ep5
pVp

16pGp12l p12
r 0

p11. ~2.7!

Ep /Vp corresponds to the energy density of the field the
in the CFT-AdS correspondence.

There is a slight subtlety in computing the mass of
above metrics~2.6!. If the directions along the branexi are
not identified~i.e., are noncompact!, then the constantr 0 can
be changed by rescaling the coordinatest, r, xi in an appro-
priate way. Hence the energy~2.7! is not well defined. This
is not surprising, since the energy is conjugate to asympt
time translations, and so if one rescales the time, the en
should change.4 In the following, we will be interested in the
case where at least one of the spatial directions is comp
fied. If we fix the periodicity of the circle~corresponding to
fixing the size of the circle in the gauge theory!, then r 0
cannot be rescaled. However, when some of thexi ’s are
compactified, the background spacetime withr 050 has a
conical singularity atr 50. We will not worry about this
singularity, since it is likely that string theory resolves
without changing the asymptotic form of the metric, which
all that is needed to compute the energy. More importan
the lower energy solution we describe in the next sectio
completely nonsingular.

III. NEGATIVE ENERGY SOLUTIONS

We begin by reviewing the negative energy solutions
the asymptotically flat context@10#. It is easy to describe the
initial data for these negative energy solutions. For fiv
dimensional solutions, the initial data consist of a fou
dimensional Riemannian manifold which asymptotically a
proaches the flat metric on S13R3. Of course, within genera
relativity, these initial data must satisfy a number of co
straint equations. However, if we set the conjugate mom

4In the full asymptotically flatp-brane solution, this is not a prob
lem, since the scale fort is picked out by the requirement that] t be
a unit time translation at infinity. It is this time which correspon
to time translation in the gauge theory. In the previous metrics~2.4!,
the scale ofr is fixed by requiring the spheres of constant radius
have an area given byr pVp .
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tum to zero, these constraints reduce to the condition that
scalar curvature vanish. As initial data, we consider the
clidean Reissner-Nordstro¨m metric

ds25S 12
2m

r
1

q2

r 2 Ddt21S 12
2m

r
1

q2

r 2 D 21

dr21r 2dV2 .

~3.1!

To avoid a conical singularity atr 5r 1[m1Am22q2, we
must periodically identifyt and so Eq.~3.1! has the desired
asymptotic geometry. It also satisfies the constraint, beca
the Einstein tensor is proportional to the Maxwell stress t
sor, which is trace free in four dimensions. We now analy
cally continue the parameterq→ iq. ~Since we are intereste
only in the metric~3.1! and do not include a Maxwell field
we do not have to worry about the latter becoming co
plex.! It is now clear that we can take the mass parame
m,0 without the metric becoming singular. Since the s
of the circle at infinity is just the period oft which depends
on both m and q, one can keep this fixed asm becomes
arbitrarily negative. In fact, one finds, for a fixed period, th
the curvature remains bounded as the mass becomes inc
ingly negative. Therefore one may conclude that such to
dal compactifications in asymptotically flat spacetimes
unstable. In theories with fermions, this instability on
arises in the sector where the spin structure is asymptotic
antiperiodic on one of the S1 factors. Aside from this restric-
tion, the analysis applies quite generally to any theory
volving Einstein gravity in higher dimensions, including s
perstring theory@10#.

We now want to know if an analogous result holds f
spacetimes which are asymptotically AdS. The first thing
try is an obvious generalization of the above procedure us
the Euclidean AdS Reissner-Nordstro¨m metric. When the
charge in the latter is analytically continued, the metric b
comes

ds25S r 2

l 2 112
r 1

r
2

r 0
2

r 2Ddt2

1S r 2

l 2 112
r 1

r
2

r 0
2

r 2D 21

dr21r 2dV2 . ~3.2!

As before, this satisfies the vacuum constraints~now with
negative cosmological constant! if the momenta are set equa
to zero. However, there is an important difference with t
asymptotically flat case. In Eq.~3.2!, the proper length of the
circles parametrized byt grows with r. This means that the
area of the surface at infinity grows liker 3 just like the
uncompactified five-dimensional AdS spacetime. As a res
the mass is determined by ther 0

2/r 2 terms in the metric,
rather than ther 1 /r term. The appropriate physical bounda
conditions—see the discussion in Sec. V-require thatr 150.
Thus this construction only yields the following one
parameter family of finite energy initial data:

ds25S r 2

l 2 112
r 0

2

r 2Ddt21S r 2

l 2 112
r 0

2

r 2D 21

dr21r 2dV2 .

~3.3!
5-3
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Note that one cannot change the sign ofr 0
2 without introduc-

ing a naked singularity atr 50. With the above sign, the
radial coordinate is restricted tor>r 1 , wherer 1 is the larg-
est root ofr 1

4 1 l 2(r 1
2 2r 0

2)50. To avoid a conical singular
ity at r 5r 1 , t is identified with period

b5
2p l 2r 1

2r 1
2 1 l 2

. ~3.4!

The metric~3.3! can also be obtained by analytically co
tinuing the five-dimensional Schwarzschild AdS solution a
restricting oneself to the equatorial plane of the thr
spheres. One might thus expect that its mass would be p
tive. However, we now show that it is negative.

The area of a surface at larger is

A54pr 2bS r 2

l 2
112

r 0
2

r 2D 1/2

. ~3.5!

The integral of the extrinsic curvature becomes

E K54pbF3r 3

l 2
12r 2

r 0
2

r G . ~3.6!

The background metric is simply Eq.~3.3! with r 050, which
is four-dimensional hyperbolic space with period
identifications.5 In this reference space, we need to choos
boundary surface with the same intrinsic geometry as
S23S1 at fixed r above. For the S2 geometry to agree, the
radial coordinate of the surface in the background must
the same as in the original spacetime. For the proper
tances along the S1 factors to agree, the periodicity oft in the
backgroundb0 is related tob by

S r 2

l 2
112

r 0
2

r 2D 1/2

b5S r 2

l 2
11D 1/2

b0 . ~3.7!

The integral of the extrinsic curvature in the background
simply

E K054pb0F3r 3

l 2
12r G . ~3.8!

Using Eq.~3.7!, N.r / l , and the definition of the energy, Eq
~2.1!, one finds that

E52
br 0

2

4G5l
. ~3.9!

From this, one clearly sees that the energy is negative, b
is difficult to see the dependence on the size of the circlb

5Even though the spacetime resulting from these initial data
locally AdS, it is not globally static. So extra restrictions are need
to ensure energy conservation. This will not be the case for
main example discussed below.
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definition of r 1 . For r 1@ l , r 0

2.r 1
4 / l 2.p4l 6/b4, and so

one obtains6

E.2
p4l 5

4G5b3
. ~3.10!

Through the AdS-CFT correspondence, this analy
should be related to a gauge theory on S23S1 where S2 has
radius l, S1 has period b, and supersymmetry-breakin
boundary conditions are imposed along the S1. For smallb,
this is expected to have a negative Casimir energy den
proportional tob24 ~at least at weak coupling!. Hence the
total energy would be negative and proportional tob23, in
agreement with the above supergravity calculation.

The preceding calculations can be extended to arbitr
dimensions with the initial data metric

ds25F r 2

l 2
112S r 0

r D p21Gdt2

1F r 2

l 2
112S r 0

r D p21G21

dr21r 2dVp21 ,

~3.11!

which satisfies the constraint equation(p11)R52p
(p11)/l 2. Again, the geometry smoothly closes off atr
5r 1 , which is now the largest root ofr 1

p111 l 2

(r 1
p212r 0

p21)50, provided thatt is identified with period

b5
4p l 2r 1

~p11!r 1
2 1~p21!l 2

. ~3.12!

The final result for the energy is

E52
Vp21br 0

p21

16pGp12l
.2

Vp21

16pGp12
S 4p

p11D p11 l 2p21

bp ,

~3.13!

where the final formula again holds for larger 1 . Where
applicable, these results should be related to a quantum
theory on Sp213S1. Again, a negative energy proportion
to b2p can be expected to arise through the Casimir effec
the field theory.

To make a more precise comparison of the energy in A
spacetime and the gauge theory, it would be useful to h
an example of a solution with negative energy that asym
totically had topology Rp213S1. This is easily obtained by a
double analytic continuation of the near-extremalp-brane so-
lution ~2.6!. That is, we analytically continue this metric wit
both t→ i t andxp→ i t . In the following, we will refer to this
spacetime as theAdS soliton. The metric becomes

is
d
r

6For a givenb, there is another solution to Eq.~3.4! with a smaller
value of r 1 , but it corresponds to a configuration for which th
energy which is less negative.
5-4
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ds25
r 2

l 2 F S 12
r 0

p11

r p11D dt21~dxi !22dt2G
1S 12

r 0
p11

r p11D 21
l 2

r 2 dr2, ~3.14!

where there are nowp21 xi ’s. Again, the coordinater is
restricted tor>r 0 and t must be identified with periodb
54p l 2/(p11)r 0 to avoid a conical singularity atr 5r 0 .
Note that this spacetime metric is globally static and co
pletely nonsingular. For fixedt andr, the area of a surface i

A5S 12
r 0

p11

r p11D 1/2

r pbVp21 / l p,

whereVp21 denotes the volume of the transversep21 xi ’s.
The appropriate background is Eq.~3.14! with r 050, which
corresponds to AdS space with periodic identifications. I
easy to see that for the background,*K05(p/ l )A. Follow-
ing the above procedure, the energy is again found to
negative:

E52
r 0

p11bVp21

16pGp12l p12
. ~3.15!

Using the above relation betweenr 0 andb, this result can be
rewritten as

E52
Vp21l p

16pGp12bp S 4p

p11D p11

. ~3.16!

For certain values ofp, we can express this in terms of th
string theory couplingg and Ramond-Ramond chargeN. For
example, for the three-branep53, we havel 454pgN and
G5 is the ten-dimensional Newton’s constant,G1058p6g2,
divided by the volume of a five sphere of radiusl, A5
5p3l 5. We thus obtain an energy density

rSUGRA5
E

V2b
52

p2

8

N2

b4
. ~3.17!

We wish to compare this with the ground state energy
the gauge theory on S13R2, where the length of the S1 is b.
This can only be calculated directly at weak gauge coupli
where, to leading order, it reduces to the problem of de
mining the Casimir energy of the free field theory. The fie
theory isN54 super-Yang Mills, which contains an SU(N)
gauge field, six scalars in the adjoint representation, and t
superpartner fermions. In the present case, the latter ferm
are antiperiodic on the S1. The stress-energy tensor for th
theory may be found in@18#. The leading order Casimir en
ergy may be calculated by point-splitting the fields in t
energy density~i.e., Ttt! with the appropriate free-field
Green’s function and then removing the vacuum diverge
before taking the limit of coincident fields@19#. The final
result is
02600
-

s

e

f

,
r-

eir
ns

e

rgauge52
p2

6

N2

b4
. ~3.18!

Thus we find that the negative energy density of the sup
gravity solution is precisely 3/4 of the Casimir energy of t
weakly coupled gauge theory. This is very reminiscent
earlier results showing that the entropy of the near-extre
three-brane is precisely 3/4 the entropy of the wea
coupled gauge theory at the same temperature@14#.

In retrospect, it is not surprising that the ground sta
energies differ by exactly the same factor as the ther
entropies, as both results can be derived as different inter
tations of a common Euclidean calculation. On the fie
theory side, consider the Euclidean functional integral for
~weakly coupled! Yang-Mills theory on S13R3 where the
circle has periodb and antiperiodic boundary conditions fo
the fermions. One natural interpretation is as a thermal fi
theory calculation at temperatureb21, and the partition
function yields the free energy asbFYM52 log ZYM . Alter-
natively, one may interpret one of the noncompact directio
as Euclidean timetE . In this case the same partition func
tion, evaluated between two surfaces separated by a l
difference of Euclidean timeDtE , yields the ground state
energy asDtEEYM52 log ZYM . On the supergravity side
consider the Euclidean instanton obtained by analytica
continuing the AdS soliton metric~3.14! with t→ i t E . This
instanton is, of course, identical to that obtained from
black hole metric~2.6! with t→ i t and identifyingt with the
appropriate periodb. ~We also trivially renamexp5tE .! In
the latter context, the instanton describes a thermal equ
rium of the black hole@20# at temperatureb21, and the
Euclidean action is interpreted as giving the black hole c
tribution to the free energy asbFBH5I . On the other hand
in the context of the AdS soliton, the same Euclidean act
is simply related to the total energy~3.16! via DtEE5I .
Now from the analysis of three-branes@14# (p53), it fol-
lows that when the temperatures of the black hole and Ya
Mills theory are equated, their free energies are related b

FBH5
3

4
FYM ~3.19!

and hence

I 5
3

4
~2 log ZYM !. ~3.20!

Hence, from the preceding discussion, it also follows that
must find the same factor in relating the total energiesE
53/4EYM , and the energy densities above, as well.

The factor of 3/4 discrepancy between the two calcu
tions does not contradict the AdS-CFT corresponden
Rather, the supergravity result~3.17! corresponds to the en
ergy density of the gauge theory in a regime of strong c
pling. To extrapolate the AdS results to weak coupling, o
must include all of the higher order~in the string scale! cor-
rections to the geometry induced by type-IIB string theo
The leading order correction to Eq.~3.14! has recently been
5-5
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computed in@21#. The net effect is that the Euclidean actio
became more negative. Thus from the preceding discuss
as expected, the energy and energy density of the co
sponding AdS soliton becomes slightly more negative,
proving the agreement with the weak coupling results~3.18!.

In order to construct these negative energy soluti
~3.14!, we needp>1 so that there will be one spatial dire
tion in Eq. ~2.6! to analytically continue. The casep51,
corresponding to three spacetime dimensions, is special
solutions have constant curvature and hence are locally A
The metric ~2.6! with p51 is the ~nonrotating! Bañados-
Teitelbeim-Zanelli~BTZ! black hole@22#. We showed above
that if you take the positive mass black hole and dou
analytically continue, then you get a solution with less m
than the zero-mass black hole. However, it is known t
three-dimensional AdS spacetime itself has less mass
the M50 black hole@22#. In fact, as we will now show, the
double analytically continued black hole is precisely A
globally, with no extra identifications. We start with th
black hole metric~2.6! with p51

ds252
r 22r 0

2

l 2
dt21

l 2

r 22r 0
2

dr21
r 2

l 2
dx2. ~3.21!

By rescalingt,r,x, we can setr 05 l . Now analytically con-
tinue in t andx as before to get

ds252
r 2

l 2
dt21S r 2

l 2
21D 21

dr21S r 2

l 2
21D dt2.

~3.22!

Finally, setr25r 22 l 2 andf5t/ l to put this metric into the
standard AdS form

ds252S r2

l 2
11D dt21S r2

l 2
11D 21

dr21r2df2.

~3.23!

Note that after the analytic continuation,t should be periodi-
cally identified to avoid a conical singularity. In Eq.~3.23!,
this is simply the statement thatf is an angle with the stan
dard periodicity of 2p.

IV. NEW POSITIVE ENERGY THEOREM?

A. Conjectures

The above qualitative and quantitative agreements
tween AdS energy and Casimir energy in the CFT seem
support the AdS-CFT correspondence in the nonsupers
metric case. A crucial question though is whether the A
soliton ~3.14! is the lowest energy solution with the give
boundary conditions. The aforementioned agreement wo
be put in peril by the existence of metrics with even low
energies.

For definiteness, let us focus on thep53 case in the
following. This corresponds to the near-horizon geometry
Dirichlet three-branes, for which the AdS-CFT correspo
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dence is understood in the most detail. The AdS soliton m
ric ~3.14! then becomes

ds3
25

r 2

l 2 F S 12
r 0

4

r 4D dt21~dx1!21~dx2!22dt2G
1S 12

r 0
4

r 4D 21
l 2

r 2
dr2, ~4.1!

wherer>r 0 andt has periodb5p l 2/r 0 . For the remainder
of this section, we will use Eq. (4.1) as our reference me
and measure energy relative to it. We will consider metrics
which asymptotically approach Eq.~4.1! in the sense that
for large r,

gmn5ḡmn1hmn ,

hag5O~r 22!, har5O~r 24!,

hrr 5O~r 26! with a,gÞr . ~4.2!

Derivatives ofhmn are required to fall off one power faste
In Eq. ~4.2!, ḡmn denotes the AdS soliton~4.1! ~or metrics
obtained from it as indicated below!. Note that even though
these boundary conditions allow metrics with different co
stantsr 0 asymptotically, the periodicity oft is fixed.

The AdS-CFT correspondence, together with the expec
stability of the nonsupersymmetric gauge theory, sugge
that the energy of any solution with these boundary con
tions should be positive relative to Eq.~4.1!. Hence we are
led to formulate a new positive energy conjecture. Below,
present three different forms of this conjecture, starting w
the most general and becoming more specialized. The s
pler conjectures may be easier to prove, but would still be
great interest.

Conjecture 1.Consider all solutions to ten-dimension
type-IIB supergravity satisfying Eq.~4.2! @with ḡmn denoting
the product of Eq.~4.1! with a five-sphere of radiusl#. Then
E>0, with equality if and only ifgmn5ḡmn .

The self-dual five-form must be nonzero to satisfy t
asymptotic boundary conditions. If we make the reasona
assumptions that the other supergravity fields will only
crease the energy and spacetimes which are not direct p
ucts with S5 will also have higher energy, then the abo
conjecture can be reduced from ten dimensions to five
follows.

Conjecture 2.Consider all solutions to Einstein’s equatio
in five dimensions with cosmological constantL526/l 2

satisfying Eq.~4.2! @with ḡmn denoting the metric~4.1!#.
ThenE>0, with equality if and only ifgmn5ḡmn .

In the above conjectures, the solutions are required
have at least one nonsingular spacelike surface, since o
wise one could easily construct counterexamples with na
singularities. If we assume that there is a surface with z
extrinsic curvature~i.e., a moment of time symmetry!, then
the constraint equations reduce to the statement that the
lar curvature is constant. We thus obtain the following.

Conjecture 3. Given a nonsingular Riemannian fou
manifold with R5212/l 2 satisfying Eq.~4.2! @with ḡmn de-
5-6



se

th
rg
v
m
th
in
ll

on

ue
q
u-
ld
ar

n
th

n
s.
ia
rm

r
at
e

ri
on
th
-
rg

o
lly

no

th
gy
o
n
il
s
s
-

to

n

ent
r

lin-
rit-

nal
is
e.,

tric
er,

e
er,
at

n

l
as
by

us
di-
s to
ed
the
the
at-
nd
hift

net

or-

ce,
ua-

n
e-

AdS-CFT CORRESPONDENCE AND A NEW POSITIVE . . . PHYSICAL REVIEW D 59 026005
noting the metric on at5constant surface in Eq.~4.1!#, then
E>0 with equality if and only ifgmn5ḡmn .

As we mentioned in the Introduction, at first sight the
conjectures seem unlikely to be true. The solution~4.1! does
not have constant curvature, supersymmetry, or any o
special property usually associated with minimum ene
solutions in general relativity. It is possible that the abo
conjectures fail, but there is another solution of minimu
energy. However, this is unlikely, since one expects
minimum energy solution to be static and translationally
variant around the circle. One could then double analytica
continue this metric to produce a new black hole soluti
The ‘‘black hole uniqueness theorems’’~which have not
been proved for this case, but still are believed to be tr!
would then imply that this solution must be identical to E
~2.6! with p53, which corresponds to the analytic contin
ation of Eq.~4.1!. Furthermore, previous experience wou
suggest that there are time-dependent solutions of arbitr
negative energy—see, e.g.,@10#.

Nevertheless, in this section we present some evide
that the above conjectures are indeed true. First, we note
under perturbations of the metric~4.1!, the energy is un-
changed to first order. This result in fact applies for a
metric that is globally static@23# and can be seen as follow
The gravitational Hamiltonian is a function of the spat
metric and conjugate momentum, and takes the fo
H(gi j ,p i j )5*NmCm1E, whereNm is the lapse-shift vecto
and Cm are the constraints. Suppose we start with a st
solution and chooseNm to generate evolution along the tim
translation symmetry. Consider the variation ofH with re-
spect togi j . On the one hand, this is] tp

i j , which vanishes
since the background is static. On the other hand, the va
tion of the constraint will vanish whenever the perturbati
solves the linearized constraints. Hence the variation of
energy must also vanish. SinceE is independent of the con
jugate momenta, this is sufficient to establish that the ene
is an extremum.

B. Perturbative stability

While we have established that the mass of the AdS s
ton is an extremum, we would like to show that it is actua
a global minimum. Unfortunately, given the~nonsupersym-
metric! spin structure on the asymptotic geometry, we can
apply the spinor techniques of@24# and@5# to argue that this
is the case. Instead, we must be satisfied with showing
the AdS soliton gives a local minimum of the AdS ener
functional. Our perturbative approach here follows that
@4#, where the stability of the AdS spacetime itself was co
sidered. We refer the interested reader to there for a deta
discussion of the technique. Their general analysis is ba
on the construction of conserved charges for background
lutions with Killing symmetries, in particular a time transla
tion symmetry, and hence may be applied to the AdS soli

One begins by dividing the metric~globally! in a manner
similar to Eq.~4.2!:

gmn5ḡmn1hmn , ~4.3!

whereḡmn is the AdS soliton andhmn represents a deviatio
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satisfying the above boundary conditions. For the mom
we will work with the generald-dimensional case and late
specialize tod55. In order thatgmn be still a solution,hmn

must satisfy an equation which may be represented as a
earized Einstein equation with a nonlinear source term. W
ten in this form, the terms nonlinear inhmn may be taken to
define the energy-momentum density of the gravitatio
field, Tmn. By virtue of the field equations, this density
covariantly conserved in the background metric, i.

¹̄mTmn50. Now given a Killing vectorjm of the background
solution, one finds then thatTm

njn is a covariantly conserved
current and hence

E~j!5
1

8pG E dd21xAḡT0
njn ~4.4!

is a conserved charge. Ifjm is a timelike vector, this quantity
defines the Killing energy, i.e., the mass of the new me
~4.3! with respect to the background solution. Furth
Abbott and Deser@4# show that the integrand of Eq.~4.4! is
a total divergence, and soE(j) may be written as a flux
integral over a (d22)-dimensional surface at infinity. Th
details of this calculation are not important here: howev
we note that with this flux integral form one may show th
this Killing energy~4.4! agrees with our previous definitio
of the energy~2.1! @15#.

Instead, we wish to constructE(j) ~or rather the energy
densityH! directly to second order in the fluctuationshmn .
Abbott and Deser@4# turn to the framework of canonica
gravity for this purpose. One may view their construction
evaluating the second order term in the field equations
making a third order expansion of the action with a judicio
choice of variables. The canonical variables provide a ju
cious choice for several reasons. First, since one wishe
focus onT0

m , the third order expansion need only be carri
out for terms linear in the lapse or shift, and quadratic in
spatial metric and conjugate momenta. Second, for
present background solutions of interest, we will be evalu
ing H on a time-symmetric slice, and so the backgrou
momentum variables vanish. Finally, the background-s
vector also vanishes in the solutions considered here. The
result is that one must calculate

H5
N̄

Aḡ
Fgikgjl p

i j pkl2
1

d22
p22g~ ~d21!R22L!G ,

~4.5!

with the quantity in square brackets evaluated to second
der in the deviations of the spatial metrichi j and the conju-
gate momentum deviationspi j . Here (d21)R is the intrinsic
curvature scalar of the initial data surface. For convenien
the following gauge conditions are imposed on the fluct
tion fields @4#:

pi
i505D̄ ihi j , ~4.6!

whereD̄ i is the (d21)-dimensional covariant derivative o
the initial data surface with the background metric. The d
5-7
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viations are also required to satisfied the constraint equat
to linear order, which imposes

hi
i505D̄ ip

i j . ~4.7!

One can see that together Eqs.~4.6! and~4.7! ensure that the
fluctuations are transverse and traceless with respect to
background metric. Evaluating Eq.~4.5! subject to these con
straints, one arrives at the expression7

H5N̄F 1

Aḡ
pi j pi j 1AḡS 1

4
~D̄khi j !

2

1
1

2
~d21!R̄i jkl hil hjk2

1

2
~d21!R̄i j hikhj

kD G . ~4.8!

Here it is immediately apparent that the momenta mak
manifestly positive contribution to the energy densi
Hence, if we are interested in lowering the energy of
background solution, we should setpi j 50 and focus on the
spatial metric fluctuations. For the latter, there is a grad
energy density, which is also positive, and a potential ene
density, whicha priori has no definite sign. If we conside
the background to be anti–de Sitter space, for which

~d21!R̄i jkl 52
1

l 2
~ ḡikḡ j l 2ḡi l ḡ jk!, ~4.9!

the potential becomes

U51
d23

2l 2
hi j h

i j , ~4.10!

where l 252(d22)(d21)/2L. Hence, in AdS space, th
potential energy and hence the total energy contribution
the spatial metric fluctuations are also manifestly positi
and we may conclude that AdS space is perturbatively sta
Of course, spinor techniques@24# allow one to show that
AdS space is in fact the absolute minimum energy s
within that sector of the theory, i.e., for solutions which a
mit asymptotically constant spinors. The AdS soliton is n
included in this sector, as the spin structure on
asymptotic boundary differs. Further, the latter metric do
not have a Riemann tensor with the maximally symme
form of Eq. ~4.9!.

As for our conjecture, the remainder of the discussion w
be restricted to the AdS soliton withp53, i.e., spacetime
dimensiond55. In this case, the metric on a constant tim
slice in Eq.~4.1! is

7One must integrate by parts to arrive at this expression: howe
the above boundary conditions~4.2! will ensure the vanishing of
any boundary contributions.
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ds25
r 2

l 2 F S 12
r 0

4

r 4D dt21~dx1!21~dx2!2G
1S 12

r 0
4

r 4D 21
l 2

r 2
dr2. ~4.11!

In the following, we will actually refer all indices to the
obvious orthonormal frame. Now the curvature of this spa
slice is given by

~4!R̄tr tr52
1

l 2
~123y!, ~4!R̄121252

1

l 2
~12y!,

~4!R̄t1t152
1

l 2
~11y!5 ~4!R̄t2t25 ~4!R̄r1r15 ~4!R̄r2r2 ,

~4.12!

where y5r 0
4/r 4. Now the potential term in Eq.~4.8! be-

comes

U5
1

2
~ ~4!R̄i jkl hil hjk2 ~4!R̄i j hikhj

k!

5
1

l 2
$~22y!@~ht1!21~ht2!21~hr1!21~hr2!2#

12~11y!~htr !
212~h12!

2

1Udiag~htt ,hrr ,h11,h22!%. ~4.13!

Given that 0<y<1, we see that the potential ensures t
stability of all fluctuations in the off-diagonal components
the metric. Now, in evaluating the potential for the diagon
fluctuations, we first impose the traceless condition of E
~4.7! with hrr 52htt2h112h22. Then defining Va

5(htt ,h11,h22), the remaining potential terms may be wri
ten as

Udiag5
1

2l 2
VaUabV

b, ~4.14!

where

Uab52S 212y
11y
11y

11y
22y

122y

11y
122y
22y

D . ~4.15!

It is straightforward to determine the eigenvalues of this m
trix to be

l052~11y!, l6552y6~916y133y2!1/2.
~4.16!

One easily shows thatl0 andl1 are positive in the range o
interest, i.e., 0<y<1, and hence the corresponding eige
vectors correspond to manifestly stable metric fluctuatio
The most interesting case is that ofl2 for which one finds

r,
5-8
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l2.0 for 0<y, 1
2 , but l2,0 for 1

2 ,y<1. Hence the po-
tential energy density for this eigenvector,

V2
a 5~v2,1,1! with v25

2115y2~916y133y2!1/2

2~11y!
,

~4.17!

becomes negative in a small region near the center of
space, i.e.,r 4,2r 0

4.
Thus metric fluctuations with a form where thehi j are

dominated by this eigenmode and only have support in
small region nearr 5r 0 seem to have the potential to b
unstable, i.e., lower the energy of the background solut
However, for such fluctuations, there is a competition
tween the manifestly positive gradient contributions and
potential terms in the energy density~4.8!. We argue below
that the former terms dominate and hence these fluctuat
are also stable.

Imagine that we are considering a metric fluctuati
which we might characterize asVa5A(r )V2

a , whereA(r ) is
a profile, which we assume takes its maximum atr 5r 0 ,
monotonically decreases, in order to minimize the gradi
energy, and vanishes outsider 521/4r 0 . The potential energy
density ~4.14! becomesU5(A2/2l 2)l2(21v2

2 ). With the
assumption that the profile takes its maximum atr 5r 0 , the
minimum of the potential energy density is

Umin5U~r 5r 0!528~2)23!
A~r 0!2

l 2
.23.713

A~r 0!2

l 2
.

~4.18!

While the complete expression forU for this fluctuation has
a complicated analytic form, for the purpose of the reade
intuition we note that to within an accuracy of a few perce
one may approximate this expression in the region of in
est, i.e., 1

2 ,y<1, by the simple expressionU5Umin
(2y21)A(r )2/A(r 0)2. So if one imagined that the profil
was constant, the potential energy density would decre
linearly as a function ofy, reaching zero aty51/2.

We estimate the gradient energy as follows:

T5
1

4
~D̄h!2.

1

4
@21v2

2 1~21v2!2#~D̄A!2, ~4.19!

where we further estimate the gradient of the profile by
maximumA(r 0) divided by the proper distance betweeny
51 andy51/2, i.e., betweenr 5r 0 andr 521/4r 0 . The latter
distance turns out to bel log(&11)/2.0.441l . In the region
of interest,v2 varies from21 aty51/2 to 12).20.73 at
y51, and so we will simply fix it tov2521 in our estimate
of T. Hence we arrive at the following estimate:

Taverage.5.14
A~r 0!2

l 2
. ~4.20!

Comparing Eqs.~4.18! and ~4.20!, we see that this averag
gradient energy already exceeds the minimum value of
potential energy. Hence it must be that these potentially
stable metric fluctuations in fact have a positive total ener
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While our estimate of the gradient contribution may se
crude, a more detailed examination shows that in fac
greatly underestimates the energy. Properly evaluating
covariant derivatives in Eq.~4.19!, accounting for the tenso
properties of the fluctuations, adds more positive terms
this expression, which are roughly the same order of mag
tude as those considered, i.e.,A2/ l 2. Further, we have no
accounted for the gauge-fixing constraint~4.6! in our calcu-
lations. This constraint fixes the form of the profile for th

fluctuation considered above throughD̄ ihir 50, which is the
only nontrivial component. One finds that the profile mu
decay more slowly than estimated above, but that it can
vanish aty51/2. Rather, it has infinite support, vanishing
1/r 4 in the asymptotic region. While this decreases the lo
gradient energy density, it also adds a positive potential
ergy density in the regiony,1/2. Hence the final conclusion
that these fluctuations are stable remains correct in a deta
analysis.

V. GENERALIZATIONS

Although we have focused on the casep53 above, one
can extend the conjecture to other dimensions, including
p55 case which is directly related to four-dimensional no
supersymmetric gauge theories@6#. We believe the solutions
~3.14! for all p are perturbatively stable, although a detail
analysis of the fluctuations has not yet been carried out.

Consider the following modification@25# of the metric
~2.4!:

ds252F r 2

l 2
212S r 0

r D p21Gdt2

1F r 2

l 2
212S r 0

r D p21G21

dr21r 2dsp
2, ~5.1!

where

dsp
25~11r2!dz21

dr2

11r2
1r2dVp22 ~5.2!

is the metric on ap-dimensional unit hyperboloid. This met
ric is also a solution of Einstein’s equation with negati
cosmological constant and is asymptotically AdS. It is u
usual since the black hole metric~5.1! ~without any analytic
continuation! can have negative energy@25#. Indeed, the en-
ergy is still given by Eq.~2.5! ~with Vp denoting the area o
the unit hyperbolic space8!, but now one can let the param
eterr 0

p21 be negative and still have a horizon. There is, ho
ever, a minimum energy possible for the black hole. F
example, in the casep53, this occurs whenr 0

252 l 2/4, cor-
responding to an energy

8One can either compactify this space, so that its area is finite
work with the energy density.
5-9
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E52
3l 2V3

64pG5
. ~5.3!

The Hawking temperature of these minimum energy bla
holes is zero. Are they the minimum energy configuratio
with these boundary conditions?

One can double analytically continue this metric,t→ i t
and z→ i t . As usual,t must be periodically identified with
period

b5
4p l 2r 1

~p11!r 1
2 2~p21!l 2

~5.4!

so that a constant time surface asymptotically approache
product of hyperbolic space and a circle. The energy is ag
given by Eq.~3.13! and hence is negative for positive valu
of r 0

p21. For larger 0
p21, the energy is the same as the met

~3.11!, since the size of the circle is much smaller than
scale of the curvature on the orthogonal space.

One might conjecture that the metrics~5.1! represent the
minimum energy configurations for these boundary con
tions. Since these solutions are static, they are extrema o
energy. It is likely that they are also local minima of th
energy. In fact the calculations in Sec. IV show that this
the case forp53. This is due to the remarkable fact that t
components of the curvature of Eq.~5.1! ~in an orthonormal
frame! are identical9 to Eq. ~2.4!. If one analytically contin-
ues int andz and restricts oneself to a constant time surfa
the curvatures are still the same. Since the potential term
the quadratic fluctuations depends only on the curvature
will again be positive.

From the CFT viewpoint, the above metrics should d
scribe the CFT on a product of S1 and a hyperbolic space
Since the scalars couple to the curvature, a negative cu
ture space would seem to lead to an instability.10 Thus, in
this case, the apparent stability of the supergravity solu
seems in contrast to the expected CFT result. We do no
have a resolution of this puzzle.

VI. DISCUSSION

We have shown that the AdS soliton~3.14! has lower
energy than AdS space with periodic identifications. Rat
than producing a contradiction with the recently conjectu
AdS-CFT correspondence, these results find close agree
with the negative Casimir energy of nonsupersymmetric fi
theory on S13Rp21.

Since the AdS soliton has extended translational sym
try, one can define not just the total energy, but a full bou
ary stress-energy tensor. One finds that the agreement i

9This provides a counterexample to the popular idea that if
metrics have the same curvature, they are locally isometric.
covariant derivatives of the curvature are different, showing that
metrics are indeed inequivalent. We thank S. Ross for discuss
on this point.

10We thank J. Maldacena for pointing this out.
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energy densities, discussed here, extends to agreement
of the components of the stress tensor@26#. In the example of
the gauge theory on S13R2, one finds that the factor of 3/4
relating the energy densities calculated with supergravity
in the weakly coupled gauge theory is, in fact, an over
factor relating the full stress tensors calculated in these
regimes.

It is examining the full stress-energy tensor which mo
vated in part our choice of physical boundary conditio
~4.2! in the positive energy conjecture and in our discussio
in the earlier sections. For example, if one retains ther 1 /r
term in our first negative energy example~3.2!, one might
expect that the energy would be divergent. One finds tho
that there is a precise cancellation in the calculation so
the final result remains exactly the same as in Eq.~3.9!,
which was derived forr 150. This is also true for the trans
lationally invariant solutions. However, if one considers t
full boundary stress tensor, a nonvanishingr 1 produces di-
vergences in the spatial components of the stress energy.
should expect that a less symmetric choice of the initial d
surface would yield an energy density which mixes the va
ous components of the latter tensor and, hence, diverges.
physical boundary conditions~4.2!, which rule out including
r 1Þ0, ensure that the energy density will remain finite f
any choice of time slicing.

A precise comparison of the supergravity and gau
theory energies was only attempted forp53 because this is
the case in which the AdS-CFT correspondence is best
derstood. For this dimension, we only considered the A
soliton solution, which corresponds to the gauge theory
S13R2. However, one might also consider the initial da
~3.3!, which would correspond to the gauge theory
S13S2. We calculated the supergravity energy~3.9! and
need only translate it to a gauge theory expression, a
going between Eqs.~3.15! and~3.17!. The final result is that
Eq. ~3.9! yields

rSUGRA52
p2

8

N2

b4
F~b2/ l 2!, ~6.1!

where the function satisfiesF(0)51. Hence, to leading orde
for small b, the energy density is precisely the same as
S13R2. This is not surprising as this result is valid in th
limit where the radius of the sphere is much bigger than
period of the circle,l @b, and so the S2 factor looks essen-
tially like a flat R2 on the latter scale. One should note th
this energy is measured relative to the standard AdS ba
ground with periodic identifications, which naturally in
cludes the curved S2 factor in its asymptotic geometry. Thu
this negative energy does not include the positive contri
tion which might be expected to appear as the Casimir
ergy of the two-sphere. It is not difficult to calculate th
complete function

F~x!5
1

16 S 11A12
2x

p2D 2F S 11A12
2x

p2D 2

1
4x

p2G .

~6.2!
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Taylor expandingF for small x would yield higher order
corrections to the energy density. It would be interesting
see to what extent the coefficients of the higher order te
are reproduced in the weakly coupled regime of the ga
theory. This function is only defined forx<p2/2 since these
are the allowed values ofb2/ l 2 from Eq. ~3.4!. @The solu-
tions ~3.3! only exist if the circle is small enough.# This
suggests that there might be a jump in the ground state
ergy of the strongly coupled gauge theory on S23S1, analo-
gous to the Gross-Witten-like phase transition@27# discussed
in @3#.

The agreement of the negative energy of the AdS sol
with the expected negative Casimir energy appears to
port the AdS-CFT correspondence even in the nonsupers
metric case. But this is true only if the AdS soliton is th
lowest energy solution with the given boundary conditio
This gives rise to a new type of positive energy conjectu
Although this conjecture seems unlikely to be true from
purely mathematical standpoint, we have presented evide
to support it, by showing that the AdS soliton is indeed
local minima of the energy~for the casep53!. It is natural
to extend this conjecture to other dimensions and ot
asymptotic boundary conditions as we discussed in the
vious section.

Our analysis of the perturbative stability of the AdS so
ton with respect to metric fluctuations is closely related
the recent calculations of glueball masses in large-N QCD
@28#. General arguments have been given that massless
pergravity fields propagating on the AdS soliton backgrou
will have a discrete spectrum@6#. Further, by the AdS-CFT
correspondence, these fluctuations should correspond to
ous glueball states in the large-N gauge theory@6,29#. In the
context of our first form of the conjecture, the given calc
lations of glueball spectra@28# verify that the AdS soliton is
tt

s.

02600
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stable against fluctuations of many of the bosonic superg
ity fields, e.g., the dilaton, and Neveu-Schwarz and Ramo
Ramond antisymmetric tensors. While our perturbative c
culations have not produced a precise spectrum, they
verify that a positive mass gap exists for the metric fluctu
tions, i.e., the spin-2 glueballs. It is interesting that amo
the metric excitations, our calculations indicate that the lo
est energy state~i.e., the mode described as potentially u
stable! must in fact contain a scalar contribution~with re-
spect to R2! which should actually decouple as the ultravio
regulator is removed.

Lest the reader imagine that the AdS-CFT corresponde
guarantees the local stability of all~static! supergravity solu-
tions, we recall that this is not the case. Typically, there
many unstable stationary points in the scalar potential of
gauged supergravity theory—see, e.g.,@30#. For these sta-
tionary points, there will be an AdS background, but t
cosmological constant will have a value such that supers
metry is completely broken. In the supergravity analysis,
instability arises because some of the scalars have curva
couplings which exceed the Breitenlohner-Freedman bo
@31#; i.e., scalar fluctuations around the stationary point ha
masses which are~too! negative. It would be interesting to
determine what the corresponding physics in the ga
theory is.
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