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The fate of symmetries at high temperature determines the dynamics of the very early universe. It is
conceivable that temperature effects favor symmetry breaking instead of restoration. Concerning global sym-
metries, the nonlinear model is analyzed in detail. For spontaneously broken gauge symmetries, we propose
the gauge boson magnetic mass as a “flag” for symmétgnrestoration. We consider several cases: the
standard model with one and two Higgs doublets in the perturbative regime and the case of a strongly
interacting Higgs sector. The latter is done in a model-independent way with the tools provided by chiral
Lagrangians. Our results clearly point towards restoration, a pattern consistent with recent lattice computations
for global symmetries. In addition, we explicitly verify Becchi-Rouet-Stora-Tyutin invariance for gauge theo-
ries at finite temperatur¢S0556-282198)03518-§

PACS numbds): 11.10.Wx, 12.39.Fe, 98.80.Cq

In which sense does one say that an internal symmetry iberg[3] for gauge theoriegalthough in this case the choice
restored or broken due to temperature effects? What is thef the scalar field vacuum expectation value as an order pa-
relevant order parameter? Whenever more than one such pameter is a delicate ohe
rameter can be defined, for which physical consequences Weinberg noticed as well an opposite possibility: global
are their differences relevant? These are the type of quesymmetry nonrestoration at high temperatures for scalar po-
tions one is faced with when discussing symmetrytentials with more than one Higgs multiplet. With just one
(nonrestoratiort. Higgs the scenario is ruled out due to the constraints im-

The vacuum structure of a system remains UnChangersed on the scalar self-coupling by the boundedness of the
when it is heated. In this sense the degree of symmetry of Botential, while models with twd@or more multiplets can
system is not modified. “Symmetry restoration” due to tem- easily accommodate it. The same behavior was found in the
perature effects is thus a misleading denomination for a vergchwinger model and in a dynamical model of symmetry
simple effect: the spontaneous breaking of a global or gauggiolation in four dimension$2].
symmetry can be masked for all physical purposes when an analogous situation has been experimentally observed
thermal agitation is present. This suits intuition, as a thermajn nature for the ferroelectric material known as Rochelle
excitation gives in general a positive energy contribution,sat, which shifts from a disordered phase to a more ordered
allowing particles to “climb” barriers between separate gne when heated, as measured by the spontaneous polariza-
minima and finally hiding those barriers for high enoughtjon parameter. In the case of the Rochelle salt the symmetry
temperatures. Thermal field theory computes these eﬁectg restored again for h|gh enough temperatures, though_
and usually synthesizes them in the form of a so-called efcommon sense suggests that this should be as well the case
fective potential whose minimum sits at zero values of thep field theory, with thermal excitations dominating the free
fields. Ferromagnets provide well-known experimental ex-energy unless some finite parameter, such as finite volume,
amples of a similar behavior when heated above some criticaysal domain size, etc., plays a role. Without entering to
cal temperature. discuss it, it is clear that even a temporal intermediate period,

The suggestion that spontaneously broken field theorieg, which thermal effects enhance the effective symmetry
are restored at high temperature was first made by Kirzhnitgreaking instead of restoring it, could have far reaching cos-
and Linde[1]. They gave qualitative arguments to supportmological consequences.
this idea in the case of global symmetries. In the same direc- |t is worth remarking, though, that Weinberg results on
tion pointed the results of Dolan and JacKi#f and Wein-  symmetry nonrestoration are based on the one-loop approxi-

mation to the finite temperature effective potential, which is
known to be unreliable for the discussion of many aspects of

*Email address: gavela@delta.ft.uam.es phase transitions. Different techniques, including nonpertur-
lEmaU address: pene@qcd.th.u-psud.fr bative ones, are being actively applied to improve the one-
Ema!l address: nuria@goya.ific.uv.es loop approximation, mainly for the study of global symme-

SEmail address: vargas@delta.ft.uam.es. tries. The results are very interesting and quite often

1A related question is the so-called inverse symmetry breakingEontradictory: some studies confirm that symmetry nonresto-
describing systems for which the symmetry is exact at zero temtation exists, although with a sizable reduction of the param-
perature and broken when heated:; all through the paper we will taketer space where it occufd—7], while other analysis con-
the liberty of dubbing symmetry nonrestoration both scenarios, uncludes that symmetry is always restored at high temperature
less the contrary is explicitly stated. when nonperturbative effects are taken into acc¢8q8). It
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has been shown that in a finite lattice no order is possible a§pontaneous magnetizatiqm)=0 which plays a crucial
sufficiently high temperaturgl0]. Although the relevance of rqje in the description of the response of the system to an
this result for the continuum limit is unclear, a Monte Carlo gyternal magnetic field: it turns out to be important for fer-
simulation in 2+1 dimensions seems to support this conclu-romagnets, while marginal or even vanishing for antiferro-

sion[11]. o o _ magnets to the extent that the ground state approaches the
Symmetry nonrestoration is indeed being increasingly reN'eeI-type magnetic order. Hence, the spontaneous magneti-

considered as a candidate way out of many cosmologic .
L Y Yy 9 E%anon is an example of an order parameter whose nonzero
problems arising in spontaneously broken theories. Examples

are the domain wall and axion problef<] and the mono- \s/almuan:;rnOtFr(]gerﬁﬁ]S:ar?étfsoraf‘re]e Zrt)(;r;:g&e(a?usscgrn?:(c)qog\é?iz;]; tL]_e
pole problem in grand unified theorig§3]. y Y- 9 y : 9

As recalled in Sec. I, in the minimal standard ment is present similar to the case of antiferromagnets al-

SU(2)®U(1) model the symmetry is necessarily restored,though(m)#0, as the weight allocated to the two possible
given the simplicity of its Higgs sector. At present, there areSPin projections differs. _ _ _
two main avenues to explore physics beyond the standard Analogous questions arise in particle physics: dlfferent
model: theories in which the Higgs particle is a fundamentaf©-called order parameters can be correlated to different
one, supersymmetry being its most representative exampl@hysical effects. The appropriate parameter depends on the
and those for which it is not, currently dubbed as strongly2SPect of the history of the universe under study, and not all
interacting Higgs scenarios. of them necessarily “bip” S|multaneously_. _ _
Supersymmetry is brokede factoat high temperatures, Already at zero temperature, th(_a relationship among dif-
due to the difference in the boson and fermion populationsf,erent possible order parameters is not_always st.ra|g.htfor—
as dictated by Bose-Einstein versus Fermi-Dirac statisticeVard- Recall massless QCD at low energies, with pion inter-
The debatable and interesting question is whether the inteACtions appropriately described by chiral Lagrangians. The
nal symmetries present in supersymmetric theories, angion decay constarf, and the condensateV V) are not
whose fate is fundamental for the existence of topologicahecessarily equivalent order parameters. Although unnatural,

defects, are restored. It has been proven that such is the ca<s§\p>:0 is not theoretically forbidden while a non-null
for renormalizable supersymmetric theoriéd]. For the lat-  y5cuum expectation valu&¢/EV) of some higher dimension

ter, a recent analysis for systems involving nonvanishingyperator accompanids, as a “flag” for dynamical symme-
background charges shows that symmetry nonrestoratiofy preaking[17].

could be pqssiblélS]. The.consideration of nonrenormaliz'- In a general way it is clear that when the Lagrangian, at
able terms in the Lagrangians has led as well to a polemicSerg temperature, is just a one parameter theory, all putative
their mere addition does not lead to symmetry nonrestoratiog,qer parameters should be equivalent. Such is the case with
[16]. . most Lagrangians respecting global symmetries, where the
“Here we rather follow the path leading to a nonelementary;|ye of the field at the minimum of the effective potential is
Higgs scenario. In so doing, we first reanalyze the global \yell-defined order parameter, commonly used, and any
SU(Nf)R®SU(Nf)L nonlinear o modg—zl, relevant in SUPer- other one is simply related to it.
devoted to the analysis of gauge symmetries; after discussinge issue is much more subtle. To begin with, the VEV of
Becchi-Rouet-Stora-TyutitBRST) invariance at finite tem- any non-gauge-invariant operator is necessarily Za8j.
minimal standard model and the standard model with tWQyauge-fixing procedure has been performed, a non-gauge-
HIggS dOUb|etS W|th|n the pel’turbative I’egime, Wh”e in Sec.invariant minimum of the effective potentia' may appear,
II'D we consider a strongly interacting Higgs sector in ahjch may be useful whenever its physical meaning is prop-
model-independent way, using the techniques of chirabyy extracted in due respect of general Ward identities. The
Lagrangians, and we discuss the differences with the resuliggme applies to the VEV of higher dimension operators.
of the previous section. These different chapters are preceded The effective potential itself is gauge dependent. How-
by some comments on order parameters, Sec. |, and followegl,er, the values of the effective potential at its local minima
by our conclusions. or maxima are gauge independent. Hence if there is a mini-
mum of V(¢) with a value lower tha/(0) in one gauge,
then there will be such minimum in any gau@sdthough its
I. THE ORDER PARAMETER position will generally be differeftand the symmetries will
definitely be broken.

The interesting order parameter to consider in a phase In practice, gauge-dependent correlation functions are of-
transition depends first of all on the question one wants tden used in the study of phase transitions: the physical con-
study. An illustrative example is provided by spin systems inclusions are expected to be rather close to those derived with
solid state physics. Both in ferromagnets and antiferromaggauge-invariant ones if the fluctuations of the scalar fields
nets, the ground state breaks rotational symmetry: the spiree small compared to their vacuum expectation values. This
align for the former and display an antiparallel alignment forcan be safe in the broken phase of the theory, while quite
the latter. The traditional order parameter is the averagenisleading in the symmetric phase, as recently discussed in
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Ref.[19], where a detailed description of the zoo of correla-greatly differ from the real vacuum structure. What about the

tion functions can be found as well. finite temperature effective Lagrangian itself? Up to which
It is worthwhile to briefly specify the “flags” for symme- point may its functional form differ from the initial one?
try breaking discussed in the present paper. Nonzero temperature is tantamount to treating space and

For the global symmetries of the nonlinearmodel and time differently: internal symmetries at the Lagrangian level,
its extensions in terms of chiral Lagrangians, we discuss botRUch as chiral symmetry, cannot be explicitly broken due to
the pion decay constarf, and the vacuum expectation It What is to bea priori expected is a splitting of any op-
value of the condensate. The latter is defined from an effec€"ator into its temporal and spatial components, with differ-
tive potential and can be interpreted as the remnant of thi1d coefficients. For instance, in the chiral nonlineawr
disappeared sigma field. Both parameters are essential odel will generate two different coupling constants at finite

B o
equivalent since, at zero temperature, we are dealing with Fmperature, a temporal O'FéT(T.) and a s_patla! Oné,(T)
one parameter theory. 20]. We leave the corresponding considerations for gauge

For the gauge symmetry case, specifically the standarﬁ'eories for the begin.ning of Sec. Ill. A_necessary condition
' o symmetry restoration is that all possible order parameters

electroweak model and its extensions, we concentrate instea . ; :
. : : or flags for symmetry restoration do signal it.
on particle masses. In the perturbative regime, both the nega-
tive Higgs “mass” and the magnetic mass for the gauge
bosons are discussed. When the Higgs particle disappears
from the spectrum and we enter the nonperturbative regime
of the gauged nonlinear model, our order parameter will be ~ The restoration of spontaneously broken global symme-
the gauge boson magnetic mass. tries is discussed in this section within an effective Lagrang-
The magnetic mass squared is defined as the temperatuiien approach. We consider the SUjr® SU(N;), nonlinear

dependent contribution to the transverse part of the gauge model, which may be defined by the Lagrangian
boson seIf—energY[T(O,IZ) for vanishing three-momentukn

Il. GLOBAL NONLINEAR o MODEL:
THE T+#0 EFFECTIVE LAGRANGIAN

At the order we work in it is gauge invariant. Notice that L=2=0 m ol + }a gy 1)
Weinberg[3] advocates the use of gauge-invariant operators 2 mwmen man gk
carrying moderate momenta and zero energy as order param- .
eters. with the constraint
The analogous electric mass, whose square is defined by F2= 24 72, @)

the longitudinal component of the gauge boson self-energy

I (0k) with k—0 is not a suitable parameter. Indeed, it By convention, we take the scalar condensate in the direction

tends to increase at high temperature even when the symmgf the o component, that is, at tree level

try is restored. The intuitive explanation is electric screening:

some particles in the theory carry an electric charge. Already (d%)= Fi. 3

at one-loop order, thermal fluctuations pull charged pairs out

of the vacuum to screen external charges. However, there afgnce the global symmetry is broken down to an B)(

no fundamental particles in any gauge theory which carry symmetry, there are a total di?—1 Goldstone bosons,

magnetic charge. Magnetic screening can presumably themhich are identified with the pion fieldsr. The constraint

only arise from nonperturbative fluctuations which carry(2) determines ther field in terms of the pion fields, so that

magnetic charge. in the nonlinear Lagrangian only the latter appears. A non-
A perturbative computation of the magnetic mass showdinear redefinition of the fields is possible without changing

that it is exactly equal to zero at one loop in an unbrokerthe physical content of the theory, leading to different pa-

gauge theory. For unbroken non-Abelian gauge theoriegametrizations. The so-called exponential representation can

such as QCD, higher orders in perturbation theory suffebe described by the Lagrangian

from infrared divergences, and a magnetic mass of ay&er

is expected to be generated nonperturbatively. In spontane-

ously broken gauge theories, such as the standard elec-

troweak model and its extensions, no such divergences are

present. Thus, we propose to use the magnetic mass aswdereU is a SUN;) unitary matrix field

“flag,” expecting that even in perturbation theory it will

show a tendency to vanish at high enough temperatures U=exr<i WaTa)

whenever symmetry restoration occurs. Of course, it will be '

a valid flag only when exploring the broken phase of the

theory, for the reasons given above. with T, the generators of SW{(;), normalized as T, T})
Another pertinent point to recall is that temperature cor-=26,, and [T,,Tp]=2if 4pcTc, fapc Deing the structure

rections break Lorentz invariance as the plasma sets a preenstants of SUy).

ferred reference frame. Assume for instance a zero tempera- As is well known, all realizations of the nonlinear chiral

ture Lagrangian based on an internal symmetry. Certainly theagrangian, such as the exponential gd¢ square root,

mixed states describing the new “effective vacuum” may Weinberg, etc[21], with N;=2(3), arelow-energy effec-

1
.L‘(Z):ZF?TTr(a#U U, (4

®

ko
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tive theories for QCD with @) massless quarks, expressed

in terms of Goldstone bosons and systematically expanded in
powers of the Goldstone bosons momenta. As a consequence
of the chiral symmetry, these models possess the remarkable
property of universality once the coupling constants have
been adjustedH, is the only one at lowest ordeall physi- i J
cal predictions are the same. Therefore, the chiral Lagrangian
not only parametrizes the dynamics of the Goldstone bosons

that emerge in QCD but also of any other theory, such as thf}erm is absorbed by pion field renormalization. In the expo-

Higgs model, that follows the same symmetry breaking pat'nential representation used here, we find

FIG. 1. One-loop self-energy diagram for the pions.

tern.

We have analyzed two order parameters: the pion decay (N—1)T2
constantf . and the vacuum expectation value of thdield m(T)=m? 1— — 7)
(o). Notice that, while their behavior should be essentially 36F7

equivalent, their precise variation rate with temperature may
differ somewhat. Indeed, the constrai@ as a thermal av-
erage impliego?)=F2, while in general o) # (o')2. Our
treatment differs from previous ones in that we have consid
ered them as Lagrangian parameters, whose variation with=
temperature is read from the one-loop effective Lagrangia/? €'
we derive.

The diagrams in Fig. 2 contribute to the 1Pl four-point
function at one loop, leading to different thermal corrections
for the spatial and the temporal coupling constants in which
splits at finite temperature, as mentioned above. To this

2
Although we will only discuss below the calculation in FS(T)=F |1— (N=D1)T ®
the exponential representation, we have explicitly checked i i 24F72T
that the results of measurable quantities are the same in other
parametrizations used in the literature, namely, the square (N+1)T2
root and Weinberg representations. Of course, for quantities Fo(M=F 1- ———|, 9)
without a physical meaning, the temperature corrections can 24F%

be representation dependent. We drop all temperaturev;/here N=N%—1 represents the number of pions. Both

independent ultraviolet divergent quantities from our expres- d q lized ey d
sions, recalling that when a theory is renormalized at zerdeMperature-dependent renormalized param &) an

t . .
temperature no more infinities of that type appear at finitd =(T) Show a clear tendency to vanish at high enough tem-
temperature. peratures, pointing towards chiral symmetry restoration. We

have also explicitly checked th&® so derived is represen-
tation independent.
A. Temperature corrections toF . Thermal corrections to the pion decay constant have been
computed in the literature following different approaches
[22,23,21,25,2F Our result for the effective spatial coupling
FS(T) is in agreement with those calculationsfef(T). In
most of them,F (T) is obtained from its usual definition
@ 1 (slightly modified at finite temperaturg21]) through the
L :E%Wﬁ”ﬂ two-point function of the axial vector current, and there is no
splitting between temporal and spatial couplings at one loop;

Temperature corrections 6, are obtained from an ef-
fective Lagrangian approach. The chiral Lagrangidncan
be expanded in powers ofr{F ,)? up to a certain order,

1 it appears at two loopE27]. Notice that since we consider
+ —(7d, ) (wd*m) = (77)d, T T]+" " . F. just as a parameter in the Lagrangian, it does not neces-
6F sarily coincide with the pion decay constant as usually de-

(6) fined. To avoid technical complications, we have computed
the pion field and-, renormalization from the lowest order
terms in the expansion of the Lagrangiéf® in powers of

We have computed the one-loop temperature corrections
P pP; P 123
Ps p Py Ps

3 2

to this Lagrangian to leading ord@?/F2, and proved that P P
they lead to an effective Lagrangian with the same structure >O<
as the tree-level one, albeit with twe,’s: a temporal one

F! and a spatial on&? . It encloses the full temperature b P

4 4

effects in the renormalize@@emperature-dependgrmaram- P Ps
eters.
Due to the derivative character of the interactions, a con- P P

tribution to the kinetic energy term, at leading ord’éiFi,
is obtained when computing the one particle irreducible FIG. 2. One-loop diagrams contributing to the 1PI four-point
(1PI) two-point Green function at one loofFig. 1). This  Green function for the pions.
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the pion fields; chiral symmetry ensures that all higher terms Since the operatar can be obtained by deriving the bare
in the field expansion are consistently renormalized ofice Lagrangian with respect to the parameatésee Eq(11)], we
and F_ have been renormalized from these lowest ordeican also interpret the result as a thermal correction to the
terms. scalar condensafeTaking the derivative with respect to
(bare c of the one-loop effective Lagrangian, the tempera-
B. Temperature corrections to the condensate at one loop ture corrections to the condensate are found. Explicit chiral
symmetry is recovered by fixing=0 at the end of the com-
putation. The final result is satisfactorily the same whether
either the spatial sétS ,c® or the temporal sef'_,c' is used,

Temperature corrections {@) are computed through the
addition of a small chirality breaking term, which makes the
Lagrangian slightly asymmetricthat is, we consider

leading to
L=LP+ (g, (10
TZ
with (o)r=(0) 1—N24F727), a7
c CF”T(U+UT) (11)
=co=——Tr .
BT0T g in agreement with Refd24,22,2]. As can be seen in Eq.

(17), the temperature correction to the condensate also points
Expanding the last term in powers 1:7?/F,2T in the exponen-  towards chiral symmetry restoration.
tial representation it is found that Notice thatLg is just the well known classical potential
up to a minus sign. However, it was not possible to use the
standard method for computing effective potenti#$ due
to the presence of derivative couplings. Using a generaliza-
tion of this method[24] the same result is recovered, as
Following the effective Lagrangian approach, we computealready mentioned.
the one-loop ordeT? corrections tal through the 1PI zero,
.two— and.four—point Gre_en functions. The kind of diagrams lll. GAUGE SYMMETRY: SU (2)&U(1)
involved in the calculation are vacuum energy ones for the
zero-point 1PI Green function and the same as in the previ-
ous sectiorn(see Figs. 1 and)2although with modified cou-
plings, for the two- and four-point 1PI functions. Now, be-
sides F, and the pion field, also the parameter is
renormalized. Since it only appears in the produoét,,
there is an ambiguity, depending on whitdpatial or tem-
pora) F_(T) we consider, leading to

c c
> > > >\2 ..
Lg=cCcF, — —2qu7-77+ 5 i(ﬁﬂ-) +--- (12

In this section we study theories with gauge group
SU(2)®U(1). We consider the cases with one light Higgs
doublet, two light Higgs doublets, and the generic one where
the Higgs sector becomes strongly interacting, the latter done
in a model-independent way. Before entering into such de-
tails, we dwell again into the delicate issue of the flag for
symmetry(nonyrestoration for gauge theories, and in the fate

2 of gauge invariance itself when a system is heated.
cS(T)=c< 1- 5 2) : (13
. A. The magnetic mass
T2 In a gauge theory, the pseudo-Goldstone bosons of the
c(T)=c| 1+ > (149 Lagrangian are unphysical fields, unlike the gauge bosons.
w As stated in Sec. |, we choose the gauge boson magnetic

mass as our flag or indicator for symmetnonrestoration.

At nonzero temperature, the self-energy tensor of the
tﬁé‘ﬁge boson may depend on the four-velocity of the plasma
u,. Consequently, the gauge boson self-energy can be ex-

Again, the one-loop effective Lagrangian written in terms of
the temperature-dependent parameters has the same struc
as the tree-level one, space-time splitted, though.

Notice that(minus the first term in the expansion dfs,
—cF,, can be interpreted as the vacuum energy density of
the system. That is, the free energy of a system of free

bosons, given by 3Recall that the thermal average of the operatds defined as
S(T) FS(T)=c!(T) F (T 15 ( >—Tr(0e7ﬁH) (16
CS(T) F3(T)=c!(T) Fi(T). (15) e

where Tre PH=[[dU]e /9*£ is the partition function and3
=1/T. Thus, one can computer)r as the derivative of the parti-
A\We recall that the QCD scalar densiy¥ whose vacuum ex- tion function with respect to the parametgratc=0. This is analo-
pectation value represents the familiar QCD condensate, is equiv@ous to the extraction gi"'¥) in QCD, by first adding an explic-
lent to o= (F,/4) Tr(U+U") sinceWw¥ and TrU+U™) can be itly chiral symmetry breaking terrm¥¥ to the bare Lagrangian,
shown to transform in the same way under the chiral grdigis computing the temperature corrections, and deriving then with re-
thus equivalent to a quark mass term. spect tom [22].
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pressed as a linear combination of four possible tensorswhere ¢ is the gauge-fixing parameter R; gauges I},

Ouvs KKy, U Uy, andk,u,+k,u, . Some linear combina- 115, 11}, andII}*, are the form factors introduced in Eq.
tions of these tensors are usually chosen as the standard bagis) for the W —W*, Z—Z, y— y, andZ— y self-energies,

set[28], denotedA,,,, B,,, C,,, andD,, and defined in  oqhactively. ITW™" is defined from the two-point Green

Appendix A. In this basis, the one-loop gauge boson SelfTunction with external legsV* — 7* as
energy is written as
T#=TI:A*"+ 1 B**+ 1, D*”, (18 ™ =k, I, (20)

where the subscrip§ andL denote transverse and longitu- and analogously fofl1?™ and 1”7, while TI°~ and I1¢°
dinal with respect to the spatial compondnbf the wave represent the charged and neutral Faddeev-Popov ghosts

vector. self-energies.
The magnetic mass is defined]ﬂs(O,IZ), with vanishing
k. At one loop and leading ordé©(gT)] it will be shown C. Perturbative Higgs sector

to be gauge invariant both for the standard model and for its

extensions considered below. The explicit computations will _ o _
be focused in th&V gauge boson mass. Consider the minimal electroweak standard model, that is,

with just one light Higgs doublet. Here, all the couplings of
the theory are in the perturbative range, and we can rely on
the one-loop approximation to the effective potential at non-
To the best of our knowledge, the Slavnov-Taylor identi-zero temperature.
ties at finite temperature have never been eXpIICItIy verified It is well known that with just one H|ggs doublet the
in the literature for the electroweak theory. We eXpIICItIy gauge Symmetry is a|WayS restored at h|gh temperature_ In-
perform such a task in the present work, for the two-pointdeed, given the simplicity of the potential,
functions of the theory.
Indeed, one expects gauge invariance to be preserved at V(¢)1—o=—u(Td)+ N (T )2, (21)
nonzero temperature. A simple reasoning can be developed
in the imaginary time formalism, where finite temperaturethe condition that it has to be bounded from below forces the
just amounts to compactifying the time direction, that is, tosign of A to be positive. The one-loop thermal corrections to
perform a global “distortion” of the system. Gauge transfor- the above potentia| can be readi]y Computemy’gauges by
mations are local ones by definition, and thus they should nahe usual method$2]. In the high-temperature limitT
be affected by global topological conditions. Once thes.m,  with m; the masses of all standard model partictee

gauge-fixing procedure has been implemented, BRST invarieading ordefT? corrections are gauge invariant and read

ance remains, and the corresponding Slavnov-Taylor identi-

ties are to be proven. T2
One should realize that the proof is much more juicy than Spu?=— IR

at zero temperature: there, quadratic divergences are dis-

posed of by counterterms from the start, and the Slavnov.._ .. .

Taylor identities for such nonphysical quadratically diver- leading to the temperature-dependent Higgs vacuum expec-

: L tation value(VEV
gent terms are not even considered. At finite temperature ( )

1. Minimal standard model

B. Checking gauge invariance: BRST identities

9 3
6)\+Zg2+ Zg'2+3.h$+3h§+h§ , (22

those quadratic divergences are the source offthdepen- T2 392 2 K2 K2 K2
dence. It is then mandatory, and new, to check the BRST  ;(T)2=y2— |1+ i+ g_+ ) _T}
identities on them. 2 8\ 8N 2N 2N 6A

Both in the linear and the nonlinear realizations of the (23)

SU(2)®U(1) gauge symmetry, the Ward identities relating

2__ 2 H
the two-point Green functions at one loop are given by ~ Wherev™=u%/x denotes the Higgs VEV at tree level and

h;, hy, andh_ are the Yukawa coupling constants of the
kz(H\év+2MWHwﬂi)_ M\ZNH’Ti=O, quarkst andb, and ther lepton, respectiyely.

As expected, exactly the same behavior is seen frord the
and W gauge boson magnetic mass. The set of diagrams
contributing to theZ self-energy at one loop are shown in
Fig. 3. The coupling constants are not renormalized at one

(19) loop (at orderT?), which allows us to write

K2(TT3 — 2iM ,IT27%) — M2IT™ =0,

K2I1% =0,

K2(IIZZ—iM I17™) =0, g2
M mag= 7 v (T),
ENE—iM L1177 —T19°=0,
g2_’_912
+ + 2 _ 2
EITY+ My eIV — 11" =0, MZ mag=——4 —v(T)% (24)
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FIG. 3. One-loop self-energy diagrams for thegauge boson in the minimal standard model.

2 2 12 2 2 2 2
v(T)2=v2—T— 130,90 e e e 1120, 22>0, - Aaha>As,

2 8\ 8N 2N 2\ 6A

2

The result in Eq.(23) is then recovered, pointing towards Ahaho> (Mgt hathg)”  (for A5<0). (26)
restoration in an inescapable way. Finally, we have checked
all the Ward identities in Eq(19); the explicit results for the The leading one-loop thermal corrections give the follow-
diagrams involved can be found in Appendix C. ing thermal masses for the fields, , ¢,:

2. Two Higgs doublets
% AVr($1,62)

Models with a richer Higgs structure have several scalar
couplings. In order to explore symmetry nonrestoration, the T2
rule of the game is then to play with the freedom in the sign = 12
of some of those couplings, while respecting the bounded-
ness condition. 9 3

~The simplest extension, i.e., the standard model with two + ( BAo+2Ng+ N+ Zg2+ Zgr2+3ht2) |¢2|2}
Higgs doublets, is considered now. We make the usual as-
sumption that the down quarks and charged leptons only
couple to the Higgs doublap, and the up quarks te,, =m2(T)| 1|2+ m5(T)| |2 (27)
ensuring tree-level flavor conservation of scalar mediated
neutral currents. In order to avoid radiatively induced fIavorA
changing neutral currefECNC) terms, we also impose the
discrete symmetryp;— — ¢,. The most general, renormal-
izable, scalar potential consistent with the above symmetr
and with gauge invariance is

| bal?

9 2 3 2 2 2
6)\1+27\3+)\4+ Zg +Zg, +3hb+h7

Ithough the contributions from both fermions and gauge
bosons are positive, the scalar couplingsand A, may be
negative, and therefore it is not possible to make ampyiori
¥tatement about the signs of the mass terms above. What can
be stated is that the stability conditions in Eg6) do not
allow both mass terms in E¢27) to be negative. Sincé,
V(s e 2 i — 2o+ N (BT )2 receives a Igrge posmve contnbuuqn from the top Yukawa
(¢1.42) 1$161~ Mab2bot Mal(brdr) coupling, it is easier to get a negative thermal mass for the
field ¢,. Then, its vacuum expectation value would remain
SR T t T2 1 ,
Fha(h26h2) "+ Na(b11)(P2h2) + Nal b1 nonzero at high temperature and the SU$2)(1) symmetry
would never be restored.

1 ; 2 :
+ 5[)\5(¢I¢2)2+H-C-]- (25) According to Eq.(27), m7(T)<O0 requires

The condition for the potential to be bounded from below

9 3
. + + + — 2+ — /2+ 2+ 2< ]
leads to the constraints 6N1+ 283Nt 707+ 70'7 430 +h7<0.  (28)
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FIG. 4. Stability bound of the tree-level potenti@olid line) and parameter space leading to symmetry nonrestorésibave the
dashed-dotted linefor A,=1 (a) and\,=2 (b), with A5=0 in both.

Notice that the tern}g?>=0.99 is already of order one at the tend the analysis outside the perturbative regime.
electroweak scale, which makes it difficult to attairi(T)
<0 within the perturbative reginfeWe have checked nu- D. Strongly interacting Higgs sector

merically that the condition28) and the stability bounds We now study the behavior of the SU(2)U(1)y sym-

(26) are incompatible for scalar couplings in the range . . :
B . : . metry in the standard model with a strongly coupled Higgs
[—1<A;<1], where the weak coupling expressi@V) is sector. Strong coupling impliegat least naively heavy

justified. As an example_, in Fig. 4 we plot the stabmty bound physical scalar particles, which can be effectively removed
of _the_ tree-level potentialthe aIIoweq range is below the from the physical low-energy spectrum. An effective La-

solid line) and the curve corresponding w;(T)=0 (sym- _grangian approach is the natural technique to use when all
metry nonrestoration occurs above the dashed-dotted, lineg,, physical degrees of freedom in the symmetry breaking

for As;=0 andA,=1,2. . sector are heavy. We then consider the most general effective
Heading outside the above mentioned range, the numer|-;gangian which employs a nonlinear realization of the
cal results taken at face value seem to point towards thgpontaneously broken SU@)U(1)y gauge symmetry
pOSS'b'I'Ly of symmettr)y nonrestoration as thz scalar sectofag] The resulting chiral Lagrangian is a nonrenormalizable
enters the nonperturbative regime, as can be seen in Fiyiinaaro model coupled in a gauge-invariant way to the
4(b). Of course, the above computation is meaningless OUtYang-MiIIs theory. Chiral Lagrangians have been widely

side that range. used in the last few years as low-energy effective theories for
On the above, we have used as a flag for Symmetry, o ctroweak interactions4].
(nonrestoration the negative scalar “masses,” that is, the The Lagrangian keeps only the light degrees of freedom,

location of the minimum of t|2|e polterlmal. As dlsgushseq '3 the, amely, the gauge and Goldstone bosons. The latter are col-
previous section, one could calculate instead the inducel o4y 5 unitary matriX) = exp(m,,/v), wherev is the

gauge boson magnetic masses, as an alternative analysis cuum expectation value that gives t#é and Z gauge

the fate of the symmetry. In the linear realization of thebosons a massr, are the would-be Goldstone fields ang
symmetry breaking sector of the minimal standard modelthe Pauli matricgs

the magnetic mass has been computed and proved to show a
tendency towards vanishing. The temperature corrections to
the vacuum expectation value of the Higgs field indirectly ] o )
computed through this procedure agree with the result ob- The lowest order terms in a derivative expansion of the
tained from the effective potential approach. The magneti€ffective Lagrangian are
mass squared is given o/ (v%(T)/4). In the two doublet 2
crglse,2 the r?agnetic mass squa_lred wc_)uld be given by /;GChL:UZ THD,UTD*UT+ Lyy+ Loet Lep, (29
g°[vi(T)+v5(T)]/4, thus if there is a region of parameter
space for which one of the VEVs remains nonzero the mag-
netic mass will not show a tendency towards vanishing and’
symmetry nonrestoration becomes possible. g . - g’
From our study of the two doublet model, we conclude D,U=4d,U+i E(Wﬂr)u—i 7U(Bﬂ73). (30
that the requirement of the validity of perturbation theory
points towards the usual assumption of restoration of th%
SU(2)®U(1) gauge symmetry. In the next section, we ex- ™

1. The lowest order Lagrangian

here

is the pure Yang-Mills piece

1 1
Lym=— > Tr(W,,, WHY) — ZBWB’“’, (31
“We neglect small finite temperature renormalization of the cou-
plings. and we consider the following gauge-fixing term:
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i \ ! i
W ! e v

w) W, w/

FIG. 5. One-loop self-energy diagrams for the gauge bosons in the standard model with strongly coupled Higgs sector. Solid lines
represent would-be Goldstone bosons, wavy lines gauge bosons, and dashed lines Faddeev-Popov ghosts.

2
U
Lor= Wiﬂ_gz\/f—zﬂ'i>

_3(1(9
2\ g
2

1/ 1 v
—g(fglﬂuB”—g’g@W3) :

from which the Faddeev-Popov terfizp can be computed in

(32

the usual way. The part relevant for our calculation is given

in Appendix B. At tree level we také&;=¢,, so that the
gauge-boson—Goldstone-boson mixing term is canceled.

are smaller thariT%/v*, which will only appear at higher
order in perturbation theory since, in the HTL approxima-
tion, we assumeu<<T. Indeed, notice that already at
=0 the gauge coupling constargsy’ are not corrected by
guadratically divergent diagrams, as can be seen from simple
power counting arguments on the one-loop diagrams contrib-
uting to vertex functions: only logarithmic divergences ap-
pear. Hence nd@? renormalization ofy,g’ may appear.

Let us start with the thermal corrections to the gauge bo-
son masses, obtained from the corresponding self-energy
tensor(Fig. 5). It is well known that the magnetic mass of

ExpandingU, we obtain the interaction vertices, in par- the gauge bosons in an unbroken gauge theory vanishes at

ticular the tree-level masses are given by

2 2

one loop[31], so that only diagrams involving would-be
Goldstone boson loops will give a nonzero contribution to
the magnetic masses in the broken phase, and we find

v v
M§2(92+9'2)Z, M\Z/vzgzz, (33
2 2
2 2 2 2 M2 _ zv_ 1— N¢T
mﬂ-ozgzMZI mﬂ-i:gZMW1 (34) W‘mag g 4 121)2 ’
mioz V&€ M3, mi:: VEr€r MG, (39 , s 02 N, T2
0 _~+ . . MZ,mag:(g +g’ )Z 1- 2| (36)
wheres”, 7= are the longitudinal components of the gauge 1%

bosonsZ, W=, respectively, and®,c* are the corresponding
ghost fields.

We have computed the one loop temperature corrections ) ) )
to the effective Lagrangiaf29) at leading order, i.e((T?). ~ WhereN;=2 in SU(2). For theelectric masses, defined as
Before entering the discussion of the results, it is worth redI, (0k), we gef
calling the range of validity of the calculation and the ap-
proximations involved. Unitarity implies that this low-energy 5 2v2 17N T2
effective theory should be valid for an energy scale much Mw,e=9 4 122
smaller than 4v~3 TeV. Furthermore, as we shall see in

M2 =0,

y,mag

Eq. (36), our approximation cannot be valid unleSs 2 N T2
<\6v, where the latter limit would give the naively ex- M§e|:(92+9’2)v— 1— —f )
trapolated critical temperature. In the vicinity of it, the loop ’ 4 1202

expansion performed here is not appropriate. Therefore, our N.T2
: : : _ ; ,

conclusions will be reliable up t6=200 GeV, and expected + 5z [(g%+g'2)(c3—s2)%+8g%c3], (37)

to be an acceptable guideline up to 500 GeV. In order to

obtain analytic expressions we work in the lifmi&-m; , with

m; the masses of the low-energy spectramhich meansT

>gv), andT>k, wherek are the external momenta. This 5ajthough we have not included fermions in our calculation, it is

approximation is known in the literature as the hard thermakasy to see that they do not contribute to the magnetic masses

loop (HTL) approximation30].
We are doing an expansion in boffiv and the small
coupling constantg,g’. The corrections of ordeg? (T?/v?)

either, at leading order.
%We acknowledge C. Manuel for pointing out two misprints in
these formulas, in an earlier version.
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i M
FIG. 7. One-loop self-energy diagram for the Faddeev-Popov
FIG. 6. One-loop diagram which generates theéW mixing ghosts.

term.
2 mit(T) =&(T) M\zlv,mag= (42)
> 2NfT
M7 =€ 5
Me=(T) = VE1&2(T) My mag (43
wherecyy, (sy) is the cosindsine of the weak mixing angle
at zero temperature. The one-loop effective Lagrangian does not have exactly
Focusing on the magnetic masses, we can then rewritdhe same functional form as the original bare one,(E§). it
them as splits, as exemplified by the differing electric and magnetic
masses. Equationg0) and(41) allow us to connect several
v(T)2 important finiteT quantities in a compact notation, though.
M\z,\,_mag: g2 R (389)  Equations(42) and(43) are an example of this.

We have also checked all the Ward identities in Bd).
The explicit results for the different diagrams involved are

v(T)? given in Appendix C.

2 2 12 . . . . .

MZ mag=(9°+9"°) 3 (39 A natural question concerns the relationship with the lin-
ear case discussed in Sec. Il C 1, one expects that taking

with v(T)?2 given by there the Higgs boson mass to infinity the results of the

present section should be recovered. A superficial look does
not show this. For instance, taking the limit-« in Eq.
(25) for the magnetic mass in the linear case, 8#) is not
recovered. There is no inconsistency, though: the high-
temperature and heavy Higgs mass limits are not inter-
whereN=3 in SU(2). changeable. We have indeed checked that (Bf) is ob-

It is worth remarking that the would-be Goldstone bosontained by taking the limitn—co (m being the physical Higgs
field renormalization is the same as the one for the GoldstonBoson mass before doing the one-loop computation in the
bosons in the global cadé&q. (7)], while the temperature linear casgwhich implies not considering the following dia-
corrections tay? coincide with those foF 2. grams of Fig. 3: 2, 5, 10, 11 and 7, 9 when the physical

The diagram in Fig. 6 generates a gauge-boson-iggs bosonis inthe Io_()pThe same argumentation is valid
Goldstone-boson mixing term proportional T8, which is ~ for the rest of the physical parameters.

absorbed by a renormalization of the gauge-fixing parameter Regarding the question of the SU@Y(1) symmetry
& nonrestoration which initially motivated our study, we con-

clude from Eq.(36) that thermal effects tend to restore the
symmetry also in the nonperturbative regime. Notice that
although the magnetic mass is nonvanishing in the symmet-
ric phase beyond one-loop order, it is expected to be of order
g°T, and therefore much smaller than the magnetic mass in
The remaining parameter in the effective Lagrangian inthe broken phase, of ordgw (recall thatg?T<gT<gv).

Eg. (29), the gauge-fixing one,, is not renormalized at Thus we can interpret the decreasing of the magnetic mass
O(T?). The same applies to the gauge boson and ghost

~ (N—1)T?

1202 | 49

v(T)2=v2{ 1

T2

E(M)=¢& 1+E : (41)

fields. Naive dimensional counting shows that the 1Pl one-
loop diagrams that will renormalize those entities are at most
logarithmically divergent, similar to the situation fgrand
g’ discussed earlier, and thus not able to prodliceorrec- ; j i j
tions.
The consistency of our results has been verified by com-
puting the leading order corrections to the masses of ghost It
and would-be Goldstone bosons through the corresponding [ ——
one loop self-energiefFigs. 7 and & Once the would-be i ;oo ‘\\ L Y

Goldstone boson field renormalization has been taken into
account, the temperature-dependent masses depend on therIG. 8. One-loop self-energy diagrams for the would-be Gold-
renormalized parameters in the same way as at tree level, i.&tone bosons.
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Effective Masses (GeV)

FIG. 10. Contribution of the model-dependent tedp to the
one-loop self-energy of thé&/ andZ gauge bosons.

The only model-dependent contribution to the pure ther-
mal corrections at one loop is due to the dimension 2 term

1.5 t 2
I £ﬁ=z,80 {TrUrUY(D, U)U']}%, (45
40 -
| Broken phose Unbroken phase . L. .
I which explicitly breaks the custodial SU(2)symmetry.
2 This term contributes td p at tree level, and is thus strongly
.................................................. constrained by experimental data. The contributiorCgfto
B T v CR—T the magnetic mass of the gauge bosons is give(sbg Fig.
T (GeV) 10)
FIG. 9. Electric masgdashed ling and magnetic mas&solid T2
line) for the W gauge boson in the broken phase, and nonperturba- SM2 — _M2p__ 46
. . . . . . W'mag_ g B ’ ( )
tive estimate of the magnetic ma&iotted ling in the symmetric 12

phaseM T~ 0.28°T.

2
with the temperature as a flag for symmetry restoration. On SM %,mag: 92,3%_ (47)

the contrary, for instance th# electric mass in Eq37) can

itt . . .
be written as The sign of the paramet¢® can either be positive or nega-

tive. Whatever the case for a given theory, E4$) and(47)
show an opposite behavior for thé andZ magnetic masses,
which are no more forced to behave in a similar way since
the operator under study breaks the custodial SY(&)m-
and in the symmetric phase, whil¢T) =0, it is nevertheless metry. When combined with the universal leading contribu-

,vAT)  ,3N(T?

M\ZN,elzg 4 +g 8 ’

(44)

nonvanishing and of ordegT, as anticipated. tion found in Eqs(36), the total correction reads

These results are shown qualitatively in Fig. 9. We plot
both the magnetic and the electric masses ofWhgauge 2 T2 T2
boson as functions of the temperature, at leading ofder M2 29_02( L (48)
The solid and dashed lines correspond to our one-loop cal- Wmag 4 6v2 ' 3v2)’
culation, and the dotted line to the nonperturbative estimate
of the magnetic mass in the symmetric phaséy, 5. 12 ) -
=0.28%°T, which is taken from Ref[19]. ’ M2 :Mvz 1— T_+BL .

Z,mag 4 602 3(92+912)U2
2. Model dependence (49

As already mentioned, the lowest order term in the deriva-

tive expansion of the effective Lagrangidigcn. has a)u_ni- tively restored only when all possible flags have signaled it.
versal character. The next term in the expans'’ IS The apove result, taken at face value, would indicate that the
model dependent, namely, it depends on the specmc. dynangu(2)®u(1) symmetry may never be restored at high tem-
ics of the symmetry breaking sector through the differentyerarre for theories where a large enough value of the co-
values of the various constants. The Io_ganthm|c divergencessicient of the operatot; is generated. Such a strong state-
generated at one loop cp,. are consistently absorbed by ment has to be tempered by recalling that, if the chiral
the renormalization of those constants. As stated before, w, pansion is valid, we expeg to be small(in typical mod-
have neglected all the zero temperature renormalization efs it is of order of a coupling constant squarexhd the total

fects, and therefore the model dependence contained QQyrection in Eq.(49) would be dominated by the leading
them, as well as in the matching conditidiBhis is justified, e, pointing in a natural way towards restoration. Moreover,
since we are looking for temperature effects. low-energy constraints on new physics give an experimen-
tally allowed value ofg of order 10 2 [32], which implies
that in phenomenologically acceptable models the contribu-
"We thank J. Matias for pointing out this fact to us. tion of the operatoi, is indeed negligible. It is interesting

The SU(2®U(1) symmetry can be considered effec-
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We have shown that the spontaneously broken Su(2hanks the BBV foundation for support. We are especially
®U(1) gauge theory in models where the Higgs boson Sedndebteq to Maria Josklerrero for inumerable |Ilgm|nat|ng
tor becomes strongly interactinguch as composite Higgs dlscus_S|ons. We acknowledge as We!l Rolf Baier, Stgfano
boson models and technicolorlike oh¢snds to be restored Catani, Concha Gonigz-Garca, Jean-Pierre Leroy, Cristina
when the system is heated. This conclusion is obtained in Manuel, Joaquim Matias, Aguet!Nlet_o_, Dominique Schiff,
model-independent way using the techniques of the elec@d Raymond Stora for several inspiring comments. Labora-
troweak chiral Lagrangian. Specific models will only affect toire de Physique Theique at Hautes Energies is Labora-
the sharpness of such a tendency, unless the natural chif@ire associeat CNRS URA D00063.
expansion is not respected. We quantify such model depen-
dence computing the generic contribution of the leading ef- APPENDIX A: TENSOR BASIS
fective operator whose coefficient is model sensitiyg its
one-loop contribution to th& and Z magnetic masses is
found to have opposite sign. The technique, while valid onl
for temperatures lower than the electroweak scale, has the
advantage of its nonperturbative character. The physical con- AHY=gH"—BHY—DHY, (A1)
clusion reached here parallels the corresponding one for the
other main avenue of beyond the standard model physics, _
supersymmetry, where perturbative treatments show a ten- BY— _ KH#K? (A2)
dency towards restoration. K2 '

In this work we have also explored the SURY(1)
gauge symmetry in a perturbative regime: the cases of one o
and two light Higgs doublets. Again, the results show sym- KAKY+ KMKY
metry restoration at high temperatures when the full scalar, C’”:T
gauge boson, and fermion corrections are taken into account.

The above conclusions have been obtained mainly
through the study of the temperature-dependent magnetic KK Y
mass for the gauge bosons, which we propose as an appro- D#V=
priate flag in the broken phase. In addition, BRST invariance K?
has been explicitly checked for gauge theories at finite tem- -
perature, a novel result. where K#=(K-u K#*—K?2?u#)/k andk is such thatk , K#

Finally, it is worth remarking that global symmetries have = w?—k? with =K ,u”.
been studied as well for the nonlineamodel at finite tem-
perature. While this latter subject and the corresponding re-  APPENDIX B: FADDEEV-POPOV LAGRANGIAN
sults are not new, the technical approach we used is: we
derive first the temperature corrected one-loop effective La- The Faddeev-Popov Lagrangian which corresponds to the
grangian, from which the physical conclusions are then exnon-linear realization of the SU(&)U(1) gauge symmetry
tracted. is different than the one derived for the minimal standard

We have disregarded the putative role of finite parametermodel for which the gauge symmetry is linearly realized.
such as finite volumes or causal domain sizes in the historidere we present the Faddeev-Popov Lagrangian terms which
of the universe. Their effect could constitute an interestingare relevant for our purposes. More general results can be
topic to study. found in Ref.[33]:

The tensor basis in terms of which we have expressed the
ygauge boson self-energy is given by

: (A3)

: (A4)

12 3 2
g'“vél|lv 1 gvé\|v
ot 2_ T S N +| g2 Vot 2 2 _
Lep co( \Y ( 5 ){2 o (mi+ 7))+ Co+i#j;<=lc|{ \Y ( 5|3 g (T T+ e
2 2
gvé|\m3 gvé|\m
+(cicr—CyCy)| —gIrWS + |5 +(cicz—c3cy) g&”WiJr( > +(cyc3—c5¢Cy)
2
gvé\m vé 1
X g&MWIZL‘F(T)?}-Fgg T(C3C3+C;CO) 0_5(77%4‘77%)4‘"‘ +eee (Bl)
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whereé;=&,=¢.

APPENDIX C: WARD IDENTITIES AT ONE LOOP

We have verified the Ward identities at one loop, both forwhere m?=2u? represents the Higgs boson mass squared.
the linear and nonlinear realization of the gauge symmetryConcerning the electroweak chiral Lagrangian, the results for

for the two-point Green functions, computing thé, , Z,,,

A, gauge boson, Goldstone boson, and ghost self-energies,
together with the one-loop Goldstone boson-gauge boson
mixing term. At leading ordefO(T?)] and for small exter-
nal momenta the results for the standard model case are

T? 3M3T?
5=~ (g*+9') g ~(¢*+ 9",
T2 3M§T?
MY=—g?o —g>——,
8 8m?
1} =0,
Mg"=0,
(CD
I7=0,
n="7=0,
2 2
rwe g2 T _923MWT
16My 16m? ’

PHYSICAL REVIEW D 59 025008

2 2

T 3M
70Z i 24 412 F20 12
N2 =i(g*+ 0 ) g +i(@7+ 9™~ o,

the two-point Green functions are

2
3= (492,
D 24’

TZ
wW_ _ 2
Hpo=-9g"5

T3=0,

1g7=0,
(C2
TZ

Hw:kZ ,
1802

=0,
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