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Fading of symmetry nonrestoration at finite temperature
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The fate of symmetries at high temperature determines the dynamics of the very early universe. It is
conceivable that temperature effects favor symmetry breaking instead of restoration. Concerning global sym-
metries, the nonlinears model is analyzed in detail. For spontaneously broken gauge symmetries, we propose
the gauge boson magnetic mass as a ‘‘flag’’ for symmetry~non!restoration. We consider several cases: the
standard model with one and two Higgs doublets in the perturbative regime and the case of a strongly
interacting Higgs sector. The latter is done in a model-independent way with the tools provided by chiral
Lagrangians. Our results clearly point towards restoration, a pattern consistent with recent lattice computations
for global symmetries. In addition, we explicitly verify Becchi-Rouet-Stora-Tyutin invariance for gauge theo-
ries at finite temperature.@S0556-2821~98!03518-8#

PACS number~s!: 11.10.Wx, 12.39.Fe, 98.80.Cq
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In which sense does one say that an internal symmetr
restored or broken due to temperature effects? What is
relevant order parameter? Whenever more than one such
rameter can be defined, for which physical consequen
are their differences relevant? These are the type of q
tions one is faced with when discussing symme
~non!restoration.1

The vacuum structure of a system remains unchan
when it is heated. In this sense the degree of symmetry
system is not modified. ‘‘Symmetry restoration’’ due to tem
perature effects is thus a misleading denomination for a v
simple effect: the spontaneous breaking of a global or ga
symmetry can be masked for all physical purposes w
thermal agitation is present. This suits intuition, as a ther
excitation gives in general a positive energy contributio
allowing particles to ‘‘climb’’ barriers between separa
minima and finally hiding those barriers for high enou
temperatures. Thermal field theory computes these eff
and usually synthesizes them in the form of a so-called
fective potential whose minimum sits at zero values of
fields. Ferromagnets provide well-known experimental
amples of a similar behavior when heated above some c
cal temperature.

The suggestion that spontaneously broken field theo
are restored at high temperature was first made by Kirzh
and Linde@1#. They gave qualitative arguments to supp
this idea in the case of global symmetries. In the same di
tion pointed the results of Dolan and Jackiw@2# and Wein-

*Email address: gavela@delta.ft.uam.es
†Email address: pene@qcd.th.u-psud.fr
‡Email address: nuria@goya.ific.uv.es
§Email address: vargas@delta.ft.uam.es.
1A related question is the so-called inverse symmetry break

describing systems for which the symmetry is exact at zero t
perature and broken when heated; all through the paper we will
the liberty of dubbing symmetry nonrestoration both scenarios,
less the contrary is explicitly stated.
0556-2821/98/59~2!/025008~14!/$15.00 59 0250
is
he
pa-
es
s-

d
a

ry
ge
n

al
,

ts
f-
e
-
ti-

s
ts
t
c-

berg @3# for gauge theories~although in this case the choic
of the scalar field vacuum expectation value as an order
rameter is a delicate one!.

Weinberg noticed as well an opposite possibility: glob
symmetry nonrestoration at high temperatures for scalar
tentials with more than one Higgs multiplet. With just on
Higgs the scenario is ruled out due to the constraints
posed on the scalar self-coupling by the boundedness o
potential, while models with two~or more! multiplets can
easily accommodate it. The same behavior was found in
Schwinger model and in a dynamical model of symme
violation in four dimensions@2#.

An analogous situation has been experimentally obser
in nature for the ferroelectric material known as Roche
salt, which shifts from a disordered phase to a more orde
one when heated, as measured by the spontaneous pola
tion parameter. In the case of the Rochelle salt the symm
is restored again for high enough temperatures, thou
Common sense suggests that this should be as well the
in field theory, with thermal excitations dominating the fre
energy unless some finite parameter, such as finite volu
causal domain size, etc., plays a role. Without entering
discuss it, it is clear that even a temporal intermediate per
in which thermal effects enhance the effective symme
breaking instead of restoring it, could have far reaching c
mological consequences.

It is worth remarking, though, that Weinberg results
symmetry nonrestoration are based on the one-loop appr
mation to the finite temperature effective potential, which
known to be unreliable for the discussion of many aspect
phase transitions. Different techniques, including nonper
bative ones, are being actively applied to improve the o
loop approximation, mainly for the study of global symm
tries. The results are very interesting and quite of
contradictory: some studies confirm that symmetry nonre
ration exists, although with a sizable reduction of the para
eter space where it occurs@4–7#, while other analysis con-
cludes that symmetry is always restored at high tempera
when nonperturbative effects are taken into account@8–9#. It
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has been shown that in a finite lattice no order is possibl
sufficiently high temperature@10#. Although the relevance o
this result for the continuum limit is unclear, a Monte Car
simulation in 211 dimensions seems to support this conc
sion @11#.

Symmetry nonrestoration is indeed being increasingly
considered as a candidate way out of many cosmolog
problems arising in spontaneously broken theories. Exam
are the domain wall and axion problems@12# and the mono-
pole problem in grand unified theories@13#.

As recalled in Sec. III, in the minimal standar
SU(2)^ U(1) model the symmetry is necessarily restore
given the simplicity of its Higgs sector. At present, there a
two main avenues to explore physics beyond the stand
model: theories in which the Higgs particle is a fundamen
one, supersymmetry being its most representative exam
and those for which it is not, currently dubbed as stron
interacting Higgs scenarios.

Supersymmetry is brokende factoat high temperatures
due to the difference in the boson and fermion populatio
as dictated by Bose-Einstein versus Fermi-Dirac statist
The debatable and interesting question is whether the in
nal symmetries present in supersymmetric theories,
whose fate is fundamental for the existence of topolog
defects, are restored. It has been proven that such is the
for renormalizable supersymmetric theories@14#. For the lat-
ter, a recent analysis for systems involving nonvanish
background charges shows that symmetry nonrestora
could be possible@15#. The consideration of nonrenormaliz
able terms in the Lagrangians has led as well to a polem
their mere addition does not lead to symmetry nonrestora
@16#.

Here we rather follow the path leading to a nonelement
Higgs scenario. In so doing, we first reanalyze the glo
SU(Nf)R^ SU(Nf)L nonlinears model, relevant in super
gravity and many other scenarios, in Sec. II. Section III
devoted to the analysis of gauge symmetries; after discus
Becchi-Rouet-Stora-Tyutin~BRST! invariance at finite tem-
perature, we study the behavior of the SU~2!^U~1! symme-
try in several scenarios. In Sec. III C we analyze both
minimal standard model and the standard model with t
Higgs doublets within the perturbative regime, while in S
III D we consider a strongly interacting Higgs sector in
model-independent way, using the techniques of ch
Lagrangians, and we discuss the differences with the res
of the previous section. These different chapters are prece
by some comments on order parameters, Sec. I, and follo
by our conclusions.

I. THE ORDER PARAMETER

The interesting order parameter to consider in a ph
transition depends first of all on the question one wants
study. An illustrative example is provided by spin systems
solid state physics. Both in ferromagnets and antiferrom
nets, the ground state breaks rotational symmetry: the s
align for the former and display an antiparallel alignment
the latter. The traditional order parameter is the aver
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spontaneous magnetization^mW &Þ0 which plays a crucial
role in the description of the response of the system to
external magnetic field: it turns out to be important for fe
romagnets, while marginal or even vanishing for antifer
magnets to the extent that the ground state approaches
Néel-type magnetic order. Hence, the spontaneous mag
zation is an example of an order parameter whose non
value is not necessary for the spontaneous breakdown o
symmetry. Ferrimagnets are yet another scenario: antial
ment is present similar to the case of antiferromagnets
though^mW &Þ0, as the weight allocated to the two possib
spin projections differs.

Analogous questions arise in particle physics: differe
so-called order parameters can be correlated to diffe
physical effects. The appropriate parameter depends on
aspect of the history of the universe under study, and no
of them necessarily ‘‘bip’’ simultaneously.

Already at zero temperature, the relationship among
ferent possible order parameters is not always straight
ward. Recall massless QCD at low energies, with pion in
actions appropriately described by chiral Lagrangians. T

pion decay constantFp and the condensatêC̄C& are not
necessarily equivalent order parameters. Although unnatu

^C̄C&50 is not theoretically forbidden while a non-nu
vacuum expectation value~VEV! of some higher dimension
operator accompaniesFp as a ‘‘flag’’ for dynamical symme-
try breaking@17#.

In a general way it is clear that when the Lagrangian,
zero temperature, is just a one parameter theory, all puta
order parameters should be equivalent. Such is the case
most Lagrangians respecting global symmetries, where
value of the field at the minimum of the effective potential
a well-defined order parameter, commonly used, and
other one is simply related to it.

On the contrary, for spontaneously broken gauge theo
the issue is much more subtle. To begin with, the VEV
any non-gauge-invariant operator is necessarily zero@18#.
Only gauge-invariant operators, such asufu2, may have a
nonvanishing VEV, signaling the Higgs mechanism. Onc
gauge-fixing procedure has been performed, a non-ga
invariant minimum of the effective potential may appea
which may be useful whenever its physical meaning is pr
erly extracted in due respect of general Ward identities. T
same applies to the VEV of higher dimension operators.

The effective potential itself is gauge dependent. Ho
ever, the values of the effective potential at its local minim
or maxima are gauge independent. Hence if there is a m
mum of V(f) with a value lower thanV(0) in one gauge,
then there will be such minimum in any gauge~although its
position will generally be different! and the symmetries will
definitely be broken.

In practice, gauge-dependent correlation functions are
ten used in the study of phase transitions: the physical c
clusions are expected to be rather close to those derived
gauge-invariant ones if the fluctuations of the scalar fie
are small compared to their vacuum expectation values. T
can be safe in the broken phase of the theory, while q
misleading in the symmetric phase, as recently discusse
8-2
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FADING OF SYMMETRY NONRESTORATION AT FINITE . . . PHYSICAL REVIEW D 59 025008
Ref. @19#, where a detailed description of the zoo of corre
tion functions can be found as well.

It is worthwhile to briefly specify the ‘‘flags’’ for symme-
try breaking discussed in the present paper.

For the global symmetries of the nonlinears model and
its extensions in terms of chiral Lagrangians, we discuss b
the pion decay constantFp and the vacuum expectatio
value of the condensate. The latter is defined from an ef
tive potential and can be interpreted as the remnant of
disappeared sigma field. Both parameters are essen
equivalent since, at zero temperature, we are dealing wi
one parameter theory.

For the gauge symmetry case, specifically the stand
electroweak model and its extensions, we concentrate ins
on particle masses. In the perturbative regime, both the n
tive Higgs ‘‘mass’’ and the magnetic mass for the gau
bosons are discussed. When the Higgs particle disapp
from the spectrum and we enter the nonperturbative reg
of the gauged nonlinears model, our order parameter will b
the gauge boson magnetic mass.

The magnetic mass squared is defined as the tempera
dependent contribution to the transverse part of the ga
boson self-energyPT(0,kW ) for vanishing three-momentumkW .
At the order we work in it is gauge invariant. Notice th
Weinberg@3# advocates the use of gauge-invariant opera
carrying moderate momenta and zero energy as order pa
eters.

The analogous electric mass, whose square is define
the longitudinal component of the gauge boson self-ene
PL(0,kW ) with kW→0 is not a suitable parameter. Indeed,
tends to increase at high temperature even when the sym
try is restored. The intuitive explanation is electric screeni
some particles in the theory carry an electric charge. Alre
at one-loop order, thermal fluctuations pull charged pairs
of the vacuum to screen external charges. However, there
no fundamental particles in any gauge theory which carr
magnetic charge. Magnetic screening can presumably
only arise from nonperturbative fluctuations which ca
magnetic charge.

A perturbative computation of the magnetic mass sho
that it is exactly equal to zero at one loop in an unbrok
gauge theory. For unbroken non-Abelian gauge theor
such as QCD, higher orders in perturbation theory su
from infrared divergences, and a magnetic mass of orderg2T
is expected to be generated nonperturbatively. In spont
ously broken gauge theories, such as the standard e
troweak model and its extensions, no such divergences
present. Thus, we propose to use the magnetic mass
‘‘flag,’’ expecting that even in perturbation theory it wi
show a tendency to vanish at high enough temperat
whenever symmetry restoration occurs. Of course, it will
a valid flag only when exploring the broken phase of t
theory, for the reasons given above.

Another pertinent point to recall is that temperature c
rections break Lorentz invariance as the plasma sets a
ferred reference frame. Assume for instance a zero temp
ture Lagrangian based on an internal symmetry. Certainly
mixed states describing the new ‘‘effective vacuum’’ m
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greatly differ from the real vacuum structure. What about
finite temperature effective Lagrangian itself? Up to whi
point may its functional form differ from the initial one
Nonzero temperature is tantamount to treating space
time differently: internal symmetries at the Lagrangian lev
such as chiral symmetry, cannot be explicitly broken due
it. What is to bea priori expected is a splitting of any op
erator into its temporal and spatial components, with diff
ing coefficients. For instanceFp in the chiral nonlinears
model will generate two different coupling constants at fin
temperature, a temporal oneFp

t (T) and a spatial oneFp
s (T)

@20#. We leave the corresponding considerations for ga
theories for the beginning of Sec. III. A necessary condit
for symmetry restoration is that all possible order parame
or flags for symmetry restoration do signal it.

II. GLOBAL NONLINEAR s MODEL:
THE TÞ0 EFFECTIVE LAGRANGIAN

The restoration of spontaneously broken global symm
tries is discussed in this section within an effective Lagra
ian approach. We consider the SU(Nf)R^ SU(Nf)L nonlinear
s model, which may be defined by the Lagrangian

L5
1

2
]mpa]mpa1

1

2
]ms]ms ~1!

with the constraint

Fp
2 5s21pW 2. ~2!

By convention, we take the scalar condensate in the direc
of the s component, that is, at tree level

^s2&5Fp
2 . ~3!

Since the global symmetry is broken down to an SU(Nf)
symmetry, there are a total ofNf

221 Goldstone bosons
which are identified with the pion fields,pW . The constraint
~2! determines thes field in terms of the pion fields, so tha
in the nonlinear Lagrangian only the latter appears. A n
linear redefinition of the fields is possible without changi
the physical content of the theory, leading to different p
rametrizations. The so-called exponential representation
be described by the Lagrangian

L ~2!5
1

4
Fp

2 Tr~]mU]mU†!, ~4!

whereU is a SU(Nf) unitary matrix field

U5expS i
paTa

Fp
D , ~5!

with Ta the generators of SU(Nf), normalized as Tr(TaTb)
52dab and @Ta ,Tb#52i f abcTc , f abc being the structure
constants of SU(Nf).

As is well known, all realizations of the nonlinear chir
Lagrangian, such as the exponential one~4!, square root,
Weinberg, etc.@21#, with Nf52(3), arelow-energy effec-
8-3
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GAVELA, PÈNE, RIUS, AND VARGAS-CASTRILLÓN PHYSICAL REVIEW D 59 025008
tive theories for QCD with 2~3! massless quarks, express
in terms of Goldstone bosons and systematically expande
powers of the Goldstone bosons momenta. As a consequ
of the chiral symmetry, these models possess the remark
property of universality: once the coupling constants hav
been adjusted (Fp is the only one at lowest order! all physi-
cal predictions are the same. Therefore, the chiral Lagran
not only parametrizes the dynamics of the Goldstone bos
that emerge in QCD but also of any other theory, such as
Higgs model, that follows the same symmetry breaking p
tern.

We have analyzed two order parameters: the pion de
constantFp and the vacuum expectation value of thes field
^s&. Notice that, while their behavior should be essentia
equivalent, their precise variation rate with temperature m
differ somewhat. Indeed, the constraint~2! as a thermal av-
erage implieŝ s2&5Fp

2 , while in general̂ s2&Þ^s&2. Our
treatment differs from previous ones in that we have con
ered them as Lagrangian parameters, whose variation
temperature is read from the one-loop effective Lagrang
we derive.

Although we will only discuss below the calculation
the exponential representation, we have explicitly chec
that the results of measurable quantities are the same in o
parametrizations used in the literature, namely, the squ
root and Weinberg representations. Of course, for quant
without a physical meaning, the temperature corrections
be representation dependent. We drop all temperat
independent ultraviolet divergent quantities from our expr
sions, recalling that when a theory is renormalized at z
temperature no more infinities of that type appear at fin
temperature.

A. Temperature corrections to F p

Temperature corrections toFp are obtained from an ef
fective Lagrangian approach. The chiral Lagrangian~4! can
be expanded in powers of (p/Fp)2 up to a certain order,

L ~2!5
1

2
]mpW ]mpW

1
1

6Fp
2 @~pW ]mpW !~pW ]mpW !2~pW pW !]mpW ]mpW #1¯ .

~6!

We have computed the one-loop temperature correct
to this Lagrangian to leading orderT2/Fp

2 , and proved that
they lead to an effective Lagrangian with the same struc
as the tree-level one, albeit with twoFp’s: a temporal one
Fp

t and a spatial oneFp
s . It encloses the full temperatur

effects in the renormalized~temperature-dependent! param-
eters.

Due to the derivative character of the interactions, a c
tribution to the kinetic energy term, at leading orderT2/Fp

2 ,
is obtained when computing the one particle irreduci
~1PI! two-point Green function at one loop~Fig. 1!. This
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term is absorbed by pion field renormalization. In the exp
nential representation used here, we find

p2~T!5p2F12
~N21!T2

36Fp
2 G . ~7!

The diagrams in Fig. 2 contribute to the 1PI four-poi
function at one loop, leading to different thermal correctio
for the spatial and the temporal coupling constants in wh
Fp splits at finite temperature, as mentioned above. To
order

Fp
s ~T!5FpF12

~N21!T2

24Fp
2 G , ~8!

Fp
t ~T!5FpF12

~N11!T2

24Fp
2 G , ~9!

where N5Nf
221 represents the number of pions. Bo

temperature-dependent renormalized parametersFp
s (T) and

Fp
t (T) show a clear tendency to vanish at high enough te

peratures, pointing towards chiral symmetry restoration.
have also explicitly checked thatFp

s so derived is represen
tation independent.

Thermal corrections to the pion decay constant have b
computed in the literature following different approach
@22,23,21,25,26#. Our result for the effective spatial couplin
Fp

s (T) is in agreement with those calculations ofFp(T). In
most of them,Fp(T) is obtained from its usual definition
~slightly modified at finite temperature@21#! through the
two-point function of the axial vector current, and there is
splitting between temporal and spatial couplings at one lo
it appears at two loops@27#. Notice that since we conside
Fp just as a parameter in the Lagrangian, it does not ne
sarily coincide with the pion decay constant as usually
fined. To avoid technical complications, we have compu
the pion field andFp renormalization from the lowest orde
terms in the expansion of the LagrangianL (2) in powers of

FIG. 1. One-loop self-energy diagram for the pions.

FIG. 2. One-loop diagrams contributing to the 1PI four-po
Green function for the pions.
8-4
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FADING OF SYMMETRY NONRESTORATION AT FINITE . . . PHYSICAL REVIEW D 59 025008
the pion fields; chiral symmetry ensures that all higher ter
in the field expansion are consistently renormalized oncpW
and Fp have been renormalized from these lowest or
terms.

B. Temperature corrections to the condensate at one loop

Temperature corrections to^s& are computed through th
addition of a small chirality breaking term, which makes t
Lagrangian slightly asymmetric,2 that is, we consider

L5L ~2!1LB , ~10!

with

LB5cs5
cFp

4
Tr~U1U†!. ~11!

Expanding the last term in powers ofp2/Fp
2 in the exponen-

tial representation it is found that

LB5cFp2
c

2Fp
pW pW 1

c

24Fp
3 ~pW pW !21¯ . ~12!

Following the effective Lagrangian approach, we comp
the one-loop orderT2 corrections toL through the 1PI zero
two- and four-point Green functions. The kind of diagram
involved in the calculation are vacuum energy ones for
zero-point 1PI Green function and the same as in the pr
ous section~see Figs. 1 and 2!, although with modified cou-
plings, for the two- and four-point 1PI functions. Now, b
sides Fp and the pion field, also the parameterc is
renormalized. Since it only appears in the productcFp ,
there is an ambiguity, depending on which~spatial or tem-
poral! Fp(T) we consider, leading to

cs~T!5cS 12
T2

24Fp
2 D , ~13!

ct~T!5cS 11
T2

24Fp
2 D . ~14!

Again, the one-loop effective Lagrangian written in terms
the temperature-dependent parameters has the same str
as the tree-level one, space-time splitted, though.

Notice that~minus! the first term in the expansion ofLB ,
2cFp , can be interpreted as the vacuum energy densit
the system. That is, the free energy of a system of f
bosons, given by

cs~T! Fp
s ~T!5ct~T! Fp

t ~T!. ~15!

2We recall that the QCD scalar densityC̄C whose vacuum ex-
pectation value represents the familiar QCD condensate, is equ

lent to s[ (Fp/4) Tr(U1U1) sinceC̄C and Tr(U1U1) can be
shown to transform in the same way under the chiral group.LB is
thus equivalent to a quark mass term.
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Since the operators can be obtained by deriving the ba
Lagrangian with respect to the parameterc @see Eq.~11!#, we
can also interpret the result as a thermal correction to
scalar condensate.3 Taking the derivative with respect t
~bare! c of the one-loop effective Lagrangian, the tempe
ture corrections to the condensate are found. Explicit ch
symmetry is recovered by fixingc50 at the end of the com
putation. The final result is satisfactorily the same whet
either the spatial setFp

s ,cs or the temporal setFp
t ,ct is used,

leading to

^s&T5^s&S 12N
T2

24Fp
2 D , ~17!

in agreement with Refs.@24,22,21#. As can be seen in Eq
~17!, the temperature correction to the condensate also po
towards chiral symmetry restoration.

Notice thatLB is just the well known classical potentia
up to a minus sign. However, it was not possible to use
standard method for computing effective potentials@2# due
to the presence of derivative couplings. Using a general
tion of this method@24# the same result is recovered, a
already mentioned.

III. GAUGE SYMMETRY: SU „2…^ U„1…

In this section we study theories with gauge gro
SU(2)^ U(1). We consider the cases with one light Higg
doublet, two light Higgs doublets, and the generic one wh
the Higgs sector becomes strongly interacting, the latter d
in a model-independent way. Before entering into such
tails, we dwell again into the delicate issue of the flag
symmetry~non!restoration for gauge theories, and in the fa
of gauge invariance itself when a system is heated.

A. The magnetic mass

In a gauge theory, the pseudo-Goldstone bosons of
Lagrangian are unphysical fields, unlike the gauge boso
As stated in Sec. I, we choose the gauge boson magn
mass as our flag or indicator for symmetry~non!restoration.

At nonzero temperature, the self-energy tensor of
gauge boson may depend on the four-velocity of the plas
um . Consequently, the gauge boson self-energy can be

a-

3Recall that the thermal average of the operators is defined as

^s&T5
Tr~se2bH!

Tr~e2bH!
~16!

where Tre2bH5*@dU#e2*d4xL is the partition function andb
51/T. Thus, one can computês&T as the derivative of the parti
tion function with respect to the parameterc, atc50. This is analo-

gous to the extraction of̂C̄C&T in QCD, by first adding an explic-

itly chiral symmetry breaking termmC̄C to the bare Lagrangian
computing the temperature corrections, and deriving then with
spect tom @22#.
8-5



or
-
b

el

-

r i
wi

ti
e
ly
in

d
p
re
to
r-
n
he
a
n

a
d
o
r-

tu

S

he
ng

.

n

osts

t is,
of
on
n-

e
. In-

the
to

pec-

d
e

e
ms

in
one
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pressed as a linear combination of four possible tens
gmn , kmkn , umun , andkmun1knum . Some linear combina
tions of these tensors are usually chosen as the standard
set @28#, denotedAmn , Bmn , Cmn , andDmn and defined in
Appendix A. In this basis, the one-loop gauge boson s
energy is written as

Pmn5PTAmn1PLBmn1PDDmn, ~18!

where the subscriptsT andL denote transverse and longitu
dinal with respect to the spatial componentkW of the wave
vector.

The magnetic mass is defined asPT(0,kW ), with vanishing
kW . At one loop and leading order@O(gT)# it will be shown
to be gauge invariant both for the standard model and fo
extensions considered below. The explicit computations
be focused in theW gauge boson mass.

B. Checking gauge invariance: BRST identities

To the best of our knowledge, the Slavnov-Taylor iden
ties at finite temperature have never been explicitly verifi
in the literature for the electroweak theory. We explicit
perform such a task in the present work, for the two-po
functions of the theory.

Indeed, one expects gauge invariance to be preserve
nonzero temperature. A simple reasoning can be develo
in the imaginary time formalism, where finite temperatu
just amounts to compactifying the time direction, that is,
perform a global ‘‘distortion’’ of the system. Gauge transfo
mations are local ones by definition, and thus they should
be affected by global topological conditions. Once t
gauge-fixing procedure has been implemented, BRST inv
ance remains, and the corresponding Slavnov-Taylor ide
ties are to be proven.

One should realize that the proof is much more juicy th
at zero temperature: there, quadratic divergences are
posed of by counterterms from the start, and the Slavn
Taylor identities for such nonphysical quadratically dive
gent terms are not even considered. At finite tempera
those quadratic divergences are the source of theT2 depen-
dence. It is then mandatory, and new, to check the BR
identities on them.

Both in the linear and the nonlinear realizations of t
SU(2)^ U(1) gauge symmetry, the Ward identities relati
the two-point Green functions at one loop are given by

k2~PD
W12MWPWp6

!2MW
2 Pp6

50,

k2~PD
Z 22iM ZPZp0

!2MZ
2Pp0

50,

k2PD
g 50,

~19!

k2~PD
gZ2 iM ZPgp0

!50,

jPD
Z 2 iM ZjPZp0

2Pc0
50,

jPD
W1MWjPWp6

2Pc6
50,
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where j is the gauge-fixing parameter inRj gauges.PD
W ,

PD
Z , PD

g , andPD
gZ , are the form factors introduced in Eq

~18! for theW62W6, Z2Z, g2g, andZ2g self-energies,
respectively.PWp6

is defined from the two-point Gree
function with external legsW62p6 as

Pm
Wp6

5kmPWp6
, ~20!

and analogously forPZp0
and Pgp0

, while Pc6
and Pc0

represent the charged and neutral Faddeev-Popov gh
self-energies.

C. Perturbative Higgs sector

1. Minimal standard model

Consider the minimal electroweak standard model, tha
with just one light Higgs doublet. Here, all the couplings
the theory are in the perturbative range, and we can rely
the one-loop approximation to the effective potential at no
zero temperature.

It is well known that with just one Higgs doublet th
gauge symmetry is always restored at high temperature
deed, given the simplicity of the potential,

V~f!T5052m2~f†f!1l~f†f!2, ~21!

the condition that it has to be bounded from below forces
sign ofl to be positive. The one-loop thermal corrections
the above potential can be readily computed inRj gauges by
the usual methods@2#. In the high-temperature limit (T
@mi , with mi the masses of all standard model particles! the
leading orderT2 corrections are gauge invariant and read

dm252
T2

12S 6l1
9

4
g21

3

4
g8213ht

213hb
21ht

2D , ~22!

leading to the temperature-dependent Higgs vacuum ex
tation value~VEV!

v~T!25v22
T2

2 F11
3g2

8l
1

g82

8l
1

ht
2

2l
1

hb
2

2l
1

ht
2

6lG ,
~23!

where v25m2/l denotes the Higgs VEV at tree level an
ht , hb , and ht are the Yukawa coupling constants of th
quarkst andb, and thet lepton, respectively.

As expected, exactly the same behavior is seen from thZ
and W gauge boson magnetic mass. The set of diagra
contributing to theZ self-energy at one loop are shown
Fig. 3. The coupling constants are not renormalized at
loop ~at orderT2), which allows us to write

MW,mag
2 5

g2

4
v~T!2,

MZ,mag
2 5

g21g82

4
v~T!2, ~24!
8-6
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FIG. 3. One-loop self-energy diagrams for theZ gauge boson in the minimal standard model.
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v~T!25v22
T2

2 F11
3g2

8l
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g82
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2

2l
1
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2

2l
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2

6lG .
The result in Eq.~23! is then recovered, pointing toward
restoration in an inescapable way. Finally, we have chec
all the Ward identities in Eq.~19!; the explicit results for the
diagrams involved can be found in Appendix C.

2. Two Higgs doublets

Models with a richer Higgs structure have several sca
couplings. In order to explore symmetry nonrestoration,
rule of the game is then to play with the freedom in the s
of some of those couplings, while respecting the bound
ness condition.

The simplest extension, i.e., the standard model with
Higgs doublets, is considered now. We make the usual
sumption that the down quarks and charged leptons o
couple to the Higgs doubletf1 and the up quarks tof2 ,
ensuring tree-level flavor conservation of scalar media
neutral currents. In order to avoid radiatively induced flav
changing neutral current~FCNC! terms, we also impose th
discrete symmetryf1→2f1 . The most general, renorma
izable, scalar potential consistent with the above symm
and with gauge invariance is

V~f1 ,f2!52m1
2f1

†f12m2
2f2

†f21l1~f1
†f1!2

1l2~f2
†f2!21l3~f1

†f1!~f2
†f2!1l4uf1

†f2u2

1
1

2
@l5~f1

†f2!21H.c.#. ~25!

The condition for the potential to be bounded from belo
leads to the constraints
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l1.0, l2.0, 4l1l2.l3
2 ,

4l1l2.~l31l41l5!2 ~ for l5,0!. ~26!

The leading one-loop thermal corrections give the follo
ing thermal masses for the fieldsf1 ,f2 :

DVT~f1 ,f2!

.
T2

12F S 6l112l31l41
9

4
g21

3

4
g8213hb

21ht
2D uf1u2

1S 6l212l31l41
9

4
g21

3

4
g8213ht

2D uf2u2G
[m1

2~T!uf1u21m2
2~T!uf2u2. ~27!

Although the contributions from both fermions and gau
bosons are positive, the scalar couplingsl3 andl4 may be
negative, and therefore it is not possible to make anya priori
statement about the signs of the mass terms above. Wha
be stated is that the stability conditions in Eq.~26! do not
allow both mass terms in Eq.~27! to be negative. Sincef2
receives a large positive contribution from the top Yuka
coupling, it is easier to get a negative thermal mass for
field f1 . Then, its vacuum expectation value would rema
nonzero at high temperature and the SU(2)^ U(1) symmetry
would never be restored.

According to Eq.~27!, m1
2(T),0 requires

6l112l31l41
9

4
g21

3

4
g8213hb

21ht
2,0. ~28!
8-7
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FIG. 4. Stability bound of the tree-level potential~solid line! and parameter space leading to symmetry nonrestoration~above the
dashed-dotted line!, for l251 ~a! andl252 ~b!, with l550 in both.
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Notice that the term9
4 g250.99 is already of order one at th

electroweak scale, which makes it difficult to attainm1
2(T)

,0 within the perturbative regime.4 We have checked nu
merically that the condition~28! and the stability bounds
~26! are incompatible for scalar couplings in the ran
@21,l i,1#, where the weak coupling expression~27! is
justified. As an example, in Fig. 4 we plot the stability bou
of the tree-level potential~the allowed range is below th
solid line! and the curve corresponding tom1

2(T)50 ~sym-
metry nonrestoration occurs above the dashed-dotted l!,
for l550 andl251,2.

Heading outside the above mentioned range, the num
cal results taken at face value seem to point towards
possibility of symmetry nonrestoration as the scalar se
enters the nonperturbative regime, as can be seen in
4~b!. Of course, the above computation is meaningless
side that range.

On the above, we have used as a flag for symme
~non!restoration the negative scalar ‘‘masses,’’ that is,
location of the minimum of the potential. As discussed in t
previous section, one could calculate instead the indu
gauge boson magnetic masses, as an alternative analy
the fate of the symmetry. In the linear realization of t
symmetry breaking sector of the minimal standard mod
the magnetic mass has been computed and proved to sh
tendency towards vanishing. The temperature correction
the vacuum expectation value of the Higgs field indirec
computed through this procedure agree with the result
tained from the effective potential approach. The magn
mass squared is given byg2

„v2(T)/4…. In the two doublet
case, the magnetic mass squared would be given
g2 @v1

2(T)1v2
2(T)#/4, thus if there is a region of paramet

space for which one of the VEVs remains nonzero the m
netic mass will not show a tendency towards vanishing
symmetry nonrestoration becomes possible.

From our study of the two doublet model, we conclu
that the requirement of the validity of perturbation theo
points towards the usual assumption of restoration of
SU(2)^ U(1) gauge symmetry. In the next section, we e

4We neglect small finite temperature renormalization of the c
plings.
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tend the analysis outside the perturbative regime.

D. Strongly interacting Higgs sector

We now study the behavior of the SU(2)L ^ U(1)Y sym-
metry in the standard model with a strongly coupled Hig
sector. Strong coupling implies~at least naively! heavy
physical scalar particles, which can be effectively remov
from the physical low-energy spectrum. An effective L
grangian approach is the natural technique to use when
the physical degrees of freedom in the symmetry break
sector are heavy. We then consider the most general effec
Lagrangian which employs a nonlinear realization of t
spontaneously broken SU(2)L ^ U(1)Y gauge symmetry
@29#. The resulting chiral Lagrangian is a nonrenormaliza
nonlinears model coupled in a gauge-invariant way to th
Yang-Mills theory. Chiral Lagrangians have been wide
used in the last few years as low-energy effective theories
electroweak interactions@34#.

The Lagrangian keeps only the light degrees of freedo
namely, the gauge and Goldstone bosons. The latter are
lected in a unitary matrixU5exp(ipata /v), wherev is the
vacuum expectation value that gives theW and Z gauge
bosons a mass,pa are the would-be Goldstone fields andta
the Pauli matrices.

1. The lowest order Lagrangian

The lowest order terms in a derivative expansion of
effective Lagrangian are

LGChL5
v2

4
Tr@DmU†DmU#1LYM1LGF1LFP, ~29!

where

DmU5]mU1 i
g

2
~WW mtW !U2 i

g8

2
U~Bmt3!. ~30!

LYM is the pure Yang-Mills piece

LYM52
1

2
Tr~WmnWmn!2

1

4
BmnBmn, ~31!

and we consider the following gauge-fixing term:
-

8-8
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FIG. 5. One-loop self-energy diagrams for the gauge bosons in the standard model with strongly coupled Higgs sector. S
represent would-be Goldstone bosons, wavy lines gauge bosons, and dashed lines Faddeev-Popov ghosts.
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LGF52
1

2S 1

Aj1

]mWi
m2g

v
2
Aj2p i D 2

2
1

2S 1

Aj1

]mBm2g8
v
2
Aj2p3D 2

, ~32!

from which the Faddeev-Popov termLFP can be computed in
the usual way. The part relevant for our calculation is giv
in Appendix B. At tree level we takej15j2 , so that the
gauge-boson–Goldstone-boson mixing term is canceled.

ExpandingU, we obtain the interaction vertices, in pa
ticular the tree-level masses are given by

MZ
25~g21g82!

v2

4
, MW

2 5g2
v2

4
, ~33!

mp0
2

5j2MZ
2 , mp6

2
5j2MW

2 , ~34!

mc0
2

5Aj1j2 MZ
2 , mc6

2
5Aj1j2 MW

2 , ~35!

wherep0,p6 are the longitudinal components of the gau
bosonsZ,W6, respectively, andc0,c6 are the corresponding
ghost fields.

We have computed the one loop temperature correct
to the effective Lagrangian~29! at leading order, i.e.,O(T2).
Before entering the discussion of the results, it is worth
calling the range of validity of the calculation and the a
proximations involved. Unitarity implies that this low-energ
effective theory should be valid for an energy scale mu
smaller than 4pv;3 TeV. Furthermore, as we shall see
Eq. ~36!, our approximation cannot be valid unlessT
,A6v, where the latter limit would give the naively ex
trapolated critical temperature. In the vicinity of it, the loo
expansion performed here is not appropriate. Therefore,
conclusions will be reliable up toT.200 GeV, and expected
to be an acceptable guideline up to 500 GeV. In order
obtain analytic expressions we work in the limitT@mi , with
mi the masses of the low-energy spectrum~which meansT
@gv), and T@k, wherek are the external momenta. Th
approximation is known in the literature as the hard therm
loop ~HTL! approximation@30#.

We are doing an expansion in bothT/v and the small
coupling constantsg,g8. The corrections of orderg2 (T2/v2)
02500
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are smaller thanT4/v4, which will only appear at higher
order in perturbation theory since, in the HTL approxim
tion, we assumegv!T. Indeed, notice that already atT
50 the gauge coupling constantsg,g8 are not corrected by
quadratically divergent diagrams, as can be seen from sim
power counting arguments on the one-loop diagrams con
uting to vertex functions: only logarithmic divergences a
pear. Hence noT2 renormalization ofg,g8 may appear.

Let us start with the thermal corrections to the gauge
son masses, obtained from the corresponding self-en
tensor~Fig. 5!. It is well known that the magnetic mass o
the gauge bosons in an unbroken gauge theory vanishe
one loop @31#, so that only diagrams involving would-b
Goldstone boson loops will give a nonzero contribution
the magnetic masses in the broken phase, and we find5

MW,mag
2 5g2

v2

4 S 12
NfT

2

12v2 D ,

MZ,mag
2 5~g21g82!

v2

4 S 12
NfT

2

12v2 D , ~36!

Mg,mag
2 50,

whereNf52 in SU(2). For theelectric masses, defined a
PL(0,kW ), we get6

MW,el
2 5g2

v2

4 S 11
17NfT

2

12v2 D ,

MZ,el
2 5~g21g82!

v2

4 S 12
NfT

2

12v2 D
1

NfT
2

24
@~g21g82!~cW

2 2sW
2 !218g2cW

2 #, ~37!

5Although we have not included fermions in our calculation, it
easy to see that they do not contribute to the magnetic ma
either, at leading order.

6We acknowledge C. Manuel for pointing out two misprints
these formulas, in an earlier version.
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Mg,el
2 5e2

NfT
2

2
,

wherecW (sW) is the cosine~sine! of the weak mixing angle
at zero temperature.

Focusing on the magnetic masses, we can then rew
them as

MW,mag
2 5g2

v~T!2

4
, ~38!

MZ,mag
2 5~g21g82!

v~T!2

4
, ~39!

with v(T)2 given by

v~T!25v2F12
~N21!T2

12v2 G , ~40!

whereN53 in SU(2).
It is worth remarking that the would-be Goldstone bos

field renormalization is the same as the one for the Goldst
bosons in the global case@Eq. ~7!#, while the temperature
corrections tov2 coincide with those forFp

s 2.
The diagram in Fig. 6 generates a gauge-boso

Goldstone-boson mixing term proportional toT2, which is
absorbed by a renormalization of the gauge-fixing param
j2 :

j2~T!5j2S 11
2T2

9v2D . ~41!

The remaining parameter in the effective Lagrangian
Eq. ~29!, the gauge-fixing onej1 , is not renormalized a
O(T2). The same applies to the gauge boson and gh
fields. Naive dimensional counting shows that the 1PI o
loop diagrams that will renormalize those entities are at m
logarithmically divergent, similar to the situation forg and
g8 discussed earlier, and thus not able to produceT2 correc-
tions.

The consistency of our results has been verified by co
puting the leading order corrections to the masses of g
and would-be Goldstone bosons through the correspon
one loop self-energies~Figs. 7 and 8!. Once the would-be
Goldstone boson field renormalization has been taken
account, the temperature-dependent masses depend o
renormalized parameters in the same way as at tree level

FIG. 6. One-loop diagram which generates thep-W mixing
term.
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mp6
2

~T!5j2~T!MW,mag
2 , ~42!

mc6
2

~T!5Aj1j2~T! MW,mag
2 . ~43!

The one-loop effective Lagrangian does not have exa
the same functional form as the original bare one, Eq.~29!: it
splits, as exemplified by the differing electric and magne
masses. Equations~40! and~41! allow us to connect severa
important finiteT quantities in a compact notation, thoug
Equations~42! and ~43! are an example of this.

We have also checked all the Ward identities in Eq.~19!.
The explicit results for the different diagrams involved a
given in Appendix C.

A natural question concerns the relationship with the l
ear case discussed in Sec. III C 1, one expects that ta
there the Higgs boson mass to infinity the results of
present section should be recovered. A superficial look d
not show this. For instance, taking the limitl→` in Eq.
~25! for the magnetic mass in the linear case, Eq.~36! is not
recovered. There is no inconsistency, though: the hi
temperature and heavy Higgs mass limits are not in
changeable. We have indeed checked that Eq.~36! is ob-
tained by taking the limitm→` (m being the physical Higgs
boson mass!, before doing the one-loop computation in th
linear case~which implies not considering the following dia
grams of Fig. 3: 2, 5, 10, 11 and 7, 9 when the physi
Higgs boson is in the loop!. The same argumentation is vali
for the rest of the physical parameters.

Regarding the question of the SU(2)^ U(1) symmetry
nonrestoration which initially motivated our study, we co
clude from Eq.~36! that thermal effects tend to restore th
symmetry also in the nonperturbative regime. Notice t
although the magnetic mass is nonvanishing in the symm
ric phase beyond one-loop order, it is expected to be of or
g2T, and therefore much smaller than the magnetic mas
the broken phase, of ordergv ~recall thatg2T!gT,gv).
Thus we can interpret the decreasing of the magnetic m

FIG. 7. One-loop self-energy diagram for the Faddeev-Po
ghosts.

FIG. 8. One-loop self-energy diagrams for the would-be Go
stone bosons.
8-10
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with the temperature as a flag for symmetry restoration.
the contrary, for instance theW electric mass in Eq.~37! can
be written as

MW,el
2 5g2

v2~T!

4
1g2

3NfT
2

8
, ~44!

and in the symmetric phase, whilev(T)50, it is nevertheless
nonvanishing and of ordergT, as anticipated.

These results are shown qualitatively in Fig. 9. We p
both the magnetic and the electric masses of theW gauge
boson as functions of the temperature, at leading orderT2.
The solid and dashed lines correspond to our one-loop
culation, and the dotted line to the nonperturbative estim
of the magnetic mass in the symmetric phase,MW,mag

sym

50.28g2T, which is taken from Ref.@19#.

2. Model dependence

As already mentioned, the lowest order term in the deri
tive expansion of the effective LagrangianLGChL has a uni-
versal character. The next term in the expansionL (4) is
model dependent, namely, it depends on the specific dyn
ics of the symmetry breaking sector through the differ
values of the various constants. The logarithmic divergen
generated at one loop byLGChL are consistently absorbed b
the renormalization of those constants. As stated before
have neglected all the zero temperature renormalization
fects, and therefore the model dependence contained
them, as well as in the matching conditions.7 This is justified,
since we are looking for temperature effects.

7We thank J. Matias for pointing out this fact to us.

FIG. 9. Electric mass~dashed line! and magnetic mass~solid
line! for the W gauge boson in the broken phase, and nonpertu
tive estimate of the magnetic mass~dotted line! in the symmetric
phaseMW,mag

sym 50.28g2T.
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The only model-dependent contribution to the pure th
mal corrections at one loop is due to the dimension 2 ter

Lb5
1

4
bv2$Tr@Ut3U†~DmU !U†#%2, ~45!

which explicitly breaks the custodial SU(2)C symmetry.
This term contributes toDr at tree level, and is thus strongl
constrained by experimental data. The contribution ofLb to
the magnetic mass of the gauge bosons is given by~see Fig.
10!

dMW,mag
2 52g2b

T2

12
, ~46!

dMZ,mag
2 5g2b

T2

3
. ~47!

The sign of the parameterb can either be positive or nega
tive. Whatever the case for a given theory, Eqs.~46! and~47!
show an opposite behavior for theW andZ magnetic masses
which are no more forced to behave in a similar way sin
the operator under study breaks the custodial SU(2)C sym-
metry. When combined with the universal leading contrib
tion found in Eqs.~36!, the total correction reads

MW,mag
2 5

g2

4
v2S 12

T2

6v2
2b

T2

3v2D , ~48!

MZ,mag
2 5

~g21g82!

4
v2S 12

T2

6v2
1b

4g2T2

3~g21g82!v2D .

~49!

The SU(2)̂ U(1) symmetry can be considered effe
tively restored only when all possible flags have signaled
The above result, taken at face value, would indicate that
SU(2)^ U(1) symmetry may never be restored at high te
perature for theories where a large enough value of the
efficient of the operatorLb is generated. Such a strong stat
ment has to be tempered by recalling that, if the chi
expansion is valid, we expectb to be small~in typical mod-
els it is of order of a coupling constant squared!, and the total
correction in Eq.~49! would be dominated by the leadin
one, pointing in a natural way towards restoration. Moreov
low-energy constraints on new physics give an experim
tally allowed value ofb of order 1023 @32#, which implies
that in phenomenologically acceptable models the contri
tion of the operatorLb is indeed negligible. It is interesting

a-

FIG. 10. Contribution of the model-dependent termLb to the
one-loop self-energy of theW andZ gauge bosons.
8-11
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to note that the tendency to symmetry restoration can
reversed for values ofb which are not outrageously large, a
seen from Eqs.~49!.

IV. CONCLUSIONS

We have shown that the spontaneously broken SU
^ U(1) gauge theory in models where the Higgs boson s
tor becomes strongly interacting~such as composite Higg
boson models and technicolorlike ones! tends to be restored
when the system is heated. This conclusion is obtained
model-independent way using the techniques of the e
troweak chiral Lagrangian. Specific models will only affe
the sharpness of such a tendency, unless the natural c
expansion is not respected. We quantify such model dep
dence computing the generic contribution of the leading
fective operator whose coefficient is model sensitiveLb ; its
one-loop contribution to theW and Z magnetic masses i
found to have opposite sign. The technique, while valid o
for temperatures lower than the electroweak scale, has
advantage of its nonperturbative character. The physical c
clusion reached here parallels the corresponding one for
other main avenue of beyond the standard model phys
supersymmetry, where perturbative treatments show a
dency towards restoration.

In this work we have also explored the SU(2)^ U(1)
gauge symmetry in a perturbative regime: the cases of
and two light Higgs doublets. Again, the results show sy
metry restoration at high temperatures when the full sca
gauge boson, and fermion corrections are taken into acco

The above conclusions have been obtained ma
through the study of the temperature-dependent magn
mass for the gauge bosons, which we propose as an ap
priate flag in the broken phase. In addition, BRST invarian
has been explicitly checked for gauge theories at finite te
perature, a novel result.

Finally, it is worth remarking that global symmetries ha
been studied as well for the nonlinears model at finite tem-
perature. While this latter subject and the corresponding
sults are not new, the technical approach we used is:
derive first the temperature corrected one-loop effective
grangian, from which the physical conclusions are then
tracted.

We have disregarded the putative role of finite parame
such as finite volumes or causal domain sizes in the his
of the universe. Their effect could constitute an interest
topic to study.
02500
e

)
c-

a
c-

iral
n-
f-

y
he
n-
he
s,
n-

ne
-
r,
nt.
ly
tic
ro-
e
-

e-
e
-
-

rs
ry
g

ACKNOWLEDGMENTS

This work was supported through funds from CICY
Project Nos. AEN93-0673, AEN96-1718, AEN97-167
from DGICYT under Grant No. PB95-1077, and from EE
under the TMR Contract No. ERBFMRX-CT96-0090. O.
thanks the BBV foundation for support. We are especia
indebted to Maria Jose´ Herrero for inumerable illuminating
discussions. We acknowledge as well Rolf Baier, Stefa
Catani, Concha Gonza´lez-Garcı´a, Jean-Pierre Leroy, Cristin
Manuel, Joaquim Matias, Agustı´n Nieto, Dominique Schiff,
and Raymond Stora for several inspiring comments. Labo
toire de Physique The´orique at Hautes Energies is Labor
toire associe´ at CNRS URA D00063.

APPENDIX A: TENSOR BASIS

The tensor basis in terms of which we have expressed
gauge boson self-energy is given by

Amn5gmn2Bmn2Dmn, ~A1!

Bmn52
K̄mK̄n

K2
, ~A2!

Cmn5
KmK̄n1K̄mKn

K2
, ~A3!

Dmn5
KmKn

K2
, ~A4!

where K̄m5(K•u Km2K2um)/k and k is such thatKmKm

5v22k2 with v5Kmum.

APPENDIX B: FADDEEV-POPOV LAGRANGIAN

The Faddeev-Popov Lagrangian which corresponds to
non-linear realization of the SU(2)̂U(1) gauge symmetry
is different than the one derived for the minimal standa
model for which the gauge symmetry is linearly realize
Here we present the Faddeev-Popov Lagrangian terms w
are relevant for our purposes. More general results can
found in Ref.@33#:
LFP5c0
1H 2¹22S g82vj

2 D Fv
2

2
1

6v
~p1

21p2
2!1¯ G J c01 (

iÞ j Þk51

3

ci
1H 2¹22S g2vj

2 D Fv
2

2
1

6v
~p j

21pk
2!1¯ G J ci

1~c1
1c22c2

1c1!F2g]mWm
3 1S g2vj

2 Dp3

2 G1~c1
1c32c3

1c1!Fg]mWm
2 1S g2vj

2 Dp2

2 G1~c2
1c32c3

1c2!

3Fg]mWm
2 1S g2vj

2 Dp1

2 G1gg8
vj

4
~c0

†c31c3
†c0!Fv2

1

3v
~p1

21p2
2!1¯ G1¯ , ~B1!
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wherej15j25j.

APPENDIX C: WARD IDENTITIES AT ONE LOOP

We have verified the Ward identities at one loop, both
the linear and nonlinear realization of the gauge symme
for the two-point Green functions, computing theWm

6 , Zm ,
Am gauge boson, Goldstone boson, and ghost self-ener
together with the one-loop Goldstone boson-gauge bo
mixing term. At leading order@O(T2)# and for small exter-
nal momenta the results for the standard model case are

PD
Z 52~g21g82!

T2

8
2~g21g82!

3MZ
2T2

8m2
,

PD
W52g2

T2

8
2g2

3MW
2 T2

8m2
,

PD
g 50,

PD
Zg50,

~C1!
Pp50,

Pp0g50,

Pp6W52g2
T2

16MW
2g2

3MWT2

16m2
,

.

02500
r
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Pp0Z5 i ~g21g82!
T2

16MZ
1 i ~g21g82!

3MZT2

16m2
,

wherem252m2 represents the Higgs boson mass squar
Concerning the electroweak chiral Lagrangian, the results
the two-point Green functions are

PD
Z 52~g21g82!

T2

24
,

PD
W52g2

T2

24
,

PD
g 50,

PD
Zg50,

~C2!

Pp5k2
T2

18v2
,

Ppg50,

Pp0Z5 ig
T2

18v
,

Pc6
52jg2

T2

72
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