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In light of the anti—de Sitter space conformal field theory correspondence, it is natural to try to define a
conformal field theory in a largl, strong coupling limit via a supergravity compactification on the product of
an Einstein manifold and anti—de Sitter space. We consider the five-dimensional mah#bldkich are coset
spacegSU(2) xSU(2)J/U(1). The central charge and a part of the chiral spectrum are calculated, respectively,
from the volume ofTP% and the spectrum of the scalar Laplacian. Of the manifolds consideredT Uragimits
any supersymmetry: it is this manifold which characterizes the supergravity solution corresponding to a large
number ofD3-branes at a conifold singularity, discussed recently by Klebanov and Witten. Through a field
theory analysis of anomalous three point functions we are able to reproduce the central charge predicted for the
T theory by supergravity: it ié—z of the central charge of th&=2Z, orbifold theory from which it descends
via a renormalization group floWyS0556-282(98)03524-3

PACS numbep): 04.65+e, 11.15--q, 11.25.Hf

I. INTRODUCTION In Sec. Il we use the volume of the Einstein manifold to
compute the central charge of the conformal field theory.
A large number of coincidenD3-branes in a smooth The results tally with field theory in the case of orbifolds, but
spacetime induce a supergravity metric which is locally five-for the coset manifolds the central charge is typically irratio-
dimensional anti—de Sitter spag&dSs)xS°. Itis in the con-  nal, which rules out any weakly interacting Lagrangian de-
text of this geometry that the AdS conformal field theory Scription. For the case of** supported byN units of
(CFT) correspondence was first develogdde-3]. Consider- D3-brane charge, the central chargei%stlmes the central
able thought has already been givenDi-branes on orbi- charge forA’=4U(N) super-Yang-Mills theory. Through an
fold singularitieg4,5], as components of F-theory vadid, a_maIyS|s, presented in Sec. Il, of anomalous three point func-
in the presence oD7-branes and orientifold§7—9] and tions of theR current and the stress-energy tensor, we are
more recently on conifold singulariti¢40]. In each case the able to reproduce this number on the field theory side.
. In Sec. Ill we compute the spectrum of the scalar laplac-
geometry can be worked out, and properties oft$ebrane . : . . .
ian on theTPY manifolds. Typically, dimensions of operators

world-volume theory can be deduced from the holographicare irrational as well. In the case o, only part of this
prescriptions of Refd.2, 3]. ; !

) . N .. spectrum can be related to chiral primaries and their descen-
An a_1|ternat|ve approach, which we take in Fh|s Paper, IS todants; most of the others again have irrational dimensions.
start with a geometry and see how its properties relate via th@qre is no reason to suppose that these dimensions do not
holqgraphic_ cqrres_ppn_dence to conformal fie_|d theo_ry. Thgjow as couplings are changed, but this makes their finite
conjecture is implicit in Ref[3] that any anti-de Sitter gjyes in the limit of supergravity’s validity all the more
vacuum of string theory or M theory defines a conformalremarkable: they provide an example of operators whose di-
field theory! The simplest examples apart froBi involve  mensions are not protected but nevertheless tend to finite
the coset manifoldgP9 considered in Ref[11]. Of these, values in the strong coupling limit.
only T preserves some supersymmetry=t 1, which is
of maximal considering conformal invarianceOne is en-
titted to wonder what status the oth&9 compactifications Il. VOLUME AND CURVATURE OF = TPd
have as string vacua. In any case, whatever exotic quantum From the basic AdS-CFT setup as enunciated in Héfs.
field theoretic behavior reflects the usual pathologies of nong] one can conclude that the central charge of the conformal
supersymmetric string vacua, it is at least a fascinating conﬂe'Id theory is inversely proportiondin the largeN limit at
sequence of holography that a conformal fixed point at larg

. . . - ‘Feas) to the volume of the compact five-dimensional Ein-
N and strong coupling exists and is characterized by COMP&aGsiain manifoldM«. To see this. consider the geometry
tified classical type-Il B supergravity. ° '

L2
!Since one needs a stress tensor to define a CFT and hence a ds’= — (dx®+dZ2)+L2%ds3 ,
. ) . - 2 5
graviton in the bulk spectrum, it seems that a theory containing z
gravity is necessary in the bulk to make the conjecture reasonable. (N
If anything more than a larg®l limit of the boundary theory is
desired, the bulk theory must be quantum mechanical. It is for this

. : ; N7
reason that we consider string theory or M theory the only candi- F=————— (voly_+VOlpags),
dates for the bulk theory. 2Vol M5 5
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where the metri(;dﬁ,I5 is taken to have curvatur®,”? TABLE I. Trace anomaly coefficients in free field theory.
=45§. The volume VolMs and the five-forms VQ,|5 and Field a c
Volugs refer to the metricsls?, and (1£%)(dx?+d2?) (i.e.,
- 2 - real scalar 1/360 1/120
without the powers ofL which appear in the full ten- )
dimensional metric N is the integer three-brane charge. The ~ ComPplex Weyl fermion 117720 /40
Einstein equation vector boson 31/180 1/10
N=1 chiral multiplet 1/48 1/24
) N=1 vector multiplet 3/16 1/8
K N=2 hyper multiplet 1/24 1/12
R N E FNP1P2P3P4 2 yp P
M6 MPiPoPsPy @ N=2 vector multiplet 5/24 1/6
. . N=4 vector multiplet 1/4 1/4
is satisfied if one takes
J7 kN shows thata=c is a consequence of holography plus the
4

3 product space structure of the spacetiftieis restricting the
types of theories one could hope to construct holographically
from product geometrigsit was also reported there that the
agreement between the holographic and free field valuas of
andc persists to orbifolded theories such as those considered
in Ref.[4]. The free field counting is done using TablelL]
(all other entries follow from the first three
f dx\O[R+12—3(3¢)2+---]. (4 Counting the free field content is a reliable method for
computing the anomaly coefficients as long as there is at

least V=1 supersymmetry, since thel*, and J,R* are
superpartners and the Adler-Bardeen theorem may be ap-
plied. In fact, the results of Reff15,16 imply that the free
field counting is valid to leading order in lard¢ even for
nonsupersymmetric theories obtained by orbifolding e
=4 theory. Indeed, all the agreements obtained so far are
strictly leading largeN limits: the exact resula=c=(N?

—1)/4 for N=4 SU(N) gauge theory apparently includes a

one-loop contribution from supergravity.

To learn the central charge of tA&9 theories, we must
compute the volume of these manifolds. We will use the
methods of Ref[17]. There are a few important differences

~ 2 Vol Mg

After compactification oM 5, type-Il B supergravity can be
summarized by the action

VoI M5

In Eqg. (4), the metric is taken to bels’=g,,dx“dx”
=(1/z%)(dx?+dZ%): we have rescaled out all factors bf
from the integrand. In view of E(q3), the prefactor or§in
Eq.(4) is wN?/(8 Vol Ms) . All correlators calculated via the
holographic prescription of Refg2,3] include an overall
factor 1/Vol Mg from this prefactor.

Indeed, one of the first checks made in R&].was to see
that the central charge of thé= 4 theory came out correctly
from the two-point function of the stress-energy tensor, cal-
culated essentially via Ed4) with Ms=S°. In a more in-
volved calculation, the authors of R¢l.2] succeeded in es-

tablishing between the conventions used here and those of RET.
and[11], and we will write out formulas explicitly enough to
(T)g =—aEs—cly, (5 disambiguate them. To form the quotient spacé we start
w with SU(2)XSU(2) generated byo, andir,, wherek runs
where from 1 to 3, and divide out by the ) generated byw
=pozt+qr;. Let us write the generators as
1 2 2 02 . : . . . .
Es= rGTrz (Riju—4Rj+R ) ioy, i7g, Z=Qioz—pity, w=piocz+qirs, (7)
(6)  wherel ands run over 1,2. Referring to these anti-Hermitian
1 1 generators collectively as,, we define the structure con-
l,=— R2 —2R2+ - R? stants and Killing metric so that
1677 ijkl i3
from the holographic prescription applied to an arbitrary [ta to]=Capte,
boundary metrig,,, in the conformal class dtompactified (8)

Minkowski space. The calculation again follows from Eq.
(4) (improved by boundary terms and regulgtezsba andc
carry an inverse factor of Vdils. The coefficientc is the
same as what we have called the central chamgenely, the
normalization of the two-point function of the stress-energyThe normalization ofy,, is chosen so that this is the same
tensoy, so the first term of Eq(5) follows from what was metric as the natural one 08X S® where S® is the unit
already worked out in Ref13]. The derivation of Ref{12]  three-sphere. In this metric, the volume of @K SU(2) is

1
Yab™ — ) Cgccgd
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(272)2, and the length of the orbit ab is 27 vp?+ g2 So TABLE II. Parameters characterizing’ manifolds.
before the symmetric rescaling,
TPa X y a b v c/cy
23 T 0 1 1 12 v2 V2
Vol Th= ——s. © T w2 w2 43 413 31\8 27/16
VPTra T 35 a5 2518 2527 9.7 23[
5V5 25 5
The symmetric rescaling referred to in REf1] and detailed
in Ref. [17] is a replacemeng®—r(a)e?, wheree? is the
vielbein for the coset space generatedi by, i75, andZ. In  “defined” by an Einstein manifoldV 5 to the central charge
a (hopefully) obvious notation, let us choose co=N?/4 of N=4 super-Yang-Mills with gauge group M)
should be the same as the ratio of \&! to Vol Mg com-
r()=\ay, r(s)=\by, r(z)=r. (10) puted with respect to Einstein metrics with the same cosmo-

logical constant. Using Eq13) and the fact that the un@®

The volume in the new metric, which we shall call the has VolS*=® and A=4, one arrives at
squashed metric, is

c ab(p?+q?)®
273 1 _ ‘/‘L (14)

ﬂ et (11) Co (q%a+ p2b?)52°

The squashed metric still has an isometry groupThe results for the three simplest examples are quoted in
SU(2)XSU(2)xU(1). Furthermore, with a special choice of Table II. The value listed for is the one which makea

Vol TP9=

a andb, the metric can be made Einstein. In REf7] the =4, This normalization will be useful in the next section.
following expression is given for the Riemann tengap to The highefTP% have very complicated andb, and it does
a convention-dependent factor of2 not seem worth the space to quote their central charges; suf-

fice it to say thatc/cq is typically an irrational involving
irreducible square and cube roots. One can show using Egs.

a 1 a Cc a b a w
Rca= 5 Che de( ¢ | TChuCiar(dir(e) (;ti)sl) )and(14) thatc/cy=(1/pq) (a better bound may be pos-
sible).
1 ac\/bec The anomaly coefficients in field theoiy. view of the
7 C24Che d /e constructior{10] of the T*! theory from a relevant deforma-
tion of the /=2 Z, orbifold theory, one would expect to be
1 ac\/bec able to derive the central charge in Table Il from a field
——cace . . . .
4 “cevbd| @ d ) theory analysis along the lines of Ré18]. This is quite a
(12) nontrivial test of holography because it tests a nonperturba-
tive field theoretic effect involving a renormalization group
ab\ r(ay(c) r(b)r(c) r(ayr(b) (RG) flow from a simple UV theory to a IR theory which lies
c |- r(b) r(a)  r(c) deep inside the conformal windowBecauseN;=2N, for

each of the gauge groups separately, the IR theory is not
From the Einstein requiremeiit,’=A &2 one now derives close to either edge of the conformal windga] 3N./2
Eq. (2.5 of Ref.[11] <N;=<3N.. Perturbation theory in the electric or magnetic
representation, respectively, can be usedlljf=3N;— e or
N¢=3N.2+e.) In an A/=1 superconformal theory, the
anomaly coefficienta andc can be read off from anomalous
three point functionsd,(T,sT,sR*) and d,(R,RzR*),
where R, is the R current: the former is proportional to
where x= p/‘/p2+ q2 and y:q/\/pz-{- q2_ Note that for a—¢C, while the latter is proportional todb-3c.
givenx andy, the determination o& andb reduces to solv- The ultraviolet theory, in\=1 language, has\¥ vector
ing a cubic. multiplets filling out the adjoints of the two W) gauge

To sum up the discussion at the beginning of this sectiongroups, plus mg chiral multiplets filling out an adjoint for

the ratio of the central chargein the conformal field theory each gauge group (#) plus bifundamental matter ().

The R current descends from one of thé=4 SU4) R cur-

rents. TheR charge of theNA=2N§ gluino fields is 1,

2In Eq. (12) the Riemann tensor has been defined from the spinvhereas theR charge of theNX=6N§ quark fields is—3.
connection viaR%,=3R%,,,dy*0dy’=dw+wlw, whereas in There is no gravitational anomaly i{TTR because the
Ref. [17] the factor of3 is omitted. In Ref[11] the normalization ~U(1)r generator is traceless. Say,—cyy=0. For the
seems to be the same as used here. d,(R,RzR*) anomaly, we use the position space analysis

A
— =4a—2a’y’=4b—2b’?=2a%?+2b??, (13)
Y
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summarized in Refl18]: for a single Majorana spinor with there is no gravitational anomaly because the J(dgnera-

axial current] ,= %(//’y#‘ysl/f,s tor is traceless. Sar—c;r=0. On the other hand,
P 1 9 9 9, {RaRpR*) = (5a1r— 3Cir) A,p
RN I S _
oz* <Ja(X)JB(y)J (Z)> 127T2 €aBys XY (9y6 9 1 3 27 )
:1—6 N, + 5 NX Aaﬂzs—z Nc-AaB'

X 84 x—2)84y—2)
9 17
~ 16 Aap(XY,2). (19 Thusar/ayy=Cr/cyy= 2, exactly the ratio of VolS°/Z,
to Vol T Of course, the agreement with supergravity is
By counting U1) charges, one obtains only to leading order in larg&. A more careful analysis of
the field theory would have the () parts of the gauge
groups decoupling, changina and ¢ by a factor
9, (R,RgR*)=(5ayy—3cyy) Aup 1—O(1/N?) which is invisible in classical supergravity.

9

16

1 3
_ N2 Ill. THE LAPLACIAN ON TP
N)\"F(_g) NX Aaﬁ_NCAaB'

To study the spectrum of chiral primaries in the? CFT
(16) (insofar as we grant that the theory exists and is defined in
the largeN limit by the supergravity; the first step is to find
the spectrum of the scalar Laplacian ®R%. A convenient
parametrization of these coset spaces descends from Euler
angles on S(2)xXSU(2). Let us write a group element of
®SU(2) asg=e'*ze!Ple! Yz, The standard unit sphere metric
on SU2) is, in these variables,

So far, this has just verified the known result from free field
counting with Table | thafyy = cyy=N2/2.

The relevant deformation discussed in Rgf0] gives a
mass to the chiral multiplets in the adjoints of the gaug
groups, leaving behind Mﬁ chiral multiplets with a quartic
superpotential, plus Iﬂﬁ vector multiplets as before. The
anomalous dimension of mass operators of the forrABr
was found in the infraref10] from the exact beta function
[20,21] to be yr=—3. After the adjoint chirals have been
made massive and integrated out, Beurrent which is the
superpartner of the stress-energy tensor is no longer corl:"€ angles are allowed to vary over the ranges
served, in part due to internal anomalies proportional to the
beta funftion. A nonanomalous (U current [22] is ae(0,2m), Be(0m), 7ye(0,dm). (19)
S.=R,*+3(yr—7)K,, whereK, is the Konishi current, . .
which assigns charge 1 to quarks and 0 to gluthdhe  The reason thak is not allowed to range ove,4m) is to
external gauge and gravitational anomaliesSfare inde- ~ avoid a double cover of SQ): 62””2:_—1-
pendent of scale. Sinc§,=R,, at the IR fixed point, the The convenience of Euler angles is that we can represent
strategy is to evaluate the external anomalieS,pht a high ~ the coset spacé®? as the hypersurfagey; +qy,=0 in the
scale wherey— 0, and identify the answers as the IR fixed Euler —angle  coordinatization of,81,v1,a2,82.72)
point anomalies oR,. When y—0, the S charges of the of SUQ2)XSU(2). Writing y;=—qaz/Vp*+ad% v,
fermion fields which remain massless are 1 for t8¢  =pasz/\/p?+q? and ordering our coordinates fard as
=2N?Z gluinos and—1 for the NX=4N§ quarks. As before, (B1,82,a1,a5,a3), One arrives at a metric whose inverse is

1
dszzé_1 (de®+dp?+dy?+2 coBdady). (18

a o0 0 0 0
0O b 0 0 0
g?=4421 0 O a csép; 0 ya cot 8,¢sc B, (20)
00 0 b cs@B, —xb cot B,cs03,
0 0 vyacotBcsgB; —xbcotp,es®d, 1+y?a cofB;+x%b cofp,

3There is a small typo in Eq4.10 of Ref.[18] which is corrected in Eq(15).
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after squashing. One can now verify E41) by integrating 1 4 d )
Jg= \/detg,,=aby’ sin B, sin B, over the allowed ranges sngap " B B (m cot B+ x cscp) }d’z —eg¢
for the variables (26)

B1.B2€(0,m), aj,a,e(0,2m), aze(0,4m/\p?+q?). admits a regular solution on the inten@k [0,7]. Introduc-
(21  ing a new variable=cog(/2), one can reduce E¢R6) to
a hypergeometric equation. Solutions of the form
The Laplacian has a fairly simple form:

$¢=2"(1-2)°F(A,B;C;2) (27
J J
42 R _—
He=4y"a sin B 9B, sin B 9B with suitableA, B, C, F, andG are smooth in the interior of
5 the interval, and have a behavior at the end points which can

J d d be determined using the formula4]

- — —+ —

sinB, aBy & 0B, 2 eS¢y da’
92 52 ey r(c)r(C-A-B)
+besCpy st 2yacot fucschy 5 FABCD=rc—aTc—B)

52 XF(AB;A+B—-C+1;1-2)
+(1+y?a cotp;

—2xb cot B,csc By

&a2&a3 A F(C)F(A+B_C)
) -2 e
+x°b cot'By) a_ag}‘f’:‘E‘f’- (22 XF(C—A,C—B:C—A—B+1:1-2).

Amusingly enough, this equation can be solved completely (28

by separation of variables even thou@Pf' is not metrically

. In brief, the solutions are regular when they can be expressed
a product space: writing

in terms of a hypergeometric function which is a polynomial.
This is so when

3
¢=¢1(B1)¢z(ﬂz)eXP(i21 mjaj) @
: >— Vg terr+max|yllxl} ez ={0-1-2-3.}.
we arrive at (29)

E=4y%aE;+bE,+ mg), (24 One can verify Eq(29) in four cases, takingy+yx and
— x positive or negative. The eigenfunctiogsn fact vanish
whereE, andE, are determined by the ordinary differential at the end points except wheén|=|x|. The casep=yx=0

equations leads to the Legendre polynomials. Let us go through the
derivation of Eq.(29) for the casenp— xy<0 and n+ x=0,
1 9 P and leave the other cases as an exercise for the reader.
. —sin B — ChoosingF=—(n—x)/2 andG=(7n+ x)/2, we are led to
sin B, 9B, Bi B, g (7=X) (7+X)

—(mgyjcot B+ micsc B)?|¢i=—Ei¢, (25 A:%+X_ \ /%+e+ 7

wherey;=y andy,=—x. Fory;=0 and 1, we recognize

Eq. (25 as the differential equation that determines eigen- 1 1

values of the Laplacian 08° and S3, respectively: in these B=S+x+ \/Z+e+ 7’
cases one would hav&=1(1+1) orl(I+2)/4.

The next step is to determine, given specifigdndy, the
values ofE for which C=1+x—17.

Regularity atz=0 is guaranteed by our choice of the sign on

“S. P. de Alwis has showi23] how one can define the curreBy F. Because of the choice Of sign @B, regularity atz=1 .
in the full =22, orbifold theory instead of first integrating out depends on having or B vanish, so that the second term in
the chiral adjoint fields, as we have done here. Equatidh is  EQ- (28) is absent. This occurs wheéne Z~ orBeZ™. The
unchanged because ti®charge of the fermions in those chiral latter is impossible because=|7|; so we are left withA
adjoints is 0 in the ultraviolet. e Z~, which indeed reduces to E(R9).
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Writing |=k+max]|7|,[x]} where keZ"={0,1,2,3,.},  group of T', which acts by shiftingaz. The integerR
one finds the simple expressie|(1+1)— »”. Returning chargek is related tomg by m;=k/v2. Without loss of gen-
to Eq. _(24), the f!nal expression for the eigenvalues of theerality let us take&k=0. Using Eqs(30), (31), and(32), one
Laplacian onT® is finds that the smallest possible value &fis A=3k/2, and
) ) ) ) corresponds to a mode bf; anda,g, s with 1, =1,=k/2 and
E=4yTaly(l1+1)+bla(l2+ 1)+ mg(1-ay—bx%)]. |my|,|m,|<k/2. Thus we find a set of operators filling out a
(B0 (k+1,k+1), multiplet of SU2)XSU@2)xU(L), where
In Eq. (30), |,=k+maxmyl/m[}, kiez®, mez (di,d2) indicatesR-charger and SU2) representations of
—mayi, mye[V(p2+q?)/2]Z, andi=1,2. The shift in the dimensionsd; andd,. Indeed,A=3k/2 saturates the alge-
allowed values ofn, is necessary to ensure that Eg3) is  Praic bom_Jnd on\ following from the supercopf_ormal algepra
single valued. Note thah,y; is always either integer or half- [26]. This part of the spectrum was anticipated on field
integer, and thaE is completely specified by, [essentially, theory grounds in Ref10], and it was argued there that the
the U(1) chargg and the sping; under the two S(2)’s. The form of the operators is tﬁ(B)". The related operators in the
expression of Eq(30) as a linear combination of the qua- third and sixth towers are descendants which presumably
dratic Casimirs for the symmetry group UXSU(2)xU(1)  have the form tFi(AB)*+tr F5(BA)* and trFj(AB)X
is precisely the form expected for a coset manifold. +tr F‘Z‘(BA)k, whereF# is the special Lorentz contraction
As in the case 08°, the dimension of the scalar operator F ,1#2F ,,*3F ,3*4F ,4** = 4 (F ,1#°F ,,*1)2.°
in the conformal field theory to which a given mode of the  The supergravity predicts in addition a spectrum of opera-

dilaton ¢ couples is tors with at least one S@) spin larger than thé& charge.
These operators far outnumber the chiral primariesB):
A=2+ J4+E, (31) there areN, (A) ~ £ A® such chiral primaries with dimension

less tham, versus a numbed(A) ~ 55z A° of operators with
where nowy must be chosen in Eq30) so thatA=4. In  larger SU2) spins, as follows from Weyl's law for the
fact, these modes may be complexified by replacingy a  growth of eigenvalues dfl: N(A)~(Vol Mg/607°)A®. The
complex scalaB which also includes the axion. Comparing dimensions of these nonchiral operators are in general irra-
Egs. (2.33 and (2.53 of Ref.[25], one arrives at the con- tional (square roots of integersHowever, there are special
clusion that the operators coupling to the mode$hiBfand ~ nonnegative integer values of, and n, such that for
a,4y5 (Which can be mixed together in two different ways |1=n1+k/2 andl;=n,+k/2, the dimensions of the opera-

have dimensions tors in the @l;+1,2l,+1), multiplet are again integer or
half-integer: E=[2(n;+n,+1)+3k]>—4, so A=2(n;
_ — +n,+2)+ 3k for relatives of the dilaton and\=2(n;
A= 2+ Va+E, (32  +ny)+3k or 2(ny+n,+4)+3k for relatives ofh} and

6+ Va+E. ,3y5- The n; for which this occurs are solutions to the

: - : - Diophantine equatiom?+n3—4n;n,—n;—n,=0: that is
These dimensions can be read off directly from the eigenval- X L2 12 ' '2 '
! I rectly 9eNVal. nsecutive terms in the sequer{6¢0,1,5,20,76,285,}.

ues of(] because the relevant fields have a mode expansior%o . . ; ; _
If these higher-dimension operators are, in some exotic

purely in terms of the scalar eigenfunctions Tff. In Egs. ense, algebraic descendants of chiral primaries, then since
(31) and(32) we have summarized the spectrum of operator he SU2) spins for givenR charge are larger than for the

which in Ref.[25] corresponded to the first, third, and sixth
Kaluza-Klein towers of scalars. To obtain the rest of the
bosonic spectrum, one must deal with the analogues of the

vector, symmetric tensor, and antisymmetric tensor spherical®Thanks to I. Klebanov for a discussion on this point.

harmonics appearing in E¢R.20 of Ref. [25]; for the fer- "Let us briefly indicate the solution of the Diophantine equation.
mionic spectrum, a study of the eigenfunctions of the DiradDefine
operator is also required. We leave these more involved stud- - T imTiae
ies for future work. f () SHANEVIF N 120
Inspection of the spectrum of dimensions on all T 2

reveals a rather uninteresting sequence of numbers, mostYy construction, any pair(,n;) =[f_(n),n] solves the equation,
complicated irrationals. HoweveT,** exhibits a fascinating ~@nd any solution must have this form up to interchangeoand
feature which finds its explanation in the superconformal alz- Also, f)(0) is always a nonnegative integer, where the super-
gebra. Operators of algebraically protected dimension ar&/Pt d(ie)”OteS Lerative application 6f. To see that ify,n)
typically those whose dimension is the lowest possible giveri-1f-[f+'(0)],f°(0)} wherei=0,1,2,3..., are theonly solu-

a certainR charge, or else descendants of such operatordos: note thatf_[f. (n)]=n for nonnegativen and f.[f_(n)]
derived by a series of supersymmetry transformations.R'he =n for positiven. Furthermoref_(n)=<n for nonnegative integer

: : . . n, with equality ifn=0; andf_(n)=0 only forn=0 or 1. Starting
symmetry in this context is the () part of the isometry L™ %0 1 tive solutiorff_(n),n]. one can find successively

smaller solutions by repeated application fof to n until one
reaches1=0. The properties of . now guarantee thatis a mem-
5Thanks to E. Witten for a discussion on this point. ber of the sequencgf)(0)}7 ,=1{0,1,5,20,76,285 . .}.
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chiral primaries, the relevant algebra must involve theries, where theR symmetry is W1) or U(2); for N'=4 the
SU(2)’s. But, in contrast to the (1) R-symmetry group, the R-symmetry group is S(4), which is simple and hence au-
SU(2)’s do not participate in the usual=1 superconformal tomatically free of gravitational anomalies.
algebra. Besides, the nilpotency of supersymmetry genera- The original correspondencl—3] between AdSxS°
tors implies that the dimension of a descendant cannot bend A’'=4 super-Yang-Mills theory has been questioned be-
arbitrarily larger than the dimension of its chiral primary cause so much of what it predicts is either nonverifigfe
parent. So we do not see any reason why these peculiar serigstance the coefficient on thegq potential[27,28)) or else
of operators with integer or half-integer dimensions shouldargely a consequence of the large supergroup apparent on
be protected. both sides of the dualityffor example scaling dimensions of
chiral operators Already, holography’s successes go be-
IV. CONCLUSIONS yond the constraints of symmetry in predicting Green’s func-
tions[29,30 and in elucidating a geometric picture of con-

It is an open ques;ion whether a quantum fi?'d theoryfinemem[Sl] and of baryon$32,33. Hopefully the example
constructed holographically from compactified string theoryOf D3-branes on conifolds, described for lafgéy the T1!

must |r_10Iude a Iocall gauge invariance. Supe_rgrav_ny, and b¥nanifold, will serve as further evidence that holography cap-
extension closed strings, see only the gauge invariant obseryires not only supergroup theory but gauge theory dynamics.
ables. One can argue that if the compactification is supported, . | o ification Ofyir=— * andcyr/Cuy =2 seems particu-

2 32

by_Ramond-Ramond charge, t_hen it_ should be reali;able_ iihrly nontrivial, since both relations rely on properties of the
string theory as d@-brane configuration, and gauge invari- G flow from theS¥/Z,, theory to theT* theory
! .

ance emerges from the dynamics of open strings attached
the branes. In light of this reasoning it would be interesting
to find singular six-manifolds to which th&9 spaces are
related in the same way*! is related to the conifoldz?
+25+25+25=0 [10]. An analysis of D-branes on such | would like to thank E. Witten for correcting a crucial
manifolds should reveal a weak coupling gauge theory versign in Sec. Il and for useful discussions on other points and
sion of the conformal field theories defined holographicallyl have benefitted from discussions from I. Klebanov, N.
in this paper. Seiberg, and O. Aharony. This research was supported in

Perhaps the most general statement that can be maghart by the National Science Foundation under Grant No.
about supersymmetric theories constructed holographicallpHY94-07194, by the U.S. Department of Energy under
from a product space AdX Mg is that theR current must be  Grant No. DE-FG02-91ER40671, by the James S. McDon-
free of gravitational anomaliesd,(T,sT,sR*)=0. This  nell Foundation under Grant No. 91-48, and by the Hertz
statement is nontrivial fa\'=1 and 2 supersymmetric theo- Foundation.
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