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Einstein manifolds and conformal field theories

Steven S. Gubser
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544

~Received 7 August 1998; published 9 December 1998!

In light of the anti–de Sitter space conformal field theory correspondence, it is natural to try to define a
conformal field theory in a largeN, strong coupling limit via a supergravity compactification on the product of
an Einstein manifold and anti–de Sitter space. We consider the five-dimensional manifoldsTpq which are coset
spaces@SU~2!3SU~2!#/U~1!. The central charge and a part of the chiral spectrum are calculated, respectively,
from the volume ofTpq and the spectrum of the scalar Laplacian. Of the manifolds considered, onlyT11 admits
any supersymmetry: it is this manifold which characterizes the supergravity solution corresponding to a large
number ofD3-branes at a conifold singularity, discussed recently by Klebanov and Witten. Through a field
theory analysis of anomalous three point functions we are able to reproduce the central charge predicted for the
T11 theory by supergravity: it is27

32 of the central charge of theN52Z2 orbifold theory from which it descends
via a renormalization group flow.@S0556-2821~98!03524-3#

PACS number~s!: 04.65.1e, 11.15.2q, 11.25.Hf
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I. INTRODUCTION

A large number of coincidentD3-branes in a smooth
spacetime induce a supergravity metric which is locally fiv
dimensional anti–de Sitter space~AdS5!3S5. It is in the con-
text of this geometry that the AdS conformal field theo
~CFT! correspondence was first developed@1–3#. Consider-
able thought has already been given toD3-branes on orbi-
fold singularities@4,5#, as components of F-theory vacua@6#,
in the presence ofD7-branes and orientifolds@7–9# and
more recently on conifold singularities@10#. In each case the
geometry can be worked out, and properties of theD3-brane
world-volume theory can be deduced from the holograp
prescriptions of Refs.@2, 3#.

An alternative approach, which we take in this paper, is
start with a geometry and see how its properties relate via
holographic correspondence to conformal field theory. T
conjecture is implicit in Ref.@3# that any anti–de Sitter
vacuum of string theory or M theory defines a conform
field theory.1 The simplest examples apart fromS5 involve
the coset manifoldsTpq considered in Ref.@11#. Of these,
only T11 preserves some supersymmetry (N51, which is 1

4

of maximal considering conformal invariance!. One is en-
titled to wonder what status the otherTpq compactifications
have as string vacua. In any case, whatever exotic quan
field theoretic behavior reflects the usual pathologies of n
supersymmetric string vacua, it is at least a fascinating c
sequence of holography that a conformal fixed point at la
N and strong coupling exists and is characterized by comp
tified classical type-II B supergravity.

1Since one needs a stress tensor to define a CFT and hen
graviton in the bulk spectrum, it seems that a theory contain
gravity is necessary in the bulk to make the conjecture reason
If anything more than a largeN limit of the boundary theory is
desired, the bulk theory must be quantum mechanical. It is for
reason that we consider string theory or M theory the only can
dates for the bulk theory.
0556-2821/98/59~2!/025006~8!/$15.00 59 0250
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In Sec. II we use the volume of the Einstein manifold
compute the central charge of the conformal field theo
The results tally with field theory in the case of orbifolds, b
for the coset manifolds the central charge is typically irrat
nal, which rules out any weakly interacting Lagrangian d
scription. For the case ofT11 supported byN units of
D3-brane charge, the central charge is27

16 times the central
charge forN54U(N) super-Yang-Mills theory. Through an
analysis, presented in Sec. II, of anomalous three point fu
tions of theR current and the stress-energy tensor, we
able to reproduce this number on the field theory side.

In Sec. III we compute the spectrum of the scalar lapl
ian on theTpq manifolds. Typically, dimensions of operato
are irrational as well. In the case ofT11, only part of this
spectrum can be related to chiral primaries and their des
dants; most of the others again have irrational dimensio
There is no reason to suppose that these dimensions do
flow as couplings are changed, but this makes their fin
values in the limit of supergravity’s validity all the mor
remarkable: they provide an example of operators whose
mensions are not protected but nevertheless tend to fi
values in the strong coupling limit.

II. VOLUME AND CURVATURE OF Tpq

From the basic AdS-CFT setup as enunciated in Refs.@2,
3#, one can conclude that the central charge of the confor
field theory is inversely proportional~in the largeN limit at
least! to the volume of the compact five-dimensional Ei
stein manifoldM5 . To see this, consider the geometry

ds25
L2

z2
~dx21dz2!1L2dsM5

2 ,

~1!

F5
NAp

2 Vol M5
~volM5

1volAdS!,

e a
g
le.

is
i-
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STEVEN S. GUBSER PHYSICAL REVIEW D 59 025006
where the metricdsM5

2 is taken to have curvatureRa
b

54da
b . The volume VolM5 and the five-forms volM5

and

volAdS refer to the metricsdsM5

2 and (1/z2)(dx21dz2) ~i.e.,

without the powers ofL which appear in the full ten-
dimensional metric!. N is the integer three-brane charge. T
Einstein equation

RM
N5

k2

6
FM P1P2P3P4

FNP1P2P3P4 ~2!

is satisfied if one takes

L45
Ap

2

kN

Vol M5
. ~3!

After compactification onM5 , type-II B supergravity can be
summarized by the action

S5
Vol M5

2k2
L8E d5xAg@R1122 1

2 ~]f!21•••#. ~4!

In Eq. ~4!, the metric is taken to beds25gmndxmdxn

5(1/z2)(dx21dz2): we have rescaled out all factors ofL
from the integrand. In view of Eq.~3!, the prefactor onS in
Eq. ~4! is pN2/(8 Vol M5) . All correlators calculated via the
holographic prescription of Refs.@2,3# include an overall
factor 1/Vol M5 from this prefactor.

Indeed, one of the first checks made in Ref.@2# was to see
that the central charge of theN54 theory came out correctly
from the two-point function of the stress-energy tensor, c
culated essentially via Eq.~4! with M55S5. In a more in-
volved calculation, the authors of Ref.@12# succeeded in es
tablishing

^Ta
a&gmn

52aE42cI4 , ~5!

where

E45
1

16p2
~Ri jkl

2 24Ri j
2 1R2!,

~6!

I 452
1

16p2 S Ri jkl
2 22Ri j

2 1
1

3
R2D

from the holographic prescription applied to an arbitra
boundary metricgmn in the conformal class of~compactified!
Minkowski space. The calculation again follows from E
~4! ~improved by boundary terms and regulated!, soa andc
carry an inverse factor of VolM5 . The coefficientc is the
same as what we have called the central charge~namely, the
normalization of the two-point function of the stress-ener
tensor!, so the first term of Eq.~5! follows from what was
already worked out in Ref.@13#. The derivation of Ref.@12#
02500
l-

y

shows thata5c is a consequence of holography plus t
product space structure of the spacetime~thus restricting the
types of theories one could hope to construct holographic
from product geometries!. It was also reported there that th
agreement between the holographic and free field valuesa
andc persists to orbifolded theories such as those conside
in Ref. @4#. The free field counting is done using Table I@14#
~all other entries follow from the first three!.

Counting the free field content is a reliable method
computing the anomaly coefficients as long as there is
leastN51 supersymmetry, since thenTm

m and ]mRm are
superpartners and the Adler-Bardeen theorem may be
plied. In fact, the results of Refs.@15,16# imply that the free
field counting is valid to leading order in largeN even for
nonsupersymmetric theories obtained by orbifolding theN
54 theory. Indeed, all the agreements obtained so far
strictly leading largeN limits: the exact resulta5c5(N2

21)/4 forN54 SU(N) gauge theory apparently includes
one-loop contribution from supergravity.

To learn the central charge of theTpq theories, we must
compute the volume of these manifolds. We will use t
methods of Ref.@17#. There are a few important difference
between the conventions used here and those of Refs.@17#
and@11#, and we will write out formulas explicitly enough to
disambiguate them. To form the quotient spaceTpq we start
with SU~2!3SU~2! generated byisk and i tk , wherek runs
from 1 to 3, and divide out by the U~1! generated byv
5ps31qt3 . Let us write the generators as

is l , i ts , Z5qis32pit3 , v5pis31qit3 , ~7!

wherel ands run over 1,2. Referring to these anti-Hermitia
generators collectively asta , we define the structure con
stants and Killing metric so that

@ ta ,tb#5Cab
c tc ,

~8!

gab52
1

8
Cac

d Cbd
c .

The normalization ofgab is chosen so that this is the sam
metric as the natural one onS33S3 where S3 is the unit
three-sphere. In this metric, the volume of SU~2!3SU~2! is

TABLE I. Trace anomaly coefficients in free field theory.

Field a c

real scalar 1/360 1/120
complex Weyl fermion 11/720 1/40

vector boson 31/180 1/10
N51 chiral multiplet 1/48 1/24
N51 vector multiplet 3/16 1/8
N52 hyper multiplet 1/24 1/12
N52 vector multiplet 5/24 1/6
N54 vector multiplet 1/4 1/4
6-2
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EINSTEIN MANIFOLDS AND CONFORMAL FIELD THEORIES PHYSICAL REVIEW D59 025006
(2p2)2, and the length of the orbit ofv is 2pAp21q2. So
before the symmetric rescaling,

Vol Tpq5
2p3

Ap21q2
. ~9!

The symmetric rescaling referred to in Ref.@11# and detailed
in Ref. @17# is a replacementea→r (a)ea, whereea is the
vielbein for the coset space generated byis l , i ts , andZ. In
a ~hopefully! obvious notation, let us choose

r ~ l !5Aag, r ~s!5Abg, r ~Z!5g. ~10!

The volume in the new metric, which we shall call th
squashed metric, is

Vol Tpq5
2p3

Ap21q2

1

abg5 . ~11!

The squashed metric still has an isometry gro
SU~2!3SU~2!3U~1!. Furthermore, with a special choice o
a and b, the metric can be made Einstein. In Ref.@17# the
following expression is given for the Riemann tensor~up to
a convention-dependent factor of 2!:2

Ra
bcd5

1

2
Cbc

a Cde
c S a b

c D1Cbv
a Cde

v r ~d!r ~e!

1
1

4
Ccd

a Cbe
c S a c

d D S b c
e D

2
1

4
Cce

a Cbd
c S a c

e D S b c
d D ,

~12!

S a b
c D[

r ~a!r ~c!

r ~b!
1

r ~b!r ~c!

r ~a!
2

r ~a!r ~b!

r ~c!
.

From the Einstein requirementRa
b5Lda

b one now derives
Eq. ~2.5! of Ref. @11#

L

g2
54a22a2y254b22b2x252a2y212b2x2, ~13!

where x5p/Ap21q2 and y5q/Ap21q2. Note that for
given x andy, the determination ofa andb reduces to solv-
ing a cubic.

To sum up the discussion at the beginning of this sect
the ratio of the central chargec in the conformal field theory

2In Eq. ~12! the Riemann tensor has been defined from the s
connection via Ra

b5
1
2 Ra

bmndym∧dyn5dv1v∧v, whereas in
Ref. @17# the factor of 1

2 is omitted. In Ref.@11# the normalization
seems to be the same as used here.
02500
p

n,

‘‘defined’’ by an Einstein manifoldM5 to the central charge
c05N2/4 ofN54 super-Yang-Mills with gauge group U(N)
should be the same as the ratio of VolS5 to Vol M5 com-
puted with respect to Einstein metrics with the same cosm
logical constant. Using Eq.~13! and the fact that the unitS5

has VolS55p3 andL54, one arrives at

c

c0
52&

ab~p21q2!3

~q2a21p2b2!5/2. ~14!

The results for the three simplest examples are quoted
Table II. The value listed forg is the one which makesL
54. This normalization will be useful in the next section.

The higherTpq have very complicateda andb, and it does
not seem worth the space to quote their central charges;
fice it to say thatc/c0 is typically an irrational involving
irreducible square and cube roots. One can show using
~13! and~14! thatc/c0>(Apq) ~a better bound may be pos
sible!.

The anomaly coefficients in field theory.In view of the
construction@10# of theT11 theory from a relevant deforma
tion of theN52 Z2 orbifold theory, one would expect to b
able to derive the central charge in Table II from a fie
theory analysis along the lines of Ref.@18#. This is quite a
nontrivial test of holography because it tests a nonpertur
tive field theoretic effect involving a renormalization grou
~RG! flow from a simple UV theory to a IR theory which lie
deep inside the conformal window.~BecauseNf52Nc for
each of the gauge groups separately, the IR theory is
close to either edge of the conformal window@19# 3Nc/2
<Nf<3Nc . Perturbation theory in the electric or magne
representation, respectively, can be used ifNf53Nc2e or
Nf53Nc/21e.) In an N51 superconformal theory, the
anomaly coefficientsa andc can be read off from anomalou
three point functions]m^TabTgdRm& and ]m^RaRbRm&,
where Rm is the R current: the former is proportional to
a2c, while the latter is proportional to 5a23c.

The ultraviolet theory, inN51 language, has 2Nc
2 vector

multiplets filling out the adjoints of the two U(Nc) gauge
groups, plus 6Nc

2 chiral multiplets filling out an adjoint for
each gauge group (2Nc

2) plus bifundamental matter (4Nc
2).

The R current descends from one of theN54 SU~4! R cur-
rents. TheR charge of theNl52Nc

2 gluino fields is 1,
whereas theR charge of theNx56Nc

2 quark fields is21
3.

There is no gravitational anomaly in̂TTR& because the
U(1)R generator is traceless. SoaUV2cUV50. For the
]m^RaRbRm& anomaly, we use the position space analy

in

TABLE II. Parameters characterizingTpq manifolds.

Tpq x y a b g c/c0

T01 0 1 1 1/2 & &
T11 1/& 1/& 4/3 4/3 3/A8 27/16
T34 3/5 4/5 25/18 25/27 9

5A 2
5

243
25 A 2

5

6-3
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STEVEN S. GUBSER PHYSICAL REVIEW D 59 025006
summarized in Ref.@18#: for a single Majorana spinor with
axial currentJm5 1

2 c̄gmg5c,3

]

]zm ^Ja~x!Jb~y!Jm~z!&52
1

12p2
eabgd

]

]xg

]

]yd

3d4~x2z!d4~y2z!

[
9

16
Aab~x,y,z!. ~15!

By counting U~1! charges, one obtains

]m^RaRbRm&5~5aUV23cUV!Aab

5
9

16 FNl1S 2
1

3D 3

NxGAab5Nc
2Aab .

~16!

So far, this has just verified the known result from free fie
counting with Table I thataUV5cUV5Nc

2/2.
The relevant deformation discussed in Ref.@10# gives a

mass to the chiral multiplets in the adjoints of the gau
groups, leaving behind 4Nc

2 chiral multiplets with a quartic
superpotential, plus 2Nc

2 vector multiplets as before. Th
anomalous dimension of mass operators of the form trAB
was found in the infrared@10# from the exact beta function
@20,21# to be g IR52 1

2 . After the adjoint chirals have bee
made massive and integrated out, theR current which is the
superpartner of the stress-energy tensor is no longer
served, in part due to internal anomalies proportional to
beta function. A nonanomalous U~1! current @22# is
Sm5Rm1 1

3 (g IR2g)Km , whereKm is the Konishi current,
which assigns charge 1 to quarks and 0 to gluinos.4 The
external gauge and gravitational anomalies ofSm are inde-
pendent of scale. SinceSm5Rm at the IR fixed point, the
strategy is to evaluate the external anomalies ofSm at a high
scale whereg→0, and identify the answers as the IR fixe
point anomalies ofRm . When g→0, the S charges of the
fermion fields which remain massless are 1 for theNl

52Nc
2 gluinos and21

2 for the Nx54Nc
2 quarks. As before,
02500
e

n-
e

there is no gravitational anomaly because the U(1)S genera-
tor is traceless. SoaIR2cIR50. On the other hand,

]m^RaRbRm&5~5aIR23cIR!Aab

5
9

16 FNl1S 2
1

2D 3

NxGAab5
27

32
Nc

2Aab .

~17!

ThusaIR /aUV5cIR /cUV5 27
32 , exactly the ratio of VolS5/Z2

to Vol T11. Of course, the agreement with supergravity
only to leading order in largeN. A more careful analysis of
the field theory would have the U~1! parts of the gauge
groups decoupling, changinga and c by a factor
12O(1/N2) which is invisible in classical supergravity.

III. THE LAPLACIAN ON Tpq

To study the spectrum of chiral primaries in theTpq CFT
~insofar as we grant that the theory exists and is defined
the largeN limit by the supergravity!, the first step is to find
the spectrum of the scalar Laplacian onTpq. A convenient
parametrization of these coset spaces descends from E
angles on SU~2!3SU~2!. Let us write a group element o
SU~2! asg5eiaJzeibJyeigJz. The standard unit sphere metr
on SU~2! is, in these variables,

ds25
1

4
~da21db21dg212 cosb dadg!. ~18!

The angles are allowed to vary over the ranges

aP~0,2p!, bP~0,p!, gP~0,4p!. ~19!

The reason thata is not allowed to range over~0,4p! is to
avoid a double cover of SU~2!: e2p iJz521.

The convenience of Euler angles is that we can repre
the coset spaceTpq as the hypersurfacepg11qg250 in the
Euler angle coordinatization (a1 ,b1 ,g1 ,a2 ,b2 ,g2)
of SU~2!3SU~2!. Writing g152qa3 /Ap21q2, g2

5pa3 /Ap21q2, and ordering our coordinates forTpq as
(b1 ,b2 ,a1 ,a2 ,a3), one arrives at a metric whose inverse
gab54g2S a 0 0 0 0

0 b 0 0 0

0 0 a csc2b1 0 ya cot b1cscb1

0 0 0 b csc2b2 2xb cot b2cscb2

0 0 ya cot b1cscb1 2xb cot b2cscb2 11y2a cot2b11x2b cot2b2

D ~20!

3There is a small typo in Eq.~4.10! of Ref. @18# which is corrected in Eq.~15!.
6-4
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EINSTEIN MANIFOLDS AND CONFORMAL FIELD THEORIES PHYSICAL REVIEW D59 025006
after squashing. One can now verify Eq.~11! by integrating
Ag5Adetgab5abg5 sinb1 sinb2 over the allowed range
for the variables

b1 ,b2P~0,p!, a1 ,a2P~0,2p!, a3P~0,4p/Ap21q2!.
~21!

The Laplacian has a fairly simple form:

hf54g2Fa
1

sin b1

]

]b1
sin b1

]

]b1

1b
1

sin b2

]

]b2
sin b2

]

]b2
1a csc2b1

]2

]a1
2

1b csc2b2

]2

]a2
2 12ya cot b1cscb1

]2

]a1]a3

22xb cot b2cscb2

]2

]a2]a3
1~11y2a cot2b1

1x2b cot2b2!
]2

]a3
2Gf52Ef. ~22!

Amusingly enough, this equation can be solved comple
by separation of variables even thoughTpq is not metrically
a product space: writing

f5f1~b1!f2~b2!expS i (
j 51

3

mja j D ~23!

we arrive at

E54g2~aE11bE21m3
2!, ~24!

whereE1 andE2 are determined by the ordinary differenti
equations

F 1

sin b i

]

]b i
sin b i

]

]b i

2~m3yicot b i1micscb i !
2Gf i52Eif i , ~25!

where y15y and y252x. For yi50 and 1, we recognize
Eq. ~25! as the differential equation that determines eig
values of the Laplacian onS2 andS3, respectively: in these
cases one would haveEi5 l ( l 11) or l ( l 12)/4.

The next step is to determine, given specifiedh andx, the
values ofE for which

4S. P. de Alwis has shown@23# how one can define the currentSm

in the full N52Z2 orbifold theory instead of first integrating ou
the chiral adjoint fields, as we have done here. Equation~17! is
unchanged because theS charge of the fermions in those chira
adjoints is 0 in the ultraviolet.
02500
ly

-

F 1

sin b

]

]b
sin b

]

]b
2~h cot b1x cscb!2Gf52ef

~26!

admits a regular solution on the intervalbP@0,p#. Introduc-
ing a new variablez5cos2(b/2), one can reduce Eq.~26! to
a hypergeometric equation. Solutions of the form

f5zF~12z!GF~A,B;C;z! ~27!

with suitableA, B, C, F, andG are smooth in the interior o
the interval, and have a behavior at the end points which
be determined using the formula@24#

F~A,B;C;z!5
G~C!G~C2A2B!

G~C2A!G~C2B!

3F~A,B;A1B2C11;12z!

1~12z!C2A2B
G~C!G~A1B2C!

G~A!G~B!

3F~C2A,C2B;C2A2B11;12z!.

~28!

In brief, the solutions are regular when they can be expres
in terms of a hypergeometric function which is a polynomi
This is so when

1

2
2A1

4
1e1h21max$uhu,uxu%PZ2[$0,21,22,23,...%.

~29!

One can verify Eq.~29! in four cases, takingh1x and h
2x positive or negative. The eigenfunctionsf in fact vanish
at the end points except whenuhu5uxu. The caseh5x50
leads to the Legendre polynomials. Let us go through
derivation of Eq.~29! for the caseh2x<0 andh1x>0,
and leave the other cases as an exercise for the rea
ChoosingF52(h2x)/2 andG5(h1x)/2, we are led to

A5
1

2
1x2A1

4
1e1h2,

B5
1

2
1x1A1

4
1e1h2,

C511x2h.

Regularity atz50 is guaranteed by our choice of the sign
F. Because of the choice of sign onG, regularity atz51
depends on havingA or B vanish, so that the second term
Eq. ~28! is absent. This occurs whenAPZ2 or BPZ2. The
latter is impossible becausex>uhu; so we are left withA
PZ2, which indeed reduces to Eq.~29!.
6-5
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STEVEN S. GUBSER PHYSICAL REVIEW D 59 025006
Writing l 5k1max$uhu,uxu% where kPZ1[$0,1,2,3,...%,
one finds the simple expressione5 l ( l 11)2h2. Returning
to Eq. ~24!, the final expression for the eigenvalues of t
Laplacian onTpq is

E54g2@al1~ l 111!1bl2~ l 211!1m3
2~12ay22bx2!#.

~30!

In Eq. ~30!, l i5ki1max$um3yiu,umiu%, kiPZ1, miPZ
2m3yi , m3P@A(p21q2)/2#Z, and i 51,2. The shift in the
allowed values ofmi is necessary to ensure that Eq.~23! is
single valued. Note thatm3yi is always either integer or half
integer, and thatE is completely specified bym3 @essentially,
the U~1! charge# and the spinsl i under the two SU~2!’s. The
expression of Eq.~30! as a linear combination of the qua
dratic Casimirs for the symmetry group SU~2!3SU~2!3U~1!
is precisely the form expected for a coset manifold.5

As in the case ofS5, the dimension of the scalar operat
in the conformal field theory to which a given mode of t
dilaton f couples is

D521A41E, ~31!

where nowg must be chosen in Eq.~30! so thatL54. In
fact, these modes may be complexified by replacingf by a
complex scalarB which also includes the axion. Comparin
Eqs. ~2.33! and ~2.53! of Ref. @25#, one arrives at the con
clusion that the operators coupling to the modes ofha

a and
aabgd ~which can be mixed together in two different way!
have dimensions

D5H 221A41E,

61A41E.
~32!

These dimensions can be read off directly from the eigen
ues ofh because the relevant fields have a mode expans
purely in terms of the scalar eigenfunctions onTpq. In Eqs.
~31! and~32! we have summarized the spectrum of operat
which in Ref.@25# corresponded to the first, third, and six
Kaluza-Klein towers of scalars. To obtain the rest of t
bosonic spectrum, one must deal with the analogues of
vector, symmetric tensor, and antisymmetric tensor sphe
harmonics appearing in Eq.~2.20! of Ref. @25#; for the fer-
mionic spectrum, a study of the eigenfunctions of the Di
operator is also required. We leave these more involved s
ies for future work.

Inspection of the spectrum of dimensions on all theTpq

reveals a rather uninteresting sequence of numbers, m
complicated irrationals. However,T11 exhibits a fascinating
feature which finds its explanation in the superconformal
gebra. Operators of algebraically protected dimension
typically those whose dimension is the lowest possible gi
a certainR charge, or else descendants of such opera
derived by a series of supersymmetry transformations. ThR
symmetry in this context is the U~1! part of the isometry

5Thanks to E. Witten for a discussion on this point.
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group of T11, which acts by shiftinga3 . The integerR
chargek is related tom3 by m35k/&. Without loss of gen-
erality let us takek>0. Using Eqs.~30!, ~31!, and~32!, one
finds that the smallest possible value ofD is D53k/2, and
corresponds to a mode ofha

a andaabgd with l 15 l 25k/2 and
um1u,um2u<k/2. Thus we find a set of operators filling out
(k11,k11)k multiplet of SU~2!3SU~2!3U~1!, where
(d1 ,d2) r indicatesR-charger and SU~2! representations o
dimensionsd1 and d2 . Indeed,D53k/2 saturates the alge
braic bound onD following from the superconformal algebr
@26#. This part of the spectrum was anticipated on fie
theory grounds in Ref.@10#, and it was argued there that th
form of the operators is tr(AB)k. The related operators in th
third and sixth towers are descendants which presuma
have the form trF1

2(AB)k1tr F2
2(BA)k and trF1

4(AB)k

1tr F2
4(BA)k, whereF4 is the special Lorentz contractio

Fm1
m2Fm2

m3Fm3
m4Fm4

m12 1
4 (Fm1

m2Fm2
m1)2.6

The supergravity predicts in addition a spectrum of ope
tors with at least one SU~2! spin larger than theR charge.
These operators far outnumber the chiral primaries tr(AB)k:
there areNx(D); 8

81 D3 such chiral primaries with dimensio
less thanD, versus a numberN(D); 4

405D5 of operators with
larger SU~2! spins, as follows from Weyl’s law for the
growth of eigenvalues ofh: N(D);(Vol M5/60p3)D5. The
dimensions of these nonchiral operators are in general
tional ~square roots of integers!. However, there are specia
nonnegative integer values ofn1 and n2 such that for
l 15n11k/2 and l 25n21k/2, the dimensions of the opera
tors in the (2l111,2l211)k multiplet are again integer o
half-integer: E5@2(n11n211)1 3

2 k#224, so D52(n1
1n212)1 3

2 k for relatives of the dilaton andD52(n1

1n2)1 3
2 k or 2(n11n214)1 3

2 k for relatives of ha
a and

aabgd . The ni for which this occurs are solutions to th
Diophantine equationn1

21n2
224n1n22n12n250: that is,

consecutive terms in the sequence$0,0,1,5,20,76,285,...%.7

If these higher-dimension operators are, in some ex
sense, algebraic descendants of chiral primaries, then s
the SU~2! spins for givenR charge are larger than for th

6Thanks to I. Klebanov for a discussion on this point.
7Let us briefly indicate the solution of the Diophantine equatio

Define

f6~n!5
114n6A1112n112n2

2
By construction, any pair (n1 ,n2)5@ f 2(n),n# solves the equation
and any solution must have this form up to interchange ofn1 and
n2 . Also, f 1

( i )(0) is always a nonnegative integer, where the sup
script denotes iterative application off 1. To see that (n1 ,n2)
5$ f 2@ f 1

( i )(0)#, f 1
( i )(0)% where i 50,1,2,3, . . . , are theonly solu-

tions, note thatf 2@ f 1(n)#5n for nonnegativen and f 1@ f 2(n)#
5n for positiven. Furthermore,f 2(n)<n for nonnegative integer
n, with equality ifn50; andf 2(n)50 only for n50 or 1. Starting
with any putative solution@ f 2(n),n#, one can find successivel
smaller solutions by repeated application off 2 to n until one
reachesn50. The properties off 6 now guarantee thatn is a mem-
ber of the sequence$ f 1

( i )(0)% i 50
` 5$0,1,5,20,76,285, . . . %.
6-6
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chiral primaries, the relevant algebra must involve t
SU~2!’s. But, in contrast to the U~1! R-symmetry group, the
SU~2!’s do not participate in the usualN51 superconformal
algebra. Besides, the nilpotency of supersymmetry gen
tors implies that the dimension of a descendant canno
arbitrarily larger than the dimension of its chiral prima
parent. So we do not see any reason why these peculiar s
of operators with integer or half-integer dimensions sho
be protected.

IV. CONCLUSIONS

It is an open question whether a quantum field the
constructed holographically from compactified string theo
must include a local gauge invariance. Supergravity, and
extension closed strings, see only the gauge invariant obs
ables. One can argue that if the compactification is suppo
by Ramond-Ramond charge, then it should be realizabl
string theory as aD-brane configuration, and gauge inva
ance emerges from the dynamics of open strings attache
the branes. In light of this reasoning it would be interest
to find singular six-manifolds to which theTpq spaces are
related in the same wayT11 is related to the conifoldz1

2

1z2
21z3

21z4
250 @10#. An analysis of D-branes on such

manifolds should reveal a weak coupling gauge theory v
sion of the conformal field theories defined holographica
in this paper.

Perhaps the most general statement that can be m
about supersymmetric theories constructed holographic
from a product space AdS53M5 is that theRcurrent must be
free of gravitational anomalies:]m^TabTgdRm&50. This
statement is nontrivial forN51 and 2 supersymmetric theo
tt

n

ry
80
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ries, where theR symmetry is U~1! or U~2!; for N54 the
R-symmetry group is SU~4!, which is simple and hence au
tomatically free of gravitational anomalies.

The original correspondence@1–3# between AdS53S5

andN54 super-Yang-Mills theory has been questioned
cause so much of what it predicts is either nonverifiable~for
instance the coefficient on theqq̄ potential@27,28#! or else
largely a consequence of the large supergroup apparen
both sides of the duality~for example scaling dimensions o
chiral operators!. Already, holography’s successes go b
yond the constraints of symmetry in predicting Green’s fun
tions @29,30# and in elucidating a geometric picture of co
finement@31# and of baryons@32,33#. Hopefully the example
of D3-branes on conifolds, described for largeN by theT11

manifold, will serve as further evidence that holography ca
tures not only supergroup theory but gauge theory dynam
The verification ofg IR52 1

2 andcIR /cUV5 27
32 seems particu-

larly nontrivial, since both relations rely on properties of t
RG flow from theS5/Z2 theory to theT11 theory.
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