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Quantum Newtonian dynamics on a light front
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~Received 20 July 1998; published 8 December 1998!

We recall the special features of quantum dynamics on a light front~in an infinite momentum frame! in
string and field theory. The reason this approach is more effective for string than for fields is stressed: the
light-front dynamics for string is that of a true Newtonian many particle system, since a string bit has a fixed
Newtonian mass. In contrast, each particle of a field theory has a variable Newtonian massP1; so the
Newtonian analogy actually requires an infinite number of species of elementary Newtonian particles. This
complication substantially weakens the value of the Newtonian analogy in applying light-front dynamics to
nonperturbative problems. Motivated by the fact that conventional field theories can be obtained as infinite
tension limits of string theories, we propose a way to recast field theory as a standard Newtonian system. We
devise and analyze some simple quantum mechanical systems that display the essence of the proposal, and we
discuss prospects for applying these ideas to largeNc QCD. @S0556-2821~99!01302-8#

PACS number~s!: 11.15.Pg, 03.65.2w, 11.25.2w, 12.38.Aw
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I. INTRODUCTION

The possibility of developing the quantum dynamics o
relativistic system in light-front form has been under occ
sionally active investigation since Dirac first suggested
idea 50 years ago@1#. In the 1960s simplifications in the
derivation of current algebra sum rules occurred@2,3# in an
infinite momentum frame, the light front in another guis
Studying Feynman diagrams in such a frame, Weinberg@4#
discovered much simplified rules in which the energies in
denominators of old-fashioned perturbation theory took
non-relativistic form (p21m2)/2PL wherep is the momen-
tum transverse to the longitudinal momentumPL taken to
infinity. Later Susskind@5# systematized these simplifica
tions by identifying a Galilei invariance on this transver
space in which the longitudinal momentum played the role
Newtonian mass. Thus the essentially Newtonian chara
of light-front dynamics was recognized.

Another study of light-front quantum dynamics@6# was
inspired by the physics of deep inelastic lepton scatter
which probes the light-cone singularities of current corre
tors. This line of thought leads to an intuitively appeali
description of the parton wave functions@7#. For nonpertur-
bative purposes, the utility of these ideas in field theo
beyond conceptual clarifications, was limited by the fact t
the ‘‘Newtonian mass’’PL was actually a continuous var
able ranging from 0 tò . Furthermore, the standard vertic
of Feynman diagrams gave nonzero amplitudes for a ‘‘p
ticle’’ of Newtonian massPL to transform into several ‘‘par-
ticles’’ with massesPL

k as long as(kPL
k5PL . Thus the

Newtonian analogy was imperfect: a continuously infin
number of species of Newtonian particles, which could tra
mute into each other, was required. A further annoyanc
that field modes withPL50 have no Newtonian interpreta
tion at all and must be explicitly removed, either by deleti
them or by ‘‘integrating them out,’’ before the Newtonia
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analogy can be exploited. Neither procedure is without c
troversy.

It was not until these ideas were applied@8# to the
Nambu-Goto relativistic string@9# that the full power of the
Newtonian analogy was realized. With light-front tim
t5x15(x01x1)/& taken as the analogue of Newtonia
time and with the points on the string parametrized so t
the density of longitudinal momentumP1[(P01P1)/& is
constant, the dynamics of relativistic string is identical
that of ordinary elastic non-relativistic string moving an
vibrating in the transverse space, described by coordin
xk, k52,...,D21. In this description all information abou
the motion of string in the remaining directionx2 is redun-
dant save for its conjugate momentumP1 which measures
the total Newtonian mass of the string. From this point
view, the continuous variability of the Newtonian mass si
ply reflects the property that string is made up of continuo
material. It is natural to suppose that in reality, just as wit
violin string, relativistic string is not continuous but made u
of tiny constituents@10#, string-bits@11#. With this proposal,
the dynamics of fully interacting string can be formulated
those of a standard Newtonian system.

As we have noted above, the light-front description of
ordinary quantum field theory requires the introduction
Newtonian ‘‘particles’’ with every possible value of th
mass. This is not necessary with string because variatio
Newtonian mass is naturally achieved by the breaking
joining of pieces of string containing various numbers
string-bits. Long ago in pursuit of a connection between fi
theory and string theory, we showed that light-front fie
theory can be made more ‘‘Newtonian’’ by discretizing th
P1→Mm each field quantum can carry@12#; see also@13#.1

Thus instead of a continuous infinity of species of particl

1Since these early proposals, a major industry, known as disc
light cone quantization~DLCQ!, has developed from them, startin
with @14#. The literature in this field is now enormous and can
tapped by consulting the recent review article in@15#.
©1998 The American Physical Society05-1
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there is only a discrete infinity, one species for each num
M of fundamental mass unitsm. Field theoretic interactions
would then occur in two fundamentally different ways:~1!
There could be Newtonian-like potentials, either ‘‘contac
delta function potentials, due to quartic local terms in t
original Hamiltonian, or non-local potentials induced by i
tegrating outP150 modes and/or constrained gauge fiel
and ~2! transition interactions in which mass is redistribut
either through exchange in a 2 to 2vertex or through fission
in 1 to 2 and 1 to 3 vertices or through fusion in 2 to 1 or
to 1 vertices. Indeed, the light-front HamiltonianP2 of the
field theory is precisely that of a second-quantized ma
body system, which includes terms that do not conserve
ticle number even though Newtonian mass is conserved.
difficulties of dealing with such a Hamiltonian are comp
rable to those of dealing with the standard time-like~in
Dirac’s language ‘‘instant’’! form of the Hamiltonian, which
is why the Newtonian analogy has been less useful in
situation.

An important inspiration for this work is the new opt
mism about the tractability of ’t Hooft’s largeNc limit of
QCD @16# generated by the intriguing conjecture that lar
Nc gauge theories are equivalent to classical string theo
on certain anti–de Sitter~AdS! backgrounds@17–19#. Even
as these ideas are being vigorously pursued, we think
important to reconsider earlier efforts to connect largeNc
gauge theory to string theory. This is especially true since
status of the conjecture at finite ’t Hooft couplingNcg

2 is
problematic; so alternative ideas might yield useful insig
on this score. Some 20 years ago, following a suggestion
’t Hooft @16#, we sought to identify the sum of planar dia
grams, parametrized on a light front, with the path integ
over a light-front parametrized world sheet@12,20#.2 We
found that such an identification made sense only in a cer
large ’t Hooft coupling limit,Ncg

2→`, which enforced a
‘‘wee parton’’ approximation. Interestingly, this is also th
limit in which the Maldacena conjecture has the strong
support, because then the problematic string theory o
curved AdS background can be replaced by its well und
stood low energy supergravity limit. Away from this limit
was also clear from our earlier work that the light-front a
proach to largeNc field theory dictated several physic
modifications of the minimal Nambu-Goto dynamics, inclu
ing summing over ‘‘holes’’ or ‘‘tears’’ in the world sheet an
also over the contribution of ‘‘valence’’ partons carrying
finite fraction of the string momentum. The first complic
tion can be neatly handled by simply replacing a harmo
nearest neighbor wee parton interaction with a short ra
attractive potential@22,23#. However, we offered no suc
efficient way of including valence partons except by bru
force summation. We are therefore motivated to ask whe
valence partons can be effectively included in the contex

2For a gauge theory such as QCD the validity of such an ide
fication @21# was clouded by the uncertainty of how to effective
deal with theP150 singularities of light-front gauge. We hope th
the ideas advanced in this article will lead to a clarification of su
issues.
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a conventional Newtonian many body system made up
wee partons only.

Thus, the purpose of this article is to explore the possi
ity that underlying the light-front form of quantum fiel
theory is a completely standard Newtonian system of ‘‘bit
residing on the transverse space. The fact that perturba
string dynamicsis Newtonian in this pure sense and, in th
infinite tension limit, can be described by an effective qua
tum field theory implies that such an underlying syste
should, at least in theory, exist: first obtain string theory fro
a string-bit model and then take its infinite tension lim
Whether it is possible to spell out its dynamics in a use
way, and whether its existence is any help in dealing w
interesting non-perturbative issues, such as quark confi
ment in QCD, are issues we will not address. Our aim her
the more modest one of examining the features such an
derlying theory must possess and using some simple q
tum mechanical models to illustrate how the mechanisms
work.

Our basic proposal is that just as string can be regarde
a polymeric bound state of string bits, a field quantum can
regarded as a very tightly bound state of bits. The quantity
P1 such a quantum carries is just proportional to the num
of bits it contains. If such an interpretation is success
string theory and quantum field theory would be effecti
low energy descriptions of a single kind of underlyin
theory. From a pragmatic standpoint, rephrasing complica
dynamical issues in quantum field theory, such as quark c
finement, into a question about the properties of vario
kinds of Newtonian many-body systems could lead to n
insights as well as to new quantitative results.

In the next section we recall how field theoretic intera
tions look on the light front by examining a cubic scalar fie
interaction. We then go on in Sec. III to study how the ide
sketched above play out for a simple 2-bit truncation of
scalar field model. We exhibit and solve a simple two p
ticle potential model which serves as the underlying Newt
ian model for the truncated field theory. The final section
devoted to a discussion of the prospects for applying th
ideas to full-fledged field theory models, especially largeNc
QCD.

II. CUBIC VERTEX IN SCALAR FIELD THEORY

Let us begin by reviewing the light-front description of
scalar field. It can be summarized by writing

f~x,x2!5E
0

`

dP1
a~x,P1!e2 iP1x2

1a†~x,P1!eiP1x2

A4pP1

~2.1!

where @a(x,P1),a†(y,Q1)#5d(x2y)d(P12Q1). The
free field Hamiltonian is just

H05P0
25E

0

`

dxdP1a†~x,P1!
~2¹21m2!

2P1 a~x,P1!.

~2.2!

A typical field theoretic interaction, agf3/6 term, has the
light front presentation

i-

h

5-2
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V35
g

8Ap
E dxE

0

`

dP1dQ1
a†~x,P11Q1!a~x,P1!a~x,Q1!1a†~x,P1!a†~x,Q1!a~x,P11Q1!

AP1Q1~P11Q1!
. ~2.3!
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We would like to explore the possibility thata†(P1) creates
not an elementary quantum with Newtonian massP1, but
rather a tightly bound state of infinitely many bits who
total Newtonian mass isP1. Begin with a discretization of
P15Mm, wherem is the Newtonian mass of an elementa
bit. Then a(x,P1) is replaced byaM(x)/Am, so that
@aM(x),aN

† (y)#5dMNd(x2y). Then the preceding equation
reduce to

f~x,x2!5 (
M51

`
1

A4pM
„aM~x!e2 iMmx2

1aM
† ~x!eiMmx2

…

~2.4!

with the free field Hamiltonian

H05P0
25

1

m E dx (
M51

`

aM
† ~x!

~2¹21m2!

2M
aM~x!

~2.5!

and the cubic interaction

V35
g

8mAp
E dx (

M ,N51

`
1

AMN~M1N!

3@aM1N
† ~x!aM~x!aN~x!1aM

† ~x!aN
† ~x!aM1N~x!#.

~2.6!

Note that our discretization includes a prescription for re
lating the notoriousP150 singularities of light cone quan
tization: theM50 terms are simply deleted. We therefo
implicitly assume that any physical phenomena involvi
P150 are adequately described as a limit fromP1.0. This
might, of course, require that the modes withP150 be ‘‘in-
tegrated out,’’ inducing new interactions among the mod
with P1Þ0. In cases where theP150 problems cannot be
dealt with in this way~see, for example,@24#!, the Newton-
ian analogy would fall short in an important respect, and
more far-reaching aspects of our proposal of a perfect N
tonian analogy would not apply.

If aM
† creates a bound state, rather than an elemen

quantum, the interaction~2.6! is to be regarded as a term
an effective Hamiltonian, which reproduces a transition p
cess in the underlying theory in the limit where the size
the composite state is negligible compared to the wa
lengths characterizing the transition. The facto
1/AMN(M1N), crucial for Poincare´ invariance, must arise
as properties of the bound system and are not automatic
example, in the case of the discretized bosonic string, it
shown in @10# that the square root is, in generic transve
dimensionalityd, replaced by the fractional powerd/48.
This leads to the critical dimensionalityd524. Although
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string theory provides an existence proof for an appropr
binding mechanism, we are suggesting that the phenome
could be more general.

The free Hamiltonian~2.5! includes a term giving the free
particle energy for each value ofM . For g50 theM depen-
dence displayed is required by Lorentz invariance. If ea
quantum is in fact a composite, the energy is given by
binding dynamics and cannot be put in by hand. Howev
the coefficient of2¹2 is guaranteed by the underlying Ga
lilei invariance of this dynamics: the term just gives the ce
ter of mass kinetic energy. TheM dependence of the term
m2/2mM is not guaranteeda priori and represents a limita
tion on the binding dynamics. In the case of string viewed
a polymer of string-bits, this dependence arises for largeM
due to the one-dimensionality of the bound system~so the
length of the system is proportional toM ) and the universal
1/length dependence of phonon energies. Notice, for
ample, that an ordinaryelastic p-brane would have a linea
size proportional toM1/p and therefore an incorrectM de-
pendence unlessp51. However, when a relativistic mem
brane is viewed on a light front, the restoring energies are
order (]x)2p, giving a classical energy estimate of ord
(1/size)p restoring, at least superficially, the correctM de-
pendence.

III. TWO-BIT MODEL

In order to illustrate the manner in which an effectiv
‘‘elementary’’ quantum withMÞ1 may be regarded as
bound state of quanta withM51 only, we turn to an admit-
tedly highly rarefied truncation of the scalar field theory d
scribed in the previous section. We specify this model
restricting the scalar field theory to the sector withM52.
That is we have only two classes of Fock states: those w
two quanta withM51 and those with a single quantum wit
M52. A general state in this sector therefore has the rep
sentation

uc,x&5E dx1dx2a1
†~x1!a1

†~x2!u0&c~x1 ,x2!

1E dxa2
†~x!u0&x~x!. ~3.1!

With this truncation the cubic vertex reduces to only tw
terms:

V3
trunc5

g

8mA2p
E dx@a2

†~x!a1~x!a1~x!

1a1
†~x!a1

†~x!a2~x!#. ~3.2!
5-3
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CHARLES B. THORN PHYSICAL REVIEW D 59 025005
The time independent Schro¨dinger equation for this sys
tem is thus a coupled pair of differential equations:

1

2m
@2¹1

22¹2
212m222mE#c~x1 ,x2!

1
g

8mA2p
d~x12x2!x~x1!50

1

4m
@2¹21m2

224mE#x~x!12
g

8mA2p
c~x,x!50.

~3.3!

Notice that we have allowed for theM52 quantum to have
a ‘‘bare’’ Lorentzian massm2 different from that of theM
51 quantumm. This is because the Lorentzian mass of t
M52 quantum is obviously renormalized by the interactio
unlike that of theM51 quantum.

By Galilei invariance we may work in the center of ma
system for whichc is a function f (x) only of the relative
coordinatex[x12x2 and x is a constant. Then the secon
equation can be trivially solved forx, which can then be
substituted back into the first equation to give the sin
particle Schro¨dinger equation

@2¹21m22mE# f ~x!2
g2d~x!

8p~m2
224mE!

f ~0!50.

~3.4!

The delta function potential is of course singular in mo
transverse dimensionalities; so we need to regulate it. A c
venient regularization is to specify thatd~x! be replaced by a
radial delta functiond(uxu2a)/ad21Vd displaced a distance
a from the origin ons-waves and be zero on all other state
Here Vd52pd/2/G(d/2) is the volume of a unit
(d21)-sphere. Then Eq.~3.4! gives non-trivial dynamics on
s-waves where it reduces to the radial equation@ f s-wave
[R(r )#

F2
d2

dr2 2
d21

r

d

dr
1m22mEGR~r !

2
g2

8pVdad21~m2
224mE!

d~r 2a!R~a!50.

~3.5!

This simple model can be completely solved. In order t
the M52 quantum have the same Lorentzian mass as
M51 quantum, we require that there be a discretes-wave
energy eigenstate withE5m2/4m. This condition will deter-
mine the bare massm2 . Puttingk[Am22mE5)m/2, the
solutions of Eq.~3.5! for rÞa are the Bessel function
I n(kr ),Kn(kr ) with n5(d22)/2 for r ,a, r .a respec-
tively. Continuity atr 5a and the discontinuity in first de
rivatives implied by the delta potential lead to the relation
02500
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m2
25m21

g2

8pVdad22 Kn~ka!I n~ka!. ~3.6!

Of coursem2 diverges asa→0, for d>2.
Now we turn to the continuous part of the spectrum w

m22mE[2k2,0. Then the solutions are the ordina
Bessel functionsJn(kr),Nn(kr). The s-wave phase shift is
then determined by the matching conditions atr 5a of the
two forms

R~r !5Jn~kr !, r ,a,

R~r !5Jn~ka!
cot dJn~kr !2Nn~kr !

cot dJn~ka!2Nn~ka!
, r .a. ~3.7!

Solving these conditions gives

cot d5
Nn~ka!

Jn~ka!
1

16Vdad22~m224mE!

g2Jn~ka!2

1
2

p

Kn~ka!I n~ka!

Jn~ka!2 . ~3.8!

Recalling thataÞ0 was a temporary regulator, we now tak
the limit a→0, which exists at fixedg for n,1 correspond-
ing to d,4:

cot d→cot pn2cscpnS k

k D 2n

2G~11n!2
22n16Vd~k21k2!

g2k2n . ~3.9!

We notice that this is just thed-dimensional effective range
approximation:

k2n cot d5k2n cot pn2k2n cscpn

2G~11n!2
22n16Vd~k21k2!

g2 . ~3.10!

The familiar case ofd53 corresponds ton51/2, whence the
effective range formula is

k cot d52
1

as
1

1

2
r e f f k

2

with as the scattering length andr e f f the effective range.
Thus ther e f f is negativefor this system. Sinced is trans-
verse dimensionality, it would actually be 2 in our 3 dime
sional world, corresponding ton50. In that case our genera
formula reduces to

cot d5
2

p
ln

k

k
2

128p~k21k2!

g2 G~11n!2. ~3.11!

For this simple system, the question we pose in this art
is whether the system can be equally well described by a
M51 particle system, without the explicit introduction of
5-4
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QUANTUM NEWTONIAN DYNAMICS ON A LIGHT FRONT PHYSICAL REVIEW D 59 025005
new species of particle withM52. To be more precise, w
do not mean to ‘‘integrate out’’ theM52 field as in Eq.
~3.4!, which gives an effective two particle dynamics. T
presence ofE dependence in the potential term is the tip-o
that a degree of freedom has been eliminated, and th
what we want to avoid. In other words, we seek a two p
ticle potentialindependentof E which reproduces the sam
physics as Eq.~3.4!. Since the effective range approximatio
is a universal low energy behavior for potential scatteri
we expect that there are many potentials that do the tr
However, since a negative effective range is perhaps u
miliar, we think it illuminating to exhibit a particular sampl
potential which yields the desired behavior.

To avoid the usual positive sign of the effective range
is essential to use a potential that is not monotonic. A sim
tractable choice which does the job is a potential of the fo

V~r !52gd~r 2b!1ld~r 2a!,

0,b,a and g,l.0. ~3.12!

This is an idealized version of a more generic potential of
shape shown in Fig. 1

The important qualitative features here are an attrac
potential to produce a bound state to simulate theM52
particle, and a repulsive barrier to suppress the coupling
02500
is
-

,
k.
a-

t
le

e

e

of

this bound state to the two particle state unless the two
ticles are within a distance ofO(a) from each other. In the
limit a→0, the couplings can be tuned so that the physics
Eq. ~3.4! is reproduced.

Here is a sketch of the calculation. Thes-wave radial
wave function is given in the three regions by

FIG. 1. Potential energy function for the two bit model.
s

R~r !5Jn~kr !, r ,b,

R~r !5Jn~kb!
cot fJn~kr !2Nn~kr !

cot fJn~kb!2Nn~kb!
, b,r ,a,

R~r !5Jn~kb!
cot fJn~ka!2Nn~ka!

cot fJn~kb!2Nn~kb!

cot dJn~kr !2Nn~kr !

cot dJn~ka!2Nn~ka!
, r .a. ~3.13!

The jump condition forR8 at r 5b and r 5a can be solved for cotf and cotd :

cot f5
Nn~kb!

Jn~kb!
1

1

ĝJn
2~kb!

cot d5
Nn~ka!

Jn~ka!
1

Nn~ka!2Jn~ka!cot f

Jn~ka!@ l̂$Jn
2~ka!cot f2Jn~ka!Nn~ka!%21#

, ~3.14!

where, to reduce clutter, we have definedl̂5pmla/2 andĝ5pmgb/2. Eliminating cotf in the second of these equation
and rearranging factors slightly leads to

cot d5
Nn~ka!

Jn~ka!
2

1

Jn
2~ka!

F l̂1
1

Jn
2~ka!

S Nn~ka!

Jn~ka!
2

Nn~kb!

Jn~kb!
2

1

ĝJn
2~kb!

D 21G21

, ~3.15!

To compare with Eq.~3.9!, we need to study the low energy behavior of the phase shift; i.e., we takeka!1. The small
argument behaviors of the Bessel functions yield
5-5
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1

Jn
2~z!

5G~11n!2S z

2D 22nF11
z2

2~11n!
1O~z4!G

Nn~z!

Jn~z!
5cot pn2

G~11n!2

pn S z

2D 22nF12
nz2

2~12n2!
1O~z4!G . ~3.16!

For definiteness we restrict our low energy analysis ton in the range 0,n,1 which will cover the cased53 and the case
d52 as a limit. Then inspection shows that the first term of Eq.~3.15! has a singular behavior asa→0 whose cancellation
requires that the quantity within square brackets approach2pn. Further, in order to yield a nontrivial phase shift in the lim
this value must be approached as the powera2n:

l̂1
1

Jn
2~ka! S Nn~ka!

Jn~ka!
2

Nn~kb!

Jn~kb!
2

1

ĝJn
2~kb! D

21

52pn1O~a2n!. ~3.17!

This can be achieved by tuning thea dependence ofĝ,l̂. Putting in the small argument expansion for the Bessel function
Eq. ~3.17! gives, withh[b/a,

l̂1@11O~a2!#Fh22n

pn S 12
nk2b2

2~12n2! D2
1

pn S 12
nk2a2

2~12n2! D2
h22n

ĝ S 11
k2b2

2~11n! D G
21

52pn1O~a2n!. ~3.18!

In order to havek dependence in the limit,ĝ must be tuned so that quantity in the denominator of the second term van
as the powera12n, so that the quadratic terms ink will contribute the requisite powera2n. Thus put

1

pn
~h22n21!2

1

ĝ
h22n52ja12n

12~a/ l !2n

n
, ~3.19!

where the extra factor ensures the proper behavior atn50. Then Eq.~3.18! becomes

l̂1@11O~a2!#S 2ja12n
12~a/ l !2n

n
1~ka!2F 12h222n

2p~12n2!
2

h222n

2ĝ~11n!G D
21

;l̂2F n

ja12n@12~a/ l !2n#
1O~a11n!G S 11

k2a11nn

j@12~a/ l !2n# F 12h222n

2p~12n2!
2

h222n2h2

2pn~11n!G D
52pn1O~a2n!, ~3.20!

where, in the second line, we have substituted the limiting form for 1/ĝ in the coefficient ofk2a2, and we have also
approximated the reciprocal by the first two terms of the Taylor series. We can now easily read off

l̂5
n

ja12n@12~a/ l !2n#
2

pn

@12~a/ l !2n#
2

Cn2a2n

@12~a/ l !2n#2 ~3.21!

and thence thes-wave phase shift

cot d5cot pn2
G~11n!2

pn S kl

2 D 22n

2
G~11n!2

p2 S k

2D 22nFC1
k2

j2 S 12h222n

2p~12n2!
2

h222n2h2

2pn~11n! D G . ~3.22!
e of

bit
tro-
l

ngs
Notice that the coefficient ofk2 will be negative as in Eq.
~3.9! if the quantity

f ~h2![
n~12h222n!

~12n!
2h222n1h2

is positive. To see when this occurs, note thatf 851
2h22n,0 for 0,h2,1, and f (0)5n/(12n), f (1)50. It
follows that f is positive in this interval which is whenb
02500
,a. We have been careful to set things up so that the cas
d52 is properly described by the singular limitn→0.

We conclude this section by stating, for this baby two-
model, how our results realize the goals set out in the In
duction. The underlying ‘‘microscopic’’ theory of the mode
is the two particle system described by the potential~3.12!.
The parameters of the microscopic theory are the coupli
l,g and the distance scalesa,b. The effective baby field
theory is described by the pair of equations~3.3!, with g the
‘‘bare’’ cubic coupling andm,m2 the ‘‘bare’’ Lorentzian
5-6
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masses. This effective field theory has ultraviolet div
gences which require a regulator. After removing the re
lator, keeping measurable parameters fixed and tuned so
the ‘‘renormalized’’ Lorentzian masses are the same for
ferent values ofM , one obtains the scattering phase sh
~3.9!. The phase shift of the underlying microscopic mod
~3.15! shows a lot of structure at the microscopic scalek
;a. However, at low energieska!1 it shows the same
behavior~3.22! as the baby field theory.

Comparing Eq.~3.22! to Eq. ~3.9! relates the effective
field theoretic couplingg to the microscopic parameters:

g25j2
16~2p!3Vdn~12n2!

n2h2~12n!1~12n!h2
. ~3.23!

Notice that weak field theoretic couplingg→0 corresponds
at fixed a,b to the height of the barrier going to infinityl̂
→` while the coefficient of the attractive component of t
potential goes to a finite limitĝ→pn/(12h2n). The oppo-
site limit g→` corresponds to vanishingĝ andl̂ approach-
ing a finite negative constant. Thus in this latter limit t
barrier disappears.

IV. DISCUSSION

Our crude two bit model illustrates the mechanism
have in mind for dealing with the variableP1 carried by
lines in light-front Feynman diagrams. Instead of explici
summing over eachP1, it is hoped that the tight-binding
part of the interaction potential will cause a collection ofM
‘‘bits’’ with Newtonian massm to behave as a single partic
with Newtonian massMm. Of course, for this to really
work, the many body bound states must exhibit many c
sistency conditions embodied in the fact that they must ac
a component of a relativistic field.

For M larger than 2, it is not at all clear for a generic fie
theory that a restriction to only two body interactions w
afford enough flexibility to meet these conditions. For e
ample, a one-dimensional many particle system with
same attractive delta function interaction between each
is exactly soluble but has entirely the wrong scaling behav
with largeM .

However, for matrix field theories at largeNc the pros-
pects are brighter. This is because, as shown in@22#, the
dynamics of the the largeNc limit can be mapped onto thos
of a linear chain on the light front. The field quanta or pa
tons are in this limit ordered around a ring and only near
neighbors on the ring interact. In string-bit models of fund
mental string, all partons are ‘‘wee’’ and nearest neighb
interact via a potential of the shape shown in Fig. 2. As
well-known @11#, this sort of dynamics leads to precisely th
Nambu-Goto string. For a confining field theory like QC
however, the chain dynamics includes processes in which
gluon quanta fuse and fission so that the number of gluon
not conserved.

Let us recall how largeNc gluon dynamics was formu
lated in@22#. After discretizingP1 in the usual way, we can
consider the dynamics of a glueball carryingM units of P1.
02500
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Then a state of the glueball can be described by anM com-
ponent wave function, thekth component of which describe
a system ofk gluons and therefore depends on the transve
coordinate, polarization, and number ofP1 units of each
gluon and is cyclically symmetric:

Ck~x1 ,i 1 ,M1 ;...;xk ,i k ,Mk!

5Ck~xk ,i k ,Mk ;x1 ,i 1 ,M1 ;...;xk21 ,i k21 ,Mk21!,

~4.1!

with (Mk5M . Gluon dynamics is then formulated as a s
of M coupled Schro¨dinger equations of the schematic form

S (
l 51

k pl
2

2mMk
1Vk,k2EDCk

52Vk,k22Ck222Vk,k21Ck21

2Vk,k11Ck112Vk,k12Ck12 . ~4.2!

The termVk,k is a sum of nearest neighbor interaction pote
tials among thek gluons described byCk . It is actually a
matrix differential operator because gluon spin andP1 can
be exchanged between the two neighbors. The coup
terms on the right-hand side~RHS! take into account the
possibility of a change in the number of gluons. In each c
these number changes respect the cyclic ordering. For
ample, by virtue of the cubic Yang-Mills vertex, a pair o
nearest neighbors can convert into a single gluon, and
gluon occupies the same spot on the chain as the orig
pair. Similarly, if a single gluon on the chain converts to
pair, that pair’s chain location is the same as that of
original gluon. Because of this nearest neighbor pattern,
processes just described are not unlike those in the baby
theory described in Sec. III. Just as we eliminated theM
52 component in that case, we could imagine eliminating
of the Ck for k,M , ending up with a horrific single equa
tion for the ‘‘wee parton’’ componentCM . Such a proce-
dure looks hopelessly intractable.

FIG. 2. Potential energy function for fundamental string.
5-7
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Instead, we are suggesting in this article that by mod
ing the terms inVM ,M to have a potential shape indicated
Fig. 3, one might do away with all the componentsCk , k
,M accounting for their effects as tunneling processes
scribed by the new Schro¨dinger equation forCM . The long
distance attractive potential well accounts for the strin
~confinement! behavior of a gluon chain and the short d
tance attraction and barrier enable long-lived tightly bou
clusters of wee gluons which, we hope, act like valence g
ons. To explore further this possibility, it is probably not
good idea to try to derive this new potential from gluo
dynamics.

This is because the new potential describes an underl
theory different from QCD: the scalea is the scale at which
gluons show compositeness; for instance, it could be the
tance scale of fundamental string. Rather, one should dire
explore the underlying theory and try to test whether it c
reproduce QCD physics. Among these tests would be to
whether the rightM dependence can come out of the glu
number changing transitions arising from tunneling throu
the short range barrier. The nearest neighbor interaction
tern of the largeNc limit provides a natural similarity be
tween the conversion of a cluster of varying size into t
smaller clusters: the tunneling process only involves
single link between the two clusters regardless of the clu

FIG. 3. Potential energy function for confining field theory.
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size. Of course larger clusters will have more inertia, so t
the transition amplitudeswill depend on cluster size. Anothe
favorable circumstance is that the nearest neighbor pat
will naturally make the clusters polymeric and therefo
stringy scaling laws are more likely.

Although we have not taken into account the many bo
aspects of this scheme for dealing with largeNc QCD, we
can at least roughly understand why the limit of large
Hooft coupling entails a wee parton approximation. Ref
ring back to our baby field theory, it is the couplingg2 that
plays the role ofNcg

2. We have seen that, in the largeg
limit, the barrier of Fig. 3 disappears. Thus the nearest ne
bor interaction reverts to a simple potential well as in Fig
which wipes out the clustering effects responsible for v
lence partons.

Finally, to bring this discussion full circle, we would lik
to note that there is similar physics lurking in the AdS-QC
connection or, more precisely, in Polyakov’s ‘‘confinin
string’’ proposal@25#. He suggests that the coefficienta(f)
of (]x)2 in the usual world sheet action should depend on
Liouville field f. Herea(f) then has the interpretation of
dynamical tension. In@18# f is just the ‘‘fifth’’ dimension of
AdS5. When such a world sheet dynamics is referred to
light front, one finds the Hamiltonian

P25E
0

P1

ds
1

2
@P21a2~f!x821a~f!~Pf

2 1f82!#.

~4.3!

With s discretized, the significance ofa2(f) becomes a dy-
namical spring constant, and the quantum dynamics off can
be interpreted as a certain average over variable spring
stants. For harmonic oscillators, averaging over varia
spring constants is equivalent~dual! to averaging over
masses. But averaging over masses is what is accompli
by our clustering of wee partons into valence partons. W
is not at all clear, of course, is whether the weightings
these averages have anything to do with one another.
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