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We recall the special features of quantum dynamics on a light fionan infinite momentum framen
string and field theory. The reason this approach is more effective for string than for fields is stressed: the
light-front dynamics for string is that of a true Newtonian many particle system, since a string bit has a fixed
Newtonian mass. In contrast, each particle of a field theory has a variable NewtonianPias® the
Newtonian analogy actually requires an infinite number of species of elementary Newtonian particles. This
complication substantially weakens the value of the Newtonian analogy in applying light-front dynamics to
nonperturbative problems. Motivated by the fact that conventional field theories can be obtained as infinite
tension limits of string theories, we propose a way to recast field theory as a standard Newtonian system. We
devise and analyze some simple quantum mechanical systems that display the essence of the proposal, and we
discuss prospects for applying these ideas to I1&atg€CD. [S0556-282(99)01302-§

PACS numbdss): 11.15.Pg, 03.65:w, 11.25-w, 12.38.Aw

[. INTRODUCTION analogy can be exploited. Neither procedure is without con-
troversy.

The possibility of developing the quantum dynamics of a It was not until these ideas were appli¢f] to the
relativistic system in light-front form has been under occa-Nambu-Goto relativistic strin§9] that the full power of the
sionally active investigation since Dirac first suggested theéNewtonian analogy was realized. With light-front time
idea 50 years agpl]. In the 1960s simplifications in the 7=x"=(x%+x')/v2 taken as the analogue of Newtonian
derivation of current algebra sum rules occurfd] in an  time and with the points on the string parametrized so that
infinite momentum frame, the light front in another guise.the density of longitudinal momentuf™ = (P°+ PY)/v2 is
Studying Feynman diagrams in such a frame, Weinlpdtg constant, the dynamics of relativistic string is identical to
discovered much simplified rules in which the energies in thehat of ordinary elastic non-relativistic string moving and
denominators of old-fashioned perturbation theory took thevibrating in the transverse space, described by coordinates
non-relativistic form p?+ u?)/2P, wherep is the momen- x¥, k=2,...D—1. In this description all information about
tum transverse to the longitudinal momentuy taken to  the motion of string in the remaining direction is redun-
infinity. Later Susskind[5] systematized these simplifica- dant save for its conjugate momentu®i which measures
tions by identifying a Galilei invariance on this transversethe total Newtonian mass of the string. From this point of
space in which the longitudinal momentum played the role ofview, the continuous variability of the Newtonian mass sim-
Newtonian mass. Thus the essentially Newtonian charactegly reflects the property that string is made up of continuous
of light-front dynamics was recognized. material. It is natural to suppose that in reality, just as with a

Another study of light-front quantum dynami¢§] was violin string, relativistic string is not continuous but made up
inspired by the physics of deep inelastic lepton scatteringof tiny constituentg10], string-bits[11]. With this proposal,
which probes the light-cone singularities of current correla-the dynamics of fully interacting string can be formulated as
tors. This line of thought leads to an intuitively appealingthose of a standard Newtonian system.
description of the parton wave functiofig]. For nonpertur- As we have noted above, the light-front description of an
bative purposes, the utility of these ideas in field theoryordinary quantum field theory requires the introduction of
beyond conceptual clarifications, was limited by the fact thaiNewtonian “particles” with every possible value of the
the “Newtonian mass”P, was actually a continuous vari- mass. This is not necessary with string because variation in
able ranging from 0 tee. Furthermore, the standard vertices Newtonian mass is naturally achieved by the breaking and
of Feynman diagrams gave nonzero amplitudes for a “parjoining of pieces of string containing various numbers of
ticle” of Newtonian mass, to transform into several “par- string-bits. Long ago in pursuit of a connection between field
ticles” with massesPf as long as=P{=P,. Thus the theory and string theory, we showed that light-front field
Newtonian analogy was imperfect: a continuously infinitetheory can be made more “Newtonian™ by discretizing the
number of species of Newtonian particles, which could transP " —Mm each field quantum can carf$2]; see alsd13]."
mute into each other, was required. A further annoyance ighus instead of a continuous infinity of species of particles,
that field modes witiP| =0 have no Newtonian interpreta-
tion at all and must be explicitly removed, either by deleting
them or by “integrating them out,” before the Newtonian 1sjnce these early proposals, a major industry, known as discrete

light cone quantizatiofDLCQ), has developed from them, starting
with [14]. The literature in this field is now enormous and can be
*Email address: thorn@phys.ufl.edu tapped by consulting the recent review articleg 115].
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there is only a discrete infinity, one species for each numbea conventional Newtonian many body system made up of
M of fundamental mass unita. Field theoretic interactions wee partons only.

would then occur in two fundamentally different way&) Thus, the purpose of this article is to explore the possibil-
There could be Newtonian-like potentials, either “contact” ity that underlying the light-front form of quantum field
delta function potentials, due to quartic local terms in thetheory is a completely standard Newtonian system of “bits”
original Hamiltonian, or non-local potentials induced by in- residing on the transverse space. The fact that perturbative
tegrating outP ™ =0 modes and/or constrained gauge fields,string dynamicds Newtonian in this pure sense and, in the
and(2) transition interactions in which mass is redistributedinfinite tension limit, can be described by an effective quan-
either through exchange ia 2 to 2vertex or through fission tum field theory implies that such an underlying system
in 1 to 2 and 1 to 3 vertices or through fusion in 2 to 1 or 3should, at least in theory, exist: first obtain string theory from
to 1 vertices. Indeed, the light-front Hamiltonid@h of the  a string-bit model and then take its infinite tension limit.
field theory is precisely that of a second-quantized manyWhether it is possible to spell out its dynamics in a useful
body system, which includes terms that do not conserve paway, and whether its existence is any help in dealing with
ticle number even though Newtonian mass is conserved. Thiateresting non-perturbative issues, such as quark confine-
difficulties of dealing with such a Hamiltonian are compa- mentin QCD, are issues we will not address. Our aim here is
rable to those of dealing with the standard time-like  the more modest one of examining the features such an un-
Dirac’s language “instant) form of the Hamiltonian, which  derlying theory must possess and using some simple quan-
is why the Newtonian analogy has been less useful in thisum mechanical models to illustrate how the mechanisms can
situation. work.

An important inspiration for this work is the new opti- Our basic proposal is that just as string can be regarded as
mism about the tractability of 't Hooft's larg8l, limit of a polymeric bound state of string bits, a field quantum can be
QCD [16] generated by the intriguing conjecture that largeregarded as a very tightly bound state of bits. The quantity of
N. gauge theories are equivalent to classical string theorieB™ such a quantum carries is just proportional to the number
on certain anti—de SittetAdS) background$17-19. Even  of bits it contains. If such an interpretation is successful,
as these ideas are being vigorously pursued, we think it istring theory and quantum field theory would be effective
important to reconsider earlier efforts to connect lahje low energy descriptions of a single kind of underlying
gauge theory to string theory. This is especially true since thgheory. From a pragmatic standpoint, rephrasing complicated
status of the conjecture at finite 't Hooft couplid,g? is  dynamical issues in quantum field theory, such as quark con-
problematic; so alternative ideas might yield useful insightfinement, into a question about the properties of various
on this score. Some 20 years ago, following a suggestion bkinds of Newtonian many-body systems could lead to new
't Hooft [16], we sought to identify the sum of planar dia- insights as well as to new quantitative results.
grams, parametrized on a light front, with the path integral In the next section we recall how field theoretic interac-
over a light-front parametrized world sheft2,20.2 We tions look on the light front by examining a cubic scalar field
found that such an identification made sense only in a certaiiteraction. We then go on in Sec. Il to study how the ideas
large 't Hooft coupling limit,N.g?—, which enforced a sketched above play out for a simple 2-bit truncation of the
“wee parton” approximation. Interestingly, this is also the scalar field model. We exhibit and solve a simple two par-
limit in which the Maldacena conjecture has the strongesticle potential model which serves as the underlying Newton-
support, because then the problematic string theory on &n model for the truncated field theory. The final section is
curved AdS background can be replaced by its well underdevoted to a discussion of the prospects for applying these
stood low energy supergravity limit. Away from this limit it ideas to full-fledged field theory models, especially lakge
was also clear from our earlier work that the light-front ap-QCD.
proach to largeN. field theory dictated several physical
modifications of the minimal Nambu-Goto dynamics, includ- 1I. CUBIC VERTEX IN SCALAR FIELD THEORY
ing summing over “holes” or “tears” in the world sheet and
also over the contribution of “valence” partons carrying a  Let us begin by reviewing the light-front description of a
finite fraction of the string momentum. The first complica- scalar field. It can be summarized by writing
tion can be neatly handled by simply replacing a harmonic " +y@—iP x4 ot Fy@lP X
nearest neighbor wee parton interaction with a short range q&(x,x*):f dpt ax.Pje ta(xP)e
attractive potentia[22,23. However, we offered no such 0 4P
efficient way of including valence partons except by brute (2.1
force summation. We are ther.efore.motivate.d to ask whethgfhare [a(x,P*),al(y,Q")]=8(x—y)8(P*—Q*). The
valence partons can be effectively included in the context of.oq field Hamiltonian is just

o w2y ,2
Ho= Pg:J dxdPtal(x,p*) o )
2For a gauge theory such as QCD the validity of such an identi- 0 2P
fication [21] was clouded by the uncertainty of how to effectively (2.2
deal with theP* =0 singularities of light-front gauge. We hope that

the ideas advanced in this article will lead to a clarification of suchA typical field theoretic interaction, g¢°/6 term, has the
issues. light front presentation

a(x,P").
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We would like to explore the possibility thaf (P ") creates
not an elementary quantum with Newtonian m&s's, but

g defomdP+dQ+ aT(X'P++Q+)a(x-P+)a(X,Q+)+aT(X,P+)a*(x,Q+)a(X,p+_|_Q+).

2.3

VPTQT(PT+QT)

string theory provides an existence proof for an appropriate
binding mechanism, we are suggesting that the phenomenon

rather a tightly bound state of infinitely many bits whose could be more general.

total Newtonian mass i®*. Begin with a discretization of

The free Hamiltoniar§2.5) includes a term giving the free

P*=Mm, wherem is the Newtonian mass of an elementary particle energy for each value ®. Forg=0 theM depen-

bit. Then a(x,P™) is replaced byay(x)/\m, so that

dence displayed is required by Lorentz invariance. If each

[aM(X),aL(Y)]=5MN5(X—Y)- Then the preceding equations quantum is in fact a composite, the energy is given by the

reduce to
d(X,X")= i L(a (x)e"M™ gl (x)eM™)
’ M1 JaaM o M
(2.9
with the free field Hamiltonian
1 o (—V2+u?)
—p-_"_ t
Ho=Po =— f dxME:1 ay(X) ——r—au(X)
(2.9
and the cubic interaction
9 f - 1
Va=———+ ] dX _—
> amym M,EN:=1 JMN(M+N)

X[al n(X)ap(X)ay(x) +ay(x)af(x)ay+n(x) 1.
(2.6

Note that our discretization includes a prescription for regu-
lating the notorious® ™ =0 singularities of light cone quan-

tization: theM =0 terms are simply deleted. We therefore
implicitly assume that any physical phenomena involving

P* =0 are adequately described as a limit fréth>0. This
might, of course, require that the modes wifi=0 be “in-

tegrated out,” inducing new interactions among the mode
with P #0. In cases where the* =0 problems cannot be

dealt with in this way(see, for exampld,24]), the Newton-

binding dynamics and cannot be put in by hand. However,
the coefficient of— V2 is guaranteed by the underlying Ga-
lilei invariance of this dynamics: the term just gives the cen-
ter of mass kinetic energy. Thd dependence of the term
w?/2mM is not guaranteed priori and represents a limita-
tion on the binding dynamics. In the case of string viewed as
a polymer of string-bits, this dependence arises for lavige
due to the one-dimensionality of the bound syst@m the
length of the system is proportional M) and the universal
1l/length dependence of phonon energies. Notice, for ex-
ample, that an ordinarglastic pbrane would have a linear
size proportional taV*P and therefore an incorredtl de-
pendence unlesp=1. However, when a relativistic mem-
brane is viewed on a light front, the restoring energies are of
order (9x)?P, giving a classical energy estimate of order
(1/sizeY restoring, at least superficially, the corrédt de-
pendence.

Ill. TWO-BIT MODEL

In order to illustrate the manner in which an effective
elementary” quantum withM#1 may be regarded as a
bound state of quanta withl =1 only, we turn to an admit-
tedly highly rarefied truncation of the scalar field theory de-
scribed in the previous section. We specify this model by
restricting the scalar field theory to the sector with=2.
That is we have only two classes of Fock states: those with
wo quanta withM =1 and those with a single quantum with

=2. A general state in this sector therefore has the repre-
sentation

ian analogy would fall short in an important respect, and the
more far-reaching aspects of our proposal of a perfect New-
tonian analogy would not apply.

If aj, creates a bound state, rather than an elementary
guantum, the interactio(2.6) is to be regarded as a term in
an effective Hamiltonian, which reproduces a transition pro-
cess in the underlying theory in the limit where the size of
the composite state is negligible compared to the wavewyith this truncation the cubic vertex reduces to only two
lengths characterizing the transition. The factorsterms:
1/JMN(M +N), crucial for Poincarenvariance, must arise
as properties of the bound system and are not automatic. For

W:X):f dxldxzaI(X1)aI(X2)|0>¢(X1,Xz)

+ f dxal(x)|0)x(x). (3.0

example, in the case of the discretized bosonic string, it was trunc___ 9 f dxlal(x)a (x)a:(x

shown in[10] that the square root is, in generic transverse 3 8mv/2 [3z(x)a1()21(x)
dimensionalityd, replaced by the fractional powet/48. . .

This leads to the critical dimensionality=24. Although +ay(x)ag(x)ax(x)]. (3.2

025005-3



CHARLES B. THORN PHYSICAL REVIEW D 59 025005

The time independent Schiimger equation for this sys- 2
tem is thus a coupled pair of differential equations: M§=M2+ WKV(KE{” J(ka). (3.6
mily
i[—Vi—V§+2,u2—2mE] P(Xg,%,) Of courseu, diverges aa—_>0, ford=2. .
2m Now we turn to the continuous part of the spectrum with

u?—mE=—k?<0. Then the solutions are the ordinary

g Bessel functions),(kr),N,(kr). The s-wave phase shift is
+ ———==38(X1—X2) x(X1)=0 then determined by the matching conditionsr ata of the
8my2m two forms
1 9 R(r)=J,(kr), r<a,
——[=V2+ ui—4mE]x(x)+2 P(%,X)=0. cot 83 (kr) —N (kr
4m 8my2w R(r)=J,(ka) o(kD) =N, (k) , r>a. 3.7
(3.3 cot 8J,(ka)—N,(ka)

Notice that we have allowed for thd =2 quantum to have Solving these conditions gives

a “bare” Lorentzian massu, different from that of theM N,(ka) 160429 2(u2—4mE)
=1 quantumu. This is because the Lorentzian mass of the cot 5= —. + > >
M =2 quantum is obviously renormalized by the interactions J,(ka) gJ,(ka)

unlike tha_t o_f_thel\/_l =1 quantum. _ 2 K, (ka)l (xa)
By Galilei invariance we may work in the center of mass +_ v

system for whichy is a functionf(x) only of the relative m  J,(ka)?

coordinatex=x, —X, and y is a constant. Then the second

equation can be trivially solved fog, which can then be Recalling thata#0 was a temporary regulator, we now take

substituted back into the first equation to give the singlethe limit a—0, which exists at fixe@ for »<<1 correspond-

(3.9

particle Schrdinger equation ing to d<4:
2v

2 K

g°4(x) _ x

[_V2+,LL2_mE]f(X)— - f(O):O cot 6—cot mv—cscmv K

8m(u5—4mE)
(3.4 , 2277804+ K?)
—I'(1+v) 92K (3.9

The delta function potential is of course singular in most

transverse dimensionalities; so we need to regulate it. A con#e notice that this is just thé-dimensional effective range
venient regularization is to specify th&tx) be replaced by a approximation:

radial delta functions(|x| —a)/a%" Q displaced a distance

a from the origin ons-waves and be zero on all other states. k?” cot 5=k?” cot mv— k*” csCv
Here Qg=27%3T'(d/2) is the volume of a unit 22r+60) (kK24 K2)
(d—1)-sphere. Then Ed3.4) gives non-trivial dynamics on —T(1+ )2 d2 . (310
s-waves where it reduces to the radial equat[dg., .. g
=R(r)]
The familiar case ofl=3 corresponds toe=1/2, whence the
d2 d—1 d effective range formula is
I -T2
a2 7 ar T MERM)

1 1 )
92 kCOt(S:_a_s+§reffk

T Br0ga I(p2—amp) O TAR@=0.

with a4 the scattering length and,¢; the effective range.
(3.5  Thus therg; is negativefor this system. Since is trans-
verse dimensionality, it would actually be 2 in our 3 dimen-
This simple model can be completely solved. In order thasional world, corresponding te=0. In that case our general
the M=2 quantum have the same Lorentzian mass as th#@rmula reduces to
M =1 quantum, we require that there be a discieteave

2 2
energy eigenstate with= x2/4m. This condition will deter- 2k 128m(k"+«”)

= —ln — — 2
mine the bare mass,. Puttingx=\ju?—mE=v3u/2, the coto Wln K g° F(A+»7 @11
solutions of Eq.(3.5 for r#a are the Bessel functions
I,(kr),K,(«r) with v=(d—2)/2 for r<a, r>a respec- For this simple system, the question we pose in this article

tively. Continuity atr=a and the discontinuity in first de- is whether the system can be equally well described by a two
rivatives implied by the delta potential lead to the relation M =1 particle system, without the explicit introduction of a
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new species of particle witM =2. To be more precise, we vir
do not mean to “integrate out” thé1=2 field as in Eq.
(3.4), which gives an effective two particle dynamics. The
presence oE dependence in the potential term is the tip-off
that a degree of freedom has been eliminated, and this is
what we want to avoid. In other words, we seek a two par-
ticle potentialindependenbf E which reproduces the same
physics as Eq(3.4). Since the effective range approximation
is a universal low energy behavior for potential scattering,
we expect that there are many potentials that do the trick.
However, since a negative effective range is perhaps unfa-
miliar, we think it illuminating to exhibit a particular sample '
potential which yields the desired behavior.
To avoid the usual positive sign of the effective range, it
is essential to use a potential that is not monotonic. A simple
tractable choice which does the job is a potential of the form

V(r)=—ya(r=b)+rd(r-a), FIG. 1. Potential energy function for the two bit model.

O<b<a and vy,\>0. (3.12 . .
this bound state to the two particle state unless the two par-

This is an idealized version of a more generic potential of thdicles are within a distance @(a) from each other. In the

shape shown in Fig. 1 limit a— 0, the couplings can be tuned so that the physics of
The important qualitative features here are an attractivéq. (3.4) is reproduced.
potential to produce a bound state to simulate ke 2 Here is a sketch of the calculation. Tisewave radial

particle, and a repulsive barrier to suppress the coupling ofvave function is given in the three regions by

R(r)=J,(kr), r<b,

cot ¢J,(kr)—N,(kr)

RN =3.(kB) o5t 43 (kb) =N (kb)

b<r<a,

3 cot ¢J,(ka)—N,(ka) cot 6J,(kr)—N,(kr)
R(N=3,(kb) o T Kb =N (kb) cot 67, (ka)—N (ka)’ '~ & (313

The jump condition folR" atr=b andr=a can be solved for cap and cots:

N, (kb) 1
o= kp) 532(kb)
. N,(ka) . N,(ka)—J,(ka)cot ¢ (3.14

3 (ka) g, (ka)[R{I¥ka)cot p—J,(ka)N,(ka)}—1]

where, to reduce clutter, we have defined wmxa/2 and = wmyb/2. Eliminating cote in the second of these equations
and rearranging factors slightly leads to

1
A+ >
3(ka)

N,(ka) 1
cot 6=

N,(ka) N,(kb) 1 -1t
= - - ) } , (3.19
J,(ka) J%(ka) kb)

J(ka) J,(kb) 3%

To compare with Eq(3.9), we need to study the low energy behavior of the phase shift; i.e., wekiakd. The small
argument behaviors of the Bessel functions yield
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1 ) z —2v 2 .
Rz ) E) Y o1y TOE)
N.(2) _ P(1+1)? z)‘z” vz )
J.(2) =cotmv— > |3 1- m—i—O(z ). (3.16

For definiteness we restrict our low energy analysig in the range 8 »<<1 which will cover the casel=3 and the case
d=2 as a limit. Then inspection shows that the first term of Bql5 has a singular behavior @a—0 whose cancellation
requires that the quantity within square brackets appreaety. Further, in order to yield a nontrivial phase shift in the limit,

this value must be approached as the poafét

N 1 N,(ka) N,(kb)

1

M ke

J(ka)  J,(kb)  3J%(kb)

-1
) =—mr+0(a%). (3.17

This can be achieved by tuning thedependence of,\. Putting in the small argument expansion for the Bessel functions in

Eq. (3.17) gives, with p=b/a,

- vk?h?
A+H[1+0(a?)]

vk?a?

—2v -1
n

k2h?
1+ =—77v+0(a2”).

(3.18

—2v
7 (1
TV

1
21-v%] @ !

C2(1-19)

v 2(1+v)

In order to havek dependence in the limify must be tuned so that quantity in the denominator of the second term vanishes
as the power'~?, so that the quadratic terms knwill contribute the requisite powea®”. Thus put

my

1 1
_ 721/_1 S —2v_ _
(7 ) 57

galfvl—(all)z”,

14

(3.19

where the extra factor ensures the proper behavier=ad. Then Eq.(3.18 becomes

A +[1+0(a?)]

1—(all)?”
_ 1-v
éa —

~\—

+0(al™?)

14
gal "1 (a/l)?"]

=—qmv+0(a?),

1-9 Ui

2—2v 2—2v -1

+(ka)2[277(1—1/2) T 251+ )

k2a1+ vy 2v__ 7]2

1— 7]2—211 772—

(“ d1-—(al”"]

2m(1—v%) 2mv(l+v)

(3.20

where, in the second line, we have substituted the limiting form fér ifi/ the coefficient ofk?a?, and we have also
approximated the reciprocal by the first two terms of the Taylor series. We can now easily read off

14

A=

and thence the-wave phase shift

cot §=cot mv—

mwy v

Notice that the coefficient ok? will be negative as in Eq.
(3.9 if the quantity

v(1- 72 %)

2—2v 2
- +
=) 7 7

f(n?)=

is positive. To see when this occurs, note tHdt=1
— 7~ 2v<0 for 0<7?<1, andf(0)=wv/(1—v), f(1)=0. It
follows that f is positive in this interval which is wheb

gl 1-(a/)?] [1-(a/h)?] [1-(all)?]?

F(1+V)2(kl)2” I'(1+v)?
— 3 -

TV Cr?a?

(3.21)
k —2v k2 1— ,)72721/ 7]2721/_ 7]2
E) {C+? (277(1—1/2) C2mv(1+v)) | .22

<a. We have been careful to set things up so that the case of
d=2 is properly described by the singular limit-0.

We conclude this section by stating, for this baby two-bit
model, how our results realize the goals set out in the Intro-
duction. The underlying “microscopic” theory of the model
is the two particle system described by the poterial?2).

The parameters of the microscopic theory are the couplings
\,0 and the distance scalesb. The effective baby field
theory is described by the pair of equatids3), with g the
“bare” cubic coupling andu,u, the “bare” Lorentzian
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masses. This effective field theory has ultraviolet diver-
gences which require a regulator. After removing the regu-
lator, keeping measurable parameters fixed and tuned so that
the “renormalized” Lorentzian masses are the same for dif-
ferent values ofM, one obtains the scattering phase shift
(3.9). The phase shift of the underlying microscopic model
(3.15 shows a lot of structure at the microscopic schle
~a. However, at low energieka<1 it shows the same
behavior(3.22 as the baby field theory.

Comparing Eq.(3.22 to Eq. (3.9 relates the effective
field theoretic couplingy to the microscopic parameters:

V(@)

, 16(27)3Qqv(1—v?) r

2= . 3.2
v=p? V4 (1-v) g’ 829

g

Notice that weak field theoretic couplirgg—0 corresponds

at fixed a,b to the height of the barrier going to infinit)}

— oo while the coefficient of the attractive component of the
potential goes to a finite limiy— 7v/(1— 7?"). The oppo-
site limit g— o corresponds to vanishing and\ approach-
ing a finite negative constant. Thus in this latter limit the
barrier disappears.

FIG. 2. Potential energy function for fundamental string.

Then a state of the glueball can be described byvlaoom-
ponent wave function, thieth component of which describes

a system ok gluons and therefore depends on the transverse
coordinate, polarization, and number Bf* units of each

gluon and is cyclically symmetric:
IV. DISCUSSION

Wi(Xq,ig, My oLl , M)

Our crude two bit model illustrates the mechanism we
have in mind for dealing with the variable* carried by
lines in light-front Feynman diagrams. Instead of explicitly
summing over eactP™, it is hoped that the tight-binding
part of the interaction potential will cause a collectionhdf
“bits” with Newtonian massm to behave as a single particle
with Newtonian massMm. Of course, for this to really
work, the many body bound states must exhibit many con-
sistency conditions embodied in the fact that they must act as
a component of a relativistic field.

For M larger than 2, it is not at all clear for a generic field
theory that a restriction to only two body interactions will
afford enough flexibility to meet these conditions. For ex-
ample, a one-dimensional many particle system with the
same attractive delta function interaction between each paifhe termV, , is a sum of nearest neighbor interaction poten-
is exactly soluble but has entirely the wrong scaling behaviotials among thek gluons described by, . It is actually a

:q,k(xkiikka;xliil!Ml;'";kaliikfl!Mkfl)v

4.1
with M, =M. Gluon dynamics is then formulated as a set
of M coupled Schrdinger equations of the schematic form

k
> p—'2+v —-E|¥
= 2mM, K,k k
== Vik-2¥k-2= Vi k-1¥k-1

—Vikr 1 V1= Vieks 2Pkt 2- 4.2

with large M.
However, for matrix field theories at lardé, the pros-
pects are brighter. This is because, as showp2B], the

matrix differential operator because gluon spin @hd can
be exchanged between the two neighbors. The coupling
terms on the right-hand sidgRHS) take into account the

dynamics of the the largd.. limit can be mapped onto those possibility of a change in the number of gluons. In each case
of a linear chain on the light front. The field quanta or par-these number changes respect the cyclic ordering. For ex-
tons are in this limit ordered around a ring and only nearesample, by virtue of the cubic Yang-Mills vertex, a pair of
neighbors on the ring interact. In string-bit models of funda-nearest neighbors can convert into a single gluon, and that
mental string, all partons are “wee” and nearest neighborgjluon occupies the same spot on the chain as the original
interact via a potential of the shape shown in Fig. 2. As ispair. Similarly, if a single gluon on the chain converts to a
well-known[11], this sort of dynamics leads to precisely the pair, that pair's chain location is the same as that of the
Nambu-Goto string. For a confining field theory like QCD, original gluon. Because of this nearest neighbor pattern, the
however, the chain dynamics includes processes in which therocesses just described are not unlike those in the baby field
gluon quanta fuse and fission so that the number of gluons itheory described in Sec. Ill. Just as we eliminated [the
not conserved. =2 component in that case, we could imagine eliminating all
Let us recall how largeN. gluon dynamics was formu- of the ¥, for k<M, ending up with a horrific single equa-
lated in[22]. After discretizingP™ in the usual way, we can tion for the “wee parton” componen¥,,. Such a proce-
consider the dynamics of a glueball carryilgunits of P™. dure looks hopelessly intractable.
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Vin) size. Of course larger clusters will have more inertia, so that
the transition amplitudewill depend on cluster size. Another
favorable circumstance is that the nearest neighbor pattern
will naturally make the clusters polymeric and therefore
stringy scaling laws are more likely.

Although we have not taken into account the many body
aspects of this scheme for dealing with lafgg QCD, we
can at least roughly understand why the limit of large 't
Hooft coupling entails a wee parton approximation. Refer-
ring back to our baby field theory, it is the coupligg that

/’ plays the role ofN.g%. We have seen that, in the large

r limit, the barrier of Fig. 3 disappears. Thus the nearest neigh-

bor interaction reverts to a simple potential well as in Fig. 2

which wipes out the clustering effects responsible for va-

lence partons.

Finally, to bring this discussion full circle, we would like

to note that there is similar physics lurking in the AdS-QCD

FIG. 3. Potential energy function for confining field theory. = connection or, more precisely, in Polyakov’'s ‘“confining
string” proposal[25]. He suggests that the coefficiemt)

Instead, we are suggesting in this article that by modify-of (9x)2 in the usual world sheet action should depend on the

ing the terms inVy,  to have a potential shape indicated in Liouville field ¢. Herea(¢) then has the interpretation of a

Fig. 3, one might do away with all the componenitg, k  dynamical tension. If18] ¢ is just the “fifth” dimension of

<M accounting for their effects as tunneling processes deAdSs. When such a world sheet dynamics is referred to the

scribed by the new Schdinger equation fol,. The long  light front, one finds the Hamiltonian

distance attractive potential well accounts for the stringy -

(confinement behavior of a gluon chain and the short dis- p-— | do=[P?+a2(p)x'2+a(¢)(I15+ ¢'?)].

tance attraction and barrier enable long-lived tightly bound 2 ¢

clusters of wee gluons which, we hope, act like valence glu- 4.3

ons. To explore further this possibility, it is probably not a

good idea to try to derive this new potential from gluon

dynamics.

With o discretized, the significance af(¢) becomes a dy-
namical spring constant, and the quantum dynamics cén

his is b h ial d ib derlvi be interpreted as a certain average over variable spring con-
This is because the new potential describes an un YN ants. For harmonic oscillators, averaging over variable

theory different from QCD: the scakeis the scale at which . . ) .
spring constants is equivaleritiua) to averaging over

gluons show compaositeness; for instance, it could be the dISmasses. But averaging over masses is what is accomplished
tance scale of fundamental string. Rather, one should directl

explore the underlying theory and try to test whether it cangy our clustering of wee partons into valence partons. What

reproduce QCD physics. Among these tests would be to s Is not at all clear, of course, is whether the weightings of
P -1 PAYSICS. 9 YRese averages have anything to do with one another.
whether the rightV dependence can come out of the gluon
number changing transitions arising from tunneling through
the short range barrier. The nearest neighbor interaction pat-
tern of the largeN, limit provides a natural similarity be- This work was supported in part by the Department of
tween the conversion of a cluster of varying size into twoEnergy under grant DE-FG02-97ER-41029. | should also
smaller clusters: the tunneling process only involves thdike to thank Pierre Sikivie and Stan Brodsky for helpful

single link between the two clusters regardless of the clustecomments on the manuscript.
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