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Dynamical Lorentz symmetry breaking from a (3+ 1)-dimensional axion-Wess-Zumino model
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We study renormalizable Abelian vector-field models in the presence of the Wess-Zumino interaction with
pseudoscalar matter. Renormalizability is achieved by supplementing the standard kinetic term of vector fields
with higher derivatives. The appearance of a fourth power of momentum in the vector-field propagator leads to
the superrenormalizable theory in which tBefunction, the vector-field renormalization constant, and the
anomalous mass dimension are calculated exactly. It is shown that this model has the infrared stable fixed point
and its low-energy limit is nontrivial. The modified effective potential for the pseudoscalar matter leads to the
possible occurrence of dynamical breaking of Lorentz symmetry. This phenomenon is related to the modifi-
cation of electrodynamics by means of the Chern-Sim@sS) interaction polarized along a constant CS
vector. Its presence makes the vacuum that has been recently estimated from astrophysical data optically
active. We examine two possibilities for the CS vector to be timelike or spacelike, under the assumption that
it originates from VEV of some pseudoscalar matter and show that only the latter one naturally arises in the
framework of the present mod¢50556-282(98)02724-9

PACS numbes): 11.30.Qc, 14.80.Mz

I. INTRODUCTION (3+1)-dimensional casg4]. Namely, the spontaneous
breaking of the Lorentz symmetry via the Coleman-
The possible occurrence of a very small deviation fromWeinberg mechanisrh5] has been revealed for a class of
Lorentz covariance was considered and discussed some tinngodels with the Wess-Zumino interaction between Abelian
ago[1], within the context of the Higgs sector of spontane-gauge fields and pseudoscalar axi@xion-Wess-Zumino
ously broken gauge theories. There, some “background” ofAWZ) models.
“cosmological” field is generated, leading to the above- The original motivation for studying AWZ models was to
mentioned possible small deviations from Lorentz covari-use them in resolving the old-standing conflict between per-
ance, within the present experimental limits. turbative renormalizability and unitarity, within the context
Later on, another possibility was explored to obtain aof the gauge-invariant quantization of €3L)-dimensional
Lorentz- and parity-violating modification of quantum elec- Abelian gauge models in the presence of thél)kthiral
trodynamics, by means of the addition of a Chern-Simonsanomaly[6].
Lagrangian[2]. Quite recently, Coleman and Glashqd®| As a matter of fact, it was suggested some time ggo
have discussed how Lorentz-noninvariant velocity differ-that gauge theories in the presence of chiral anomalies could
ences among neutrinos could produce characteristic flavdre consistently quantized after integration over the gauge
oscillations in accelerators and solar neutrino fluxes. orbits and the introduction of suitable Wess-Zumino fields.
In all the above investigations, Lorentz symmetry break-Although this idea has been successfully implemented in low
ing (LSB) has been treated phenomenologically by means oflimensiong 8,9], its application to the (3 1)-dimensional
some very small but explicit Lorentz-noninvariant termscase is still to be achieved, even within the standard covari-
which have a clear physical meaning in a privileged frameant perturbative approadi,10].
Then, of course, the dynamicénd presumably quantym For lower-dimensional theories the LSB phenomenon has
origin of possible LSB represents an interesting problem tdeen observed by Hosotani in a series of papkts He has
be tackled. found that in (2+ 1)-dimensional Chern-Simons gauge field
One of the possible ways to induce LSB by a dynamicaltheories coupled to Dirac fermions a spontaneous magneti-
mechanism has been recently argued in thezation arises, leading to the breaking of2(1) symmetry.
This remarkable effect might be also related to the breaking
of chiral symmetry, i.e., to the generation of a dynamical

*Email address: andrian@snoopy.phys.spbu.ru mass for fermion$12,13.
"Email address: soldati@bo.infn.it In the present paper we continue our exploration of LSB
*Email address: sorbo@sissa.it by dynamical mechanisms and study it in more detail in the
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renormalizable model for the Abelian vector field interactingHiggs field model or of a theory with dynamically generated
with pseudoscalar axion matter. fermion masses. After fermion quantization the correspond-
The Wess-Zumino interaction in this model may be un-ing effective action at low momenta or for heavy fermions
derstood as generated by quantum effects due to coupling toelds the pertinent Wess-Zumino vertex as a main contribu-
fermions. For instance, one can start from the abovetion.
mentioned anomalous gauge model with the Lagrangian den- It can be shown as well—see the Appendix—that, in the
sity which describes the coupling of chiral fermions to anlimit of small gauge particle momenta, quadratic kinetic
Abelian gauge fieldA , : terms for the fieldsy and’y are also generated by quantum
effects. To sum up, the low-momentum regime of the Abe-
o . lian chiral gauge theory(1.1) or QED with the “chiral
Lo[A, b pl=yy*id, +eA,Pty—myp, (1)  mass” term(1.4) is faithfully described by the following
nonrenormalizable effective Lagrangian density: namely,

whereP, =(1/2)(1— ys). After fermion quantization it leads

to the chiral anomaly, thereby breaking the classical invari- 1 P 1
ance under local gauge transformations of the left chiral sec- Leil 0.F 1= = 7 Fu,F*"+ 5 OF , F*7+ 59,000,
tor and making a serious obstruction to derive a unitary and (1.5

renormalizable gauge theory. This obstruction is essentially
induced by coupling to the longitudinal part of the gauge
potential, which is in turn described by the Wess-Zuminoj, \which we have seb=M y, standing for a pseudoscalar-
interaqtion in the following sense. If we rewrite the gaugeyion-jike field, andM is some reference mass scale, while
potential in Eq.(1.1) as is the dimensionless WZ coupling parameter of ordefx
in the case of the chiral gauge mod#ll) or oY for QED
with the chiral mass termy being the fine structure constant.
A (X)+3,x(x), This latter model may also have a different origin, the
pseudoscalar field being a scalar gravitatigria] or quin-
(1.2) tessence fielfl15] or even associated with the torsion field of
a particular[16], divergenceless typel,, ,= €,,,," x(X),

it is well known that integration over fermion fields drives T yo=0.

AL()=AL(X) +AL(X) = ( 8- i

from the classical Lagrangian densitl.1), in the limit when Phenomenologically, the overall inverse coupling of pseu-
the massm can be disregarded, to the quantum effectivedoscalar particles to photons is actually constrained from
Lagrangian laboratory experiments, as well as from astrophysical and

cosmological observationfd7] to be more than 8 GeV:
namely, we can reasonably suppose our reference kass

ed Lo be of the same very large order of magnitude when we re-
Lei= g2 XFusF""+ Lo A, (1.3 main within the perturbation approach.

On the other hand, one of the aims of the present paper is
to show that the effective Lagrangi#h.5), which describes

where the last term indicates the gauge-invariant nonanomaluantum effects of the Abelian anomalous gauge theory or
lous part. Furthermore, it is also evident that the gaugeQED with chiral mass interaction, at small momeptauch
invariant part of the effective Lagrangidh.3) is subleading that (//M)<1, can lead to the dynamical breaking of Lor-
within the low-momentum regime we are dealing with here,€Ntz symmetry, the nonperturbative phenomenon which
as its quadratic part can always be reabsorbed into the rendfhanges drastically the photon spectrum and induces the bi-
malization of the photon wave functideee below, whereas ~refringence of photons with opposite helicities. In this re-
the quartic term is of orde?[ (k/ wr)IN(Kwg) ] kandu,, ~ 9Me the pseudoscalar fleld loses time derivatives in the ki-
being the low-energy photon momentum and normalizatio'€tic term(when treated in the static framend therefore
scale, respectively. cannot describe a propagating particle, thereby making the
When the gauge fields are massless, i.e., photons, a mop®unds from17] inapplicable.
realistic model providing at low energies the Wess-Zumino 1he paper is organized as follows. In Sec. Il the renor-

interaction of(1.3) type is QED with the additional Yukawa Malizable version of the Abelian AWZ model is imple-
coupling to a scalar chiral field: mented with the help of higher derivatives in the kinetic term

for photons. The remaining divergences are analyzedpthe
function and anomalous dimensions are exactly calculated. It
Lo[A, ,w,ngyu{i(ng eA}y— mZ exp(2i ysYX) ¥, is provgd within perturbation theory that the ghostlike
(1.4  vector-field degrees of freedom decouple at small momenta
and the model is infrared stable and nontrivial at low ener-
gies.
whereY stands for the hyperchange (@harged fermions. In In Sec. Il the one-photon-loop effective potential for the
turn, this Lagrangian may arise as a low-energy part of thexion field is derived in the renormalizable AWZ model by

025002-2



DYNAMICAL LORENTZ SYMMETRY BREAKING FROM A . .. PHYSICAL REVIEW D 59 025002

employing the-function techniqud18,19. This effective  with dw(p)=—5ﬂ,,+(pﬂp /p?) being the transversal pro—
potential is shown to possess a minimum at nonzero valuggctor; the free axion propagator is the usDdlp) = (p?) !
of 9,0 for large values of normalization scale, i.e., in the and the axion-vector-vector WZ vertex turns out to be given
strong coupling regime. by

This phenomenon of axion-field condensation leads to
Lorentz symmetry breaking, whose consequences for the
photon spectrum are examined in Sec. IV. In particular, itis  V,,(p,q,r)=—i(k/M)€,,,-P,d, (P+q+r=0),
elucidated that the tachyon modes appear in the photon spec- (2.9
trum [2] and photons of different helicities propagate with
different phase velocities, which leads to the birefringence of
arbitrarily polarized photon waves. The possible instabilityall momenta being incoming, being the axion momentum.
of the Fock vacuum arises if the vacuum expectation valuédt is worthwhile to recall that the Fock space of asymptotic
(VEV) of 4,6 is a timelike vector, whereas for the spacelike states, in the Minkowskian formulation of the present model,
one Cons|stent LSB may be induced by infrared radiativeexhibits an indefinite metric structure. Actually, from the al-
effects. gebraic identity

In our Conclusion perturbation theory in the symmetry-
broken phase is shortly outlined and the propagators for dis-

torted photons are obtained. M2 _1 1
p?(p?+M?) "~ p? pZ+M?*’

Il. RENORMALIZABLE AXION-WESS-ZUMINO MODEL . .
it appears that negative norm states are generated by the

The renormalizable Abelian vector-field modil Euclid-  asymptotic vector-field transversal component with ghost
ean spacewe consider is described by the Lagrangian denimass M; in addition, the longitudinal component of the
sity which contains the Wess-Zumino coupling of pseudo-asymptotic vector field also gives rise to negative norm
scalar axion and Abelian gauge field, as well as a higherstates.
derivative kinetic term for the Abelian gauge field: Now let us develop the power-counting analysis of the

superficial degree of divergence within the model. The num-
ber of loops is as usudl=1,+1,—V+1, |, being the
1 1 1 number of vecto(scalay internal lines and/ the number of
£AWZ=4M2apFWapFW+4 FuFu + (a )2 vertices. N(_axt we have \2=2|,+E, and V:2|S+_Es,
whereE, ) is the number of vectofscalaj external lines.
As a consequence, the overall UV behavior of a gré&pis

1 K ~
+ > 4,00,0—i M OF uoF s (2.1 provided by

3 w(G)=4L—41,-2I1,+2V—-E,—E,
whereF ,,=(1/2)¢,,,,F,,, and some suitable dimensional
scaleM |s introduced « and £ being the dimensionless cou- =4-2E,~Es—21,+ 2, (2.9
pling and gauge-fixing parameters, respectively.

The Wess-Zumino interaction can be equivalently repre-
sented in the following form: and therefrom we see that thenly divergent graph

corresponds tb,=1,1,=1,E,=0,E,=2, and it turns out to
be the one-loop vector self—enerbyfhus we conclude that
the model is superrenormalizable. We notice that the number
j d4x - 9FWFW J d“x % g HAVT:W' of external vector lines has to be even. The computation of
the divergent self-energy can be done using dimensional
2.2 regularization (in 2w-dimensional Euclidean spgceand
gives

at the level of the classical action. Therefore the pseudoscalar

field is involved in the dynamics only through its gradient (1) B ) 1

d,6(x) due to topological triviality of Abelian vector fields. »(P)= d,.(P) + I (p), (2.6
From the above Lagrangian it is easy to derive the Feyn-

man rules: namely, the free vector-field propagator reads with e=2—w, g=(«?/4=), while the finite part reads

(p)=— 2 d;w(p) E PuPy 2.3 IActually, the tadpolé€Es=1,=1, | ;=0 indeed vanishes owing to
my pA(p?+M?)  p? p? "’ ' the tensorial structure of the AWZ vertex.

025002-3



A. A. ANDRIANQV, R. SOLDATI, AND L. SORBO PHYSICAL REVIEW D59 025002

2 2

ps+M
l+—pz—|n

2
f1(p) =~ 70 Py ()| In 7oz~ D)+ 5
Ay 167 " M 4 3

2
1 o))

MZ p2+M2 p2 p2 p2+M2 2 p2
37 1——pr|n 1+ 2| |~ 3wz | 1™ % In| 1+ Zz | +In Eal 2.7

where u denotes as usual the mass parameter in the dimensional regularization. It follows therefore that the single counter-

graph to be added, in order to make finite the whole set of proper vertices, is provided by the two-point one-particle-irreducible
(1P)) structure

+Fl

19
TSP ()= =T (P)av=— 15— P°chu(P)| 2

M2
€, m”, (2.8)

in which F; denotes the scheme-dependent finite pahten e— 0) of the countergraph.
As a result, it is clear that we can write the renormalized Lagrangian in the forms

1 1 1
L= 4MS&pFL°38pFLOB+4FL°3F533+ 2z, (7 WA S 9,600,0-1u 2|v| oF OF )

1 z 1
= a2 OoF undoF ot 7 FuFunt 52 zg (0uAW?F 5 3,09,0~1 W OF 4 F 0 2.9

where, as a result of superrenormalizability, the exact wave

M K3 2
. C o . X M 5
function renormalization constagtis provided by | K, e + 1282 Fl( € Tm +0(k),
z ( M.+ Lcia) (2.10 «°
=Col g, —;€|+ = c4(Q); .
o9 e e e 8,(K) = Tae 2. (2.14

here, we can write, up to the one-loop approximation, This entails that, within this model, we can solve the renor-

M g M2 malization group equationdRGES in the minimal subtrac-
e|l=1- = — 2 tion (MS) schemer,=0: namely,
co(g, M’6> 1= 16— Fl(e, py— +0(g9%), (MS) 1 y
o _ e 2.1
C( ):_i (2 11) M (7/1‘_ €K al(K) K dx al(K)l ( . 5)
19 167" '

to get the exact MS prescriptigh function
Moreover, the relationships between bare and renormalized 3
guantities turn out to be the following: namely, __K
B(K) 64’7721 (Zl@
AD=\ZA,, (2123 . .
telling us, as expected, thgt=0 is an IR-stable fixed point.
My=yZM, (2.120 It foII_ows that Wwe can integrate E¢R.15 and determine the
running coupling exact behavior

§o=2¢, (2.129

g( o)
= . 2.1
) = I glpo Bl 27
= L _9 2.12
Ko= 7’ go_z' (2.12d Furthermore, always from Eq$2.129—(2.12d and within

the MS prescription, it is straightforward to recognize the
In particular, from the Laurent expansion of E8.129, we ~ rémaining RG coefficients to be

can write 1 9InM2 g
1 WEG M T T T Ty (2.183
Ko=ap| K € +; a,(«), (2.13
1 9dlnz g
with Ya=5 K EP =8 (2.18b
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dln¢ g this situation does not entail triviality of the model as we can
ow - An (2180  always chooseM;,,—0 in such a way that the ratio
[go(€)/ M (€)]=(1/M,)#0. As a consequence, the non-

havior of the ghost-mass paramefdr and of the gauge- follows: namely,
fixing parameter¢ at large distances, where perturbation
theory is reliable in the model we are considering and within p Z(€)

ot : LY = —— 3 F,,0,F,,+——F,F
the MS renormalization scheme. Actually, if we sst AWZ g2 ot mrlpt iy T g Tt ey
=(ulpg), we can easily derive

Y= M

1 ) 1
g s—0 g +2—§(07#AM) +§(9P«6(9#«0

WS;Q)ZW T s (2.193

mvtouv
(2.19H in terms of the free RG-invariant mass, and of the uni-

' tarity violation running parametqrE(Mi/Mz), which as-
ymptotically vanishes at large distances as already stressed.
9 lIn s|) We notice that it is just the above RG-invariant free mass
4w ' that has to be eventually identified with the “physical value”

(2199 M, ,=10"GeV, as discussed in Ref17]. However, it is

. I . important to note that what has been discussed in the present
showing that longitudinal as well as ghostlike transverse q ion is actually pertinent to the unbroken Lorentz-

vector-field degr_ees of freedom decouple at smal_l momen_t@ovariant phase. As a matter of fact, we shall see in the next
where perturbation theory has to be trusted. Owing to this, tion that quantum radiative effects may lead, in the

asymptotic decoupling of negative norm states, within thepresent model, to the onset of another phase in which Lor-
domain of validity of perturbation theory, the present SUPer-anty symmetry’ appears to be dynamically broken and a non-
renormalizable model might be referred toasymptotically ..o/ \/EV for the quantity, @ arises
unitary. m '

Now, since Eq(2.17) holds exactly within the MS renor-
malization prescription, it is important to analyze the matter lll. EFFECTIVE POTENTIAL
of triviality in the present model. First of all, it is worthwhile

to notice, takm_g Eqi(2.12t), (2_.12@ Into account, that the ture of this simple but nontrivial model: the occurrence of
quantity kgMg=xkM=47M;,, iIs a RG-invariant mass pa-

rameter. Furthermore, it is useful to rewrite the renormalizedSpoma.neous brea}klng at thg quantum Ievgof thé4$@/_m—
Lagrangian in the form metry in the Euclidean version or the O(3'1) space-time

symmetry in the Minkowskian case. As a matter of fact, we
1 z shall see in the following that the effective potential for the
L, = a2 OoF wF 7 FuF o pseudoscalar axion field may exhibit nontrivial minima
and, consequently, some privileged direction has to be fixed
1 1 by boundary conditions, in order to specify the true vacuum
+ 2—§ (aMA#)ZJr > d,04,0 of the model. More interesting, those nontrivial minima lie
within the perturbative domain. Since we are looking for the

E(si€,9)=¢+In| 1———| ~ £€+21In

8

gin s) s=0

We are ready now to investigate a further interesting fea-

=0 effective potential of the pseudoscalar field, we are allowed
oFFL). (2.20  to ignore the renormalization constattte) in Eq. (2.22 and
restart from the classical action in four dimensions.
Remembering that in the MS scheme we have the foIIowing*_ The axion background-field-generating functional is de-
relationships: namely, ined as

I
H 2Minv

: (1)
0o(€) = ZyOuis( ) = 1_[93“5”(5;; ome (220 Z0=N" f [DA,Jexp — Anwzl A 61},

wheregys(w) is given by Eq(2.17), we are indeed allowed
to specify arbitrarily the maddl;,,(€), which turns out to be Aawz[ A, G]Ef d4x(£AWZ—AMJM), (3.1
some free mass parameter, analytic when—0, in the
present model.

Now, let us suppose>0, go(e)<1 (~1072, e.g); when ~ Where we have included the photon coupling(éxterna)
gus(u) =16me>0, then Eq.(2.21) can no longer be satis- matter sourced,. The classical field configurations, (x)
fied unlessgys(u) =9go(€)=0, Yu>0. On the other hand, are solutions of the Euler-Lagrange equations

025002-5



A. A. ANDRIANQV, R. SOLDATI, AND L. SORBO

OApwz[ A, 0]

with (A=a,,d,,)

A
K,uv[a]z(p M2 _1)(5,U.VA_(9,LLO')V)

*

1

being an elliptic invertible local differential operator. After
integrating over photon fluctuations ,(x) —A,(x), we

eventually obtain

(3.2

2
- E ‘9;1,(91/_ M_ Ehuava}\e(x)(_ I (70.) (33)

ZL0]=N"" exp{ — Aawz[A,, . 61H(det| K, [ 61]) 2

(3.9

PHYSICAL REVIEW D59 025002

it follows that

(K7D o= (KL= 7] (3.11

which shows that the the relevant operaton@mal As a
consequence, after compactification of the Euclidean space,
we can safely define its complex powé] and its determi-

nant[19] by means of the-function technique: namely,
def| K[ 71l = (def| K[ 71K 71l) "
1d
EeXp[—Ed—S{H(s; 77)] ) (3.12
where we have sét
(HL7D o= (KL 7D in (KT L] (3.13
Su(s;m)=Tr(H[7])"* (3.14

with N'= Z[ §=0] and where the dimensionless operator has

been introduced: namely,

Kool 01=p"%K [ 6]
T A( - 1)
KV;Z pm

1A

Going into the momentum representation, it is easy to obtain
from Eq. (3.13 the Fourier transform of our relevant opera-
tor: namely,

Aro: _p_z)z[_
(H[pﬂ?]),w—(,uz

2 202
_ P p

- E ? |KV_ F EKV)\(Tﬂ)\(X)(_iaU')! (35) Iu4 eluy, (313
where we have set in terms of the projectors
3,9, . PuPy
T,U.VE 5/“’_ MA , (363 t/u/_ 5,4“/_ p2 ’ (3163
d,d, _ PubPy
=~ (3.6b =gz (3.16b
&Ma(X) e,uVE{eZ(pv 7])};“1
Nu(X)=— 3.7
* 2 n)2
B p N (m-p) 5
. . . . . o N\2_ . 2-2 v v 2 v
in which u represents the subtraction point, i.e., the momen- (- p)2=—np?p?| 7w e p g
tum scale at which the effective action is defined, whose )
actual value is constrained by physical requirements as we - 77_2p (7,P,+ mpﬂ)]; (3.160
shall see below. p

We want to evaluate the determinant in E8.4) for con-

stant vectory,,; to this aim, we can rewrite the relevant

operator in the form

*

A A 1
ICKV(’?)EF { _Tkv<l_p M2>_E Ikv] +

Eer(M)

(3.8
with
Eu(M==2€,,m(—1d,). (3.9
From the conjugation property
(€N n=—Eps (3.10

notice that the following properties hold:

€,.,P,=0, €t =€u - (3.19

Taking all those definitions and properties carefully into ac-
count, it is straightforward to rewrite the relevant operator
according to the orthogonal decomposition as follows:

eMVnV: Ov

Hlp; 71=Ho(p){1d4—ex(p; 7) +&(p; mRIp; 71},
(3.189

2The same regularized determinant is obtained by considering
H'[7]1=K"[ 71K 7].
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in which while the projectore,(p;#) onto a two-dimensional sub-
3 02\2 02 |2 space satisfies
(HO(p))MV:(;Z> —|1tp W) t;w_l'gflw}’ (3.19 trex(p; ) =2, &(p;n=0)=0, (3.2
A (7-p)2— 72p?] where “tr" means contraction over four-vector indices.
NR[p;77]=(1+ ° 277 277 ; 2), (3.20 As a consequence, from Eg&.4) and (3.12, we can
(P)T1+p(pMy)] eventually write

def|Ho[ld,—e,+&R(7) ][] 1*
det/H,|

2 n,1=expl— Aawzl A, 7]+ Aawz[ A, 7=01} (3.22

here,H, andR(#) stand, obviously, for the integro-differential operators whose Fourier transforms are given 43.E8s.
(3.19, respectively.
We can definitely obtain

_ — 1d 1d
Wi, pl==In 20n,.p]1=Aawzl A 7,01 = Aawzl A 7= p=0]= 7 5= Ln(s=0;7,p) + 7 1< Ln (5=0), (3.23

in which
2

'H

2
1+p

4s d4p 2\2 2 2,2 -
ditsimp) =200 [ 5Bl (o) +al(n-p)2- 7]} (324

while, obviously,¢h (s) = {n(s; 7=p=0). The effective potential for constamt, appears eventually to be expressed as

1o, , 1 (1d . 1d
Veff(nvp)zzM*n _(VO|)4 Zd_sgh(s_01771p)_zd_sgho(s_o) ’ (325}

and therefore we have to carefully compute the integral iN&@g4). To this aim, it is convenient to select a coordinate system
in which

©

7
p/.L:(p'p4)7 p4:ﬁi (32@

in such a way that, after rescaling variablesxas(p/u), y=(p4/w), we obtain

, _4pf(vol), (> ("
sy p)= 2 T(s) fo dr 75 1fo dyf d3x exp{ — 7(x*+y») [ 1+ o (x2+y?) %+ 1v2x%}, (3.27

where o=p(u/M,)? and v,=(2/u)n,. A straightforward calculation leads eventually to the following integral
representatioh[20]: namely,

2\2-2 » 1-2 _
[w*(vol)s]~ ¢ (S'np):(v . SJ o o Ssi2: —2_21 (3.28
4l sm> T 87% Jo  (1-pv?)% 2 12> t(1-pov?)?) :

Let us first analyze the cage=0, which corresponds to the low-energy unitary regime; in this limit, the integration in the
previous formula can be performed explicifly<Res<(7/4)] to yield

(v2)2728 2474 T[s—(1/2]I[(7/2) —2s] (3.29
1672 (s—1) I'[(5/2)—s] ' ’

[n*(vol)4] ™ en(s; ,p=0)=

In the present case— 0, the effective potential for constamt, within the {-function regularization is given by

3We notice that, from the integral representati8r28 for Res<1, it turns out thatgho(s) is regularized to zero.
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0 1|v|22 Lo1d o 0imp=0)= 2 [aze22lin2s 3.3
Veil(7,p=0)= _(vol)4Zd_$§h(S_ mp=0)=57)az Z?(In z 30 (3.30

wherea=(167°M2/5u2) andz=(v,v,/4)= 7,7,/ u?. We can easily check that stablé4Ddegenerate nontrivial minima
appear fora<ag=exp[—(37/30}=0.2913. Notice that the latter interval of valuesaojust corresponds tg=10.4M .
It follows therefrom that, for &ca<a,,, the corresponding symmetry-breaking values satisfy

11
=Zsg= Zcrs Zo:eX[{ 15J 0.480, Z=Aa. (331)

We remark that the above result, within thiéunction regularization, actually reproduces our previous calculdaddmising
large momenta cutoff regularization. To be more precise (&80 indeed corresponds to a specific choice of the subtraction
terms in the large momenta cutoff method, something we couldwiaiimal subtraction for the effective potentfal

It is eventually very interesting to study the dependence of the symmetry-breakingz¥glupgon the parameter, which
measures the departure of the model from unitarity. To this aim, it is necessary to come back to the general expression of Eq.
(3.28 and to make use of the Mellin-Barnes transform for the hypergeometric furj@@nThe result eventually reads

1 (vz)zzs[

4ol 1~ Le (s _ 1)n I(s+n)T(n+3)I(2—2s—n)I'(4s—2+3n)
[p*(voly)] éh(S,n,p)—Amz\/; o)

2 n+2s—2
zo ) I'(2+n)I'(2s+2n)

oo

-n" n1"(2—s+n)I‘(n—Zs+%)1“(25—2—n)1“(4—25+3n)
+ 22— (ev?) T(4—2s+mT(4—2s+2n) ’

(3.32

namely, a convergent power series fov2<(4/27), with 11 22
(1/2)<Res<(7/4). As a check, we notice that, when 1 z5(Q) D{ 15 @ exp‘ 5}+O(92)
<Res<(7/4), it is possible to sgi— 0 in the previous for-
mula: in so doing, Eq(3.29 is indeed recovered. =0.480+0.231p,

It would be possible, now, to study the behavior of
Veri(7,p) Up to any order irp. Nonetheless, a first indication 32
on the shift of the true minima, in the renormalizable non-  Zel(@)=ac(0)+ = @a(0) +---=0.2913+0.90%.

unitary model, is clearly given already at first order. It reads (3.39

5,4 7 74 It appears t.herefore that, \_/vithin the_ renormalizable but
Ver(7,p) = _'“Z az+7z?( In z+ ==+14pz In 2+ 1z 02 nonunitary regime, the dynamical breaking of thetOsym-
32w 30 metry is enhanced with respect to the unitary lipht-0. The
persistence of a nonvanishing VEV of the operatgp for

+(9(92)]_ (3.33 any p is a quite unexpected result and, thereby, indeed re-

markable. As a matter of fact, the renormalizable and/or uni-

tary formulations have, in general, radically different behav-
In the present case nontrivial minima appear for iors [6,10] The pOSSible occurrence of dynamical Symmetry
breaking for any nonvanishing (renormalizable modgl
which remains there in the lim@g—0 (unitary model, ac-
a<a.(0)=a,(0)+ 3_7 0a2(0)+-+-=0.2913+ 1.0460 tually shows that this feature has a deep meaning closely
o o 3 -« ' ' ’ connected to infrared properties of the Wess-Zumino inter-
(3.39 action to massless photons, i.e., to the presence of the chiral
local U(1) anomaly.

whose corresponding values are between
IV. LORENTZ SYMMETRY BREAKING IN QED

DUE TO CPT-ODD INTERACTIONS
Zo(p)=2s8(0)=2c(0), _ o
In electrodynamics, when one retains its fundamental

character provided by the renormalizability, it is conceivable
“We recall that, in general, theregularized functional determi- to have LSB in the (3-1)-dimensional Minkowski space-
nant of elliptic invertible normal operators is defined up to localtime by the C) P T-odd Chern-Simon&CS) coupling of pho-
polynomials of the background fields. tons to the vacuurf2] mediated by a constant CS vectgy
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(Carroll-Field-Jackiw modef® whereK*"[ n] is given(in Euclidean notationby Eq. (3.3
and we putp=0, focusing on the infrared part of photon
1 spectrum.
Lisg== 7 FuF""+5 eNAF .. (40 It is evident that the CS interaction changes the spectrum

only in the polarization hyperplane orthogonal to the mo-

mentump,, and the CS vector, . The relevant projector on

One can guess that the CS vectgy originates from the .« plane ise,,,={e,(p: 7)},, described in Eq(3.160. Af-
VEV of the gradient of the axion field in the AWZ model o, employinS the notatio£3.9) EV=2i et 1 one

(2.22: (3,0(X))o=M, 7,, up to Wick rotation back to .5, prove that
Minkowski space-time.

This supplement to electrodynamics does not break the E-E s 20
gauge symmetry of the action, but splits the dispersion rela- &= N=4(7-p)"=7°p7, (4.3
tions for different photon helicitief2]. As a consequence,
the linearly polarized photons exhibit birefringence when andé¢-e,= €. Respectively, one can unravel the energy spec-
they propagate in the vacuum, i.e., the rotation of the polartrum of the wave equatiof#.2) in terms of two polarizations

ization direction depending on the distance. of different helicity:
If the vector 5, is timelike, 7°>0, then this observable
effect is isotropic in the preferred frangeresumably, the rest 1 &
frame of the Universe where the cosmic microwave back- & rR=5 (ezi\/—ﬁ), Ear=*t NP g. (49

ground radiation is maximally isotropic since 7%,
=(70,0,0,0). However, it is essentially anisotropic for Then the dispersion relation can be read out of the equation
spacelike?<0. The first possibility was thoroughly exam-
ined [2,21], resulting in  the  bound |_770| (p?)%2+47%p2—4(75-p)%=0. (4.5
<10 ¥eV=10 8cm L. Last year, a new compilation of _ _ _ _
data on the polarization rotation of photons from remote raFrom Eq.(4.5) one obtgms the different physical properties
dio galaxies was present¢d2], and it was argued that the depending on whethey” is timelike, lightlike, or spacelike.
space anisotropy ~with 7,=(0,7) of order || If »?>0, one can examine photon properties in the rest
~10"%2eVv=10?"cm! exists. However, the subsequent frame for the CS vecton,=(7,,0,0,0). Then the dispersion
analysis [23] about the confidence level of the above- relation
mentioned compilation has made it clear that the existence of . .

i (Po)%=P?+2| 7o Ip| (4.6
such an effect cannot presently be inferred. Po) = =21 70l1P .

We can use now the effective potential derived in the h that th ¢ f soluti be int ted
previous section and conclude that the timelike pattern fopOWs that the upper typ€ ot solutions can be interpreted as

the CS interaction isaively inconsistent as it is accompa- (Eescribing ma_ssless states becausg their energies vanish for
nied by the creation of tachyonic photon motié®m the p=0. Meanwhllg, the lower type of dlstorted photons be-have
vacuum; i.e., such a vacuum would be unstable under QES® tachyon$2] with a real energy fofp|>2| 7| (when their

radiative effect§24]—although it seems more likely that the phlas_e veIo_cgy 'f (t)akeg |_n;o accou(;n’u’hereblare ?IS.O static
back reaction of the electromagnetic field on the pseudo§ﬁ utions \.Nr:t Po= <:_>|p|.— |7.7°| an unstaf%so;t|od$a-
scalar will occur until some equilibrium is reached. chyons with a negative imaginary energy fop| < 2| 7o|.

On the contrary, the spacelike anisotropy carrying Cs. FOr lightike CS vectorsy”=0, one deals with conven-
vector does not generate any “at first glance” vacuum insta:[Ional photqns .Of shifted energy-momentum spectra for dif-
bility and may be naturally induce@4] by a Coleman- ferent polarizations:

Weinberg mechanisni5] in any scale-invariant scenario (Dot 70)2= (P~ 7)2 (4.7)
where the CS vector is related to the VEV of the gradient of Po= 770 P=7" '
a pseudoscalar field. ~Ifthe CS vector is spacelike;?<0, the photon spectrum

Indeed, let us analyze the photon energy spectrum whicly more transparent in the static frame wheye=(0,7). The

can be derived from wave equations on the gauge pmemi%‘orresponding dispersion relation reads

A,(p) in the momentum representation:
(Po)2=p>+ 27 2\[7]"+ (%)% 48

1
[ng””(g—l) p“p’+2ie ™ np, (A, It can be checked that in this cagg=0 for all § and neither
static nor unstable tachyonic modes do actually arise. The
=—-K*Tg5]A,=0, (4.2  upper type of solution describes the massive particle with a

massm, =2|7| for small space momentg|<|7|. The
lower type of solutions represents a massless statpgas

SWe notice that our constant vectay, is denoted as, in Ref.

[2].
5The presence of tachyonic modes in the photon spectrum was’In what follows the matrix product is provided by contraction
mentioned in2]. with g,,, .
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—0 for |p|—0. It might also exhibit the acausal behavior =~ We conclude that it is unlikely to have Lorentz symmetry
whenp,,p#<0, but even in this caspgzo for all g, sothat breaking by the CPT-odd interactio@.1) by means of a

unstable tachyonic modes never arise. timelike CS vector preserving rotational invariance in g
In a general frame, for high momentg@|>|7|, |p,]  rest frame. Rather intrinsically, the pseudoscalar matter in-
> 7y, one obtains the relation teracting with photons has a tendency to condensate along a
spacelike direction. In turn, as we have seen, it leads to pho-
|pol =Bl == (7o—| 7|cos @), (4.9 ton mass formation. Of course, this effect of a Coleman-

Weinberg type does not yield any explanation for the mag-
where ¢ is an angle betweety and 5. Hence, for a given njtude of the scaleu, which, however, is implied to be a
photon frequency,, the phase shift induced by the differ- physical infrared cutoff of a cosmological origin. Therefore
ence between wave vectors of opposite helicities does ngfs magnitude can be thought to be the inverse of the maxi-

depend upon this frequency. Moreover, the linearly polarizegnal photon wavelength in the Universe: namelyy.
waves—a combination of left- and right-handed ones—=1/,~10?" cm.

reveal the birefringence phenomenon of the rotation of the
polarization axis with the distand@].

Let us now examine the radiative effects induced by the V. CONCLUSIONS: SKETCH OF PERTURBATION
emission of distorted photons. In principle, the energy and THEORY IN THE LSB PHASE
momentum conservation allows for pairs of tachyons to be

created from the vacuum due to the CS interaction. Thereby, In the previous section we used the qgasmlassmal, one-
photon-loop approach to argue for the existence of a phase

in any model where the CS vector plays a dynamical role}". : ;
y Pay 4 ith dynamical LSB. We remark that this phenomenon can

being related to the condensate of a matter field, one m ; . ) )
expect that, owing to tachyon pair creation, the asymptoti®€ Well realized in the perturbative low-energy domain pro-
(y_lded that the values of the free parameters involved,

Fock vacuum state becomes unstable and transforming t ) X
wards a true nonperturbative state without tachyonic photoft!+ - @ndp, are appropriately tuned according to E¢s31)
modes. But if we inherit the causal prescription for propagatnd (3-39. Thus in this feature the AWZ model is closely
ing physical waves, then the physical states are assigned f§121090us to the second one—the Abelian Higgs model—in

possess a hon-negative energy sign. As a consequené@fa original Colem_an-W_emberg papié]. . .
tachyon pairs can be created out of the vacuum only?if A natural question arises about quantum fluctuations with

>0. In particular, the static waves withy=0< || =2 7| respect to the LSB vacuum as well as about higher-loop
are well produced to destroy the vacuum state. On the corforrections. n or_der to reply to it, one should d?"e"_’P per-
trary, for <0 the causal prescription for the energy Signturbatlon theory in the LSB phase. It can be built with the

. . Ip of three basic ingredients: the photon propagator in
together with the energy-momentum conservation prevent e
the vacuum state from photon pair emission. the background of constamt, , the AWZ vertex(2.2), (2.4),

Thus the decay process holds when static and unstab hich_remains_ unchanged, and_ the effective propagator for
tachyonic modes exist. Let us clarify this point with the helpt, e ¢ field, which should pe denyed from the sec_ond vara-
of the radiatively induced effective potenti€d.25, (3.30 tion of the qne—loop gff'ecnve' actioy= —.I'n 21 0] given by
for the variablez, treated as an average vdlugf the gra- Eq._ (_3:23)'. In t_he vicinity of its LSB minimum. The latter
dient of a pseudoscalar field?=—zu2. In this case the definition implies that the calculation of photon-loop self-

: R _ diagram is to be supplemented with a particular sub-
infrared normalization scale.=+/— 7?/z has to be of the energy oo ]
order of 10 2-10"* eV in such a way to fit the Carrol- traction of that part which is borrowed by the effective

I~ . i ) " o-field propagator.
'[:Z'GZI%]‘JaCk'W (or would-be Nodland-Ralston-like effect Let us display the structure of distorted photon athd

One can see from Eq3.30 the following. prqpagators. The .photon propagator can be obtafimethe
(@ If 5*>0, there appears an imaginary part for the"mlt p=0) by setting

vacuum energy,

3,0=M,n,+d,9 (5.9

5
Im Veff: - E (77#77#)2! (41()
in the Lagrangian(2.22 and subsequent inversion of the
which characterizes the rate per unit volume of tachyon pairhoton kinetic operator: namely,
production out of the vacuum state.
(b) For %<0, the effective potential is real and has a 1
maximum at»?=0, whereas the true minima arise at the K =—g,,p%+p,p (1__
. 2_ 2 v v uMv g
nonzero spacelike valug = — u“zgg from Eq. (3.32.

+i e,lLVpO'( Uppg_ pp 770)
(5.2)

8t may be a mean value over a large volume for a slowly varyingin Minkowski space-time. The inversion can be easily per-
classical background field or, eventually, the vacuum expectatiofiormed by means of a decomposition in terms of a suitable
value (VEV) for an axion-type field. complete set of tensors: namely,
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~ _ PP, i stone theorem. We postpone a more detailed development of
D(p)=i(1-¢§) i T ap) perturbation theory in the LSB phase and a discussion of
P B higher-order loop effects to the next paper.
5 , PPy 7P Note added in proofSoon after the completion of the
X\ =09u,p t+4ny m‘*“lmm—‘lﬁ present work, we became aware of the paper by Colladay

and Kostelecky[26]. We would like to acknowledge this
. paper together with references therein, in which some LSB
X(7uPyt Pu?y) =21 €40p6m°P7 1 (53 modifications of the standard model are thoroughly dis-
cussed.
where

A(p. =44 (p.DA_(p. 7).
We are grateful to A. Bassetto for invaluable suggestions

AL =p3—p?—272+ | 7|*+ (5-p)>+ie, and to R. Tarrach for stimulating discussions. This work is
(5.9 supported by Italian grant MURST-quota 40%. A.A. is also

supported by grants RFFI 96-01-00535, GRACENAS

and the causal prescription for two poles is indicated. Hereing_19-97 and by Spanish Ministerio de EduéacioCultura.
in order to make the pole structure of the above propagator

more transparent, we have referred to the static frame where APPENDIX
7,=(0,7), according to Eq(4.8).

In turn, the modified kinetic term for pseudoscalar field at  In this appendix we compute the fermion chiral determi-
low momenta is derived from the second variation of thenant in the case of a constant homogeneous gauge potential.
effective potential3.30 in terms of Eq.(5.1): In so doing, we shall be able to show that the low-

1 sy momentum effective action for the pseudoscalar axibe
2T 4 eff longitudinal component of the gauge potentiakhibits a
W= 2 f d™x 3, 9(x) W 1,07, 9 B(x) purely quadratic kinetic term.
The classical action for a Dirac fermion, in Minkowski
space-time, coupled with vector and axial-vector gauge po-
tentials reads

ACKNOWLEDGMENTS

1 5
= > j d*x W [ﬂﬂﬂﬂﬁ(X)]z. (5.5

This kinetic term does not correspond to a relativistic propa- . 0430 s
gating particle as it does not contain time derivatives. This, M= | dX°d™X gliy*d,—m+ey (V,+ysA,) .

of course, is a consequence of spontaneous LSB in accor- (A1)
dance with the Goldstone theorem. The related “propaga- o .
tor” takes the following form: For our purposes, it is convenient to take the Weyl represen-
tation for the Dirac’'s matrices: namely,
B(p) smM, 1 0 I 0 o
P)= D)2 0_ 2 i ©. 7
4imM2 g 1 . _ o
=— CP , (5.6) whereo’, j=1,2,3, are the Pauli matrices, in such a way that
5  dn-p) 7-p
—Id 0
where we adoptedas it customary25]) the Cauchy princi- ys=iy0yly?y= 2 . (A3)
< X ) . . . 0 Id,
pal value prescription for this spacelike singularity. With this
prescription, the emission of thiéfield will never take place The effective action is nothing but—up to the factor

and thereby astrophysical bounds’] are no longer appli- (—j)__the logarithm of the determinant of the vector—axial-
cable. One C_ou_ld guess that in space-tl-meldlrectlons OrthOQQ/‘ector(VAV) Dirac’s operator. Now, in order to have a well-
nal to 57, radiatively induced higher derivative terms play an gefined expression for such a quantity, it is necessary to
essential role to restore a particle like or ghost like dynamicsgake a transition to Euclidean space, i.e., to perform the

Formally, with these propagators we do not change the,s,a| Wick’s rotation, which leads to the following Euclid-
power counting of Sec. Il for UV divergences and the UV gan VAV Dirac operator: namely,

renormalizability is still available. But with thénfrared ¢

“propagator” (5.6), one anticipates drastical changes in the (iDg)=iy,d,+im+ey,(v,+vsa,), (A4)

B function and anomalous dimensions as both the divergent _

and finite parts of the photon polarization function are nowhere y;=—ivy', va=7" (v,.a,) being the Euclidean
longer presented by Eq&.6) and(2.7). VAV potentials. If we perform the analytic continuation

We conclude that, in contrast to the spontaneous breaking,—ia,, , then the continued Euclidean VAV Dirac operator
of internal symmetries, LSB leads to a substantial modifica{A4) turns out to be ellipti¢18], normal, and, if zero modes
tion of the particle dynamics at low momenta up to the dis-are absent as we now suppose, invertible. As a consequence,
appearance of those particles which implement the Goldits determinant is safely defined to pE8,19
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"

Let us consider the chiral limiv =+*a=(m»/2e); we
, (A5)  can rewrite the previous formula as

. 1d
de{iDe]=exp — 5 7= {ic(s)

aﬂ:—iaﬂ
m*(vol) m) 2 1
where - 4 -
{ne(s) 872 exp[ sin ) ] 5-1)(5-2)
f s
he=(i1Dg) '(iDg), (AB) x{2—(s-2) 7]2}’ (A12)
with
. from which it is easy to read the chiral effective action we
(iDg)=iy,d,+im+ey,(v,+iysa,). (A7)  were looking for: namely,
Let us compute the above quantity in the case of homo- 1 d m*(vol)
geneous VAV potentials. We have, in momentum space, W,=—In detiD,)= > 9s {(s=0)= i )24 (),
he={p?+m?+e?(v?+a% —2ep,v }Id, (A13)
—iep,afy.. 7.} (A8)  with
and if we choosé,,=(0,0,03), we come to the result 3 m\ 2
A £reaso?
Re={p?+ M2+ e%(v?+a%) —2ep,v,}Id, XX)= 5= m =t )in (AL4)
o
—2iea( p](;f p?rj)' (A9) First, we notice that the first two terms on the right-hand
i

side of the last formula may be ignored, as the effective
action is always defined up to polynomials of momenta and
masses. Second, the effective action—in the case of a homo-
geneous chiral potential—turns out to contain only quadratic
terms in the chiral potential. Therefrom, we can see that
functional integration over massive left-coupled spinors
leads, in the low-momentum regime, to the effective Euclid-
ean kinetic Lagrangian

It is now easy to obtain

) (vo)4,u 3 m?+e?a?
9= e | dt SZeXp{—tT

X fxdp p? exp[—tpz}cos)* 2t ﬁ) (A10)
0 M

If we now come back to the original Euclidean axial-vector
potential—i.e.,&— —ia—we easily find

_ m*(vol), m) 2 1
ghE(S)_—47T2 exp{ sln( )]—(s 1(s=2)

1
Lyin(3,6)= > d,00,0, (Al15)

as we claimed in Sec. |, whose constant LSB value is

ea)? m* [m
X{1l—-2(s— 2)( H) ] . (A11) Liin(1,)= 22 In(;) Zsg- (A16)
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