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Dynamical Lorentz symmetry breaking from a „311…-dimensional axion-Wess-Zumino model
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We study renormalizable Abelian vector-field models in the presence of the Wess-Zumino interaction with
pseudoscalar matter. Renormalizability is achieved by supplementing the standard kinetic term of vector fields
with higher derivatives. The appearance of a fourth power of momentum in the vector-field propagator leads to
the superrenormalizable theory in which theb function, the vector-field renormalization constant, and the
anomalous mass dimension are calculated exactly. It is shown that this model has the infrared stable fixed point
and its low-energy limit is nontrivial. The modified effective potential for the pseudoscalar matter leads to the
possible occurrence of dynamical breaking of Lorentz symmetry. This phenomenon is related to the modifi-
cation of electrodynamics by means of the Chern-Simons~CS! interaction polarized along a constant CS
vector. Its presence makes the vacuum that has been recently estimated from astrophysical data optically
active. We examine two possibilities for the CS vector to be timelike or spacelike, under the assumption that
it originates from VEV of some pseudoscalar matter and show that only the latter one naturally arises in the
framework of the present model.@S0556-2821~98!02724-6#

PACS number~s!: 11.30.Qc, 14.80.Mz
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I. INTRODUCTION

The possible occurrence of a very small deviation fro
Lorentz covariance was considered and discussed some
ago @1#, within the context of the Higgs sector of spontan
ously broken gauge theories. There, some ‘‘background’
‘‘cosmological’’ field is generated, leading to the abov
mentioned possible small deviations from Lorentz cova
ance, within the present experimental limits.

Later on, another possibility was explored to obtain
Lorentz- and parity-violating modification of quantum ele
trodynamics, by means of the addition of a Chern-Simo
Lagrangian@2#. Quite recently, Coleman and Glashow@3#
have discussed how Lorentz-noninvariant velocity diff
ences among neutrinos could produce characteristic fla
oscillations in accelerators and solar neutrino fluxes.

In all the above investigations, Lorentz symmetry brea
ing ~LSB! has been treated phenomenologically by mean
some very small but explicit Lorentz-noninvariant term
which have a clear physical meaning in a privileged fram
Then, of course, the dynamical~and presumably quantum!
origin of possible LSB represents an interesting problem
be tackled.

One of the possible ways to induce LSB by a dynami
mechanism has been recently argued in
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(311)-dimensional case@4#. Namely, the spontaneou
breaking of the Lorentz symmetry via the Colema
Weinberg mechanism@5# has been revealed for a class
models with the Wess-Zumino interaction between Abel
gauge fields and pseudoscalar axion@axion-Wess-Zumino
~AWZ! models#.

The original motivation for studying AWZ models was t
use them in resolving the old-standing conflict between p
turbative renormalizability and unitarity, within the conte
of the gauge-invariant quantization of (311)-dimensional
Abelian gauge models in the presence of the U~1!-chiral
anomaly@6#.

As a matter of fact, it was suggested some time ago@7#
that gauge theories in the presence of chiral anomalies c
be consistently quantized after integration over the ga
orbits and the introduction of suitable Wess-Zumino field
Although this idea has been successfully implemented in
dimensions@8,9#, its application to the (311)-dimensional
case is still to be achieved, even within the standard cov
ant perturbative approach@6,10#.

For lower-dimensional theories the LSB phenomenon
been observed by Hosotani in a series of papers@11#. He has
found that in (211)-dimensional Chern-Simons gauge fie
theories coupled to Dirac fermions a spontaneous magn
zation arises, leading to the breaking of O~2,1! symmetry.
This remarkable effect might be also related to the break
of chiral symmetry, i.e., to the generation of a dynamic
mass for fermions@12,13#.

In the present paper we continue our exploration of L
by dynamical mechanisms and study it in more detail in
©1998 The American Physical Society02-1
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renormalizable model for the Abelian vector field interacti
with pseudoscalar axion matter.

The Wess-Zumino interaction in this model may be u
derstood as generated by quantum effects due to couplin
fermions. For instance, one can start from the abo
mentioned anomalous gauge model with the Lagrangian d
sity which describes the coupling of chiral fermions to
Abelian gauge fieldAm :

L0@Am ,c,c̄#5c̄gm$ i ]m1eAmPL%c2mc̄c, ~1.1!

wherePL[(1/2)(12g5). After fermion quantization it leads
to the chiral anomaly, thereby breaking the classical inv
ance under local gauge transformations of the left chiral s
tor and making a serious obstruction to derive a unitary
renormalizable gauge theory. This obstruction is essenti
induced by coupling to the longitudinal part of the gau
potential, which is in turn described by the Wess-Zumi
interaction in the following sense. If we rewrite the gau
potential in Eq.~1.1! as

Am~x!5Am
'~x!1Am

i
~x!5S dm

n 2
]m]n

]2 DAn~x!1]mx~x!,

~1.2!

it is well known that integration over fermion fields drive
from the classical Lagrangian density~1.1!, in the limit when
the massm can be disregarded, to the quantum effect
Lagrangian

Leff5
e3

48p2 xF̃mnFmn1Leff
' @Am

'#, ~1.3!

where the last term indicates the gauge-invariant nonano
lous part. Furthermore, it is also evident that the gau
invariant part of the effective Lagrangian~1.3! is subleading
within the low-momentum regime we are dealing with he
as its quadratic part can always be reabsorbed into the re
malization of the photon wave function~see below!, whereas
the quartic term is of ordera2@(k/m IR)ln(k/mIR)#4, k andm IR
being the low-energy photon momentum and normalizat
scale, respectively.

When the gauge fields are massless, i.e., photons, a m
realistic model providing at low energies the Wess-Zum
interaction of~1.3! type is QED with the additional Yukawa
coupling to a scalar chiral field:

L0@Am ,c,c̄#5c̄gm$ i ]m1eAm%c2mc̄ exp~2ig5Yx̃ !c,
~1.4!

whereY stands for the hyperchange of~charged! fermions. In
turn, this Lagrangian may arise as a low-energy part of
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Higgs field model or of a theory with dynamically generat
fermion masses. After fermion quantization the correspo
ing effective action at low momenta or for heavy fermio
yields the pertinent Wess-Zumino vertex as a main contri
tion.

It can be shown as well—see the Appendix—that, in t
limit of small gauge particle momenta, quadratic kine
terms for the fieldsx and x̃ are also generated by quantu
effects. To sum up, the low-momentum regime of the Ab
lian chiral gauge theory~1.1! or QED with the ‘‘chiral
mass’’ term ~1.4! is faithfully described by the following
nonrenormalizable effective Lagrangian density: namely,

Leff@u,Fmn#52
1

4
FmnFmn1

k

2M
uF̃mnFmn1

1

2
]mu]mu,

~1.5!

in which we have setu[Mx, standing for a pseudoscala
axion-like field, andM is some reference mass scale, whilek
is the dimensionless WZ coupling parameter of orderaAa
in the case of the chiral gauge model~1.1! or aY for QED
with the chiral mass term,a being the fine structure constan

This latter model may also have a different origin, t
pseudoscalar field being a scalar gravitational@14# or quin-
tessence field@15# or even associated with the torsion field
a particular@16#, divergenceless type:Tmns5emnsr]rx(x),
]mTmns50.

Phenomenologically, the overall inverse coupling of pse
doscalar particles to photons is actually constrained fr
laboratory experiments, as well as from astrophysical a
cosmological observations@17# to be more than 1012 GeV:
namely, we can reasonably suppose our reference massM to
be of the same very large order of magnitude when we
main within the perturbation approach.

On the other hand, one of the aims of the present pape
to show that the effective Lagrangian~1.5!, which describes
quantum effects of the Abelian anomalous gauge theory
QED with chiral mass interaction, at small momentap such
that (p/M )!1, can lead to the dynamical breaking of Lo
entz symmetry, the nonperturbative phenomenon wh
changes drastically the photon spectrum and induces the
refringence of photons with opposite helicities. In this r
gime the pseudoscalar field loses time derivatives in the
netic term~when treated in the static frame! and therefore
cannot describe a propagating particle, thereby making
bounds from@17# inapplicable.

The paper is organized as follows. In Sec. II the ren
malizable version of the Abelian AWZ model is imple
mented with the help of higher derivatives in the kinetic te
for photons. The remaining divergences are analyzed; thb
function and anomalous dimensions are exactly calculate
is proved within perturbation theory that the ghostli
vector-field degrees of freedom decouple at small mome
and the model is infrared stable and nontrivial at low en
gies.

In Sec. III the one-photon-loop effective potential for th
axion field is derived in the renormalizable AWZ model b
2-2
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DYNAMICAL LORENTZ SYMMETRY BREAKING FROM A . . . PHYSICAL REVIEW D 59 025002
employing thez-function technique@18,19#. This effective
potential is shown to possess a minimum at nonzero va
of ]mu for large values of normalization scale, i.e., in t
strong coupling regime.

This phenomenon of axion-field condensation leads
Lorentz symmetry breaking, whose consequences for
photon spectrum are examined in Sec. IV. In particular, i
elucidated that the tachyon modes appear in the photon s
trum @2# and photons of different helicities propagate w
different phase velocities, which leads to the birefringence
arbitrarily polarized photon waves. The possible instabi
of the Fock vacuum arises if the vacuum expectation va
~VEV! of ]mu is a timelike vector, whereas for the spaceli
one consistent LSB may be induced by infrared radiat
effects.

In our Conclusion perturbation theory in the symmet
broken phase is shortly outlined and the propagators for
torted photons are obtained.

II. RENORMALIZABLE AXION-WESS-ZUMINO MODEL

The renormalizable Abelian vector-field model~in Euclid-
ean space! we consider is described by the Lagrangian d
sity which contains the Wess-Zumino coupling of pseud
scalar axion and Abelian gauge field, as well as a high
derivative kinetic term for the Abelian gauge field:

LAWZ5
1

4M2 ]rFmn]rFmn1
1

4
FmnFmn1

1

2j
~]mAm!2

1
1

2
]mu]mu2 i

k

2M
uFmnF̃mn , ~2.1!

whereF̃mn[(1/2)emnrsFrs , and some suitable dimension
scaleM is introduced,k andj being the dimensionless cou
pling and gauge-fixing parameters, respectively.

The Wess-Zumino interaction can be equivalently rep
sented in the following form:

E d4x
k

2M
uFmnF̃mn52E d4x

k

M
]muAnF̃mn ,

~2.2!

at the level of the classical action. Therefore the pseudosc
field is involved in the dynamics only through its gradie
]mu(x) due to topological triviality of Abelian vector fields

From the above Lagrangian it is easy to derive the Fe
man rules: namely, the free vector-field propagator reads

Dmn~p!52M2
dmn~p!

p2~p21M2!
1

j

p2

pmpn

p2 , ~2.3!
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with dmn(p)[2dmn1(pmpn /p2) being the transversal pro
jector; the free axion propagator is the usualD(p)5(p2)21

and the axion-vector-vector WZ vertex turns out to be giv
by

Vmn~p,q,r !52 i ~k/M !emnrsprqs ~p1q1r 50!,
~2.4!

all momenta being incoming,r being the axion momentum
It is worthwhile to recall that the Fock space of asympto
states, in the Minkowskian formulation of the present mod
exhibits an indefinite metric structure. Actually, from the a
gebraic identity

M2

p2~p21M2!
[

1

p22
1

p21M2 ,

it appears that negative norm states are generated by
asymptotic vector-field transversal component with gh
mass M; in addition, the longitudinal component of th
asymptotic vector field also gives rise to negative no
states.

Now let us develop the power-counting analysis of t
superficial degree of divergence within the model. The nu
ber of loops is as usualL5I v1I s2V11, I v(s) being the
number of vector~scalar! internal lines andV the number of
vertices. Next we have 2V52I v1Ev and V52I s1Es ,
whereEv(s) is the number of vector~scalar! external lines.
As a consequence, the overall UV behavior of a graphG is
provided by

v~G!54L24I v22I s12V2Es2Ev

5422Ev2Es22I v12I s , ~2.5!

and therefrom we see that theonly divergent graph
corresponds toI s51, I v51, Es50, Ev52, and it turns out to
be the one-loop vector self-energy.1 Thus we conclude tha
the model is superrenormalizable. We notice that the num
of external vector lines has to be even. The computation
the divergent self-energy can be done using dimensio
regularization ~in 2v-dimensional Euclidean space! and
gives

Pmn
~1!~p!5

g

16pe
p2dmn~p!1P̂mn

~1!~p!, ~2.6!

with e[22v, g[(k2/4p), while the finite part reads

1Actually, the tadpoleEs5I v51, I s50 indeed vanishes owing to
the tensorial structure of the AWZ vertex.
2-3
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P̂ln
~1!~p!52

g

16p
p2dln~p!H ln

M2

4pm22c~2!1
2

3 F11
p21M2

p2 lnS 11
p2

M2D G
2

M2

3p2 F12
p21M2

p2 lnS 11
p2

M2D G2
p2

3M2 F12
p21M2

p2 lnS 11
p2

M2D1 ln
p2

M2G J , ~2.7!

wherem denotes as usual the mass parameter in the dimensional regularization. It follows therefore that the single
graph to be added, in order to make finite the whole set of proper vertices, is provided by the two-point one-particle-irre
~1PI! structure

Gln
~c.t.!~p![2Pln

~1!~p!udiv52
1

16

g

p
p2dln~p!F1

e
1F1S e,

M2

4pm2D G , ~2.8!

in which F1 denotes the scheme-dependent finite part~whene→0! of the countergraph.
As a result, it is clear that we can write the renormalized Lagrangian in the forms

LAWZ
~ren! 5

1

4M0
2 ]rFmn

~0!]rFmn
~0!1

1

4
Fmn

~0!Fmn
~0!1

1

2j0
~]mAm

~0!!21
1

2
]mu]mu2 ime

k0

2M0
uFmn

~0!F̃mn
~0!

5
1

4M2 ]rFmn]rFmn1
Z

4
FmnFmn1

1

2j
~]mAm!21

1

2
]mu]mu2 ime

k

2M
uFmnF̃mn , ~2.9!
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where, as a result of superrenormalizability, the exact w
function renormalization constantZ is provided by

Z5c0S g,
M

m
;e D1

1

e
c1~g!; ~2.10!

here, we can write, up to the one-loop approximation,

c0S g,
M

m
;e D512

g

16p
F1S e,

M2

4pm2D1O~g2!,

c1~g!52
g

16p
. ~2.11!

Moreover, the relationships between bare and renormal
quantities turn out to be the following: namely,

Am
~0!5AZAm , ~2.12a!

M05AZM, ~2.12b!

j05Zj, ~2.12c!

k05
k

AZ
, g05

g

Z
. ~2.12d!

In particular, from the Laurent expansion of Eq.~2.12d!, we
can write

k05a0S k,
M

m
;e D1

1

e
a1~k!, ~2.13!

with
02500
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a0S k,
M

m
;e D5k1

k3

128p2 F1S e,
M2

4pm2D1O~k5!,

a1~k!5
k3

128p2 . ~2.14!

This entails that, within this model, we can solve the ren
malization group equations~RGEs! in the minimal subtrac-
tion ~MS! schemeF1[0: namely,

m
]k

]m
52ek2a1~k!1k

d

dk
a1~k!, ~2.15!

to get the exact MS prescriptionb function

b~k!5
k3

64p2 , ~2.16!

telling us, as expected, thatg50 is an IR-stable fixed point
It follows that we can integrate Eq.~2.15! and determine the
running coupling exact behavior

g~m!5
g~m0!

12@g~m0!/8p# ln~m/m0!
. ~2.17!

Furthermore, always from Eqs.~2.12a!–~2.12d! and within
the MS prescription, it is straightforward to recognize t
remaining RG coefficients to be

gM[
1

2
m

] ln M2

]m
52

g

16p
, ~2.18a!

gd[
1

2
m

] ln Z

]m
5

g

8p
, ~2.18b!
2-4
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DYNAMICAL LORENTZ SYMMETRY BREAKING FROM A . . . PHYSICAL REVIEW D 59 025002
gj[m
] ln j

]m
52

g

4p
. ~2.18c!

In conclusion, we are able to summarize the asymptotic
havior of the ghost-mass parameterM and of the gauge-
fixing parameterj at large distances, where perturbati
theory is reliable in the model we are considering and wit
the MS renormalization scheme. Actually, if we sets
[(m/m0), we can easily derive

ḡ~s;g!5
g

12~g/8p!ln s
;

s→0

2
8p

ln s
, ~2.19a!

M̄ ~s;M ,g!5MA12
g

8p
ln s ;

s→0

MAgu ln su
8p

,

~2.19b!

j̄~s;j,g!5j1 lnS 12
g ln s

8p D ;
s→0

j12 lnS g

4p
u ln su D ,

~2.19c!

showing that longitudinal as well as ghostlike transve
vector-field degrees of freedom decouple at small mome
where perturbation theory has to be trusted. Owing to
asymptotic decoupling of negative norm states, within
domain of validity of perturbation theory, the present sup
renormalizable model might be referred to asasymptotically
unitary.

Now, since Eq.~2.17! holds exactly within the MS renor
malization prescription, it is important to analyze the mat
of triviality in the present model. First of all, it is worthwhil
to notice, taking Eqs.~2.12b!, ~2.12d! into account, that the
quantity k0M05kM[4pM inv is a RG-invariant mass pa
rameter. Furthermore, it is useful to rewrite the renormaliz
Lagrangian in the form

LAWZ
~ren! 5

1

4M2 ]rFmn]rFmn1
Z

4
FmnFmn

1
1

2j
~]mAm!21

1

2
]mu]mu

2 ime
g0

2M inv
uFmn

~0!F̃mn
~0! . ~2.20!

Remembering that in the MS scheme we have the follow
relationships: namely,

g0~e!5ZMS
21gMS~m!5

gMS~m!

12@gMS~m!/16pe#
, ~2.21!

wheregMS(m) is given by Eq.~2.17!, we are indeed allowed
to specify arbitrarily the massM inv(e), which turns out to be
some free mass parameter, analytic whene→0, in the
present model.

Now, let us supposee.0, g0(e)!1 ~;1022, e.g.!; when
gMS(m)516pe.0, then Eq.~2.21! can no longer be satis
fied unlessgMS(m)5g0(e)50, ;m.0. On the other hand
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this situation does not entail triviality of the model as we c
always chooseM inv→0 in such a way that the ratio
@g0(e)/M inv(e)#5(1/M* )Þ0. As a consequence, the no
trivial renormalized model is most suitably parametrized
follows: namely,

LAWZ
~ren! 5

r

4M
*
2 ]rFmn]rFmn1

Z~e!

4
FmnFmn

1
1

2j
~]mAm!21

1

2
]mu]mu

2me
i

2M*
uFmnF̃mn , ~2.22!

in terms of the free RG-invariant massM* and of the uni-
tarity violation running parameterr[(M

*
2 /M2), which as-

ymptotically vanishes at large distances as already stres
We notice that it is just the above RG-invariant free ma
that has to be eventually identified with the ‘‘physical value
M* >1012 GeV, as discussed in Ref.@17#. However, it is
important to note that what has been discussed in the pre
section is actually pertinent to the unbroken Loren
covariant phase. As a matter of fact, we shall see in the n
section that quantum radiative effects may lead, in
present model, to the onset of another phase in which L
entz symmetry appears to be dynamically broken and a n
trivial VEV for the quantity]mu arises.

III. EFFECTIVE POTENTIAL

We are ready now to investigate a further interesting f
ture of this simple but nontrivial model: the occurrence
spontaneous breaking at the quantum level of the SO~4! sym-
metry in the Euclidean version or the O(3,1)11 space-time
symmetry in the Minkowskian case. As a matter of fact,
shall see in the following that the effective potential for t
pseudoscalar axion fieldu may exhibit nontrivial minima
and, consequently, some privileged direction has to be fi
by boundary conditions, in order to specify the true vacu
of the model. More interesting, those nontrivial minima
within the perturbative domain. Since we are looking for t
effective potential of the pseudoscalar field, we are allow
to ignore the renormalization constantZ(e) in Eq. ~2.22! and
restart from the classical action in four dimensions.

The axion background-field-generating functional is d
fined as

Z@u#[N21E @DAm#exp$2AAWZ@Am ,u#%,

AAWZ@Am ,u#[E d4x~LAWZ2AmJm!, ~3.1!

where we have included the photon coupling to~external!
matter sourcesJm . The classical field configurationsĀm(x)
are solutions of the Euler-Lagrange equations
2-5
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A. A. ANDRIANOV, R. SOLDATI, AND L. SORBO PHYSICAL REVIEW D59 025002
dAAWZ@Am ,u#

dAm~x!
5Kmn@u#Ān~x!5Jm , ~3.2!

with (D[]m]m)

Kmn@u#[S r
D

M
*
2 21D ~dmnD2]m]n!

2
1

j
]m]n2

2

M*
elmsn]lu~x!~2 i ]s! ~3.3!

being an elliptic invertible local differential operator. Afte
integrating over photon fluctuationsAm(x)2Ām(x), we
eventually obtain

Z@u#[N21 exp$2AAWZ@Ām ,u#%~detiKmn@u#i !21/2,
~3.4!

with N5Z@u50# and where the dimensionless operator h
been introduced: namely,

Kkn@u#[m22Kkn@u#

5Tkn

D

m2 S r
D

M
*
2 21D

2
1

j

D

m2 l kn2
2

m2 eknlshl~x!~2 i ]s!, ~3.5!

where we have set

Tmn[dmn2
]m]n

D
, ~3.6a!

l mn[
]m]n

D
, ~3.6b!

hm~x![
]mu~x!

M*
, ~3.7!

in which m represents the subtraction point, i.e., the mom
tum scale at which the effective action is defined, who
actual value is constrained by physical requirements as
shall see below.

We want to evaluate the determinant in Eq.~3.4! for con-
stant vectorhm ; to this aim, we can rewrite the relevan
operator in the form

Kkn~h![
D

m2 H 2TknS 12r
D

M
*
2 D 2

1

j
l knJ 1

Ekn~h!

m2 ,

~3.8!

with

Emn~h![22emnlshl~2 i ]s!. ~3.9!

From the conjugation property

~E†!mn52Emn , ~3.10!
02500
s
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it follows that

~K†@h#!mn5~K@2h#!mn , ~3.11!

which shows that the the relevant operator isnormal. As a
consequence, after compactification of the Euclidean sp
we can safely define its complex power@18# and its determi-
nant @19# by means of thez-function technique: namely,

detiK@h#i5~detiK@h#K†@h#i !1/2

[expH 2
1

2

d

ds
zH~s;h!J U

s50

, ~3.12!

where we have set2

~H@h#!mn[~K@h#!ml~K†@h#!ln , ~3.13!

zH~s;h![Tr~H@h#!2s. ~3.14!

Going into the momentum representation, it is easy to ob
from Eq. ~3.13! the Fourier transform of our relevant oper
tor: namely,

~H̃@p;h#!mn5S p2

m2D 2H 2S 11r
p2

M
*
2 D 2

tmn1
1

j2 l mnJ
24

~h•p!22h2p2

m4 emn, ~3.15!

in terms of the projectors

tmn5dmn2
pmpn

p2 , ~3.16a!

l mn5
pmpn

p2 , ~3.16b!

emn[$e2~p;h!%mn

5
p2

~h•p!22h2p2H 2h2tmn1hmhn1
~h•p!2

p2 dmn

2
h•p

p2 ~hmpn1hnpm!J ; ~3.16c!

notice that the following properties hold:

emnpn50, emnhn50, emntnl5eml . ~3.17!

Taking all those definitions and properties carefully into a
count, it is straightforward to rewrite the relevant opera
according to the orthogonal decomposition as follows:

H̃@p;h#5H̃0~p!$Id42e2~p;h!1e2~p;h!R̃@p;h#%,
~3.18!

2The same regularized determinant is obtained by conside
H8@h#[K†@h#K@h#.
2-6
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in which

„H̃0~p!…mn5S p2

m2D 2H 2S 11r
p2

M
*
2 D 2

tmn1
1

j2 l mnJ , ~3.19!

R̃@p;h#5S 11
4@~h•p!22h2p2#

~p2!2@11r~p2/M
*
2 !#2D , ~3.20!
02500
while the projectore2(p;h) onto a two-dimensional sub
space satisfies

tre2~p;h!52, e2~p;h50!50, ~3.21!

where ‘‘tr’’ means contraction over four-vector indices.
As a consequence, from Eqs.~3.4! and ~3.12!, we can

eventually write
em

ral

the
Z@hm#5exp$2AAWZ@Ā,h#1AAWZ@Ā,h50#%H detiH0@ Id42e21e2R~h!#i
detiH0i J 21/4

; ~3.22!

here,H0 andR(h) stand, obviously, for the integro-differential operators whose Fourier transforms are given by Eqs.~3.19!,
~3.19!, respectively.

We can definitely obtain

W@hm ,r#52 ln Z@hm ,r#[AAWZ@Ā,h,r#2AAWZ@Ā,h5r50#2
1

4

d

ds
zh~s50;h,r!1

1

4

d

ds
zh0

~s50!, ~3.23!

in which

zh~s;h,r!52~vol!4m4sE d4p

~2p!4 H ~p2!2S 11r
p2

M
*
2 D 2

14@~h•p!22h2p2#J 2s

, ~3.24!

while, obviously,zh0
(s)5zh(s;h5r50). The effective potential for constanthm appears eventually to be expressed as

Veff~h,r![
1

2
M

*
2 h22

1

~vol!4
H 1

4

d

ds
zh~s50;h,r!2

1

4

d

ds
zh0

~s50!J , ~3.25!

and therefore we have to carefully compute the integral in Eq.~3.24!. To this aim, it is convenient to select a coordinate syst
in which

pm5~p,p4!, p45
h•p

Ah2
, ~3.26!

in such a way that, after rescaling variables asx5(p/m), y5(p4 /m), we obtain

zh~s;h,r!5
4m4~vol!4

~2p!4G~s!
E

0

`

dt ts21E
0

`

dyE d3x exp$2t~x21y2!2@11%~x21y2!#21tv2x2%, ~3.27!

where %[r(m/M* )2 and vn[(2/m)hn . A straightforward calculation leads eventually to the following integ
representation3 @20#: namely,

@m4~vol!4#21zh~s;h,r!5
~v2!222s

8p2 E
0

`

dt
t122s

~12%v2t !2s 2F1S 3

2
,s;2;

21

t~12%v2t !2D . ~3.28!

Let us first analyze the caser50, which corresponds to the low-energy unitary regime; in this limit, the integration in
previous formula can be performed explicitly@1,Res,(7/4)# to yield

@m4~vol!4#21zh~s;h,r50!5
~v2!222s

16p2Ap

24s24

~s21!

G@s2~1/2!#G@~7/2!22s#

G@~5/2!2s#
. ~3.29!

In the present caser→0, the effective potential for constanthm within the z-function regularization is given by

3We notice that, from the integral representation~3.28! for Res,1, it turns out thatzh0
(s) is regularized to zero.
2-7
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Veff~h,r50!5
1

2
M

*
2 h22

1

~vol!4

1

4

d

ds
zh~s50;h,r50!5

5m4

32p2 H az1z2S ln z1
7

30D J , ~3.30!

wherea[(16p2M
*
2 /5m2) andz[(vnvn/4)5hnhn /m2. We can easily check that stable O~4!-degenerate nontrivial minima

appear fora<acr5exp$2(37/30)%.0.2913. Notice that the latter interval of values ofa just corresponds tom>10.4M* .
It follows therefrom that, for 0<a<acr , the corresponding symmetry-breaking values satisfy

z0>zSB>zcr , z05expH 2
11

15J .0.480, zcr5a. ~3.31!

We remark that the above result, within thez-function regularization, actually reproduces our previous calculation@4# using
large momenta cutoff regularization. To be more precise, Eq.~3.30! indeed corresponds to a specific choice of the subtrac
terms in the large momenta cutoff method, something we could callminimal subtraction for the effective potential.4

It is eventually very interesting to study the dependence of the symmetry-breaking valuezSB upon the parameterr, which
measures the departure of the model from unitarity. To this aim, it is necessary to come back to the general expressi
~3.28! and to make use of the Mellin-Barnes transform for the hypergeometric function@20#. The result eventually reads

@m4~vol4!#21zh~s;h,r!5
1

4p2Ap

~v2!222s

G~s! H (
n50

`
~21!n

n!
~%v2!n12s22

G~s1n!G~n1 3
2 !G~222s2n!G~4s2213n!

G~21n!G~2s12n!

1 (
n50

`
~21!n

n!
~%v2!n

G~22s1n!G~n22s1 7
2 !G~2s222n!G~422s13n!

G~422s1n!G~422s12n! J , ~3.32!
1

of
n
n
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namely, a convergent power series for%v2,(4/27), with
(1/2),Res,(7/4). As a check, we notice that, when
,Res,(7/4), it is possible to setr→0 in the previous for-
mula: in so doing, Eq.~3.29! is indeed recovered.

It would be possible, now, to study the behavior
Veff(h,r) up to any order inr. Nonetheless, a first indicatio
on the shift of the true minima, in the renormalizable no
unitary model, is clearly given already at first order. It rea

Veff~h,r!5
5m4

32p2 H az1z2S ln z1
7

30
114%z ln z1

74

15
%zD

1O~%2!J . ~3.33!

In the present case nontrivial minima appear for

a<acr~% !5acr~0!1
37

3
%acr

2 ~0!1¯.0.291311.046%,

~3.34!

whose corresponding values are between

z0~r!>zSB~% !>zcr~% !,

4We recall that, in general, thez-regularized functional determi
nant of elliptic invertible normal operators is defined up to loc
polynomials of the background fields.
02500
-
s

z0~% !5expH 2
11

15J 1% expH 2
22

15J 1O~%2!

.0.48010.231%,

zcr~% !5acr~0!1
32

3
%acr

2 ~0!1¯.0.291310.905%.

~3.35!

It appears therefore that, within the renormalizable b
nonunitary regime, the dynamical breaking of the O~4! sym-
metry is enhanced with respect to the unitary limitr→0. The
persistence of a nonvanishing VEV of the operator]mu for
any r is a quite unexpected result and, thereby, indeed
markable. As a matter of fact, the renormalizable and/or u
tary formulations have, in general, radically different beha
iors @6,10#. The possible occurrence of dynamical symme
breaking for any nonvanishingr ~renormalizable model!,
which remains there in the limitr→0 ~unitary model!, ac-
tually shows that this feature has a deep meaning clo
connected to infrared properties of the Wess-Zumino in
action to massless photons, i.e., to the presence of the c
local U~1! anomaly.

IV. LORENTZ SYMMETRY BREAKING IN QED
DUE TO CPT-ODD INTERACTIONS

In electrodynamics, when one retains its fundamen
character provided by the renormalizability, it is conceivab
to have LSB in the (311)-dimensional Minkowski space
time by the (C)PT-odd Chern-Simons~CS! coupling of pho-
tons to the vacuum@2# mediated by a constant CS vectorhm

l
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~Carroll-Field-Jackiw model!:5

LLSB52
1

4
FmnFmn1

1

2
emnlsAmFnlhs . ~4.1!

One can guess that the CS vectorhm originates from the
VEV of the gradient of the axion fieldu in the AWZ model
~2.22!: ^]mu(x)&05M* hm , up to Wick rotation back to
Minkowski space-time.

This supplement to electrodynamics does not break
gauge symmetry of the action, but splits the dispersion r
tions for different photon helicities@2#. As a consequence
the linearly polarized photons exhibit birefringence whe
they propagate in the vacuum, i.e., the rotation of the po
ization direction depending on the distance.

If the vectorhm is timelike, h2.0, then this observable
effect is isotropic in the preferred frame~presumably, the res
frame of the Universe where the cosmic microwave ba
ground radiation is maximally isotropic!, since hm
5(h0,0,0,0). However, it is essentially anisotropic f
spacelikeh2,0. The first possibility was thoroughly exam
ined @2,21#, resulting in the bound uh0u
,10233 eV.10228 cm21. Last year, a new compilation o
data on the polarization rotation of photons from remote
dio galaxies was presented@22#, and it was argued that th
space anisotropy with hm.(0,hW ) of order uhW u
;10232 eV.10227 cm21 exists. However, the subseque
analysis @23# about the confidence level of the abov
mentioned compilation has made it clear that the existenc
such an effect cannot presently be inferred.

We can use now the effective potential derived in t
previous section and conclude that the timelike pattern
the CS interaction isnaively inconsistent as it is accompa
nied by the creation of tachyonic photon modes6 from the
vacuum; i.e., such a vacuum would be unstable under Q
radiative effects@24#—although it seems more likely that th
back reaction of the electromagnetic field on the pseu
scalar will occur until some equilibrium is reached.

On the contrary, the spacelike anisotropy carrying
vector does not generate any ‘‘at first glance’’ vacuum ins
bility and may be naturally induced@4# by a Coleman-
Weinberg mechanism@5# in any scale-invariant scenari
where the CS vector is related to the VEV of the gradien
a pseudoscalar field.

Indeed, let us analyze the photon energy spectrum wh
can be derived from wave equations on the gauge pote
Am(p) in the momentum representation:

Fp2gmn1S 1

j
21D pmpn12i emnlshlpsGAn

52Kmn@h#An50, ~4.2!

5We notice that our constant vectorhm is denoted assm in Ref.
@2#.

6The presence of tachyonic modes in the photon spectrum
mentioned in@2#.
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whereKmn@h# is given ~in Euclidean notation! by Eq. ~3.3!
and we putr50, focusing on the infrared part of photo
spectrum.

It is evident that the CS interaction changes the spect
only in the polarization hyperplane orthogonal to the m
mentumpm and the CS vectorhn . The relevant projector on
this plane isemn[$e2(p;h)%mn described in Eq.~3.16c!. Af-
ter employing the notation~3.9!, Emn[2i emnlshlps , one
can prove that7

e25
E•E
N

, N[4@~h•p!22h2p2#, ~4.3!

andE•e25E. Respectively, one can unravel the energy sp
trum of the wave equation~4.2! in terms of two polarizations
of different helicity:

eL,R5
1

2 S e26
E

AN
D , E•eL,R56ANPL,R . ~4.4!

Then the dispersion relation can be read out of the equa

~p2!214h2p224~h•p!250. ~4.5!

From Eq.~4.5! one obtains the different physical properti
depending on whetherh2 is timelike, lightlike, or spacelike.

If h2.0, one can examine photon properties in the r
frame for the CS vectorhm5(h0,0,0,0). Then the dispersio
relation

~p0!6
2 5pW 262uh0uupW u ~4.6!

shows that the upper type of solutions can be interprete
describing massless states because their energies vanis
pW 50. Meanwhile, the lower type of distorted photons beha
as tachyons@2# with a real energy forupW u.2uh0u ~when their
phase velocity is taken into account!. There are also static
solutions withp050⇔upW u52uh0u and unstable solutions~ta-
chyons! with a negative imaginary energy forupW u,2uh0u.

For lightlike CS vectorsh250, one deals with conven
tional photons of shifted energy-momentum spectra for d
ferent polarizations:

~p06h0!25~pW 6hW !2. ~4.7!

If the CS vector is spacelike,h2,0, the photon spectrum
is more transparent in the static frame wherehm5(0,hW ). The
corresponding dispersion relation reads

~p0!6
2 5pW 212hW 262AuhW u41~hW •pW !2. ~4.8!

It can be checked that in this casep0
2>0 for all pW and neither

static nor unstable tachyonic modes do actually arise.
upper type of solution describes the massive particle wit
mass m152uhW u for small space momentaupW u!uhW u. The
lower type of solutions represents a massless state ap0

as7In what follows the matrix product is provided by contractio
with gmn .
2-9
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→0 for upW u→0. It might also exhibit the acausal behavi
whenpmpm,0, but even in this casep0

2>0 for all pW , so that
unstable tachyonic modes never arise.

In a general frame, for high momentaupW u@uhW u, up0u
@h0 , one obtains the relation

up0u2upW u.6~h02uhW ucosw!, ~4.9!

wherew is an angle betweenhW and pW . Hence, for a given
photon frequencyp0 , the phase shift induced by the diffe
ence between wave vectors of opposite helicities does
depend upon this frequency. Moreover, the linearly polari
waves—a combination of left- and right-handed ones
reveal the birefringence phenomenon of the rotation of
polarization axis with the distance@2#.

Let us now examine the radiative effects induced by
emission of distorted photons. In principle, the energy a
momentum conservation allows for pairs of tachyons to
created from the vacuum due to the CS interaction. There
in any model where the CS vector plays a dynamical ro
being related to the condensate of a matter field, one m
expect that, owing to tachyon pair creation, the asympt
Fock vacuum state becomes unstable and transforming
wards a true nonperturbative state without tachyonic pho
modes. But if we inherit the causal prescription for propag
ing physical waves, then the physical states are assigne
possess a non-negative energy sign. As a conseque
tachyon pairs can be created out of the vacuum only ifh2

.0. In particular, the static waves withp050⇔upW u52uh0u
are well produced to destroy the vacuum state. On the c
trary, for h2,0 the causal prescription for the energy si
together with the energy-momentum conservation preve
the vacuum state from photon pair emission.

Thus the decay process holds when static and unst
tachyonic modes exist. Let us clarify this point with the he
of the radiatively induced effective potential~3.25!, ~3.30!
for the variablehm treated as an average value8 of the gra-
dient of a pseudoscalar field,h252zm2. In this case the
infrared normalization scalem5A2h2/z has to be of the
order of 10232– 10233 eV in such a way to fit the Carrol
Field-Jackiw ~or would-be Nodland-Ralston-like! effect
@2,22#.

One can see from Eq.~3.30! the following.
~a! If h2.0, there appears an imaginary part for t

vacuum energy,

Im Veff52
5

32p
~hmhm!2, ~4.10!

which characterizes the rate per unit volume of tachyon p
production out of the vacuum state.

~b! For h2<0, the effective potential is real and has
maximum ath250, whereas the true minima arise at t
nonzero spacelike valueh252m2zSB from Eq. ~3.31!.

8It may be a mean value over a large volume for a slowly vary
classical background field or, eventually, the vacuum expecta
value ~VEV! for an axion-type field.
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We conclude that it is unlikely to have Lorentz symmet
breaking by the CPT-odd interaction~4.1! by means of a
timelike CS vector preserving rotational invariance in thehm
rest frame. Rather intrinsically, the pseudoscalar matter
teracting with photons has a tendency to condensate alo
spacelike direction. In turn, as we have seen, it leads to p
ton mass formation. Of course, this effect of a Colema
Weinberg type does not yield any explanation for the m
nitude of the scalem, which, however, is implied to be a
physical infrared cutoff of a cosmological origin. Therefo
its magnitude can be thought to be the inverse of the m
mal photon wavelength in the Universe: namely,lmax
51/m.1027 cm.

V. CONCLUSIONS: SKETCH OF PERTURBATION
THEORY IN THE LSB PHASE

In the previous section we used the quasiclassical, o
photon-loop approach to argue for the existence of a ph
with dynamical LSB. We remark that this phenomenon c
be well realized in the perturbative low-energy domain p
vided that the values of the free parameters involved,m,
M* , andr, are appropriately tuned according to Eqs.~3.31!
and ~3.35!. Thus in this feature the AWZ model is close
analogous to the second one—the Abelian Higgs model—
the original Coleman-Weinberg paper@5#.

A natural question arises about quantum fluctuations w
respect to the LSB vacuum as well as about higher-lo
corrections. In order to reply to it, one should develop p
turbation theory in the LSB phase. It can be built with t
help of three basic ingredients: the photon propagato
the background of constanthm , the AWZ vertex~2.2!, ~2.4!,
which remains unchanged, and the effective propagator
the u field, which should be derived from the second var
tion of the one-loop effective actionW52 ln Z@u# given by
Eq. ~3.23!, in the vicinity of its LSB minimum. The latter
definition implies that the calculation of photon-loop se
energy diagram is to be supplemented with a particular s
traction of that part which is borrowed by the effectiv
u-field propagator.

Let us display the structure of distorted photon andu
propagators. The photon propagator can be obtained~in the
limit r50! by setting

]mu5M* hm1]mq ~5.1!

in the Lagrangian~2.22! and subsequent inversion of th
photon kinetic operator: namely,

K̃mn52gmnp21pmpnS 12
1

j D1 i emnrs~hrps2prhs!

~5.2!

in Minkowski space-time. The inversion can be easily p
formed by means of a decomposition in terms of a suita
complete set of tensors: namely,

g
n

2-10
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D̃mn~p!5 i ~12j!
pmpn

~p21 i e!2 1
i

D~p,h!

3H 2gmnp214h2
pmpn

p21 i e
14hmhn24

h•p

p21 i e

3~hmpn1pmhn!22i emnrshrpsJ , ~5.3!

where

D~p,h![D1~p,h!D2~p,h!,

D65p0
22pW 222hW 26AuhW u41~hW •pW !21 i e,

~5.4!

and the causal prescription for two poles is indicated. Her
in order to make the pole structure of the above propag
more transparent, we have referred to the static frame w
hm5(0,hW ), according to Eq.~4.8!.

In turn, the modified kinetic term for pseudoscalar field
low momenta is derived from the second variation of t
effective potential~3.30! in terms of Eq.~5.1!:

W~2!.
1

2 E d4x ]mq~x!
1

M
*
2

d2Veff

dhmdhn
]nq~x!

5
1

2 E d4x
5

4p2M
*
2 @hm]mq~x!#2. ~5.5!

This kinetic term does not correspond to a relativistic pro
gating particle as it does not contain time derivatives. Th
of course, is a consequence of spontaneous LSB in ac
dance with the Goldstone theorem. The related ‘‘propa
tor’’ takes the following form:

D̃~p!5
4ip2M

*
2

5

1

~h•p!2

[2
4ip2M

*
2

5

]

]~h•p!
CPVS 1

h•pD , ~5.6!

where we adopted~as it customary@25#! the Cauchy princi-
pal value prescription for this spacelike singularity. With th
prescription, the emission of theq field will never take place
and thereby astrophysical bounds@17# are no longer appli-
cable. One could guess that in space-time directions ortho
nal tohm radiatively induced higher derivative terms play
essential role to restore a particle like or ghost like dynam

Formally, with these propagators we do not change
power counting of Sec. II for UV divergences and the U
renormalizability is still available. But with the~infrared! q
‘‘propagator’’ ~5.6!, one anticipates drastical changes in t
b function and anomalous dimensions as both the diverg
and finite parts of the photon polarization function are
longer presented by Eqs.~2.6! and ~2.7!.

We conclude that, in contrast to the spontaneous brea
of internal symmetries, LSB leads to a substantial modifi
tion of the particle dynamics at low momenta up to the d
appearance of those particles which implement the G
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stone theorem. We postpone a more detailed developme
perturbation theory in the LSB phase and a discussion
higher-order loop effects to the next paper.

Note added in proof. Soon after the completion of th
present work, we became aware of the paper by Colla
and Kostelecky´ @26#. We would like to acknowledge this
paper together with references therein, in which some L
modifications of the standard model are thoroughly d
cussed.
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APPENDIX

In this appendix we compute the fermion chiral determ
nant in the case of a constant homogeneous gauge pote
In so doing, we shall be able to show that the lo
momentum effective action for the pseudoscalar axion~the
longitudinal component of the gauge potential! exhibits a
purely quadratic kinetic term.

The classical action for a Dirac fermion, in Minkowsk
space-time, coupled with vector and axial-vector gauge
tentials reads

AM5E dx0d3x c̄$ igm]m2m1egm~Vm1g5Am!%c.

~A1!

For our purposes, it is convenient to take the Weyl repres
tation for the Dirac’s matrices: namely,

g05S 0
Id2

Id2

0 D , g j5S 0
2s j

s j

0 D , ~A2!

wheres j , j 51,2,3, are the Pauli matrices, in such a way th

g5[ ig0g1g2g35S 2Id2

0
0

Id2
D . ~A3!

The effective action is nothing but—up to the fact
~2i!—the logarithm of the determinant of the vector–axia
vector~VAV ! Dirac’s operator. Now, in order to have a wel
defined expression for such a quantity, it is necessary
make a transition to Euclidean space, i.e., to perform
usual Wick’s rotation, which leads to the following Euclid
ean VAV Dirac operator: namely,

~ iDE!5 igm]m1 im1egm~vm1g5am!, ~A4!

where g j52 ig j , g45g0, (vm ,am) being the Euclidean
VAV potentials. If we perform the analytic continuatio
am° i âm , then the continued Euclidean VAV Dirac operat
~A4! turns out to be elliptic@18#, normal, and, if zero modes
are absent as we now suppose, invertible. As a conseque
its determinant is safely defined to be@18,19#
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det@ iDE#[expH 2
1

2

d

ds
z ĥE

~s!U
s50

J U
âm52 iam

, ~A5!

where

ĥE[~ i D̂E!†~ i D̂E!, ~A6!

with

~ i D̂E!5 igm]m1 im1egm~vm1 ig5âm!. ~A7!

Let us compute the above quantity in the case of hom
geneous VAV potentials. We have, in momentum space

ĥE5$p21m21e2~v21â2!22epmvm%Id4

2 iepmân$gm ,g5gn%, ~A8!

and if we chooseâm5(0,0,0,â), we come to the result

ĥE5$p21m21e2~v21â2!22epmvm%Id4

22ieâS pjs
j

0
0

pjs
j D . ~A9!

It is now easy to obtain

z ĥE
~s!5

~vol!4m4

p5/2G~s!
E

0

`

dt ts23/2 expH 2t
m21e2â2

m2 J
3E

0

`

dp p2 exp$2tp2%coshH 2t
eâp

m2 J . ~A10!

If we now come back to the original Euclidean axial-vec
potential—i.e.,â→2 ia—we easily find

zhE
~s!5

m4~vol!4

4p2 expH 2s lnS m

m D 2J 1

~s21!~s22!

3H 122~s22!S ea

m D 2J . ~A11!
op

tt

02500
-

r

Let us consider the chiral limitv56a[(mh/2e); we
can rewrite the previous formula as

zhE
~s!5

m4~vol!4

8p2 expH 2s lnS m

m D 2J 1

~s21!~s22!

3$22~s22!h2%, ~A12!

from which it is easy to read the chiral effective action w
were looking for: namely,

Wx52 ln det~ iDx![
1

2

d

ds
z~s50!5

m4~vol!4

~4p!2 x~h!,

~A13!

with

x~x!5
3

2
2h22~11h2!lnS m

m D 2

. ~A14!

First, we notice that the first two terms on the right-ha
side of the last formula may be ignored, as the effect
action is always defined up to polynomials of momenta a
masses. Second, the effective action—in the case of a ho
geneous chiral potential—turns out to contain only quadra
terms in the chiral potential. Therefrom, we can see t
functional integration over massive left-coupled spino
leads, in the low-momentum regime, to the effective Eucl
ean kinetic Lagrangian

Lkin~]nu!5
1

2
]nu]nu, ~A15!

as we claimed in Sec. I, whose constant LSB value is

Lkin~hn!5
m4

2p2 lnS m

m D zSB. ~A16!
05;
D
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