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Supersymmetry of rotating branes
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We present a new 1/8 supersymmetric intersecting M-brane solution ofD511 supergravity with two
independent rotation parameters. The metric has a non-singular event horizon and the near-horizon geometry is
AdS33S33S33E2 ~just as in the non-rotating case!. We also present a method of determining the isometry
supergroup of supergravity solutions from the Killing spinors and use it to show that for the near horizon
solution it is D(2u1,a)3D(2u1,a) wherea is the ratio of the two 3-sphere radii. We also consider various
dimensional reductions of our solution, and the corresponding effect of these reductions on the Killing spinors
and the isometry supergroups.@S0556-2821~98!07124-0#

PACS number~s!: 11.30.Pb, 04.65.1e, 04.70.Dy, 11.25.2w
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I. INTRODUCTION

Many of the (p12)-dimensional anti–de Sitter spac
(AdSp12)3SD2p22 Kaluza-Klein ~KK ! vacua of
D-dimensional supergravity theories are known to arise
near-horizon limits of 1/2 supersymmetricp-brane solutions
@1#. If the D-dimensional supergravity is non-maximal, the
its p-brane solutions can usually be viewed as intersecti
of branes of a maximal supergravity theory, e.g., of
branes@2#. An example is the 1/2 supersymmetric self-du
string solution of ~1,1! D56 supergravity, for which the
near-horizon geometry is AdS33S3 @3#. This can be inter-
preted as the 1/4 supersymmetric~1uM2,M5! string intersec-
tion of an M2-brane with an M5-brane, for which the nea
horizon limit is a 1/2 supersymmetric AdS33S33E5 vacuum
@4#.

The ~1uM2,M5! intersection is actually a special case
the 1/4 supersymmetric~1uM2,M5,M5! intersection in which
the M2-brane intersects two M5-branes. The presence o
M2-brane is associated in this case with a ‘‘generalized h
monic’’ function of the two sets of M5-brane coordinat
@5,6#. For an appropriate choice of this function there
again a non-singular horizon, near which one finds a
supersymmetric AdS33S33S33E2 vacuum of D511
supergravity.1 As argued in@9#, and confirmed here, th
isometry supergroup of thisD511 vacuum solution is

D~2u1,a!L3D~2u1,a!R ~1!

*Permanent address: Department of Physics, McGill Univers
Montréal, PQ, Canada H3A 2T8.

†Permanent address: DAMTP, University of Cambridg
Cambridge CB3 9EW, U.K.

1This was originally found as an AdS33S33S33E1 solution of
the heterotic string theory@7# and was shown in@8# to be the near-
horizon limit of aD510N51 1/4 supersymmetric~1uF1,NS5,NS5!
intersection of a~fundamental! string with two ~Neveu-Schwarz!
five-branes.
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wherea is the ratio of the radii of the two 3-spheres. Ea
D(2u1,a) factor contains anSl(2;R)3SU(2)3SU(2)
bosonic subgroup, witha being the relative weight of the
two SU(2) factors~see e.g.@10#!. In the limit in which one
S3 radius goes to infinity we recover the AdS33S33E5

vacuum.
By adding momentum to the 1/4 supersymmet

~1uM2,M5,M5! configuration~along the string intersection!
we arrive at the 1/8 supersymmetric~1uMW,M2,M5,M5! in-
tersection. A curious feature of this case is that the ne
horizon limit is again the 1/2 supersymmetric AdS33S33S3

3E2 vacuum because a wave on AdS3 can be removed by a
coordinate transformation@11#; this is simply a reflection of
the fact that there are no propagating gravitons in three
mensions. The main purpose of this paper is to present a
class of 1/8 supersymmetric~1uMW,M2,M5,M5! solutions of
D511 supergravity with two independent rotation para
eters. For an appropriate choice of the functions parame
ing this class of solution there is a non-singular Killing h
rizon. The near-horizon limit is again the AdS33S33S3

3E2 vacuum. The isometry group is therefore aga
D(2u1,a)L3D(2u1,a)R .

A number of supersymmetric rotating black hole a
brane solutions have been found previously. For exam
there is a supersymmetric rotating black hole solution ofD
55 supergravity@12#, which can interpreted as an S1 reduc-
tion of a rotating self-dual string solution@13,14#. It can also
be interpreted as the dimensional reduction of a rotat
~0uM2,M2,M2! intersection @15#. Many of these rotating
brane solutions are related by compactification and/or dua
to some special case of our rotating~1uMW,M2,M5,M5! in-
tersection. For example, the rotating~0uM2,M2,M2! intersec-
tion is dual to a rotating~1uMW,M2,M5! intersection, which
can then be dimensionally reduced to yield the rotating s
dual string@15#. But the rotating~1uMW,M2,M5! intersec-
tion is just the special case of~1uMW,M2,M5,M5! in which
one M5-brane is omitted and its associated rotation par
eter set to zero. Thus, the new rotating brane solution p
sented and analyzed here constitutes a generalizatio
many previous results on rotating branes.

,

,

©1998 The American Physical Society01-1



a

a
ie
o

-

f

ce

-
e
is

l
in
al

cts
al-

n
o-
he

f
nic
iz-

um
-

m

e

J. P. GAUNTLETT, R. C. MYERS, AND P. K. TOWNSEND PHYSICAL REVIEW D59 025001
II. ROTATING SUPERSYMMETRIC INTERSECTING
M-BRANES

Consider two five-branes and a membrane intersecting
cording to the pattern

M5: 1 2 3 4 5

M5: 1 7 8 9 10.

M2: 1 6. ~2!

Our new 1/8 supersymmetric M-brane solution, which h
momentum flowing along the string intersection and carr
angular momentum in the relative transverse directions
the five-branes~$2,3,4,5% and$7,8,9,10%!, can be found within
the following general class of solutions ofD511 supergrav-
ity. The bosonic sector of theD511 supergravity Lagrang
ian is given by@16#

A2gS R2
1

12
F2D1

2

~72!2

3eM1¯M4N1¯N4P1P2P3FM1¯M4
FN1¯N4

AP1P2P3
~3!

~in these conventionsd!F1F∧F50! and the equations o
motion are solved by

ds11
2 5g1

1/3~g2g3!2/3

3@~g1g2g3!21~22dudv1g4dv212Adv !

1g1
21dz21g2

21dx•dx1g3
21dy•dy#

F ~4!5
c1

2
$dudvdg1

212c1c2!xdg22c2!ydg3

1dv∧A∧dg1
212g1

21dv∧dA%∧dz ~4!

where the functionsg1(x,y), g2(y), g3(x), g4(v,x,y,z)
and the 1-form

A5Ai~x,y!dxi1Aa~x,y!dya ~5!

will be specified below. The constantsc1 ,c2 are signs and!x
and !y are the Hodge duals on the two Euclidean 4-spa
with Cartesian coordinatesxi and ya @e.g., !xdg2
5(1/6)dxidxjdxke i jkl ] lg2#.

The functionsg2(y) andg3(x) are harmonic on their re
spectiveE4 spaces and correspond to the two five-bran
The function g1(x,y) corresponding to the membrane
‘‘generalized harmonic’’@5,6#; i.e., it satisfies

@g3
21¹~x!

2 1g2
21¹~y!

2 #g150. ~6!

The functiong4(v,x,y,z) corresponding to the gravitationa
wave is also a ‘‘generalized harmonic’’ function, although
a slightly more general sense than used hitherto. Specific
it solves the equation

@g3
21¹~x!

2 1g2
21¹~y!

2 1g1~g2g3!21]z
2#g450. ~7!

The field strengthF5dA of the 1-formA satisfies
02500
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05g2
21]aFa j1g3

21] iFi j 1] ig3
21FFi j 1

c2

2
e i jkl FklG

05g3
21] iFib

1g2
21]aFab1]ag2

21FFab1
c1c2

2
eabgdFgdG . ~8!

One may note the nesting of the lower dimensional obje
within the higher dimensional ones: each five-brane is loc
ized within the world volume of the other one~except along
the string intersection!, and the membrane is localized withi
both of the five-brane world volumes, while the wave is l
calized within the world volumes of both five-branes and t
membrane. Note that the dependence of the wave-profileg4
on the string directionv is completely arbitrary. This part o
the solution is constructed following the standard harmo
function rule@2#. The new aspect of the solution, general
ing @17#, comes from the introduction of the 1-formA. With
an appropriate choice for the solution of Eq.~8!, one can
introduce angular momentum into both of theE4 spaces. In
order to maintain supersymmetry, this angular moment
will involve simultaneous rotation in two orthogonal 2
planes within each of these spaces.

Now we discuss the supersymmetries of thisD511 su-
pergravity solution. First we write the 11-metric in the for

ds11
2 52eueu1evev1ezez1eiei1eaea ~9!

with the orthonormal 1-forms

eu5g1
21/3~g2g3!21/6g4

21/2~du2A!

ev5g1
21/3~g2g3!21/6g4

1/2@dv2g4
21~du2A!#

ez5g1
21/3~g2g3!1/3dz

ei5g1
1/6g2

21/6g3
1/3dxi

ea5g1
1/6g2

1/3g3
21/6dya. ~10!

Let GA with A5(u,v,z,i ,a) be the Dirac matrices in this
basis. The Killing spinor equations are then

H D1
1

144
@eAGA

BCDE28eBGCDE#FBCDEJ e50 ~11!

where D is the Lorentz covariant exterior derivative. Th
solutions are simply written as

e5g1
21/6g2

21/12g3
21/12g4

21/4e0 ~12!

wheree0 is a constant spinor satisfying the constraints

Guve05e0

Gze05c1e0

G~x!e05c2e0
1-2
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G~y!e05c1c2e0 ~13!

where

G~x!5
1

24
« i jkl G

i jkl , G~y!5
1

24
«abgdGabgd. ~14!

The general solution~4! still preserves 1/8 supersymmet
because these four conditions are not all independent.
follows since the 11-dimensional Dirac matrices sati
Guvz12341828384851.

In order to fully specify a solution ofD511 supergravity,
we have still to choose the harmonic functionsg2 ,g3 , solve
the ‘‘modified harmonic’’ equations forg1 andg4 , and solve
Eqs.~8! for A. We start by replacing thex-coordinates with
polar coordinates such that

ds2~E4!5dr21r 2dV3
2 ~15!

wheredV3
2 is the metric on the 3-sphere. A similar prime

set of polar coordinates is chosen for they-space. Here, in
order to facilitate the analysis of the Killing spinors in th
next section, we choose coordinates onS3 such that

dV3
25

1

4
~du21dc̃21df212 cosudc̃df! ~16!

with

0<u,p, 0<f,2p, 0<c̃,4p, ~17!

and similarly for the primed coordinates. This metric may
written in the manifestlySU(2)3SU(2) invariant form

dV3
25

1

4
~ s̃1

21s̃2
21s̃3

2! ~18!

wheres̃ i ( i 51,2,3) are the three left-invariant one-forms
the groupSU(2):

s̃152sin c̃du1cos c̃ sin udf

s̃25cos c̃du1sin c̃ sin udf

s̃35dc̃1cosudf. ~19!

We now choose the harmonic functions corresponding
the five-branes,g2 andg3 , to have single centers:

g3511R2/r 2, g2511R82/r 82 ~20!

where constantsR andR8 are related to five-brane charge
We will consider a solution of the remaining equations su
that the singularities atr 50, r 850, and r 5r 850 are not
genuine curvature singularities but rather merely coordin
singularities. To this end, we solve Eq.~6! by setting

g15g2g3 . ~21!

In addition we take
02500
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for some constantp. In solving Eqs.~8!, we choose

A5H8~y!B~x!1H~x!B8~y! ~23!

whereH andH8 are harmonic functions,

H511
l 2

r 2 , H8511
l 82

r 82 , ~24!

andB andB8 are 1-forms, on their respectiveE4 spaces. In
order to solve Eqs.~8!, the 2-form field strengths,G5dB
andG85dB8, must then satisfy

G1!xG50, G81!yG850 ~25!

where we have restricted to the casec15c251, for conve-
nience. One solution of these anti-self-duality conditions

B5
Js̃3

2r 2 , B85
J8s̃38

2r 82 ~26!

for constantsJ andJ8, which can be shown~by examination
of the asymptotic metric asr→` andr 8→`! to correspond
to the magnitudes of angular momenta in thex and y 4-
spaces. Thus, as claimed, we have constructed a rotating
supersymmetric solution describing a~1uMW,M2,M5,M5!
intersection.

III. NEAR-HORIZON LIMIT

For the remainder of the paper, we will be considering
near-horizon limit of the preceding solution with bo
r /R,r 8/R8!1, that is, a limit in which one approaches ne
both five-branes simultaneously. Note that the surfacer
5r 850 is at infinite affine distance on spacelike hypers
faces ~with finite u!. One may construct this near-horizo
solution with a scaling limit similar to that of@18#, and one
obtains

ds11
2 5~RR8!22@22~rr 8!2du1 Ĵs̃31 Ĵ8s̃38#dv1pdv2

1R2
dr2

r 2 1R82
dr82

r 82 1R2dV3
21R82d~V38!21dz2,

~27!

whereĴ5 l 82J andĴ85 l 2J8. In terms of the new coordinate

r5rr 8

z85
R2

AR21R82
log r 2

R82

AR21R82
log r 8

w5
v

R2R82
1-3
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c5c̃1
2Ĵ

R2 w

c85c̃81
2Ĵ8

R82 w, ~28!

the 11-metric becomes

ds11
2 522r2dudw1g2

dr2

r2 1Q2dw21R2dV3
2

1R82dV38
21dz21dz82 ~29!

with

Q25S pR4R842
Ĵ2

R2 2
Ĵ82

R82D ~30!

and

g5
RR8

AR21R82
. ~31!

This metric has the simple form of AdS33S33S33E2 with
LAdS3

52g22. In these coordinates, the near-horizon fo
form field strength is given by

F5dz∧S Vol~SR
3 !

R
1

Vol~SR8
3

!

R8
2

Vol~AdS3!

g
D ~32!

where Vol(X) denotes the volume form on the correspon
ing three-dimensional spaceX.

Note that up to this point we have not considered any
the coordinates to be periodically identified, other than
3-sphere identifications~17!. Thus there are no global subtle
ties in implementing the above coordinate transformat
~28!. In particular, one finds that the remnant of the angu
momentum in this near-horizon limit is a coordinate artifa
because the transition fromc̃,c̃8 to c,c8 removes all mix-
ing of v with the angular coordinates. This generalizes
similar observation made recently in the context of the ne
horizon limit of certain spinning five-dimensional blac
holes@14#. There is still a remnant of the gravitational wav
in the near-horizon metric in the form of thedw2 term. This
can also be removed by a coordinate transformation@11# but
we choose not to do this here because compactifications
typically require periodic identification ofw, in which case
the coordinate transformation that removes thedw2 term
could only be implemented locally. In general, the angu
momenta and gravitational wave of the full solution w
leave their imprint in the near-horizon solution in the form
the global identifications which complete the specification
the compactified geometry.

IV. NEAR-HORIZON KILLING SPINORS

Now we wish to determine the supersymmetry enhan
ment which arises in the near-horizon limit above by exp
02500
-

-

f
e

n
r
t

a
r-

ill

r

f

-
-

itly solving for the Killing spinors. Recall that the Killing
spinors satisfy

H D1
1

144
@eAGA

BCDE28eBGCDE#FBCDEJ e50 ~33!

where the covariant exterior derivative is given by

D5d1
1

4
eAvABCGBC[d1eAMA . ~34!

A suitable choice of frame 1-forms for the near-horiz
11-metric~29! is

eu5
r2

Q
du

ew5Qdw2
r2

Q
du

er5g
dr

r

ei5
R

2
s i ~ i 51,2,3!

ea5
R8

2
sa8 ~a518,28,38!

ez5dz ez85dz8 ~35!

where the formss i are defined as in Eqs.~19! with u,f,c,
and similarly for the primed angles. The matricesMA ap-
pearing in the covariant derivative~34! are

Mu52
1

2g
Gwr2

1

g
Gur

Mw52
1

2g
Gur

M r5
1

2g
Gwu

M15
1

2R
G23 ~and cyclic!

M185
1

2R8
G2838 ~and cyclic! ~36!

while Mz505Mz8 .
We now define matricesNA by

eANA[
1

144
~eAGA

BCDE28eBGCDE!FBCDE , ~37!

so that the Killing spinor equations~33! become @]m
1eA

m(MA1NA)#e50. In particular, using Eq.~32! one has
1-4
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Nz52
1

3 F 1

R
G1231

1

R8
G1828382

1

g
GuwrG . ~38!

Therefore the Killing spinorse will be independent ofz pro-
vided thatNze50, which is equivalent to

Ge5e ~39!

where

G5
g

R
Guwr1231

g

R8
Guwr182838. ~40!

Note that G251. One also finds thatNz85(1/2)Gzz8Nz .
Therefore the constraint~39! also guarantees that the Killin
spinors are independent ofz8. The remainingNA are

Nu5S 1

6g
GrwG1

1

3g
GrwDGz

Nw5S 1

6g
GurG1

1

3g
GurDGz

Nr5S 1

6g
GwuG1

1

3g
GwuDGz

N15S 1

6g
G1wru@12G#1

1

2R
G23DGz ~and cyclic!

N185S 1

6g
G18wru@12G#1

1

2R8
G2838DGz ~and cyclic!.

(41)

On theG51 eigenspace the remaining Killing spinor equ
tions now become

05S ]u2
r2

Qg
~Gwr2Gru!G1D e

05S ]w2
Q

g
GurG2D e

05~]r1r21GwuG1!e

05S ]u1
1

2
~sin cG321coscG31!G1D e

05S ]f1
1

2
~cosc sin uG231sin c sin uG31

1cosuG12!G1D e

05S ]c1
1

2
G12G1D e ~42!

and similarly for the equations in the primed angles, wh
we have defined the projection operators
02500
-

e

G65
1

2
~16Gz!. ~43!

The solution can be expressed in terms of a cons
spinorx subject to the single constraint~39!:

Gx5x. ~44!

As G commutes with bothGz andGwu this condition is com-
patible with the decomposition

x5~x1
11x1

2!1~x2
11x2

2! ~45!

where

Gzx656x6 , Gwux656x6. ~46!

Since G1 annihilates x2 , the corresponding Killing
spinors are independent of all coordinates exceptw. The w
equation is solved by

e25e~Qw/g!Gur
~x2

11x2
2!. ~47!

Similarly G2 annihilatesx1 ; so the corresponding Killing
spinors are independent ofw. The remaining equations~42!
are solved by

e15S 1

r
2

2ur

Qg
GruDVV8x1

11rVV8x1
2 ~48!

where

V~u,f,c!5eG21c/2eG13u/2eG21f/2 ~49!

and similarly forV8(u8,f8,c8).
Hence given the single constraint~39!, we conclude that

the near-horizon solution,~29! and ~32!, preserves one-hal
the supersymmetries. This represents a fourfold increase
that for the full solution presented in the first section.
course this counting assumes that only the angular coo
nates have periodic identifications. With a reduction onw,
thew dependence ofe2 rules these out as admissible supe
symmetries~naively at least!, and the near-horizon solutio
would only preserve one-quarter the supersymmetries, as
pected. We will discuss this further in Sec. VII.

Recall that the determination of Killing spinors in Sec.
was done for the general solution~4! without a particular
choice of metric functions. For the purpose of compari
with the present results it is convenient to repeat this anal
in polar coordinates~15!. With the assumption that the onl
xi andya dependence is on the respective radial coordina
r and r 8, i.e., g15g1(r ,r 8), g25g2(r 8), g35g3(r ), g4
5g4(r ,r 8,z), one finds that Eq.~12! is replaced by

e5g1
21/6g2

21/12g3
21/12g4

21/4VV8e0 . ~50!
1-5
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Hence, if we look at the near-horizon limit of these spino
we find

e5rr 8VV8e05rVV8e0 . ~51!

So, as expected, we see that these Killing spinors match
to thee1

2 spinors in Eq.~48!. That is, onlye1
2 supersymme-

tries may be extended into the asymptotic regions of
solution, e.g., larger.

V. KILLING SPINORS AND THE ISOMETRY
SUPERALGEBRA

Any supergravity solution can be presented as a confi
ration of tensors on superspace. The local isometry su
group of the solution is, by definition, the supergroup gen
ated by the Killing vector superfields, i.e. those vec
superfields which leave the superspace configuration inv
ant ~see@19# for details!. It might seem that a determinatio
of the isometry superalgebra of a given supergravity solu
would require that one first find its superspace presentat
which is a very laborious task. Fortunately, a shortcut
possible, at least for solutions that are purely bosonic.
method, which we explain below, relies on the fact that a
pair of Killing spinors determines a Killing vector field. W
shall now explain this point.

We begin by noting that given twoD511 Killing spinors,
z andz8, then theD511 vector field

v5 z̄GMz8]M ~52!

is a Killing field. The proof is as follows: We first observ
that

G~n!z5~21!n~n11!/2z̄G~n! ~53!

whereG (n) is the antisymmetrized product ofn of the Dirac
matricesGA. It follows, for any spinorz, that

DMz5]M z̄2
1

4
z̄GABvMAB5DM z̄, ~54!

and that a Killing spinorz satisfies

DMz5
1

144
z̄@GM

NPQR18dM
NGPQR#FNPQR. ~55!

It further follows from Eq.~54! that

DMvS5DMzGSz81 z̄GSDMz8. ~56!

Using the Killing spinor condition in both terms on the rig
hand side we deduce that

DMvS5
1

144
z̄@2GM

NPQR
S148dM

NdS
PGQR#z8FNPQR

~57!

and hence that

D (MvS)50 ~58!
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as required for a Killing vector field.
We now turn to the explanation how the above obser

tions can be used to determine the isometry superalgebra
given supergravity solution~and hence its local isometry su
pergroup! from knowledge of its Killing spinors. An expan
sion of theD511 supergravity action about the solution
interest yields currents (Tmn, j a

m ,Kmnp) with background co-
variant conservation conditions determined by the ga
transformations of the fluctuation fields. These currents m
belong to a supermultiplet with respect to the supersymm
tries of the background associated with Killing spinors. Th
statement can be formalized in terms of the once-integra
current algebra anticommutator

$QF~z!, j m%5
1

2
TmnGnz1

1

2
KmnpGnpz ~59!

where

QF~z!5E
S
dSmz̄ j m ~60!

is the ~fermionic! charge of the fluctuation fields associat
with the background Killing spinorz. For fluctuation fields
that fall off sufficiently rapidly towards the boundary at in
finity on the spacelike hypersurfaceS, these charges will be
time-independent by virtue of the conservation condition
j m and the Killing spinor condition obeyed byz.

Integrating the relation~59! and discarding the integra
over Kmnp on the grounds that it could be non-zero only
the presence of a membrane source, we find that

$QF~z!,QF~z8!%5QB~v5z8Gz! ~61!

where

QB~v !5E
S
dSmvnTm

n . ~62!

Since v is a Killing vector, this ~bosonic! charge is also
time-independent. What this shows is that the determina
of the linear combination of Killing vector fields associate
with any pair of Killing spinors is equivalent to the determ
nation of the linear combination of bosonic charges in
isometry superalgebra that appear in the anticommutato
any pair of fermionic charges in this algebra.

We shall now use this method to determine the isome
superalgebra of the near-horizon limit of our new rotati
brane solution and of some of its special cases. Of cou
there may be additional bosonic isometries that are not fo
as above. In this case the full isometry superalgebra will
the direct product of the superalgebra as determined by
above method with a purely bosonic algebra.

VI. ISOMETRY SUPERGROUP OF AdS33S33S3

Using the arguments of the last section we conclude
to determine the isometry supergroup of the near hori
geometry of our rotating brane solution, which is simp
AdS33S33S3, we need to construct the Killing vectors a
1-6
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sociated with the Killing spinors~47! and~48!. We will show
that the answer is given byD(2u1,a)3D(2u1,a).

To begin, we first observe that for any two Killing spino
e,e8 we have

ēGze85 ēGz8e850 ~63!

since they lie on theG51 eigenspace. In addition we hav

ē1GAe250 ~64!

for all A ~using, for example,$GA,Gz%50 for AÞz!. It fol-
lows that the only Killing vectors obtainable from Killing
spinors are

v115~v11
11 ,v11

12 ,v11
22! and v225~v22

11 ,v22
12 ,v22

22!
~65!

where, e.g.,v22
125 ē2

1GAe2
2ẽA .2 Here, we are using the dua

basis vectorsẽA :

ẽu5Qr22]u1Q21]w

ẽw5Q21]w

ẽr5
r

g
]r

ẽi5
2

R
j i

R

ẽa5
2

R8
ja

R

ẽz5]z , ẽz85]z8 ~66!

wherejR are left-invariant vector fields on eachS3 ~which
generate right actions! which are dual to the left-invarian
one-formss and whose explicit form is

j1
R52sin c]u1cosc cosecu]f2cot u cosc]c

j2
R5cosc]u1sin c cosecu]f2cot u sin c]c

j3
R5]c . ~67!

Later the right-invariant vector fieldsjL ~which generate left
actions! will also appear. They are given by

j1
L5sin f]u1cot u cosf]f2cosf cosecu]c

j2
L5cosf]u2cot u sin f]f1sin f cosecu]c

j3
L5]f . ~68!

2Note that our notation here means, for example, thate1
2 is the

Killing spinor depending onx1
2 . However, unlikex1

2 , e1
2 does not

have a simple projection underGwu, i.e., Gwue2
1Þ1e2

1 .
02500
The commutation relations are given by

@j i
R ,j j

R#52e i jkjk
R , @j i

L ,j j
L#5e i jkjk

L , @j i
R ,j j

L#50.
~69!

There are a number of useful identities in the computat
of the Killing vectors. First, we observe the fact that

x̄6Grx65x̄6G ix65x̄6Gax650 ~70!

becauseGr, G i andGa all commute withGwu. Also

x̄6Gux75x̄6Gwx750 ~71!

becauseGu andGw anticommute withGwu. Similarly

x̄6Gwr ix750, x̄6Gwrax750. ~72!

Finally note from the definition of the superscript indices
the constant spinors thatGwx656Gux6.

Now a calculation yields

v22
115

2

g
~x̄2

1Gux2
1!l 1

R

v22
125

2

g
~x̄2

1Grx2
2!l 0

R1
2

R
~ x̄2

1G ix2
2!j i

R

1
2

R8
~ x̄2

1Gax2
2!ja

R

v22
225

2

g
~x̄2

2Gux2
2!l 2

R ~73!

where

l 6
R 5

gQ

2r2 cosh
2Qw

g
]u1

g

2Q S cosh
2Qw

g
61D ]w

2
r

2
sinh

2Qw

g
]r

l 0
R52

gQ

2r2 sinh
2Qw

g
]u2

g

2Q
sinh

2Qw

g
]w

1
r

2
cosh

2Qw

g
]r. ~74!

These obey theSO(2,1) commutation relations

@ l 1
R ,l 2

R #522l 0
R @ l 0

R,l 6
R #56 l 6

R . ~75!

The v11 Killing vectors are

v11
115

2

g
~x̄1

1Gux1
1!l 1

L

1-7
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v11
125

2

g
~x̄1

1Grx1
2!l 0

L1
2

R
~ x̄1

1G ix1
2!j i

L

1
2

R8
~ x̄1

1Gax1
2!ja

L

v11
225

2

g
~x̄1

2Gux1
2!l 2

L ~76!

where

l 1
L 5S gQ

2r4 1
2u2

Qg D ]u1
g

Qr2 ]w2
2ur

Qg
]r

l 2
L 5

gQ

2
]u

l 0
L5

r

2
]r2u]u ~77!

which satisfy the standardSO(2,1) commutation relations

@ l 1
L ,l 2

L #52l 0
L , @ l 0

L ,l 6
L #57 l 6

L ~78!

and in addition commute with theR generators. In deriving
Eqs.~76! we have used the fact that

V21G iV[G jRj
i ~V! ~79!

with

Rj
i ~V!j i

R5j j
L . ~80!

From Eqs. ~73! and ~76! we conclude that the near
horizon isometry supergroup is given by

D~2u1,a!L3D~2u1,a!R ~81!

where

a5
R8

R
~82!

which is the ratio of the radii of the two 3-spheres.

VII. KILLING SPINORS AND REDUCTION

One might consider constructing solutions of lowe
dimensional supergravity fromD511 supergravity solutions
when the latter have Killing symmetries. Here, we wish
consider the effect of such a dimensional reduction on
Killing spinors. Naively, one expects that the only Killin
spinors to survive will be those which are independent of
internal coordinates on which one is reducing. More p
cisely, when reducing on a Killing vectork, we must require
that the Killing spinors have a vanishing Lie derivative und
k. The Lie derivative of a spinore with respect to an arbi-
trary vector field is ill-defined, but with respect to a Killin
vector field it is given by~see, e.g.,@5#!
02500
e

e
-

r

Lke5 i kDe1
1

8
Gmn~dk!mne ~83!

whereD is the covariant derivative defined in Eq.~34!, and
(dk) is the exterior derivative of the 1-formkmdxm dual to
km]m . Killing spinors satisfy the supersymmetry Killing
equations (Dm1Nm)e50. Thus, a vanishing Lie derivative
of e implies

05kmDme1
1

8
Gmn~dk!mne

5S 1

8
Gmn~dk!mn2kmNmD e[Pe.

~84!

In other words, the vanishing Lie derivative condition r
duces to a simple algebraicG-matrix constraint (Pe50) on
the Killing spinors. Dimensional reduction will therefore re
duce the number of Killing spinors to those satisfying th
constraint. The details will, of course, depend on the solut
and the particular choice ofk; so we shall illustrate the pro
cedure with a number of simple examples.

A. Zero angular momentum

The non-rotating near-horizon metric~29! may be written
as

ds11
2 52S r2

Q
duD 2

1S Qdw2
r2

Q
duD 2

1g2S dr

r D 2

1
R2

4
~s1

21s2
21s3

2!1
R82

4
~s18

21s28
21s38

2!

1dz21dz82. ~85!

There are a number of simple Killing vectors upon which w
will consider reducing the solution:]z , ]z8 , ]w , ]c and]c8 .
Note that demanding that~any of the first three of! these
Killing vectors have closed orbits will imply global identifi
cations on the AdS33S33S33E2 geometry.

The reduction on]z or ]z8 is trivial. In this case,dk50
and so the constraint~84! reduces toPe52Nz,z8e50. How-
ever, this is equivalent to the constraint~39! already imposed
on all of the Killing spinors. Of course, Eq.~39! was derived
from requiring the Killing spinors be independent ofz and
z8. Hence it is no surprise that all of the Killing spinor
survive unchanged when the theory is reduced on these
directions; i.e., there is no reduction in the number of sup
symmetries.

Next consider a reduction on]w . First let us note that the
metric has precisely the form that one would adopt for
standard Kaluza-Klein compactification for a reduction
w. The reduced metric would correspond to Eq.~85! without
the (ew)2 term, i.e.,

ds252S r2

Q
duD 2

1g2S dr

r D 2

1¯ , ~86!
1-8
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and the off-diagonal componentgwu would become a gaug
field 2r2/Qdu in the lower-dimensional theory. As is ap
parent in Eq.~86!, AdS3 is replaced by AdS2 in the reduced
geometry. If the frame~35! ~without ew! is chosen to de-
scribe the reduced geometry, the form of the Killing spino
will be unchanged up to the additional constraint~84!. In this
case, we havek5Qẽw , and as a 1-form,k5Qew. Hence
one finds dk5(2Q/g)euer and, from Eq. ~84!, P
5(Q/g)GurG2 . Hence the Killing spinors surviving the re
duction must satisfyG2e50 which picks out thee1 spinors
in Eq. ~48!. This result then agrees with the naive expec
tion that one should chose spinors independent ofw.

Reducing on ]c also produces an interesting lowe
dimensional solution.~Of course, a reduction on]c8 com-
pletely parallels the following analysis.! Recalling the defi-
nition ~19! for thes i ’s, we note that the metric~85! is again
adapted for a Kaluza-Klein reduction onc. In this case, the
reduced metric becomes

ds25
R2

4
~s1

21s2
2!1¯

5
R2

4
~du21sin2 udf2!1¯

~87!

and so one of theS3 factors is replaced byS2 in the reduced
geometry. The latter also carries a monopole gauge field a
ing from gcf . Here, we havek5(R/2)ẽ3 and, as a 1-form,
k5(R/2)e3. Then Eq.~84! yields P5 1

2 G12G2 , and so the
Killing spinors surviving this reduction again satisfyG2e
50. Thus thee1 spinors correspond to supersymmetries
the reduced geometry.

At first sight, this is a surprise since it is thee2 spinors
~47! which are independent ofc. The resolution of this
puzzle comes from realizing thate1 ande2 cannot be used a
orthonormal 1-forms in the reduced theory, as they arec
dependent—see Eqs.~19!. Rather they should be replaced b
the 1-forms, e.g.,

ê15
R

2
sin udf, ê25

R

2
du. ~88!

In this case, the two sets of 1-forms are related by a sim
rotation acting in the 1-2 subspace

êa5La
beb with L5S cosc sin c

2sin c cosc D
5expF S 0 1

21 0DcG . ~89!

If Lorentz vectors are rotated byLa
b5exp(va

b), then the
corresponding transformation of spinors is

L̃5expS 1

4
vabG

abD . ~90!

Specifically for Eq.~89!, we have
02500
s

-

is-

le

L̃c5expS 2
1

2
G21c D . ~91!

Hence reducing on]c requires modifying the frame, and i
doing so the precise form of the Killing spinors changes

ê5L̃ce5e2G21c/2e. ~92!

However, this transformation precisely cancels thec depen-
dence of thee1 spinors, and thus theê1 appear as Killing
spinors in the reduced theory. Here, we should note
since G2 commutes withL̃c , the form of the constraint
G2e50 is identical for bothe and ê.

Note that in both of the above two reductions, the co
straint ~84! reduces the number of supersymmetries by 1
Furthermore, in selecting out thee1 spinors, the reduced
supersymmetries include those, i.e.,e1

2 , that can be ex-
tended into the asymptotic regions of the full solution.

Having obtained the Killing spinors in the reduced so
tion we can determine the corresponding superalgebras
following the steps in Secs. V and VI. In both of the abo
cases, the Killing spinors have the formê1 . The Killing
vectors are then obtained by determining

ē̂1Gaê1 ẽ̂a ~93!

where the sum is now over all indices excluding the coor
nate that one reduces on and theẽ̂a are the dual vector fields
in the reduced spacetime.

Let us first consider the reduction on]w to give
AdS23S33S3. Although the frame~35! without ew is a suit-
able frame for the reduced spacetime, the dual vector fie
~66! are not: instead we must now useẽ̂u5Qr22]u . Taking
this into account we find the Killing vectors as in Eqs.~76!
with the only difference being that we drop]w from l 1

L in
Eqs.~77!. This means that the superalgebra contains a fa
D(2u1,a). Combining this with the bosonic symmetries th
do not arise from Killing spinors, we conclude that the sy
metry algebra is given by

D~2u1,a!3SU~2!3SU~2!. ~94!

Next consider the reduction on]c to obtain
AdS33S23S3. We again obtain Eqs.~76! but now with the
Killing vectors jL replaced by Killing vectors obtained b
settingc50 and dropping]c terms in the expressions forjL
in Eqs.~68!. In this case the symmetry algebra isD(2u1,a)
3SO(2,1)3SU(2).

B. Adding angular momentum

Recall that the remnants of the angular momenta w
eliminated by the coordinate transformation~28! in the near-
horizon limit. After reduction onw, c or c8, such a trans-
formation would not be allowed and so we should reconsi
these reductions in the presence of the angular momen
First, we must insert the angular momenta back in the me
~85!. This is easily done as we simply undo part of the ori
nal coordinate transformation~28!, reintroducingc̃,c̃8:
1-9
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c5c̃1
2Ĵ

R2 w̃

c85c̃81
2Ĵ8

R82 w̃

w5w̃ ~95!

which in our angular forms yields

s35s̃31
2Ĵ

R2 dw̃

s385s̃381
2Ĵ8

R82 dw̃. ~96!

We distinguishw andw̃ here because it will be necessary
distinguish the Killing vectors]w and] w̃ later on. Now the
metric ~85! becomes

ds11
2 52S r2

Q
duD 2

1S Qdw̃2
r2

Q
duD 2

1
R2

4
S s̃31

2Ĵ

R2 dw̃D 2

1
R82

4
S s̃381

2Ĵ8

R82 dw̃D 2

1¯ . ~97!

In this form, the metric is still adapted for a Kaluza-Kle
reduction onc̃ ~or c̃8!. A reduction onk5]c̃5]c proceeds
exactly as in the previous section.3 The only difference is
that an extra gauge field 2Ĵ/R2dw̃ appears on the AdS3
space. However, this is trivial since it is a constant gau
field.

The reduction on

k5] w̃5]w1
2Ĵ

R2 ]c1
2Ĵ8

R82 ]c8 ~98!

turns out to be more interesting.4 For a Kaluza-Klein reduc-
tion on w̃, we must reorganize the metric~97! into the stan-
dard form. We do so by introducing new 1-forms

êu5
r2

Q̃
du2

Ĵ

2Q̃
s̃32

Ĵ8

2Q̃
s̃38

3Actually, at this point, we should note that the constraint eq
tion ~84! is coordinate invariant, as well as Lorentz invariant—s
below.

4The Killing vector k will have closed orbits of radiusQ if the
following identifications are made: (w,c,c8)5„w12pQn1 ,c

14pn21(4p ĴQ/R2)n1 ,c814pn31(4p Ĵ8Q/R82)n1…, where ni

are integers. As a result note that the global geometry of the u
duced space is no longer AdS33S33S33E2.
02500
e

êw5Q̃dw̃2
r2

Q̃
du1

Ĵ

2Q̃
s̃31

Ĵ8

2Q̃
s̃38

ê35
1

2s
s̃3

ê385
1

2c
s̃38 ~99!

with which the metric~97! may be written as

ds11
2 5~ êw!22~ êu!21~ ê3!21~ ê38!21¯ . ~100!

Here,Q̃25Q21( Ĵ/R)21( Ĵ8/R8)2. The reduced metric now
comes from dropping (êw)2 in Eq. ~100! above. In this case
the remaining off-diagonal terms in (êu)2 cannot be removed
by a coordinate transformation, even locally. Hence the
duced geometry is not a simple product of factors. Howev
we will see that the structure of the isometry supergoup
identical, discounting changes in purely bosonic factors
related to Killing spinors, to that of theJ5J50 case, despite
the fact that the metric has a direct product structure only
the J5J850 limit.

To determine the surviving Killing spinors, we need
determine the constraint matrixP in Eq. ~84!. The simplest
approach, here, is to note thatP is coordinate invariant and
Lorentz covariant. Hence the constraint will be the same
that calculated for Eq.~98! before any change of frames an
coordinates. Furthermore, sinceP is linear ink and since we
saw in the previous section that the constraints for reduc
on ]w , ]c and ]c8 all coincided, precisely the same con
straint arises here, namely,G2e50. Thus, once again, the
e1 Killing spinors correspond to supersymmetries in the
duced solution.

We must again be careful about the precise form of
Killing spinors in the reduced theory, as the frame~35! used
in deriving Eq.~48! cannot be used after the reduction. O
change which must be accounted for is the introduction
Eqs. ~99! for the Kaluza-Klein reduction. A second slightl
more subtle change comes from the coordinate transfor
tion ~95! which introduces variousw̃ dependences which w
have not explicitly accounted for. First of all, in Eqs.~48!
and ~49!, one finds

V~c,u,f!5expS Ĵw̃

R2 G21D Ṽ~c̃,u,f!

V8~c8,u,f!5expS Ĵ8w̃

R82 G2818D Ṽ8~ c̃8,u8,f8!.

~101!

Thus after the coordinate change the Killing spinorse1 de-
pend onw̃. However, in the same way,w̃ now also appears
in the 1-formse1, e2, e18 ande28. For example,

-

e-
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e15
R

2
F2sinS c̃1

2Ĵw̃

R2 D du1cosS c̃1
2Ĵw̃

R2 D sin u dfG .

~102!

Hence, in the reduced theory, these 1-forms would be
placed by, e.g.,ê1, ê2, ê18 andê28 defined using thes-forms
defined usingc̃—see Eqs.~19!. As in thec reduction above,
these two sets of 1-forms are related by rotations acting
the 1-2 and 18-28 subspaces. One finds

S ê1

ê2D5L12S e1

e2D ~103!

with

L125S cosS 2Ĵw̃

R2 D sinS 2Ĵw̃

R2 D
2sinS 2Ĵw̃

R2 D cosS 2Ĵw̃

R2 D D 5expF S 0 1

21 0D 2Ĵ

R2 w̃G
~104!

and similarly forL1828 . The corresponding spinor rotation
~90! are then

L̃125expS 2
Ĵw̃

R2 G21D , L̃18285expS 2
Ĵ8w̃

R82 G2818D .

~105!

Hence this rotation, which removes thew̃ dependence in the
angular frames, at the same time removes thew̃ dependence
of the e1 spinors~and introduces it into thee2!. The net
effect is that in Eq.~48!, VV8→ṼṼ8.

Now we also had to account for the change of fram
~99!. Since both Eqs.~35! and~99! describe the same metric
they must be related by a Lorentz transformation. First o
finds that in this four-dimensional subspaceêa5(L4)a

beb

with

L45S z z2z21 2x/z 2y/z

0 z21 x/z y/z

2x 2x 1 0

2y 2y 0 1

D ~106!

where we have introduced the notation

z5
Q̃

Q
, x5

Ĵs

Q
, y5

Ĵ8c

Q
. ~107!

The latter are not all independent, but rather from the d
nition of Q̃, they satisfy the constraintz2511x21y2.

To obtain the corresponding Lorentz transformation
the spinors as in Eq.~90!, it is convenient to decomposeL4
asL45BW whereB is a boost,
02500
e-

in

s

e

-

n

Ba
b5S 1

2
~z1z21!

1

2
~z2z21! 0 0

1

2
~z2z21!

1

2
~z1z21! 0 0

0 0 1 0

0 0 0 1

D , ~108!

andW is the remaining transformation:

Wa
b5S 11

x21y2

2

x21y2

2
2x 2y

2
x21y2

2
12

x21y2

2
x y

2x 2x 1 0

2y 2y 0 1

D .

~109!

Now one findsB5exp(vB) andW5exp(vW) where

~vB!ab5S 0 2l 0 0

l 0 0 0

0 0 0 0

0 0 0 0

D
~vW!ab5S 0 0 x y

0 0 x y

2x 2x 0 0

2y 2y 0 0

D ~110!

with l5 log(z). Given these generators, we can write t
corresponding spinor transformations:L̃5B̃W̃ with

B̃5expS 1

2
log zGwuD5z1/2L11z21/2L2

W̃5exp@~xGu31yGu38!L1#

511~xGu31yGu38!L1 ~111!

where we have defined the projection operators

L65
1

2
~16Gwu!. ~112!

So given the original Killing spinor solutions~47! and
~48!, they are transformed to the new frame by

ê5L̃12L̃1828L̃4e5L̃12L̃1828B̃W̃e. ~113!

Given that all of these transformation matrices comm
with G2 , the constraintG2e50 takes precisely the sam
form on the ê spinors. Hence the supersymmetries of t
solution in the reduced theory are given byê1 . Explicitly
Eq. ~113! yields
1-11
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ê15S 1

r
@z1/21z21/2~xGu31yGu38!#2

2ur

AzgQ
GruD

3ṼṼ8x1
11

r

Az
ṼṼ8x1

2 . ~114!

Note that the Killing spinorê1
2 , which should correspond to

the supersymmetry which extends to the full rotating so
tion in the reduced theory, still has essentially the sa
simple form as withJ5J850.

Having established the explicit form of the Killing spino
we deduce that the full isometry superalgebra in the redu
spacetime is nowD(2u1,a)3U(1)3U(1). Recalling Eq.
~94! we see that the effect of the rotation in each of the t
4-planes is to break the extra bosonicSU(2) rotational sym-
metries of these 4-planes toSO(2)>U(1), without affecting
the supersymmetry.

VIII. DISCUSSION

We have found a new family of 1/8 supersymmetric r
tating M-brane solutions, with two independent rotation p
rameters. Many previous supersymmetric rotating brane
lutions can be found from thea→0 limit of this new
solution by a combination of dualities and compactificatio
The near-horizon limit of the new rotating brane solution
the 1/2 supersymmetric AdS33S33S33E2 vacuum, irrespec-
B

t.

. K

D

e
e

02500
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-
-
o-
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tive of the rotation parameters~within the limits for which
there exists a non-singular event horizon!. There is thus a
fourfold increase of supersymmetry near the horizon,
though this is invariably reduced to a twofold increase on1

compactification by the identifications required to perfo
the reduction. Non-trivial S1 compactifications lead to a re
placement of AdS3 by AdS2 or S3 by S2 in the near-horizon
limit. The possible near-horizon geometries obtainable t
way were classified in@9# for non-rotating intersecting
branes; we now see that the same results apply in the rota
case, at least locally.

Finally we note that the~1uMW,M2,M5,M5! configura-
tion of M-theory has a type IIB dual as~1uIIW,D1,D5,D5! so
that the entropy associated with the event horizon is expe
to correspond to a counting of D-brane microstates along
lines of @20#. It would be of interest to see how the rotatio
affects these calculations. We leave this to future investi
tion.
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@14# M. Cvetič and F. Larsen, ‘‘Near-horizon geometry of rotatin

black holes in five dimensions,’’ hep-th/9805097; ‘‘Mi
crostates of four-dimensional rotating black holes from n
horizon geometry,’’ hep-th/9805146.
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