PHYSICAL REVIEW D, VOLUME 59, 025001

Supersymmetry of rotating branes
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We present a new 1/8 supersymmetric intersecting M-brane solutidd=o11 supergravity with two
independent rotation parameters. The metric has a non-singular event horizon and the near-horizon geometry is
AdS;xS*xS®X 12 (just as in the non-rotating cagséNe also present a method of determining the isometry
supergroup of supergravity solutions from the Killing spinors and use it to show that for the near horizon
solution it isD(2|1,a) X D(2|1,&) wheree is the ratio of the two 3-sphere radii. We also consider various
dimensional reductions of our solution, and the corresponding effect of these reductions on the Killing spinors
and the isometry supergrou§0556-282(98)07124-0

PACS numbeis): 11.30.Pb, 04.65:€, 04.70.Dy, 11.25:w

I. INTRODUCTION where « is the ratio of the radii of the two 3-spheres. Each
D(2|1,«) factor contains anSl(2;R)XSU(2)XSU(2)
Many of the (p+2)-dimensional anti—de Sitter space bosonic subgroup, witlw being the relative weight of the
(AdSp+2)><SD*p*2 Kaluza-Klein (KK) vacua of two SU(2) factors(see e.g[10]). In the limit in which one
D-dimensional supergravity theories are known to arise a§® radius goes to infinity we recover the AgSSx E°
near-horizon limits of 1/2 supersymmetgicbrane solutions vacuum.
[1]. If the D-dimensional supergravity is non-maximal, then By adding momentum to the 1/4 supersymmetric
its p-brane solutions can usually be viewed as intersection§l|M2,M5,M5) configuration(along the string intersection
of branes of a maximal supergravity theory, e.g., of M-we arrive at the 1/8 supersymmetfifMW,M2,M5,M5) in-
braneg 2]. An example is the 1/2 supersymmetric self-dualtersection. A curious feature of this case is that the near-
string solution of(1,1) D=6 supergravity, for which the horizon limit is again the 1/2 supersymmetric AGS*x S
near-horizon geometry is Ad8S® [3]. This can be inter- X2 vacuum because a wave on Ad%n be removed by a
preted as the 1/4 supersymmetfigM2,M5) string intersec- coordinate transformatiofl1]; this is simply a reflection of
tion of an M2-brane with an M5-brane, for which the near-the fact that there are no propagating gravitons in three di-
horizon limit is a 1/2 supersymmetric Ag8S3x ° vacuum  mensions. The main purpose of this paper is to present a new
[4]. class of 1/8 supersymmetrit|MW,M2,M5,M5) solutions of
The (1]M2,M5) intersection is actually a special case of D=11 supergravity with two independent rotation param-
the 1/4 supersymmetrid|M2,M5,M5) intersection in which ~ eters. For an appropriate choice of the functions parametriz-
the M2-brane intersects two M5-branes. The presence of thiag this class of solution there is a non-singular Killing ho-
M2-brane is associated in this case with a “generalized harrizon. The near-horizon limit is again the Ag8S*xS®
monic” function of the two sets of M5-brane coordinates X > vacuum. The isometry group is therefore again
[5,6]. For an appropriate choice of this function there isD(2|1,a), XD(2|1,a)g.
again a non-singular horizon, near which one finds a 1/2 A number of supersymmetric rotating black hole and
supersymmetric AdS<SExSEx 2 vacuum of D=11 brane solutions have been found previously. For example,
supergravityt As argued in[9], and confirmed here, the there is a supersymmetric rotating black hole solutiomDof

isometry supergroup of thi® =11 vacuum solution is =5 supergravityf 12], which can interpreted as art &duc-
tion of a rotating self-dual string solutidd3,14). It can also
D(2|1,@) XD(2|La)r (1 be interpreted as the dimensional reduction of a rotating

(0OM2,M2,M2) intersection[15]. Many of these rotating

brane solutions are related by compactification and/or duality

to some special case of our rotatitMwW,M2,M5,M5) in-
*Permanent address: Department of Physics, McGill Universitytersection. For example, the rotati(’@MZ,MZ,MZ) intersec-

Montreal, PQ, Canada H3A 2T8. o ~ tion is dual to a rotating1/MW,M2,M5) intersection, which
TPermanent address: DAMTP, University of Cambridge, can then be dimensionally reduced to yield the rotating self-
Cambridge CB3 9EW, U.K. dual string[15]. But the rotating(1MW,M2,M5) intersec-

This was originally found as an AdSS*xS*x ! solution of  tion is just the special case 6f[MW,M2,M5,M5) in which
the heterotic string theory7] and was shown ifi8] to be the near- 0ne M5-brane is omitted and its associated rotation param-
horizon limit of aD=10N=1 1/4 supersymmetricl|F1,NS5,NS5  eter set to zero. Thus, the new rotating brane solution pre-
intersection of a(fundamental string with two (Neveu-Schwarz ~ sented and analyzed here constitutes a generalization of
five-branes. many previous results on rotating branes.
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II. ROTATING SUPERSYMMETRIC INTERSECTING

M-BRANES 0=0; "9aF i+ 93 "0iFij+ 405" >

C2
Fij+ > €ijFu

Consider two five-branes and a membrane intersecting ac-

cording to the pattern 0=g; "diFig
M5: 1 2 3 4 5 . . C1C2
+g &aFa +aag Fa + €a 5': S|t (8)
M5: 1 7 8 9 10. SR 2
M2: 1 6. (2 One may note the nesting of the lower dimensional objects

within the higher dimensional ones: each five-brane is local-

Our new 1/8 supersymmetric M-brane solution, which has,eq within the world volume of the other oriexcept along
momentum flowing along the string intersection and carriesyg siring intersectiopand the membrane is localized within
angular momentum in the relative transverse directions OBoth of the five-brane world volumes. while the wave is lo-
the five-brane¢{2,3,4,3 and{7,8,9,10), can be found within  .»jizeq within the world volumes of both five-branes and the

Fhe following ggneral class of solutions bf= ll_supergrav- membrane. Note that the dependence of the wave-pfile
ity. The bosonic sector of thB =11 supergravity Lagrang- o, the string directiow is completely arbitrary. This part of
ian is given by{16] the solution is constructed following the standard harmonic
1 2 function rule[2]. The new aspect of the solution, generaliz-
\/__g< R— _FZ) + == ing [17], comes from the introduction of the 1-forf& With
12 (72) an appropriate choice for the solution of E®), one can
X M1 MaNp N4P1PoPE introduce an_gulgr momentum into bot'h of theé spaces. In
! order to maintain supersymmetry, this angular momentum
will involve simultaneous rotation in two orthogonal 2-
planes within each of these spaces.
Now we discuss the supersymmetries of thbiss11 su-

M FnpgnAr e, (B

(in these conventiond*F+FOF=0) and the equations of
motion are solved by

dsilzgils(gzgs)m pergravity solution. First we write the 11-metric in the form
X[(919293) *(—2dudy +g,dv?+2Adv) dsi;= —e'e"+ee’ +e’e’+e'e +ee” 9)
+g; 'dZ+g, "dx-dx+g3 ‘dy-dy] with the orthonormal 1-forms

c QU= g 13 - 164~ 12 g yu— A
FM):El{dUdUdgfl—Clcz*xdgz—Cg*ydgg 01 (9293) 794 )

11 e’ =91 ¥%(g,9s) Y89} dv—g; (du—A)]
+dv0AOdg; “—g; "dvOdA}0dz (4)

e?=q 13 1345
where the functionsy,(x,y), 92(y), 93(X), 94(v.,X,y,2) 91 7(9203)

and the 1-form ei:g%/fsggllegémdxi
A=A (x,y)dX +A,(x,y)dy® 5 _
i(X,y) (x,y)dy ©) o= g5y 13 Yoy, (10

will be specified below. The constantg,c, are signs and, A i , , ) )
and x, are the Hodge duals on the two Euclidean 4—space%et I'" with A=(u,v,2,i,e) be the Dirac matrices in this
with Cartesian coordinatesk and y® [e.g., *,dgs asis. The Killing spinor equations are then
=(1/6)dx dx dxke'X 5,g,].

The functionsg,(y) andgs(x) are harmonic on their re-
spectiveli* spaces and correspond to the two five-branes.
The function g;(x,y) corresponding to the membrane is
“generalized harmonic']5,6]; i.e., it satisfies

1
D+ 1526 A% PF-8e T PEFgepg e=0 (11)

where D is the Lorentz covariant exterior derivative. The
solutions are simply written as

—1g2 —1g2
Vi,+9g,°V =0. 6) 16— _ _
(95 °Viyt+9; (y)]gl ( e=0; 1/6gz 1/1293 1/12g4 1/460 (12)

The functiong,(v,X,y,z) corresponding to the gravitational h . . isfving th .
wave is also a “generalized harmonic” function, although in WNere€o is a constant spinor satisfying the constraints

a slightly more general sense than used hitherto. Specifically,

u . _
it solves the equation I'"ey= ¢,
_ _ B .
(95 lV<2><)+ 92 1V(2y)Jr 01(9293) ~9%]g4=0. 7) I'Zey=Cye€0
The field strengtlF=dA of the 1-formA satisfies I (x)€0=C2€0
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I’y €0=C1Cs€g (13 94=1+pg.03 (22)
where for some constanp. In solving Eqgs.(8), we choose
- 1 Y /
F(x):ﬂsijklrljkli [‘(y):ﬂsaﬁyﬁraﬁyﬁ_ (14) A=H'(y)B(x)+H(x)B'(y) (23

. . whereH andH' are harmonic functions,
The general solutiori4) still preserves 1/8 supersymmetry

because these four conditions are not all independent. This 2 |72
follows since the 11-dimensional Dirac matrices satisfy H=1+—, H'=1+—, (24)
[uvz123412'3'4" _ 1 r r
In order to fully specify a solution dd = 11 supergravity,
we have still to choose the harmonic functiansgs, solve
the “modified harmonic” equations fay, andg,, and solve
Egs.(8) for A. We start by replacing the-coordinates with
polar coordinates such that

andB andB’ are 1-forms, on their respecti# spaces. In
order to solve Eqs(8), the 2-form field strengthsG=dB
andG’=dB’, must then satisfy

G+x,G=0, G'+*x,G'=0 (25
d(EY=dr?+r2d03 (15) ,
where we have restricted to the case=c,=1, for conve-
whered(3 is the metric on the 3-sphere. A similar primed nience. One solution of these anti-self-duality conditions is
set of polar coordinates is chosen for thespace. Here, in ~ -,
order to facilitate the analysis of the Killing spinors in the ~Jog 173

— ! e
next section, we choose coordinates®nsuch that B= 2r?" B

(26)

dQ§=1(d92+dz~/xz+ d¢p?+2 cosfdgd ) (16) for constants) andJ’, vyhich can be showtby examination

4 of the asymptotic metric as—o andr’—«) to correspond
to the magnitudes of angular momenta in theandy 4-
spaces. Thus, as claimed, we have constructed a rotating 1/8
supersymmetric solution describing (4]MW,M2,M5,M5)

with

0<f<m, 0=¢<2m, O0<y<4m, (17

intersection.
and similarly for the primed coordinates. This metric may be
written in the manifesth§U(2)x SU(2) invariant form 1. NEAR-HORIZON LIMIT
1 For the remainder of the paper, we will be considering a
dQ%zZ(ﬁerTrng&% (18)  near-horizon limit of the preceding solution with both

r/R,r'/R'<1, that is, a limit in which one approaches near
both five-branes simultaneously. Note that the surface
=r'=0 is at infinite affine distance on spacelike hypersur-
faces(with finite u). One may construct this near-horizon
solution with a scaling limit similar to that dfL8], and one
obtains

whered; (i=1,2,3) are the three left-invariant one-forms on
the groupSU(2):

1= —sin yd O+ cos i sin od¢

0,=cosydh+sin ¢ sin 6d¢ ds2,= (RR) "3 —2(rr ")2du+ 354+ 3'5}]dv + pdv?

T3=dy+cosfde. 19 dr? dr'?
os=dy ¢ 19 +R? -7 + R + R¥OS+ R 2d(Q5) 2+ dZ,

We now choose the harmonic functions corresponding to

the five-branesg, andgs, to have single centers: 27
03=1+R%r? g,=1+R'%r'? (200 whereJ=1'2J andJ’ =12J'. In terms of the new coordinates
where constant® andR’ are related to five-brane charges. p=rr’
We will consider a solution of the remaining equations such
that the singularities at=0, r'=0, andr=r"=0 are not ) )
genuine curvature singularities but rather merely coordinate S = log r — log 1’
singularities. To this end, we solve E@) by setting JRZ+R'2 JRZ+R'2
01=0293. (21 v

. W= —>—>

In addition we take R’R’?
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23 itly solving for the Killing spinors. Recall that the Killing
Y=+ rRzW spinors satisfy
1
2y D+ 15l TA%PF—-8e I PF]Fpcpe e=0  (33)
lﬂ’zlﬂ"f‘WW, (28

where the covariant exterior derivative is given by
the 11-metric becomes

1
dp? D=d+ —efwapBC=d+e*M,. (34
d2,= — 2p2dudwt 12— + Q?dwP+ RZd02 4
1 p Y Q-dw 3
A suitable choice of frame 1-forms for the near-horizon

+R'2dQ%*+dZ2+dz'2 (290  11-metric(29) is
with 2
e'= p—du
32 372 Q
J J
Q%= DWR,A—Q—@ (30 P2
e'=Qdw— —du
Q
and
d
RR - e P
=, p
7 REARE
- R
This metric has the simple form of Ag8S*x S*x E? with e'= 5 Oi (i=1,2,3
AAd83: —y7~2. In these coordinates, the near-horizon four-
form field strength is given by R’
i e"‘:?U; (a=1",2",3)
Vol(Sz) Vol(Sz)  Vol(Ad
F=dz0 Fﬁ e (AdS) (32 :
Y e=dz €& =dz (35)

where Vol(X) denotes the volume form on the correspond-\,here the formsr, are defined as in Eq$19) with 6,6,

ing three-dimensional spacée _ and similarly for the primed angles. The matridés, ap-
Note that up to this point we have not considered any Ofpearing in the covariant derivativg4) are
the coordinates to be periodically identified, other than the

3-sphere identificationd 7). Thus there are no global subtle- 1

ties in implementing the above coordinate transformation My=— 5" ——T"%
(28). In particular, one finds that the remnant of the angular
momentum in this near-horizon limit is a coordinate artifact

because the transition from, /' to ,4' removes all mix- My=—5-T"
ing of v with the angular coordinates. This generalizes a
similar observation made recently in the context of the near- 1
horizon limit of certain spinning five-dimensional black M =—Twu
holes[14]. There is still a remnant of the gravitational wave
in the near-horizon metric in the form of titav? term. This
can also be removed by a coordinate transforme_[ﬂam put _ M,= irzs (and cyclig
we choose not to do this here because compactifications will 2R
typically require periodic identification ofs, in which case
the coordinate transformation that removes the? term
could only be implemented locally. In general, the angular
momenta and gravitational wave of the full solution will
leave their imprint in the near-horizon solution in the form of while M,=0=M,, .

the global identifications which complete the specification of We now define matricebl, by
the compactified geometry.

l ’ ’
M, = ﬁl“z 3" (and cycli9 (36)

1
e*Np= _144(9AFABCDE_ 8e°I“PF)Fgcpe,  (37)
IV. NEAR-HORIZON KILLING SPINORS

Now we wish to determine the supersymmetry enhanceso that the Killing spinor equationg33) become [d,
ment which arises in the near-horizon limit above by explic-+ eA#(MAnL Na)]e=0. In particular, using Eq.32) one has
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111 1 1
_ _ T |-y 1/2'3' _ T puwp
N, 3 RF +R,F 71“ . (38

Therefore the Killing spinore will be independent of pro-
vided thatN,e=0, which is equivalent to

Te=¢€ (39

where
F:%FUW[)123+ %FUWpl’z'S’_ (40)

Note thatI'?=1. One also finds thaN, =(1/2)['?*N,.

Therefore the constrairiB9) also guarantees that the Killing

spinors are independent »f. The remaining\, are

1 .
1"1WPU[1—]"]+§F23)FZ (and cyclig

rl’Wpu[l_F]+ ir2’3' I'? (and cyclig
6y 2R’ .
(41)

On thel'=1 eigenspace the remaining Killing spinor equa-

tions now become

0=

2
au—%(FWP—FP”)FJr)e

Q
Oz(é’w— ;FUPF) €

0=(d,+ p I e

1
0=|d,+ E(sin T2+ cos z/;l"?’l)l“+> €
1 . . .
0={d4+ 5 (cosy sin 6T %+ sin ¢ sin 63!
+cos 0F12)F+> €
1 1
0=|d,+ EF T, e (42)

and similarly for the equations in the primed angles, where

we have defined the projection operators

PHYSICAL REVIEW 39 025001

1
=310, 43)

The solution can be expressed in terms of a constant
spinor y subject to the single constrait®9):

Ix=x. (44)

As I" commutes with botih'? andI"™" this condition is com-
patible with the decomposition

x=(xi+x)+(xI+x0) (45)
where

Mya=xx., TV ==x". (46)

Since I', annihilates y_, the corresponding Killing
spinors are independent of all coordinates exeepiThe w
equation is solved by

6,=e(QW/7)Fup(Xf+X:). (47)

Similarly I' _ annihilatesy ., ; so the corresponding Killing
spinors are independent of. The remaining equationg?)
are solved by

6+:<E_2£FPU)QQ'Xi+pQQ,X; (48)
p Qv

where
Q(0,¢,4)= er21¢/zerl3a/2er21¢/2 (49)

and similarly forQ'(8',¢',¢4").

Hence given the single constraif®9), we conclude that
the near-horizon solution(29) and (32), preserves one-half
the supersymmetries. This represents a fourfold increase over
that for the full solution presented in the first section. Of
course this counting assumes that only the angular coordi-
nates have periodic identifications. With a reductionven
thew dependence of _ rules these out as admissible super-
symmetries(naively at leagt and the near-horizon solution
would only preserve one-quarter the supersymmetries, as ex-
pected. We will discuss this further in Sec. VII.

Recall that the determination of Killing spinors in Sec. Il
was done for the general solutigd) without a particular
choice of metric functions. For the purpose of comparing
with the present results it is convenient to repeat this analysis
in polar coordinate$15). With the assumption that the only
x' andy“ dependence is on the respective radial coordinates,
randr’, ie., g1=0:(r,r'), 92=092(r'), 93=09s(r), 9
=gy(r,r',z), one finds that Eq(12) is replaced by

e_:gIl/GgEl/IZg;l/lngl/4QQ/EO' (50)
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Hence, if we look at the near-horizon limit of these spinors,as required for a Killing vector field.
we find We now turn to the explanation how the above observa-
tions can be used to determine the isometry superalgebra of a
e=11"'Q0" e=pQOQ €. (51)  given supergravity solutiotand hence its local isometry su-

S d hat th il . h ergroup from knowledge of its Killing spinors. An expan-
0, as expected, we see that these Killing spinors matc on of theD =11 supergravity action about the solution of

to thee, spinors in Eq(48). Thatis, onlye, supersymme- oo yields currentsT(™,j ™, K™"P) with background co-

tries may be extended into the asymptotic regions of thgariant conservation conditions determined by the gauge

solution, e.g., large. transformations of the fluctuation fields. These currents must
belong to a supermultiplet with respect to the supersymme-

V. KILLING SPINORS AND THE ISOMETRY tries of the background associated with Killing spinors. This
SUPERALGEBRA statement can be formalized in terms of the once-integrated

Any supergravity solution can be presented as a configu€Urrent algebra anticommutator
ration of tensors on superspace. The local isometry super- 1 1
group of the solution is, by definition, the supergroup gener- {Qr(0),j™= 5T \{+ S K™ ¢ (59)
ated by the Killing vector superfields, i.e. those vector 2 2
superfields which leave the superspace configuration invarlivhere
ant (see[19] for detailg. It might seem that a determination
of the isometry superalgebra of a given supergravity solution _
would require that one first find its superspace presentation, QF(§)=f dS,gj™ (60)
which is a very laborious task. Fortunately, a shortcut is *
possible, at least for solutions that are purely bosonic. Th
method, which we explain below, relies on the fact that an
pair of Killing spinors determines a Killing vector field. We
shall now explain this point.

We begin by noting that given twid =11 Killing spinors,
land/{’, then theD =11 vector field

% the (fermionig charge of the fluctuation fields associated
YWwith the background Killing spinot. For fluctuation fields
that fall off sufficiently rapidly towards the boundary at in-
finity on the spacelike hypersurfage these charges will be
time-independent by virtue of the conservation condition on
j™ and the Killing spinor condition obeyed Ly

Integrating the relatior(59) and discarding the integral
over K™P on the grounds that it could be non-zero only in
the presence of a membrane source, we find that

v={TM{ 9y (52)

is a Killing field. The proof is as follows: We first observe

that {Qe(0).Qr(¢")} = Qe(v=¢'TY) (61
T(¢=(—1)" V2 (53 where
wherel(, is the antisymmetrized product afof the Dirac
matricesIA. It follows, for any spinor¢, that Qg(v)= JEdva“Tmn. (62)
— 1 — . . - . . .
DM§:(9M§—Z (T*Bwyas=Dwn, (54) Sincev is a Killing vector, this(bosonig charge is also

time-independent. What this shows is that the determination

of the linear combination of Killing vector fields associated

with any pair of Killing spinors is equivalent to the determi-

1 _ nation of the linear combination of bosonic charges in the

Dui= mg[FMNPQR+ 8om T PRIF\por. (55  isometry superalgebra that appear in the anticommutator of
any pair of fermionic charges in this algebra.

and that a Killing spinok satisfies

It further follows from Eq.(54) that We shall now use this met_hod tq qetermine the isomgtry
superalgebra of the near-horizon limit of our new rotating
Dyvs=Dyilsl’ + <Dy’ (56) brane solution and of some of its special cases. Of course,

there may be additional bosonic isometries that are not found
Using the Killing spinor condition in both terms on the right @s above. In this case the full isometry superalgebra will be
hand side we deduce that the direct product of the superalgebra as determined by the
above method with a purely bosonic algebra.

1 —
= NPQR N g PFQRy s/
Duvs=17 6121w st485y"0s T 18" Frpor VI. ISOMETRY SUPERGROUP OF AdS xS*x S

57) Using the arguments of the last section we conclude that

and hence that to determine the isometry supergroup of the near horizon
geometry of our rotating brane solution, which is simply
Dmvg=0 (58)  AdS;xS*xS®, we need to construct the Killing vectors as-
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sociated with the Killing spinor&47) and(48). We will show  The commutation relations are given by
that the answer is given 9 (2|1,a) X D(2|1,«).

To begin, we first observe that for any two Killing spinors  [£%,&%]=— €&, [&.& 1= epée, [£7.61=0.
€,€' we have (69)

T2’ =el'? e’ =0 (63 There are a number of useful identities in the computation

] ] ) N of the Killing vectors. First, we observe the fact that
since they lie on thd"=1 eigenspace. In addition we have

TET PV E—TE LT a
.l =0 64) X IPx==x"T'x"=x"T%"=0 (70
for all A (using, for example{T'A,T%=0 for A#2). It fol- ~ becausd™, I' andT'* all commute with[™"". Also
lows that the only Killing vectors obtainable from Killing . . _
spinors are X T =x"T""=0 (71)
=(wiiviiwil) and v__=@w I viZ,vIl) becausd™ andI'" anticommute withl™". Similarly
(65)
- —_"FWpi iZO, YETWeay,+ =, 72
where, e.g.p T~ =€ T"e 8, .2 Here, we are using the dual X X X (72
basis vectorg,: Finally note from the definition of the superscript indices on
A2 -1 the constant spinors th&t"y* = +TYy™
Qp “9utQ " Now a calculation yields
ﬁéW:Qilaw 2
vIi=— (T OIR
Ty
vfi:—(xT”X )5 +—(X+FX )&
= _gl
2 _ _
, + o (T X0 €x
= _ “ (R
ea_ R/ ga
v__=z(7F“X_)|R (73
€,=d;,, €y=dy (66) S T
where ¢R are left-invariant vector fields on ea@? (which  where
generate right actiomswhich are dual to the left-invariant
one-formso and whose explicit form is W 20w
IR= ;Qz cosh ?’ Ayt 2}(/3 cosh—?/ +1)

ER=—sin yd,+cos y cosecd ,—cot 6 cos d,,

p . 2Qw
§§=cos g+ sin i cosechd ,—cot 0 sin ¢, 3 sthap
R
&= ©7 «  YQ_ 20wy _ 2Qw
— . . . lg=— 5= sinh——4,— 5= sinh——4,,
Later the right-invariant vector fields- (which generate left 2p Y 2Q Y
actionsg will also appear. They are given by P 20w
L + 5 cosh——4,. (74)
£1=sin ¢d,y+cot 6 cos ¢d ,—cos ¢ cosecdd,, 2 04
ggzcos ¢hdy—cot 0 sin ¢pd,+sin ¢ cosechd,, These obey th&0(2,1) commutation relations
&5=04. (68 (R IR1==218 [I§I1IR1==I1%. (75)

Thev . , Killing vectors are

2Note that our notation here means, for example, tats the
Killing spinor depending ory_ . However, unlikey , e, does not o (X+Fu )I L
have a simple projection und&™", i.e., 'Y’ # + €™ . e * *
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vii= 0T X lst gOAT X E

2 _ _
+§(X¢FHX+)§I&

=yt 76
Uiy ,y(XJr X)I- (76)
where
7Q 2u2> y 2up
|L=<—+— It = dy— =—0
Tl2pt  Qy/ ™M QP Qy
¥Q
||::73u
p
|g=§ap—uau (77)

which satisfy the standar8((2,1) commutation relations

[5 15 1=215, [1515]1==1% (79

and in addition commute with the generators. In deriving
Egs.(76) we have used the fact that

Q7 'Q=TIR|(Q) (79
with

Ri(Q)&=¢. (80)

From Egs.(73) and (76) we conclude that the near-

horizon isometry supergroup is given by

D(2]1,a)  XD(2|1,a)g (81

where
R’ 5
a=5 (82

which is the ratio of the radii of the two 3-spheres.

VII. KILLING SPINORS AND REDUCTION

PHYSICAL REVIEW B9 025001

1

Le=iDe+ 8

I'™Y(dK)mne (83

whereD is the covariant derivative defined in E®4), and
(dk) is the exterior derivative of the 1-fori,dx™ dual to
k™9, . Killing spinors satisfy the supersymmetry Killing
equations D+ N,,) e=0. Thus, a vanishing Lie derivative
of e implies

1
0=K"D e+ 5 I™(dK)mne

1
= grmn(dk)mn— kmNm) e=Pe.
(84

In other words, the vanishing Lie derivative condition re-
duces to a simple algebralématrix constraint Pe=0) on

the Killing spinors. Dimensional reduction will therefore re-
duce the number of Killing spinors to those satisfying this
constraint. The details will, of course, depend on the solution
and the particular choice & so we shall illustrate the pro-
cedure with a number of simple examples.

A. Zero angular momentum

The non-rotating near-horizon metii29) may be written

as
2 2 2 2 2
P p dp
ds? =—<—du +( dw— —du| + 2 —)
11 Q Q Q Y P
2 12

+ Z(a'§+ o5+ o3)+ T(ai% b2+ ok

+dZ+dz'2. (85
There are a number of simple Killing vectors upon which we
will consider reducing the solutio, , d,:, dy,, 3, andd,, .
Note that demanding thgany of the first three 9fthese
Killing vectors have closed orbits will imply global identifi-
cations on the Ad$<S*x S*x 2 geometry.

The reduction orv, or 4, is trivial. In this casedk=0
and so the constraiii84) reduces td®e=—N, ,,e=0. How-
ever, this is equivalent to the constra{B®) already imposed
on all of the Killing spinors. Of course, E€39) was derived
from requiring the Killing spinors be independent ofand

One might consider constructing solutions of lower-Z’- Hence it is no surprise that all .of the Killing spinors
dimensional supergravity fro =11 supergravity solutions SUrvive unchanged when the theory is reduced on these two
when the latter have Killing symmetries. Here, we wish todirections; i.e., there is no reduction in the number of super-
consider the effect of such a dimensional reduction on th€Ymmetries.

Killing spinors. Naively, one expects that the only Killing

Next consider a reduction afy,. First let us note that the

spinors to survive will be those which are independent of thénetric has precisely the form that one would adopt for a
internal coordinates on which one is reducing. More pre-Standard Kaluza-Klein compactification for a reduction on

cisely, when reducing on a Killing vectér, we must require

w. The reduced metric would correspond to EBp) without

that the Killing spinors have a vanishing Lie derivative underthe ")~ term, i.e.,

k. The Lie derivative of a spinoe with respect to an arbi-

trary vector field is ill-defined, but with respect to a Killing

vector field it is given by(see, e.g.[5])

ds?= (pzd )2 2
——6 uj +vy

dp\?

oo (86)
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and the off-diagonal componegy,,, would become a gauge - 1

field —p?/Qdu in the lower-dimensional theory. As is ap- Ly= exr{ - EFZH//). (91)
parent in Eq.(86), AdS; is replaced by Adsin the reduced

geometry. If the frame35) (without e") is chosen to de-  Hence reducing o@,, requires modifying the frame, and in

scribe the reduced geometry, the form of the Killing spinorsdoing so the precise form of the Killing spinors changes by
will be unchanged up to the additional constrdaB4). In this

case, we havé&=Q®g,, and as a 1-formk=Qe". Hence g:[weze—rﬂwzﬁ (92)

one finds dk=(2Q/y)e'e” and, from Eg. (84), P

=(Q/y)I''*T" _ . Hence the Killing spinors surviving the re- However, this transformation precisely cancels ¢hdepen-
duction must satisfy’ _e=0 which picks out the=, spinors dence of thee, spinors, and thus the, appear as Killing

in Eq. (48). This result then agrees with the naive expecta-sspinors in the reduced theory. Here, we should note that

tion that one should chose spinors independem of since '~ commutes withL,,, the form of the constraint
Reducing ond, also produces an interesting lower- I'_e¢=0 is identical for bothe and¢.
dimensional solution(Of course, a reduction os,, com- Note that in both of the above two reductions, the con-

pletely parallels the following analysjsRecalling the defi-  straint(84) reduces the number of supersymmetries by 1/2.
nition (19) for the oy’s, we note that the metri@85) is again  Furthermore, in selecting out the, spinors, the reduced
adaptEd for a Kaluza-Klein reduction Qh In this case, the Supersymmetries include those, |e; , that can be ex-

reduced metric becomes tended into the asymptotic regions of the full solution.
R Having obtained the Killing spinors in the reduced solu-
ds2= _(U§+U§)+... tion we can determine the corresponding superalgebras by
4 following the steps in Secs. V and VI. In both of the above

cases, the Killing spinors have the forgn . The Killing

2 . L
vectors are then obtained by determining

R
= T(d62+sinz 6d¢p?) +---
(87) e, %8, (93)

and so one of th&® factors is replaced b$? in the redgced _where the sum is now over all indices excluding the coordi-
geometry. The latter also carries a monopole gauge field arigyate that one reduces on and Theare the dual vector fields
ing from g, . Here, we havk=(R/2)€; and, as a 1-form, i, the reduced spacetime.
k=(R/2)e*. Then Eq.(84) yields P=3T*2_, and so the Let us first consider the reduction o, to give
Killing spinors surviving this reduction again Sat'Sﬂ/—_f - AdS,xSxS3. Although the framed35) without e,, is a suit-
T]O- TQUS t(;196+ spinors correspond to supersymmetries ingple frame for the reduced spacetime, the dual vector fields
the reduced geometry. (66) are not: instead we must now U -2 i
. ; o . . - . : usg=Qp “d,. Taking

At f”$t sight, 'Fh's IS a surprise since It Is th_e SPINOTS — 4his into account we find the Killing vectors as in Eq#6)
(47) which are mdependent 037%/' Thez resolution of this with the only difference being that we draf, from I in
gaﬁgﬁoi?nﬂfslf;g?n;eﬂlztlgg trr;%uizgeth(;%nm;getﬁzedﬁ?: Egs.(77). This means that the superalgebra contains a factor
dependent—see Eq4.9). Rather the shoulcrjyi)e re Iat):/ed b D(2|1,«). Combining this with the bosonic symmetries that

P ' y P Y do not arise from Killing spinors, we conclude that the sym-

the 1-forms, e.g., metry algebra is given by
R R
gl=> sinodg, &=5do. (89) D(2[1,a)XSU(2) X SU(2). (99

) ] Next consider the reduction ond, to obtain
In this case, the two sets of 1-forms are related by a simplegs,x S?xS%. We again obtain Eq€76) but now with the

rotation acting in the 1-2 subspace Killing vectors &_replaced by Killing vectors obtained by
. settingy=0 and dropping),, terms in the expressions fér
ga=L2%eb with L:( COTS‘ﬂ sin ¢) in Egs. (68). In this case the symmetry algebraD$2|1,«)
—sinyg cosy XS0O(2,1)xSU(2).

) (89) B. Adding angular momentum

0 1
=ex v
-1 0
Recall that the remnants of the angular momenta were

If Lorentz vectors are rotated bly?,=exp(w?,), then the €liminated by the coordinate transformati@8) in the near-

corresponding transformation of spinors is horizon limit. After reduction orw, ¢ or ¢', such a trans-
formation would not be allowed and so we should reconsider

- 1 these reductions in the presence of the angular momentum.
L:eXP(ZwabFab> : (90 First, we must insert the angular momenta back in the metric
(85). This is easily done as we simply undo part of the origi-
Specifically for Eq.(89), we have nal coordinate transformatiof28), reintroducingy, '
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~ 23 _ p? 3 3
Y=t 2 W eY=QdW——-du+ — T3+ — Ty
Q 2Q 2Q
=9+ 2 o 1
= B2z W . ~
R 3: o
€ =278
w=W (95
1,
which in our angular forms yields e = 5¢c 73 (99)
O3=Tat 2_‘1 dw with which the metric(97) may be written as
R
23" dsh;=(8")7—(8")%+(&%)7+(8¥)*+-+ . (100
04=T4+ oz oW (96)

Here,02= Q2%+ (J/R)2+ (J’/R")2. The reduced metric now
comes from dropping&")? in Eq. (100 above. In this case,
the remaining off-diagonal terms i@{)? cannot be removed
by a coordinate transformation, even locally. Hence the re-
duced geometry is not a simple product of factors. However,

We distinguishw andW here because it will be necessary to
distinguish the Killing vectors,, and d;, later on. Now the
metric (85) becomes

2 2

2 2 we will see that the structure of the isometry supergoup is
dst,= _(p_du +| Qdw— p_du) identical, discounting changes in purely bosonic factors un-
Q Q related to Killing spinors, to that of th&=J=0 case, despite
2 2 2 A, 2 the fact that the metric has a direct product structure only in
R™ (- al X (542 g the J=J'=0 limit
+T a3+¥dw +T 03+de ) : o - .
To determine the surviving Killing spinors, we need to
i 97) determine the constraint matriX in Eq. (84). The simplest

approach, here, is to note thtis coordinate invariant and
Lorentz covariant. Hence the constraint will be the same as
. ~ ~, . ~ that calculated for Eq98) before any change of frames and
reduction O.nl/’ (or ). A reductpg onk= gy, = ‘75// proceed_s coordinates. Furthermore, sinBeis linear ink and since we
exactly as in the preV|.ousAsect| Arhe only difference is saw in the previous section that the constraints for reducing
that an extra gauge field J2R?dW appears on the AdS on g,,, d, and 9, all coincided, precisely the same con-
space. However, this is trivial since it is a constant gaugeitraint arises here, namely,_e=0. Thus, once again, the
field. . €. Killing spinors correspond to supersymmetries in the re-
The reduction on duced solution.
We must again be careful about the precise form of the
PP P p 98) _KiIIing_ s_pinors in the reduced theory, as the fra(ﬂé)_used
w—OwT R29% T Rz %y in deriving Eq.(48) cannot be used after the reduction. One
change which must be accounted for is the introduction of
turns out to be more interestifdzor a Kaluza-Klein reduc- Egs.(99) for the Kaluza-Klein reduction. A second slightly
tion onW, we must reorganize the metri@7) into the stan- more subtle change comes from the coordinate transforma-
dard form. We do so by introducing new 1-forms tion (95) which introduces variou#& dependences which we
have not explicitly accounted for. First of all, in Eqel8)
p? j 3 and (49), one finds
e'= ?du— - O3— — ’&é

Q 20 2Q

In this form, the metric is still adapted for a Kaluza-Klein

3

I -~
Q(¢,0,¢)=exp(§zfn) Q(,0,¢)

1~

SActually, at this point, we should note that the constraint equa- W o\ -
tion (84) is coordinate invariant, as well as Lorentz invariant—see Q’(lﬁ',@,(f))ZEX[{—FZ ! )Q’(w’,e’,qﬁ’).
below.

“The Killing vectork will have closed orbits of radiug if the (10D
following identifications are made: W, ,¢')=W+27Qn., ¢ ) . )
+4mn,+ (4mIQIRZ)N,, ¢ + Amng+ (43 QIR'2)n,), wheren, Thus aftgr the coordlr_1ate change the~K|II|ng spinersde-
are integers. As a result note that the global geometry of the unrd2€nd oniw. However, in the same wayy now also appears
duced space is no longer Agi8S®x S*x 2. in the 1-formse!, €2, e!" ande?’. For example,
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(' 1 1
d0+005(1~p+2;—\2,v>sin0d¢] E(Z+Z_l) E(Z_Z_l) 0 0
(102

23W

. R ~
TR

el=>

5 —sin

1 -1 1 -1
%=| 3(z=z) Z(z+tzH) 0 0 (108
Hence, in the reduced theory, these 1-forms would be re-

placed by, e.gé!, 2, &' andé?’ defined using the-forms 0 0 1
defined using/—see Eqs(19). As in they reduction above, 0 0 01
these two sets of 1-forms are related by rotations acting in ) o )
the 1-2 and 1-2' subspaces. One finds andW is the remaining transformation:
2+ 2 2+ 2
et e' 1+ 7y Xy -X -y
a2 =Lia o2 (103 2 2
X2+ 2 2+ 2
| o | XY XYy
with b 2 2
R R —X —X 1 0
2JW 2JW
Ccos§ —7 Sin| —> - -y -y 0 1
S( RZ) ( Rz) 0 1)23 (109
L= . ~_\ | TEX 1 0 EW
—sin( Z;W) cos( ZIiW) Now one findsB=exp(wg) and W= exp(wy) where
(104 0O -» 0 O
o ) ) ) N 0O O O
and similarly forL4/,,. The corresponding spinor rotations (wg)ap= 0 0 0 0
(90) are then
0O 0 0O
- Iw - IW_
L12:eX4_¥F21), Llrzr:ex4_w].ﬂ21). O 0 X y
(105 0 0 xy
(ow)ab= % —x 0 0 (110
Hence this rotation, which removes tiiedependence in the 0 0

angular frames, at the same time removesithdependence oy

of the e spinors(and introduces it into the-). The net  jth \=log(z). Given these generators, we can write the
effect is that in Eq(48), 00'— Q0. corresponding spinor transformatiofis=BW with

Now we also had to account for the change of frames
(99). Since both Eq935) and(99) describe the same metric, - 1 Wi 1o 1
they must be related by a Lorentz transformation. First one B=exp 5 log ZI™ | =2""A . +277"A
finds that in this four-dimensional subspaeg=(L,)?,e®
with W=exd (xTU3+yT3 A |, ]

— -1 — —_ !
z z-z x/z ylz =1+ (X[U34+yTrBHA (111

0 z?! xlz ylz
La=l 0 _ 1 0 (106 where we have defined the projection operators

-y -y 0 1

N =

AL=2(1+T"Y). (112

where we have introduced the notation
So given the original Killing spinor solution&7) and
Js J'c (49), they are transformed to the new frame by
, X= =, y=—. (107
Q Q e=Ti 1 4e=T 10, BWe. (113

The latter are not all independent, but rather from the defiGiven that all of these transformation matrices commute
nition of Q, they satisfy the constraizf=1+x?+y?2. with T'_, the constraini” _e=0 takes precisely the same
To obtain the corresponding Lorentz transformation onform on the € spinors. Hence the supersymmetries of the

the spinors as in Eq90), it is convenient to decompode,  solution in the reduced theory are given by . Explicitly
asL,=BW whereB is a boost, Eq. (113 yields
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tive of the rotation parametersvithin the limits for which

- Lo 1z pus 3’ 2up : : : :
€, = —[z/+zHXT @ +yT'" )] - rev there exists a non-singular event horigofihere is thus a
p \/EYQ fourfold increase of supersymmetry near the horizon, al-
though this is invariably reduced to a twofold increase 6n S
Xﬁ@'}(iﬂLiﬁﬁ'Xl- (114 compactifipation by t.hcle identificatio.n_s rgquired to perform
Jz the reduction. Non-trivial Scompactifications lead to a re-

placement of Ad$by AdS, or $° by S in the near-horizon

Note that the Killing spino&_. , which should correspond to |imit. The possible near-horizon geometries obtainable this
the supersymmetry which extends to the full rotating soluway were classified in[9] for non-rotating intersecting
tion in the reduced theory, still has essentially the saméyranes; we now see that the same results apply in the rotating
simple form as withJ=J'=0. case, at least locally.

Having established the explicit form of the Killing spinors  Finally we note that th€1|MW,M2,M5,M5) configura-
we deduce that the full isometry superalgebra in the reducetion of M-theory has a type 1IB dual a&|IIw,D1,D5,D5) so
spacetime is nowD(2|1,a) X U(1)xU(1). Recalling Eq. that the entropy associated with the event horizon is expected
(94) we see that the effect of the rotation in each of the twoto correspond to a counting of D-brane microstates along the
4-planes is to break the extra bosoBitl(2) rotational sym- lines of[20]. It would be of interest to see how the rotation
metries of these 4-planes &0(2)=U(1), without affecting  affects these calculations. We leave this to future investiga-
the supersymmetry. tion.

VIIl. DISCUSSION
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