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Initial data and coordinates for multiple black hole systems

Richard A. Matzner, Mijan F. Huq, and Deirdre Shoemaker
Center for Relativity, The University of Texas at Austin, Austin, Texas 78712-1081

~Received 15 December 1997; published 24 December 1998!

We present here an alternative approach to data setting for spacetimes with multiple moving black holes
generalizing the Kerr-Schild form for rotating or nonrotating single black holes to multiple moving holes.
Because this scheme preserves the Kerr-Schild form near the holes, it selects out the behavior of null rays near
the holes, may simplify horizon tracking, and may prove useful in computational applications. For computa-
tional evolution, a discussion of coordinates~lapse function and shift vector! is given which preserves some of
the properties of the single-hole Kerr-Schild form.@S0556-2821~98!03918-6#

PACS number~s!: 04.70.Bw, 04.25.Dm
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I. INTRODUCTION

In the numerical simulation of gravitational spacetim
Einstein’s equations are cast as a Cauchy problem in
Arnowitt-Deser-Misner~ADM ! 311 formalism. In this form
the equations are split into a set of evolution and constr
equations. The latter set, the Hamiltonian and momen
constraints, are elliptic partial differential equations whi
must be imposed at the initial slice in the Cauchy evoluti
Thereafter, analytically, the evolution equations prese
them. York, in a series of papers@1–4# gave a framework for
solving the constraint equations known as the conformal
malism. We takeG51 ~Newton’s constant! and c51 ~the
speed of light!. The 3-metric,gi j , is assumed to be of th
form

gi j 5f4ĝi j , ~1!

whereĝi j is the base metric;gi j is then termed the physica
metric andf is the conformal factor. The extrinsic curvatu
is decomposed into its trace and trace-free parts:

K̂ i j 5Êi j 1
1

3
ĝi j K, ~2!

where again the hatted quantities refer to the tensors in
base metric andÊi j is the traceless part of the extrinsic cu
vature. In this approachK is assumed to be a given scal
function. The physical extrinsic curvature is related to t
base extrinsic curvature through the following conform
transformation:

Ei j 5f210Êi j . ~3!

The Hamiltonian and momentum constraints then can
written as

8D̂f2R̂f2
2

3
K2f51Êi j Êi j f

2750 ~4!

and

D jE
i j 2

2

3
DiK50, ~5!
0556-2821/98/59~2!/024015~6!/$15.00 59 0240
e

nt
m

.
e

r-

he

e
l

e

whereD̂ is the Laplacian with respect toĝi j , D̂ is the cova-
riant derivative compatible withĝi j and since we have a
vacuum spacetime we take the matter terms to be zero.

York’s method, as it has been applied in the black h
case, assumes that the 3-space is conformally flat, with ho
and that the expansion of the 3-space~TrK! vanishes. For the
case we consider, we assume the initial spatial domain c
tains holes. A method has been given@5,6# for specifying an
essentially analytic solution to the momentum constra
with symmetric boundary conditions~an infinite series has to
be summed! for a multiple black hole spacetime. The re
maining difficulty is then to solve the Hamiltonian constrai
~4!, which is a nonlinear elliptic equation, for the conform
factor. A completely convergent method for doing this w
exhibited@7#, where a controllable convergent algorithm pr
duces solutions of specifiable accuracy. The static single h
initial-data solution found in this manner is at5const slice
of the isotropic coordinate representation of Schwarzsc
@8#. ~One of the features is that the initial slice does n
penetrateinside the horizon.! Multiple moving spinning
black holes can be specified.

A new alternative to the conventional method based
throats and conformal imaging was proposed and imp
mented by Brandt and Bru¨gmann@9# where the black holes
are treated as punctures. The internal asymptotically flat
gions are compactified to obtain a domain without inn
boundaries leading to significant computational simplic
tions.

Recent computational black hole work has turned to so
tions of the Kerr-Schild@10,11# form, because these analyt
cal models have no coordinate pathology at the horizon
allow slicings which penetrate within the horizon@12#. The
present philosophy of handling the singularity hidden with
a black hole is to compute only up to the horizon@13,14#,
though such computational techniques almost certainly
quire a consideration of points slightly within the horizo
Further, having an analytic, tractable example is a great a
in developing a computational scheme. Hence we propo
scheme where we utilize our freedom in setting data for
base 3-metric and extrinsic curvature and use this analy
specification based on the Kerr-Schild form.

The motivation for this work is to initialize computationa
evolutions being done by the Binary Black Hole Grand Ch
lenge Alliance@15# which has shown some success at ev
©1998 The American Physical Society15-1
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lutions based on the Kerr-Schild form. The approach h
focuses on the 3-dimensional initial value problem, and p
less emphasis on a representation which resembles the
Schild one in a 4-dimensional sense. A complementary
proach@16# within the Alliance, which does emphasize th
4-dimensional aspects has recently appeared. The two
proaches differ significantly, as we discuss more comple
in Sec. VII below.

II. KERR-SCHILD FORMS FOR ISOLATED
BLACK HOLES

The Kerr-Schild spacetime metric is given by

ds25hmndxmdxn12H~xa!l ml ndxmdxn, ~6!

wherehmn is the usual flat space form,H is a scalar function
of position and time andl m is an ~ingoing! null vector ~null
both in the background, and in the full metric!,

hmnl ml n5gmnl ml n50, ~7!

so that l t
25 l i l i . It is the fact that the Kerr-Schild form is

based on and selects null surfaces near the black hole w
makes it so appealing as a scheme for setting coordina
The general Kerr-Schild black hole metric~written in Kerr’s
original rectangular coordinates! has

H5
Mr

r 21a2 cos2u
~8!

and

l m5S 1,
rx1ay

r 21a2 ,
ry2ax

r 21a2 ,
z

r D . ~9!

HereM is the mass of the Kerr black hole anda5J/M is the
specific angular momentum of the black hole,r, u ~and f!
are auxiliary spheroidal coordinates.z5r cosu andf is the
axial angle.r (x,y,z) is obtained from the relation

x21y2

r 21a2 1
z2

r 2 51 ~10!

as

r 25
1

2
~r22a2!1A1

4
~r22a2!21a2z2, ~11!

with r5Ax21y21z2. Notice that the functionH given by
Eq. ~8! is harmonic:

¹2H50, ~12!

where this¹2 is the flat space background Laplacian. In t
limit r→` or a→0 we recover the Schwarzschild metric
Kerr-Schild form@H5M /r , l m5(1,ni)#. This corresponds to
the ingoing Eddington-Finkelstein@18# form of the
Schwarzschild metric. Notice that for the stationary Ke
~and Schwarzschild! black holes we choose a particular no
malization ofl m : l t[ l mtm51. In the 311 form used in many
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computational approaches, one splits the 4-metric into
3-metric, a lapse and a shift. The 3-metric gives distan
measured in a given spacelike 3-surface~at a particular in-
stant of time!. The inverse of the lapse function gives th
ratio of the coordinate time~measured normally to thet
5const 3-space! to the evolution of proper time in moving
along that timelike direction. The shift vector~multiplied by
the interval of coordinate timedt! gives the amount that co
ordinate labels shift in going from onet5const 3-space to
the next.

The general Kerr-Schild metric can be cast in a 311
form:

~ lapse! a5
1

A112Hl t2
, ~13!

~shift! b i52Hl tl i , ~14!

~3-metric! gi j 5d i j 12Hl i l j . ~15!

For black hole spacetimes the relation between the lapse
the shift obtained from this splitting guarantees that the
rizon stays at a constant location, even though the laps
nonzero at the horizon. This is in contrast to the isotro
coordinate representation of the Schwarzschild solution
which the shift vanishes everywhere and the lapse vanis
at the horizon. Hence, for example, the static Schwarzsc
black hole~the ‘‘Eddington-Finkelstein@18# form’’ !:

H5M /r ~16!

a25
1

112M /r
, b i5

2M

r

xi

r
, ~17!

gi j 5h i j 1
2M

r

xi

r

xj

r
, ~18!

Ki j 5
2M

r 4

1

A112M /r
F r 2h i j 2S 21

M

r D xixj G , ~19!

is smooth at the horizonr 52M . Notice that the nonmoving
Eddington-Finkelstein metric uses

l i5] i~M /H !, ~20!

where] i is the partial derivative.

III. BOOSTED BLACK HOLES

The Kerr-Schild metric is form-invariant under a boo
due to its structure. This makes it ideal as a metric for c
structing a model problem for moving black holes@17#. One
simply applies a constant Lorentz~boost velocityv as speci-
fied in the background Minkowski spacetime! transformation
Lb

a to the 4-metric. The resulting metric retains the Ke
Schild form, but with straightforwardly transformedH and
l m :

x8b5La
bxa,
5-2
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INITIAL DATA AND COORDINATES FOR MULTIPLE . . . PHYSICAL REVIEW D 59 024015
H~xa!→H~L21a
bx8b!,

l d85Lg
dl g~L21a

bx8b!,

gmn8 5hmn12Hl m8 l n8 . ~21!

Under this boost,l t is no longer unity. Note that because w
start with a stationary solution the only time dependence i
the motion of the center. In this sense the solution has
‘‘extra’’ radiation loaded into the initial data for the booste
hole ~since we see none escape to infinity!.

Under such a boost,H no longer satisfies Eq.~12!, but
every solution of Eq.~12! in the nonmoving frame satisfies

¹2H2~v•¹!2H50 ~22!

in the boosted frame, where¹ is the flat background spatia
derivative operator.

IV. BOOSTED SCHWARZSCHILD

For example, for the Eddington-Finkelstein~EF! system
boosted in thez direction (v[vz), with new coordinates
~x,y,z,t! we have

r 25x21y21g2~z2vt !2,

l t5g„12vg~z2vt !/r …,

l x5x/r ,

l y5y/r ,

l z5g„g~z2vt !/r 2v…,

H5M /r , ~23!

whereg51/A(12v2)
Under a boost, the metric becomes explicitly time dep

dent~becauser is time dependent!. Because the boost of th
Schwarzschild solution merely ‘‘tilts the time axis,’’ we ca
consider all of the boosted 311 properties at an instantt
50, in the frame which sees the hole moving. Subsequ
times t simply offset the solution by an amounty t.

After the boost,l i no longer solves Eq.~20!, but

l i5] i~M /H !2gv i~boosted E F!. ~24!

With Eq. ~22! and Eq.~24! a, b i are defined via Eq.~13! and
Eq. ~14!. Figure 1 shows a slice through an Eddingto
Finkelstein solution boosted to 0.5c ~moving upward in the
figure!. The heavy inner contour is the horizon, the cardio
contours are lines of constanta, and the line segments ind
cate the direction and magnitude ofb i .

The extrinsic curvature for the boosted Kerr-Schild met
is given by computingġi j in the boosted frame@given by
combining the boosted terms from Eq.~21! into Eqs.~13!–
~15!#.

Now, one of the Einstein equations is

ġi j 5b i , j1b j ,i22G i j
k bk22aKi j , ~25!
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where the dot indicates partial time derivatives. Equat
~25! enables the computation ofKi j .

We find that

Ki j ;OS M

r 2 D „11O~v !…. ~26!

V. SETTING MULTIPLE BLACK HOLE DATA

We will work by setting data fortwo Kerr-Schild black
holes of comparable massM1;M2 . For purposes of devel
opment here~e.g., to estimate the size of terms!, we also
assumeM1 /r 12!1 where r 12 is the coordinate separatio
between holes. Each hole has a velocityv1 or v2 , as appro-
priate, assigned to it.

Define

r 1
25~x2x1! i~x2x1! jd i j ,

r 2
25~x2x2! i~x2x2! jd i j , ~27!

wherex1
i andx2

i are the coordinate positions of the holes
the initial slice.

Here we use our freedom to set data and fix the ba
ground 3-metric as follows:

FIG. 1. Contours of lapse and shift vectorb i for a boosted
Schwarzschild~Eddington-Finkelstein! black hole. This is a cut
through the equator; the hole is boosted at 0.5 upward in the fig
The shift is smaller ahead of the hole than behind, which allows
black hole to move through the computational grid. The ovoid fi
ure is the horizon~distorted in these coordinates!. The cardioid
curves are contours of constant lapsea, with values from the top-
most contour down of 0.91, 0.86, 0.78, 0.71, 0.64, 0.58, 0.52. Al
the axis of motion the lapse for thisv50.5 case is)/2 at the
leading point and 1/2 at the trailing point.
5-3
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MATZNER, HUQ, AND SHOEMAKER PHYSICAL REVIEW D59 024015
~3!d̂s25ĝi j dxidxj5d i j dxidxj

1H~r 1!1l i1l jdxidxj12H~r 2!2l i2l jdxidxj .

~28!

Here aH, and al i(a51,2) are the functions defined from
each single~perhaps boosted! black hole. This background
metric has two vectors corresponding to the null vector
the Kerr-Schild form~although at this point we see only the
spatial components!.

The ˆ symbol indicates that this is a conformally relat
metric, while the physical metric is

gi j 5f4ĝi j . ~29!

Heref is a strictly positive conformal factor which will be
determined in the process of solving the constraints.

We start the constraint-solution process with a trialK̂a
b:

0K̂a
b5K̂a

b~1!1K̂a
b~2!. ~30!

These K̂a
b(1), K̂a

b(2) are the individual extrinsic curva
tures, computed and indices raised using the single-h
boosted Kerr-Schild metric appropriate to eitherM1 or M2 .
~Henceforth we use the 2-hole physical or conformal metr!
The leading subscript on the left indicates that this is a ze
order approximation~in the sense of ‘‘zeroth’’ guess; this i
not an iteration method!.

Following York, we separate the trace:K5K̂(1)1K̂(2)
from the traceless part of0K̂ab :

0Êb
a50K̂b

a2
1

3
db

aK. ~31!

K is considered a given scalar function and is not conf
mally scaled. The conformal scaling for0Êab is chosen as

0Eab5f210
0 0Ê

ab. ~32!

Here 0Eab is the traceless part of the extrinsic curvature
the physical space associated with the zeroth guess.

We attempt to write the momentum constraint:

Db0Ec
b2

2

3
DcKÞ0, ~33!

where Db is the covariant derivative compatible with th
3-metric. The momentum constraint is violated because
the appearance of connections from hole~1! multiplying an
extrinsic curvature computed from hole~2!, and vice versa.

We can solve the momentum constraint equation by a
ing a term which contributes to the longitudinal part of t
solution:

Acb[0Ecb1~ lw !cb, ~34!

wherewa is a vector to be solved for@4#, and

~ lw !cb5Dcwb1Dbwc2
1

3
gbcDdwd. ~35!
02401
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We then demand

DbAcb2
2

3
DcK50, ~36a!

or

Db~ lw !cb5
2

3
DcK2Db0Ecb. ~36b!

This is an elliptic equation forwa, which gives an addition to
the extrinsic curvature guaranteeing the solution of the m
mentum constraint. As it stands, however, we cannot dire
solve Eq.~29! because it involves the full physical metric
which we have not yet specified.

Using the result due to York@4#,

DbAcb5f210D̂bÂcb, ~37!

the momentum constraint can be written as

D̂b~ l̂ w!cb5
2

3
ĝcbf6D̂bK2D̂b~0Êcb!. ~38!

Here, noteD̂bK is just ]K/]xb.
Form ~38! allows solution forwa in the conformal frame,

except that the value off is not known; in fact this appear
ance off leads to a coupling between this momentum co
straint, and the Hamiltonian constraint to which we now tu

The Hamiltonian constraint solution follows York’s de
velopment exactly. SinceR5R̂f2428f25D̂f we have

058Df2R̂f2
2

3
K2f5

1f27
„0Êi j 1~ l̂ w! i j

…„0Êi j 1~ l̂ w! i j …. ~39!

Solution of the coupled set Eq.~38! and Eq.~39! for f andw
constitutes a solution of the constraint equations. For bou
ary conditions onf we imposef51 at infinity, perhaps
through a Robin condition@19,6#, and at the surface horizon
of the black holes~located in the background metric! we set
f51. We impose the conditionwa→0 at the surfaces of the
black holes and atr→`.

First note that if we apply these conditions for a sing
black hole, since those exact solutions already satisfy
constraints we obtain a solutionf51 andwa50 immedi-
ately. Then note that if the initial configuration has hol
widely separated, we expectf;1 everywhere. Then the mo
mentum equation is an elliptic operation forwa with source
;r 24 at large distances~since it arises from the Christoffe
symbol3extrinsic curvature cross terms!. Hence the ‘‘total
charge’’ of the source is well localized, andwa;r 21, lead-
ing to corrections toKab , which are the same order inr as
the backgroundKab;r 22. Further, for well-separated hole
these corrections are small. In the Hamiltonian constra
~39!, the extrinsic curvature terms are all squared, i
;r 24. Hence~again assumingf;1! the elliptic equation
for f has finite inhomogeneous source;Ki j

2;r 24. The re-
maining question is the behavior of theR̂f piece. However,
5-4
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INITIAL DATA AND COORDINATES FOR MULTIPLE . . . PHYSICAL REVIEW D 59 024015
in the single-hole Eddington-Finkelstein metric, and hence
our conformal space, the behavior ofR̂ is such: R̂.0, R
;r 23 at infinity, with deviations at infinity from the
Eddington-Finkelstein value that go asr 24. Hence there is a
finite contribution to the ‘‘charge’’ for the conformal facto
equation arising fromR, and f differs only finitely from
from the Eddington-Finkelstein valuef51.

VI. COORDINATE CONDITIONS FOR MULTIPLE
BLACK HOLES

This section deals only with the case of boost
Eddington-Finkelstein~nonspinning! holes. This develop-
ment is prepared for immediate computational implemen
tion of a multiple hole spacetime. As such, these ideas
tentative and need experimental~computational! verification.
We present two formulations of coordinate setting for m
tiple black hole systems. Both are based on the idea that
the holes the spacetime should look as closely as pos
like a single hole Eddington-Finkelstein solution. In bo
cases, we set boundary conditions or lapse and shift nea
holes based on the single hole analysis above.

A defect of this current presentation is that some featu
of these coordinate specifications may be inappropriate
situations with net angular momentum~e.g., spiraling merger
that settles to a Kerr black hole!, but these coordinate spec
fications will suffice for evolution a finite time into the fu
ture, because they aremost accurate near the black hole
where the time scales associated with curvatures are sho

We first present a scheme which is very closely linked
the single hole factorH. First consider the single booste
hole case Eq.~22!, with appropriate boundary conditions
H50.5 at the horizon.H satisfies a mixed boundary cond
tion at infinity. SpecifyingH @solving Eq.~22! for H# pro-
vides a complete solution for the gauge conditions, and g
antees that the algebraic relation between lapse and shif
consistent at the horizon with the Eddington-Finkelst
form. Hence the horizon will be locked at a finite~moving,
but not expanding or contracting! coordinate location.

Implementing this idea even in the single black hole c
requires a kind of horizon-locking algorithm. The logic
locate the coordinate position of the apparent horizon, so
Eq. ~22! for H, and useH to determineba anda, and adjust
ba to move the horizon normally back to its desired positio
Iteration over these steps may be required to correctly g
erateH andba .

The multiple-hole case is complicated by the fact thav
appears in Eq.~22!, and there is no uniquely definedv in a
multiple-hole scenario. We take the point of view that~a! the
velocity of a black hole against its surroundings is availa
by examining its recent history,~b! for multiple hole systems
the total momentum in the computational frame will be ze
where we compute the total momentum in a completely
ive way asS i 51,2Miv( i ) , whereMi and v( i ) are the param-
eters used in the initial data setting.

We are not claiming that this will give a final configura
tion which is on average completely nonmoving, but it see
likely to remove the majority of the residual average motio
Furthermore, computational science is experimental scie
02401
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and the results of a run showing a final drift are a signa
adjust the initial total momentum-setting. To apply coord
nate ideas as in the preceding section, we would then ex
thatv in the coordinate specification Eq.~22! is a function of
position having a local value appropriate to black hole
when at the horizon of black hole 1; and smoothly chang
to the value ofv associated with hole 2. A simple schem
would be to take the coordinate specification

v5v1S r h1

r 1
D p

1v2S r h2

r 2
D p

. ~40!

Thus velocities approach the appropriate velocity as the
face of the black hole is approached. The quantitiesr 1 , r 2
are computed as in Eq.~27!. The quantitiesr h1 , r h2 are the
horizon radii along a ray to the point we wish to evaluatev.
The exponentp will be chosen by experiment.p51 gives
the situation simplest to analyze. Then if we assume slo
moving black holes:

v5
2M1v1

r 1
1

2M2v2

r 2
. ~41!

By our ‘‘zero momentum’’ assumption, this is

v52M1v1F 1

r 1
2

1

r 2
G . ~42!

For r 15r 2 , the point equidistant from the holes, one obta
v50. At infinity one hasv→0 at least asr 22. At the surface
of hole 1:

v5v1F12
2M1

r 2
G , ~43!

which gives a first order fractional correction tov. This may
require the use of a higher positive powerp in practical ap-
plications.

At intermediate locations we would expectH to recognize
the orbital angular momentum, and take on a Kerr-li
form, but our present development supports only
Schwarzschild-like case. Note, however, that the Kerr-l
effects are ‘‘mild’’ until a final black hole forms, at which
point the problem will become essential.

We mention here a second approach which can be c
sidered: maximal slicing@20# ~which determines the lapsea!
with minimal shear specification of the shiftb i @21#. These
elliptic equations require boundary conditions on lapse a
shift. The boundary conditions specified in this section d
termine the horizon values of the lapse and shift, even w
we solve them via methods other than solving forH as sug-
gested above. Hence those boundary conditions can be
plied directly to the lapse and shift to be solved in the ellip
maximal slicing-minimal shear system.

VII. DISCUSSION

The description in Sec. V of an algorithm to set bina
black hole data stars proceeds by generalizing the sp
metric to two centers, and erecting spatial ‘‘unit’’ vecto
5-5
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MATZNER, HUQ, AND SHOEMAKER PHYSICAL REVIEW D59 024015
from those centers. With this form, a variant of standard
11 data setting is used to set up the data. The expositio
this paper concentrated on understanding the initial d
structure of a single black hole, and describing how it can
used for a computational evolution. This method is to a la
extent complementary to the other Alliance paper on set
data via the Kerr-Schild approach@16# and assumes a gener
metric ~even for two-hole data! of the form of Eq.~6!, up to
termsO(t2) wheret50 is the time of the initial spatial slice
Furthermore, the initial value problem is solved in terms
conditions on the null vectorl v , and on the multiplying sca
lar H, rather than expressing it directly in terms of the us
311 objects,gi j andKi j . While the usual Kerr-Schildl a is
shear-free, that condition is not imposed in this more gen
situation. Because of the close connection of the approac
@16# to the structure of the known Kerr-Schild solutions,
large number of cross checks and analytical simplificati
apply even in this more general situation. In part becaus
those simplifications,@16# is able to present data for pe
,

t.

.

l.

e
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turbed Schwarzschild black holes. An example set of data
‘‘close’’ black holes is given in a perturbative limit wher
the deviations from sphericity are small. In this case th
analysis can be carried through completely.

Attacking the binary black hole problem computationa
has sharpened our perspective that all aspects of the rel
istic problem must be understood, for the computation
proceed. These two approaches, or some subsequent co
nation, will be invaluable in setting and evolving bina
black hole data.
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