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Initial data and coordinates for multiple black hole systems
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We present here an alternative approach to data setting for spacetimes with multiple moving black holes
generalizing the Kerr-Schild form for rotating or nonrotating single black holes to multiple moving holes.
Because this scheme preserves the Kerr-Schild form near the holes, it selects out the behavior of null rays near
the holes, may simplify horizon tracking, and may prove useful in computational applications. For computa-
tional evolution, a discussion of coordinatéspse function and shift vectois given which preserves some of
the properties of the single-hole Kerr-Schild forf80556-282(198)03918-6

PACS numbd(s): 04.70.Bw, 04.25.Dm

. INTRODUCTION whereA is the Laplacian with respect @y; , D is the cova-
riant derivative compatible Witf@ij and since we have a
In the numerical simulation of gravitational spacetimesyacuum spacetime we take the matter terms to be zero.
Einstein's equations are cast as a Cauchy problem in the York's method, as it has been applied in the black hole
Arnowitt-Deser-MisnefADM) 3+ 1 formalism. In this form  case, assumes that the 3-space is conformally flat, with holes,
the equations are split into a set of evolution and constraingnd that the expansion of the 3-sp&TeK) vanishes. For the
equations. The latter set, the Hamiltonian and momentungase we consider, we assume the initial spatial domain con-
constraints, are elliptic partial differential equations whichtains holes. A method has been gii&n6] for specifying an
must be imposed at the initial slice in the Cauchy evolutionessentially analytic solution to the momentum constraint
Thereafter, analytically, the evolution equations preservevith symmetric boundary conditiorian infinite series has to
them. York, in a series of papeis—4] gave a framework for  be summeyl for a multiple black hole spacetime. The re-
solving the constraint equations known as the conformal formaining difficulty is then to solve the Hamiltonian constraint
malism. We takeG=1 (Newton’s constantandc=1 (the  (4), which is a nonlinear elliptic equation, for the conformal
speed of light The 3-metric,g;;, is assumed to be of the factor. A completely convergent method for doing this was
form exhibited[ 7], where a controllable convergent algorithm pro-
an duces solutions of specifiable accuracy. The static single hole
9ij=¢"ij , D initial-data solution found in this manner ista const slice

~ , , i of the isotropic coordinate representation of Schwarzschild
whereg;; is the base metriqg; is then termed the physical [g] (one of the features is that the initial slice does not

metric andg is the co_nformal factor. The extrinsic curvature penetrateinside the horizon) Multiple moving spinning
is decomposed into its trace and trace-free parts: black holes can be specified.

A new alternative to the conventional method based on
@in' 2) throats and conformal imaging was proposed and imple-
mented by Brandt and Bgmann[9] where the black holes
_ N ~are treated as punctures. The internal asymptotically flat re-
where again the hatted quantities refer to the tensors in thgions are compactified to obtain a domain without inner
base metric and&;; is the traceless part of the extrinsic cur- boundaries leading to significant computational simplica-
vature. In this approacK is assumed to be a given scalar tjons.
function. The physical extrinsic curvature is related to the Recent computational black hole work has turned to solu-
base extrinsic curvature through the following conformaltions of the Kerr-Schild10,11] form, because these analyti-
transformation: cal models have no coordinate pathology at the horizon and
. " allow slicings which penetrate within the horizh2]. The
El=¢1E". (3)  present philosophy of handling the singularity hidden within
o _ a black hole is to compute only up to the horizdi8,14,
Th-e Hamiltonian and momentum constraints then can b%ough such Computationa| techniques almost Certairﬂy re-
written as quire a consideration of points slightly within the horizon.
5 Further, having an analytic, tractable example is a great asset
Ad B T w245 FiiE -7 in developing a computational scheme. Hence we propose a
8A$—R¢ 3 K*¢>+EE;é =0 @ scheme where we utilize our freedom in setting data for the
base 3-metric and extrinsic curvature and use this analytical
and specification based on the Kerr-Schild form.
The motivation for this work is to initialize computational
D Eii — E DIK=0 (5) evolutions being done by the Binary Black Hole Grand Chal-
! 3 ' lenge Alliance[15] which has shown some success at evo-

W =

Kij:Eij +
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lutions based on the Kerr-Schild form. The approach hereomputational approaches, one splits the 4-metric into a
focuses on the 3-dimensional initial value problem, and put8-metric, a lapse and a shift. The 3-metric gives distances
less emphasis on a representation which resembles the Kemeasured in a given spacelike 3-surfgae a particular in-
Schild one in a 4-dimensional sense. A complementary apstant of tim¢. The inverse of the lapse function gives the
proach[16] within the Alliance, which does emphasize the ratio of the coordinate timémeasured normally to thée
4-dimensional aspects has recently appeared. The two ap-const 3-spageto the evolution of proper time in moving
proaches differ significantly, as we discuss more completelalong that timelike direction. The shift vecttmultiplied by

in Sec. VII below. the interval of coordinate timdt) gives the amount that co-
ordinate labels shift in going from onte=const 3-space to
Il. KERR-SCHILD FORMS FOR ISOLATED the next.
BLACK HOLES The general Kerr-Schild metric can be cast in & B
form:

The Kerr-Schild spacetime metric is given by

1
ds?= 7, dx*dx"+ 2H (x| | ,dx#dx, (6) lapsd o= — 13
. " (laps9 T+2HI; 439
wheren,,, is the usual flat space forrhi is a scalar function
of position and time andl, is an(ingoing null vector (null (shifty Bi=2HI;, (14)
both in the background, and in the full mejic
3-metrig g;;=;; +2HI;l; . (15
710, =0"1,0,=0, ™ ( T AT

For black hole spacetimes the relation between the lapse and
so thatl?=1;l;. It is the fact that the Kerr-Schild form is the shift obtained from this splitting guarantees that the ho-
based on and selects null surfaces near the black hole whigtyon stays at a constant location, even though the lapse is
makes it so appealing as a scheme for setting coordinatesonzero at the horizon. This is in contrast to the isotropic
The general Kerr-Schild black hole metfieritten in Kerr's  coordinate representation of the Schwarzschild solution, in

original rectangular coordinatebas which the shift vanishes everywhere and the lapse vanishes
at the horizon. Hence, for example, the static Schwarzschild
o= Mr (8  black hole(the “Eddington-Finkelsteiri18] form™):
r+a? cod
H=M/r (16
and
, 1 2M X
| rx+ay ry—ax z © I TVITE Bi:TTy 17
BN 24 @ r2+a? )
. ) 2M x; X;
HereM is the mass of the Kerr black hole aag- J/M is the gij=njt———, (18
specific angular momentum of the black hatg,6 (and ¢) rrr
are auxiliary spheroidal coordinates=r cosf and ¢ is the i
i i i ; 2M 1 M
axial angle.r(x,y,z) is obtained from the relation K. =00 r2p — |24 Zlyx. (19)
N S I r)7)
X2+y2 Z2 L
iz Tzt (10 is smooth at the horizon=2M. Notice that the nonmoving
Eddington-Finkelstein metric uses
as
1 1
fz:z (p*—a®)+ \/Z (p*—a®)*+a’z?, (1) whereg, is the partial derivative.
with p=\X?+y?+72. Notice that the functioH given by ll. BOOSTED BLACK HOLES

Eq. (8) is harmonic: The Kerr-Schild metric is form-invariant under a boost

V2H=0, (12) due to its structure. This makes it ideal as a metric for con-
structing a model problem for moving black holds’]. One

where thisV? is the flat space background Laplacian. In theSimply applies a constant Lorenttzoost velocityv as speci-
limit r —o or a—0 we recover the Schwarzschild metric in fied in the background Minkowski spacetipteansformation
Kerr-Schild form[H=M/r, | ,=(1,n,)]. This correspondsto A to the 4-metric. The resulting metric retains the Kerr-
the ingoing Eddington-Finkelstein[18] form of the  Schild form, but with straightforwardly transformed and
Schwarzschild metric. Notice that for the stationary Kerrl ,:
(and Schwarzschijdblack holes we choose a particular nor-
malization ofl , :I;=1I ,t*=1. In the 3+ 1 form used in many x'P=AExe,
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H(X”‘)HH(A_ZLCYIBX’B), TN NV e T 7 o o
|3:A75| y(AilaﬁX,,B), -~ 0~ N \ \ o2 /7 o

4
g;w: Nyt 2HI;,4|1’/- (21 - =~ 0~ N \ b17 / - -

Under this boostl; is no longer unity. Note that because we
start with a stationary solution the only time dependence is in
the motion of the center. In this sense the solution has no

“extra” radiation loaded into the initial data for the boosted

hole (since we see none escape to infipity

Under such a boostl no longer satisfies Eq12), but
every solution of Eq(12) in the nonmoving frame satisfies

VZH—(v-V)?H=0

in the boosted frame, whefe is the flat background spatial

derivative operator.

IV. BOOSTED SCHWARZSCHILD

(22

-6 -4 -2 0 2 4

FIG. 1. Contours of lapse and shift vect@y for a boosted

For example, for the Eddington-FinkelstelBF) system  Schwarzschild(Eddington-Finkelstein black hole. This is a cut
boosted in thez direction p=v,), with new coordinates through the equator; the hole is boosted at 0.5 upward in the figure.

(x,y,z,} we have
r2=x2+y?+ y?(z—vt)?,
li=y(1—vy(z—vt)Ir),
l,=xlr,
ly=ylr,
I.=y(y(z—=vt)/r —v),
H=M/r,

wherey=1//(1-0v?)

Under a boost, the metric becomes explicitly time depen-

The shift is smaller ahead of the hole than behind, which allows the
black hole to move through the computational grid. The ovoid fig-
ure is the horizon(distorted in these coordinajesThe cardioid
curves are contours of constant lapgewith values from the top-
most contour down of 0.91, 0.86, 0.78, 0.71, 0.64, 0.58, 0.52. Along
the axis of motion the lapse for this=0.5 case isv3/2 at the
leading point and 1/2 at the trailing point.

where the dot indicates partial time derivatives. Equation
(25) enables the computation &f;; .
We find that

(23

(1+0(v)). (26)

M
Kij~O| =z

dent(because is time dependent Because the boost of the
Schwarzschild solution merely “tilts the time axis,” we can
consider all of the boosted-+31 properties at an instart V. SETTING MULTIPLE BLACK HOLE DATA

=0, in the frame which sees the hole moving. Subsequent

timest simply offset the solution by an amount.
After the boost]; no longer solves Eq20), but

l,=3d;(M/H)— yv;(boosted E F.

We will work by setting data fotwo Kerr-Schild black
holes of comparable mas4,~M,. For purposes of devel-
opment herele.g., to estimate the size of termsve also

(24) assumeM /r1,<1 wherer, is the coordinate separation
between holes. Each hole has a veloeityor v,, as appro-

With Eq. (22) and Eq.(24) «, B' are defined via Eq13) and  priate, assigned to it.
Eq. (14). Figure 1 shows a slice through an Eddington- Define
Finkelstein solution boosted to @%moving upward in the

figure). The heavy inner contour is the horizon, the cardioid
contours are lines of constaat and the line segments indi-

cate the direction and magnitude 8f.

The extrinsic curvature for the boosted Kerr-Schild metric
is given by computinggij in the boosted framggiven by

rlzz(x_xl)i(x_xl)mij ;

r?=(X=%p) (X=%2)1 & , 27

combining the boosted terms from E@1) into Egs.(13)—

(15].

Now, one of the Einstein equations is

gij:Bi,j+ﬂj,i_2F:(j,8k_2aKij :

wherex; andx; are the coordinate positions of the holes on
the initial slice.
Here we use our freedom to set data and fix the back-
(25 ground 3-metric as follows:

024015-3



MATZNER, HUQ, AND SHOEMAKER

(S)aszzgijdxidsz 8;dx'dx
+ H(rl)llilljdxidxj+2H(r2)2|i2|jdxidxj.
(28

Here jH, and ,l;(a=1,2) are the functions defined from
each single(perhaps boostedlack hole. This background

metric has two vectors corresponding to the null vector of

the Kerr-Schild form(although at this point we see only their
spatial components

The ™ symbol indicates that this is a conformally related
metric, while the physical metric is

gij= ¢0i; - (29

Here ¢ is a strictly positive conformal factor which will be
determined in the process of solving the constraints.

We start the constraint-solution process with a tigP:

oKP=K,P(1)+ K 0(2). (30)

TheseK,P(1), K,P(2) are the individual extrinsic curva-

tures, computed and indices raised using the single-hole

boosted Kerr-Schild metric appropriate to eitivg or M.
(Henceforth we use the 2-hole physical or conformal metric.

The leading subscript on the left indicates that this is a zeroth

order approximatiorgin the sense of “zeroth” guess; this is
not an iteration method A A

Following York, we separate the track=K(1)+K(2)
from the traceless part oK ,p:

1
= 8K. (30

OEg: OKg_ 3

K is considered a given scalar function and is not confor-

mally scaled. The conformal scaling f@l%ab is chosen as

oEP= 1% B2 (32
Here (,E2® is the traceless part of the extrinsic curvature in
the physical space associated with the zeroth guess.

We attempt to write the momentum constraint:

DbOEcb_

5 DK#0,

(33

where D, is the covariant derivative compatible with the

3-metric. The momentum constraint is violated because o?

the appearance of connections from h@g multiplying an
extrinsic curvature computed from hal®), and vice versa.

We can solve the momentum constraint equation by ad
ing a term which contributes to the longitudinal part of the
solution:

AP=E P+ (Iw)°P, (34)
wherew? is a vector to be solved fd#], and
cb C\yb by, ,C 1 bc d

(Iw) =DW+DW—§g Dgw*©. (35

d-
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We then demand

2
DbACb—§ D°K=0, (363

or

Db(lw)°b=§ DK — D,oE®P. (36b)

This is an elliptic equation fow?, which gives an addition to
the extrinsic curvature guaranteeing the solution of the mo-
mentum constraint. As it stands, however, we cannot directly
solve EQ.(29) because it involves the full physical metric,
which we have not yet specified.

Using the result due to Yorfd],

DpA= ¢ DA, (37
the momentum constraint can be written as
N Tancb 2Acb 6 A ~cb

Dp(lw) =39 ¢ DpK—=Dp(oE™). (39

Here, noteD K is just 9K/aox".

Form (38) allows solution forw? in the conformal frame,

except that the value ap is not known; in fact this appear-

ance of¢ leads to a coupling between this momentum con-

straint, and the Hamiltonian constraint to which we now turn.
The Hamiltonian constraint solution follows York’s de-

velopment exactly. SincR=R¢ 4—8¢4 5A¢ we have
- 2
0=8A¢—R¢—3 K2¢°

+ ¢~ "(E" + (1W) D) oEj; + (Iw)yy). (39
Solution of the coupled set E¢38) and Eq.(39) for ¢ andw
constitutes a solution of the constraint equations. For bound-
ary conditions on¢ we impose¢=1 at infinity, perhaps
through a Robin conditiofl9,6], and at the surface horizons
of the black holeglocated in the background metrioe set
¢=1. We impose the conditiow®— 0 at the surfaces of the
black holes and at—o°.

First note that if we apply these conditions for a single
black hole, since those exact solutions already satisfy the
constraints we obtain a solutiop=1 andw?=0 immedi-
tely. Then note that if the initial configuration has holes
widely separated, we expegt-1 everywhere. Then the mo-
mentum equation is an elliptic operation faf with source
r—# at large distancetsince it arises from the Christoffel
symbolXextrinsic curvature cross termsHence the “total
charge” of the source is well localized, amd~r ~ 1, lead-
ing to corrections td,,, which are the same order inas
the backgroun ,,~r ~2. Further, for well-separated holes
these corrections are small. In the Hamiltonian constraint
(39), the extrinsic curvature terms are all squared, i.e.,
~r % Hence(again assumingh~1) the elliptic equation
for ¢ has finite inhomogeneous sourqé(ij2~r‘4. The re-
maining question is the behavior of thRep piece. However,
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in the single-hole Eddington-Finkelstein metric, and hence irand the results of a run showing a final drift are a signal to
our conformal space, the behavior Bf is such:ﬁz>0, R  adjust the initial total momentum-setting. To apply coordi-
~r~% at infinity, with deviations at infinity from the nate ideas as in the preceding section, we would then expect
Eddington-Finkelstein value that go Bs*. Hence there is a thatv in the coordinate specification E2) is a function of
finite contribution to the “charge” for the conformal factor Position having a local value appropriate to black hole 1
equation arising fronR, and ¢ differs only finitely from  When at the horizon of black hole 1; and smoothly changing

from the Eddington-Finkelstein valug=1. to the value ofv associated with hole 2. A simple scheme
would be to take the coordinate specification
VI. COORDINATE CONDITIONS FOR MULTIPLE o) P Moo P
BLACK HOLES V=V o vy AR (40)

This section deals only with the case of bOOStecjThus velocities approach the appropriate velocity as the sur-
Eddington-Finkelstein(nonspinning holes. This develop- face of the black hole is approached. The quantitiesr ,

ment is prepared for immediate computational implementa- . .

tion of a multiple hole spacetime. As such, these ideas ar re.compudtgd las In qu?' me qu_a?tltleshl,r]rthz arel th?

tentative and need experimentabmputational verification. orizon radii along a ray to the point we wish to evaiuate
The exponenp will be chosen by experimenp=1 gives

We present two formulations of coordinate setting for mul- tuali imolest t | Then if lowl
tiple black hole systems. Both are based on the idea that neH?e situation simplest to analyze. Then it we assume slowly
[goving black holes:

the holes the spacetime should look as closely as possib

like a single hole Eddington-Finkelstein solution. In both oM

o . V1 2Myv,
cases, we set boundary conditions or lapse and shift near the = + ) (41
holes based on the single hole analysis above. M r

A defect of this current presentation is that some feature%
of these coordinate specifications may be inappropriate for
situations with net angular momentueg., spiraling merger
that settles to a Kerr black hglebut these coordinate speci- v=2Miv;
fications will suffice for evolution a finite time into the fu-
ture, because they areostaccurate near the black holes, pq . — v the point equidistant from the holes, one obtains
where the time scales associated with curvatures are shortegt. o a¢ infinity one ha)—0 at least as ~2. At the surface

We first present a scheme which is very closely linked to ¢ 4} 1:
the single hole factoH. First consider the single boosted
hole case Eq(22), with appropriate boundary conditions:

H=0.5 at the horizonH satisfies a mixed boundary condi- V=Vy
tion at infinity. SpecifyingH [solving Eq.(22) for H] pro-

vides a complete solution for the gauge conditions, and guakyhich gives a first order fractional correctiontoThis may
antees that the algebraic relation between lapse and shift aggquire the use of a higher positive powein practical ap-
consistent at the horizon with the Eddington-Finkelsteingjications.

form. Hence the horizon will be locked at a fini@moving, At intermediate locations we would expédto recognize

but not expanding or contractingoordinate location. the orbital angular momentum, and take on a Kerr-like

Implementing this idea even in the single black hole casgorm, but our present development supports only the
requires a kind of horizon-locking algorithm. The logic is schwarzschild-like case. Note, however, that the Kerr-like
locate the coordinate position of the apparent horizon, solvgffects are “mild” until a final black hole forms, at which
Eq. (22) for H, and useH to determingB, anda, and adjust  point the problem will become essential.
ﬁa to move the horizon norma”y back to its desired pOSition. We mention here a second approach which can be con-
Iteration over these steps may be required to correctly gensidered: maximal slicinf20] (which determines the lapse
erateH and g, . with minimal shear specification of the shi [21]. These

The multiple-hole case is complicated by the fact that eliptic equations require boundary conditions on lapse and
appears in Eq(22), and there is no uniquely definadin a  shift. The boundary conditions specified in this section de-
multiple-hole scenario. We take the point of view ti@tthe  termine the horizon values of the lapse and shift, even when
velocity of a black hole against its surroundings is availableye solve them via methods other than solving ffbas sug-
by examining its recent historyb) for multiple hole systems  gested above. Hence those boundary conditions can be ap-

the total momentum in the computational frame will be zeropjied directly to the lapse and shift to be solved in the elliptic
where we compute the total momentum in a completely namaximal slicing-minimal shear system.

ive way asX_; ,M;v, whereM; andv; are the param-
eters used in the _|n|yal data setting. _ _ VIl. DISCUSSION

We are not claiming that this will give a final configura-
tion which is on average completely nonmoving, but it seems The description in Sec. V of an algorithm to set binary
likely to remove the majority of the residual average motion.black hole data stars proceeds by generalizing the spatial
Furthermore, computational science is experimental sciencepetric to two centers, and erecting spatial “unit” vectors

y our “zero momentum” assumption, this is

t (42

LM

| 43
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from those centers. With this form, a variant of standard 3turbed Schwarzschild black holes. An example set of data for
+ 1 data setting is used to set up the data. The exposition ifclose” black holes is given in a perturbative limit where
this paper concentrated on understanding the initial datthe deviations from sphericity are small. In this case then
structure of a single black hole, and describing how it can benalysis can be carried through completely.

used for a computational evolution. This method is to a large  Attacking the binary black hole problem computationally
extent complementary to the other Alliance paper on settindpas sharpened our perspective that all aspects of the relativ-
data via the Kerr-Schild approafh6] and assumes a general istic problem must be understood, for the computation to
metric (even for two-hole dajeof the form of Eq.(6), upto  proceed. These two approaches, or some subsequent combi-
termsO(t?) wheret=0 is the time of the initial spatial slice. nation, will be invaluable in setting and evolving binary
Furthermore, the initial value problem is solved in terms ofblack hole data.
conditions on the null vectdr,, and on the multiplying sca-

lar H, rather than expressing it directly in terms of the usual

3+ 1 objectsg;; andK;; . While the usual Kerr-Schildl, is

shear-free, that condition is not imposed in this more general This work was supported by NSF grants PHY9310083
situation. Because of the close connection of the approach iand The Binary Black Hole Grand Challenge: ASC/
[16] to the structure of the known Kerr-Schild solutions, aPHY9318152 (ARPA supplemented by NSF metacenter
large number of cross checks and analytical simplificationggrant MCA94P015P, and through computer time access
apply even in this more general situation. In part because ithrough the Vice President for Research, The University of
those simplifications[16] is able to present data for per- Texas at Austin.
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