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Quantum modular group in (2+1)-dimensional gravity
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The role of the modular group in the holonomy representation ef IP-dimensional quantum gravity is
studied. This representation can be viewed as a “Heisenberg picture,” and for simple topologies, the trans-
formation to the ADM “Schralinger picture” may be found. For spacetimes with the spatial topology of a
torus, this transformation and an explicit operator representation of the mapping class group are constructed. It
is shown that the quantum modular group splits the holonomy representation Hilbert space into physically
equivalent orthogonal “fundamental regions” that are interchanged by modular transformations.
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I. INTRODUCTION general “covariant’) wave functions[9,20. In the ho-
lonomy representation, on the other hand, the modular group
Over the past few years, it has become apparent thatoesnot act nicely (i.e., properly discontinuousjyon the
(2+1)-dimensional general relativity can provide a valuablenatural configuration space, and the construction of invariant
setting in which to explore some of the fundamental issues otvave functions is much more problemgit—23. Since the
realistic (3+1)-dimensional quantum gravityl]. As a two approaches are supposed to be equivalent, this mismatch
diffeomorphism-invariant theory of spacetime geometry, thgs a cause for concern.
(2+1)-dimensional model shares the conceptual framework In this paper, we resolve this problem by explicitly con-
of ordinary (3+1)-dimensional gravity. At the same time, structing a transformation between the two representations.
however, the reduction in the number of dimensions greatlyn the ADM representation, the modular group splits the con-
simplifies the structure: (2 1)-dimensional general relativ- figuration space into fundamental regions that are inter-
ity has only a finite number of physical degrees of freedomchanged by the action of the group, and an invariant wave

and quantum field theory is effectively reduced to quantunfunction can be defined by giving its value on a single fun-
mechanics. damental region. In the holonomy representation, no invari-

At least fifteen different approaches to quantizingant wave functions exist. But we shall see that Hitert
(2+1)-dimensional general relativity have been developedpacenow splits into orthogonal “fundamental regions” that
over the past decade. Two that have received special atte@t€ interchanged by a unitary action of the modular group.
tion are reduced phase space quantization, starting with tHeach of these subspaces is equivalent, and each is equivalent
Arnowitt-Deser-MisnefADM) formalism and the York time to the ADM Hilbert space of invariarftechnically, weight-
slicing[2—-4], and a set of techniques that take Chern-Simond/2) wave functions. The choice of one such subspace is the
holonomies as the fundamental observapiesl7]. Both ap-  discrete analog of a choice of gauge, and once such a choice
proaches to quantization are well understood for the simpleds made, the conflict between the two quantizations disap-
topologies, and in particular for spacetimes with the spatiaP€ars.
topology of a torusM~RXT2. For these topologies, the
two techniques yield complementary information about the
guantum behavior, and a comparison has offered valuable

insights into botr{8,18,19. , We start with a very brief review of the two approaches to
One persistent problem has, however, plagued this proguantization described in the introduction, focusing on the
gram. In addition to the usual “small” diffeomorphisms, torys universeR x T2. For simplicity, we shall consider only
the torusT? admits “large” diffeomorphisms, diffeomor- a negative cosmological constant= — 1/, Details can be
phisms that cannot be continuously deformed to the identityfyng in Refs[18,19 and[1].
In ADM quantization, the natural configuration space is  Tg construct an ADM quantization, we first foliate the
Teichmuler space, and the group of large diffeomorp- spacetimeRrx T2 by time slices of constant medextrinsio
hisms—the modular group—has a well-understood and welleryaturek [24]. The fixed value ok on a slice then serves

behaved action on this space. As a consequence, standafd j time coordinate. The geometry of e@étslice is deter-
mathematical results allow us to construct invaria@rtmore 1 inaq up to a conformal factor by a complex modulus

=7it+im,

II. TWO QUANTIZATIONS
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It may be shown that the conformal factor is fixed by thewhere the Hamiltoniai is obtained from Eq(2.2) by some
Hamiltonian constraint, leaving a physical phase space pasyijtable operator ordering.

rametrized by the variables, and 7, and their conjugate

momentap! andp?, or equivalently by complex variables

andp=p!+ip?. Evolution in constant mean curvature time
k is generated by an effective Hamiltonian that is just the

spatial volumd2,3],

1 ~
Hzf d’xy@Pg=——=H, H=m\pp. (2.2
T2 k?—4A

The quantityH may be recognized as the square of the mo-
mentump with respect to the Poincar@onstant negative

curvaturg metric

d/?=r,"2drdr, (2.3

One fundamental problem is hidden in this last step: it is

not at all obvious how one should defifeas a self-adjoint
operator on an appropriate Hilbert space. In particutar,

andp do not commute, so the operator orderingHris not
unique. The simplest choice is that of EQ.2), for which the
Hamiltonian becomes

(2.1

where A is the ordinary scalar Laplacian for the constant
negative curvature moduli space characterized by the metric
(2.3). Other orderings exist, but they are severely restricted
by the requirement of diffeomorphism invariance: eigenfunc-

the standard metric on the torus moduli space. The basitons ofH should transform under a unitary representation of

Poisson brackets are

{rpt={7mpt=2, {7.p}={7.p}=0, 2.9
and the reduced Einstein action becomes
adTa
IEin:J'dk p W—H(T,p,k) - (2.9

The reduction to the variables and p eliminates the
“small” diffeomorphisms, but a group of “large” diffeo-

the modular group.The representation theory of the modu-
lar group has been studied extensivid$—28;; if we restrict

our attention to one-dimensional representations, the possible
Hamiltonians are all of the forrt2.11), but with A, replaced

by?

92 92

Ap=—12| —+
n T2 (07’12 37'22

J
+2inrzﬁ+n(n+1),
1

2nez. (212

morphisms, the modular group, remains. One set of genera-

tors of this group consists of two transformatidBsand T,
which act classically as

Sir——11 p=7p,

T:7—7+1, p—p (2.6
and satisfy the identities

=1, (SNé=1. 2.7

These transformations leave the Hamiltonié.2) and
Poisson bracket&.4) invariant.
The reduced phase space actigr) is equivalent to that

of a finite-dimensional mechanical system with a compli-
cated Hamiltonian. We know, at least in principle, how to
quantize such a system: we simply replace the Poisso

brackets(2.4) with commutators,

[7a.PP1=i1 65, (2.9
represent the momenta as derivatives,
J
pi=7 a7 (2.9
and impose the Schdinger equation
i 'M’gl’k) —Ay(r.K), (2.10

The operatord,, is the weightn Maass Laplacian, and the
corresponding eigenfunctions, Maass forms of weight
have been discussed in considerable detail in the mathemati-
cal literature 25—28. Note that when written in terms of the
momentump of Eq. (2.9, the A, differ from each other by
terms of ordett, as expected for operator ordering ambigu-
ities. Nevertheless, the choice of ordering can have drastic
effects on the physics: the spectra of the various Maass
Laplacians are very different.

This ambiguity can be viewed as a consequence of the
structure of the classical phase space. The torus moduli space
is not a manifold, but rather has orbifold singularities, and
quantization on an orbifold is generally not unique. Since the
space of solutions of the Einstein equations i B3 dimen-
sions has a similar orbifold structuf29], we might expect a
ﬁimilar ambiguity in realistic (3-1)-dimensional quantum
gravity.

A potentially more serious ambiguity in this approach to
gquantization comes from the classical treatment of the time
slicing. The choice ok as a time variable is rather arbitrary,
and it is not at all clear that a different choice would lead to
the same quantum theory. The danger of making a “wrong”
choice is illustrated by the classical soluti@2), (3.3) de-

IThis representation is usually assumed to be one dimensional, but
it may be permissible to consider higher-dimensional representa-
tions and multicomponent wave functions.

2See[9] for details of the required operator orderings.
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scribed below: another standard slicing ug@@ﬁ as time, 1
but it is evident that wher <0, @g is not even a single- XY= [xyl, (219
valued function ofk.
A possible resolution of this problem is to treat the ho-and replaces products in EQ.13 by symmetrized products,
lonomy representation as fundamental. In this first-order
“frozen time” approach, the basic observables give a time-
independent description of the entire spacetime geometry. xy—>§(xy+yx). (2.19
There is no Hamiltonian, no time development, and hence no
need to choose a time slicing. If we can establish a relationThe resulting operator algebra is given by
ship between the7((p) and suitable operators in the first-
order formalism, we can convert the problem of time slicing R} R;e*'?—R; Rie™'?=+2i sinoRy,
into one of defining the appropriate physical operators. Dif-

ferent choices of slicing would then merely require different and cyclical permutations
operators to represent moduli, and not different quantum (2.17
theories.

The holonomy representatiofil0,16 starts with the with
Chern-Simons formulation of (21)-dimensional gravity
[5,6], and chooses as fundamental variables the traces of the tand= —#/8a. (2.1
Chern-Simons holonomies around a set of noncontractible , . -
curves{y,}. For A <0, the relevant gauge group is a productT_he algebrd2.17) is not a Lie algebra, but it is related to the
group SL(2R)® SL(2,R) coming from the decomposition of L€ algebra of the quantum group SU(2[13,16, whereq
the spinor group of S@,2 (the anti—de Sitter groypand = &XP 460, and where the cych_cally invariarg-Casimir is
one obtains two real, independent sets of traggq11,1. e quantum analog of the cubic polynomial14),

For the torus, the algebra is simplest if we consider ho-
lonomies around three curves: two circumferengeandy,
and a third curvey,,= v, - y,, where the dot represents com-
position of curves or multiplication of homotopy classes. The
holonomies then satisfy the nonlinear Poisson bracket alge- (2.19
bra

F*(9)=cogd—e*2(Ry)2+(R1)?)

_eFa a(ﬁqzi)2+ 2ei‘0c089|32f FA?% ﬁ?fz-

It may be checked that trac& satisfying Eq(2.17) can be

. 1 . represented bj11,18,1
{Ri \Rp}=F,— (R~ R Ry) P n ’

NTT:

~+ ?f i~ +
and cyclical permutations. (2.13 Ry =sed cosh-,  R; =sed cos

The six holonomieR;, 1, provide an overcomplete descrip- .. (P7+75)
tion of the spacetime geometry &Xx T2, which is com- Ri,=sed COShT- (2.20
pletely characterized by two complex parameteasdp. To
relmove this overcompleteness, consider the cubic polynomiyhere the operators; , #5 have the commutators
als
[y, P, ]==8i6, [f.,F,]=0. (2.21
“=1-(R)*~(R;)*~(R)*+ 2R Ry Ry,
(2.19 Alternatively, we could start with a classical representa-

tion of the holonomieR; analogous to thé—0 limit of

These polynomials have vanishing Poisson brackets with aﬂ_:q_ (2.20,

of the tracesR; , are cyclically symmetric in th&®, , and

vanish classically by the SL(R) Mandelstam identities; set- . ry . ry . (ry+ry)
ting F*=0 removes the redundancy. Ry =coshy-, Rp =cosh;-, Rj;=cosh——,
The Poisson algebr@.13 and its generalizatiohl2] to (2.22

more complicated spatial topologies can be quantized for any

value of the cosmological constant. For a generic topologywhich will satisfy the algebré2.13 provided the parameters

one obtains an abstract quantum alggfifa15. For genus 1 r satisfy

with A <0, the quantum theory has been worked out quite

explicitly. {ry ryy=%Ua, {rl,ry}=0. (2.23
There are, in fact, two closely related theories: one can

either quantize the algebra and then determine a represelit this case the cubic polynomialg.14) are identically zero.

tion, or first choose a classical representation and then quafuantization of Eq(2.23 then gives

tize. For the first choice, one replaces the classical Poisson e .

brackets{,} by commutatorg,], [f1.To]==ifk/a. (2.249
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From Eq.(2.18, we see that this expression differs from Eq. Ill. RELATING REPRESENTATIONS
(2.21) by terms of ordef:. For the rest of this paper we will

qons_|der only the commu;ato(§.24); th_e alt_ernat|ve auan- e ories that arise from the holonomy and ADM representa-
tization (2.21) can be obtained by a fairly simple rescaling. tions, in order to investigate the role of the modular group in
In either approach, the modular group acts both CIaSSiéach7 theory. To ex Iorge this issue, it is necessarg to F:‘irst
cally and quantum mechanically on the holonomy param- Y- pic . ’ y
understand the classical relationship between the two ap-
eters as . ;
proaches. This requires that we refer back to the space of
classical solutions of (2 1)-dimensional gravity. For space-
times with the topologyRXx T? this space is, fortunately,
completely understood. .
TRy —f +F5, Fy—f5, (2.25 In the “proper time gauge’N=1, N'=0, the first-order
field equations

The ultimate goal of this paper is to relate the quantum

and satisfies
R3P=dw®— 30w L= — Ae?eP

2 _ 3_
S=-1 D=L 2.29 Re=de?— »*"e,=0 (3.0)
as is appropriate for a spinor representation. The actioare solved by
leaves invariant the Poisson brack&<3 and the commu-
tators(2.24). e’=dt
It will later prove useful to have an explicit representation
of thef, as multiplicative and differential operators, analo- La L ot
gous to the representatid®.9) in ADM quantization. An e'=5[(ry =ry)dy+(rz —rz)dx]sin (3.2
obvious choice is to take thig, as our configuration space
variables, and thé; as momenta. To simplify future alge- , L L t
bra, though, it is useful to pick instead a pair of linear com- €= 5 [(ry +ry)dy+(rz +r;)dx]cos
binations of thef, to parametrize our configuration space.
Lett denote the time coordinate in proper time gauge, related ,,12—g
to the York timek by Eg. (3.4) below, and define

01 1 e - +_ - t
ot| — 112 . . 13) =—§[(r1—r1)dy+(r2—rz)dx]cos— (3.3
u:(sin_a) (rz—elt/a+r;e—lt/a)' (&4

2.2 1 - _ 1

oy~ 12 (2.27 w%= E[(rf+rl)dy+(r§+r2)dx]sma,

U=(sin—) (rye Waqyr eltla),
@ wherex andy each have period 1. It is straightforward to

check that the parameters in Egs.(3.2), (3.3 are precisely

From the point of view of the holonomy representation, in ; ;
. . . L the parameter$2.22 that determine the holonomies. The
which the basic variables are time-independé¢u(t),u(t)} Yorkptime K for$thi52)metric is I !

should simply be thought of as a useful one-parameter family

of commuting operators. The variablesandu satisfy d 2 2t
k=——In y®@g=— — cot—, (3.9
dt a a
du 1 2t_
qi 2 s w which ranges monotonically from o to « ast varies from
0 to ra/2, so the slices of constah@re precisely the slices
du o 2t of constant.
or equivalently a2 sin— u. (2.289 Now, recall that any metric on a constantslice is dif-
o

feomorphic to one of the forn2.1), and that this form de-

_ R . fines the ADM variabler. The modulus can thus be read off
In the u representation, the operatdiisand 0" will act by from the expressioii3.2) for the triad: it is

multiplication, while suitable linear combinations of thg

will act by differentiation: from Eq(2.24), r=(r e +rye Vo)~ I(r eVetre ) (35
. ‘ 2% 21\ 12 g The conjugate variable can be similarly determined from
pretetple Was— — (sin—) e the canonical momenta", which may be computed from
@ @ u Eq. (3.2; one finds that
. 2k 2t\Y2 4 ia 2t . .
t—a-itlay ptaitla_ — P _ N ~ (rTaitla —a—itla)2
fie +f; € - (sm;) FTE (2.29 p 5 csca (roe+r,e )e. (3.6)
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From Egs.(3.9), (3.6), the Hamiltonian(2.2) that generates IV. MODULAR TRANSFORMATIONS
development irk is IN THE HOLONOMY REPRESENTATION

We have seen that the modular group acts classically on
(3.7  the torus modulus, momentum, and holonomy parameters as

a
—(ryri=r;r;),
2ie—an )

while from Eq. (3.4), development in coordinate timeis
generated by

Sr——711 p=7p, ri—r,, ry——r;,

Tir—71+1, p—p, r{—=ri+ry, =0, (4.1

dk 2t
H'= at —H=(k’>-4A)H= csc (ryry—riry). and that the transformatiof8.5), (3.6) between representa-
(3.9 tions preserves this action. The goal of this section is to find
' operators that generate the quantum version of these trans-

Equations(3.5—(3.8) give us our desired relationship be- formations.

tween the ADM and holonomy representations. Equiva- The simplest starting point is the holonomy representa-
lently, in terms of the operatons andu defined in the pre- tion. Itis easily checked that the modular transformations of

ceding section, we have i, are generated by conjugation with the unitary operators
. 2h 9 AT_Zﬁ I __, 39 o _ +ia U 43
= TTa @9 =exp =57 ()7 (4.2
and . i
. Si=exp{+—[(r )2+(f§)2]]. 4.3
ia ia
A— — 7112 at— _ 2
p=5u% P 5 U (3.10

(See the Appendix for a brief description of methods for
demonstrating this and similar relation3he first of these

whereas the Hamiltonian.7), (3.8) are appeared in Refl11] in a different notation. The second was

_iah 2t 9 P calculated independently by the two authors, and appeared in
H= e sin— (U%ﬂLU ai) [30] and[31]. The operatord andS are related to a set of
six constants of motiorC;" , i=1,2,3, calculated from the
A iz ot 9 9 holonomiedq 30]. These global constants of motion were first
H'=— cse— Ua_ + ua—) (3.11) calculated classically, fak =0, in terms of the ADM modu-
a o) d u lus and momentum, if32]. Explicitly,®
With these orderings, it may be checked that the modulus .
and momentum satisfy Tx= p{ T —C; ]

[#1.p]=[7.p"1=2i, [7.p]=[7"p"]=0, (3.12

. iTa  _ _
in agreement with Eq(2.8), by virtue of the commutators Sizexp[ tﬁ(clﬂrcg) .
(2.24) of the? . Moreover, their time evolution is given by
the standard Heisenberg equations of motion

(4.9

We next consider the induced action 8fand T on the

~ dp ~ ds modulus and momentum, expressed in the operator ordering
[p.H']=ih—, [7,H']=ifh—, (3.13  given by Egs(3.5 and(3.6). Note first that while the clas-
dt dt : : S
sical transformation$2.6) of 7 translate easily into operator
or equivalently, !anguagg, thés transformatipn op involves potential _ord_er-
ing ambiguities. The orderinB.5) that we are considering
. du dd here corresponds to a transformation
[0,A]=ik—, [4,H ]—|ﬁ— (3.19
dt ot
Sp— = (7'p+p7 4.
In effect, Eqs(3.5), (3.6) can be viewed as the general four- P 2 (F'p+p7), @

parameter solution of the quantum mechanical Heisenberg

equations of motion, with thé, serving as(operator-

valued parameters. The actid@.29 of the classical modu-  37he remaining global constan@ =rr; (see[30)) are related
lar group on the holonomy parameters induces, through Eqse Ci andCj by {C;,Cil= +(4/a)C3 . When quantized, they
(3.5 and(3.6), the standard actiof®.6) on the torus modu- generate a scaling; —e “ry ,r; —er; . The moduli and mo-
lus and momentum, thus confirming consistency. The corrementa scale as—e 27, p—e?‘p, leaving the commutators
sponding quantum action is discussed in the next section. (2.24 and(3.12 and the Hamiltoniar3.7) invariant.
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while  the choice r=(r;eV*+rfe Vo) (r e  acterized by time-independent states and time-dependent op-
+ r;e*it/a)*l, for example, would have led to erators. This description suggests that there should be a uni-
tary transformation between the two representations, which
. T could help in the interpretation of both.
: 2 One way to construct such a transformation is to start in
the Heisenberg picture and diagonalize the generalized posi-
the cases differing from each other and the classical limit bytion operatorsgy(t) for all t—that is, to find a family of
terms of orderi. For both orderings the commutatq®&12  wave functionsK(x,t) such that for any givem, K(x,t) is

are invariant and the identitig2.7) are satisfied. an eigenfunction ofjy(t) with eigenvaluex. (The suffixes
Quantum mechanically, we can use E8,.6) to reexpress H andS stand for “Heisenberg” and “Schuinger.”) Con-
T in terms ofp and its adjoint. We obtain sider, for example, a free particle of massin one spatial

dimension. The Heisenberg states are functignéx,) of an

A oaa i initial position xy, and the position operator is
T=T*T=exp{ﬁ(b+ p") (4.6 P ° P g
o t iRt
Using the commutatoré.12), we easily see that conjugation Gu()=0u(0)+ — Pu(0) =X~ —— Xy (5.

by this operator generates the transformatiérl) of 7 and

p. The S transformation is more complicated, but the opera-A simple computation shows that the eigenstates

tor (4.3) can also be expressed in terms of the modulus and

momentum: using Eq$3.5) and(3.6), we eventually obtain Ar () K(X,txg) =xK(X,t[Xo) (5.2

A i are
&= S+S‘=exp[8—2[2(ff+ p)+7'(7'p+p7h)

m |12 im
— - I _ 2
+(“Tr>f+pf%m] K(X't|X°)_(2hwt> e"p{ oht X Xo)}- (53

The exponent in Eq(5.3) is determined by Eq(5.2); the

i refactor is fixed by the normalization requirement that
=exp[ﬁ[@*+ﬁ+<%f>2b+p*<%>2 P d a

f dxoK* (X,t|Xo) K(X',t|Xg) = S(x—X"). (5.4
+iﬁ(%*—%)]], (4.7)

It is now easily checked that the complex conjugate kernel

which differs from the classical expressif80] by terms of  K*(x,t|x,) satisfies the free particle Scllinger equation,
order#. It can be shown, with some difficulty, that the op-

erator(4.7) generates the desired transformati¢hd) for 7 52 P2K* IK*

and(4.5) for p (see Appendix ~om oo S (5.5
Finally, note that in theu representation, the operators X

(4.6) and(4.7) become

and that a general Schiimger wave function can be written

. a _, as a superposition
T=ex E[u —u“] (4.9
Ps(x,0)= | dxoK* (x,t|x Xo)- 5.6
o T = [ ikt (et pxo). 59
. ma [4h% 97 4h2 52 Equation(5.6) implies that
S GXJ_— —> T 2_ > q'f’ﬁz . q ( ) P
8% | a° Jdu Ju
49 (Gulaavl) = [ dxgzocxpsn, 67
V. THE TRANSFORMATION BETWEEN . . .
REPRESENTATIONS as required for a transformation between representations. In
fact, the kerneK* (x,t|x,) is just the standard propagator for
In Sec. Il, we described two quantizations of a free particle, and Eq5.6) is simply the time evolution of

(2+1)-dimensional gravity in the torus univerBex T2. At the statey(X,), considered as an initial state in the Schro
first sight, the ADM representation looks like a standarddinger picture.

“Schrodinger picture” quantum theory, with time-dependent  In (2+1)-dimensional quantum gravity, the analogous
states whose evolution is determined by a Hamiltonian opkernel can be obtained by diagonalizing the operatgrand
erator. The holonomy representation is more mysterious, bu,, or equivalentlyr and7'. In theu representation of Egs.

it resembles a “Heisenberg picture” quantum theory, char-(3.9), (3.10, we thus require that

024012-6
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The T transformations thus act in the standard way on the
modulus 7. The action ofS is rather more complicated to
work out, since from Eq(4.9), Sis now a differential opera-

N _ 2h 9 _
TK(T,T,t|U,U)=—7U %K(Taﬂtw,m

=7K(m,7.tu,u) tor. It is safest to work with real variables and their con-
ok jugates, or for simplicity with rescaled variables
Aty _E 9 =
7' K(7,7,tlu,u) - &U[u K(r,7tlu,u)]  , W x
X= % r,, —I (“7_X: % ry
=7K(7,7,tlu,u), (5.8

where 7 and'7 are eigenvalues. It is easily checked that the

Vi iZ\ra. e
=\/=r,, i—=7\/="r1, )
solution is y ho2 ay hot

in terms of which, from Eq(4.9),

& i 92 ey >
e I A ay? Y

_ ATy __
K(T,’T,tlu,mz s u(t)

]. (5.19

(2% a

Xex;){ - ETu(t)ZJr — Tu(t)?}.
The action of this operator can be studied by means of a

(5.9 simple trick. Note first that

The prefactor in Eq(5.9) is again determined by normaliza- _ .
tion: we demand that e =\27 r1§=:o " (K) (%), (5.19
f du,du,K* (7,7 tlu, K (7,7 ,t|u,1) where they,, are normalized harmonic oscillator wave func-
B B tions [33]. These wave functions are eigenfunctions of the

/ , differential operator in the exponent in 14,
=r28(r— 74) 875 73). (5.10 P P EG.19

2
[The intggration mea}surwld Us i§ equal todr;*dr[, W_ith (‘9_2 —x2> Go(X)=—(2n+1) (), (5.16
no additional Jacobian, so the integ(&l10 is compatible X
with our original choice of variables in Sec. Il. The delta
function on the right-hand side of E¢5.10 is the one ap- and thus
propriate for the Weil-Petersson met(.3) on Teichmiier
space]

By analogy with Eq.(5.6), our candidates for “Schro
dinger picture” wave functions are therefore

Seli=em\2m 3, (~1)"in(K)(X)

- _ =e™\2m 2 Yin(K) thn(—%)
l,b(T,T,t)=f du,du,K* (7,7,t|u,u) (u,u) n=0

=e™4\2w8(x+k). (5.17
d? ~
w(u,U)=fpTK(T,?,tlu,mw(r,?,t). (65.1)  Similarly,
2
SekY=e "4 275(y—Kk'). (5.18

These integrals are not yet well defined, however: we have
not specified the region of integration, and as we saw in SeqNow consider an arbitrary functioRi(x,y) with a Fourier
Il, the proper choice of “Heisenberg picture” wave func- transformF (k,k'):

tions ¢(u,u) requires a better understanding of the action of o
the modular group. In the next section, we will use Eq11) 1 o
to define Heisenberg picture wave functions. For the mo-  F(xy)=5— f dkdKk e®ek YF(k,k")

ment, let us treat Eq5.11) as a formal expression. ™

Our ultimate goal is to understand the modular transfor- 1

mations of(u,u). An obvious starting point is to investi- F(up)=— J dadbe '@e~PvF(q,b). (5.19
gate the actions of the operatdgsand T of the preceding 2m

section onK (7, 7,t|u,u). In the u representation] acts by Equations(5.17), (5.18 then imply that
multiplication, and it is easy to see from E@4.8) and (5.9

A ~ 1 . .
that (SEIXY)=F(=xy)=5— f dadbé®*e "™YF(a,b).

TK(7,7tlu,u)=K(7+ 17+ 1tlu,0). (5.12 (5.20
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The operatolS thus acts by Fourier transformation. In retro- It is also interesting to consider the action of the
spect this is perhaps not surprising: by E.25, § inter- “Heisenberg picture” Hamiltoniar(3.8) on K* (7, 7,t|u,u).
changes the observable§ with their conjugatess , thus oM Eq.(3.11), we see that

acting as a transformation from “position space” to “mo-

mentum space.”

We can now apply Eq5.20 to our kernelK (7, 7,t|u,u). A'K* (r7tlu T =—iﬁiK* —tluT 5.2
A straightforward calculation shows that (r.7tuu) at (n7tluu). (529

— Equations(5.24 and (5.25 imply that, in some senséd’

' ~(Aqp)Y?, i.e., that the first-order holonomy-based quantum
(5.2 theory is a “square root” of the second-order ADM theory.

dA similar phenomenon was noted earlier in the theory with

Were it not for the phase on the right-hand side, this WOl.Jl ‘A =0, although with different variabld8]. Whether this re-
be exactly what we would expect from the standard aCtloriation can be made more rigorous remains an open question.

(2'6). of S on modHI| space. The:‘_phasfe mflkes. the transfor:l.he basic problem is that the square root of a Laplacian is
mation ‘“covariant” rather than “invariant.” This phase is

characteristic of modular forms of weight 1/2, which highly nonunique: it can be defined mode by mode in a spec-
can be viewed as spinors on moduli sp@é—zé Such tral decomposition, but the sign of the square root can be
modular forms have appeared in previous .work nchosen arbitrarily for each mode. It is not clear which, if any,

(2+1)-dimensional gravity wit\ =0 [8,9], although with of this infinite number of square roots should be associated
a different representation & andT. with H'.

A similar computation shows that the complex conjugate
kernelK* (7, 7,t|u,u) transforms as

SK (7,7 t|u,u)=—

VI. MODULAR TRANSFORMATIONS
OF HOLONOMY WAVE FUNCTIONS

. 7\ 11
SK*(T,?,HU,U):—(;) K*(——,—?,t

—) We are now ready to use the results of the preceding
' section to analyze the behavior of the “Heisenberg picture”
wave function(u,u) under modular transformations. Our
strategy will be to use the well-understood properties of the
TK* (7,7 t{u,u)=K*(r—1,7—1,t|u,u), (5.2  “Schrodinger picture” wave functionj(r,7,t), along with
the transformatiort5.11) between representations.
characteristic of a modular form of weight 1/2. The covariant We begin with the second equation ({.11),
LaplacianA 4/, for modular forms of weight 1/2 is the Maass
Laplacian(2.12 [25-28,

o? y
(p(u,m:f KA AUUDH Y. (6.1
2 2 F 7
J J
Agp= — 72| =+ -
v 2 ((97'12 &7'22

+i i +3 5.2
ITZO”_Tl Z (3)

SinceK(r,7,t|u,u) is, roughly speaking, a modular form of
As noted in Sec. Il, this operator differs from the ordinary weight —1/2, as implied by Eq(5.21), we might expect
LaplacianA by terms of ordef:, and can thus be viewed as W(r.Tt) to be a form of weight 1/2, that is, a function in-
a different operator ordering of the standard Laplacian. A 5riant under the transformations
straightforward computation now shows that

) e B R |
ia 2t 9 _ _ Shrmt)=—|—| ¥l —-=,—-=t],
(? sin; E) K* (7, 7,t|ju,u)=(A1p— 1)K*(7,7,t|u,u). Y7 7Y (:) l//( T T )
(5.249
Up to a constant ordef correction, this is the square of the TY(r 70 =¢(r+17+11). (6.2

reduced phase space Safirger equation(2.10 with an
operator ordering appropriate for a form of weight 1/2, and it
serves as a check that our kern€f (7,7,tju,u) behaves We shall see below that this is indeed the case.

as it ought to. In particular, Eq(5.24 implies that the Our first task is to determine the range of integratim
“Schrodinger picture” wave functions of Eq5.11) will sat-  Eq. (6.1). This can be fixed by the requirement thitu,u)
isfy a similar Klein-Gordon-like equation. be properly normalized:
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) ) matters: the wave functiog(u,u) is not invariant under the
f d?ulg(u,u)] action of the mapping class groipndeed, there is a sense
in which ¢(u,u) and (for example Ty(u,u) differ
) d2 ! _ maximally—they are, in fact, orthogonal. To see this, we can
d“u fq-z (7,7.t|u,u) repeat the calculation of E@6.3); from the orthonormality

of K(r,7,t|u,u), we now obtain
XK* (7,7 tu, W) (7, 7,0) % (7' 7, t)

d2 ’ 27_ d2 , , ,
JF f e G T (ulTy)= f,lf ol P 528 (r— 1)
XY TG (7,7 1), 6.7)

d’r )
- | Shear, 63

where we have used the orthonormality relatigri0). But ~ But the regionsF andT~1F are cﬁsjo_int except on a set of
we understand the normalization of “Schiinger picture”  measure zero, so the delta function in E8}7) is identically

wave functionsy(r,7,t): the right-hand side of Eq6.3 2670~ o o
will be unity when F is a fundamental region for the action A Similar argument shows that i§ is any nontrivial
(2.6) of the modular group on Teichitier space. modular transformation, then

With this choice of integration region, we take H.1)
as thedefinitionof ¢(u,u). Let us now consider the action of A
the operator$ andT of Sec. IV on this wave function. From (¥199)=0. 6.8
Eqg. (5.22, it is easy to see that

A d2r . B In fact, this conclusion can be strengthened. {gfu,u) and

Ty(u,u)= f — (TK) (7, 7 t|u,u) (7, 7,t) »(u,u) be two different wave functions defined by integrals
FT2 of the form (6.1) over the same fundamental regidgn Re-

peating the computation of E¢6.7), we now see that

dZT o ~ _
:f — K(7+ 1,7+ 1tu,u) (7, 7,t)
FT2

d2 (41]8¢2)=0 (6.9
= f —;-K(T"r 17+ 1,t|u,U)T//(7'+ 17+11),
FT2

for any nontrivial modular transformatiom
(6.4) In accord with the results of Reff21-23, our “Heisen-
berg picture” wave functions are not modular invariant. But
where the invariance ofs under the transformation&.2)  the “maximal noninvariance” of Eq(6.9) is aimost as good.
has been used in the last line. Changing integration variabld3ick a fundamental regiosf, and consider the set of wave
to 7+1 and7+1, we see that functions defined by Eq6.1). These will form a subspace
'H - of the Hilbert spacé{ of square-integrable functions of
(uy,up) or (ry ,r,). A modular transformatioy maps this
(6.5  subspace into an orthogonal subspatg-1,, which is ob-
tained by integrals of the forr(6.1) over the translated fun-
damental regiorg ™~ 1F. In fact, the modular group splits the
spaceH into an infinite set of orthogonal subspaces.
These subspaces are physically equivalent. Indeed) let
be an arbitrary modular invariant operator &n There is no
reason to expect the orthogonal subspaces to be
(6.6) superselected—that is, §fe H £, it need not be the case that

O¢re H—so if we wish to restrict ourselves to a single

providedy( ,7,t) is a modular form of weight 1/2, invariant subsApace, we must appropnat_ely projetto tha_t subspace.
under the transformation®.2). [The extra phase factor in Let P, denote the standard Hilbert space projector onto the
Eq. (6.2 is needed to cancel the phase in the transformation

(5.21), as anticipated.

Now, the kernelK(r,7,t|u,u) is not modular invariant, ~ “This fact was first pointed out to one of the auth¢gsC) by
and the shift of integration region in Eq&.5 and (6.6)  Jorma Louko.

W(u,ﬁ)=frl

whereT~1F is the new fundamental region obtained frofm
by aT~! transformation. A similar argument shows that

é¢<u,ﬁ>=Js,l
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subspaceH, and define® =P OP-. Then if y,,, tWo descriptions are equivalengnd can be viewed as dif-
e H, it follows that ferent coordinate choices for a single space. Onphase

space the mapping class group has a properly discontinuous
action in either set of coordinates, and invariant functions are

(Ul O vr2) = (1| PrOPH 2) well defined.
To quantize such a phase space, however, one must
_ a-1P 408 1P .4 choose a polarization, that is, a distinction between *“posi-
(1nlg ord~9 gfg|¢2> tions” and “momenta.” Therein lies the root of the problem
_ 5 A discussed in Ref§21-23. While the mapping class group
(g¢1|ngOPgAg¢2) acts nicely on the phase space, there is no guarantee that it
=(gyn| Oy gs), (6.10  does so on the configuration space, and hence no assurance

that one can find invariant wave functions. Whenis a
. . - torus, this is precisely what goes wrong: the modular group
where we have used the modular invarianc@aind the fact  ajls to act properly  discontinuously on a *“configuration
that §~*Py-g=P,. Matrix elements can thus be computed space” of holonomies, and the definition of invariant wave
in any of the subspacés, -, and the appropriate restrictions functions becomes highly problematic.
of modular invariant operators will give the same physics. One could, of course, evade this issue by choosing a dif-
The modulus7, of course, is not an invariant operator, ferent polarizatior{34]. But the polarization for which the
and its matrix elements will depend on the choice of subproblems arise is a natural one, and it seems implausible that
space. But this is not surprising, since the same is true clas perfectly good choice of classical coordinates should lead
sically. One can build invariant operators framwhose ma-  to such disastrous consequences for the quantum theory.
trix elements satisfy Eq6.10. One example is the operator  In this paper, we have solved this problem. By construct-
version of the modular functiod(r) of Dedekind and Klein ing the exact transformation between the ADM and ho-
[27], lonomy states, we have shown that the modular grdogs
have a nice, albeit unexpected, action on the holonomy
states. There are, indeed, no invariant wave functions in the
(60G4(7))® holonomy representation. Instead, the modular group acts on
J(r)= (60G4(7))>— 27(140G4( 7)) (6.1D  the Hilbert space in much the same way that it acts on
a7 o(7 Teichmiuler space—it splits the Hilbert space into physically
. ) ) equivalent orthonormal “fundamental regions,” each one of
where theG,(7) are Eisenstein series, which is equivalent to the Hilbert space that arises from
ADM quantization. In the course of our argument, we have
also derived a collection of explicit operator representations
Gy 7) = Zr 1 6.12 of the torus _mapping clas_s group. . _
% mfEz  (m+n7)2 ' The splitting of the Hilbert space described in Sec. VI
relies on the transformatiof5.11) between representations,
and thus refers back to the ADM quantum theory. It would

(The prime means that the value=n=0 is excluded from X it
the sum) It may be shown that any meromorphic modular _be desirable to have a description that depended only on the

T . . . intrinsic properties of the Hilbert space in the holonomy rep-
function is a rational function od(7). Such functions are resentation. We do not vet have such a descriotion. but we
certainly less familiar than trigonometric functions, but in ' y ption,

principle they are no more extraordinary. Sird¢e) depends see no reason why one should not exist.

only on the modulus and not the momentum, there are no

ordering ambiguities, and E¢6.11) may be taken to be an ACKNOWLEDGMENTS

operator expression. . . . .
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modular groupdoesact nicely on the corresponding Hilbert
space, which is all that is required for a sensible quantum APPENDIX

theory. The generatorg4.2), (4.3) and (4.6), (4.7) of modular
transformations act by conjugation, and to compute their ac-
tion, one must evaluate expressions of the form

VIl. CONCLUSION

The phase space of (21)-dimensional gravity with
A <0 on a manifoldRX 3, has two natural descriptions: as
the cotangent bundle of the Teichtiem space oft, and asa  Sstrictly speaking, one must restrict the holonomies to ensure that
space of SL(R)®SL(2R) holonomies. Classically, the the metric is nonsingular and that the sliGesre spacelik¢21].
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A,[A,B A “ (_1\yp—1_2n
eABe‘A=B+[A,B]+M+---. (A1) ha 4 > LS
2! 4 -1 (2n)!
In this appendix, we briefly describe two ways to evaluate ha . ha .
such expressions, one based on explicit summation and a =|7 —P'|(1-cosm)=—-—2p". (AL0)
second based on a trick that converts the problem to one of
solving differential equations. Thus from Eq.(Al),
As an example of the explicit calculation, write the gen- R
eratorS of Eq. (4.7) as efpfe A=pT+ ha -2p'|= E(I@TAT2+ ')
2 2 '
) mo (A12)
S=exp 5 (a+ aht, (A2)
in agreement with Eq4.5), as required.
We next give an alternative method for calculating ghe

where . N

transformations of- andp. Let

ﬁé_=2f)T+ }bTa"i" FAJT}Z, F(s)=e~ |sa'7~_e|sa G(s):efisép‘reisé_ (A12)
hat=2p+7"p3'+(7")%p (A3) By Eq.(A2), the transformed values éfandp’ are simply

F(m/8) andG(/8). But by differentiatingF(s) and G(s)

and with respect tos and using the commutatof&\6), we can
[a.at=o. (A4) reduc_e the problem to one of solving a pair of differential

equations,
To use Eq.(Al) to evaluate the transformation @ff, for dG
example, one must compute the multiple commutators E:A'(lJr F?), ds - —8GF+4if. (A13)

At
[ALALA, ... {Ap7.... (AS) The first equation ifA13) has the solution

whereA= —(wi/8)a. Note first that by Eq(3.12), F(s)=tan4(s—sy), (A14)

[&,7]=4i(1+7%), [&p']1=-8ip'7—4A. (A6)  with initial conditions

Direct computation shows that the odd commutators are all F(0)=—tan 4=T. (A15)
proportional:
Hence
[ALALA, ... ] [ADT. .. Jlans1=(—7)AP'T. F(m/8)=cot dsy= — 71, (A16)

A7
o (A7) yielding the correct transformatiof@.1) for 7. To calculate
Similarly, the even commutators can be computed t0 be  the corresponding transformation pf, observe that by Eq.

[AA[A,..... [ADT... 111 (AL3),
=(—7)"A[ADP] diS[G(lnL F2)]=—8GF(1+F?)+4ix(1+ F2)+2GF3—2
(_1)n—lﬂ_2n . .
=4 (ha-4ph). (A8) —4ik(1+ F2)=iﬁ3—z, (A17)
It follows that the sum of the odd commutators in E41) is and thus
A, pf]i (<2—n+21>)”l Liap Af]nzo ( (zl,iﬂz).l G<s>(1+F(s>2)—G(0>(1+F<0>2)=iﬁ<F(s>—F<0(>/z.18)

1 Settings= 7/8 and using Eq(A16), we find that
=—[A,p"]sin =0, (A9)
7T . ~ ~ ~ A A ~
G(wl8)=p'P—itir= E(pTTZ-l- ), (A19)
whereas the sum of the even commutators, starting from
[ALAD']], is recovering Eq(4.5).
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