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Quantum modular group in „211…-dimensional gravity
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The role of the modular group in the holonomy representation of (211)-dimensional quantum gravity is
studied. This representation can be viewed as a ‘‘Heisenberg picture,’’ and for simple topologies, the trans-
formation to the ADM ‘‘Schro¨dinger picture’’ may be found. For spacetimes with the spatial topology of a
torus, this transformation and an explicit operator representation of the mapping class group are constructed. It
is shown that the quantum modular group splits the holonomy representation Hilbert space into physically
equivalent orthogonal ‘‘fundamental regions’’ that are interchanged by modular transformations.
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I. INTRODUCTION

Over the past few years, it has become apparent
(211)-dimensional general relativity can provide a valua
setting in which to explore some of the fundamental issue
realistic (311)-dimensional quantum gravity@1#. As a
diffeomorphism-invariant theory of spacetime geometry,
(211)-dimensional model shares the conceptual framew
of ordinary (311)-dimensional gravity. At the same time
however, the reduction in the number of dimensions gre
simplifies the structure: (211)-dimensional general relativ
ity has only a finite number of physical degrees of freedo
and quantum field theory is effectively reduced to quant
mechanics.

At least fifteen different approaches to quantizi
(211)-dimensional general relativity have been develop
over the past decade. Two that have received special a
tion are reduced phase space quantization, starting with
Arnowitt-Deser-Misner~ADM ! formalism and the York time
slicing @2–4#, and a set of techniques that take Chern-Sim
holonomies as the fundamental observables@5–17#. Both ap-
proaches to quantization are well understood for the simp
topologies, and in particular for spacetimes with the spa
topology of a torus,M'R3T2. For these topologies, th
two techniques yield complementary information about
quantum behavior, and a comparison has offered valu
insights into both@8,18,19#.

One persistent problem has, however, plagued this
gram. In addition to the usual ‘‘small’’ diffeomorphisms
the torusT2 admits ‘‘large’’ diffeomorphisms, diffeomor-
phisms that cannot be continuously deformed to the iden
In ADM quantization, the natural configuration space
Teichmüller space, and the group of large diffeomor
hisms—the modular group—has a well-understood and w
behaved action on this space. As a consequence, stan
mathematical results allow us to construct invariant~or more
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general ‘‘covariant’’! wave functions @9,20#. In the ho-
lonomy representation, on the other hand, the modular gr
does not act nicely ~i.e., properly discontinuously! on the
natural configuration space, and the construction of invar
wave functions is much more problematic@21–23#. Since the
two approaches are supposed to be equivalent, this mism
is a cause for concern.

In this paper, we resolve this problem by explicitly co
structing a transformation between the two representatio
In the ADM representation, the modular group splits the co
figuration space into fundamental regions that are in
changed by the action of the group, and an invariant w
function can be defined by giving its value on a single fu
damental region. In the holonomy representation, no inv
ant wave functions exist. But we shall see that theHilbert
spacenow splits into orthogonal ‘‘fundamental regions’’ tha
are interchanged by a unitary action of the modular gro
Each of these subspaces is equivalent, and each is equiv
to the ADM Hilbert space of invariant~technically, weight-
1/2) wave functions. The choice of one such subspace is
discrete analog of a choice of gauge, and once such a ch
is made, the conflict between the two quantizations dis
pears.

II. TWO QUANTIZATIONS

We start with a very brief review of the two approaches
quantization described in the introduction, focusing on
torus universeR3T2. For simplicity, we shall consider only
a negative cosmological constant,L521/a2. Details can be
found in Refs.@18,19# and @1#.

To construct an ADM quantization, we first foliate th
spacetimeR3T2 by time slices of constant mean~extrinsic!
curvaturek @24#. The fixed value ofk on a slice then serve
as a time coordinate. The geometry of eachT2 slice is deter-
mined up to a conformal factor by a complex modulust
5t11 i t2 ,

ds25e2lt2
21udx1tdyu2. ~2.1!
©1998 The American Physical Society12-1
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It may be shown that the conformal factor is fixed by t
Hamiltonian constraint, leaving a physical phase space
rametrized by the variablest1 and t2 and their conjugate
momentap1 andp2, or equivalently by complex variablest
andp5p11 ip2. Evolution in constant mean curvature tim
k is generated by an effective Hamiltonian that is just
spatial volume@2,3#,

H5E
T2

d2xA ~2!g5
1

Ak224L
H̃, H̃5t2App̄. ~2.2!

The quantityH̃ may be recognized as the square of the m
mentump with respect to the Poincare´ ~constant negative
curvature! metric

dl 25t2
22dtdt̄, ~2.3!

the standard metric on the torus moduli space. The b
Poisson brackets are

$t,p̄%5$t̄,p%52, $t,p%5$t̄,p̄%50, ~2.4!

and the reduced Einstein action becomes

I Ein5E dkS pa
dta

dk
2H~t,p,k! D . ~2.5!

The reduction to the variablest and p eliminates the
‘‘small’’ diffeomorphisms, but a group of ‘‘large’’ diffeo-
morphisms, the modular group, remains. One set of gen
tors of this group consists of two transformationsS and T,
which act classically as

S:t→2t21, p→ t̄2p,

T:t→t11, p→p ~2.6!

and satisfy the identities

S251, ~ST!351. ~2.7!

These transformations leave the Hamiltonian~2.2! and
Poisson brackets~2.4! invariant.

The reduced phase space action~2.5! is equivalent to that
of a finite-dimensional mechanical system with a comp
cated Hamiltonian. We know, at least in principle, how
quantize such a system: we simply replace the Pois
brackets~2.4! with commutators,

@ t̂a ,p̂b#5 i\d a
b , ~2.8!

represent the momenta as derivatives,

pa5
\

i

]

]ta
, ~2.9!

and impose the Schro¨dinger equation

i\
]c~t,k!

]k
5Ĥc~t,k!, ~2.10!
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where the HamiltonianĤ is obtained from Eq.~2.2! by some
suitable operator ordering.

One fundamental problem is hidden in this last step: i
not at all obvious how one should defineĤ as a self-adjoint
operator on an appropriate Hilbert space. In particular,t̂2

and p̂ do not commute, so the operator ordering inĤ is not
unique. The simplest choice is that of Eq.~2.2!, for which the
Hamiltonian becomes

Ĥ5
\

Ak224L
D0

1/2, ~2.11!

whereD0 is the ordinary scalar Laplacian for the consta
negative curvature moduli space characterized by the me
~2.3!. Other orderings exist, but they are severely restric
by the requirement of diffeomorphism invariance: eigenfun
tions ofĤ should transform under a unitary representation
the modular group.1 The representation theory of the mod
lar group has been studied extensively@25–28#; if we restrict
our attention to one-dimensional representations, the poss
Hamiltonians are all of the form~2.11!, but withD0 replaced
by2

Dn52t2
2S ]2

]t1
2 1

]2

]t2
2D12int2

]

]t1
1n~n11!,

2nPZ. ~2.12!

The operatorDn is the weightn Maass Laplacian, and th
corresponding eigenfunctions, Maass forms of weightn,
have been discussed in considerable detail in the mathem
cal literature@25–28#. Note that when written in terms of th
momentump of Eq. ~2.9!, theDn differ from each other by
terms of order\, as expected for operator ordering ambig
ities. Nevertheless, the choice of ordering can have dra
effects on the physics: the spectra of the various Ma
Laplacians are very different.

This ambiguity can be viewed as a consequence of
structure of the classical phase space. The torus moduli s
is not a manifold, but rather has orbifold singularities, a
quantization on an orbifold is generally not unique. Since
space of solutions of the Einstein equations in 311 dimen-
sions has a similar orbifold structure@29#, we might expect a
similar ambiguity in realistic (311)-dimensional quantum
gravity.

A potentially more serious ambiguity in this approach
quantization comes from the classical treatment of the t
slicing. The choice ofk as a time variable is rather arbitrary
and it is not at all clear that a different choice would lead
the same quantum theory. The danger of making a ‘‘wron
choice is illustrated by the classical solution~3.2!, ~3.3! de-

1This representation is usually assumed to be one dimensiona
it may be permissible to consider higher-dimensional represe
tions and multicomponent wave functions.

2See@9# for details of the required operator orderings.
2-2
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QUANTUM MODULAR GROUP IN ~211!-DIMENSIONAL . . . PHYSICAL REVIEW D 59 024012
scribed below: another standard slicing usesA (2)g as time,
but it is evident that whenL,0, A (2)g is not even a single-
valued function ofk.

A possible resolution of this problem is to treat the h
lonomy representation as fundamental. In this first-or
‘‘frozen time’’ approach, the basic observables give a tim
independent description of the entire spacetime geome
There is no Hamiltonian, no time development, and hence
need to choose a time slicing. If we can establish a relat
ship between the (t̂,p̂) and suitable operators in the firs
order formalism, we can convert the problem of time slici
into one of defining the appropriate physical operators. D
ferent choices of slicing would then merely require differe
operators to represent moduli, and not different quant
theories.

The holonomy representation@10,16# starts with the
Chern-Simons formulation of (211)-dimensional gravity
@5,6#, and chooses as fundamental variables the traces o
Chern-Simons holonomies around a set of noncontract
curves$ga%. ForL,0, the relevant gauge group is a produ
group SL(2,R) ^ SL(2,R) coming from the decomposition o
the spinor group of SO~2,2! ~the anti–de Sitter group!, and
one obtains two real, independent sets of tracesRa

6 @11,16#.
For the torus, the algebra is simplest if we consider

lonomies around three curves: two circumferencesg1 andg2
and a third curveg125g1•g2 , where the dot represents com
position of curves or multiplication of homotopy classes. T
holonomies then satisfy the nonlinear Poisson bracket a
bra

$R1
6 ,R2

6%57
1

4a
~R12

6 2R1
6R2

6!

and cyclical permutations. ~2.13!

The six holonomiesR1,2,12
6 provide an overcomplete descrip

tion of the spacetime geometry ofR3T2, which is com-
pletely characterized by two complex parameterst andp. To
remove this overcompleteness, consider the cubic polyno
als

F6512~R1
6!22~R2

6!22~R12
6 !212R1

6R2
6R12

6 .
~2.14!

These polynomials have vanishing Poisson brackets with
of the tracesRa

6 , are cyclically symmetric in theRa
6 , and

vanish classically by the SL(2,R) Mandelstam identities; set
ting F650 removes the redundancy.

The Poisson algebra~2.13! and its generalization@12# to
more complicated spatial topologies can be quantized for
value of the cosmological constant. For a generic topolo
one obtains an abstract quantum algebra@11,15#. For genus 1
with L,0, the quantum theory has been worked out qu
explicitly.

There are, in fact, two closely related theories: one
either quantize the algebra and then determine a repre
tion, or first choose a classical representation and then q
tize. For the first choice, one replaces the classical Pois
brackets$,% by commutators@,#,
02401
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$x,y%→
1

i\
@x,y#, ~2.15!

and replaces products in Eq.~2.13! by symmetrized products

xy→
1

2
~xy1yx!. ~2.16!

The resulting operator algebra is given by

R̂1
6R̂2

6e6 iu2R̂2
6R̂1

6e7 iu562i sinuR̂12
6

and cyclical permutations

~2.17!

with

tanu52\/8a. ~2.18!

The algebra~2.17! is not a Lie algebra, but it is related to th
Lie algebra of the quantum group SU(2)q @13,16#, whereq
5exp 4iu, and where the cyclically invariantq-Casimir is
the quantum analog of the cubic polynomial~2.14!,

F̂6~u!5cos2u2e62iu
„~R̂1

6!21~R̂12
6 !2

…

2e72iu~R̂2
6!212e6 iucosuR̂1

6R̂2
6R̂12

6 .

~2.19!

It may be checked that tracesR̂a satisfying Eq.~2.17! can be
represented by@11,18,19#

R̂1
65secu cosh

r̂ 1
6

2
, R̂2

65secu cosh
r̂ 2

6

2
,

R̂12
6 5secu cosh

~ r̂ 1
61 r̂ 2

6!

2
, ~2.20!

where the operatorsr̂ 1
6 , r̂ 2

6 have the commutators

@ r̂ 1
6 , r̂ 2

6#568iu, @ r̂ a
1 , r̂ b

2#50. ~2.21!

Alternatively, we could start with a classical represen
tion of the holonomiesRa

6 analogous to the\→0 limit of
Eq. ~2.20!,

R1
65cosh

r 1
6

2
, R2

65cosh
r 2

6

2
, R12

6 5cosh
~r 1

61r 2
6!

2
,

~2.22!

which will satisfy the algebra~2.13! provided the parameter
r a

6 satisfy

$r 1
6 ,r 2

6%571/a, $r a
1 ,r b

2%50. ~2.23!

In this case the cubic polynomials~2.14! are identically zero.
Quantization of Eq.~2.23! then gives

@ r̂ 1
6 , r̂ 2

6#57 i\/a. ~2.24!
2-3
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S. CARLIP AND J. E. NELSON PHYSICAL REVIEW D59 024012
From Eq.~2.18!, we see that this expression differs from E
~2.21! by terms of order\3. For the rest of this paper we wil
consider only the commutators~2.24!; the alternative quan
tization ~2.21! can be obtained by a fairly simple rescaling

In either approach, the modular group acts both cla
cally and quantum mechanically on the holonomy para
eters as

S: r̂ 1
6→ r̂ 2

6 , r̂ 2
6→2 r̂ 1

6 ,

T: r̂ 1
6→ r̂ 1

61 r̂ 2
6 , r̂ 2

6→ r̂ 2
6 , ~2.25!

and satisfies

S2521, ~ST!351, ~2.26!

as is appropriate for a spinor representation. The ac
leaves invariant the Poisson brackets~2.23! and the commu-
tators~2.24!.

It will later prove useful to have an explicit representati
of the r̂ a

6 as multiplicative and differential operators, anal
gous to the representation~2.9! in ADM quantization. An
obvious choice is to take ther̂ 2

6 as our configuration spac
variables, and ther̂ 1

6 as momenta. To simplify future alge
bra, though, it is useful to pick instead a pair of linear co
binations of ther̂ 2

6 to parametrize our configuration spac
Let t denote the time coordinate in proper time gauge, rela
to the York timek by Eq. ~3.4! below, and define

u5S sin
2t

a D 21/2

~r 2
2eit /a1r 2

1e2 i t /a!,

~2.27!

ū5S sin
2t

a D 21/2

~r 2
2e2 i t /a1r 2

1eit /a!.

From the point of view of the holonomy representation,
which the basic variables are time-independent,$u(t),ū(t)%
should simply be thought of as a useful one-parameter fam
of commuting operators. The variablesu and ū satisfy

du

dt
52

1

a
csc

2t

a
ū,

or equivalently
du

dk
52

a

4
sin

2t

a
ū. ~2.28!

In the u representation, the operatorsû and û† will act by
multiplication, while suitable linear combinations of ther̂ 1

6

will act by differentiation: from Eq.~2.24!,

r̂ 1
2eit /a1 r̂ 1

1e2 i t /a52
2\

a S sin
2t

a D 1/2 ]

]u
,

r̂ 1
2e2 i t /a1 r̂ 1

1eit /a5
2\

a S sin
2t

a D 1/2 ]

]ū
. ~2.29!
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III. RELATING REPRESENTATIONS

The ultimate goal of this paper is to relate the quant
theories that arise from the holonomy and ADM represen
tions, in order to investigate the role of the modular group
each theory. To explore this issue, it is necessary to
understand the classical relationship between the two
proaches. This requires that we refer back to the spac
classical solutions of (211)-dimensional gravity. For space
times with the topologyR3T2 this space is, fortunately
completely understood.

In the ‘‘proper time gauge’’N51, Ni50, the first-order
field equations

Rab5dvab2vac∧vc
b52Lea∧eb

Ra5dea2vab∧eb50 ~3.1!

are solved by

e05dt

e15
a

2
@~r 1

12r 1
2!dy1~r 2

12r 2
2!dx#sin

t

a
~3.2!

e25
a

2
@~r 1

11r 1
2!dy1~r 2

11r 2
2!dx#cos

t

a

v1250

v0152
1

2
@~r 1

12r 1
2!dy1~r 2

12r 2
2!dx#cos

t

a
~3.3!

v025
1

2
@~r 1

11r 1
2!dy1~r 2

11r 2
2!dx#sin

t

a
,

wherex and y each have period 1. It is straightforward
check that the parametersr a

6 in Eqs.~3.2!, ~3.3! are precisely
the parameters~2.22! that determine the holonomies. Th
York time k for this metric is

k52
d

dt
ln A ~2!g52

2

a
cot

2t

a
, ~3.4!

which ranges monotonically from2` to ` as t varies from
0 to pa/2, so the slices of constantt are precisely the slices
of constantk.

Now, recall that any metric on a constantk slice is dif-
feomorphic to one of the form~2.1!, and that this form de-
fines the ADM variablet. The modulus can thus be read o
from the expression~3.2! for the triad: it is

t5~r 2
2eit /a1r 2

1e2 i t /a!21~r 1
2eit /a1r 1

1e2 i t /a!. ~3.5!

The conjugate variablep can be similarly determined from
the canonical momentap i j , which may be computed from
Eq. ~3.2!; one finds that

p5
ia

2
csc

2t

a
~r 2

1eit /a1r 2
2e2 i t /a!2. ~3.6!
2-4
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QUANTUM MODULAR GROUP IN ~211!-DIMENSIONAL . . . PHYSICAL REVIEW D 59 024012
From Eqs.~3.5!, ~3.6!, the Hamiltonian~2.2! that generates
development ink is

H5
a

2Ak224L
~r 1

2r 2
12r 1

1r 2
2!, ~3.7!

while from Eq. ~3.4!, development in coordinate timet is
generated by

H85
dk

dt
H5~k224L!H5csc

2t

a
~r 1

2r 2
12r 1

1r 2
2!.

~3.8!

Equations~3.5!–~3.8! give us our desired relationship be
tween the ADM and holonomy representations. Equi
lently, in terms of the operatorsu and ū defined in the pre-
ceding section, we have

t̂52
2\

a
u21

]

]u
, t̂†5

2\

a

]

]ū
ū21 ~3.9!

and

p̂5
ia

2
ū2, p̂†52

ia

2
u2, ~3.10!

whereas the Hamiltonians~3.7!, ~3.8! are

Ĥ5
ia\

4
sin

2t

a S ū
]

]u
1u

]

]ūD
Ĥ85

i\

a
csc

2t

a S ū
]

]u
1u

]

]ūD . ~3.11!

With these orderings, it may be checked that the modu
and momentum satisfy

@ t̂†,p̂#5@ t̂,p̂†#52i\, @ t̂,p̂#5@ t̂†,p̂†#50, ~3.12!

in agreement with Eq.~2.8!, by virtue of the commutators
~2.24! of the r̂ a

6 . Moreover, their time evolution is given b
the standard Heisenberg equations of motion

@ p̂,Ĥ8#5 i\
dp̂

dt
, @ t̂,Ĥ8#5 i\

dt̂

dt
, ~3.13!

or equivalently,

@ û,Ĥ8#5 i\
dû

dt
, @uC ,Ĥ8#5 i\

duC

dt
. ~3.14!

In effect, Eqs.~3.5!, ~3.6! can be viewed as the general fou
parameter solution of the quantum mechanical Heisenb
equations of motion, with ther̂ a

6 serving as ~operator-
valued! parameters. The action~2.25! of the classical modu-
lar group on the holonomy parameters induces, through E
~3.5! and ~3.6!, the standard action~2.6! on the torus modu-
lus and momentum, thus confirming consistency. The co
sponding quantum action is discussed in the next sectio
02401
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IV. MODULAR TRANSFORMATIONS
IN THE HOLONOMY REPRESENTATION

We have seen that the modular group acts classically
the torus modulus, momentum, and holonomy parameter

S:t→2t21, p→ t̄2p, r 1
6→r 2

6 , r 2
6→2r 1

6 ,

T:t→t11, p→p, r 1
6→r 1

61r 2
6 , r 2

6→r 2
6 , ~4.1!

and that the transformation~3.5!, ~3.6! between representa
tions preserves this action. The goal of this section is to fi
operators that generate the quantum version of these tr
formations.

The simplest starting point is the holonomy represen
tion. It is easily checked that the modular transformations
r̂ a

6 are generated by conjugation with the unitary operato

T̂65expH 6
ia

2\
~ r̂ 2

6!2J , ~4.2!

Ŝ65expH 6
ipa

4\
@~ r̂ 1

6!21~ r̂ 2
6!2#J . ~4.3!

~See the Appendix for a brief description of methods
demonstrating this and similar relations.! The first of these
appeared in Ref.@11# in a different notation. The second wa
calculated independently by the two authors, and appeare
@30# and @31#. The operatorsT̂ and Ŝ are related to a set o
six constants of motionCi

6 , i 51,2,3, calculated from the
holonomies@30#. These global constants of motion were fir
calculated classically, forL50, in terms of the ADM modu-
lus and momentum, in@32#. Explicitly,3

T̂65expH 6
ia

2\
C2

7J
Ŝ65expH 6

ipa

4\
~C1

71C2
7!J . ~4.4!

We next consider the induced action ofŜ and T̂ on the
modulus and momentum, expressed in the operator orde
given by Eqs.~3.5! and ~3.6!. Note first that while the clas-
sical transformations~2.6! of t translate easily into operato
language, theS transformation ofp involves potential order-
ing ambiguities. The ordering~3.5! that we are considering
here corresponds to a transformation

S: p̂→
t̂†

2
~ t̂†p̂1 p̂t̂†!, ~4.5!

3The remaining global constantsC3
65r 1

7r 2
7 ~see@30#! are related

to C1
6 and C2

6 by $C1
6 ,C2

6%56(4/a)C3
6 . When quantized, they

generate a scalingr 1
6→e2er 1

6 ,r 2
6→eer 2

6 . The moduli and mo-
menta scale ast→e22et, p→e2ep, leaving the commutators
~2.24! and ~3.12! and the Hamiltonian~3.7! invariant.
2-5
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while the choice t5(r 1
2eit /a1r 1

1e2 i t /a)(r 2
2eit /a

1r 2
1e2 i t /a)21, for example, would have led to

S: p̂→~ t̂†p̂1 p̂t̂†!
t̂†

2
,

the cases differing from each other and the classical limit
terms of order\. For both orderings the commutators~3.12!
are invariant and the identities~2.7! are satisfied.

Quantum mechanically, we can use Eq.~3.6! to reexpress
T̂ in terms ofp̂ and its adjoint. We obtain

T̂5T̂1T̂25expH i

2\
~ p̂1 p̂†!J . ~4.6!

Using the commutators~3.12!, we easily see that conjugatio
by this operator generates the transformation~4.1! of t̂ and
p̂. TheS transformation is more complicated, but the ope
tor ~4.3! can also be expressed in terms of the modulus
momentum: using Eqs.~3.5! and~3.6!, we eventually obtain

Ŝ5Ŝ1Ŝ25expH ip

8\
@2~ p̂†1 p̂!1 t̂†~ t̂†p̂1 p̂t̂†!

1~ t̂ p̂†1 p̂†t̂ !t̂ #J
5expH ip

4\
@ p̂†1 p̂1~ t̂†!2p̂1 p̂†~ t̂ !2

1 i\~t̂†2 t̂ !#J , ~4.7!

which differs from the classical expression@30# by terms of
order \. It can be shown, with some difficulty, that the o
erator~4.7! generates the desired transformations~4.1! for t̂
and ~4.5! for p̂ ~see Appendix!.

Finally, note that in theu representation, the operato
~4.6! and ~4.7! become

T̂5expH a

4\
@ ū22u2#J ~4.8!

and

Ŝ5expH 2
pa

8\ F4\2

a2

]2

]u2 2u22
4\2

a2

]2

]ū2 1ū2G J .

~4.9!

V. THE TRANSFORMATION BETWEEN
REPRESENTATIONS

In Sec. II, we described two quantizations
(211)-dimensional gravity in the torus universeR3T2. At
first sight, the ADM representation looks like a standa
‘‘Schrödinger picture’’ quantum theory, with time-depende
states whose evolution is determined by a Hamiltonian
erator. The holonomy representation is more mysterious,
it resembles a ‘‘Heisenberg picture’’ quantum theory, ch
02401
y

-
d

t
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ut
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acterized by time-independent states and time-dependen
erators. This description suggests that there should be a
tary transformation between the two representations, wh
could help in the interpretation of both.

One way to construct such a transformation is to star
the Heisenberg picture and diagonalize the generalized p
tion operatorsq̂H(t) for all t—that is, to find a family of
wave functionsK(x,t) such that for any givent, K(x,t) is
an eigenfunction ofq̂H(t) with eigenvaluex. ~The suffixes
H andS stand for ‘‘Heisenberg’’ and ‘‘Schro¨dinger.’’! Con-
sider, for example, a free particle of massm in one spatial
dimension. The Heisenberg states are functionscH(x0) of an
initial position x0 , and the position operator is

q̂H~ t !5q̂H~0!1
t

m
p̂H~0!5x02

i\t

m

]

]x0
. ~5.1!

A simple computation shows that the eigenstates

q̂H~ t !K~x,tux0!5xK~x,tux0! ~5.2!

are

K~x,tux0!5S m

2\pt D
1/2

expH 2
im

2\t
~x2x0!2J . ~5.3!

The exponent in Eq.~5.3! is determined by Eq.~5.2!; the
prefactor is fixed by the normalization requirement that

E dx0K* ~x,tux0!K~x8,tux0!5d~x2x8!. ~5.4!

It is now easily checked that the complex conjugate ker
K* (x,tux0) satisfies the free particle Schro¨dinger equation,

2
\2

2m

]2K*

]x2
5 i\

]K*

]t
~5.5!

and that a general Schro¨dinger wave function can be writte
as a superposition

c̃S~x,t !5E dx0K* ~x,tux0!cH~x0!. ~5.6!

Equation~5.6! implies that

^fHuq̂H~ t !ucH&5E dxfS* ~x,t !xcS~x,t !, ~5.7!

as required for a transformation between representations
fact, the kernelK* (x,tux0) is just the standard propagator fo
a free particle, and Eq.~5.6! is simply the time evolution of
the statecH(x0), considered as an initial state in the Schr¨-
dinger picture.

In (211)-dimensional quantum gravity, the analogo
kernel can be obtained by diagonalizing the operatorst̂1 and
t̂2 , or equivalentlyt̂ and t̂†. In theu representation of Eqs
~3.9!, ~3.10!, we thus require that
2-6



h

-

ta

av
e
-
o

o

or
-

the

f a

c-
he

QUANTUM MODULAR GROUP IN ~211!-DIMENSIONAL . . . PHYSICAL REVIEW D 59 024012
t̂K~t,t̄,tuu,ū!52
2\

a
u21

]

]u
K~t,t̄,tuu,ū!

5tK~t,t̄,tuu,ū!

t̂†K~t,t̄,tuu,ū!5
2\

a

]

]ū
@ ū21K~t,t̄,tuu,ū!#

5 t̄K~t,t̄,tuu,ū!, ~5.8!

wheret and t̄ are eigenvalues. It is easily checked that t
solution is

K~t,t̄,tuu,ū!5
at2

2p\
ū~ t !

3expH 2
a

4\
tu~ t !21

a

4\
t̄ū~ t !2J .

~5.9!

The prefactor in Eq.~5.9! is again determined by normaliza
tion: we demand that

E du1du2K* ~t,t̄,tuu,ū!K~t8,t̄8,tuu,ū!

5t2
2d~t12t18!d~t22t28!. ~5.10!

@The integration measuredu1du2 is equal todr2
1dr2

2, with
no additional Jacobian, so the integral~5.10! is compatible
with our original choice of variables in Sec. II. The del
function on the right-hand side of Eq.~5.10! is the one ap-
propriate for the Weil-Petersson metric~2.3! on Teichmu¨ller
space.#

By analogy with Eq.~5.6!, our candidates for ‘‘Schro¨-
dinger picture’’ wave functions are therefore

c̃~t,t̄,t !5E du1du2K* ~t,t̄,tuu,ū!c~u,ū!

c~u,ū!5E d2t

t2
2 K~t,t̄,tuu,ū!c̃~t,t̄,t !. ~5.11!

These integrals are not yet well defined, however: we h
not specified the region of integration, and as we saw in S
II, the proper choice of ‘‘Heisenberg picture’’ wave func
tionsc(u,ū) requires a better understanding of the action
the modular group. In the next section, we will use Eq.~5.11!
to define Heisenberg picture wave functions. For the m
ment, let us treat Eq.~5.11! as a formal expression.

Our ultimate goal is to understand the modular transf
mations ofc(u,ū). An obvious starting point is to investi
gate the actions of the operatorsŜ and T̂ of the preceding
section onK(t,t̄,tuu,ū). In the u representation,T̂ acts by
multiplication, and it is easy to see from Eqs.~4.8! and~5.9!
that

T̂K~t,t̄,tuu,ū!5K~t11,t̄11,tuu,ū!. ~5.12!
02401
e
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The T transformations thus act in the standard way on
modulust. The action ofŜ is rather more complicated to
work out, since from Eq.~4.9!, Ŝ is now a differential opera-
tor. It is safest to work with real variablesr 2

6 and their con-
jugates, or for simplicity with rescaled variables

x5Aa

\
r 2

1 , 2 i
]

]x
5Aa

\
r 1

1

y5Aa

\
r 2

2 , i
]

]y
5Aa

\
r 1

2 , ~5.13!

in terms of which, from Eq.~4.9!,

Ŝ5expH p i

4 F2
]2

]x2 1x21
]2

]y2 2y2G J . ~5.14!

The action of this operator can be studied by means o
simple trick. Note first that

eikx5A2p (
n50

`

i ncn~k!cn~x!, ~5.15!

where thecn are normalized harmonic oscillator wave fun
tions @33#. These wave functions are eigenfunctions of t
differential operator in the exponent in Eq.~5.14!,

S ]2

]x2
2x2D cn~x!52~2n11!cn~x!, ~5.16!

and thus

Ŝeikx5ep i /4A2p (
n50

`

~21!ncn~k!cn~x!

5ep i /4A2p (
n50

`

cn~k!cn~2x!

5ep i /4A2pd~x1k!. ~5.17!

Similarly,

Ŝeik8y5e2p i /4A2pd~y2k8!. ~5.18!

Now consider an arbitrary functionF(x,y) with a Fourier
transformF̃(k,k8):

F~x,y!5
1

2p E dkdk8eikxeik8yF̃~k,k8!

F̃~u,v !5
1

2p E dadbe2 iaue2 ibvF~a,b!. ~5.19!

Equations~5.17!, ~5.18! then imply that

~ŜF !~x,y!5F̃~2x,y!5
1

2p E dadbeiaxe2 ibyF~a,b!.

~5.20!
2-7



o-

-

ul
io
fo
s

on

at

n
s

ry
s
. A

e

d

e

m
y.
ith

tion.
is

ec-
be
y,
ted

ing
e’’
r

the

f

-

S. CARLIP AND J. E. NELSON PHYSICAL REVIEW D59 024012
The operatorŜ thus acts by Fourier transformation. In retr
spect this is perhaps not surprising: by Eq.~2.25!, Ŝ inter-
changes the observablesr 1

6 with their conjugatesr 2
6 , thus

acting as a transformation from ‘‘position space’’ to ‘‘mo
mentum space.’’

We can now apply Eq.~5.20! to our kernelK(t,t̄,tuu,ū).
A straightforward calculation shows that

ŜK~t,t̄,tuu,ū!52S t

t̄ D 1/2

KS 2
1

t
,2

1

t̄
,tUu,ūD .

~5.21!

Were it not for the phase on the right-hand side, this wo
be exactly what we would expect from the standard act
~2.6! of S on moduli space. The phase makes the trans
mation ‘‘covariant’’ rather than ‘‘invariant.’’ This phase i
characteristic of modular forms of weight21/2, which
can be viewed as spinors on moduli space@25–28#. Such
modular forms have appeared in previous work
(211)-dimensional gravity withL50 @8,9#, although with
a different representation ofŜ and T̂.

A similar computation shows that the complex conjug
kernelK* (t,t̄,tuu,ū) transforms as

ŜK* ~t,t̄,tuu,ū!52S t̄

t D 1/2

K* S 2
1

t
,2

1

t̄
,tUu,ūD ,

T̂K* ~t,t̄,tuu,ū!5K* ~t21,t̄21,tuu,ū!, ~5.22!

characteristic of a modular form of weight 1/2. The covaria
LaplacianD1/2 for modular forms of weight 1/2 is the Maas
Laplacian~2.12! @25–28#,

D1/252t2
2S ]2

]t1
2

1
]2

]t2
2D 1 i t2

]

]t1
1

3

4
. ~5.23!

As noted in Sec. II, this operator differs from the ordina
LaplacianD0 by terms of order\, and can thus be viewed a
a different operator ordering of the standard Laplacian
straightforward computation now shows that

S ia

2
sin

2t

a

]

]t D
2

K* ~t,t̄,tuu,ū!5~D1/221!K* ~t,t̄,tuu,ū!.

~5.24!

Up to a constant order\ correction, this is the square of th
reduced phase space Schro¨dinger equation~2.10! with an
operator ordering appropriate for a form of weight 1/2, an
serves as a check that our kernelK* (t,t̄,tuu,ū) behaves
as it ought to. In particular, Eq.~5.24! implies that the
‘‘Schrödinger picture’’ wave functions of Eq.~5.11! will sat-
isfy a similar Klein-Gordon-like equation.
02401
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It is also interesting to consider the action of th
‘‘Heisenberg picture’’ Hamiltonian~3.8! on K* (t,t̄,tuu,ū).
From Eq.~3.11!, we see that

Ĥ8K* ~t,t̄,tuu,ū!52 i\
]

]t
K* ~t,t̄,tuu,ū!. ~5.25!

Equations~5.24! and ~5.25! imply that, in some sense,Ĥ8
;(D1/2)

1/2, i.e., that the first-order holonomy-based quantu
theory is a ‘‘square root’’ of the second-order ADM theor
A similar phenomenon was noted earlier in the theory w
L50, although with different variables@8#. Whether this re-
lation can be made more rigorous remains an open ques
The basic problem is that the square root of a Laplacian
highly nonunique: it can be defined mode by mode in a sp
tral decomposition, but the sign of the square root can
chosen arbitrarily for each mode. It is not clear which, if an
of this infinite number of square roots should be associa
with Ĥ8.

VI. MODULAR TRANSFORMATIONS
OF HOLONOMY WAVE FUNCTIONS

We are now ready to use the results of the preced
section to analyze the behavior of the ‘‘Heisenberg pictur
wave functionc(u,ū) under modular transformations. Ou
strategy will be to use the well-understood properties of
‘‘Schrödinger picture’’ wave functionc̃(t,t̄,t), along with
the transformation~5.11! between representations.

We begin with the second equation in~5.11!,

c~u,ū!5E
F

d2t

t2
2

K~t,t̄,tuu,ū!c̃~t,t̄,t !. ~6.1!

SinceK(t,t̄,tuu,ū) is, roughly speaking, a modular form o
weight 21/2, as implied by Eq.~5.21!, we might expect
c̃(t,t̄,t) to be a form of weight 1/2, that is, a function in
variant under the transformations

Ŝc̃~t,t̄,t !52S t̄

t D 1/2

c̃S 2
1

t
,2

1

t̄
,t D ,

T̂c̃~t,t̄,t !5c̃~t11,t̄11,t !. ~6.2!

We shall see below that this is indeed the case.
Our first task is to determine the range of integrationF in

Eq. ~6.1!. This can be fixed by the requirement thatc(u,ū)
be properly normalized:
2-8
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E d2uuc~u,ū!u2

5E d2uE
F

d2t

t2
2 E

F

d2t8

t28
2 K~t,t̄,tuu,ū!

3K* ~t8,t̄8,tuu,ū!c̃~t,t̄,t !c̃* ~t8,t̄8,t !

5E
F

d2t

t2
2 E

F

d2t8

t28
2 t28

2d2~t2t8!c̃~t,t̄,t !c̃* ~t8,t̄8,t !

5E
F

d2t

t2
2 uc̃~t,t̄ !u2, ~6.3!

where we have used the orthonormality relation~5.10!. But
we understand the normalization of ‘‘Schro¨dinger picture’’
wave functionsc̃(t,t̄,t): the right-hand side of Eq.~6.3!
will be unity whenF is a fundamental region for the actio
~2.6! of the modular group on Teichmu¨ller space.

With this choice of integration region, we take Eq.~6.1!
as thedefinitionof c(u,ū). Let us now consider the action o
the operatorsŜ andT̂ of Sec. IV on this wave function. From
Eq. ~5.22!, it is easy to see that

T̂c~u,ū!5E
F

d2t

t2
2 ~ T̂K !~t,t̄,tuu,ū!c̃~t,t̄,t !

5E
F

d2t

t2
2 K~t11,t̄11,tuu,ū!c̃~t,t̄,t !

5E
F

d2t

t2
2 K~t11,t̄11,tuu,ū!c̃~t11,t̄11,t !,

~6.4!

where the invariance ofc̃ under the transformations~6.2!
has been used in the last line. Changing integration varia
to t11 andt̄11, we see that

T̂c~u,ū!5E
T21F

d2t

t2
2

K~t,t̄,tuu,ū!c̃~t,t̄,t !, ~6.5!

whereT21F is the new fundamental region obtained fromF
by a T21 transformation. A similar argument shows that

Ŝc~u,ū!5E
S21F

d2t

t2
2

K~t,t̄,tuu,ū!c̃~t,t̄,t !, ~6.6!

providedc̃(t,t̄,t) is a modular form of weight 1/2, invarian
under the transformations~6.2!. @The extra phase factor in
Eq. ~6.2! is needed to cancel the phase in the transforma
~5.21!, as anticipated.#

Now, the kernelK(t,t̄,tuu,ū) is not modular invariant,
and the shift of integration region in Eqs.~6.5! and ~6.6!
02401
es

n

matters: the wave functionc(u,ū) is not invariant under the
action of the mapping class group.4 Indeed, there is a sens

in which c(u,ū) and ~for example! T̂c(u,ū) differ
maximally—they are, in fact, orthogonal. To see this, we c
repeat the calculation of Eq.~6.3!; from the orthonormality
of K(t,t̄,tuu,ū), we now obtain

^cuT̂c&5E
T21F

d2t

t2
2 E

F

d2t8

t28
2

t28
2d2~t2t8!

3c̃~t,t̄,t !c̃* ~t8,t̄8,t !. ~6.7!

But the regionsF andT21F are disjoint except on a set o
measure zero, so the delta function in Eq.~6.7! is identically
zero.

A similar argument shows that ifg is any nontrivial
modular transformation, then

^cuĝc&50. ~6.8!

In fact, this conclusion can be strengthened. Letc1(u,ū) and
c2(u,ū) be two different wave functions defined by integra
of the form ~6.1! over the same fundamental regionF. Re-
peating the computation of Eq.~6.7!, we now see that

^c1uĝc2&50 ~6.9!

for any nontrivial modular transformationg.
In accord with the results of Refs.@21–23#, our ‘‘Heisen-

berg picture’’ wave functions are not modular invariant. B
the ‘‘maximal noninvariance’’ of Eq.~6.9! is almost as good.
Pick a fundamental regionF, and consider the set of wav
functions defined by Eq.~6.1!. These will form a subspace
HF of the Hilbert spaceH of square-integrable functions o
(u1 ,u2) or (r 2

1 ,r 2
2). A modular transformationg maps this

subspace into an orthogonal subspaceH g21F , which is ob-
tained by integrals of the form~6.1! over the translated fun
damental regiong21F. In fact, the modular group splits th
spaceH into an infinite set of orthogonal subspaces.

These subspaces are physically equivalent. Indeed, leÔ
be an arbitrary modular invariant operator onH. There is no
reason to expect the orthogonal subspaces to
superselected—that is, ifcPHF , it need not be the case tha
ÔcPHF—so if we wish to restrict ourselves to a sing
subspace, we must appropriately projectÔ to that subspace
Let P̂F denote the standard Hilbert space projector onto

4This fact was first pointed out to one of the authors~S.C.! by
Jorma Louko.
2-9
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subspaceHF , and defineÔF5 P̂FÔP̂F . Then if c1 ,c2
PHF , it follows that

^c1uÔFuc2&5^c1uP̂FÔP̂Fuc2&

5^c1uĝ21P̂gFĝÔĝ21P̂gFĝuc2&

5^gc1uP̂gFÔP̂gFugc2&

5^gc1uÔgFugc2&, ~6.10!

where we have used the modular invariance ofÔ and the fact
that ĝ21P̂gF ĝ5 P̂F . Matrix elements can thus be compute
in any of the subspacesHgF , and the appropriate restriction
of modular invariant operators will give the same physics

The modulust̂, of course, is not an invariant operato
and its matrix elements will depend on the choice of s
space. But this is not surprising, since the same is true c
sically. One can build invariant operators fromt̂, whose ma-
trix elements satisfy Eq.~6.10!. One example is the operato
version of the modular functionJ(t) of Dedekind and Klein
@27#,

J~t!5
„60G4~t!…3

„60G4~t!…3227„140G6~t!…2
, ~6.11!

where theG2k(t) are Eisenstein series,

G2k~t!5 ( 8
m,nPZ

1

~m1nt!2k
. ~6.12!

~The prime means that the valuem5n50 is excluded from
the sum.! It may be shown that any meromorphic modu
function is a rational function ofJ(t). Such functions are
certainly less familiar than trigonometric functions, but
principle they are no more extraordinary. SinceJ(t) depends
only on the modulus and not the momentum, there are
ordering ambiguities, and Eq.~6.11! may be taken to be an
operator expression.

What we have discovered is a ‘‘quantum mechanical f
damental region’’ for the modular group. As several auth
have pointed out@21–23#, the modular group does not a
nicely ~that is, properly discontinuously! on the configuration
space of the first-order formalism. But we now see that
modular groupdoesact nicely on the corresponding Hilbe
space, which is all that is required for a sensible quant
theory.

VII. CONCLUSION

The phase space of (211)-dimensional gravity with
L,0 on a manifoldR3S has two natural descriptions: a
the cotangent bundle of the Teichmu¨ller space ofS, and as a
space of SL(2,R) ^ SL(2,R) holonomies. Classically, the
02401
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two descriptions are equivalent,5 and can be viewed as dif
ferent coordinate choices for a single space. On thephase
space, the mapping class group has a properly discontinu
action in either set of coordinates, and invariant functions
well defined.

To quantize such a phase space, however, one m
choose a polarization, that is, a distinction between ‘‘po
tions’’ and ‘‘momenta.’’ Therein lies the root of the problem
discussed in Refs.@21–23#. While the mapping class grou
acts nicely on the phase space, there is no guarantee th
does so on the configuration space, and hence no assu
that one can find invariant wave functions. WhenS is a
torus, this is precisely what goes wrong: the modular gro
fails to act properly discontinuously on a ‘‘configuratio
space’’ of holonomies, and the definition of invariant wa
functions becomes highly problematic.

One could, of course, evade this issue by choosing a
ferent polarization@34#. But the polarization for which the
problems arise is a natural one, and it seems implausible
a perfectly good choice of classical coordinates should l
to such disastrous consequences for the quantum theory

In this paper, we have solved this problem. By constru
ing the exact transformation between the ADM and h
lonomy states, we have shown that the modular groupdoes
have a nice, albeit unexpected, action on the holono
states. There are, indeed, no invariant wave functions in
holonomy representation. Instead, the modular group act
the Hilbert space in much the same way that it acts
Teichmüller space—it splits the Hilbert space into physica
equivalent orthonormal ‘‘fundamental regions,’’ each one
which is equivalent to the Hilbert space that arises fro
ADM quantization. In the course of our argument, we ha
also derived a collection of explicit operator representatio
of the torus mapping class group.

The splitting of the Hilbert space described in Sec.
relies on the transformation~5.11! between representations
and thus refers back to the ADM quantum theory. It wou
be desirable to have a description that depended only on
intrinsic properties of the Hilbert space in the holonomy re
resentation. We do not yet have such a description, but
see no reason why one should not exist.
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APPENDIX

The generators~4.2!, ~4.3! and ~4.6!, ~4.7! of modular
transformations act by conjugation, and to compute their
tion, one must evaluate expressions of the form

5Strictly speaking, one must restrict the holonomies to ensure
the metric is nonsingular and that the slicesS are spacelike@21#.
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eABe2A5B1@A,B#1
@A,@A,B##

2!
1¯ . ~A1!

In this appendix, we briefly describe two ways to evalu
such expressions, one based on explicit summation an
second based on a trick that converts the problem to on
solving differential equations.

As an example of the explicit calculation, write the ge
eratorŜ of Eq. ~4.7! as

Ŝ5expH p i

8
~ â1â†!J , ~A2!

where

\â52p̂†1 t̂ p̂†t̂1 p̂†t̂2,

\â†52p̂1 t̂†p̂t̂†1~ t̂†!2p̂ ~A3!

and

@ â,â†#50. ~A4!

To use Eq.~A1! to evaluate the transformation ofp̂†, for
example, one must compute the multiple commutators

@A,@A,@A, . . . . . .@A,p̂†# . . . .### ~A5!

whereA52(p i /8)â. Note first that by Eq.~3.12!,

@ â,t̂ #54i ~11 t̂2!, @ â,p̂†#528i p̂†t̂24\. ~A6!

Direct computation shows that the odd commutators are
proportional:

@A,@A,@A, . . . . . .@A,p̂†# . . . .###2n115~2p2!n@A,p̂†#.

~A7!

Similarly, the even commutators can be computed to be

@A,@A,@A, . . . . . .@A,p̂†# . . . .###2n

5~2p2!n21@A,@A,p̂†##

5
~21!n21p2n

4
~\â24p̂†!. ~A8!

It follows that the sum of the odd commutators in Eq.~A1! is

@A,p̂†# (
n50

`
~2p2!n

~2n11!!
5

1

p
@A,p̂†# (

n50

`
~21!np2n11

~2n11!!

5
1

p
@A,p̂†#sin p50, ~A9!

whereas the sum of the even commutators, starting f
@A,@A,p̂†##, is
02401
e
a

of

-

ll

m

S \â

4
2 p̂†D (

n51

`
~21!n21p2n

~2n!!

5S \â

4
2 p̂†D ~12cosp!5

\â

2
22p̂†. ~A10!

Thus from Eq.~A1!,

eAp̂†e2A5 p̂†1S \â

2
22p̂†D5

1

2
~ p̂†t̂21 t̂ p̂†t̂ !,

~A11!

in agreement with Eq.~4.5!, as required.
We next give an alternative method for calculating theS

transformations oft̂ and p̂. Let

F~s!5e2 isât̂eisâ, G~s!5e2 isâp̂†eisâ. ~A12!

By Eq. ~A2!, the transformed values oft̂ and p̂† are simply
F(p/8) andG(p/8). But by differentiatingF(s) and G(s)
with respect tos and using the commutators~A6!, we can
reduce the problem to one of solving a pair of different
equations,

dF

ds
54~11F2!,

dG

ds
528GF14i\. ~A13!

The first equation in~A13! has the solution

F~s!5tan 4~s2s0!, ~A14!

with initial conditions

F~0!52tan 4s05 t̂. ~A15!

Hence

F~p/8!5cot 4s052 t̂21, ~A16!

yielding the correct transformation~4.1! for t̂. To calculate
the corresponding transformation ofp̂†, observe that by Eq
~A13!,

d

ds
@G~11F2!#528GF~11F2!14i\~11F2!12GF

dF

ds

54i\~11F2!5 i\
dF

ds
, ~A17!

and thus

G~s!„11F~s!2
…2G~0!„11F~0!2

…5 i\„F~s!2F~0!….

~A18!

Settings5p/8 and using Eq.~A16!, we find that

G~p/8!5 p̂†t̂22 i\t̂5
1

2
~ p̂†t̂21 t̂ p̂†t̂ !, ~A19!

recovering Eq.~4.5!.
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@5# A. Achúcarro and P. K. Townsend, Phys. Lett. B180, 89

~1986!.
@6# E. Witten, Nucl. Phys.B311, 46 ~1988/89!.
@7# S. Carlip, Phys. Rev. D42, 2647~1990!.
@8# S. Carlip, Phys. Rev. D45, 3584~1992!.
@9# S. Carlip, Phys. Rev. D47, 4520~1993!.

@10# J. E. Nelson and T. Regge, Nucl. Phys.B328, 190 ~1989!.
@11# J. E. Nelson and T. Regge, Phys. Lett. B272, 213 ~1991!.
@12# J. E. Nelson and T. Regge, Commun. Math. Phys.141, 211

~1991!.
@13# J. E. Nelson and T. Regge, inIntegrable Systems and Quantu

Groups, Pavia, 1990, edited by M. Carfora, M. Martellini, an
A. Marzuoli ~World Scientific, Singapore, 1992!.

@14# J. E. Nelson and T. Regge, Commun. Math. Phys.155, 561
~1993!.

@15# J. E. Nelson and T. Regge, Phys. Rev. D50, 5125~1994!.
@16# J. E. Nelson, T. Regge, and F. Zertuche, Nucl. Phys.B339,

516 ~1990!.
@17# W. G. Unruh and P. Newbury, Int. J. Mod. Phys. D3, 131

~1994!.
@18# S. Carlip and J. E. Nelson, Phys. Rev. D51, 5643~1995!.
@19# S. Carlip and J. E. Nelson, Phys. Lett. B324, 299 ~1994!.
02401
@20# R. Puzio, Class. Quantum Grav.11, 609 ~1994!.
@21# J. Louko and D. M. Marolf, Class. Quantum Grav.11, 311

~1994!.
@22# D. Giulini and J. Louko, Class. Quantum Grav.12, 2735

~1995!.
@23# P. Pelda´n, Phys. Rev. D53, 3147~1996!.
@24# J. W. York, Phys. Rev. Lett.28, 1082~1972!.
@25# J. D. Fay, J. Reine Angew. Math.293, 143 ~1977!.
@26# H. Maass,Lectures on Modular Functions of One Comple

Variable ~Tata Institute, Bombay, 1964!.
@27# R. A. Rankin,Modular Forms and Functions~Cambridge Uni-

versity Press, Cambridge, England, 1977!.
@28# A. Terras,Harmonic Analysis on Symmetric Spaces and A

plications I ~Springer, New York, 1985!.
@29# See, for example, A. E. Fischer and V. Moncrief, inGlobal

Structure and Evolution in General Relativity, edited by S.
Cotsakis and G. W. Gibbons~Springer, New York, 1996!;
Gen. Relativ. Gravit.28, 221 ~1996!.

@30# V. Moncrief and J. E. Nelson, Int. J. Mod. Phys. D6, 5 ~1997!.
@31# V. Moncrief and J. E. Nelson, inProceedings of Eighth Marce

Grossmann Meeting on General Relativity, Jerusalem, Israel
1997 ~World Scientific, Singapore, in press!.

@32# V. Moncrief, J. Math. Phys.31, 2978~1990!.
@33# F. G. Mehler, J. Reine Angew. Math.66, 161 ~1866!; see also

The Bateman Manuscript Project, edited by A. Erdelyi
~McGraw-Hill, New York, 1954!, Vol. 3, Chap. 19.

@34# P. Pelda´n, Class. Quantum Grav.13, 221 ~1996!.
2-12


