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Numerical integration of Einstein’s field equations

Thomas W. Baumgarte
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Stuart L. Shapiro
Departments of Physics and Astronomy and NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

~Received 1 July 1998; published 7 December 1998!

Many numerical codes now under development to solve Einstein’s equations of general relativity in (3
11)-dimensional spacetimes employ the standard ADM form of the field equations. This form involves
evolution equations for the raw spatial metric and extrinsic curvature tensors. Following Shibata and Naka-
mura, we modify these equations by factoring out the conformal factor and introducing three ‘‘connection
functions.’’ The evolution equations can then be reduced to wave equations for the conformal metric compo-
nents, which are coupled to evolution equations for the connection functions. We evolve small amplitude
gravitational waves and make a direct comparison of the numerical performance of the modified equations with
the standard ADM equations. We find that the modified form exhibits much improved stability.
@S0556-2821~98!08124-7#
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I. INTRODUCTION

The physics of compact objects is entering a particula
exciting phase, as new instruments can now yield unp
edented observations. For example, there is evidence tha
Rossi X-ray Timing Explorer has identified the innermo
stable circular orbit around an accreting neutron star@1#.
Also, the new generation of gravitational wave detectors
der construction, including the Laser Interferometric Gra
tational Wave Observatory~LIGO!, VIRGO, GEO and
TAMA, promise to detect, for the first time, gravitation
radiation directly~see, e.g.,@2#!.

In order to learn from these observations~and, in the case
of the gravitational wave detectors, to dramatically incre
the likelihood of detection!, one has to predict the observe
signal from theoretical modeling. The most promising can
dates for detection by the gravitational wave laser inter
ometers are the coalescences of black hole and neutron
binaries. Simulating such mergers requires self-consist
numerical solutions to Einstein’s field equations in 3 spa
dimensions, which is extremely challenging. While seve
groups, including two ‘‘Grand Challenge Alliances’’@3#,
have launched efforts to simulate the coalescence of com
objects~see also@4,5#!, the problem is far from being solved

Before Einstein’s field equations can be solved num
cally, they have to be cast into a suitable initial value for
Most commonly, this is done via the standard 311 decom-
position of Arnowitt, Deser and Misner~ADM @6#!. In this
formulation, the gravitational fields are described in terms
spatial quantities~the spatial metric and the extrinsic curv
ture!, which satisfy some initial constraints and can then
integrated forward in time. The resulting ‘‘ġ2K̇ ’’ equations
are straightforward, but do not satisfy any known hyperb
licity condition, which, as it has been argued, may cau
stability problems in numerical implementations. Therefo
several alternative, hyperbolic formulations of Einstein
equations have been proposed@7–12#. Most of these formu-
lations, however, also have disadvantages. Several of t
0556-2821/98/59~2!/024007~7!/$15.00 59 0240
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introduce a large number of new, first order variables, wh
take up large amounts of memory in numerical applicatio
and require many additional equations. Some of these for
lations require taking derivatives of the original equation
which may introduce further inaccuracies, in particular
matter sources are present. It has been widely debated if
hyperbolic formulations have computational advantag
@13#; their performance has yet to be compared directly w
that of the original ADM equations. Accordingly, it is not ye
clear if or how much the numerical behavior of the AD
equations suffers from their non-hyperbolicity.

In this paper, we demonstrate by means of a numer
experiment and a direct comparison that the standard im
mentation of the ADM system of equations, consisting
evolution equations for the bare metric and extrinsic cur
ture variables, is more susceptible to numerical instabilit
than a modified form of the equations based on a confor
decomposition as suggested by Shibata and Nakamura@14#.
We will refer to the standard, ‘‘ġ2K̇ ’’ form of the equations
as ‘‘system I’’ ~see Sec. II A below!. We follow Shibata and
Nakamura and modify these original ADM equations by fa
toring out a conformal factor and introducing a spatial fie
of connection functions@‘‘system II;’’ see Sec. II B below#.
The conformal decomposition separates ‘‘radiative’’ va
ables from ‘‘nonradiative’’ ones in the spirit of the ‘‘York
Lichnerowicz’’ split @15,16#. With the help of the connection
functions, the Ricci tensor becomes an elliptic operator a
ing on the components of the conformal metric. The evo
tion equations can therefore be reduced to a set of w
equations for the conformal metric components, which
coupled to the evolution equations for the connection fu
tions. These wave equations reflect the hyperbolic natur
general relativity, and can also be implemented numeric
in a straightforward and stable manner.

We evolve low amplitude gravitational waves in pu
vacuum spacetimes, and directly compare systems I an
for both geodesic slicing and harmonic slicing. We find th
system II is not only more appealing mathematically, b
©1998 The American Physical Society07-1
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THOMAS W. BAUMGARTE AND STUART L. SHAPIRO PHYSICAL REVIEW D59 024007
performs far better numerically than system I. In particul
we can evolve low amplitude waves in a stable fashion
hundreds of light travel time scales with system II, while t
evolution crashes at an early time in system I, independen
gauge choice. We present these results in part to alert de
opers of 311 general relativity codes, many of whom cu
rently employ system I, that a better set of equations m
exist for numerical implementation.

The paper is organized as follows. In Sec. II, we pres
the basic equations of both systems I and II. We briefly d
cuss our numerical implementation in Sec. III, and pres
numerical results in Sec. IV. In Sec. V, we summarize a
discuss some of the implications of our findings.

II. BASIC EQUATIONS

A. System I

We write the metric in the form

ds252a2dt21g i j ~dxi1b idt!~dxj1b jdt!, ~1!

wherea is the lapse function,b i is the shift vector, andg i j is
the spatial metric. Throughout this paper, Latin indices
spatial indices and run from 1 to 3, whereas Greek indi
are spacetime indices and run from 0 to 3. The extrin
curvatureKi j can be defined by the equation

d

dt
g i j 522aKi j , ~2!

where

d

dt
5

]

]t
2Lb ~3!

and whereLb denotes the Lie derivative with respect tob i .
The Einstein equations can then be split into the Ham

tonian constraint

R2Ki j K
i j 1K252r, ~4!

the momentum constraint

D jKi
j2DiK5Si , ~5!

and the evolution equation for the extrinsic curvature

d

dt
Ki j 52DiD ja1a~Ri j 22Kil K j

l 1KKi j 2Mi j !. ~6!

HereDi is the covariant derivative associated withg i j , Ri j is
the three-dimensional Ricci tensor

Ri j 5
1

2
gkl~gk j ,i l 1g i l ,k j2gkl,i j 2g i j ,kl!

1gkl~G i l
mGmk j2G i j

mGmkl!, ~7!
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and R is its traceR5g i j Ri j . We have also introduced th
matter sourcesr, Si and Si j , which are projections of the
stress-energy tensor with respect to the unit normal ve
na ,

r5nanbTab,

Si52g ianbTab, ~8!

Si j 5g iag j bTab,

and have abbreviated

Mi j [Si j 1
1

2
g i j ~r2S!, ~9!

whereS is the trace ofSi j , S5g i j Si j .
The evolution equations~2! and~6! together with the con-

straint equations~4! and ~5! are equivalent to the Einstei
equations, and are commonly referred to as the ADM fo
of the gravitational field equations@6,17#. We will call these
equations system I. This system is widely used in numer
relativity calculations~e.g. @18,19#!, even though its math-
ematical structure is not simple to characterize and may
be ideal for computation. In particular, the Ricci tensor~7! is
not an elliptic operator: while the last one of the four term
involving second derivatives,gklg i j ,kl , is an elliptic operator
acting on the components of the metric, the elliptic nature
the whole operator is spoiled by the other three terms invo
ing second derivatives. Accordingly, the system as a wh
does not satisfy any known hyperbolicity condition~see also
the discussion in@11#!. Therefore, to establish existence a
uniqueness of solutions to Einstein’s equations, most m
ematical analyses rely either on particular coordinate cho
or on different formulations.

B. System II

Instead of evolving the metricg i j and the extrinsic curva-
ture Ki j , we can evolve a conformal factor and the trace
the extrinsic curvature separately~‘‘York-Lichnerowicz
split’’ @15,16#!. Such a split is very appealing from both
theoretical and computational point of view, and has be
widely applied in numerical axisymmetric (211) calcula-
tions ~see, e.g.,@20#!. More recently, Shibata and Nakamu
@14# applied a similar technique in a three-dimensional
11) calculation. Adopting their notation, we write the co
formal metric as

g̃ i j 5e24fg i j ~10!

and choose

e4f5g1/3[det~g i j !
1/3, ~11!

so that the determinant ofg̃ i j is unity. We also write the
trace-free part of the extrinsic curvatureKi j as

Ai j 5Ki j 2
1

3
g i j K, ~12!
7-2
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NUMERICAL INTEGRATION OF EINSTEIN’S FIELD . . . PHYSICAL REVIEW D 59 024007
whereK5g i j Ki j . It turns out to be convenient to introduc

Ãi j 5e24fAi j . ~13!

We will raise and lower indices ofÃi j with the conformal
metric g̃ i j , so thatÃi j 5e4fAi j ~see@14#!.

Taking the trace of the evolution equations~2! and ~6!
with respect to the physical metricg i j , we find @21#

d

dt
f52

1

6
aK ~14!

and

d

dt
K52g i j D jDia1aS Ãi j Ã

i j 1
1

3
K2D1

1

2
a~r1S!,

~15!

where we have used the Hamiltonian constraint~4! to elimi-
nate the Ricci scalar from the last equation. The trace
parts of the two evolution equations yield

d

dt
g̃ i j 522aÃi j ~16!

and

d

dt
Ãi j 5e24f

„2~DiD ja!TF1a~Ri j
TF2Si j

TF!…

1a~KÃi j 22Ãil Ã j
l !. ~17!

In the last equation, the superscriptTF denotes the trace-fre
part of a tensor, e.g.Ri j

TF5Ri j 2g i j R/3. Note that the traceR
could again be eliminated with the Hamiltonian constra
~4!. Note also thatg̃ i j andÃi j are tensor densities of weigh
22/3, so that their Lie derivative is, for example,

LbÃi j 5bk]kÃi j 1Ãik] jb
k1Ãk j] ib

k2
2

3
Ãi j ]kb

k. ~18!

The Ricci tensorRi j in Eq. ~17! can be written as the sum

Ri j 5R̃i j 1Ri j
f . ~19!

HereRi j
f is

Ri j
f522D̃ i D̃ jf22g̃ i j D̃

l D̃ lf14~D̃ if!~D̃ jf!

24g̃ i j ~D̃ lf!~D̃ lf!, ~20!

whereD̃ i is the derivative operator associated withg̃ i j , and
D̃ i5g̃ i j D̃ j .

The ‘‘tilde’’ Ricci tensorR̃i j is the Ricci tensor associate
with g̃ i j , and could be computed by insertingg̃ i j into Eq.
~7!. However, we can bring the Ricci tensor into a manifes
elliptic form by introducing the ‘‘conformal connection func
tions’’
02400
e

t

G̃ i[g̃ jkG̃ jk
i 52g̃ , j

i j , ~21!

where theG̃ jk
i are the connection coefficients associated w

g̃ i j , and where the last equality holds becauseg̃51. In terms
of these, the Ricci tensor can be written@22#

R̃i j 52
1

2
g̃ lmg̃ i j ,lm1g̃k( i] j )G̃

k1G̃kG̃~ i j !k

1g̃ lm~2G̃ l ( i
k G̃ j )km1G̃ im

k G̃kl j !. ~22!

The principal part of this operator,g̃ lmg̃ i j ,lm , is that of a
Laplace operator acting on the components of the metricg̃ i j .
It is obviously elliptic and diagonally dominant~as long as
the metric is diagonally dominant!. All the other second de-
rivatives of the metric appearing in Eq.~7! have been ab-
sorbed in the derivatives of the connection functions. At le
in appropriately chosen coordinate systems~for example
b i50!, Eqs.~16! and ~17! therefore reduce to a coupled s
of nonlinear, inhomogeneous wave equations for the con
mal metric g̃ i j , in which the gauge termsK and G̃ i , the
conformal factor exp(f), and the matter termsMi j appear as
sources. Wave equations not only reflect the hyperbolic
ture of general relativity, but can also be implemented n
merically in a straightforward and stable manner. The sa
method has often been used to reduce the four-dimensi
Ricci tensorRab @23# and to bring Einstein’s equations into
symmetric hyperbolic form@24#.

Note that the connection functionsG̃ i are pure gauge
quantities in the sense that they could be chosen, for
ample, to vanish by a suitable choice of spatial coordina
~‘‘conformal three-harmonic coordinates,’’ compare@25#!.
The G̃ i would then play the role of ‘‘conformal gauge sourc
functions’’ ~compare@23,24#!. Here, however, we impose th
gauge by choosing the shiftb i , and evolve theG̃ i with Eq.
~24! below. Similarly,K is a pure gauge variable~and could
be chosen to vanish by imposing maximal time slicing!.

An evolution equation for theG̃ i can be derived by per
muting a time derivative with the space derivative in E
~21!:

]

]t
G̃ i52

]

]xj S 2aÃi j 22g̃m( jb ,m
i ) 1

2

3
g̃ i j b ,l

l 1b l g̃ ,l
i j D .

~23!

It turns out to be essential for the numerical stability of t
system to eliminate the divergence ofÃi j with the help of the
momentum constraint~5!, which yields

]

]t
G̃ i522Ãi j a , j12aS G̃ jk

i Ãk j2
2

3
g̃ i j K , j2g̃ i j Sj16Ãi j f , j D

1
]

]xj S b l g̃ ,l
i j 22g̃m( jb ,m

i ) 1
2

3
g̃ i j b ,l

l D . ~24!

We now considerf, K, g̃ i j , Ãi j and G̃ i as fundamental
variables. These can be evolved with the evolution equati
~14!, ~15!, ~16!, ~17!, and~24!, which we call system II. Note
7-3
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THOMAS W. BAUMGARTE AND STUART L. SHAPIRO PHYSICAL REVIEW D59 024007
that obviously not all these variables are independent. In
ticular, the determinant ofg̃ i j has to be unity, and the trac
of Ãi j has to vanish. These conditions can either be use
reduce the number of evolved quantities, or, alternatively
quantities can be evolved and the conditions can be used
numerical check~which is what we do in our implementa
tion!.

III. NUMERICAL IMPLEMENTATION

In order to compare the properties of systems I and II,
implemented them numerically in an identical environme
We integrate the evolution equations with a two-level, ite
tive Crank-Nicholson method. The iteration is truncated a
a certain accuracy has been achieved. However, we itera
least twice, so that the scheme is second order accurate

The gridpoints on the outer boundaries are updated wi
Sommerfeld condition. We assume that, on the outer bou
aries, the fundamental variables behave like outgoing, ra
waves

Q~ t,r !5
G~at2e2fr !

r
. ~25!

Here Q is any of the fundamental variables~except for the
diagonal components ofg̃ i j , for which the radiative part is
Q5g̃ i i 21!, andG can be found by following the characte
istic back to the previous timestep and interpolating the c
responding variable to that point~see also@14#!. We found
that a linear interpolation is adequate for our purposes.

We impose octant symmetry in order to minimize t
number of gridpoints, and impose corresponding symme
boundary conditions on the symmetry plains. Unless no
otherwise, the calculations presented in this paper were
formed on grids of (32)3 gridpoints, and used a Couran
factor of 1/4. The code has been implemented in a para
environment on SGI Power ChallengeArray and SGI CRA
Origin2000 computer systems at NCSA using DAGH@26#
software for parallel processing.

IV. RESULTS

A. Initial data

For initial data, we choose a linearized wave soluti
~which is then evolved with the full nonlinear systems I a
II !. Following Teukolsky @27#, we construct a time-
symmetric, even-parityL52, M50 solution. The coeffi-
cientsA, B and C ~see Eq.~6! in @27#! are derived from a
function

F~ t,r !5A~ t6r !exp„2l~ t6r !2
…. ~26!

Unless noted otherwise, we present results for an amplit
A51023 and a wavelengthl51. The outer boundary con
ditions are imposed atx,y,z54.

We evolve these initial data for zero shift

b i50, ~27!
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and compare the performance of systems I and II for b
geodesic and harmonic slicing.

B. Geodesic slicing

In geodesic slicing, the lapse is unity

a51. ~28!

Since the acceleration of normal observers satisfiesaa
5Da ln a50, these observers follow geodesics. The ene
content of even a small, linear wave packet will therefo
focus these observers, and even after the wave has dispe
the observers will continue to coast towards each oth
Since b i50, normal observers are identical to coordina
observers, hence geodesic slicing will ultimately lead to
formation of a coordinate singularity even for arbitrari
small waves.

The timescale for the formation of this singularity can
estimated from Eq.~15! with a51 and b i50. The Ãi j ,
which can be associated with the gravitational waves, w
causeK to increase to some finite value, sayK0 at time t0 ,
even if K was zero initially. After roughly a light crossing
time, the waves will have dispersed, and the further evo
tion of K is described by] tK;K2/3, or

K;
3K0

32K0~ t2t0!
~29!

~see@14#!. Obviously, the coordinate singularity forms att
;3/K01t0 as a result of the nonlinear evolution.

We can now evolve the wave initial data with system
and II and compare how well they reproduce the format
of the coordinate singularity.

In Fig. 1, we showK at the origin (x5y5z50) as a
function of time both for system I~dashed line! and system II
~solid line!. We also plot the approximate analytic solutio
~29! as a dotted line, which we have matched to the syste
solution with valuesK050.00518 andt0510. For these val-
ues, Eq.~29! predicts that the coordinate singularity appea

FIG. 1. Evolution of the trace of the extrinsic curvatureK for a
small amplitude wave in geodesic slicing at the origin~see text for
details!. The solid line is the result for system II, and the dash
line for system I. The dotted line is the approximate solution~29!.
7-4
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at t;590. In the insert, we show a blow-up of system II f
early times. It can be seen very clearly how the initial wa
content letsK grow from zero to the ‘‘seed’’ valueK0 . Once
the waves have dispersed, system II approximately follo
the solution~29! up to fairly late times. System I, on th
other hand, crashes long before the coordinate singula
appears.

In Fig. 2, we compare the extrinsic curvature compon
Kzz evaluated at the origin. The noise aroundt;8, which is
present in the evolutions of both systems, is caused by
flections of the initial wave off the outer boundaries. It
obvious from these plots that system II evolves the equat
stably to a fairly late time, at which the integration even
ally becomes inaccurate as the coordinate singularity
proaches. We stopped this calculation when the itera
Crank-Nicholson scheme no longer converged after a cer
maximum number of iterations. It is also obvious that syst
I performs extremely poorly, and crashes at a very ea
time, well before the coordinate singularity.

It is important to realize that the poor performance
system I isnot an artifact of our numerical implementation
For example, the ADM code currently being used by t
Black Hole Grand Challenge Alliance, is based on the eq
tions of system I, and also crashes after a very similar t
@28# ~see also@18#, where a run with a much smaller initia
amplitude nevertheless crashes earlier than our system!.
This shows that the code’s crashing is intrinsic to the eq
tions and slicing, and not to our numerical implementatio

C. Harmonic slicing

Since geodesic slicing is known to develop coordin
singularities for generic, nontrivial initial data, it is obvious
not a very good slicing condition. We therefore also comp
the two systems using harmonic slicing. In harmonic slici
the coordinate timet is a harmonic function of the coordi
nates¹a¹at50, which is equivalent to the condition

G0[gabGab
0 50 ~30!

FIG. 2. Evolution of the extrinsic curvature componentKzz at
the origin in geodesic slicing. The solid line is the result for syst
II, and the dashed line for system I. For system II, we construc

Kzz from Ãzz, f, K and g̃zz.
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~where theGbg
a are the connection coefficients associat

with the four-dimensional metricgab!. For b i50, the above
condition reduces to

] ta52a2K. ~31!

Inserting Eq.~14!, this can be written as

] t~ae26f!50 or a5C~xi !e6f, ~32!

whereC(xi) is a constant of integration, which depends
the spatial coordinates only. In practice, we chooseC(xi)
51.

In Fig. 3, we show results for the same initial data as
the last section. Obviously, both systems do much better
this slicing condition. System I crashes much later than
geodesic slicing~after about 40 light crossing times, as o
posed to about 10 for geodesic slicing!, but it still crashes.
System II, on the other hand, did not crash after even o
100 light crossing times. We never encountered a grow
instability that caused the code to crash.

V. SUMMARY AND CONCLUSION

We numerically implement two different formulations o
Einstein’s field equations and compare their performance
the evolution of linear wave initial data. System I is th
standard set of ADM equations for the evolution ofg i j and
Ki j . In system II, we conformally decompose the equatio
and introduce connection functions. The conformal deco
position naturally splits ‘‘radiative’’ variables from ‘‘nonra
diative’’ ones, and the connection functions are used to br
the Ricci tensor into an elliptic form. These changes are
pealing mathematically, but also have a striking numeri
consequence: system II performs far better than system

It is interesting to note that most earlier axisymmet
codes~e.g. @20#! also relied on a decomposition similar t
that of system II. Much care was taken to identify radiati
variables and to integrate those variables as opposed to
raw metric components. It is surprising that this experien

d

FIG. 3. Evolution of the extrinsic curvature componentKzz at
the origin in harmonic slicing. The solid line is the result for syste
II, and the dashed line for system I. For system II, we construc

Kzz from Ãzz, f, K and g̃zz.
7-5
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was abandoned in the development of most 311 codes,
which integrate equations equivalent to system I. Th
codes have been partly successful@19#, but obvious problems
remain, as for example the inability to integrate low amp
tude waves for arbitrarily long times. While efforts hav
been undertaken to stabilize such codes with the help of
propriate outer boundary conditions@18,29#, our findings
point to the equations themselves as the fundamental c
of the problem, and not to the outer boundaries. Obviou
boundary conditions as employed in the perturbative
proach in@18,29# or in the characteristic approach in@30# are
still needed for accuracy—but our results clearly suggest
they are not needed for stability@31#.

Some of the recently proposed hyperbolic systems
very appealing in that they bring the equations in a fi
order, symmetric hyperbolic form, and that all characteris
are physical~i.e., are either at rest with respect to norm
observers or travel with the speed of light! @9,12#. These
properties may be very advantageous for numerical im
mentations, in particular at the boundaries~both outer bound-
aries and, in the case of black hole evolutions, inner ‘‘app
ent horizon’’ boundaries!. Some of these systems have al
been implemented numerically, and show stability proper
very similar to our system II@32#. Our system II, on the othe
hand, uses fewer variables than most of the hyperbolic
mulations, and does not take derivatives of the equatio
which may be advantageous especially when matter sou
nk
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are present. This suggests that a system similar to syste
may be a good choice for evolving interior solutions a
matter sources, while one may want to match to one of
hyperbolic formulations for a better treatment of the boun
aries.

The mathematical structure of system II is more appea
than that of system I, and these improvements are reflecte
the numerical behavior. We therefore conclude that
mathematical structure has a very deep impact on the
merical behavior, and that the ability to finite difference t
standard ‘‘ġ2K̇ ’’ ADM equations may not be sufficient to
warrant a stable evolution.
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