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Stability issues in Euclidean quantum gravity
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It is known that the action of Euclidean Einstein gravity is not bounded from below and that the metric of
flat space does not correspond to a minimum of the action. Nevertheless, perturbation theory about flat space
works well. The deep dynamical reasons for this reside in the nonperturbative behavior of the system and have
been clarified in part by numerical simulations. Several open issues remain. We treat in particular those zero
modes of the action for whichR(x) is not identically zero, but the integral ofAg(x)R(x) vanishes.
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I. INTRODUCTION

The Euclidean~or ‘‘imaginary time’’! formulation of
quantum field theory offers several aesthetic and substa
advantages. The practical rules for perturbative computat
are simpler than in the Lorentzian case and there is no
tinction between upper and lower indices. The only relev
Green function of the linearized equations is the Feynm
propagator, and there is no need of formal regularizat
through the i« term. From the non-perturbative point o
view, if the Euclidean actionS is positive definite, then the
functional integral is formally convergent thanks to the e
ponential of2S/\.

When time-independent quantities are computed in
Euclidean theory, the inverse analytical continuation to r
time is not necessary. A well known example are the form
las for the static potential@1#. We recall them in some deta
in Sec. II.

The physical correspondence between an Euclidean f
tional integral and a statistical system at the temperaturQ
5\/kB is immediate. We can also easily visualize the d
namics of the system, after suitable discretization, a
Monte Carlo evolution: starting from a given field config
ration, a new configuration is generated through a small r
dom variation; then the system evolves to the new confi
ration with probability 1 if its action is smaller, or else wit
probability exp(2DS/\), and so on.

When the ‘‘bare’’ parameters of the action are chang
the ground state of the system, corresponding to the m
mum of the action, changes too~‘‘phases’’ of the theory!. It
is possible to insert first some bare parameters into the
tion, then follow the evolution of the system towards
ground state, and here measure the effective average val
the same parameters. The effective coupling constant,
instance, is usually extracted in this way from the measu
potentialU.

An interesting application of this method is the quantu
Regge calculus by Hamber and Williams@2#. In this case, the
physical system under investigation is very peculiar: the
clidean spacetime, represented by a simplicial manifold
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numerically coded in terms of edge lengths and defect an
~see also Sec. V below!. In order to obtain from this dis-
cretized theory a continuum limit, independent of the deta
of the discretization procedure, one looks in the parame
space of the system for a second-order transition po
where the range of field correlations diverges.

Does this Euclidean model of the gravitational field co
stitute a faithful representation of real spacetime, with
complex causal structure distorted by field fluctuations? T
question is still unanswered. While we know for sure that
certain curved manifolds the analytical continuation to E
clidean signature is not valid@3#, there are no theorems tha
do allow this continuation in some special case. All we c
do is hope that for weak fluctuations with respect to fl
space, the Wick rotation of real time to the imaginary a
still makes sense.

Particle physicists do not doubt that the Euclidean E
stein action for weak fields represents a massless spin 2
correctly and in an unique way. This point of view abo
gravitation, at variance with the geometrodynamical view
spacetime, has been supported, as is well known, by Fe
man, Weinberg and others~see for instance the review b
Alvarez @4#!. No problems have ever been encountered
apart from the familiar nonrenormalizability of Einste
action—in Euclidean perturbation theory around flat spa
The Euclidean formula for the potential works well, too@5#.

Nevertheless, a serious problem still affects Euclide
quantum gravity, even in the weak field sector: the nonpo
tivity of the action. Either if one takes the geometrical po
of view ~‘‘the Euclidean action is not at a minimum forR
50 . . . ’’! or the particle-physicist point of view~‘‘the qua-
dratic part of the action has undefined sign . . . ’’!, one ends
up in the unpleasant situation of studying perturbatively
system around a configuration that does not appear to
minimum for the action, but rather a saddle point. The fe
ing is to control only one part of the dynamics of the syste
while the other part—which makes the weak field appro
mation work—remains elusive.

The nonperturbative Euclidean quantum Regge calcu
based upon Einstein action can be helpful under this resp
It represents a geometrical model whose dynamics is enti
under control, at least numerically. So one can use it to th
©1998 The American Physical Society04-1
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G. MODANESE PHYSICAL REVIEW D 59 024004
some light on the paradoxes of the continuum Einstein
tion.

The short-distance regime of Euclidean quantum gra
is to some extent arbitrary, and a strict connection with r
spacetime is quite unlikely in that limit.~We recall that due
to the dimensional structure of the gravitational action, fi
fluctuations are stronger at short distances.! In the large dis-
tance limit, however, the connection is much more plaus
and thus it can be interesting to see how flat space eme
and keeps stable in the Euclidean Regge calculus.

The plan of the paper is the following. In Sec. II w
discuss the general formulas which relate, in Euclidean fi
theory, the static potential of two sources to the vacu
correlations of the field. This also gives us the chance
introduce some basic notations. In Sec. III we deal with
nonpositivity of the Euclidean action, and give explicit e
amples in the weak field approximation. In Sec. IV w
present a novel issue: the zero modes of the integral of
scalar curvature. In Sec. V we give an interpretation of
numerical results of Regge calculus in view of the stabi
problem. We stress the importance of the sign of the eff
tive cosmological term, which acts as a volume term. In S
VI we check the geometrical argument of Sec. V in the co
tinuum, doing a stability analysis of anti–de Sitter space

II. STATIC POTENTIAL AND EUCLIDEAN VACUUM
CORRELATIONS

In Euclidean quantum field theory there is a simple co
nection between the static potential associated to a bos
field and the vacuum correlations of the field. This allo
signs to be fixed without any ambiguity, which is often cr
cial in stability issues.

Consider a system comprising a quantum field and
external sourceJ, and denote byW@J#5^01u02&J the
vacuum-to-vacuum transition amplitude in the presence
the source. The energy of the ground state of the syste
given by

E052
\

T
logW@J#, ~2.1!

whereT is the temporal range of the source, which even
ally tends to infinity. To check this, let us insert a comple
set of energy eigenstates$un&% into the amplitudeW@J#:

^01u02&J5^0ue2HT/\u0&

5(
n

^0ue2HT/\un&^nu0&

5(
n

u^0un&u2e2EnT/\. ~2.2!

The smallest eigenvalue among theEn’s corresponds to the
ground state, and in the limitT→` its exponential domi-
nates the sum. Thus taking the logarithm ofW@J# and mul-
tiplying by (2\/T) we obtain the eigenvalue itself. On
often considers pointlike sources kept at rest atx1 . . . xN ,
namely
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J~x!5(
j 51

N

qj d3~x2xj !. ~2.3!

In this case the ground state energy corresponds, up
possible additive constant, to the static potentialU of the
interaction of the sources, and depends onx1 . . . xN . We
have

U~x1 . . . xN!52
\

T
log^exp~2SJ!&0 , ~2.4!

whereSJ is the term in the action containing the coupling
J, and the averagê&0 is computed through the functiona
integral, weighing the field configurations with the fact
exp(2S0 /\). For a scalar fieldf, SJ takes the form

SJ5E d4x J~x!f~x! ~2.5!

andJ(x) is as in Eq.~2.3!. For a gauge fieldAm , the source
term is

SJ5E d4x Jm~x!Am~x!; ~2.6!

Jm~x!5(
j 51

N

qj d0md3~x2xj !. ~2.7!

ThereforeSJ reduces to a sum of one-dimensional integr
computed along temporal lines. When the pointlike sour
are only two and the fieldAm vanishes at infinity,U(x1 ,x2)
can be also expressed in terms of a Wilson loop. For gra
the source term is

ST5
1

2E d4xAg~x!Tmn~x!hmn~x!; ~2.8!

Tmn~x!5(
j 51

N

mj dm0 dn0 d3~x2xj !. ~2.9!

The leading order contribution to Eq.~2.4! in the case of two
pointlike sources is given in general by an expression of
form

U~x1 ,x2!52
\

T
q1q2

3E
2T/2

T/2

dt1E
2T/2

T/2

dt2^F~ t1 ,x1!F~ t2 ,x2!&,

~2.10!

where^ & denotes the free propagator andF corresponds to
the fieldf in the scalar case and to the componentsA0 and
h00 in the electromagnetic and gravitational cases, resp
tively ~in the latter case,q1 and q2 are replaced by the
massesm1 andm2 of the sources!.

The sign of the correlation̂F(t1 ,x1)F(t2 ,x2)& is di-
rectly related to that of the potential energy. Some care
4-2
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STABILITY ISSUES IN EUCLIDEAN QUANTUM GRAVITY PHYSICAL REVIEW D 59 024004
needed in order to pick the correct convention for the Euc
ean metric. Equations~2.1!, ~2.2! hold for the Euclidean met
ric with signature (21,21,21,21), which is directly con-
nected to the standard Minkowski metric (1,21,21,21) by
the transformationx0↔ ix0 . If the Euclidean metric~1,1,1,1!
is used, Eq.~2.10! holds with the1 sign. This metric is
usually preferred and will be employed in the following.

In the scalar and electromagnetic case, the correlatio
positive. One finds~apart from positive numerical factor
and withc[1)

^f~x1!f~x2!&;^A0~x1!A0~x2!&;
\21

~x12x2!2
;

~2.11!

thus the potential is repulsive ifq1 and q2 have the same
sign, since

E
2T/2

T/2

dt1E
2T/2

T/2

dt2
1

~ t12t2!21~x12x2!2
;

T

ux12x2u
.

~2.12!

In the gravitational case, the correlation is negative:

^h00~x1!h00~x2!&;2
\21G

~x12x2!2
; ~2.13!

m1 and m2 being always positive for physical sources,
follows that the potential is always attractive. The negat
sign of the correlation~2.13! may look counterintuitive. One
should never forget, however, that quantum fields are dis
butions, and the analogy between a quantum functional i
gral and classical fields at finite temperature has only a l
ited validity.

The positivity of the scalar action and of the electroma
netic action in Feynman gauge are evident in the Euclid
theory: one has namely in momentum space

Sf;E d4p p2 f̃* ~p!f̃~p!, ~2.14!

SA;E d4p p2 dmnÃm* ~p!Ãn~p! ~2.15!

and for the propagators

G̃f~p!;p22; G̃A,mn~p!;dmn p22. ~2.16!

@We recall that, still apart from positive numerical facto
*d4p eipxp22;x22. Compare Eq.~2.11!.#

III. DIFFERENT ASPECTS OF THE SAME PROBLEM:
THE ACTION DOES NOT HAVE A MINIMUM

The Hilbert-Einstein action for the gravitational fie
gmn(x) is usually written in the form

S52
1

8pGE d4xAg~x!R~x!, ~3.1!
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whereR(x) is the scalar curvature.
Naively one can observe already at this stage that sincR

is a quantity which can be positive as well as negative a
contains the first and second derivatives of the metric,
integrand does not have a definite sign and can grow in b
directions ifgmn(x) varies strongly.

Hawking showed formally several years ago@6# that the
Euclidean action is not bounded from below@7#. His argu-
ment is important also because it does not make any re
ence to the weak field approximation. Several possible s
tions to the unboundedness problem were proposed late
@8#.

Wetterich suggested recently@9# a nonlocal modification
of the effective Euclidean action and showed that the p
nomenological implications of such a modified action a
almost entirely compatible with cosmology. Without ente
ing into this matter, we just quote here his decomposition
the tensor of the metric fluctuationshmn(x)5gmn(x)
2dmn(x) in terms of irreducible representations of the E
clidean group ind dimensions:

hmn~x!5bmn~x!1]man~x!1]nam~x!

1S ]m]n2
1

d
dmn]2Dx~x!1

1

d
dmns~x!, ~3.2!

where the tensorsbmn(x) andam(x) satisfy the conditions

]mam~x!50, ]mbmn~x!50, dmnbmn~x!50. ~3.3!

To second order inhmn one obtains

Ag~x!R~x!5
1

4
]rbmn~x!]rbmn~x!2

~d21!~d22!

4d2

3]m@s~x!2]2x~x!#]m@s~x!2]2x~x!#.

Therefore for d.2 the action becomes negative sem
definite for configurations in whichbmn(x) is zero. It can be
shown that the addition of a gauge-fixing term does
change the situation. Wetterich also observes that e
though it is possible to make the action positive definite a
ing short-distance terms~like the R2 term!, the effective ac-
tion, relevant for large distances, will always keep nonpo
tive.

In certain cases it can be reasonable to introduce in
theory a cutoff on the momenta, and this will make the sca
curvature bounded. Still, the quadratic part of the action w
not be positive-definite. This unpleasant feature does
only concern the small distances sector. It can be exhib
most clearly in harmonic gauge. In this gauge the quadr
part of the Hilbert-Einstein Lagrangian in momentum spa
is simply given by

L̃ ~2!~p!;2p2h̃mn* ~p!Vmnabh̃ab~p!, ~3.4!

whereVmnab is a constant tensor which in particular in d
mension 4 is equal to

Vmnab5dmadnb1dmbdna2dmndab . ~3.5!
4-3
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G. MODANESE PHYSICAL REVIEW D 59 024004
Let us rearrange the 10 independent components of
tensor h̃, to build an arrayh̃i ( i 50,1, . . . ,9), asfollows:
h̃00→h̃0 , . . . ,h̃33→h̃3 ,h̃01→h̃4 , . . . ,h̃23→h̃9 . We then
have

L̃ ~2!~p!;2p2h̃i* ~p!Mi j h̃j~p!, ~3.6!

whereM is a block matrix of the form

M5Fm~434! 0~436!

0~634! 1~636!
G ~3.7!

and

m5F 1 21 21 21

21 1 21 21

21 21 1 21

21 21 21 1

G . ~3.8!

One easily checks thatm25431, thus the propagator ofh̃i
is given by

G̃h~p!;2p22M2152p22F 1

4
m 0

0 1
G . ~3.9!

As anticipated in Sec. II, we see here that the correla
function of h00, like the other ‘‘diagonal’’ correlations, is
negative.

In order to check that the quadratic part of the gravi
tional action is not positive-definite, we can also rewr
L̃ (2)(p) in matrix form as

L̃ ~2!~p!;2p2$2 Tr@ h̃* ~p!h̃~p!#2uTr h̃~p!u2%.
~3.10!

Denoting now byh̃A(p) (A50,1,2,3) the eigenvalues of th
symmetric matrix@ h̃mn(p)#, we have

L̃ ~2!~p!;2p2F(
A

uh̃A~p!u22 (
AÞB

h̃A* ~p!h̃B~p!G ,
~3.11!

or

L̃ ~2!~p!;2p2h̃A* ~p!mABh̃B~p!. ~3.12!

The eigenvalues ofm are found to be (2,2,22,22). Thus
the quadratic form~3.12! has no definite sign.

IV. THE ‘‘ZERO MODES’’ IN THE INTEGRAL OF R

It is known that if the metric has a Lorentzian signatu
then Einstein equations in vacuum admit wavelike solutio
The Riemann tensorRnrs

m propagates in these solution
while the Ricci tensorRmn and the curvature scalarR are
identically zero.
02400
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We recall that the Einstein equations in the presence
sourceTmn are ~with c[1)

Rmn~x!2
1

2
gmn~x!R~x!528pGTmn~x!, ~4.1!

and their trace is

R~x!58pG Tr T~x!. ~4.2!

From Eq.~4.2! we see that ifTmn50, thenR50, as men-
tioned; therefore gravitational waves are a set of ‘‘ze
modes’’ of the Hilbert-EinsteinLagrangian@10#.

There is, however, another peculiar way to obtain z
modes of the gravitationalaction. This is due to the nonposi
tivity of this action.

Let us consider a solutiongmn of Eq. ~4.1! with a ~cova-
riantly conserved! sourceTmn obeying the additional integra
condition

E d4xAg~x! Tr T~x!50. ~4.3!

Taking into account Eq.~4.2! we see that the action~3.1!
computed for this solution is zero. Condition~4.3! can be
satisfied by energy-momentum tensors that are not ide
cally zero, provided they have a balance of negative a
positive signs, such that their total integral is zero. Of cour
they do not represent any acceptable physical source, bu
corresponding solutions of Eq.~4.1! exist nonetheless, an
are zero modes of the action.

As an example of an unphysical source which satisfies
~4.3! one can consider the static field produced by a ‘‘ma
dipole.’’ Certainly negative masses do not exist in natu
here we are interested just in the formal solution of Eq.~4.1!
with a suitableTmn , because for this solution we hav
*d4xAgR50. Let us take the followingTmn of a static di-
pole centered at the origin (m,m8.0):

Tmn~x!5dm0dn0@m f~x1a!2m8 f ~x2a!#. ~4.4!

Here f (x) is a smooth test function centered atx50, rapidly
decreasing and normalized to 1, which represents the m
density. The range off, say r 0 , is such thata@r 0@r Schw,
where r Schw is the Schwartzschild radius corresponding
the massm. The massm8 is in general different fromm and
chosen in such a way to compensate a possible small di
ence, due to theAg factor, between the integrals

I 15E d4xAg~x! f ~x1a!

and

I 25E d4xAg~x! f ~x2a!. ~4.5!

The procedure for the construction of the zero mode c
responding to the dipole is the following. One first conside
Einstein equations with the source~4.4!. Then one solves
them with a suitable method, for instance in the weak fi
4-4
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approximation. Finally, knowingAg(x) one computes the
two integrals~4.5! and adjusts the parameterm8 in such a
way that (mI12m8I 2)50.

Let us implement this procedure to first order. Inside
single mass distributionm f(x), with radiusr 0 such thatr 0
@r Schw, the gravitational field satisfies a static equati
whose linear approximation is of the form

Dh~x!5mk f ~x!, ~4.6!

where D is a linear partial differential operator andk de-
notes, for brevity, 8pG. Let us callĥ(x) the solution of Eq.
~4.6! with mk replaced by 1. The solution of the linearize
Einstein equations with the source~4.4! is, in the region with
e

or
nt
na
od

Eu
na

02400
a

positive density,h1(x)5mkĥ(x1a). In the region with
negative density the solution ish2(x)52m8kĥ(x2a/2).
Thus in the region with positive density we have

Ag~x!;11
1

2
mk Tr ĥ~x1a! ~4.7!

and in the region with negative density

Ag~x!;12
1

2
m8k Tr ĥ~x2a!. ~4.8!

The value of the action functional corresponding to th
linearized ‘‘virtual dipole’’ metric is
2
1

kE d4xAg~x!R~x!52E d4xAg~x! Tr T~x!

52E d4xAg~x!@m f~x1a!2m8 f ~x2a!#

52E d4xH F11
1

2
mk Tr ĥ~x1a!Gm f~x1a!2F12

1

2
m8k Tr ĥ~x2a!Gm8 f ~x2a!J

52E d4x@m f~x1a!2m8 f ~x2a!#12
1

2
kE d4x@m2 Tr ĥ~x1a! f ~x1a!

1m82 Tr ĥ~x2a! f ~x2a!#. ~4.9!
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Being f normalized, the first integral of Eq.~4.9! gives
2T(m2m8), whereT is the temporal integration range. W
then have

2
1

kE d4xAg~x!R~x!52T~m2m8!2
1

2
kT~m21m82!

3E d3x Tr ĥ~x! f ~x!. ~4.10!

The integral on the right-hand side~RHS! is a number of the
order of 1 and will be denoted byh. The condition for a zero
mode now reads

~m2m8!1
1

2
hk~m21m82!50 ~4.11!

and it is satisfied, up to terms of orderk2, for m85m(1
1hkm).

There is no obstacle, in the functional integral, to the f
mation of a zero mode like this. It can ‘‘pop up’’ at any poi
in spacetime, or more likely it can be induced by an exter
localized source, even if weak. The spatial size of the m
can be in principle arbitrarily large.

These modes can develop both in Lorentzian and in
clidean metric. Sometimes it is argued that in the functio
-

l
e

-
l

integral with real time and with the oscillating facto
exp(iS/\) the nonpositivity of the action has no importanc
But also in that case the zero modes described above ca
present.

The only mechanism able to suppress these modes
pears to be the presence of an effective volume term w
L,0 ~see Sec. V!.

V. HOW FLAT SPACE EMERGES FROM THE QUANTUM
REGGE LATTICE

It can be helpful to recall briefly here the main features
the quantum Regge calculus technique by Hamber and W
liams @2#. In this approach the Euclidean 4D spacetime
approximated by a simplicial manifold and the curvature,
concentrated at the ‘‘hinges,’’ is proportional to the defe
angle which one finds when a hinge is flattened out. T
system is numerically simulated, with the edge lengths
fundamental variables. At the beginning one puts into
action, as ‘‘bare’’ parameters,k ~inverse of the Newton con
stant! anda ~coefficient of theR2 term!. Then one looks in
the phase diagram of the theory for a second-order trans
point.

It turns out that the phase diagram is divided in two
gions: a ‘‘smooth’’ phase, with average curvature small a
negative, and fractal dimension close to 4; and a ‘‘roug
4-5
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G. MODANESE PHYSICAL REVIEW D 59 024004
phase, singular, collapsed, with average curvature large
positive and small fractal dimension. It is clear that the s
of the curvature plays a crucial role in the stability of t
system. The two phases are separated by a transition
Approaching this line from the smooth phase, the aver
curvature^R& tends to zero. In this way, flat space is o
tained in a dynamical way from the smooth phase, with
any need of introducing into the theory a flat background
hand. From here, perturbation theory can somehow star

A few data can help to complete the picture. The latt
sites are 16316316316565 536, with 1 572 864 simplices
The edge lengths are updated by a straightforward Mo
Carlo algorithm. Eventually an ensemble of configurations
generated, distributed according to the Euclidean action.
topology is fixed as a four-torus with periodic boundary co
ditions. A stable, well behaved ground state is found fok
,kc;0.060. The system resides in the smooth phase, w
fractal dimension four. Six values ofk have been investi-
gated: 0.00, 0.01, 0.02, 0.03, 0.04, 0.05.

The static potential is attractive and can be fitted byL21,
with a small Yukawa factor exp(2mL). The mass extracted
this way is consistent with the exponential decay of the c
relations of the scalar curvature. The effective Newton c
stant can be extimated toG;0.14, in lattice units. More
exactly, at the beginning one putsl51 in the action. Then
one finds for the average edge length

l 05A^ l 2&52.36, i.e., l 052.36l21/4. ~5.1!

The critical value of the bare coupling is

kc;0.060, i.e., kc 0.060l1/2 ~5.2!

and the productGkc is independent ofl 0 and finite, as hoped
The precision of these data is expected to improve consi
ably in the next months, thanks to the new dedicated su
computer AENEAS@11#.

As far as stability is concerned, the numerical simulatio
show as mentioned that in the smooth phase the sys
evolves toward a stable minimum position with^R&,0. It is
not hard to understand intuitively, from the geometrical po
of view, why the system is stable in this phase.

The effective action is

Se f f5E d4xAg~x!F L

8pG
2

R~x!

8pGG , ~5.3!

with L;^R&. Let us assume that the system is in a config
ration with R(x)5const5L. Now suppose that somewhe
a positive fluctuation ofR appears. Being proportional t
exp(2Seff), the probability of this new configuration is seem
ingly larger, if we take into account only the second term
the action. The first term, however~the effective cosmologi-
cal term! can be written as (LV), whereV is the total vol-
ume of the system. This volume is maximum when the ma
fold is flat and all hinges are completely extended. As so
as a curvature fluctuation appears at some point the
volume decreases, and sinceL is negative, this tends to sup
press the fluctuation. The converse happens, of course, in
collapsed phase, whereL.0.
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Furthermore, this same mechanism will suppress in
even stronger way the zero modes described in Sec. IV, s
these modes cause no variation of the integral ofR, but only
decrease the volume.

The continuum theory is recovered from the lattice only
the transition line, whereL50. This refers, however, to an
average computed over all space. More generally,L scales
with the volumev of the averaged region, according to
power law of the formuLuG;(v21/4l 0)g.

VI. IS AdS SPACE A STABLE MINIMUM
OF THE CONTINUUM ACTION?

As we have seen in the previous section, the discreti
Euclidean action appears to be stabilized by a negative
mological term. This acts as a volume term and opposes
curvature fluctuations, which tend to diminish the volume
the lattice.

Is the geometrical argument offered independent of
Regge lattice regularization? This question suggests a ch
in the continuum. If Eq.~5.3! really has a stable minimum
then that minimum must be a solution of the Euclidean E
stein equations with a negative cosmological constant. S
a solution is known; this is Euclidean anti–de Sitter~AdS!
space.

Therefore, we can do a stability analysis: is AdS spac
stable minimum of the action, with only positive modes
the weak-field expansion in this background? Or is it only
saddlepoint, like flat space?

A stability analysis in AdS space is more intricate than
flat space. We must expand the metric with respect to
appropriate background, namely

gmn~x!5gmn
AdS~x!1hmn~x! ~6.1!

wheregmn
AdS(x) is the solution of the vacuum Euclidean Ein

stein equations with a negative cosmological term and t
represents a space with constant negative curvature.
form of the metricgmn

AdS(x) depends on the coordinates ch
sen.

We can formally expand the action as

S@g#5S@gAdS#1
dS

dg
@gAdS#3h1

1

2

d2S

dg2
@gAdS#3h21•••.

~6.2!

The first derivative vanishes atgAdS and to check the stabil
ity we must study the sign of the quadratic formU
5(d2S/dg2)@gAdS#. Remembering that the first variation o
S gives the Einstein equations, we obtain

Uabmn~x!5F dS

dgab
S Rmn2

1

2
gmnR2LgmnD G

g5gAdS~x!

.

~6.3!

The functional derivative of the first two terms correspon
up to a gauge fixing, to the usual quadratic form of pu
gravity, while the derivative of the cosmological term giv
2LgAdS,ma(x)gAdS,nb(x) @12,13#.
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The second variation ofSat the extremum must take int
account the dependence ofU on x:

d2S5
1

2E d4xAgAdS~x!hab~x!Uabmn~x!hmn~x!.

~6.4!

Since the AdS space is homogeneous and we are m
interested in localized fluctuations, we could restrict our
tention to functionshmn(x) having support in a small regio
around the origin. In suitable coordinates we will ha
gmn

AdS(x);gmn
AdS(0)5dmn , but the gauge fixing term const

tutes a serious problem, because it must be consistent
the symmetries of the background and with the fact that
fluctuations are localized~compare also Ref.@14#, for the de
Sitter case and related horizon and infrared problems!.

In conclusion, investigating stability along these lines a
pears to be very hard.

Another possible check concerns the conformal mode
this case, a weak field expansion is not necessary. For
conformal transformation of the metric of the form

gmn→gmn8 ~x!5V2~x!gmn~x! ~6.5!

the curvature scalar transforms as

R~x!→R8~x!5V22~x!R~x!26V23~x!]2V~x! ~6.6!

and the action with cosmological term transforms as~we
omit thex dependence!

S→S852
1

8pGE d4xAg~V2R16]mV]nVgmn2LV4!.

~6.7!

Note thatgmn(x) does not need to be constant, and in o
case coincides with the AdS metric.

We see from Eq.~6.7! that forL,0 the conformal mode
is not stabilized. On the contrary, it seems that conform
fluctuations can increase the total volume of space and
.
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therefore enhanced. This continuum result is in bold cont
with our intuition of the behavior of the lattice. The contra
could be possibly explained as follows.

~i! It turns out from the numerical simulations that aft
the simplicial lattice has reached its ground state and
stabilized, the average lengthl 0 of the links~the ‘‘bones’’ of
the triangulation! keeps constant and fluctuations are sma

This behavior could be due in part to theR2 term or to the
volumes in phase space, rather than to the EinsteinR term; it
signals, anyway, that an effective suppression of the con
mal modes has occurred.

~ii ! If the lengths of the lattice links are approximate
constant, then any increase of the curvature implies an
crease of defect angles and thus a diminution of the t
volume, as argued in the previous section.

This is easily visualized in two dimensions. Let us co
sider, for instance, an orthogonal pyramid with a regu
polygon as its basis~but here we are only interested in th
side surface of the pyramid—the 2D volume!. Suppose to
keep constant the edges of the pyramid—the links. When
height of the pyramid goes to zero, the side surface is m
mum and the defect angled, associated with the curvature,
zero. ~The defect angle is that obtained by ‘‘opening’’ th
pyramid, as if it were made of paper.! The sharper the pyra
mid, the largerR;d and the smaller the side surface. Th
variation of the side surface is of the order ofDS;
2(Dsind)l0

2.
The 4D analogue isDV;2(D sind)l0

4, while the contri-
bution of the curvature to the Einstein action is of the ord
of L(Dd) l 0

2 . Since in lattice units we have@compare Eq.
~5.1!# l 05A^ l 2&.1 and uLu.1, the lattice prefers to keep
the d ’s close to zero.
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