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Stability issues in Euclidean quantum gravity
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It is known that the action of Euclidean Einstein gravity is not bounded from below and that the metric of
flat space does not correspond to a minimum of the action. Nevertheless, perturbation theory about flat space
works well. The deep dynamical reasons for this reside in the nonperturbative behavior of the system and have
been clarified in part by numerical simulations. Several open issues remain. We treat in particular those zero
modes of the action for whictR(x) is not identically zero, but the integral ofg(x)R(x) vanishes.
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[. INTRODUCTION numerically coded in terms of edge lengths and defect angles
(see also Sec. V belowlIn order to obtain from this dis-

The Euclidean(or “imaginary time”) formulation of cretized theory a continuum limit, independent of the details
quantum field theory offers several aesthetic and substantiaf the discretization procedure, one looks in the parameters
advantages. The practical rules for perturbative computationspace of the system for a second-order transition point,
are simpler than in the Lorentzian case and there is no disyhere the range of field correlations diverges.
tinction between upper and lower indices. The only relevant Does this Euclidean model of the gravitational field con-
Green function of the linearized equations is the Feynmanitute a faithful representation of real spacetime, with its
propagator, and there is no need of formal regularizatioomplex causal structure distorted by field fluctuations? This
through theie term. From the non-perturbative point of gestion is still unanswered. While we know for sure that for
view, if the Euclidean actiois is positive definite, then the  ceriain curved manifolds the analytical continuation to Eu-
functional integral is formally convergent thanks to the ex-_jiqean signature is not valigg], there are no theorems that

pm\w/srr:tlal tg)f— S/Z dent it ted in th do allow this continuation in some special case. All we can
en lime-independent quantiies are computed in o is hope that for weak fluctuations with respect to flat

Euclidean theory, the inverse analytical continuation to real . : . : . i
— space, the Wick rotation of real time to the imaginary axis
time is not necessary. A well known example are the formu-

. . . . still makes sense.
las for the static potentidll]. We recall them in some detail . - . .
in Sec. Il P 4t} Particle physicists do not doubt that the Euclidean Ein-

The physical correspondence between an Euclidean fundtein action for weak figlds represent; a massles; spin 2 field
tional integral and a statistical system at the temperature Ccorrectly and in an unique way. This point of view about
—#i/kg is immediate. We can also easily visualize the dy_grawta_non, at variance with the geometrodynammal view of
namics of the system, after suitable discretization, as &Pacetime, has been supported, as is well known, by Feyn-
Monte Carlo evolution: starting from a given field configu- Man, Weinberg and othefsee for instance the review by
ration, a new configuration is generated through a small ranAlvarez [4]). No problems have ever been encountered—
dom variation; then the system evolves to the new configuapart from the familiar nonrenormalizability of Einstein
ration with probability 1 if its action is smaller, or else with action—in Euclidean perturbation theory around flat space.
probability exp-AS7), and so on. The Euclidean formula for the potential works well, tids].

When the “bare” parameters of the action are changed, Nevertheless, a serious problem still affects Euclidean
the ground state of the system, corresponding to the miniguantum gravity, even in the weak field sector: the nonposi-
mum of the action, changes td¢tphases” of the theory. It tivity of the action. Either if one takes the geometrical point
is possible to insert first some bare parameters into the a®f view (“the Euclidean action is not at a minimum fé&
tion, then follow the evolution of the system towards its=0...") or the particle-physicist point of view'the qua-
ground state, and here measure the effective average valuedfatic part of the action has undefinedrsig . ), one ends
the same parameters. The effective coupling constant, faip in the unpleasant situation of studying perturbatively a
instance, is usually extracted in this way from the measuredystem around a configuration that does not appear to be a
potentialU. minimum for the action, but rather a saddle point. The feel-

An interesting application of this method is the quantuming is to control only one part of the dynamics of the system,
Regge calculus by Hamber and Williafid. In this case, the while the other part—which makes the weak field approxi-
physical system under investigation is very peculiar: the Eumation work—remains elusive.
clidean spacetime, represented by a simplicial manifold and The nonperturbative Euclidean quantum Regge calculus

based upon Einstein action can be helpful under this respect.
It represents a geometrical model whose dynamics is entirely
*Email address: modanese@science.unitn.it. under control, at least numerically. So one can use it to throw
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some light on the paradoxes of the continuum Einstein ac- N
tion. _ _ _ . ) =2, q; B(x—x;). 2.3
The short-distance regime of Euclidean quantum gravity =1
is to some extent arbitrary, and a strict connection with rea|n this case the ground state energy corresponds, up to a

spacetime is quite unlikely in that limi{We recall that due ; o . .
to the dimensional structure of the gravitational action, field.pOSSIble additive constant, to the static potentiabf the

fluctuations are stronger at short distancés.the large dis- interaction of the sources, and dependsxgn . .xy. We
-y S . have
tance limit, however, the connection is much more plausible
and thus it can be interesting to see how flat space emerges A
and keeps stable in the Euclidean Regge calculus. U(Xq...XN)=— ?Iog<exp(—83)>o, (2.9
The plan of the paper is the following. In Sec. Il we

discuss the general formulas which relate, in Euclidean ﬁquNhereSJ is the term in the action containing the coupling to

theory, the static potential of two sources to the vacuum ; ;
i . . ; J, and the avera is computed through the functional
correlations of the field. This also gives us the chance t 9¢)o P 9

Qntegral, weighing the field configurations with the factor
introduce some basic notations. In Sec. Il we deal with the gra, ghing 9

nonpositivity of the Euclidean action, and give explicit ex- exp(-S/f). For a scalar fieldb, S, takes the form
amples in the weak field approximation. In Sec. IV we

present a novel issue: the zero modes of the integral of the SJ:J d*x J(x) B(x) (2.9
scalar curvature. In Sec. V we give an interpretation of the

numerical results of Regge calculus in view of the stabilityandJ(x) is as in Eq.(2.3). For a gauge field\, , the source
problem. We stress the importance of the sign of the effecterm is

tive cosmological term, which acts as a volume term. In Sec.

VI we check the geometrical argument of Sec. V in the con- 4 _
tinuum, doing a stability analysis of anti—de Sitter space. Sy= [ A% I, 0ALX); (2.6
Il. STATIC POTENTIAL AND EUCLIDEAN VACUUM N
CORRELATIONS J#(X):,—Z‘l 0j 80, O3 (X—X;). 2.7

In Euclidean quantum field theory there is a simple con-

nection between the static potential associated to a bosonic'ereforeS, reduces to a sum of one-dimensional integrals
field and the vacuum correlations of the field. This allowscomputed along temporal lines. When the pointlike sources

signs to be fixed without any ambiguity, which is often cru- &€ only two and the field, vanishes at infinitylJ(x,,x;)
cial in stability issues. can be also expressed in terms of a Wilson loop. For gravity

Consider a system comprising a quantum field and ahe source term is
external sourceJ, and denote byW[J]=(0F|07); the

vacuum-to-vacuum transition amplitude in the presence of S;= Ef d*x\g(x) T, ()N, ,(X); (2.9
the source. The energy of the ground state of the system is 2 . .
given by N
% T (X)=2 M, 8,0 8,0 3(X—X;). (2.9
Eo=— FlogW[J], (2.9 =1

The leading order contribution to E€R.4) in the case of two

whereT is the temporal range of the source, which eventupgintlike sources is given in general by an expression of the
ally tends to infinity. To check this, let us insert a completeform

set of energy eigenstat¢ln)} into the amplituden J]:

f
(07]07),=(0le”"""|0) U(X1. %)= — T2
_ —HT/# T2 T2
2. (0le™"™|n)(n|0) xf dtlf At (D (ty ,xy) D (tp, %)),
—-T/2 —-T/2
=2 [(0[n)|%e BT, (2.2 (2.10

where( ) denotes the free propagator addcorresponds to
The smallest eigenvalue among tBg's corresponds to the the field ¢ in the scalar case and to the componekgsand
ground state, and in the limif—« its exponential domi- hgyg in the electromagnetic and gravitational cases, respec-
nates the sum. Thus taking the logarithmWgfJ] and mul- tively (in the latter caseq,; and g, are replaced by the
tiplying by (—#%/T) we obtain the eigenvalue itself. One massesn; andm, of the sources
often considers pointlike sources kept at reskat . . Xy, The sign of the correlatio®(t;,x;)®(t5,%,)) is di-
namely rectly related to that of the potential energy. Some care is
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needed in order to pick the correct convention for the EuclidwhereR(x) is the scalar curvature.

ean metric. Equation@.1), (2.2 hold for the Euclidean met-
ric with signature ¢1,—1,—1,—1), which is directly con-
nected to the standard Minkowski metric {11,—1,—1) by
the transformatiomxy«—ixg. If the Euclidean metri¢1,1,1,2
is used, Eq.(2.10 holds with the+ sign. This metric is
usually preferred and will be employed in the following.

Naively one can observe already at this stage that $tce
is a quantity which can be positive as well as negative and
contains the first and second derivatives of the metric, the
integrand does not have a definite sign and can grow in both
directions ifg,,,(x) varies strongly.

Hawking showed formally several years ad that the

In the scalar and electromagnetic case, the correlation iEuclidean action is not bounded from bel¢W. His argu-

positive. One findg(apart from positive numerical factors
and withc=1)

h
((X1) p(X2)) ~(Ao(X1)Ag(X2)) ~ (X—

thus the potential is repulsive d; and g, have the same
sign, since

JT/Z TI2 1 T
dtJ dt ~ .
—rz et (= 1) 24 (Xg— Xg) |X1_X2|( )

21

In the gravitational case, the correlation is negative:

-1

(hoo(X1)hoo(X2)) ~ — (2.13

(Xl_xz)2

m; and m, being always positive for physical sources, it

ment is important also because it does not make any refer-
ence to the weak field approximation. Several possible solu-
tions to the unboundedness problem were proposed later on
[8].

Wetterich suggested recenflg] a nonlocal modification
of the effective Euclidean action and showed that the phe-
nomenological implications of such a modified action are
almost entirely compatible with cosmology. Without enter-
ing into this matter, we just quote here his decomposition of
the tensor of the metric fluctuationd,,(x)=g,,(X)
—6,,(X) in terms of irreducible representations of the Eu-
clidean group ind dimensions:

h,,(X)=Db,,(X)+3d,a,(x)+d,a,(X)
1

* d

1
9,0,— =8, | x(X)+ aﬁwo-(x), (3.2

where the tensors,,,(x) anda,(x) satisfy the conditions

d,a,(x)=0, d,b,,(x)=0, 6,,b,,(x)=0. (3.3

follows that the potential is always attractive. The negative _ _

sign of the correlatiori2.13 may look counterintuitive. One To second order i ,, one obtains

should never forget, however, that quantum fields are distri- 1 (d-1)(d—2)
butions, and the analogy between a quantum functional inte- \/MR(X)Z zﬂpbw( )3,0,0,(X) —

gral and classical fields at finite temperature has only a lim- 4d>
ited validity. 5 5
The positivity of the scalar action and of the electromag- X d,[o(X) = d“x(X)]La(X) =X (X)].

netic action in Feynman gauge are evident in the Euclidean

theory: one has namely in momentum space
S¢~f d*p p?* (p) b(p), (2.14
Sa~ J d*p p? 8, A% (P)A,(P) (2.15

and for the propagators

Gyp)~p % Gau(p)~d,p % (218

Therefore for d>2 the action becomes negative semi-
definite for configurations in which ,,(x) is zero. It can be
shown that the addition of a gauge-fixing term does not
change the situation. Wetterich also observes that even
though it is possible to make the action positive definite add-
ing short-distance term@ike the R? term), the effective ac-
tion, relevant for large distances, will always keep nonposi-
tive.

In certain cases it can be reasonable to introduce in the
theory a cutoff on the momenta, and this will make the scalar
curvature bounded. Still, the quadratic part of the action will
not be positive-definite. This unpleasant feature does not

[We recall that, still apart from positive numerical factors, only concern the small distances sector. It can be exhibited

fd*p €P*p~2~x"2. Compare Eq(2.11).]

Ill. DIFFERENT ASPECTS OF THE SAME PROBLEM:
THE ACTION DOES NOT HAVE A MINIMUM

The Hilbert-Einstein action for the gravitational field
9.,(X) is usually written in the form

1
S=-— %f d*x\g(X)R(X), (3.1

most clearly in harmonic gauge. In this gauge the quadratic
part of the Hilbert-Einstein Lagrangian in momentum space
is simply given by

L@(p)~=p% (PIV vaphap(P), (3.4

whereV ,,,s is a constant tensor which in particular in di-
mension 4 is equal to

V,U.I/Dzﬁ: 5#(15,/[3"‘ 5#[351/(1_5;1.1/5(1[3' (35)
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Let us rearrange the 10 independent components of the We recall that the Einstein equations in the presence of a

tensorh, to build an arrayh, (i=0,1,...,9), asfollows:  sourceT,, are(with c=1)
’Hoo—;ﬁo, PR ,F]33—>T13,F101—>E4, e ,’523—;59. We then 1
have Ru(¥) = 59, (X)R(X)=—87CT,,(x), (4.1
~ . ~
L®(p)~—p?h (p)M;;hy(p), (3-8 and their trace is
whereM is a block matrix of the form R(X)=87G TrT(x). (4.2)
_|m(4X4) 0(4x6) From Eq.(4.2 we see that ifT,,=0, thenR=0, as men-
Tl o6x4) 16X6) (3.7 tioned; therefore gravitational waves are a set of “zero
modes” of the Hilbert-Einsteirhagrangian[10].
and There is, however, another peculiar way to obtain zero
modes of the gravitationalction This is due to the nonposi-
1 -1 -1 -1 tivity of this action.
-1 1 -1 -1 Let us consider a solutiog,,, of Eq. (4.1) with a (cova-
m= ) (3.9 riantly conserveglsourceT ,, obeying the additional integral
-1 -1 1 -1 condition

-1 -1 -1 1

~ d*x\/g(x) TrT(x)=0. 4.3
One easily checks than?=4x 1, thus the propagator df; f o) ) 43

s given by Taking into account Eq(4.2) we see that the actiofB8.1)
1 computed for this solution is zero. Conditiqd.3) can be
- -m O satisfied by energy-momentum tensors that are not identi-
Gp(p)~—p M7 t=—p7? 4 (3.9  cally zero, provided they have a balance of negative and
0 1 positive signs, such that their total integral is zero. Of course,

they do not represent any acceptable physical source, but the
As anticipated in Sec. Il, we see here that the correlatioorresponding solutions of E@4.1) exist nonetheless, and
function of hyy, like the other “diagonal” correlations, is are zero modes of the action.
negative. As an example of an unphysical source which satisfies Eq.
In order to check that the quadratic part of the gravita-(4.3) one can consider the static field produced by a “mass
tional action is not positive-definite, we can also rewritedipole.” Certainly negative masses do not exist in nature;
L@ (p) in matrix form as here we are interested just in the formal solution of @ql)
with a suitableT,,, because for this solution we have
L@ (p)~—pH2 T{h*(p)h(p)]—|Trh(p)|?}. Jd*x\/gR=0. Let us take the followind ,, of a static di-
(3.1 pole centered at the origim(,m’>0):

Denoting now byh,(p) (A=0,1,2,3) the eigenvalues of the Tu(X)=0,00,0lmf(x+a)—m'f(x—a)]. (4.9

symmetric matrix h,,,(p)], we have Heref(x) is a smooth test function centeredxat 0, rapidly

decreasing and normalized to 1, which represents the mass
L@(p)~—p? 2 [ha(p)[>~ 2 hx(mha(p)|, density. The range df sayrg, is such tha@>ry>rg.pu,
A A#B wherer ¢y IS the Schwartzschild radius corresponding to
(31D  the massn. The massn’ is in general different fronm and
chosen in such a way to compensate a possible small differ-

or ence, due to the/g factor, between the integrals
L@ (p)~—p?hi(p)maghs(p). (3.12
AETTTABTE |+:J d*x\g(x)f(x+a)
The eigenvalues ofn are found to be (2,2,2,—2). Thus
the quadratic form(3.12 has no definite sign. and
IV. THE “ZERO MODES” IN THE INTEGRAL OF R |—:f d“x@f(x—a). (4.5)

It is known that if the metric has a Lorentzian signature,
then Einstein equations in vacuum admit wavelike solutions. The procedure for the construction of the zero mode cor-
The Riemann tensoR), , propagates in these solutions, responding to the dipole is the following. One first considers
while the Ricci tensoR,, and the curvature scald are  Einstein equations with the sourcd.4). Then one solves
identically zero. them with a suitable method, for instance in the weak field
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approximation. Finally, knowingyg(x) one computes the positive density,h*(x)=mxh(x+a). In the region with
two integrals(4.5 and adjusts the parametsY in such a negative density the solution is~ (x)= —m’ kh(x— a/2).

way that mI*—m’17)=0. . . . g :
Let us implement this procedure to first order. Inside aThus in the region with positive density we have

single mass distributiomf(x), with radiusry such thatr 1 .
>rsenw the gravitational field satisfies a static equation VO(X)~ 1+ 5mx Trh(x+a) (4.7
whose linear approximation is of the form

Dh(x) = mrcf(x). 4.6 and in the region with negative density
1 ~
whereD is a linear partial differential operator and de- VO(X)~1— Em’KTrh(x—a). (4.8

notes, for brevity, 8G. Let us callh(x) the solution of Eq.
(4.6) with mk replaced by 1. The solution of the linearized The value of the action functional corresponding to this
Einstein equations with the sourt&4) is, in the region with  linearized “virtual dipole” metric is

1
- ;J d*x\g(x)R(x)= —f d*x\/g(x) TrT(x)

=—f d*xVg(x)[mf(x+a)—m’'f(x—a)]

=—fd4x

1 "
=—J d4x[mf(x+a)—m’f(x—a)]+—EKJ d*x[m? Trh(x+a)f(x+a)

1 A 1 -
1+ EmK Trh(x+a) mf(x+a)—|1— Em’KTrh(x—a)

m’f(x—a)}

+m’2Trh(x—a)f(x—a)]. (4.9

Being f normalized, the first integral of Eq4.9) gives integral with real time and with the oscillating factor
—T(m—m"), whereT is the temporal integration range. We exp(S/%) the nonpositivity of the action has no importance.

then have But also in that case the zero modes described above can be
present.
1 The only mechanism able to suppress these modes ap-
4 — ’ 2 12
- ;j d"™xVg()R(x)=—=T(m—m’)— 5 «T(m"+m"%) pears to be the presence of an effective volume term with

A <O (see Sec. Y

><J d3x Trh(x) f(x). (4.10
V. HOW FLAT SPACE EMERGES FROM THE QUANTUM

The integral on the right-hand sidBHS) is a number of the REGGE LATTICE
order of 1 and will be denoted by. The condition for a zero It can be helpful to recall briefly here the main features of
mode now reads the quantum Regge calculus technique by Hamber and Wil-

liams [2]. In this approach the Euclidean 4D spacetime is
4.19) approximated by a simplicial manifold and the curvature, all
' concentrated at the “hinges,” is proportional to the defect
angle which one finds when a hinge is flattened out. The
and it is satisfied, up to terms of ordef, for m'=m(1 system is numerically simulated, with the edge lengths as
+ mkm). fundamental variables. At the beginning one puts into the
There is no obstacle, in the functional integral, to the for-action, as “bare” parameterg, (inverse of the Newton con-
mation of a zero mode like this. It can “pop up” at any point stan} anda (coefficient of theR? term). Then one looks in
in spacetime, or more likely it can be induced by an externathe phase diagram of the theory for a second-order transition
localized source, even if weak. The spatial size of the modgoint.
can be in principle arbitrarily large. It turns out that the phase diagram is divided in two re-
These modes can develop both in Lorentzian and in Eugions: a “smooth” phase, with average curvature small and
clidean metric. Sometimes it is argued that in the functionahegative, and fractal dimension close to 4; and a “rough”

1
(m—m’)+ Enx(m2+ m'2)=0
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phase, singular, collapsed, with average curvature large and Furthermore, this same mechanism will suppress in an
positive and small fractal dimension. It is clear that the signeven stronger way the zero modes described in Sec. 1V, since
of the curvature plays a crucial role in the stability of the these modes cause no variation of the integrd® dfut only
system. The two phases are separated by a transition lindecrease the volume.
Approaching this line from the smooth phase, the average The continuum theory is recovered from the lattice only at
curvature(R) tends to zero. In this way, flat space is ob-the transition line, wheré. =0. This refers, however, to an
tained in a dynamical way from the smooth phase, withoutaverage computed over all space. More generallyscales
any need of introducing into the theory a flat background bywith the volumev of the averaged region, according to a
hand. From here, perturbation theory can somehow start. power law of the form{A|G~ (v~ ).

A few data can help to complete the picture. The lattice
sites are 1& 16X 16X 16=65 536, with 1 572 864 simplices. VI. IS AdS SPACE A STABLE MINIMUM
The edge lengths are updated by a straightforward Monte OF THE CONTINUUM ACTION?
Carlo algorithm. Eventually an ensemble of configurations is
generated, distributed according to the Euclidean action. The As we have seen in the previous section, the discretized
topology is fixed as a four-torus with periodic boundary con-Euclidean action appears to be stabilized by a negative cos-
ditions. A stable, well behaved ground state is foundKor Mmological term. This acts as a volume term and opposes the
<k,~0.060. The system resides in the smooth phase, witgurvature fluctuations, which tend to diminish the volume of
fractal dimension four. Six values df have been investi- the lattice.
gated: 0.00, 0.01, 0.02, 0.03, 0.04, 0.05. Is the geometrical argument offered independent of the

The static potential is attractive and can be fitted by}, =~ Regge lattice regularization? This question suggests a check
with a small Yukawa factor exp{mL). The mass extracted In the continuum. If Eq(5.3) really has a stable minimum,
this way is consistent with the exponentia| decay of the Cor.then that minimum must be a solution of the Euclidean Ein-
relations of the scalar curvature. The effective Newton constein equations with a negative cosmological constant. Such
stant can be extimated t6~0.14, in lattice units. More & solution is known; this is Euclidean anti—de Sitt&dS)

exactly, at the beginning one puts=1 in the action. Then Space. N o
one finds for the average edge length Therefore, we can do a stability analysis: is AdS space a

stable minimum of the action, with only positive modes in
lo=\(1%)=2.36, e, [,=236"Y4 (51 the weak-field expansion in this background? Or is it only a
saddlepoint, like flat space?
The critical value of the bare coupling is A stability analysis in AdS space is more intricate than in
, 12 flat space. We must expand the metric with respect to the
kc~0.060, i.e., ke 0.060: (52 appropriate background, namely

and the producB k. is independent dfy and finite, as hoped. _ ~Ad +h 1
The precision of these data is expected to improve consider- 9un(X) g“VS(X) wlX) €.
ably in the next months, thanks to the new dedicated SUpeWheregfLﬂS(x) is the solution of the vacuum Euclidean Ein-

coerL;ter AENIE,ﬁ\'S[l_l]. d th ical simulati stein equations with a negative cosmological term and thus
s far as stability is concerned, the numerical simulation epresents a space with constant negative curvature. The

show as mentioned that in the smooth phase the syste - -
o 0th p SYSRm of the metrlcg,’j‘js(x) depends on the coordinates cho-
evolves toward a stable minimum position w{tR)<O0. It is sen

not hard to understand mtwﬂvely, from.the geometrical point We can formally expand the action as
of view, why the system is stable in this phase.
The effective action is

Setf= j d*xg(x)

with A~(R). Let us assume that the system is in a configu-The first derivative vanishes gf*® and to check the stabil-
ration with R(x)=const=A. Now suppose that somewhere ity we must study the sign of the quadratic forki

a positive fluctuation oR appears. Being proportional to = (82S/59?)[g”%S]. Remembering that the first variation of
exp(—Ssy), the probability of this new configuration is seem- S gives the Einstein equations, we obtain

ingly larger, if we take into account only the second term of

the action. The first term, howevéthe effective cosmologi- gy oS (RW— EgWR—AgW)

cal term) can be written asAV), whereV is the total vol- 09.p 2 g:gAdS(X)'

ume of the system. This volume is maximum when the mani- (6.3

fold is flat and all hinges are completely extended. As soon

as a curvature fluctuation appears at some point the totdlthe functional derivative of the first two terms corresponds,
volume decreases, and sinkéds negative, this tends to sup- up to a gauge fixing, to the usual quadratic form of pure
press the fluctuation. The converse happens, of course, in tlggavity, while the derivative of the cosmological term gives
collapsed phase, where>0. — AghdSre(x)ghdSrA(x) [12,13.

5S 1 6°S
So]=Sg"]+ 5 [9"xh+ 5 — 1" xh*+ .

A R 59
(6.2

87G 8nG| (5.3
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The second variation d at the extremum must take into therefore enhanced. This continuum result is in bold contrast

account the dependence dfon x: with our intuition of the behavior of the lattice. The contrast
1 could be possibly explained as follows.
2o = | 44y [FATS oy aBuv (i) It turns out from the numerical simulations that after
S Zf d™xvg S(X)h“ﬁ(x)u CO.4(X). the simplicial lattice has reached its ground state and has

(6.9 stabilized, the average lengdthof the links(the “bones” of

the triangulatioh keeps constant and fluctuations are small.

, Since the IAdSrSpaf]:CIe IS hqmogeneousland we are most s pehavior could be due in part to tRé term or to the
interested in localized fluctuations, we could restrict our aty,q; ;mes in phase space, rather than to the Ein&dgrm; it

tention to functions,,,(x) having support in a small region ggnais anyway, that an effective suppression of the confor-
around the origin. In suitable coordinates we will have oI modes has occurred

Ad AdS Ay — i ; :
QWS(X)”QWS(O)—@W but the gauge fixing term consti-  (jj) |f the lengths of the lattice links are approximately
tutes a serious problem, because it must be consistent wikhnstant, then any increase of the curvature implies an in-

the symmetries of the background and with the fact that th@rease of defect angles and thus a diminution of the total
fluctuations are localize(compare also Ref14], for the de  yglume, as argued in the previous section.

Sitter case and related horizon and infrared probjems This is easily visualized in two dimensions. Let us con-
pears to be very hard. polygon as its basigbut here we are only interested in the

Another possible check concerns the conformal mode. Ijde surface of the pyramid—the 2D volum&uppose to
this case, a weak field expansion is not necessary. For angep constant the edges of the pyramid—the links. When the

conformal transformation of the metric of the form height of the pyramid goes to zero, the side surface is maxi-
p A2 mum and the defect angl® associated with the curvature, is
9pr = Gps(X) = D5(X)G.0(X) 6.5 zero. (The defect angle is that obtained by “opening” the

pyramid, as if it were made of papgf he sharper the pyra-
mid, the largerR~ 6 and the smaller the side surface. The
R(X)—R'(X)=Q 2(X)R(x)—6Q " 3(x)3°Q(x) (6.6) variation of the side surface is of the order A&fS~

the curvature scalar transforms as

H 2
ano_l the action with cosmological term transforms (a2 ('?rfelzn?lljo.analogue iV~ — (A siné)l“, while the contri-
omit thex dependence bution of the curvature to the Einstein action is of the order
1 of A(A&)IS. Since in lattice units we havieompare Eq.
$-S'=-g—= d*x\g(Q%R+63,00,0g""— AQ*). (5.1)] lo=+(1?)>1 and|A|>1, the lattice prefers to keep
6.7) the §’s close to zero.
Note thatg,,(x) does not need to be constant, and in our ACKNOWLEDGMENTS

case coincides with the AdS metric.

We see from Eq(6.7) that for A <O the conformal mode This work has been partially supported by the A.S.P., As-
is not stabilized. On the contrary, it seems that conformalsociazione per lo Sviluppo Scientifico e Tecnologico del Pi-
fluctuations can increase the total volume of space and ammonte, Turin, Italy.
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