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Massless and massive scalar fields and massless spinor fields are considered at arbitrary temperatures in four
dimensional ultrastatic curved spacetime. Scalar models under consideration can be either conformal or non-
conformal and include self-interaction. The one-loop nonlocal effective action at finite temperature and free
energy for these quantum fields are found up to the second order in background field strengths using the
covariant perturbation theory. The resulting expressions are free of infrared divergences. Spectral representa-
tions for nonlocal terms of high temperature expansions are obtdi86856-282(198)00524-4
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[. INTRODUCTION [15]. Such a summation can only be performed in a given
order in background field strengths.

Finite temperature field theory has been developed in a Thermodynamics of an ensemble of quantum fields in
series of seminal papefd&—3]. Nowadays it is an actively equilibrium in static curved spacetimes is well defined, and
growing branch of theoretical physig4]. Thermodynamical most properties of the system can be derived from its free
properties of thermal quantum fields in the presence of backenergy[19—21]. In this paper we consider ensembles of sca-
ground fields are very important for a large number of appli-lar and spinor fields in the presence of external ultrastatic
cations in high energy physics, astrophysics, and cosmologyravitational field. The scalar models may have an arbitrary
However most of these studies are devoted to the situatiomteraction potential and an arbitrary coupling to gravity. We
when background fields are constahbmogeneoys[5,6].  employ the method of covariant perturbation theory to find
This particular form of the effective action, the effective po- the finite temperature effective action and the corresponding
tential [7,8], when large background fields are taken intofree energy of these quantum fields on highly inhomoge-
account nonperturbatively, is useful for study of phase tranyqqus gravitational backgrounds. An example of the situa-

sitions in the early Universe or quark-gluon plasma. For gj,n \when finite temperature effects on curved background

long time, the opposite situation, when background fields arg o j,n4rtant, and, thus, nonlocal effective action is needed,
small but rapidly fluctuating, lacked investigation even inis the Hawking radiation by black holég2,23

Zero temperature field theory. Tradlylonal tOOITQ’ of quantum The paper is organized as follows. In the next section we
field theory, like the short proper time Schwinger-DeWitt : . .
describe how to obtain nonlocal free energy at finite tem-

expansion[9-11], are intrinsically local; hence, they miss . . .
nonlocal contributions. As a consequence of this deficienC)ger"’m“Ire with the help of the covariant perturbation theory. In
ec. lll we derive the free energy of interacting massless

artificial infrared divergences appear in the perturbative ef: i o )

fective action for massless fields, and perturbation theorgc@lar fields and study its high temperature behavior. Mas-

breaks down. Finite temperature effects also contribute t§'V€ Scalar fields at high temperatures are treated in Sec. IV.

infrared divergence§4], and methods of diagram summa- InN Sec. V we derive free energy for massless spinor fields at

tions have been developed to improve the perturbation serid§lite and high temperatures. The conclusion and a discus-

[12,13. sion of possible appllcatlons and extensions of obtained re-
To deal with massless field theories properly, such a$ults can be found in Sec. VI. We place the necessary com-

gauge field theories or quantum gravity, Vilkovisky sug- Plicated computations into Appendixes A and B.

gested a new powerful methdd4] which is known as the

covariant perturbation theofft5—18. In these papers it was

shown that infrared divergences are artificial and brought [l. ONE-LOOP EFFECTIVE ACTION
into existence by a mode of calculation rather than by a field AND FREE ENERGY OF QUANTUM FIELDS
theory. They disappear after summation of terms with infi- IN ULTRASTATIC SPACETIMES

nite number of derivatives acting on background fields, Let us consider fieldg described by the classical action
which results in nonlocal terms entering the effective actionS(¢) and the corresponding canonical Hamiltonian in a ge-
neric curved static spacetime. Statistical free endfgyof
the ensemble is defined as the trace of logarithm of eigen-
*Email address: ygusev@phys.ualberta.ca values of the normal-ordered Hamiltonian. In canonical
"Email address: zelnikov@phys.ualberta.ca quantization scheme, ultraviolet divergencies are tradition-
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ally subtracted frontg by the normal ordering prescription free energies in two conformally related spaces does not de-
[21,24). On the other hand, in the imaginary time formalism pend on temperature. Then, all temperature dependent terms
of Matsubarg 1] the problem of finding free energy of the can be found from the free energy in an ultrastatic space,
system in equilibrium reduces to the computation of the pattwhere solution of the problem simplifies significantly. This
integral of the Euclidean quantum field theory and the cordifference can be found by integrating the conformal

responding effective actiow?[g]: anomaly, but the method of RéR8] works for generic non-
conformal operators as well.
efwﬁ[g]:j D[] e Sel, (1) The brief outline of our research program is to calculate
free energy in an ultrastatic space, and then using a relation

) i between free energies in static and ultrastatic spaces to ex-
The temperaturd =1/(kgB) enters the calculation via the press the final result in terms of quantities defined in a physi-

condition of (antjperiodicity in the Euclidean timer im- 5| (statig spacetime. In this paper we implement the first
posed on quantum fields wittFermi bose statistics and most complicated step of obtainikg® and F# on the
ultrastatic metrig5).
==+ + : i
e(X.7) e(X.7+p) @ Let us consider guantunm-component scalar fieldp

(the Boltzmann'’s constark;=1 everywherg =opp, A=1,... n, which satisfies the equation

The canonical free enerdyg and the thermal renormal-
ized Euclidean effective actioV® are closely related to
each other and diffef19,24) only by termsF that are inde-
pendent of temperature

¢=0. (6)

(D—%R)LL P(o)

Our notations correspond to those of Réf),16: the La-

1 _ placianC]=g*"V ,V, is constructed of covariant derivatives
EWB[QS]: F§[¢]+ F[ o], 3 which are characterized by the commutator curvature
where ¢=(¢) are mean fields. The effective action is usu- (V.Vo= ViV e=Ru,e. @)

ally regularized using covariant methods, e.g., zeta functior:l_ . Lo , .

. . . ' ; his quantity is, of course, zero for scalar fields, but we will
[25’26' dlmens!ona[l_o], etc., while thg canonical free en- needqit in Syec IV where spinor fields are considered. The
ergy is regularized via normal ordering of operators. The ’ '

differenceF[ ¢] is related to different ways of taking into \?V?]tiiﬂt'iaslg n;?o?ecrl)sggcgln btgskn;gggcd a?gur;ea?sﬂc??ss of
account vacuum energy contributions in covariant and ca- P 9 i '

nonical regularization schemes. The covariant approach irs_nOdAeIS includes self-interacting fields. The vanishing poten-
more appropriate to our problems since it is consistent wittial P=0 cgrre§ponds to the case of free conformal scalar
calculations of the stress tensor and vacuum polarization efields, andP=1R/6 to the minimally coupled free scalar
fects in external fields. In any case, it is easy to computdields. The overhat symbol indicates the matrix structures,
F(¢) which is temperature independent and lo§a4]. P=P"g, and termR/6 in Eq.(6) is explicitly singled out for
Henceforth, we restrict our consideration to calculation ofconvenience. The three field strengRs, , 7‘3W, P will

the one-loop Euclidean effective actiah” and the corre- be also referred to as curvatures. This massless field theory

sponding covariant Euclidean free energy will be generalized to the case of massive fields in Sec. IV.
The one-loop Euclidean effective activi® is defined in
FB= EW,B_ (4) terms of the functional trace of the heat kernel,
8 1 (=ds 8
We calculate the free energy of quantum fields on static Wi=-3 . 5 TTK5(s), (8)

background fields which include mean fieltl and static

gravitational field. The Tolman temperature of such a field

", B . . . . . .
system in equilibrium is not constant throughout the staticWhere the heat kern&®(s) is the periodic in Euclidean time

space. It is more convenient to perform calculations of tem_solutlon of the problem
perature effects in the Euclidean ultrastaiptica) space- [ d

times, - X X'
dS 1 )

i(m— %R(x)) +P(x)

]RB(S

2__ Ly V — (-2 iy
ds®=g,,dx*dx"=dr"+g;;dx'dx’, (5) 15(5)8(x.x), ©
where local temperature is constant throughout the space.

Ultrastatic and static spacetimes are related to each other by KA(s|7,x; 7 X' )=KA(s| 7+ B,x; 7' ,X"). (10)
a conformal transformation of the metric. Conformal proper-

ties of the effective action have been studied in dg@il,  The functional trace is understood as

and applied to free energy calculations by Dowker and
Schofield[28,29. Using scaling properties of the finite tem- -

perature zeta functions it was shown that the difference of TrK(S):J dxtrK(s), 1D
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with the tr standing for the matrix trace, e.g.,AtrBAA, p . 1 (~ds .
trﬁ’:PAA. Fren— Fren=— EJ'O ?(GS(an A )—1)
The thermal(periodic in the Euclidean timeheat kernel

(4ms)?

K# can be expressed as an infinite sum of zero temperature 30 (3) o

(vacuun) heat kernel$5,30] X | dxtrK®(s|x;x). (18)
) c The heat kerneK®)(s) is defined as a solution of Eq9)
KA(s] T,X;T',X')Inz K(s|7,x;7"+Bn,x"). (12)  with the three dimensional operator,

- . . . A 1 R ~ 3

This image sum is equivalent to summation over Matsubara & 1| A- ER(X) +P(x) | K®(s|x;x)

frequencies in a momentum space representation in thermal

field theory. The image sum in the context of Casimir energy =168(s)8(x,x"). (19)

calculations was introduced in R¢B1].

Temperature effects are inherently connected to then this case the three dimensional Laplacianand potential

imaginary time. It is convenient to factorize the heat kernells(x) and the curvatur®; (x) are defined on a three dimen-
ij

into temporal and spatla{(3) parts, sional hypersurface= const of the ultrastatic spacetime.
- Many methods have been developed for calculation of the
R(S|TX' o X)= ex;{ B (r—1") )R<3)(S|X'x’) trace of the heat kerr_leEB,34]. Most of_them(s_ee reviews
AR (47s) Y2 4s S [11,1_(]) reduce to various representations of its snsadix-
(13  Ppansion,

which is possible to do in ultrastatic spacetimes. Then, the

1 - .
— D1/2, n N
trace of the heat kernel takes a foff], Trk(s)= (4W3)D/2j dx“g (X)zo s'tran(x,x),  s—0.

(20)
TrkA(s)= 6P3(0,e‘(ﬁz"‘s))ill2 B tr K@ (s]x,x), However, as soon as the inverse temperagiis finite, the
(4 behavior of the heat kernel at large values of proper tame

(14 becomes very importantl9]. Therefore, expansiof20) is
not suitable for our task of finding the free energy at finite
temperature. Besides, Schwinger-DeWitt coefficiemtsare
local functions of background fields, henceforth, nonlocal
oo free energy cannot be derived using E20). To solve the
_ haij.n2 problem of obtaining nonlocal free energy at finite tempera-
03(a,b)=n§_x eI (15 ture we have to resort to the covariant perturbation theory
[15-18. There is no need to repeat derivations of the cova-

The free energy of quantum fields in static spacetfife riant perturbation theory here because an expression for

is defined via the finite temperature Euclidean effective acTtK(s) is already known in arbitrar{p) dimensiong16,18§.
tion WA and can be written in the form, In this paper we will take it up to terms quadratic in curva-

tures,

when expressed in terms of the Jacobi theta funci&gi,
which is defined in a usual way,

FA ! f mdST KA(s) (16) 1
=—=| —<TrK"”(s).
2BJo s TrK(s)=—j d°x g*?
(4ms)P"

The vacuum modea=0 in the infinite sum(14),(15) cor- A . o
mi4).(19 xtr{l+sP+s R, fi(—sO)R*1

responds to the zero temperature effective action which suf-
fers ultraviolet divergencid®,10,2§. Fortunately, this is the

only divergent term of the surfil9], so it is convenient to TR (—SL)RI+Pi5(—sL)R

treat it separatelz. We sﬂubtract the zero _temperatl,ﬁ‘e ( +I5f4(—sD)I5+7AZWf5(—sD)fQ‘“’]}
=) free energy=~ from F* and renormalize it with the use
of the zeta function regularizatidr25,26,33, +O[R3]. (21
1 gl w2 = d Analytic functionsf; (form factorg have the dimensionless
o S .
=== — J . TrK(s) , (17 arguments]. (The appearance of nonlocal form factors in
2 e[ I'(€) Jo st < =0 the momentum space representation of the effective action

originates in the classical paper of Schwind8b].) The
whereu is a masslike regularization parameter dhis the ~ form factors act on tensor invariants constructed of the set of

gamma functionF,,, will be combined withn#0 terms at field strengthsR*#, P, sz characterizing background.
the end of our derivations. Therefore, we compute The collective notatio® will be used for these curvatures.
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The first two terms of the suni21l) are purely local and have a compact support on a manifold, thus, providing an
coincide with the first two coefficients of the short proper effective volume cutoff. In regard to gravitational field this
time expansion20). Formally, the expansio2l) is valid  property is due to the presence of the Ricci tensor rather than
only in an asymptotically flat Euclidean spacetime with thethe Riemann tensdt6].

topology RP. All background curvature$t are supposed to

vanish at spacetime infinifyi6]. Since we use a perturbation IIl. FREE ENERGY OF MASSLESS SCALAR FIELDS
theory, all calculations are carried out with accuradyid|,
i.e., up to terms ofth and higher power in the curvatur#s Let us now compute free enerd¥8) of massless scalar
The very structure of this curvature expansion restricts itdi€lds at finite temperature. This case was briefly rezported in
validity to background fields satisfying the relation, our paper{36]. After introducing a new variablg=3/4s,

first two terms of the trace of the heat kerrigll) take the

VVRs>R2. (22)  form of the integral,

Physically it means that gravitational fields are small in mag- J:dy[ 05(0,e Y)—1]y® 1=2¢(2a)I'(a), (29

nitude but quickly oscillate.
All form factors in Eq.(21) can be expressed in terms of

one basic form factor where( is the Riemann zeta functioh, is the gamma func-
1 tion. Whena is taking values 2 and 1, expressi#9) gives
f(_SD):f da ex(1—®s0 (23)  for the zeroth and first curvature orders coefficienty45
0 and 72/3 correspondingly. These local contributions to the

free energy are well knownl9,37 and coincide with the
first two terms of high temperature expansion. Since all in-
formation about temperature is separated from tensor invari-

Their explicit form read$16]

1
f(—-sO)—1—=sO

6 ants, we can write down an anticipated form of free energy
fi(=sb)= (s0)? : (24)  up to second order in the field strengths,
m 1 .
Flon Fren= —f d3x gl’ztr[ 1+—P
90B* 2482
1 1f(—sO)—1
fo(=st)=g 36f( s —3—
. 3 [R”yl( A)RI+Ry5(—A)R
f(—sd)—1- =sd
- ° 25)
(02 : ( +PyE(— AR+ PyE(— A)P1+O[R |
fa(—sO) =5 f(=s0)—5—=5— (26)
1 Then, the problem with the second curvature order is re-
fo(—s0)==f(—s0) (27)  duced now to calculation of the thermal form factors,
2 1
fes)-1 YW(=2)=n(BV-2)
s
fs(—sO)=5—=— (28) =d's
st = f —[03<o e (F9) —1]f,(~sA), (3D)

Even though, in the following consideration general covari-
ance is broken because of the presence of temperature, wéheref; are given by Eqs(24)—(27). We show how to com-
will refer to this curvature expansion as to the covariant perpute Eq.(31) whenf;(—sA) is the basic form factof23).
turbation theory. In spatial dimensions the covariance reAfter substituting Eq.(23) into Eq. (31) and writing down
mains explicit. the theta functior(15) explicitly we get
A few words about validity of this approximation are in 1 =dy

order. Since we consider quantum fields at some fixed temy(g\—A)= 22 f d af -
perature, one can say that the field system in question repre- 0 oYy
sents a canonical ensemble. To define a canonical ensemble 1
rigorously we have to assume that the fields are in some xex;{ —yn’— —a(l—a)BA(—A)|. (32
cavity of a finite volume, as it is usually assumed in the

resen f lack holg1]. Thi mption shoul . - .
Pesiﬁcitlzeed? hgvyesgr, V\?itEhQ gur msetﬁgzuofpégm;utg:gn IOOelze_lntegr(:ltlon overy produces the modified Bessel function of
scribed above, which in the present form works only forthe second kind
asymptotically flat spacetimes and requires vanishing back-

ground fields at spacetime infinity. It is important to note that w2)=4> fldaKO(nZM), (33)
background field strengths, sources of vacuum polarization, n=1Jo
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wherez= 8y —A. Change of variablex=2«(1— «), al-

PHYSICAL REVIEW [39 024002

The final result for renormalized free energy at finite tem-

lows us to express E33) in terms of the exponential inte- peratureFZ, is presented by a sum of Eq®0), (38)—(42)

grals:

fld X K (nzx
X— —_—
0 1-—x2 %\ 2

1

nz

2

Now we can use for the right hand side of Eg4) its stan-
dard form in terms of elementary functiof®2] and obtain

sin(t)

2+ n?Za

7(2)=4f dti

The sum oven can be evaluatef2],

i 1

= t2+n222/4 2

2 1
zt th(2#t/z)

and the resulting expression reads

1

v(2)= 2f atsin)| 27 2t th(Zwt/z)

As can be seen from Eq&4)—(27), there are two other
types of basic thermal form factofwith one and with two
subtractions Their derivations can be found in Appendix A.
Applying results(37), (A8), and (A17) to the table of form
factors we obtain for all thermal form factors the following

expression:

Yi(BV—A)

1

Ei(n—z) g ndz_ Ei( - n?z> enz2 |,

1
t_2 .

(34)

(39

1]
-5 (36
t

37

1

o 2
:fo dtg‘(t)[ﬂ\/—m th@at/(B—0)) 2]

andg; (i=1,...,4) aresimple combinations of elementary
functions
sm(t) Cof{t) Sin(t)
glm———( S+ - ) .
gz(t)=4i(£sm(t)+2cos(t) S'?gt)
cogt) sin(t)
T TD (40)
gs(t)=3<—sm(t) Coit)_w), "
ga(t)=sin(t). w2

(39)

and renormalized free energy at zero temperdafite After
the zeta regularizatiofil7), the latter one takes the form

X gYAr{Ryj y1(— A)R!

ren

+Ry,(— A)R+Pys(— AR+ Py (— AP

+O[R%]}, (43)
where zero temperature form factoyg —A), i=1,...,4,
are

A 1 | A 46
v(=L)=gg ~In —; + 5] (44)
A 1 | A 97 4
vo(=A)= 154N 2 30" (45
Ya(—L)=— 15 (46)
1
74(—A)=§ —In - +2]. (47)

This expression differs from the one obtained using dimen-
sional regularization only by unessential additive constants
[16].

Formulas(30), (38)—(47), we have obtained, are valid at
arbitrary finite temperature. Now we would like to study
asymptotic behavior of the free energy in high temperature
regime, the most interesting and the best studied limit. In the
framework of perturbation theory, the problem boils down to
finding B—0 asymptotic of thermal form factor88). We
have to be careful while dealing with mutually compensating
singularities. After relatively straightforward calculations the
outcome for EQq(37) is

2
+2
B-4

24772ﬁ (Z8)

Y(BV—A)=

{(5)

saom” L)

+0[B°], (48)

B—0,
where C is Euler’s constant arfdis the Riemann zeta func-
tion.

Now, expressions for the vacuum free enef4® and the
high temperature expansion of EQ®0) match, and can be
combined into a single formula. The resultifig-< expan-
sion of the renormalized one loop free energy takes a form,
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FE = fd3 12y 7T21+16 1[ 25R1R 1ﬁ>1R+ﬁ>16
ren™ X9 905 " 227 {16 ! \/ S 11527 A 12 oA J-A
Bu . 1. . g( ) 1 1 1.
- | [— _ 2 [/ [— N —_
To72 In(4 +C R R 180RR 2PP +,8 840 RijAR 3780RAR+ 180PAR+ PAP
4 3L6) R AR+ AR+ —PAZ +O[R3]+0O[ 8] B—0 (49)
1024,76 15120 Ri 1260P 120 ' '
|
All local terms of this result perfectly reproduce those of [Ams| &
Refs.[19,28. The combination of quadratic in curvatures 05(0,e ~(BH4sIn*) 1 — ( S g nsIptke
terms at the logarithm is just the trace of the second =

Schwinger-DeWitt coefficient,, taken with the Riemann "
curvature expressed via the Ricci di9e10,16. Higher pow- _J die e<4wzslﬁz>:<2)_ (52)
ers of B8 in Eg. (49 are also quadratic in curvatures parts of —o
az anda, Schwinger-DeWitt coefficientg34,38|.

We obtained the explicit form of all nonlocal terms of the
second order in curvatures. They are proportional & ahd
were known to exisf28]. The general structure of nonlocal

We compute now the basic thermal form factor, E81)
with Eq. (23), using this identity and separating the=0
term out of the sum,

terms isR(1/y— A)R, and, therefore, techniques based on JA
: 7 [ < BA
local (smalls) expansions could not generate them. Terms of (g8 —A)= 2 arcta
higher orders in curvaturdd 8,38 will also give nonlocal BN— A B-B\E amk
contribution linear in temperature.
The meaning of nonlocal structures can be understood _JWdK arctar('g\/z> (53)
from spectral representations in terms of massive Green 4 '

functions[39,17,18. For this particular form we have the
following spectral formula: The k=0 mode of the sum gives precisely the leading infi-

nite temperature contribution, while the rest can be calcu-
lated by employing the following sum:

b
arcta

Adding up the regularized zero temperature form factor,

1 2 (= 1

\/——_AZE odmmZ—A' 0 Z

—bC. (59

b)_i (I‘(1+ib)
k)72 T (E=ip)

A remarkable property of the expressi#9) is that it con-

tains the only kind of nonlocality, Eq50). All logarithmic -A

nonlocalities InE A), that are present iR, andF%,, have H=L)==In| —]+2, (59

mutually canceled, leaving logarithm temperature depen- w

dence in the form of Ingw), This local combination is well we obtain an expression which is valid at any temperature,

known in both flaf5,40] and curved 19] space thermal field

theory. The In¢-A) disappearance is still being analyzed in a BN—A

different physical language and in a different settidg. 2 A -
Of course, we are not completely satisfied with the inte- 9 ’3\/_ A)=

gral representation for the free energy at finite temperature BN—-A /g‘/ ( ,8~/—A

(i

(30). Although, it admits a closed form, we would prefer to

seeF”? expressed entirely in terms of analytical and special

functions. Indeed, it is possible to obtain such a form after Bu
applying the Poisson resummatifde], +21nl =21
47

v

(56)

@ 7 w Besides an obvious advantage of E86), namely, that it
> e*(,82/4s)n2:_7TS > o (477sIpPK?. (51  isthe formula in terms of usual elementary and special func-
n=—ow B k== tions, the leading infinite temperature contributions are
present here explicitly. Taking— and 8—0 limits, one
can readily find zero temperatu(85) and high temperature
Then, the following identity holds: (48) asymptotics of this basic thermal form factor. In fact,

024002-6



FINITE TEMPERATURE NONLOCAL EFFECTIVE ... PHYSICAL REVIEW [39 024002

one can see that the logarithm of the gamma functions’ ratio 2

in the main result56) is a sum of all positive powers ¢ in FB —Fo=— j d 3x gl’ztr[ —— 1+ ——(P-nm?l)
the high temperature limit48). Hence, it gives a partigin 908 243

the given curvature ordersummation formula for the

{8—>0 serieg19]. Eventually, one has to transform E&6) . i L[Rij,y[f(_A)Riji+R,y,g(_A)Ri
into a spectral form, the procedure we can complete again 3272

only at high temperatures, E¢G0). This is the reason why
we refrain from deriving the total free energy in this new

P~B(— PAB(— AVF 3
representation. +Py3(=A)R+Py (= A)P]+O[R]

IV. FREE ENERGY OF MASSIVE SCALAR FIELDS B—0. (60
The use of the curvature expansion is crucial for deriva- The computational procedure for second order terms is

tion of the massless field free energy, because it allows oneerformed after Poisson resummati¢bil). Applying Eq.

to avoid artificial infrared divergences. Two other advan-(52) to the basic form factor of nonlocal free energy for

tages of perturbation theory, namely, that free energy can b@assive fields,

found at arbitrary finite temperature and important nonlocal g

contributions can be obtained, work for a thermodynamic *as (g2 _

system of massive fields as well. Besides, this is the most Y= 0)= fo 5 [0 )~ 1]e T H(=sA),

studied field model, so let us investigate an ensemble of mul- (61)

ticomponent scalar massive fields satisfying equation

[vacuum contribution subtracted in E@1) is dealt with at

the end of the present sectiipand using the integral

1 . 4
O--R—m? 1+P(¢))}(p=0. (57)
{ ( 6 1 R i 2 N
j da(m?’—a(l—a)A) 2= arcta
0 J=A 2m
Because the mass term can be factorized out of the heat (62
kernel, one can still use massless heat ke(ad#l to derive
the free energy, we get
4 V—A 87
1 (=ds y(BV—A)= arctar{ +
P25 -STTE KA(s). (58) B4 2m | g=A
0
- V=A
x| >, arcta > ——
As usual, we subtraat=0 mode from the image sum, k=1 VAm?+ 16m°k%/ B
Eq. (14). Let us first treat local terms. The result in terms of . m
the modified Bessel functions reads _f dr arcta )
0 VAm? + 1672 k%1 B?

(63

o 1 3, 112 S 16m’
I:Fen_ Fren=— d°xg 2 tr Ko(mgn) . . . . . .
3272 n=1 B°n? This equation is valid at arbitrary finite temperature, there-

fore, free energy of massive fields is nonlocal at any tem-
perature. The first term of E¢63) came fromk=0 mode of
the sum, and it is nothing but the leading term of high tem-
perature expansiom3—0. The difference of two divergent
terms in the square brackets is finite, however, we are unable
. (59  to give the result in a closed form. Thus, we restrict consid-
eration to leading terms of high temperature expansion and
understand the basic thermal form factor as

1

16m
+ WKl(m,Bn)

8m A )
+ ﬁKl(mﬁn)PJr O[R7]

So far this expression is valid at any nonzero temperature.

However, we are able to proceed and obtain explicit formu- B(—A)= 4m arctar( A +0[B], B—0
las only in high temperature limit. Simple expansions of the BV—A 2m ' '
Bessel functions g8— 0 with the subsequemt-sum evalu- (64)

ation produces known local contributiof28,29. The total
result for free energy of massive fields at high temperaturdhe main nonlocality is contained in the leading te(®d).
looks like Subleading terms combined with vacuum contributions are
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not important at high temperatures. The full table of form 1 9] u? (=ds
factorsy;(q), i=1,...,4, interms ofg=m/{— A reads W= — 2 9| T(o) - e*S’“ZTrK(s) . (79
0s €
e=0
q 5 1
n(q)=—[— 1—2q—q3+(1+4q2)2arctar62—”, (65) .
pm a Then, we get the following result for zero temperature free

energy(the specific form of the effective action in R¢A2]

__mq |13 s (11 2 4 in four dimensions
72(Q)—24ﬁm{ﬂq—3q —| 3 T28a7+48q
1 1 m* m?| 3\.
Xarctan —| |, 66 © By ol _ B
’qu” (66) Frop 32772f dx g 2tr[ 5| In 7 2)1
__™ 2 1 2 ’ s i
7’3(Q)—23—m 2q+(1-4q°)arcta 2q/ (67) +m?( In M_ —1|P+[Rjjy(—A)RY
2 1 —_ B _ B _ B
74(q)=—Bﬂr-T?arcta’(E) (68) +R72( A)R—i_p’)/B( A)R+P7’4( A)F):l

+0O[R%]¢, (76)

For practical purposes of physical applications we need to
know spectral form representations for E¢65)—(68). A
spectral form for the basic form facté84) is obvious,

where form factorsy; are given in terms of dimensionless
87 [ _ 1 argumentg=m/+— A by the following expressions:
y’B(—A)=—f dm— . (69
BJm  4am?-A

o _ _ 1 m?\ 46 56 ) 4
Its massless limit immediately gives E&O). Spectral forms yl(q)=6— —In — | 1—5+ gq +32q
for form factors with subtractions are obtained similadge w©

Appendix B. Then, all form factors(65)—(68) admit the 1
form —2(1+49g®%arctany —| |, 7
s TE ~ o~ 1
Yi(=A)=—[ dmpi(m*)—o—-, (70)
IB m 4m-— A 1 m2 97
. o 72(q):1—84|n<—2 —%—17q2—12q4+2\/1+4q2
where mass spectral weights are given in the table, 2
~p 1 2m® m* X (1+8g2+ 6q4)arctan?< ;) (78)
p1(m ):Z 1_?4‘5’]— ) (77 Jitaq
~ 1(25 14m?> m? 1l 1 1
pa(M)=— = 9 3l (72) Ya() =5 —5—4q2+4q2\/1+4q7arctan ) |
79
~ 1 m? (79
pa(Mm)=—z+=7, (73
" (q) 1|(mz+1 V1+4q?arct r{ !
=—Zn| — - arctanh —|.
Y4 q 2 Mz q I—1+4q2

pa(M?)=4. (74) (80)

Now we need to complete our derivation with the regu-
larized free energy at zero temperati®. Nonlocal effec-  This effective action may look more similar to E¢.) if the
tive action for massive fields in an arbitrary spacetime di-inverse hyperbolic tangents in functions are expressed in
mension has been calculated first by AvramjidR]. His  terms of logarithms. We have to remark here that form factor
approach is a direct summation of derivatives in a massivey; is different from the others. Similarly to that of massless
field theory, but we can make use of the massless heat kernfélds it does not depend on the regularization parameter
(21) obtained with the covariant perturbation theory and arHowever, Eq.(79) is nonlocal in contrast to loca#6). Of
rive at the same result. We compute zeta function regularizedourse, in the zero mass limit Eq&6)—(80) turn to Egs.
effective action according to the equation (43)—(47).
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Finally, it should be noted that in order to use Efp) for  where#, is the Jacobi theta function. It is convenient to use
specific physical models, the convenient way to work withthe ¢ functions identity
form factors(77)—(80) is to treat them in a spectral form
representatiofid9]. Then, the following mass spectrum inte- 0,(0,6 %)= 05(0,e %)~ 05(0,e ?) (87)
gral is to be used:

4 1 ’( V=A
arctan

and express the heat kernel trace at finite temperé&B@jan
terms of the Jacobi functiong;. Thanks to this facf29,43
we do not have to repeat all calculations and can get the free

V=A Vam2— A Vam2— A energy of Dirac spinors at finite temperature using math-
ematical derivations of Sec. Ill. Spinor thermal form factors
Jx _ 1 1 Y(1/2) @re obtained then by a simple combination of scalar
=] dm — : (81)  form factorsy
m Vm2—m2 Am?— A

Yaa(BN=L)=—[2¥(2BV= L) =y (BV=A)]. @8

V. FREE ENERGY OF MASSLESS SPINOR FIELDS

In this section we consider the massless Dirac spifors To form the operator of Eq84) the potential term should

AP _
in a Euclidean ultrastatic spacetime at finite temperature. ThBE takenP=—1;R1. The commutator curvature is not zero

massless covariant Dirac equation is taken as when covariant derivatives act on spinors, but we need to
know only that tR,,, R*’=—§R,,.sR*"*Ftrl, where the
Y¢=0, (82 squared Riemann tensor must be expressed via Ricci tensor

and scalar curvature with help of the Gauss-Bonnet identity

where the standard notatidh=y*V , is used(see[21] for  144]. All other matrix structures are reduced t6 4r&. Tak-
general definitions The method of calculation of the effec- g into account these properties the free energy of massless

tiv_e actipn for spin-1/2_ fiel_ds\N(l,z), i_s similar to t_he one for _spinors read¢from now on we omit spinor indiceg,»)
spin-0 fields. The main difference is that fermions are anti-

periodic in the Euclidean time and, therefore, they satisfy Fffen_ Fren
boundary condition$2) with the minus sign. The local form

of the one-loop effective actiow,,,=—Tr In ¥ was stud- 3 12
ied first in Ref.[9]. It is defined in terms of the heat kernel = _j d>xg
(or zeta function of operator(82), however, following De-

Witt’s idea we consider the squared operafdt thus,

772 1 1

R
1808* 1448%> 872

X[R; ¥{(— 2RI+ Ry5(— A)R]+O[R?]

s s 1 (=ds s
W(1/2)=:3F(1/2)=§ o ETr Ki12(s), (83 89)
with the heat kerneK »(s) corresponding to the squared where the thermal spinor form factors
Dirac operator. It can be showf®] that the heat kernel  ——
(Green functioh of the operatorV? is equivalent to the n(BV=A4)
spinor heat kernel which is a solution of the equation, o 20 1 1
=] dt gt -,
d [ 1 5 s , fo ol ){Bx/—At sh2at/(BV-1)) t ]
£—1 D—ZR(X) Kz (s|x;x")=18(s) 8(x;x"). (90
(84)
with the trigonometric polynomials
One can represent the heat ker(@4) at finite tempera-
ture in a form of the image suf@3,29, 1/ coqt) Qsin(t) 3/ coqt) sin(t)
) R e R e e
Rfl,z)(sh,x;r’,x’):n; (—1)”R(1/2)(s|T,x;r’+ﬁn,x’) 91
(85) 1| sin(t) cogt) [cogt) sin(t)
_ 0 et B e B tA}'
[cf. Eg.(12)]. Because time dependence of the heat kernel in t

ultrastatic spacetimes factorizes out Et), the trace of the (92

heat kernel can be written in the form Note, that the only difference of E€Q0) from Eq.(38) is the
8 hyperbolic sinus instead of the hyperbolic tangent.
TrK(Bl,z)(s)z gz(ole*(,BZMS)) 1/2f Bx tr KEi’}z)(SIXx), '!'hls rfsult is tq be combined with the regularlz_ed contri-
(4s) bution F ., of the image sun{85). The zeta regularized ef-
(86) fective action(83) at zero temperature takes the form
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ficienta,, az, anda, after substituting the Riemann curva-

1 -
Fro=— —zf d®x gMAr{Ryj y1(— A)RY ture with the Ricci tensor and scalar curvat[@¢10,39. Ex-
87 pression(97) coincides with the massless limit of a similar
L Rvo(— AR+ O[R3 93 expression in Ref.29], which corrects apparent misprints in
72 ) Rl ©3 higher g-order terms of Ref(43].
where zero temperature spinor form factopg —A), i Massive spinor fields can be treated in a similar way. At
=1,2, are finite temperature the corresponding effective action is non-

local. We do not present the result here because of its com-

1 A 12 plexity. In the physically interesting limit of high tempera-
yi(—A)=~— 4_0{ In| — 2 5 (94) tures the effective action of Fermi fields becomes local and
K can be found in Ref29]. A small correction should be made
1 A 77 to the result 0f29] because the effective actions correspond-
yo(—A)= _Jm S — (95  ing to the first order operatoi¥(+m) and the squared one
12 w?) 30 differ by local termgsee Eq(4.2) of Ref.[45]].

The main result for the finite temperature free enefdy, is
the sum of Eqs(89) and (93). It is an essentially nonlocal VI. CONCLUSIONS
functional. On the other hand, it is well known that only
local terms survive in high temperature lint3]. To check
this property we consider the high temperature limit of our
result.

The calculation of8— 0 asymptotic of the thermal form
factors(90) are analogous to similar derivations in Sec. Ill. A
different hyperbolic function appearing in thermal form fac-
tors, namely, the hyperbolic sinus, results in the absence
linear in temperature nonlocal terms in high temperature ex
pansion, for example, the basic form factdg;(t)=
—2sint) in Eq. (90)] reads

Free energy of quantum fields in ultrastatioptical
spaces has been a subject of study in a large number of
paperd19,30,43,46,47 When effects of gravitational fields
are negligible, the metric under consideration is flat, and the
spacetime is automatically ultrastatic. But even this simple
case has not been studied sufficiently, as most works are

ncerned with finding the effective action either on constant
background fields ofand at very high temperaturet,5,40.
However, rapidly oscillating background fields generate non-
local terms in the effective action which contribute to
vacuum polarization effect22,14,48,4% Needless to say,

[— that an interesting and important high temperature limit of
Y(BN—A)=—2|C+In d A) - } 7§(32) B2 (— 1) the effective action is still only an asymptotic, and knowl-
™ 24m edge of the effective action behavior at arbitrary finite tem-
perature is necessary.
_ 346 B —A)2+0[B%], B—0. (96) We have obtained nonlocal structures of the one-loop Eu-
6407 clidean effective action and free energy for thermal fields in

» ) asymptotically flat ultrastatic curved spacetimes. For non-
Uniting the vacuum free enerd®3) and the high tempera- conformal massless scalar fields this expression has been
ture expansion of Eq@89) into one expression, we observe found at arbitrary finite temperatures. Explicit formulas for
that the logarithmic nonlocality also cancels in the sum. Thehe high temperature limit of this general expression have

resultingT = 1/8—c> expansion looks like been obtained. For massive scalar fields the free energy is
72 1 1 derived in the high temperature limit. With help of these
F8 —_ f d®x g2 T R+ results we calculated also the free energy of massless spinor
en 1808* 1448% 1672 fields.
The calculated one-loop Euclidean effective action is
i 2* +C) 1R iR--R”} known to be a generating functional of one-particle irreduc-
T 30 10 ible Green function§9,50|. Therefore, variations of the non-
local effective action over background fields generate the
, 7 4(3)] 1 1 i Green function$51] and the energy-momentum ten$ds],
128 4 | ﬁ)RAR_ @R”AR while variations of the free energy over thermodynamical
variables, such as temperature, provides one with thermody-
93 ¢(5)] 1 namical potentials, entropy, efd9,21.
4@—6[%RA2R We would like to emphasize again that the technique we
- ) .
adopted, namely, the nonlocal covariant perturbation theory
[16], is a limit opposite to the effective potential method
——RijAzR” +O[R3]+0O[%]}, B—O. [5,8] and the derivative expansioni$,47,53 suitable for
1080 constant or slowly changing background fields. Therefore, to

make comparisons one has to expand our nonlocal results in
(97 > .
powers of the derivatives and compare them with the corre-
Combinations of quadratic in curvatures terms in the squarsponding terms in the known derivative expansions ex-
brackets are the functional traces of Schwinger-DeWitt coefpanded, in turn, in powers of field strengths. Our results are
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in agreement with all known expansions of this kind. scribed in Sec. Ill. The heat kernel form factor with one
It is important to stress the value of the nonlocal effectivesubtraction generates a thermal form factor in the effective
action approach. As has been shown in Sec. lll the effectivaction by the following computational procedure:
action for massless fields is naturally infrared finite, which f
demonstrates that infrared infinities are absent both at zero — 2 (—=sA)— 1
and finite temperatures. As for the applications of the cova- m(BN = ):J _[03(0 e (P19 1] sA
riant perturbation theory to other models, one can refer to (A1)
Refs.[53,54, where spinor quantum electrodynamics in flat
spacetime and scalar electrodynamics with gravity in theJsing integral representation,
context of conformal anomaly have been studied.
We used in this paper the imaginary time formalism, f(—-sA)—1 (1 1 (- ap)ash
which means that the notion of the global periodic time is ~— gA fo dayay(1—ay) fo da, & ’
introduced. This greatly reduces the class of physical sys- (A2)
tems and spacetimes that can be considered. Alternatively,
there exists real time formalisf®5] which can give a cova- and taking the integral over proper time, we reduce it to the
riant form of the partition functiof56] and free energy. To form
work out nonlocal structures of the effective action using the

perturbation theory, which is applicable to nonequilibrium 1 1

systems and covariant from the outset, one should derive it 7]1(2):4f0 day al(l_al)fo day

from the scratch. It would be an extremely interesting project

to do. X Ko(nzvaai(1—ay)), (A3)

Obvious next step is to apply conformal transformation
technique[ 28,29 to the obtained results and find the nonlo- wherez= 8 — A is a new dimensionless variable. This is a
cal free energy on more general static gravitational backtable integral[32] with respect toa,:
grounds. This problem is facilitated by the fact that confor-
mal transformations of the nonlocal effective action are 1 1 2
studied in detail in Refd57]. In order to study particle cre- f dy y* Ko(by)=— pKib)+ =, (A4)
ation by external gravitational fields the third curvature order 0 b
is required 23,49. Our intention here was to develop a gen-
eral method for calculations of nonlocal free energy, which is/hich. after introducing a new variablg;=2ya(1-a)
the most transparent while working in the second order ".glves us
curvatures. Derivation of the next perturbative order, if

needed, will not pose serious technical problems. _ d nzy 9 1
. - - . 71(2) y 3|
Effects of space boundaries are also interesting and im- nz n<z
portant[19,46 and they deserve investigation, however, to (A5)
do so by means of curvature expansion a major revision of ' _ ' _
covariant perturbation theory is required. Applying the Bessel function relationship,

The results of this paper can be generalized to the very
important case of background gauge fields. This requires
more caution in dealing with temporal components of gauge
fields and leads to the appearance of other noncovariant
terms in the effective actiof58]. It is not surprising, since at to K; and using Eq(35) for the resulting integral, we get
finite temperatures Lorenz invariance is broken. But the gen-

d
Ki(y)=— @KO(Y);

eral structure of nonlocalities in the effective action is still sin(t) 1
the same. 771(2)—_42 J' dt (2 n222/4)? 2n222 . (A6)
ACKNOWLEDGMENTS After integration by parts, to reduce the power of the de-
. nominator,n, admits the form similar to Eq35),
We thank V. Frolov, D. Fursaev, and R. Kobes for fruitful

discussions. This work was partially supported by the Natu- " (= [sin(t) cogt) 1

ral Sciences and Engineering Research Council of Canada. 7,1(2):22 f dt — — .
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With use of Eq.(36) it gives the final answer,
APPENDIX A: MASSLESS FORM FACTORS

WITH SUBTRACTIONS foc sin(t) cogt)\[2 1 1
= | - -2
Complex form factors entering the trace of the heat kernel 7(2) t? t ztth(2mt/z) 2
(21) are to be treated similarly to the basic one, as is de- (A8)
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Let us treat now the form factor with two subtractions,
t2

7;2(2)=f dt(sm(t)+3 codt) sin(t)D

na(BN— A f—[es(Oe (B%149)) 1]

212

922

" 27 o« 1 . 1 .
3222 z3th(2mtiz) o4

1
f(=sA)—1—=sA

6 (A16)
> . (A9)
(sh)
And the final result reads,
In the representation,
1 B 1fwdt sin(t) i3 coqt) sin(t)
f(—sA)—l—gsA 1 1 72(2)= 2)o t2 3 t4
= J da ai(l— al)ZJ da, as
sSA 0 0
o 11 (AL7)
1 f tho—t/ 2|
Xf da3 eal(l—al)azag,SA, (AlO) zt th(27Tt/Z) t
0
it can be integrated first over the proper time. Integration APPENDIX B: MASSIVE FORM FACTORS
over a4 is exactly Eq.(A4), and integral over, parameter WITH SUBTRACTIONS
is

During the computation of remaining two form factors,
with one subtraction

1 2
f dy y*Ka(by) =~ g Ka(b)+ . (A11)
2\ (= ds f(—sA)—1
o e e S S
Then, 7, looks in variablesy andz as (B ) B Jo g82 sA A=
(B1)
- nzy
=4
72(2) Z’ 1 f y ( ) and with two subtractions
+ t 1 8 ! (A12) 1
3n’z2 “n*z o7 (= ds f(=sA)=1-5sA
. nz(m—m=—f e ;
It is possible to reduce EqA12) to y and 7, types of B (sA)
integrals employing the relation,
B—0, (B2

2
Kz(V)ZyKl(y)JrKo(y), (A13)

we get rid of the image sum from the outset and keep only

k=0 term.
17,(2)= 42 [ 5 Zf dt sin(t) ey To perform the proper time integration we need two sin-
gular integrals that are regularized by cutoff at the lower
6 + = 2 (A14)
* (t?+n%z°/4)?] " 3 n°ZZ “n*|
=ds 2
We already know how to deal withintegral; what is new Ai(b)= o - —2ymh+ N (B3)
here is a sum, ¢ €
i 1 1 m P 1 2b
= _—— sb_ 312
n=1n2z2 (t2+n22214) 6722 8t* 4zt th(2wt/z) Ay(b)= f 5/2 b ‘/— 32 \/; (B4)
(A15)
whereb>0. The form factorgB1) and (B2) take then the
which brings, to the form, form
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Nam | ’ a 5m m?
4m?\ 2 V=4
n2(BV—A) +(1—Tm arctar( > ” (B8)
2w (1 1
= da Ay(b(a))—Ax(m?)— — A (m?) |,
,BA2< JO @ Aelbla)) = Ao(m) 64 im )) Spectral forms fory,; and 7, are readily obtained with

(B6) help of basic spectral integrdb9) applied to arctangent
functions in Eqs(B7),(B8). To transform operator factors to
whereb(a)=m?— Aa(1—a). Now we make use of regu- spectral weights we only need to know the identity,
larized integralsA; andA,. Functionsy; and 7, are regu-

lar, therefore, all intermediate singularities in these equations i1 1 1 1 B9
mutually cancel. Integrations over parameter do not pose a A AM2— A AM2A AM2 AmP— A B9
problem and they are similar to the integtéP). The only
difference is that higher powers of integrabnf) bring ex-
tra factors at the arctangent function: The spectral representations read,
T 2m 27 (@ m? 1
n(BV=1) A TE n(BV=A) 2 fmdm(l = (B10)
4m? rSV_A)] (e 2m?> m* 1
+|1— ——|arcta , B7 J=A)=— T
% | ®7 s B | | 1
(B11)
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