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Finite temperature nonlocal effective action for quantum fields in curved space
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Massless and massive scalar fields and massless spinor fields are considered at arbitrary temperatures in four
dimensional ultrastatic curved spacetime. Scalar models under consideration can be either conformal or non-
conformal and include self-interaction. The one-loop nonlocal effective action at finite temperature and free
energy for these quantum fields are found up to the second order in background field strengths using the
covariant perturbation theory. The resulting expressions are free of infrared divergences. Spectral representa-
tions for nonlocal terms of high temperature expansions are obtained.@S0556-2821~98!00524-4#
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I. INTRODUCTION

Finite temperature field theory has been developed i
series of seminal papers@1–3#. Nowadays it is an actively
growing branch of theoretical physics@4#. Thermodynamical
properties of thermal quantum fields in the presence of ba
ground fields are very important for a large number of ap
cations in high energy physics, astrophysics, and cosmol
However most of these studies are devoted to the situa
when background fields are constant~homogeneous! @5,6#.
This particular form of the effective action, the effective p
tential @7,8#, when large background fields are taken in
account nonperturbatively, is useful for study of phase tr
sitions in the early Universe or quark-gluon plasma. Fo
long time, the opposite situation, when background fields
small but rapidly fluctuating, lacked investigation even
zero temperature field theory. Traditional tools of quant
field theory, like the short proper time Schwinger-DeW
expansion@9–11#, are intrinsically local; hence, they mis
nonlocal contributions. As a consequence of this deficie
artificial infrared divergences appear in the perturbative
fective action for massless fields, and perturbation the
breaks down. Finite temperature effects also contribute
infrared divergences@4#, and methods of diagram summ
tions have been developed to improve the perturbation se
@12,13#.

To deal with massless field theories properly, such
gauge field theories or quantum gravity, Vilkovisky su
gested a new powerful method@14# which is known as the
covariant perturbation theory@15–18#. In these papers it wa
shown that infrared divergences are artificial and brou
into existence by a mode of calculation rather than by a fi
theory. They disappear after summation of terms with in
nite number of derivatives acting on background fiel
which results in nonlocal terms entering the effective act
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@15#. Such a summation can only be performed in a giv
order in background field strengths.

Thermodynamics of an ensemble of quantum fields
equilibrium in static curved spacetimes is well defined, a
most properties of the system can be derived from its f
energy@19–21#. In this paper we consider ensembles of sc
lar and spinor fields in the presence of external ultrast
gravitational field. The scalar models may have an arbitr
interaction potential and an arbitrary coupling to gravity. W
employ the method of covariant perturbation theory to fi
the finite temperature effective action and the correspond
free energy of these quantum fields on highly inhomo
neous gravitational backgrounds. An example of the sit
tion when finite temperature effects on curved backgrou
are important, and, thus, nonlocal effective action is need
is the Hawking radiation by black holes@22,23#.

The paper is organized as follows. In the next section
describe how to obtain nonlocal free energy at finite te
perature with the help of the covariant perturbation theory
Sec. III we derive the free energy of interacting massl
scalar fields and study its high temperature behavior. M
sive scalar fields at high temperatures are treated in Sec
In Sec. V we derive free energy for massless spinor field
finite and high temperatures. The conclusion and a disc
sion of possible applications and extensions of obtained
sults can be found in Sec. VI. We place the necessary c
plicated computations into Appendixes A and B.

II. ONE-LOOP EFFECTIVE ACTION
AND FREE ENERGY OF QUANTUM FIELDS

IN ULTRASTATIC SPACETIMES
Let us consider fieldsw described by the classical actio

S(w) and the corresponding canonical Hamiltonian in a g
neric curved static spacetime. Statistical free energyFS of
the ensemble is defined as the trace of logarithm of eig
values of the normal-ordered Hamiltonian. In canonic
quantization scheme, ultraviolet divergencies are traditi
©1998 The American Physical Society02-1
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ally subtracted fromFS by the normal ordering prescriptio
@21,24#. On the other hand, in the imaginary time formalis
of Matsubara@1# the problem of finding free energy of th
system in equilibrium reduces to the computation of the p
integral of the Euclidean quantum field theory and the c
responding effective actionWb@g#:

e2Wb[g]5E D@w# e2S[w,g] . ~1!

The temperatureT51/(kBb) enters the calculation via th
condition of ~anti!periodicity in the Euclidean timet im-
posed on quantum fields with~Fermi! bose statistics

w~x,t!56w~x,t1b! ~2!

~the Boltzmann’s constantkB51 everywhere!.
The canonical free energyFS and the thermal renormal

ized Euclidean effective actionWb are closely related to
each other and differ@19,24# only by termsF̃ that are inde-
pendent of temperature

1

b
Wb@f#5FS

b@f#1F̃@f#, ~3!

wheref5^w& are mean fields. The effective action is us
ally regularized using covariant methods, e.g., zeta func
@25,26#, dimensional@10#, etc., while the canonical free en
ergy is regularized via normal ordering of operators. T
differenceF̃@f# is related to different ways of taking int
account vacuum energy contributions in covariant and
nonical regularization schemes. The covariant approac
more appropriate to our problems since it is consistent w
calculations of the stress tensor and vacuum polarization
fects in external fields. In any case, it is easy to comp
F̃(f) which is temperature independent and local@24#.
Henceforth, we restrict our consideration to calculation
the one-loop Euclidean effective actionWb and the corre-
sponding covariant Euclidean free energy

Fb[
1

b
Wb. ~4!

We calculate the free energy of quantum fields on st
background fields which include mean fieldf and static
gravitational field. The Tolman temperature of such a fi
system in equilibrium is not constant throughout the sta
space. It is more convenient to perform calculations of te
perature effects in the Euclidean ultrastatic~optical! space-
times,

ds25gmndxmdxn5dt21gi j dxidxj , ~5!

where local temperature is constant throughout the sp
Ultrastatic and static spacetimes are related to each othe
a conformal transformation of the metric. Conformal prop
ties of the effective action have been studied in detail@27#,
and applied to free energy calculations by Dowker a
Schofield@28,29#. Using scaling properties of the finite tem
perature zeta functions it was shown that the difference
02400
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free energies in two conformally related spaces does not
pend on temperature. Then, all temperature dependent t
can be found from the free energy in an ultrastatic spa
where solution of the problem simplifies significantly. Th
difference can be found by integrating the conform
anomaly, but the method of Ref.@28# works for generic non-
conformal operators as well.

The brief outline of our research program is to calcula
free energy in an ultrastatic space, and then using a rela
between free energies in static and ultrastatic spaces to
press the final result in terms of quantities defined in a ph
cal ~static! spacetime. In this paper we implement the fi
and most complicated step of obtainingWb and Fb on the
ultrastatic metric~5!.

Let us consider quantumn-component scalar fieldw
[wA , A51, . . . ,n, which satisfies the equation

F S h2
1

6
RD 1̂1 P̂~f!Gw50. ~6!

Our notations correspond to those of Refs.@10,16#: the La-
placianh5gmn¹m¹n is constructed of covariant derivative
which are characterized by the commutator curvature

~¹m¹n2¹n¹m!w5R̂mnw. ~7!

This quantity is, of course, zero for scalar fields, but we w
need it in Sec. IV where spinor fields are considered. T
potential P̂ may depend on the metric and mean fieldf,
which is a part of classical background. Thus, this class
models includes self-interacting fields. The vanishing pot
tial P̂50 corresponds to the case of free conformal sca
fields, andP̂51̂R/6 to the minimally coupled free scala
fields. The overhat symbol indicates the matrix structur
P̂5PA

B , and termR/6 in Eq.~6! is explicitly singled out for
convenience. The three field strengthsRmn , R̂mn , P̂ will
be also referred to as curvatures. This massless field th
will be generalized to the case of massive fields in Sec.

The one-loop Euclidean effective actionWb is defined in
terms of the functional trace of the heat kernel,

Wb52
1

2E0

`ds

s
TrKb~s!, ~8!

where the heat kernelK̂b(s) is the periodic in Euclidean time
solution of the problem

H d

ds
2F 1̂S h2

1

6
R~x! D1 P̂~x!G J K̂b~sux,x8!

51̂d~s!d~x,x8!, ~9!

K̂b~sut,x;t8,x8!5K̂b~sut1b,x;t8,x8!. ~10!

The functional trace is understood as

TrK~s!5E dDx tr K̂~s!, ~11!
2-2
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with the tr standing for the matrix trace, e.g., tr1ˆ 5dA
A ,

trP̂5PA
A .

The thermal~periodic in the Euclidean time! heat kernel
Kb can be expressed as an infinite sum of zero tempera
~vacuum! heat kernels@5,30#

K̂b~sut,x;t8,x8!5 (
n52`

`

K̂~sut,x;t81bn,x8!. ~12!

This image sum is equivalent to summation over Matsub
frequencies in a momentum space representation in the
field theory. The image sum in the context of Casimir ene
calculations was introduced in Ref.@31#.

Temperature effects are inherently connected to
imaginary time. It is convenient to factorize the heat ker
into temporal and spatialK (3) parts,

K̂~sut,x;t8,x8!5
1

~4ps!1/2
expS 2

~t2t8!2

4s D K̂ ~3!~sux;x8!,

~13!

which is possible to do in ultrastatic spacetimes. Then,
trace of the heat kernel takes a form@19#,

TrKb~s!5u3~0,e2~b2/4s!!
b

~4ps!1/2E d3x tr K̂ ~3!~sux,x!,

~14!

when expressed in terms of the Jacobi theta function@32#,
which is defined in a usual way,

u3~a,b![ (
n52`

n5`

e2naibn2
. ~15!

The free energy of quantum fields in static spacetimeFb

is defined via the finite temperature Euclidean effective
tion Wb and can be written in the form,

Fb52
1

2bE0

`ds

s
TrKb~s!. ~16!

The vacuum moden50 in the infinite sum~14!,~15! cor-
responds to the zero temperature effective action which
fers ultraviolet divergencies@9,10,26#. Fortunately, this is the
only divergent term of the sum@19#, so it is convenient to
treat it separately. We subtract the zero temperatureb
5`) free energyF` from Fb and renormalize it with the us
of the zeta function regularization@25,26,33#,

Wren
` 52

1

2

]

]eF m2e

G~e!
E

0

` ds

s12e
TrK~s!G

e50

, ~17!

wherem is a masslike regularization parameter andG is the
gamma function.F ren

` will be combined withnÞ0 terms at
the end of our derivations. Therefore, we compute
02400
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F ren
b 2F ren

` 52
1

2E0

`ds

s
„u3~0,e2~b2/4s!!21…

1

~4ps!1/2

3E d3x trK̂ ~3!~sux;x!. ~18!

The heat kernelK (3)(s) is defined as a solution of Eq.~9!
with the three dimensional operator,

H d

ds
2F 1̂S n2

1

6
R~x! D1 P̂~x!G J K̂ ~3!~sux;x!

51̂d~s!d~x,x8!. ~19!

In this case the three dimensional Laplaciann, and potential
P̂(x) and the curvatureRi j (x) are defined on a three dimen
sional hypersurfacet5const of the ultrastatic spacetime.

Many methods have been developed for calculation of
trace of the heat kernel@9,34#. Most of them~see reviews
@11,10#! reduce to various representations of its smalls ex-
pansion,

TrK~s!5
1

~4ps!D/2E dxDg1/2~x! (
n50

`

sntrân~x,x!, s→0.

~20!

However, as soon as the inverse temperatureb is finite, the
behavior of the heat kernel at large values of proper tims
becomes very important@19#. Therefore, expansion~20! is
not suitable for our task of finding the free energy at fin
temperature. Besides, Schwinger-DeWitt coefficientsan are
local functions of background fields, henceforth, nonlo
free energy cannot be derived using Eq.~20!. To solve the
problem of obtaining nonlocal free energy at finite tempe
ture we have to resort to the covariant perturbation the
@15–18#. There is no need to repeat derivations of the co
riant perturbation theory here because an expression
Tr K(s) is already known in arbitraryD dimensions@16,18#.
In this paper we will take it up to terms quadratic in curv
tures,

TrK~s!5
1

~4ps!D/2E dDx g1/2

3tr $1̂1sP̂1s2@Rmn f 1~2sh !Rmn1̂

1R f2~2sh !R1̂1 P̂f 3~2sh !R

1 P̂f 4~2sh !P̂1R̂mn f 5~2sh !R̂mn#%

1O@R3#. ~21!

Analytic functions f i ~form factors! have the dimensionles
argumentsh. ~The appearance of nonlocal form factors
the momentum space representation of the effective ac
originates in the classical paper of Schwinger@35#.! The
form factors act on tensor invariants constructed of the se
field strengthsRab, P̂, R̂mn characterizing background
The collective notationR will be used for these curvatures
2-3
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The first two terms of the sum~21! are purely local and
coincide with the first two coefficients of the short prop
time expansion~20!. Formally, the expansion~21! is valid
only in an asymptotically flat Euclidean spacetime with t
topologyRD. All background curvaturesR are supposed to
vanish at spacetime infinity@16#. Since we use a perturbatio
theory, all calculations are carried out with accuracy O@Rn#,
i.e., up to terms ofnth and higher power in the curvaturesR.
The very structure of this curvature expansion restricts
validity to background fields satisfying the relation,

¹¹R@R2. ~22!

Physically it means that gravitational fields are small in m
nitude but quickly oscillate.

All form factors in Eq.~21! can be expressed in terms
one basic form factor

f ~2sh !5E
0

1

da ea~12a!sh. ~23!

Their explicit form reads@16#

f 1~2sh !5

f ~2sh !212
1

6
sh

~sh !2
, ~24!

f 2~2sh !5
1

8
F 1

36
f ~2sh !2

1

3

f ~2sh !21

sh

2

f ~2sh !212
1

6
sh

~sh !2
G , ~25!

f 3~2sh !5
1

12
f ~2sh !2

1

2

f ~2sh !21

sh
, ~26!

f 4~2sh !5
1

2
f ~2sh !, ~27!

f 5~2sh !5
1

2

f ~2sh !21

sh
. ~28!

Even though, in the following consideration general cova
ance is broken because of the presence of temperature
will refer to this curvature expansion as to the covariant p
turbation theory. In spatial dimensions the covariance
mains explicit.

A few words about validity of this approximation are
order. Since we consider quantum fields at some fixed t
perature, one can say that the field system in question re
sents a canonical ensemble. To define a canonical ense
rigorously we have to assume that the fields are in so
cavity of a finite volume, as it is usually assumed in t
presence of a black hole@21#. This assumption should b
reconciled, however, with our method of computation d
scribed above, which in the present form works only
asymptotically flat spacetimes and requires vanishing ba
ground fields at spacetime infinity. It is important to note th
background field strengths, sources of vacuum polarizat
02400
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have a compact support on a manifold, thus, providing
effective volume cutoff. In regard to gravitational field th
property is due to the presence of the Ricci tensor rather t
the Riemann tensor@16#.

III. FREE ENERGY OF MASSLESS SCALAR FIELDS

Let us now compute free energy~18! of massless scala
fields at finite temperature. This case was briefly reported
our paper@36#. After introducing a new variabley5b2/4s,
first two terms of the trace of the heat kernel~21! take the
form of the integral,

E
0

`

dy@u3~0,e2y!21# ya2152 z~2a! G~a!, ~29!

wherez is the Riemann zeta function,G is the gamma func-
tion. Whena is taking values 2 and 1, expression~29! gives
for the zeroth and first curvature orders coefficientsp4/45
and p2/3 correspondingly. These local contributions to t
free energy are well known@19,37# and coincide with the
first two terms of high temperature expansion. Since all
formation about temperature is separated from tensor inv
ants, we can write down an anticipated form of free ene
up to second order in the field strengths,

F ren
b 2F ren

` 52E d 3x g1/2 trH p2

90b4
1̂1

1

24b2
P̂

1
1

32p2
@Ri j g1

b~2n !Ri j 1Rg2
b~2n !R

1 P̂g3
b~2n !R1 P̂g4

b~2n !P̂ #1O@R3#J .

~30!

Then, the problem with the second curvature order is
duced now to calculation of the thermal form factors,

g i
b~2n ![g i~bA2n !

5E
0

`d s

s
@u3~0,e2~b2/4s!!21# f i~2sn !, ~31!

wheref i are given by Eqs.~24!–~27!. We show how to com-
pute Eq.~31! when f i(2sn) is the basic form factor~23!.
After substituting Eq.~23! into Eq. ~31! and writing down
the theta function~15! explicitly we get

g~bA2n !52(
n51

` E
0

1

d aE
0

`dy

y

3expS 2yn22
1

4y
a~12a!b2~2n ! D . ~32!

Integration overy produces the modified Bessel function
the second kind

g~z!54(
n51

` E
0

1

daK0„nzAa~12a!…, ~33!
2-4
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wherez5bA2n. Change of variables,x52Aa(12a), al-
lows us to express Eq.~33! in terms of the exponential inte
grals:

E
0

1

dx
x

A12x2
K0S nzx

2 D
5

1

nzFEiS nz

2 D e2nz/22EiS 2
nz

2 D enz/2 G . ~34!

Now we can use for the right hand side of Eq.~34! its stan-
dard form in terms of elementary functions@32# and obtain

g~z!54E
0

`

d t (
n51

`
sin~ t !

t21n2z2/4
. ~35!

The sum overn can be evaluated@32#,

(
n51

`
1

t21n2z2/4
5

1

2F2p

zt

1

th~2pt/z!
2

1

t2G , ~36!

and the resulting expression reads

g~z!52E
0

`

dt sin~ t !F2p

zt

1

th~2pt/z!
2

1

t2G . ~37!

As can be seen from Eqs.~24!–~27!, there are two other
types of basic thermal form factors~with one and with two
subtractions!. Their derivations can be found in Appendix A
Applying results~37!, ~A8!, and ~A17! to the table of form
factors we obtain for all thermal form factors the followin
expression:

g i~bA2n !

5E
0

`

dt gi~ t !F 2p

bA2n t

1

th„2pt/~bA2n !…
2

1

t2G ,

~38!

andgi ( i 51, . . . ,4) aresimple combinations of elementar
functions

g1~ t !52
1

2S sin~ t !

t2
13Fcos~ t !

t3 2
sin~ t !

t4 G D , ~39!

g2~ t !5
1

48S 1

3
sin~ t !12

cos~ t !

t
1

sin~ t !

t2

19Fcos~ t !

t3 2
sin~ t !

t4 G D , ~40!

g3~ t !5
1

2S 1

3
sin~ t !1

cos~ t !

t
2

sin~ t !

t2 D , ~41!

g4~ t !5sin~ t !. ~42!
02400
The final result for renormalized free energy at finite te
peratureF ren

b is presented by a sum of Eqs.~30!, ~38!–~42!
and renormalized free energy at zero temperatureF ren

` . After
the zeta regularization~17!, the latter one takes the form

F ren
` 52

1

32p2E d3x g1/2tr$Ri j g1~2n !Ri j

1Rg2~2n !R1 P̂g3~2n !R1 P̂g4~2n !P̂

1O@R3#%, ~43!

where zero temperature form factorsg i(2n), i 51, . . . ,4,
are

g1~2n !5
1

60F2 lnS 2
n

m2D 1
46

15G , ~44!

g2~2n !5
1

180F lnS 2
n

m2D 2
97

30G , ~45!

g3~2n !52
1

18
, ~46!

g4~2n !5
1

2F2 lnS 2
n

m2D 12G . ~47!

This expression differs from the one obtained using dim
sional regularization only by unessential additive consta
@16#.

Formulas~30!, ~38!–~47!, we have obtained, are valid a
arbitrary finite temperature. Now we would like to stud
asymptotic behavior of the free energy in high temperat
regime, the most interesting and the best studied limit. In
framework of perturbation theory, the problem boils down
finding b→0 asymptotic of thermal form factors~38!. We
have to be careful while dealing with mutually compensat
singularities. After relatively straightforward calculations th
outcome for Eq.~37! is

g~bA2n !5
2p2

bA2n
12F lnS bA2n

4p D 211CG
2

z~3!

24p2
b2~2n !1

z~5!

640p4
b4~2n !2

1O@b6#, b→0, ~48!

where C is Euler’s constant andz is the Riemann zeta func
tion.

Now, expressions for the vacuum free energy~43! and the
high temperature expansion of Eq.~30! match, and can be
combined into a single formula. The resultingT→` expan-
sion of the renormalized one loop free energy takes a fo
2-5
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F ren
b 52E d3x g1/2 trH p2

90b4
1̂1

1

24b2
P̂1

1

32bF 1

16
Ri j

1

A2n
Ri j 2

25

1152
R

1

A2n
R2

1

12
P̂

1

A2n
R1 P̂

1

A2n
P̂G

1
1

16p2
XlnS bm

4p D1CC F 1

60
Ri j R

i j 2
1

180
RR1

1

2
P̂P̂G1b2

z~3!

128p4F 1

840
Ri j nRi j 2

1

3780
RnR1

1

180
P̂nR1

1

12
P̂n P̂G

1b4
3z~5!

1024p6F 1

15120
Ri j n

2Ri j 1
1

1260
P̂n2R1

1

120
P̂n2P̂G1O@R3#1O@b6#J , b→0. ~49!
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All local terms of this result perfectly reproduce those
Refs. @19,28#. The combination of quadratic in curvature
terms at the logarithm is just the trace of the seco
Schwinger-DeWitt coefficienta2 , taken with the Riemann
curvature expressed via the Ricci one@9,10,16#. Higher pow-
ers ofb in Eq. ~49! are also quadratic in curvatures parts
a3 anda4 Schwinger-DeWitt coefficients@34,38#.

We obtained the explicit form of all nonlocal terms of th
second order in curvatures. They are proportional to 1/b, and
were known to exist@28#. The general structure of nonloca
terms isR(1/A2n)R, and, therefore, techniques based
local ~smalls! expansions could not generate them. Terms
higher orders in curvatures@18,38# will also give nonlocal
contribution linear in temperature.

The meaning of nonlocal structures can be underst
from spectral representations in terms of massive Gr
functions @39,17,18#. For this particular form we have th
following spectral formula:

1

A2n
5

2

pE0

`

dm
1

m22n
. ~50!

A remarkable property of the expression~49! is that it con-
tains the only kind of nonlocality, Eq.~50!. All logarithmic
nonlocalities ln(2n), that are present inF ren

` andF ren
b , have

mutually canceled, leaving logarithm temperature dep
dence in the form of ln(bm), This local combination is well
known in both flat@5,40# and curved@19# space thermal field
theory. The ln(2n) disappearance is still being analyzed in
different physical language and in a different setting@41#.

Of course, we are not completely satisfied with the in
gral representation for the free energy at finite tempera
~30!. Although, it admits a closed form, we would prefer
seeFb expressed entirely in terms of analytical and spec
functions. Indeed, it is possible to obtain such a form a
applying the Poisson resummation@32#,

(
n52`

`

e2~b2/4s!n2
5

A4ps

b (
k52`

`

e2~4p2s/b2!k2
. ~51!

Then, the following identity holds:
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u3~0,e2~b2/4s!n2
!215

A4ps

b S (
k52`

`

e2~4p2s/b2!k2

2E
2`

`

dk e2~4p2s/b2!k2D . ~52!

We compute now the basic thermal form factor, Eq.~31!
with Eq. ~23!, using this identity and separating thek50
term out of the sum,

g~bA2n !5
2p2

bA2n
1

8p

bA2n
S (

k51

`

arctanS bAn

4pk D
2E

0

`

dk arctanS bAn

4pk D D . ~53!

The k50 mode of the sum gives precisely the leading in
nite temperature contribution, while the rest can be cal
lated by employing the following sum:

(
k51

` S arctanS b

kD2
b

kD5
i

2
lnS G~11 ib!

G~12 ib! D2bC. ~54!

Adding up the regularized zero temperature form factor,

g~2n !52 lnS 2n

m2 D 12, ~55!

we obtain an expression which is valid at any temperatu

g~bA2n !5
2p2

bA2n
1

4p i

bA2n
lnS GS 11 i

bA2n

4p
D

GS 12 i
bA2n

4p
D D

12lnS bm

4p
D . ~56!

Besides an obvious advantage of Eq.~56!, namely, that it
is the formula in terms of usual elementary and special fu
tions, the leading infinite temperature contributions a
present here explicitly. Takingb→` andb→0 limits, one
can readily find zero temperature~55! and high temperature
~48! asymptotics of this basic thermal form factor. In fac
2-6
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one can see that the logarithm of the gamma functions’ r
in the main result~56! is a sum of all positive powers ofb in
the high temperature limit~48!. Hence, it gives a partial~in
the given curvature order! summation formula for the
b→0 series@19#. Eventually, one has to transform Eq.~56!
into a spectral form, the procedure we can complete ag
only at high temperatures, Eq.~50!. This is the reason why
we refrain from deriving the total free energy in this ne
representation.

IV. FREE ENERGY OF MASSIVE SCALAR FIELDS

The use of the curvature expansion is crucial for deri
tion of the massless field free energy, because it allows
to avoid artificial infrared divergences. Two other adva
tages of perturbation theory, namely, that free energy can
found at arbitrary finite temperature and important nonlo
contributions can be obtained, work for a thermodynam
system of massive fields as well. Besides, this is the m
studied field model, so let us investigate an ensemble of m
ticomponent scalar massive fields satisfying equation

F S h2
1

6
R2m2D 1̂1 P̂~f!Gw50. ~57!

Because the mass term can be factorized out of the
kernel, one can still use massless heat kernel~21! to derive
the free energy,

Fb52
1

2bE0

`ds

s
e2sm2

Tr Kb~s!. ~58!

As usual, we subtractn50 mode from the image sum
Eq. ~14!. Let us first treat local terms. The result in terms
the modified Bessel functions reads

F ren
b 2F ren

` 52
1

32p2E d3x g1/2(
n51

`

trH S 16m2

b2n2
K0~mbn!

1
16m

b3n3
K1~mbn!D 1̂

1
8m

bn
K1~mbn!P̂1O@R2#J . ~59!

So far this expression is valid at any nonzero temperat
However, we are able to proceed and obtain explicit form
las only in high temperature limit. Simple expansions of t
Bessel functions atb→0 with the subsequentn-sum evalu-
ation produces known local contributions@28,29#. The total
result for free energy of massive fields at high temperat
looks like
02400
io
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c
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F ren
b 2F ren

` 52E d 3x g1/2 trH p2

90b4
1̂1

1

24b2
~ P̂2m21̂!

1
1

32p2
@Ri j g1

b~2n !Ri j 1̂1Rg2
b~2n !R1̂

1 P̂g3
b~2n !R1 P̂g4

b~2n !P̂#1O@R3#J ,

b→0. ~60!

The computational procedure for second order terms
performed after Poisson resummation~51!. Applying Eq.
~52! to the basic form factor of nonlocal free energy f
massive fields,

gb~2n !5E
0

`ds

s
@u3~0,e2~b2/4s!!21#e2sm2

f ~2sn !,

~61!

@vacuum contribution subtracted in Eq.~61! is dealt with at
the end of the present section#, and using the integral

E
0

1

da„m22a~12a!n…

~21/2!5
2

A2n
arctanSA2n

2m D
~62!

we get

g~bA2n !5
4p

bA2n
arctanSA2n

2m D 1
8p

bA2n

3F (
k51

`

arctanS A2n

A4m2116p2k2/b2D
2E

0

`

dk arctanS A2n

A4m2116p2k2/b2D G .

~63!

This equation is valid at arbitrary finite temperature, the
fore, free energy of massive fields is nonlocal at any te
perature. The first term of Eq.~63! came fromk50 mode of
the sum, and it is nothing but the leading term of high te
perature expansion,b→0. The difference of two divergen
terms in the square brackets is finite, however, we are un
to give the result in a closed form. Thus, we restrict cons
eration to leading terms of high temperature expansion
understand the basic thermal form factor as

gb~2n !5
4p

bA2n
arctanSA2n

2m D 1O@b#, b→0.

~64!

The main nonlocality is contained in the leading term~64!.
Subleading terms combined with vacuum contributions
2-7
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not important at high temperatures. The full table of fo
factorsg i(q), i 51, . . . ,4, interms ofq5m/A2n reads

g1~q!5
pq

bmF2
5

12
q2q31~114q2!2arctanS 1

2qD G , ~65!

g2~q!5
pq

24bmF13

14
q23q32S 11

3
128q2148q4D

3arctanS 1

2qD G , ~66!

g3~q!5
pq

2bmF2q1~124q2!arctanS 1

2qD G , ~67!

g4~q!5
2pq

bm
arctanS 1

2qD . ~68!

For practical purposes of physical applications we nee
know spectral form representations for Eqs.~65!–~68!. A
spectral form for the basic form factor~64! is obvious,

gb~2n !5
8p

b E
m

`

dm̃
1

4m̃22n
. ~69!

Its massless limit immediately gives Eq.~50!. Spectral forms
for form factors with subtractions are obtained similarly~see
Appendix B!. Then, all form factors~65!–~68! admit the
form

g i
b~2n !5

p

bEm

`

dm̃ r i~m̃2!
1

4m̃22n
, ~70!

where mass spectral weights are given in the table,

r1~m̃2!5
1

4 S 12
2m2

m̃2
1

m4

m̃4D , ~71!

r2~m̃2!52
1

32S 25

9
2

14

3

m2

m̃2
1

m4

m̃4D , ~72!

r3~m̃2!52
1

3
1

m2

m̃2
, ~73!

r4~m̃2!54. ~74!

Now we need to complete our derivation with the reg
larized free energy at zero temperatureF`. Nonlocal effec-
tive action for massive fields in an arbitrary spacetime
mension has been calculated first by Avramidi@42#. His
approach is a direct summation of derivatives in a mass
field theory, but we can make use of the massless heat ke
~21! obtained with the covariant perturbation theory and
rive at the same result. We compute zeta function regular
effective action according to the equation
02400
to
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-

e
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d

Wren
` 52

1

2

]

]eF m2e

G~e!
E

0

` d s

s12e
e2sm2

TrK~s!G
e50

. ~75!

Then, we get the following result for zero temperature fr
energy~the specific form of the effective action in Ref.@42#
in four dimensions!:

F ren
` 52

1

32p2E d3x g1/2trH 2
m4

2 S lnS m2

m2D 2
3

2D 1̂

1m2S lnS m2

m2D 21D P̂1@Ri j g1~2n !Ri j

1Rg2~2n !R1 P̂g3~2n !R1 P̂g4~2n !P̂#

1O@R3#J , ~76!

where form factorsg i are given in terms of dimensionles
argumentq5m/A2n by the following expressions:

g1~q!5
1

60F2 lnS m2

m2D 1
46

15
1

56

3
q2132q4

22~114q2!5/2arctanhS 1

A114q2D G , ~77!

g2~q!5
1

180F lnS m2

m2D 2
97

30
217q2212q412A114q2

3~118q216q4!arctanhS 1

A114q2D G , ~78!

g3~q!5
1

6F2
1

3
24q214q2A114q2arctanhS 1

A114q2D G ,

~79!

g4~q!52
1

2
lnS m2

m2D 112A114q2arctanhS 1

A114q2D .

~80!

This effective action may look more similar to Eq.~43! if the
inverse hyperbolic tangents in functionsg i are expressed in
terms of logarithms. We have to remark here that form fac
g3 is different from the others. Similarly to that of massle
fields it does not depend on the regularization parametem.
However, Eq.~79! is nonlocal in contrast to local~46!. Of
course, in the zero mass limit Eqs.~76!–~80! turn to Eqs.
~43!–~47!.
2-8
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Finally, it should be noted that in order to use Eq.~76! for
specific physical models, the convenient way to work w
form factors ~77!–~80! is to treat them in a spectral form
representation@39#. Then, the following mass spectrum int
gral is to be used:

4

A2n

1

A4m22n
arctanhS A2n

A4m22n
D

5E
m

`

dm̃
1

Am̃22m2

1

4m̃22n
. ~81!

V. FREE ENERGY OF MASSLESS SPINOR FIELDS

In this section we consider the massless Dirac spinorc
in a Euclidean ultrastatic spacetime at finite temperature.
massless covariant Dirac equation is taken as

¹” c50, ~82!

where the standard notation¹” 5gm¹m is used~see@21# for
general definitions!. The method of calculation of the effec
tive action for spin-1/2 fields,W(1/2) , is similar to the one for
spin-0 fields. The main difference is that fermions are a
periodic in the Euclidean time and, therefore, they sati
boundary conditions~2! with the minus sign. The local form
of the one-loop effective actionW(1/2)52Tr ln ¹” was stud-
ied first in Ref.@9#. It is defined in terms of the heat kern
~or zeta function! of operator~82!, however, following De-
Witt’s idea we consider the squared operator¹” 2, thus,

W~1/2!
b 5bF ~1/2!

b 5
1

2E0

`ds

s
Tr K ~1/2!

b ~s!, ~83!

with the heat kernelK (1/2)(s) corresponding to the square
Dirac operator. It can be shown@9# that the heat kerne
~Green function! of the operator¹” 2 is equivalent to the
spinor heat kernel which is a solution of the equation,

H d

ds
21̂Fh2

1

4
R~x!G J K̂ ~1/2!~sux;x8!51̂d~s!d~x;x8!.

~84!

One can represent the heat kernel~84! at finite tempera-
ture in a form of the image sum@43,29#,

K̂ ~1/2!
b ~sut,x;t8,x8!5 (

n52`

`

~21!nK̂ ~1/2!~sut,x;t81bn,x8!

~85!

@cf. Eq. ~12!#. Because time dependence of the heat kerne
ultrastatic spacetimes factorizes out Eq.~13!, the trace of the
heat kernel can be written in the form

TrK ~1/2!
b ~s!5u2~0,e2~b2/4s!!

b

~4ps!1/2E d3x tr K ~1/2!
~3! ~sux,x!,

~86!
02400
e
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whereu2 is the Jacobi theta function. It is convenient to u
the u functions identity

u2~0,e2z!5u3~0,e2z/4!2u3~0,e2z! ~87!

and express the heat kernel trace at finite temperature~86! in
terms of the Jacobi functionsu3 . Thanks to this fact@29,43#
we do not have to repeat all calculations and can get the
energy of Dirac spinors at finite temperature using ma
ematical derivations of Sec. III. Spinor thermal form facto
g (1/2) are obtained then by a simple combination of sca
form factorsg

g~1/2!~bA2n !52@2g~2bA2n !2g~bA2n !#.
~88!

To form the operator of Eq.~84! the potential term should
be takenP̂52 1

12 R1̂. The commutator curvature is not zer
when covariant derivatives act on spinors, but we need
know only that trR̂mnR̂mn52 1

8 RmnabRmnabtr1̂, where the
squared Riemann tensor must be expressed via Ricci te
and scalar curvature with help of the Gauss-Bonnet iden
@44#. All other matrix structures are reduced to tr1ˆ 54. Tak-
ing into account these properties the free energy of mass
spinors reads~from now on we omit spinor indices(1/2))

F ren
b 2F ren

`

52E d 3xg1/2H 7p2

180b4
2

1

144b2
R1

1

8p2

3@Ri j g1
b~2n !Ri j 1Rg2

b~2n !R#1O@R3#J ,

~89!

where the thermal spinor form factors

g i~bA2n !

5E
0

`

dt gi~ t !F 2p

bA2n t

1

sh„2pt/~bA2n !…
2

1

t2G ,

~90!

with the trigonometric polynomials

g1~ t !52
1

4S cos~ t !

t
23

sin~ t !

t2 D 1
3

2S cos~ t !

t3
2

sin~ t !

t4 D ,

~91!

g2~ t !52
1

16F2
sin~ t !

t2
2

cos~ t !

t
13Fcos~ t !

t3 2
sin~ t !

t4 G G .

~92!

Note, that the only difference of Eq.~90! from Eq.~38! is the
hyperbolic sinus instead of the hyperbolic tangent.

This result is to be combined with the regularized con
bution F ren

` of the image sum~85!. The zeta regularized ef
fective action~83! at zero temperature takes the form
2-9
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F ren
` 52

1

8p2E d3x g1/2tr$Ri j g1~2n !Ri j

1Rg2~2n !R1O@R3#%, ~93!

where zero temperature spinor form factorsg i(2n), i
51,2, are

g1~2n !52
1

40F lnS 2
n

m2D 2
12

5 G , ~94!

g2~2n !5
1

120F lnS 2
n

m2D 2
77

30G . ~95!

The main result for the finite temperature free energyF ren
b is

the sum of Eqs.~89! and ~93!. It is an essentially nonloca
functional. On the other hand, it is well known that on
local terms survive in high temperature limit@43#. To check
this property we consider the high temperature limit of o
result.

The calculation ofb→0 asymptotic of the thermal form
factors~90! are analogous to similar derivations in Sec. III.
different hyperbolic function appearing in thermal form fa
tors, namely, the hyperbolic sinus, results in the absenc
linear in temperature nonlocal terms in high temperature
pansion, for example, the basic form factor@gi(t)5
22sin(t) in Eq. ~90!# reads

g~bA2n !522FC1 lnS bA2n

p D 21G1
7z~3!

24p2
b2~2n !

2
31z~5!

640p4
b4~2n !21O@b6#, b→0. ~96!

Uniting the vacuum free energy~93! and the high tempera
ture expansion of Eq.~89! into one expression, we observ
that the logarithmic nonlocality also cancels in the sum. T
resultingT51/b→` expansion looks like

F ren
b 52E d3x g1/2 H 7p2

180b4
2

1

144b2
R1

1

16p2

3XlnS bm

p D1CC F 1

30
RR2

1

10
Ri j R

i j G
1b2

7

128

z~3!

p4 F 1

280
RnR2

1

84
Ri j nRi j G

1b4
93

1024

z~5!

p6 F 1

3780
Rn2R

2
1

1080
Ri j n

2Ri j G1O@R3#1O@b6#J , b→0.

~97!

Combinations of quadratic in curvatures terms in the squ
brackets are the functional traces of Schwinger-DeWitt co
02400
r

of
x-

e

re
f-

ficient a2 , a3 , anda4 after substituting the Riemann curva
ture with the Ricci tensor and scalar curvature@9,10,38#. Ex-
pression~97! coincides with the massless limit of a simila
expression in Ref.@29#, which corrects apparent misprints i
higherb-order terms of Ref.@43#.

Massive spinor fields can be treated in a similar way.
finite temperature the corresponding effective action is n
local. We do not present the result here because of its c
plexity. In the physically interesting limit of high tempera
tures the effective action of Fermi fields becomes local a
can be found in Ref.@29#. A small correction should be mad
to the result of@29# because the effective actions correspon
ing to the first order operator (¹” 1m) and the squared on
differ by local terms†see Eq.~4.2! of Ref. @45# ‡.

VI. CONCLUSIONS

Free energy of quantum fields in ultrastatic~optical!
spaces has been a subject of study in a large numbe
papers@19,30,43,46,47#. When effects of gravitational fields
are negligible, the metric under consideration is flat, and
spacetime is automatically ultrastatic. But even this sim
case has not been studied sufficiently, as most works
concerned with finding the effective action either on const
background fields or~and! at very high temperature@4,5,40#.
However, rapidly oscillating background fields generate n
local terms in the effective action which contribute
vacuum polarization effects@22,14,48,49#. Needless to say
that an interesting and important high temperature limit
the effective action is still only an asymptotic, and know
edge of the effective action behavior at arbitrary finite te
perature is necessary.

We have obtained nonlocal structures of the one-loop
clidean effective action and free energy for thermal fields
asymptotically flat ultrastatic curved spacetimes. For n
conformal massless scalar fields this expression has b
found at arbitrary finite temperatures. Explicit formulas f
the high temperature limit of this general expression ha
been obtained. For massive scalar fields the free energ
derived in the high temperature limit. With help of the
results we calculated also the free energy of massless sp
fields.

The calculated one-loop Euclidean effective action
known to be a generating functional of one-particle irredu
ible Green functions@9,50#. Therefore, variations of the non
local effective action over background fields generate
Green functions@51# and the energy-momentum tensor@48#,
while variations of the free energy over thermodynami
variables, such as temperature, provides one with thermo
namical potentials, entropy, etc.@19,21#.

We would like to emphasize again that the technique
adopted, namely, the nonlocal covariant perturbation the
@16#, is a limit opposite to the effective potential metho
@5,8# and the derivative expansions@6,47,52# suitable for
constant or slowly changing background fields. Therefore
make comparisons one has to expand our nonlocal resul
powers of the derivatives and compare them with the co
sponding terms in the known derivative expansions
panded, in turn, in powers of field strengths. Our results
2-10
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in agreement with all known expansions of this kind.
It is important to stress the value of the nonlocal effect

action approach. As has been shown in Sec. III the effec
action for massless fields is naturally infrared finite, whi
demonstrates that infrared infinities are absent both at
and finite temperatures. As for the applications of the co
riant perturbation theory to other models, one can refe
Refs.@53,54#, where spinor quantum electrodynamics in fl
spacetime and scalar electrodynamics with gravity in
context of conformal anomaly have been studied.

We used in this paper the imaginary time formalis
which means that the notion of the global periodic time
introduced. This greatly reduces the class of physical s
tems and spacetimes that can be considered. Alternativ
there exists real time formalism@55# which can give a cova-
riant form of the partition function@56# and free energy. To
work out nonlocal structures of the effective action using
perturbation theory, which is applicable to nonequilibriu
systems and covariant from the outset, one should deriv
from the scratch. It would be an extremely interesting proj
to do.

Obvious next step is to apply conformal transformati
technique@28,29# to the obtained results and find the nonl
cal free energy on more general static gravitational ba
grounds. This problem is facilitated by the fact that conf
mal transformations of the nonlocal effective action a
studied in detail in Refs.@57#. In order to study particle cre
ation by external gravitational fields the third curvature ord
is required@23,49#. Our intention here was to develop a ge
eral method for calculations of nonlocal free energy, which
the most transparent while working in the second order
curvatures. Derivation of the next perturbative order,
needed, will not pose serious technical problems.

Effects of space boundaries are also interesting and
portant @19,46# and they deserve investigation, however,
do so by means of curvature expansion a major revision
covariant perturbation theory is required.

The results of this paper can be generalized to the v
important case of background gauge fields. This requ
more caution in dealing with temporal components of gau
fields and leads to the appearance of other noncova
terms in the effective action@58#. It is not surprising, since a
finite temperatures Lorenz invariance is broken. But the g
eral structure of nonlocalities in the effective action is s
the same.
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APPENDIX A: MASSLESS FORM FACTORS
WITH SUBTRACTIONS

Complex form factors entering the trace of the heat ker
~21! are to be treated similarly to the basic one, as is
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scribed in Sec. III. The heat kernel form factor with on
subtraction generates a thermal form factor in the effec
action by the following computational procedure:

h1~bA2n !5E
0

`ds

s
@u3~0,e2~b2/4s!!21#

f ~2sn !21

sn
.

~A1!

Using integral representation,

f ~2sn !21

sn
5E

0

1

da1a1~12a1!E
0

1

da2 ea1~12a1!a2sn,

~A2!

and taking the integral over proper time, we reduce it to
form

h1~z!54E
0

1

da1 a1~12a1!E
0

1

da2

3K0„nzAa2Aa1~12a1!…, ~A3!

wherez5bA2n is a new dimensionless variable. This is
table integral@32# with respect toa2:

E
0

1

dy y2 K0~by!52
1

b
K1~b!1

2

b2
, ~A4!

which, after introducing a new variable,y52Aa(12a),
gives us

h1~z!524(
n51

` F 1

nzE0

1

dy
y2

A12y2
K1S nzy

2 D22
1

n2z2G .

~A5!

Applying the Bessel function relationship,

K1~y!52
d

dy
K0~y!,

to K1 and using Eq.~35! for the resulting integral, we get

h1~z!524(
n51

` F E
0

`

dt
sin~ t !

~ t21n2z2/4!222
1

n2z2G . ~A6!

After integration by parts, to reduce the power of the d
nominator,h1 admits the form similar to Eq.~35!,

h1~z!52(
n51

` E
0

`

dt S sin~ t !

t2 2
cos~ t !

t D 1

~ t21n2z2/4!
.

~A7!

With use of Eq.~36! it gives the final answer,

h1~z!5E
0

`

dtS sin~ t !

t2
2

cos~ t !

t D F2p

zt

1

th~2pt/z!
2

1

t2G .

~A8!
2-11
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Let us treat now the form factor with two subtractions,

h2~bA2n !5E
0

`ds

s
@u3~0,e2~b2/4s!!21#

3

f ~2sn !212
1

6
sn

~sn !2
. ~A9!

In the representation,

f ~2sn !212
1

6
sn

sn
5E

0

1

da1 a1
2~12a1!2E

0

1

da2 a2

3E
0

1

da3 ea1~12a1!a2a3sn, ~A10!

it can be integrated first over the proper time. Integrat
over a3 is exactly Eq.~A4!, and integral overa2 parameter
is

E
0

1

dy y2K1~by!52
1

b
K2~b!1

2

b3
. ~A11!

Then,h2 looks in variablesy andz as

h2~z!54(
n51

` F 1

n2z2E
0

1

dy
y3

A12y2
K2S nzy

2 D
1

1

3

1

n2z228
1

n4z4 G . ~A12!

It is possible to reduce Eq.~A12! to g and h1 types of
integrals employing the relation,

K2~y!5
2

y
K1~y!1K0~y!, ~A13!

h2~z!54(
n51

` F 1

n2z2E
0

`

dt sin~ t !S 1

t21n2z2/4

16
1

~ t21n2z2/4!2D1
1

3

1

n2z2212
1

n4z4G . ~A14!

We already know how to deal witht integral; what is new
here is a sum,

(
n51

`
1

n2z2

1

~ t21n2z2/4!
5

p2

6z2t2
1

1

8t4
2

p

4zt3
1

th~2pt/z!
,

~A15!

which bringsh2 to the form,
02400
n

h2~z!5E
0

`

dtS sin~ t !13Fcos~ t !

t
2

sin~ t !

t2 G D
3F 2p2

3z2t2
2

p

zt3
1

th~2pt/z!
1

1

2t4G1
2p2

9z2
.

~A16!

And the final result reads,

h2~z!52
1

2E0

`

dtS sin~ t !

t2
13Fcos~ t !

t3 2
sin~ t !

t4 G D
3F2p

zt

1

th~2pt/z!
2

1

t2G . ~A17!

APPENDIX B: MASSIVE FORM FACTORS
WITH SUBTRACTIONS

During the computation of remaining two form factor
with one subtraction

h1~bA2n !5
2Ap

b E
0

` ds

s3/2
e2sm2 f ~2sn !21

sn
, b→0,

~B1!

and with two subtractions

h2~bA2n !5
2Ap

b E
0

` ds

s3/2
e2sm2

f ~2sn !212
1

6
sn

~sn !2
,

b→0, ~B2!

we get rid of the image sum from the outset and keep o
k50 term.

To perform the proper time integration we need two s
gular integrals that are regularized by cutoff at the low
limit,

A1~b![E
e

` ds

s3/2
e2sb522Apb1

2

Ae
, ~B3!

A2~b![E
e

` ds

s5/2
e2sb5

4

3
b3/2Ap1

2

3e3/2
2

2b

Ae
, ~B4!

whereb.0. The form factors~B1! and ~B2! take then the
form
2-12
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h1~bA2n !5
A4p

bn S E
0

1

da A1„b~a!…2A1~m2! D ,

~B5!

h2~bA2n !

5
2Ap

bn2S E0

1

da A2„b~a!…2A2~m2!2
1

6n
A1~m2! D ,

~B6!

whereb(a)5m22na(12a). Now we make use of regu
larized integralsA1 andA2 . Functionsh1 andh2 are regu-
lar, therefore, all intermediate singularities in these equati
mutually cancel. Integrations overa parameter do not pose
problem and they are similar to the integral~62!. The only
difference is that higher powers of integrandb(a) bring ex-
tra factors at the arctangent function:

h1~bA2n !5
p

bA2n
F2

2m

A2n

1S 12
4m2

n
DarctanSA2n

2m D G , ~B7!
b-

.

02400
s

h2~bA2n !5
p

bA2n
F2

5m

12A2n
2

m3

~2n !3/2

1S 12
4m2

n
D 2

arctanSA2n

2m D G . ~B8!

Spectral forms forh1 and h2 are readily obtained with
help of basic spectral integral~69! applied to arctangen
functions in Eqs.~B7!,~B8!. To transform operator factors t
spectral weights we only need to know the identity,

1

n

1

4m̃22n
5

1

4m̃2n
2

1

4m̃2

1

4m̃22n
. ~B9!

The spectral representations read,

h1~bA2n !5
2p

b E
m

`

dm̃ S 12
m2

m̃2D 1

4m̃22n
, ~B10!

h2~bA2n !5
p

4b E
m

`

dm̃ S 12
2m2

m̃2
1

m4

m̃4D 1

4m̃22n
.

~B11!
c-
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