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The application oN=2 supersymmetric quantum mechanics for the quantization of homogeneous systems
coupled with gravity is discussed. Starting with the superfield formulation dflar2 SUSY sigma model,
Hermitian self-adjoint expressions for quantum Hamiltonians and Lagrangians for any signature of a sigma-
model metric are obtained. This approach is then applied to coupld®) Rinstein-Yang-Mills (EYM)
systems in axially symmetriBianchitype 1, II, VIII, IX, Kantowski-Sachsand closed-riedmann-Robertson-
Walker cosmological models. It is shown that all these models admit the embedding intd=tl2e SUSY
sigma model with the explicit expressions for superpotentials being direct sums of gravitational and Yang-
Mills (YM) parts. In addition, the YM parts of superpotentials exactly coincide with the corresponding Chern-
Simons terms. The spontaneous SUSY breaking caused by YM instantons in EYM systems is discussed in a
number of example§S0556-282(198)06424-9

PACS numbes): 98.80.Hw, 04.65+¢e

I. INTRODUCTION they exist only if the manifold, determined by the minisuper-
space metric, has corresponding nontrivial cohomologies.

In order to quantize a pure bosonic system one can apply We apply developetil=2 SUSY sigma-model technique
supersymmetry as a mighty tool for dealing with the prob-for the quantization of S(2) Einstein-Yang-Mills (EYM)
lems of a quantum theorjl—5]. The quantization can be system in homogeneous axially symmegianchitype I, II,
done in two ways. The first one is to embed the system in &I11l, IX, Kantowski-Sachs(KS), and closedFriedman-
four-dimensional supersymmetric field theory and then reRobertson-WalkefFRW) cosmological models. Since the
duce it to one dimensiof2,3,6 or, alternatively, to consider work by Bartnik and McKinnor{9] where an infinite set of
the desired Lagrangian as a bosonic part of a supersymmetniegular particle-like S(2) non-Abelian EYM configurations
sigma model after dimensional reductifn,8]. These two was obtained, further interest in the EYM system has been
approaches are not equivalent in general and the results caaused by the unexpected properties of their classical solu-
be different. The second method, i.e., the method of supetions. In particular, it has been shown that non-Abelian EYM
symmetric quantum mechanics, seems more convenient f@ylack holes violate the naive “no-hair” conjecture in an ex-
our purposes and we shall follow it hereafter. ternal region[10], as well as demonstrating rather unusual

In spatially homogeneous cosmological models the onlyinternal structur¢11,12 with the generic space-time singu-
dynamical variable is tim¢ other (spatia) coordinates can larity being an infinitely oscillating, but not of a mixmaster,
be integrated out from the action. Therefore, one can simplyype. The metric in the space-time region under an event
consider the corresponding mechanical system and then tiyorizon of a spherically symmetric black hole is equivalent
to make a supersymmetric sigma-model extension. The case the homogeneous cosmological Kantowski-Sachs metric
of pure gravity and gravity with scalar fields was investi- and this correspondence allows us to apply the methods de-
gated recently by Graham and Bene in the frameworkof veloped in quantum cosmology for the study of black hole
=2 supersymmetri€SUSY) quantum mechanics. However, singularities. Classical EYM solutions in differe(@ianchi
construction of the quantum Hamiltonian, proposed therecosmologies have still not been investigated so far, except
turned out to be Hermitian not self-dual for the case of in-the axially symmetric Bianchi type | model, where chaotic
definite signature of the metric in minisuperspace. In thisbehavior of the metric, inspired by chaos in YM equations of
paper we use another construction of the correspondingotion, has been observgti3,14. In all the classical EYM
Hamiltonian, which, in accordance with general lines ofsystems mentioned above, the nonlinear nature of the source
quantization, is Hermitian self-adjoint for any type of signa-YM field produces nontrivial space-time configurations
ture of the metric in minisuperspace. The obtained quanturmainly in strong field regions, i.e., near black hole or cosmo-
states coincide with those found|[ii,8] only in null fermion  logical space-time singularities, where a pure classical de-
and filled fermion sectors, while in other fermion sectorsscription of space-time should be replaced by a quantum

field theory and our present work is one step towards this

goal.
*Email address: edonets@sunhe.jinr.ru We show that all considered EYM models, containing
TEmail address: tentukov@thsund.jinr.ru initially purely bosonic(gravitational and YM degrees of
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Abelian gauge fields to pure gravitational systems produces 9 9 _ 9 9

additional parts in superpotentials, which, as we shall see D=——-i0— and D= —=—i6—, 5)

below, are equal to Yang-Mills Chern-Simons terms. The d6 at 24 at

connection between the superpotential and the “winding _

number” in some supersymmetric Yang-Mills field theories Which anticommute witif) and(}; the resulting Lagrangian

and sigma models was discussed eafl&8]. However, di-

rect_ generaliz_ation to the EYM supersymmgtric sigma mod- L:f dad% _ Egi,(D(I)i)(B(Di)_,_W (6)

els is not straightforward, since the expression for the space- 2=

time metric, which in turn determines the form of thesatz . . ) )

for the Yang-Mills field, can be arbitrary. Therefore the fact!S invariant under supersymmetry transformatiods by

that theN=2 supersymmetric sigma model based on axiallyconstruction and it corresponds to the one-dimensidhal

symmetric homogeneous EYM systems respects this result i§ 2 SUpersymmetric sigma model, characterized by the met-

quite nontrivial. ric g;;(i,j=1,. n) of the ‘ftarget” mamfold M(gi;) and
The paper is organized as follows. In Sec. Il we discus$h€ superpotentialV, both being a function of the superfield

formal aspects oN=2 SUSY sigma models, starting with P'. ] ] o ]

the superfield approach. In Sec. Il the desired embedding of Note that the Lagrangiaf6) is self-adjointfor any signa-

EYM systems into thél=2 SUSY sigma model is described ture of the metricg;; . This fact is especially important for

and explicit expressions for superpotentials are given. Th&onsidering homogeneous systems coupled with gravity,

quantization and SUSY breaking by YM instantons are dis_slnce in these cases the manifdiddescribed by the metric

cussed in Sec. IV. gij is not Riemannian. _ o
After integration over the Grassman variables and elimi-

Il N=2 SUSY QUANTUM MECHANICS nation of an auxiliary field ,'onfe gets a more familiar com
ponent form of the Lagrangian:
Let us first recall some main featuresf2 supersym-
metric quantum mechanics, developed mainlyir5]. We
shall follow the superfield approach, since it is more geo-
metrical, rather than the component one, and the component 1 1
form of the corresponding Lagrangian obtained is obviously T IR EHEE = Z il ()W W= 9. WE &
invariant under the desired SUSY transformations. Consider 2Rk €6~ 501(Q) I, HWEL,
superspace, spanned by the coordinateg, §), wheret is 7)
time, while # and its conjugatef are nilpotent Grassman i . )
variables. TheN=2 supersymmetry transformations in su- WhereR; andI';, are the Riemann curvature and Christof-

perspace with the complex odd parametdrave the follow-  fel connection, corresponding to the metgg. The super-
ing form: symmetry transformations can be also written in the compo-

nent form

St=ieh+ieh, o
6q'=eg' — et

1 —
L=>gi(a)a'd +igy(@)€ (& +Tha"¢)

00=¢ d0=e @ 5¢'= e(~ig' + T}~ W),
which are generated by the linear differential operators — ,
s¢=e(iq +T 8 ~dwW), (8
J 9 — 9 —9
Q:—_+|Hﬁ and Q= —+i6 —

70 e (2)  which allow us to find the conserved supercharges using the
a0

standard Noether theorem technique:

Now one can introduce the main object of the theory — the Q=4£(g,q +idgW),
real vector superfiele': . '

Q=¢&(gyg'—iawW). ©)
, ] Following the general lines of quantization of the system
whereq' stands for all bosonic degrees of freedom of thewith hosonic and fermionic degrees of freedfts], we in-
system¢' and¢&' are their fermionic superpartners, aRtdis  troduce the canonical Poisson brackets

an auxiliary bosonic field. Since the superfidii transforms _ _ _ S _
under the supersymmetry transformations as {d',Pgi}=06;, {€ Pa}=—126,, {€.Pa}=—¢;, (10

D'=q'+0¢ — 9 + 9OF', &)

5D = (e + €)', (4) WhereP, P, andPg are momenta, conjugate &9, ¢,
and¢'. After finding their explicit form
the most general supersymmetric Lagrangian can be obtained - _
in terms of the supercovariant derivatives Pq=0ijq'+ilj.iké & (12)
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Pi=— igijgj, P#=0, (12) giving Hy in the classical limit, i.e., when all fermionic fields
are set equal to zero.
one can conclude from Eq§l2) that the system possesses The important point is that the operatd® are nilpotent

the second class fermionic constraints and mutually Hermitian adjoint with respect to the measure
_ VI—gld"g and, therefore, the energy operatdris self-
Xxé=Pg+igi& and xg=Py, (13 adjoint for any signature of the metrig;; . Now the La-
] grangian(7) is self-adjoint after the fashion of construction,
since since we use real superfields and hence the complex Noether
o charges and their quantum mechanical expressions are Her-
Ixé Xk ==19i; - 19 itian adjoint to each other.
Therefore, the quantization has to be done using the Dirac Obviously, now one can consider two first order differen-
brackets, defined for any two functioig, andV, as tial equations on the wave function,

1 = =
(Va Voo ={Va Vol ~ (Vaxeh e {xs Vol (15 Qle)=0 and Qlp)=0. @3
_ o o ~and therefore linearize the operator equatidt); the exis-
Using Eg. (15), one can easily find nonvanishing Dirac tence of normalizable solutions of the systé28) means, in
brackets between bosonic and fermionic degrees of freedomyyrn, that supersymmetry is unbroken quantum mechanically.
Doy N In order to solve the system consider the Fock space
{d'.Pgto=9;, {&,&}p=—ig". (16) spanned by the fermionic creation and annihilation operators

Then, after replacing the Dirac brackets with a graded comé. and &, respectively, with[£%,£], =»*". The general
state in this Fock space is obtained in terms of the series

mutator .
expansion
{l}D*)i[l]Il (17)
1— _
one obtains the followinganticommutation relations: lp)=F(q)|0)+--- +n_|§al. - EF, . (0)]0)
[q',Pgil-=id, [£.,8],=g. (18) .
To make a quantum expression for superchafg@e# is =F(@[0)+--- +H§I1' ' 'glnFi1-~in(q)|o>’ (24)

convenient to introduce the projected fermionic operators

§a=ei_§“ and ga:ezgﬂ where e; is inverse to the tetrad where the coefficients in expansions of this series are

el(ef'e,= ), related to the metrig;; of the “target” mani-  p-forms defined on the manifoltf(g;;), and their number

fold M and to the metric of its tangent spagg, in the usual  due to the nilpotency of fermionic creation operators is finite.

way, e{“e}’nabz gij - Since the fermion number operatie= £2£, commutes with
However, the explicit form of the supercharges dependshe HamiltonianH and

on the choice of operator ordering and therefore is ambigu-

ous. We take it as ih3]: [N,Q]_=-0, [N,Q]_=0, (25)
_ i . ea b .
Q=£%L(P+iwip&2E°+idW), one can consider states characterized by the different fermion
S — = numbers separately. Now the solution in empty and filled
Q=§%,(Pi+iwiapé®E—iaW), (19 fermion sectors is simply expressed in terms of the superpo-

. _ . _ tential W as follows:
wherew;,p, is the corresponding spin connection.

In _what foIIc_)ws,. we shall c_onsider systems subject to the |po)=const< e Y|0), (26)
classical Hamiltonian constraint

1 1 1o =
Ho=59"PiP;+ 5g'(q) 3, Wo,W=0, (20) |pn) = cONSK &7 - - £%e, .o €7Y]0). 27

which in the quantum case should be replaced by the condi- In order to investigate the solutions in other fermion sec-
tion on the quantum state), tors, let us first recall2] that in the case of vanishing super-

potential 0perat0r§0 andQ, (supercharges witlV=0) act

Hlp)=0, (1) on thep-forms F as exterior and co-exterior derivatives, re-
with the Hamiltonian spectively. So solution of the equati@y|p)=0 cannot be
written as
1 —
H==[Q, , 22 A
22l (2 [pp) = Qulop-1) 29
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only if the correspondingpth conomology grougiP(M) of  where o' are basis left-invariant one—formsh()i=%C}kwj
the manifoldM(gj;) is nontrivial. Before generalizing this /\w*) for the spatially homogeneous three-metrics, depend-
result to systems with nonzero superpotentlfirst note  ing on three spatialnot necessarily Cartesipcoordinates

that X,Y,Z: Bianchi type I:

Q=e"YQue" and Q=e"Q,e~W. (29 w'=dx, w’=dy, w’=dz (33
Now, using Egs(28) and(29) one can prove that the general Bianchi type II:
solution in p-fermion sectors §=1, ... n—1) of the first 1 2 3_
equation in Egs(23) for the case of trivial cohomology w'=dz, o”=dx, @ =dy—xdz (34)
groupHP(M) is Bianchi type VIII:

lpp)=Qlop-1). (30 ol=dx+(1+x3)dy+ (x—y—x3?y)dz,

However, becaus€ and 6 are Hermitian adjoint to each w?=dx+(—1+x?)dy+ (x+y—x?y)dz
other, the second equation in Eq23) indicates that this
state has zero norm and consequently is unphysical. There- w’=2xdy+(1-2xy)dz, (35

fore the possible existence of supersymmetric ground states, )
i.e., solutions of the zero-energy Schinger-type equation Blanchi type IX:
(21), is directly related to the topology of the considered
manifold M(g;;), since all states except those in purely
bosonic and filled fermion sectors can be excluded even
without solving the systen23), if the topology of the mani-
fold M(g;j) is trivial. w3=cosxdy+dz. (36)

For purely bosonic systems with nonvanishing potential
energy the described=2 supersymmetrization turns outto ~ As was shown by Darian and Kunz|&3], the general
be the simplest possible one and it can be applied for canonansatz for an S(2) Yang-Mills field, compatible with the
cal quantization of any appropriate homogeneous cosmologsymmetries of axially symmetric Bianchi-type cosmological
cal model coupled with matter. After the choice of operatormodels, is also expressed in terms of two independent real-
ordering in the supercharges, E@1) in the null fermion valued functionsx(t) and y(t) of a cosmological time only
sector corresponds to the Wheeler-DeWitt equation for th@nd has the form
considered Einstein-matter system and its soluii@8) is

wl=sinzdx—coszsinxdy,

w?=coszdx+sinzsinxdy,

. . . . 4 _ 1 2 3
then easily obtained in terms of superpotentill since A=a(t) (o T+ o)+ y(t) 0’3, (37
SUSY allows us to linearize the quantum Hamiltonian equa- .
tion. where 7, are SU2) group generators, normalized fag , 7]
= Eijka . ) )
Kantowski-Sachs space-time
Ill. N=2 SUPERSYMMETRIZATION OF SU (2)
EINSTEIN-YANG-MILLS COSMOLOGICAL MODELS ds?= —dt2+b3(t)dr2+b2(t)d 62+ b(t)(sin 8)2d 2

(38)
Now we are in a position to make thé=2 supersym- ) ) o )
metric extension of homogeneous axially symmetric(BU does not belong to Bianchi classification and admits an ad-
Einstein-Yang-Mills systems given by the action ditional spherical symmetry; so the 8)J YM Ansatzhas a
different form, originating from the WittefAnsatzfor the

static spherically symmetric case after the mutual replace-

- B)  mentr—t,t—r:

1
_ 4 _ _ " A Auv
S—fd X G(R ZFMVF o

We restrict ourselves to a subclass of homogeneous Ao=0, A=y(ULy, (39
space-times which admit a representation in the form of an _ .
unconstrained Hamiltonian system for a corresponding clas- Ag= Lt a(Ols,  Ag=sindLota(tls],
sical coupled system of equations; i.e., we consider axiallyyhere
symmetric Bianchi type I, 1, VIII, IX (axially symmetric
Bianchi type VIl is equivalent to Bianchi type, IKantowski-
Sachs, and closed Friedmann-Robertson-Walker cosmologi-

L,=(sin#cose¢, sindsin ¢, cosb),

L,=(cosf cos¢, cosfsing,—sinb),

cal models.

The general diagonal Bianchi-type axially symmetric La=(—sin¢, cose,0)
space-times are parametrized by two independent functions
of a cosmological timé, (t) andbs(t), are spherical projections of $2) generators.

— 1o - ) 32 We also consider the closed Friedmann-Robertson-
ds’=—dt?+bi()[(0h)?+(0?)?]+b3(t)(0*)? (32 walker model separately, because its general ¥hbatz
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TABLE |. Potentials and superpotentials.

LagrangianL g Superpotential
W=Wg,+Wyy
1 by
Bianchi type | K—|—a?y2+—a?|: 0+ a?y;
P bs" 7 op2
Bianchi type I K— } b_§+i 2,24~ _3(a2+ ¥)? b2+ (a?y+399);
412 by 2 p? 3
L 1 b3 1 1 by
Bianchi type VIII K— 3 b_§+b3+b_3a272+§ b_i(az_ v2|; 1(2b2—b2) + (a?y— 39?);
N 1 b3 1 1b
Bianchi type IX K-|Z b—g— b3+b—3a2()/— 1)2+§ b—g(az— 2|, 3(2b2+b2) + (¥ (y—1)— 39);
or
2(b3—4bsbg) +[a’(y— 1)~ 3];
1 1 by
KS —|—P¥—by+= —(a?—1)?|; 2b;bs+ y(a?—1);
K baa)/z b3+2 bi(a 1)}, 1bs+ y(a®—1)
. . 1 (1— 2\2
FRW ~3bb?+ 3ba?+3b—5 ok ba) ; b7+ (30°-a);

[16] [SU(2) YM field on S°] is not obtained from Bianchi- and only if, the potentiaV(q) admits the expression via a
type IX after settinga(t)= y(t) in Eq. (37). The closed functionW(q), called a superpotential:

FRW model with the interval

JW(q) dW(q)

aq  oq

1 .
ds?=—de?+ b2()[dx?+siPx(d6? +si2od¢?)]  (40) V(@)=59'(q) (44)
(x, 6, and¢ are angles o1%°) admits the following repre- _ _
sentation for the S(2) YM field, expressed in terms of a In this caseN=2 SUSY Lagrangiart7) and the correspond-
single real-valued functior(t): ing Hamiltonian, obtained after usual Legendre transforma-

tion, are self-adjoint for any signature of the mefj¢in the
extended minisuperspace.

The kinetic terms for all Bianchi and Kantowksi-Sachs
models are the same,

1
A,=0, Aj=§[a(t)+1]uaju*, (42)

U=expix[sinf(o; cos¢+ o, sing)+ o3 cosd]}, )

: w b
— 2k ‘2 ) 1
j:1’2’3’ (42) K— bl b3 2b1b3b1+a b3+’y _2b3' (45)

whereg; are Pauli matrices. . _ ~ and the only difference between them is due to the potential
Inserting theseAnsdze into the action and integrating terms. Using the expression for the metric on the extended
over all variables exceftone obtains the one-dimensional “minisuperspace,”

Lagrangian
b%
gblbl:_2b3' gb1b3:_2b1' Jaa=2D3, gW:b_g.

(46)

here, g;;(q) is the metric in the extended minisuperspace,and the explicit form of the potentials, we have found some
i.e., in the configuration space of spatially homogeneous aXisuperpotentiaIs as a solution of E@d4), hence making an
ally symmetric three-metrics coupled with the correspondingy=2 SUSY extension of the given Einstein-Yang-Mills sys-
SU(2) Yang-Mills fields. ‘ tems. The results are collected in Table I.

Let us consider the functionsg'=(b;,bs,e,7) as a One should note that the obtained superpoteniéis all
bosonic components of the superfi¢8l. One can introduce these cases turn out to be direct sums of pure gravitational
the same number of fermionic field§' @nd¢') and therefore W, (first listed in[8] in terms of Misner variablgsand
make N=2 supersymmetrization of the Lagrangiag if, Yang-Mills partsWy,. This fact is quite interesting and

1
Lo=50ij(a'a’ —V(q)=K-V; (43
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does not followa priori from general expectations, since in ric sigma model extension with the superpotentials given ex-
the sigma-model approach considered above gravitationglicitly in Table | and this gives us a suitable background for

and Yang-Mills variables in the Lagrangién are not sepa- the quantization.

rated. Moreover, it seems that the YM field is a unique one,
which, being coupled with gravity, can allow the correspond-
ing superpotential to be in the form of a direct sum. It fol-

lows from the following statement that superpotential is also
the least Euclidean action—solution of the Euclidean A. Supersymmetry at classical and quantum levels
Hamilton-Jacobi equation of the considered system. One can

reconstruct from the superpotential the corresponding Eu,, As can be seen from the supersymmetry transformations
. ) Perpoter : ponding (8), in order to prevenN=2 SUSY breaking at the classical
clidean solutions, those which give the main contribution to

the wave function in a quasiclassical approach. So the graV{[_evel, the classical pure bosonic configurations must satisfy

tational part of the superpotentily, determines the Euclid- he properties

ean gravitational background configurations which should i) — i i(+)) —

not be changed if a matter field is added. It is possible only if a(U=0 and FW(G(1)=0, 48
matter configurations do not contribute to the energy- ] ) o ]

momentum tensor. The Yang-Mills part of the superpotentiaflong with the classical Hamiltonian constrai@0). Such
Wy just provides such a possibility since it produces self-classical conf_lguratlons reaII_y exist in an usual field theory in
dual YM instantons with the energy-momentum tensor iden? flat space-time, and the simplest well-known example is a
tically vanished. We discuss this point in more detail in thescalar rest particleq(=0) on a bottom of a potential with
next section. V(q')=0.

Note that the full superpotenti&l/=Wg,+ Wy does not In contrast with such examples, dealing with uncon-
exist as a solution of Eq444) if we cancel one of the relevant strained homogeneous systems with gravity included, any
YM function « or y; there are no nontrivial self-dual solu- nontrivial classical solution of Einsteifor Einstein coupled
tions of YM equations of motion with one of YM functions With a mattey equations never has all momenta vanished,
canceled andiVy,, ceases to exist in this case. The questiong/(t) #0. These systems satisfy E®0) due to the dynami-
about other solutions of Eq44) which are not direct sums cal balance between the kinetic and potential terms with both
of gravitational and YM parts is still open; however, it seemspositive and negative signs.
unlikely that such solutions can be obtained in a closed ana- Hence, any homogeneous Einstédior Einstein-matter
lytical form. system, being embedded into thé=2 supersymmetric

On the other hand, one more crucial observation can bgigma model, never has solutions of equations of motion
done, that for all considered models the Yang-Mills part ofwith unbroken supersymmetry; i.e., supersymmetry is always
the superpotential coincides with the corresponding Chernspontaneously broken at the “tree level.”

Simons functional, calculated on a three-dimensional dlice  Let us see what happens in the quantum mechanical ap-
=const. Indeed, it can be checked that the YM Chernproach. In the Einstein-Yang-Mills systems considered
Simons terms above the number of bosonic functiog'sis 4, which is also
the fermion number of the filled fermion sector. Therefore
1 , 1 we shall consider solutions of the zero-energy Sdimger-
WYMZEJ' d* |- G| (AiﬁyAiJr §fabcAiAzA5 type equatior(21) in these empty and filled fermion sectors.
The superpotentialvV(q) is always defined up to the sign,
47 since it is the s " i
quare root” of the bosonic potenth(q).
turn out to be solutions of the Euclidean Hamilton-JacobiBoth signs are physically acceptable and correspond to the
equation and therefore play the role of the Yang-Mills part ofsolutions in empty Eq(26), and filled, Eq.(27), fermion
the superpotential. Such a coincidence of YM Chern-Simonsectors when finding the supersymmetric wave functions.
terms(47) with YM superpotential§44) in the framework of ~ The normalizability of bosonic wave function for “positive”
the one-dimensional sigma model describing a YM fieldsuperpotential means in turn the normalizability of filled fer-
coupled with gravity seems to be very surprising. Definitely, mionic wave functions for the “negative” superpotential and
this statement is not true in the general case of an arbitraryice versa. We define the norm of the physical state as
space-time and takes place for the suggested models asaf v|—g|{p||p)d*q in order to avoid the problem of the
consequence of the symmetries of the space-time metrics amégative norm in the four-fermion sector, caused by the
corresponding YMAnsdze Note, that there exist no similar timelike component of the fermionic field. The plus sign in
expressions for th#/,, part of the superpotential in terms of the definition of the norm corresponds t9W/(q) while the
a functional of gravitational variables except the Bianchi-minus sign has to be taken asw(q).
type IX model with a nonzero cosmological constant, where Let us accept for definiteness the positive sign of the su-
the Chern-Simons functional in terms of Ashtekar’s variableperpotential. First consider pure gravitational systems, when
[17] is also an exact solution of the Ashtekar-Hamilton- o and+y functions along with their fermionic partners are set
Jacobi equatioffi18]. equal to zero. As was stated above, supersymmetry is spon-

So we have shown that the considered homogeneous axaneously broken for any nontrivial solutions of Einstein

ally symmetric EYM systems admit =2 supersymmet- equations. Quantum mechanically the supersymmetry is re-

IV. QUANTIZATION AND SUSY BREAKING BY YM
INSTANTONS
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stored for Bianchi type I, Il, and 1%,, Kantowski-Sachs, Bianchi type I, II, IX;), KS, and FRW which is quantum
and FRW models since the solution of E€R1), |pg") mechanically supersymmetric, since it admits a normalizable
= consix e*Wgr|o>, in the null fermion sector is normaliz- zero-energy solution of the Wheeler-DeWitt equati@i).
able: This mechanism turns out to be quite similar to the one con-
sidered in[1,20—279 where the SUSY breaking by instanton
e e _ow configurations has been discussed.
JO dleO dbs | —gle” *or<ee. (49 Indeed, as was already mentioned, the superpotential
W(q) (if exists) is one of the solutions of the Euclidean
Therefore we are facing an interesting situation, wherddamilton-Jacobi equation and represents a “least” Euclid-
unlike ordinary supersymmetric quantum mechanics, the suean action of field configurations, giving the main quasiclas-
persymmetry being spontaneously broken at the “tree level”sical contribution into the wave function and providing the
is then restored quantum mechanically. SUSY breaking after inclusion of the Yang-Mills field. The
The only exceptions are the secofid Table ) superpo- explicit form of the superpotential allows us to reconstruct
tential for Bianchi type X, and Bianchi type VIIl where such classical configurations by solving the first order sys-
the supersymmetry remains broken at the quantum level gem:
well, since their norm(49) diverges at the upper limit.
Further inclusion of the Yang-Mills field spontaneously i
breaks the supersymmetry again, because, as one can see 9 9=
from Table I, the Yang-Mills part of the superpotenti, ,,

for all considered models, being the cor.responding Chemeor pure gravitational degrees of freedom these equations are
Simons term, is an odd function of and y; consequently, equivalent to the(anti)self-duality gravitational equations

the YM parts of the wave function|py™)=const L : 1
. . ! ) =*+R while Wy (q) part of the superpotential in
+W. yA2N yI32N YM

x e="vm|0) both in null and filled fermion sectors are not Eq. (53) gives rise to theanti)self-dual Yang-Mills equa-

normalizable: _ = . L

tions F} ,==*F7, on a given gravitational background de-
+o +o . termined by thew, .
f_ daf_ dy|—gle"?Wym—oo, (50 Then, (anti)self-dual Yang-Mills instantons in our sys-
tems can be interpreted as a tunneling solutfaith the
In order to find possible supersymmetric wave functiong?©nvanishing Euclidean actiprbetween topologically dis-
in one-. two-. and three-fermion sectors. one has to investiinCt vacua. In this case the YM instanton contribution pro-
gate the topology of the extended minisuperspace. The siny/des the SUSY breakdown due to the energy shift from the

plest way of doing that is going to the Misner parametriza-i”itial zero to some positive level and this fact is expressed in
tion [19] of the space-time metrie32): the nonnormalizability of the YM part of the zero energy

wave function|pg ™) = constx e~ Wm|0).

1 As an illustration of these statements, let us consider Eu-
ds’=—N*(t)dt*+ gGZA(t)+ZB(t)[(w1)2+(‘02)2] clidean configurations in Bianchi type IX and Kantowski-
Sachs EYM systems.

Bianchi type IX systenThe solutions of Hamilton-Jacobi
equation(53), which correspond to the gravitational part of
_ _ o both possible superpotentiawg,(mx(l))=%(2b§+ b3) and
In terms of Misner variables the metric in the extendeder(le(z)):%(b§_4blbg), have been discussed by Gib-
minisuperspacé46) has the simple diagonal form

a(Wgr+WYM)

(53)
aq'

1
+€e2A(t)—4B(t)(w3)2. (51)

bons and PopE23]. For our purposes we would like to men-

Oaa=—1, Qgpp=1, g,,=2e 2A 28 9,,= g 2A+4B tion some of them u_sing a slightly different notatior_l.
(52) One of the solutions of Eq53) with the normalizable

superpotentiawgr(mx(l)) turns out to be théanti-)self-dual
which shows that the topology of the extended minisuper£guchi-Hansori24] metric which has the form
space is equivalent to the Minkowski one with all cohomolo-
gies trivial, HP(M(g;;))=0, p=1,2,3, and in accordance r2 r2
with the discussion of Sec. Il, no physical states in one-, dSz:fzdeJrz[(wl)er(w2)2]+zf72(w3)2, (54)
two-, and three-fermion sectors exist since they have zero
norm. Similarly, there are no physical states except the onesith
in null and filled fermion sectors in the considered pure
gravitational systems.

47-1

: (59

a

fzz{l—
r

B. A role of instantons

Let us discuss in more detail the mechanism of spontaneand ' is determined by Eqs(36). In order to bring this
ous supersymmetry breaking in the null fermion sector whemetric to the form(32), one should introduce the “Euclidean
the YM field is added to a pure gravitational systéuch as time” r as
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41-12 of Eg. (563) with WYM(KS)Z—y(aZ—l) one obtains the
dr. (56)  usual YM (anti-)self-duality equations ifiR*, written in the
“polar” coordinates

The Eguchi-Hanson metric has vanishing Euclidean action

=0, which is completely determined by its surface con- a=ay, (63)
tribution [25], since the volume contribution is canceled
identically (R=0 “on shell”) for EYM systems. .

Inserting the expression for the metric functions into the Mno=a-1, (64)
Hamilton-Jacobi equations for the Yang-Mills part of the

) 1 ) .

superpotentialVy s x) = — @*(y—1)+3* and differenti-  \yjth the well-known family of YM instanton solutions, hav-
ating with respect to the introduced variablene obtains the ing the topological chargk=1 [29];
system

a

r

e

.2

a:Ffz(ay—a), (57 y=¢ and a=e’g, (65
.2

er(a2_7)7 (58  where

which are the self-duality YM equations on an Eguchi-

Hanson background solved by the family of instanton solu- — 1-g¢° _[a—t)fax—t 66
tions[26] b= 2t | 9 a+t)la+t)
assinh(p)
“si +Ya)l’
sinffay(p+a, Note that the dimension of moduli spadel of SU(2)

5 Yang-Mills instantons with a topological charg®n a given

r_: Riemannian 4 D manifold M [which has first Betti number
5> =coth(p), (59 . i ) I
¢, and the dimensiorc, of the maximal submanifold in
,  YMo_ o 2,2 B cohomologiesH?(M,R) where the corresponding intersec-
with the actionSgy=8w“(aj—1)/2 fora;>1, a,=0, and  tjon form is negatively defindds [30]
StM=8n2a%/2 for a;>1,0<a,<x, wherea, anda, are
the constants of integration.
The extremal Euclidean configurations, produced by the
non-normalizable superpotentiwgr(mx(z)), are self-dual

Taub-NUT (Newman-Unti-Tamburinpgravitational instan-
tons with nonvanishing actid27]; similarly, the YM part of
the superpotential gives rise to the self-dual YM instantonsind in the simplest Kantowski-Sachs case With= R*(k
[28] on a Taub-NUT background. ' _ =1,c,=c, =0) is equal to 5. In the framework of our ap-
The KS systentor the EYM system in Kantowski-Sachs proach, since we quantize the system reduced to one dimen-
space-time withWg,«s) = 2b b3 the gravitational degrees of sjon, only some of these instantons are taken into account. In
freedomb; andb; obey the following self-duality equations: fact, we deal with the subclass of all possible YM instantons,
originating from the choseAnsaze which share the space-
) ) time symmetries in the Lorentzian sector. However, their
b;bs+bsby=bs, (60)  contribution breaks the supersymmetry fatally in conformity
with the general expectations, as should take place in a full
4—D quantum theory.
b,=1, (61 To summarize, it is shown that the spontaneous super-
symmetry breaking which takes place if the Yang-Mills field
is added to pure gravity is caused in a quasiclassical ap-
satisfied by proach by a YM instanton contribution to the wave function.
This contribution, in accordance with general expectations,
provides the energy shifiE from a zero level. To estimate
b;=t and bs;=1, (62)  this energy shift for EYM systems an instanton calculation
technique can be used, which also should give the possibility
to find the lowest level normalizable wave function
which is nothing more than the flat EuclideRfA space-time  |p®),H|pT"™=AE|pf*™) for the considered models. This
metric withr andt interchanged. From the Yang-Mills part work is in a progress now.

y=astanh(p)cottfa;(p+az)],

dim(Msu(z)):8k_3(1_C1+C2_), (67)
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V. CONCLUSIONS sum of gravitational and Yang-Mills parts. After the quanti-

We would like to conclude with the following remarks zation the only nontrivial zero-energy wave functions in null
. : " and filled fermion sectors turns out to have a diverging norm
The N=2 SUSY quantum mechanical sigma-model ap- ging

; .and this fact indicates spontaneous breaking of supersymme-
proach allows us to obtain conserved supercharges as belﬂg’ caused by YM instantons

Hermitian adjoint to each other, along with the self-adjoint
expressions for the Hamiltonian and Lagrangian for any sig-
nature of a sigma-model metric. This gives the possibility to
use the supersymmetry as a tool for the quantization of vari- We would like to thank E. A. Ilvanov, G. Jackeli, S. O.

ous homogeneous systems coupled with gravity if they caikrivonos, A. P. Nersessian, M. S. Volkov, and especially A.

be embedded into the considemde-2 SUSY sigma model. I. Pashnev for helpful discussions and comments. This work
The desired embedding has been done for couple@@®)SU was supported in part by Russian Foundation for Basic Re-
EYM systems in some cosmological models which admitsearch Grant 96-02-18126. The work of M.M.T. was also

ACKNOWLEDGMENTS

explicit expressions for the superpotentials as being direcsupported in part by Grant INTAS-96-0308.

[1] E. Witten, Nucl. PhysB185, 513(1981).

[2] E. Witten, Nucl. PhysB202, 253(1982.

[3] M. Claudson and M. Halpern, Nucl. PhyB250, 689 (1985.

[4] V. Akulov and A. Pashnev, Theor. Math. Phy85 1027
(1985.

[5] F. Cooper and B. Freedman, Ann. Phybl.Y.) 146 262
(1983.

[6] P. V. Moniz, Int. J. Mod. Phys. A1, 1763(1996; 11, 4321
(1996; Int. J. Mod. Phys. D6, 625 (1997).

[7] R. Graham and J. Bene, Phys. Lett3B2 183(1993.

[8] J. Bene and R. Graham, Phys. Rev4®) 799 (1993.

[9] R. Bartnik and J. McKinnon, Phys. Rev. Leil, 141(1988.

[10] M. S. Volkov and D. V. Gal'tsov, Pis'ma Zh.ksp. Teor. Fiz.
50, 312 (1989 [JETP Lett.50, 345 (1990]; Sov. J. Nucl.
Phys.51, 747 (1990; H. P. Kunzle and A. K. M. Masood-ul-
Alam, J. Math. Phys31, 928 (1990; P. Bizon, Phys. Rev.
Lett. 64, 2844 (1990; P. Breitenlohner and P. Forgs D.
Maison, Commun. Math. Phy&63 141(1994; B. Kleihaus,
J. Kunz, and A. Sood, Phys. Rev. 33, 5070(1996.

[11] E. E. Donets, D. V. Gal'tsov, and M. Yu Zotov, Phys. Rev. D

56, 3459(1997); Pis'ma Zh. 'Eksp. Teor. Fiz.65, 855(1997)
[JETP Lett.65, 895(1997)].

[12] P. Breitenlohner, G. Lavrelashvili, and D. Maison, Nucl. Phys.

B524, 427 (1998.
[13] B. K. Darian and H. P. Kunzle, Class. Quantum Grag,
2631(1996; J. Math. Phys38, 4696(1997.

[14] J. D. Barrow and J. Levin, Phys. Rev. Le#0, 656 (1998.

[15] R. Casalbuoni, Nuovo Cimento 83, 389(1976.

[16] A. Hosoya and W. Ogura, Phys. Lett. 225 117 (1989.

[17] A. Ashtekar, New Perspectives in Canonical Gravi{ib-
liopoluos, Naples, ltaly, 1988

[18] H. Kodama, Phys. Rev. B2, 2548(1990.

[19] C. W. Misner, K. S. Thorne, and J. A. Wheel&ravitation
(Freeman, San Francisco, 1973

[20] P. Salomonson and J. W. van Holten, Nucl. PH§%96, 509
(1982.

[21] R. Abbott, Z. Phys. C20, 213 (1983; R. Abbott and W.
Zakrzewski,ibid. 20, 227 (1983.

[22] A. Khare and J. Maharana, Z. Phys.2G, 191 (1984).

[23] G. W. Gibbons and C. N. Pope, Commun. Math. Pi&@ 267
(1979.

[24] T. Eguchi and A. J. Hanson, Ann. PhyhLY.) 120 82(1979.

[25] G. W. Gibbons and S. W. Hawking, Phys. Rev.1B, 2752
(1977.

[26] H. Boutaleb-Joutei, A. Chakrabarti, and A. Comtet, Phys. Rev.
D 21, 979(1980.

[27] S. W. Hawking, Phys. Leti60A, 81 (1977.

[28] H. Boutaleb-Joutei, A. Chakrabarti, and A. Comtet, Phys. Rev.
D 21, 2280(1981); 21, 2285(1983.

[29] E. Witten, Phys. Rev. LetB8, 121(1977.

[30] M. F. Atiah, N. Hitchin, and L. M. Singer, Proc. R. Soc. Lon-
don A362, 425(1978.

023515-9



