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Towards N52 SUSY homogeneous quantum cosmology: Einstein-Yang-Mills systems
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The application ofN52 supersymmetric quantum mechanics for the quantization of homogeneous systems
coupled with gravity is discussed. Starting with the superfield formulation of anN52 SUSY sigma model,
Hermitian self-adjoint expressions for quantum Hamiltonians and Lagrangians for any signature of a sigma-
model metric are obtained. This approach is then applied to coupled SU~2! Einstein-Yang-Mills ~EYM!
systems in axially symmetricBianchi-type I, II, VIII, IX, Kantowski-Sachs, and closedFriedmann-Robertson-
Walker cosmological models. It is shown that all these models admit the embedding into theN52 SUSY
sigma model with the explicit expressions for superpotentials being direct sums of gravitational and Yang-
Mills ~YM ! parts. In addition, the YM parts of superpotentials exactly coincide with the corresponding Chern-
Simons terms. The spontaneous SUSY breaking caused by YM instantons in EYM systems is discussed in a
number of examples.@S0556-2821~98!06424-8#

PACS number~s!: 98.80.Hw, 04.65.1e
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I. INTRODUCTION

In order to quantize a pure bosonic system one can a
supersymmetry as a mighty tool for dealing with the pro
lems of a quantum theory@1–5#. The quantization can be
done in two ways. The first one is to embed the system
four-dimensional supersymmetric field theory and then
duce it to one dimension@2,3,6# or, alternatively, to conside
the desired Lagrangian as a bosonic part of a supersymm
sigma model after dimensional reduction@7,8#. These two
approaches are not equivalent in general and the results
be different. The second method, i.e., the method of su
symmetric quantum mechanics, seems more convenien
our purposes and we shall follow it hereafter.

In spatially homogeneous cosmological models the o
dynamical variable is timet; other ~spatial! coordinates can
be integrated out from the action. Therefore, one can sim
consider the corresponding mechanical system and then
to make a supersymmetric sigma-model extension. The
of pure gravity and gravity with scalar fields was inves
gated recently by Graham and Bene in the framework oN
52 supersymmetric~SUSY! quantum mechanics. Howeve
construction of the quantum Hamiltonian, proposed the
turned out to be Hermitian not self-dual for the case of
definite signature of the metric in minisuperspace. In t
paper we use another construction of the correspond
Hamiltonian, which, in accordance with general lines
quantization, is Hermitian self-adjoint for any type of sign
ture of the metric in minisuperspace. The obtained quan
states coincide with those found in@7,8# only in null fermion
and filled fermion sectors, while in other fermion secto
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they exist only if the manifold, determined by the minisupe
space metric, has corresponding nontrivial cohomologies

We apply developedN52 SUSY sigma-model techniqu
for the quantization of SU~2! Einstein-Yang-Mills ~EYM!
system in homogeneous axially symmetricBianchi type I, II,
VIII, IX, Kantowski-Sachs~KS!, and closedFriedman-
Robertson-Walker~FRW! cosmological models. Since th
work by Bartnik and McKinnon@9# where an infinite set of
regular particle-like SU~2! non-Abelian EYM configurations
was obtained, further interest in the EYM system has b
caused by the unexpected properties of their classical s
tions. In particular, it has been shown that non-Abelian EY
black holes violate the naive ‘‘no-hair’’ conjecture in an e
ternal region@10#, as well as demonstrating rather unusu
internal structure@11,12# with the generic space-time singu
larity being an infinitely oscillating, but not of a mixmaste
type. The metric in the space-time region under an ev
horizon of a spherically symmetric black hole is equivale
to the homogeneous cosmological Kantowski-Sachs me
and this correspondence allows us to apply the methods
veloped in quantum cosmology for the study of black ho
singularities. Classical EYM solutions in different~Bianchi!
cosmologies have still not been investigated so far, exc
the axially symmetric Bianchi type I model, where chao
behavior of the metric, inspired by chaos in YM equations
motion, has been observed@13,14#. In all the classical EYM
systems mentioned above, the nonlinear nature of the so
YM field produces nontrivial space-time configuratio
mainly in strong field regions, i.e., near black hole or cosm
logical space-time singularities, where a pure classical
scription of space-time should be replaced by a quan
field theory and our present work is one step towards
goal.

We show that all considered EYM models, containi
initially purely bosonic~gravitational and YM! degrees of
freedom, admitN52 supersymmetrization in the framewor
of the N52 SUSY sigma model. The inclusion of non

si
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Abelian gauge fields to pure gravitational systems produ
additional parts in superpotentials, which, as we shall
below, are equal to Yang-Mills Chern-Simons terms. T
connection between the superpotential and the ‘‘wind
number’’ in some supersymmetric Yang-Mills field theori
and sigma models was discussed earlier@2,3#. However, di-
rect generalization to the EYM supersymmetric sigma m
els is not straightforward, since the expression for the spa
time metric, which in turn determines the form of theAnsatz
for the Yang-Mills field, can be arbitrary. Therefore the fa
that theN52 supersymmetric sigma model based on axia
symmetric homogeneous EYM systems respects this resu
quite nontrivial.

The paper is organized as follows. In Sec. II we disc
formal aspects ofN52 SUSY sigma models, starting wit
the superfield approach. In Sec. III the desired embeddin
EYM systems into theN52 SUSY sigma model is describe
and explicit expressions for superpotentials are given.
quantization and SUSY breaking by YM instantons are d
cussed in Sec. IV.

II. N52 SUSY QUANTUM MECHANICS

Let us first recall some main features ofN52 supersym-
metric quantum mechanics, developed mainly in@1–5#. We
shall follow the superfield approach, since it is more ge
metrical, rather than the component one, and the compo
form of the corresponding Lagrangian obtained is obviou
invariant under the desired SUSY transformations. Cons
superspace, spanned by the coordinates (t,u,ū), wheret is
time, while u and its conjugateū are nilpotent Grassma
variables. TheN52 supersymmetry transformations in s
perspace with the complex odd parametere have the follow-
ing form:

dt5 i eū1 i ēu,

du5e dū5 ē, ~1!

which are generated by the linear differential operators

V5
]

]ū
1 iu

]

]t
and V̄5

]

]u
1 i ū

]

]t
. ~2!

Now one can introduce the main object of the theory —
real vector superfieldF i :

F i5qi1 ūj i2uj̄ i1 ūuFi , ~3!

where qi stands for all bosonic degrees of freedom of t
system,j i and j̄ i are their fermionic superpartners, andFi is
an auxiliary bosonic field. Since the superfieldF i transforms
under the supersymmetry transformations as

dF i5~ ēV1eV̄!F i , ~4!

the most general supersymmetric Lagrangian can be obta
in terms of the supercovariant derivatives
02351
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D5
]

]u
2 i ū

]

]t
and D̄5

]

]ū
2 iu

]

]t
, ~5!

which anticommute withV andV̄; the resulting Lagrangian

L5E dudūS 2
1

2
gi j ~DF i !~D̄F i !1WD ~6!

is invariant under supersymmetry transformations~4! by
construction and it corresponds to the one-dimensionaN
52 supersymmetric sigma model, characterized by the m
ric gi j ( i , j 51, . . . ,n) of the ‘‘target’’ manifold M (gi j ) and
the superpotentialW, both being a function of the superfiel
F i .

Note that the Lagrangian~6! is self-adjointfor any signa-
ture of the metricgi j . This fact is especially important fo
considering homogeneous systems coupled with grav
since in these cases the manifoldM described by the metric
gi j is not Riemannian.

After integration over the Grassman variables and elim
nation of an auxiliary fieldFi , one gets a more familiar com
ponent form of the Lagrangian:

L5
1

2
gi j ~q!q̇i q̇ j1 igi j ~q!j̄ i~ j̇ j1Gkl

j q̇kj l !

1
1

2
Ri jkl j̄

ij j j̄kj l2
1

2
gi j ~q!] iW] jW2] i] jWj̄ ij j ,

~7!

whereRi jkl andG jk
i are the Riemann curvature and Christo

fel connection, corresponding to the metricgi j . The super-
symmetry transformations can be also written in the com
nent form

dqi5 ēj i2ej̄ i ,

dj i5e~2 i q̇ i1G jk
i j̄ jjk2] iW!,

dj̄ i5 ē~ i q̇ i1G jk
i j̄ jjk2] iW!, ~8!

which allow us to find the conserved supercharges using
standard Noether theorem technique:

Q5j i~gi j q̇
j1 i ] iW!,

Q̄5 j̄ i~gi j q̇
j2 i ] iW!. ~9!

Following the general lines of quantization of the syste
with bosonic and fermionic degrees of freedom@15#, we in-
troduce the canonical Poisson brackets

$qi ,Pqj%5d j
i , $j i ,Pj j%52d j

i , $j̄ i ,Pj̄ j%52d j
i , ~10!

wherePqj , Pj j , andPj̄ j are momenta, conjugate toqi , j i ,
and j̄ i . After finding their explicit form

Pqi5gi j q̇
i1 iG j ; ikj̄ jjk, ~11!
5-2
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TOWARDS N52 SUSY HOMOGENEOUS QUANTUM . . . PHYSICAL REVIEW D 59 023515
Pj i52 igi j j̄
j , Pj̄ i50, ~12!

one can conclude from Eqs.~12! that the system possess
the second class fermionic constraints

xj i5Pj i1 igi j j̄
j and xj̄ i5Pj̄ i, ~13!

since

$xj i,xj̄ j%52 igi j . ~14!

Therefore, the quantization has to be done using the D
brackets, defined for any two functionsVa andVb as

$Va ,Vb%D5$Va ,Vb%2$Va ,xc%
1

$xc ,xd%
$xd ,Vb%. ~15!

Using Eq. ~15!, one can easily find nonvanishing Dira
brackets between bosonic and fermionic degrees of freed

$qi ,Pqj%D5d j
i , $j i ,j̄ j%D52 igi j . ~16!

Then, after replacing the Dirac brackets with a graded co
mutator

$,%D→ i @ ,#6 , ~17!

one obtains the following~anti!commutation relations:

@qi ,Pqj #25 id j
i , @j i ,j̄ j #15gi j . ~18!

To make a quantum expression for supercharges~9! it is
convenient to introduce the projected fermionic operat
j̄a5em

a j̄m and ja5em
a jm where ea

i is inverse to the tetrad
ei

a(ei
aeb

i 5db
a), related to the metricgi j of the ‘‘target’’ mani-

fold M and to the metric of its tangent spacehab in the usual
way, ei

aej
bhab5gi j .

However, the explicit form of the supercharges depe
on the choice of operator ordering and therefore is amb
ous. We take it as in@3#:

Q5jaea
i ~Pi1 iv iabj̄ajb1 i ] iW!,

Q̄5 j̄aea
i ~Pi1 iv iabj̄ajb2 i ] iW!, ~19!

wherev iab is the corresponding spin connection.
In what follows, we shall consider systems subject to

classical Hamiltonian constraint

H05
1

2
gi j Pi Pj1

1

2
gi j ~q!] iW] jW50, ~20!

which in the quantum case should be replaced by the co
tion on the quantum stateur&,

Hur&50, ~21!

with the Hamiltonian

H5
1

2
@Q,Q̄#1 , ~22!
02351
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giving H0 in the classical limit, i.e., when all fermionic field
are set equal to zero.

The important point is that the operators~9! are nilpotent
and mutually Hermitian adjoint with respect to the meas
Au2gudnq and, therefore, the energy operatorH is self-
adjoint for any signature of the metricgi j . Now the La-
grangian~7! is self-adjoint after the fashion of constructio
since we use real superfields and hence the complex Noe
charges and their quantum mechanical expressions are
mitian adjoint to each other.

Obviously, now one can consider two first order differe
tial equations on the wave function,

Q̄ur&50 and Qur&50, ~23!

and therefore linearize the operator equation~21!; the exis-
tence of normalizable solutions of the system~23! means, in
turn, that supersymmetry is unbroken quantum mechanica

In order to solve the system consider the Fock sp
spanned by the fermionic creation and annihilation opera
j̄a and ja, respectively, with@ja,j̄b#15hab. The general
state in this Fock space is obtained in terms of the se
expansion

ur&5F~q!u0&1•••1
1

n!
j̄a1

••• j̄anFa1•••an
~q!u0&

5F~q!u0&1•••1
1

n!
j̄ i 1

••• j̄ i nFi 1••• i n
~q!u0&, ~24!

where the coefficients in expansions of this series
p-forms defined on the manifoldM (gi j ), and their number
due to the nilpotency of fermionic creation operators is fini
Since the fermion number operatorN5 j̄aja commutes with
the HamiltonianH and

@N,Q#252Q, @N,Q̄#25Q̄, ~25!

one can consider states characterized by the different ferm
numbers separately. Now the solution in empty and fil
fermion sectors is simply expressed in terms of the supe
tential W as follows:

ur0&5const3e2Wu0&, ~26!

urn&5const3
1

n!
j̄a1

••• j̄anea1•••an
e1Wu0&. ~27!

In order to investigate the solutions in other fermion se
tors, let us first recall@2# that in the case of vanishing supe
potential operatorsQ̄0 andQ0 ~supercharges withW50) act
on thep-forms F as exterior and co-exterior derivatives, r
spectively. So solution of the equationQ̄0ur&50 cannot be
written as

urp&5Q̄0usp21& ~28!
5-3
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only if the correspondingpth cohomology groupHp(M ) of
the manifoldM (gi j ) is nontrivial. Before generalizing this
result to systems with nonzero superpotentialW, first note
that

Q̄5e2WQ̄0eW and Q5eWQ0e2W. ~29!

Now, using Eqs.~28! and~29! one can prove that the gener
solution in p-fermion sectors (p51, . . . ,n21) of the first
equation in Eqs.~23! for the case of trivial cohomology
groupHp(M ) is

urp&5Q̄usp21&. ~30!

However, becauseQ and Q̄ are Hermitian adjoint to each
other, the second equation in Eqs.~23! indicates that this
state has zero norm and consequently is unphysical. Th
fore the possible existence of supersymmetric ground sta
i.e., solutions of the zero-energy Schro¨dinger-type equation
~21!, is directly related to the topology of the consider
manifold M (gi j ), since all states except those in pure
bosonic and filled fermion sectors can be excluded e
without solving the system~23!, if the topology of the mani-
fold M (gi j ) is trivial.

For purely bosonic systems with nonvanishing poten
energy the describedN52 supersymmetrization turns out t
be the simplest possible one and it can be applied for can
cal quantization of any appropriate homogeneous cosmol
cal model coupled with matter. After the choice of opera
ordering in the supercharges, Eq.~21! in the null fermion
sector corresponds to the Wheeler-DeWitt equation for
considered Einstein-matter system and its solution~26! is
then easily obtained in terms of superpotentialW, since
SUSY allows us to linearize the quantum Hamiltonian eq
tion.

III. N52 SUPERSYMMETRIZATION OF SU „2…
EINSTEIN-YANG-MILLS COSMOLOGICAL MODELS

Now we are in a position to make theN52 supersym-
metric extension of homogeneous axially symmetric SU~2!
Einstein-Yang-Mills systems given by the action

S5E d4xA2GS R2
1

2
Fmn

A FAmnD . ~31!

We restrict ourselves to a subclass of homogene
space-times which admit a representation in the form of
unconstrained Hamiltonian system for a corresponding c
sical coupled system of equations; i.e., we consider axi
symmetric Bianchi type I, II, VIII, IX ~axially symmetric
Bianchi type VII is equivalent to Bianchi type I!, Kantowski-
Sachs, and closed Friedmann-Robertson-Walker cosmo
cal models.

The general diagonal Bianchi-type axially symmet
space-times are parametrized by two independent funct
of a cosmological timeb1(t) andb3(t),

ds252dt21b1
2~ t !@~v1!21~v2!2#1b3

2~ t !~v3!2, ~32!
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where v i are basis left-invariant one-forms (dv i5 1
2 Cjk

i v j

`vk) for the spatially homogeneous three-metrics, depe
ing on three spatial~not necessarily Cartesian! coordinates
x,y,z: Bianchi type I:

v15dx, v25dy, v35dz. ~33!

Bianchi type II:

v15dz, v25dx, v35dy2xdz. ~34!

Bianchi type VIII:

v15dx1~11x2!dy1~x2y2x2y!dz,

v25dx1~211x2!dy1~x1y2x2y!dz,

v352xdy1~122xy!dz, ~35!

Bianchi type IX:

v15sinzdx2cosz sinxdy,

v25coszdx1sinz sinxdy,

v35cosxdy1dz. ~36!

As was shown by Darian and Kunzle@13#, the general
ansatz for an SU~2! Yang-Mills field, compatible with the
symmetries of axially symmetric Bianchi-type cosmologic
models, is also expressed in terms of two independent r
valued functionsa(t) andg(t) of a cosmological time only
and has the form

A5a~ t !~v1t11v2t2!1g~ t !v3t3 , ~37!

wheret i are SU~2! group generators, normalized as@t i ,t j #
5e i jktk .

Kantowski-Sachs space-time

ds252dt21b3
2~ t !dr21b1

2~ t !du21b1
2~ t !~sinu!2df2

~38!

does not belong to Bianchi classification and admits an
ditional spherical symmetry; so the SU~2! YM Ansatzhas a
different form, originating from the WittenAnsatzfor the
static spherically symmetric case after the mutual repla
ment r→t,t→r :

A050, Ar5g~ t !L1 ,
~39!

Au52L31a~ t !L2 , Af5sinu@L21a~ t !L3#,

where
L15~sinu cosf, sinu sinf, cosu!,

L25~cosu cosf, cosu sinf,2sinu!,

L35~2sinf, cosf,0!

are spherical projections of SU~2! generators.
We also consider the closed Friedmann-Roberts

Walker model separately, because its general YMAnsatz
5-4
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TABLE I. Potentials and superpotentials.

LagrangianL0 Superpotential
W5Wgr1WYM

Bianchi type I K2F 1

b3
a2g21

b3

2b1
2
a4G ; 01a2g;

Bianchi type II K2F14 b3
3

b1
2
1

1

b3
a2g21

1

2

b3

b1
2
~a21g!2G ;

1
2 b3

21(a2g1
1
2g

2);

Bianchi type VIII K2F14 b3
3

b1
2
1b31

1

b3
a2g21

1

2

b3

b1
2
~a22g!2G ;

1
2 (2b1

22b3
2)1(a2g2

1
2g

2);

Bianchi type IX K2F14 b3
3

b1
2
2b31

1

b3
a2~g21!21

1

2

b3

b1
2
~a22g!2G ;

1
2 (2b1

21b3
2)1„a2(g21)2

1
2g

2
…;

or

1
2 (b3

224b1b3)1@a2(g21)2
1
2g

2#;

KS K2F 1

b3
a2g22b31

1

2

b3

b1
2
~a221!2G ; 2b1b31g(a221);

FRW 2
3
2 bḃ21

1
2 bȧ21

3
2 b2

1
2

(12a2)2

b
;

3
2 b21( 1

3a
32a);
al

ce
ax
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a

-
a-

hs

tial
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me
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nal
@16# @SU~2! YM field on S3] is not obtained from Bianchi-
type IX after settinga(t)5g(t) in Eq. ~37!. The closed
FRW model with the interval

ds252dt21b2~ t !@dx21sin2x~du21sin2udf2!# ~40!

(x, u, andf are angles onS3) admits the following repre-
sentation for the SU~2! YM field, expressed in terms of a
single real-valued functiona(t):

A050, Aj5
1

2
@a~ t !11#U] jU

21, ~41!

U5exp$ ix@sinu~s1 cosf1s2 sinf!1s3 cosu#%,

j 51,2,3, ~42!

wheres i are Pauli matrices.
Inserting theseAnsätze into the action and integrating

over all variables exceptt one obtains the one-dimension
Lagrangian

L05
1

2
gi j ~q!q̇i q̇ j2V~q!5K2V; ~43!

here,gi j (q) is the metric in the extended minisuperspa
i.e., in the configuration space of spatially homogeneous
ally symmetric three-metrics coupled with the correspond
SU~2! Yang-Mills fields.

Let us consider the functionsqi5(b1 ,b3 ,a,g) as a
bosonic components of the superfield~3!. One can introduce
the same number of fermionic fields (j̄ i andj i) and therefore
make N52 supersymmetrization of the LagrangianL0 if,
02351
,
i-
g

and only if, the potentialV(q) admits the expression via
function W(q), called a superpotential:

V~q!5
1

2
gi j ~q!

]W~q!

]qi

]W~q!

]qj
. ~44!

In this caseN52 SUSY Lagrangian~7! and the correspond
ing Hamiltonian, obtained after usual Legendre transform
tion, are self-adjoint for any signature of the metricgi j in the
extended minisuperspace.

The kinetic terms for all Bianchi and Kantowksi-Sac
models are the same,

K52ḃ1
2b322ḃ1ḃ3b11ȧ2b31ġ2

b1
2

2b3
, ~45!

and the only difference between them is due to the poten
terms. Using the expression for the metric on the exten
‘‘minisuperspace,’’

gb1b1
522b3 , gb1b3

522b1 , gaa52b3 , ggg5
b1

2

b3
,

~46!

and the explicit form of the potentials, we have found so
superpotentials as a solution of Eq.~44!, hence making an
N52 SUSY extension of the given Einstein-Yang-Mills sy
tems. The results are collected in Table I.

One should note that the obtained superpotentialsW in all
these cases turn out to be direct sums of pure gravitatio
Wgr ~first listed in @8# in terms of Misner variables! and
Yang-Mills parts WY M . This fact is quite interesting and
5-5
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does not followa priori from general expectations, since
the sigma-model approach considered above gravitati
and Yang-Mills variables in the LagrangianL0 are not sepa-
rated. Moreover, it seems that the YM field is a unique o
which, being coupled with gravity, can allow the correspon
ing superpotential to be in the form of a direct sum. It fo
lows from the following statement that superpotential is a
the least Euclidean action—solution of the Euclide
Hamilton-Jacobi equation of the considered system. One
reconstruct from the superpotential the corresponding
clidean solutions, those which give the main contribution
the wave function in a quasiclassical approach. So the gr
tational part of the superpotentialWgr determines the Euclid
ean gravitational background configurations which sho
not be changed if a matter field is added. It is possible onl
matter configurations do not contribute to the ener
momentum tensor. The Yang-Mills part of the superpoten
WY M just provides such a possibility since it produces se
dual YM instantons with the energy-momentum tensor id
tically vanished. We discuss this point in more detail in t
next section.

Note that the full superpotentialW5Wgr1WY M does not
exist as a solution of Eq.~44! if we cancel one of the relevan
YM function a or g; there are no nontrivial self-dual solu
tions of YM equations of motion with one of YM function
canceled andWY M ceases to exist in this case. The quest
about other solutions of Eq.~44! which are not direct sums
of gravitational and YM parts is still open; however, it seem
unlikely that such solutions can be obtained in a closed a
lytical form.

On the other hand, one more crucial observation can
done, that for all considered models the Yang-Mills part
the superpotential coincides with the corresponding Che
Simons functional, calculated on a three-dimensional slict
5const. Indeed, it can be checked that the YM Che
Simons terms

WY M5
1

2E d3xAu2Gue0lmnS Al
a]mAn

a1
1

3
f abcAl

aAm
b An

cD
~47!

turn out to be solutions of the Euclidean Hamilton-Jac
equation and therefore play the role of the Yang-Mills part
the superpotential. Such a coincidence of YM Chern-Sim
terms~47! with YM superpotentials~44! in the framework of
the one-dimensional sigma model describing a YM fie
coupled with gravity seems to be very surprising. Definite
this statement is not true in the general case of an arbit
space-time and takes place for the suggested models
consequence of the symmetries of the space-time metrics
corresponding YMAnsätze. Note, that there exist no simila
expressions for theWgr part of the superpotential in terms o
a functional of gravitational variables except the Bianc
type IX model with a nonzero cosmological constant, wh
the Chern-Simons functional in terms of Ashtekar’s variab
@17# is also an exact solution of the Ashtekar-Hamilto
Jacobi equation@18#.

So we have shown that the considered homogeneous
ally symmetric EYM systems admit anN52 supersymmet-
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ric sigma model extension with the superpotentials given
plicitly in Table I and this gives us a suitable background
the quantization.

IV. QUANTIZATION AND SUSY BREAKING BY YM
INSTANTONS

A. Supersymmetry at classical and quantum levels

As can be seen from the supersymmetry transformati
~8!, in order to preventN52 SUSY breaking at the classica
level, the classical pure bosonic configurations must sat
the properties

q̇i~ t !50 and ] iW„qi~ t !…50, ~48!

along with the classical Hamiltonian constraint~20!. Such
classical configurations really exist in an usual field theory
a flat space-time, and the simplest well-known example
scalar rest particle (q̇i50) on a bottom of a potential with
V(qi)50.

In contrast with such examples, dealing with unco
strained homogeneous systems with gravity included,
nontrivial classical solution of Einstein~or Einstein coupled
with a matter! equations never has all momenta vanish
q̇i(t)Þ0. These systems satisfy Eq.~20! due to the dynami-
cal balance between the kinetic and potential terms with b
positive and negative signs.

Hence, any homogeneous Einstein~or Einstein-matter!
system, being embedded into theN52 supersymmetric
sigma model, never has solutions of equations of mot
with unbroken supersymmetry; i.e., supersymmetry is alw
spontaneously broken at the ‘‘tree level.’’

Let us see what happens in the quantum mechanical
proach. In the Einstein-Yang-Mills systems consider
above the number of bosonic functionsqi is 4, which is also
the fermion number of the filled fermion sector. Therefo
we shall consider solutions of the zero-energy Schro¨dinger-
type equation~21! in these empty and filled fermion sector

The superpotentialW(q) is always defined up to the sign
since it is the ‘‘square root’’ of the bosonic potentialV(q).
Both signs are physically acceptable and correspond to
solutions in empty Eq.~26!, and filled, Eq.~27!, fermion
sectors when finding the supersymmetric wave functio
The normalizability of bosonic wave function for ‘‘positive’
superpotential means in turn the normalizability of filled fe
mionic wave functions for the ‘‘negative’’ superpotential an
vice versa. We define the norm of the physical state
6*Au2gu^ruur&d4q in order to avoid the problem of the
negative norm in the four-fermion sector, caused by
timelike component of the fermionic field. The plus sign
the definition of the norm corresponds to1W(q) while the
minus sign has to be taken as2W(q).

Let us accept for definiteness the positive sign of the
perpotential. First consider pure gravitational systems, w
a andg functions along with their fermionic partners are s
equal to zero. As was stated above, supersymmetry is s
taneously broken for any nontrivial solutions of Einste
equations. Quantum mechanically the supersymmetry is
5-6



-

er
s
el

l

ly
n

r

ot

n
s

sim
a

ed

e
lo
e
e
e
n
re

n
e

ble

on-
n

ntial
n
id-
as-
e
e
ct

ys-

are
s

-

-

o-
the

in
y

Eu-
i-

i
of

-
-

n

TOWARDS N52 SUSY HOMOGENEOUS QUANTUM . . . PHYSICAL REVIEW D 59 023515
stored for Bianchi type I, II, and IX(1) , Kantowski-Sachs,
and FRW models since the solution of Eq.~21!, ur0

gr&
5const3e2Wgru0&, in the null fermion sector is normaliz
able:

E
0

1`

db1E
0

1`

db3Au2gue22Wgr,`. ~49!

Therefore we are facing an interesting situation, wh
unlike ordinary supersymmetric quantum mechanics, the
persymmetry being spontaneously broken at the ‘‘tree lev
is then restored quantum mechanically.

The only exceptions are the second~in Table I! superpo-
tential for Bianchi type IX(2) and Bianchi type VIII where
the supersymmetry remains broken at the quantum leve
well, since their norm~49! diverges at the upper limit.

Further inclusion of the Yang-Mills field spontaneous
breaks the supersymmetry again, because, as one ca
from Table I, the Yang-Mills part of the superpotentialWY M
for all considered models, being the corresponding Che
Simons term, is an odd function ofa andg; consequently,
the YM parts of the wave functionur0

Y M&5const
3e6WY Mu0& both in null and filled fermion sectors are n
normalizable:

E
2`

1`

daE
2`

1`

dgAu2gue62WY M→`. ~50!

In order to find possible supersymmetric wave functio
in one-, two-, and three-fermion sectors, one has to inve
gate the topology of the extended minisuperspace. The
plest way of doing that is going to the Misner parametriz
tion @19# of the space-time metric~32!:

ds252N2~ t !dt21
1

6
e2A~ t !12B~ t !@~v1!21~v2!2#

1
1

6
e2A~ t !24B~ t !~v3!2. ~51!

In terms of Misner variables the metric in the extend
minisuperspace~46! has the simple diagonal form

gAA521, gBB51, gaa52e22A22B, ggg5e22A14B,
~52!

which shows that the topology of the extended minisup
space is equivalent to the Minkowski one with all cohomo
gies trivial, Hp

„M (gi j )…50, p51,2,3, and in accordanc
with the discussion of Sec. II, no physical states in on
two-, and three-fermion sectors exist since they have z
norm. Similarly, there are no physical states except the o
in null and filled fermion sectors in the considered pu
gravitational systems.

B. A role of instantons

Let us discuss in more detail the mechanism of sponta
ous supersymmetry breaking in the null fermion sector wh
the YM field is added to a pure gravitational system~such as
02351
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Bianchi type I, II, IX(1) , KS, and FRW! which is quantum
mechanically supersymmetric, since it admits a normaliza
zero-energy solution of the Wheeler-DeWitt equation~21!.
This mechanism turns out to be quite similar to the one c
sidered in@1,20–22# where the SUSY breaking by instanto
configurations has been discussed.

Indeed, as was already mentioned, the superpote
W(q) ~if exists! is one of the solutions of the Euclidea
Hamilton-Jacobi equation and represents a ‘‘least’’ Eucl
ean action of field configurations, giving the main quasicl
sical contribution into the wave function and providing th
SUSY breaking after inclusion of the Yang-Mills field. Th
explicit form of the superpotential allows us to reconstru
such classical configurations by solving the first order s
tem:

gi j q̇
j52

]~Wgr1WY M!

]qi
. ~53!

For pure gravitational degrees of freedom these equations
equivalent to the~anti-!self-duality gravitational equation
Rmnls56R̃mnls while WY M(q) part of the superpotential in
Eq. ~53! gives rise to the~anti-!self-dual Yang-Mills equa-
tions Fmn

a 56F̃mn
a on a given gravitational background de

termined by theWgr .
Then, ~anti-!self-dual Yang-Mills instantons in our sys

tems can be interpreted as a tunneling solution~with the
nonvanishing Euclidean action! between topologically dis-
tinct vacua. In this case the YM instanton contribution pr
vides the SUSY breakdown due to the energy shift from
initial zero to some positive level and this fact is expressed
the nonnormalizability of the YM part of the zero energ
wave functionur0

Y M&5const3e2WY Mu0&.
As an illustration of these statements, let us consider

clidean configurations in Bianchi type IX and Kantowsk
Sachs EYM systems.

Bianchi type IX system.The solutions of Hamilton-Jacob
equation~53!, which correspond to the gravitational part
both possible superpotentialsWgr(BIX(1))

5 1
2 (2b1

21b3
2) and

Wgr(BIX(2))
5 1

2 (b3
224b1b3), have been discussed by Gib

bons and Pope@23#. For our purposes we would like to men
tion some of them using a slightly different notation.

One of the solutions of Eq.~53! with the normalizable
superpotentialWgr(BIX(1))

turns out to be the~anti-!self-dual
Eguchi-Hanson@24# metric which has the form

ds25 f 2dr21
r 2

4
@~v1!21~v2!2#1

r 2

4
f 22~v3!2, ~54!

with

f 25F12S a

r D 4G21

, ~55!

and v i is determined by Eqs.~36!. In order to bring this
metric to the form~32!, one should introduce the ‘‘Euclidea
time’’ r as
5-7
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dt5F12S a

r D 4G21/2

dr. ~56!

The Eguchi-Hanson metric has vanishing Euclidean ac
SEH

gr 50, which is completely determined by its surface co
tribution @25#, since the volume contribution is cancele
identically (R50 ‘‘on shell’’ ! for EYM systems.

Inserting the expression for the metric functions into t
Hamilton-Jacobi equations for the Yang-Mills part of th
superpotentialWY M(BIX)52a2(g21)1 1

2 g2 and differenti-
ating with respect to the introduced variabler one obtains the
system

ȧ5
2

r
f 2~ag2a!, ~57!

ġ5
2

r
~a22g!, ~58!

which are the self-duality YM equations on an Eguc
Hanson background solved by the family of instanton so
tions @26#

a5
a1sinh~r!

sinh@a1~r1a2!#
,

g5a1tanh~r!coth@a1~r1a2!#,
r 2

a2
5coth~r!, ~59!

with the actionSEH
Y M58p2(a1

221)/2 for a1.1, a250, and
SEH

Y M58p2a1
2/2 for a1.1,0,a2,`, wherea1 and a2 are

the constants of integration.
The extremal Euclidean configurations, produced by

non-normalizable superpotentialWgr(BIX(2))
, are self-dual

Taub-NUT ~Newman-Unti-Tamburino! gravitational instan-
tons with nonvanishing action@27#; similarly, the YM part of
the superpotential gives rise to the self-dual YM instanto
@28# on a Taub-NUT background.

The KS system.For the EYM system in Kantowski-Sach
space-time withWgr(KS)52b1b3 the gravitational degrees o
freedomb1 andb3 obey the following self-duality equations

ḃ1b31ḃ3b15b3 , ~60!

ḃ151, ~61!

satisfied by

b15t and b351, ~62!

which is nothing more than the flat EuclideanR4 space-time
metric with r and t interchanged. From the Yang-Mills pa
02351
n
-

-

e

s

of Eq. ~53! with WY M(KS)52g(a221) one obtains the
usual YM ~anti-!self-duality equations inR4, written in the
‘‘polar’’ coordinates

ȧ5ag, ~63!

ġt25a221, ~64!

with the well-known family of YM instanton solutions, hav
ing the topological chargek51 @29#:

g5ċ and a5ecġ, ~65!

where

c52 lnS 12g2

2t D , g5S a12t

a11t D S a22t

a21t D . ~66!

Note that the dimension of moduli spaceM of SU~2!
Yang-Mills instantons with a topological chargek on a given
Riemannian 42D manifoldM̄ @which has first Betti number
c1 and the dimensionc2

2 of the maximal submanifold in

cohomologiesH2(M̄ ,R) where the corresponding interse
tion form is negatively defined# is @30#

dim~MSU~2!!58k23~12c11c2
2!, ~67!

and in the simplest Kantowski-Sachs case withM̄5R4(k
51,c15c2

250) is equal to 5. In the framework of our ap
proach, since we quantize the system reduced to one dim
sion, only some of these instantons are taken into accoun
fact, we deal with the subclass of all possible YM instanto
originating from the chosenAnsätze, which share the space
time symmetries in the Lorentzian sector. However, th
contribution breaks the supersymmetry fatally in conform
with the general expectations, as should take place in a
42D quantum theory.

To summarize, it is shown that the spontaneous sup
symmetry breaking which takes place if the Yang-Mills fie
is added to pure gravity is caused in a quasiclassical
proach by a YM instanton contribution to the wave functio
This contribution, in accordance with general expectatio
provides the energy shiftDE from a zero level. To estimate
this energy shift for EYM systems an instanton calculati
technique can be used, which also should give the possib
to find the lowest level normalizable wave functio
ur1&,Hur1

EY M&5DEur1
EY M& for the considered models. Thi

work is in a progress now.
5-8
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V. CONCLUSIONS

We would like to conclude with the following remarks
The N52 SUSY quantum mechanical sigma-model a
proach allows us to obtain conserved supercharges as b
Hermitian adjoint to each other, along with the self-adjo
expressions for the Hamiltonian and Lagrangian for any s
nature of a sigma-model metric. This gives the possibility
use the supersymmetry as a tool for the quantization of v
ous homogeneous systems coupled with gravity if they
be embedded into the consideredN52 SUSY sigma model.
The desired embedding has been done for coupled S~2!
EYM systems in some cosmological models which ad
explicit expressions for the superpotentials as being di
D

ys
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sum of gravitational and Yang-Mills parts. After the quan
zation the only nontrivial zero-energy wave functions in n
and filled fermion sectors turns out to have a diverging no
and this fact indicates spontaneous breaking of supersym
try, caused by YM instantons.
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