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We calculate predictions from a wide class of “active” models of cosmic structure formation which allows

us to scan the space of possible defect models. We calculate the linear cold dark matter power spectrum and
cosmic microwave background anisotropies over all observable scales using a full linear Einstein-Boltzmann
code. The calculations are performed entirely in an Einstein—de Sitter cosmology. Our main result, which has
already been reported, points to a serious problem reconciling the observed amplitude of the large-scale galaxy
distribution with the cosmic background explorer normalization. Here, we describe our methods and results in
detail. The problem is present for a wide range of defect parameters, which can be used to represent potential
differences among defect models, as well as possible systematic numerical errors. We explicitly examine the
impact of varying the defect model parameters and we show how the results substantiate these conclusions.
The standard scaling defect models are in serious conflict with the current data, and we show how attempts to
resolve the problem by considering non-scaling defects or modified stress-energy components would require
radical departures from what has become the standard pi¢&0856-282(198)01122-9

PACS numbd(s): 98.80.Cq, 95.35d

I. INTRODUCTION with an assumption of perfect scaling from formation to the
present day. Three grouf8,10,13 have performed calcula-

Topological defects are an almost generic phenomena itions which integrate the linear Einstein-Boltzmann equa-
nature and have been already detected in a number of labtens using the latest technology for different models of the
ratory systemsgsee, for example, Refl]), where symmetry defect stress-energy two-point functions to produce predic-
breaking phase transitions take place. Probably the most exions of power spectra for the cold dark matt@DM) den-
citing possibility, however, is that they are formed duringsity field and the cosmic microwave backgrout@MB)
spontaneous symmetry breaking at a phase transition in thenisotropies. This article gives a detailed presentation of the
early universg2—4], since they could act as the primordial methods and results of RgfL0]. Subsequently, these meth-
seeds for galaxy formation, the most plausible models beingds were also applied to cosmologies with a non-zero cos-
the so called cosmic stririé,6] and cosmic texturg7] theo-  mological constant, with interesting resutsl].
ries. There are two traditional approaches to the study of defect

Theories for galaxy formation can be described as eithedynamics. Some authors have used large-scale simulations to
“passive” or “active” [8]. In passive theories, such as thoseprovide the sources for their CMB and structure formation
predicted by the inflationary paradigm, all the perturbationscalculations[13—16, while others have developed analytic
are set up effectively aguper-horizohinitial conditions at models which attempt to describe the statistical properties of
very early times, which then evolve under a deterministicthe defect§17—19. Even using the latest technology, mod-
linear evolution, until very late when non-linear processe<lling the source using simulations is severely constrained by
take over on the very smallest scales. By contrast, perturbalynamic range. In this work, we will use a model based
tions are created on all scales at all times in active modelapproach to calculate the two-point correlation functions,
making predictions much more difficult to calculate. Typi- which act as sources for a state-of-the-art linear Einstein-
cally, one has to deal with the fundamental non-linearity ofBoltzmann solver. This has a number of advantages and also
the source over a large dynamic range — approximately 28isadvantages when compared with the complementary
orders of magnitude — from the defect formation to thesimulation based approach; the real strength being that one is
present. not constrained to a particular defect based scenario, allow-

The last few months have seen dramatic progress in pining one to explore all possible scenarios and understand the
ning down the predictions from defect models of cosmicrobustness of any claims that one might make. The downside
structure formation in what we shall describe as the standarid that one must take care to construct the source stress-
scenario, that is defect motivated stress-energy componengmergy, which has many possible degrees of freedom, in a
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way which is at least physically plausible. This is generallyresults for the standard scaling model are presented along
done by comparison to some kind of simulation. with quantification of theb,yy problem. We also show that
The recent work by Pest al. [9] and our collaboration simple modifications to the model and cosmological param-
[10], has exposed an apparently deep conflict between Costers, such as the Hubble constant and baryon density, have
mic Background ExplorefCOBE) normalized defect models little impact on thebyg, problem. In Sec. IV we discuss
and the observed galaxy correlations on large scales. THeossible deviations from the standard scaling assumption and
conflict was quantified in Ref10] in terms ofb, 4o, the bias ~ S€C. V explores further modifications to the model, which
between the dark matter and baryon distributions on scales &fight lead to an improvement in the comparison with the
100h~ 1 Mpc required to match the COBE normalized defectdata. We find that it is possible to get better agreement, al-
models with the galaxy data. Although some evidence fothough only the most extreme modifications come close on
such a problem has existed for some time, uncertaintie30Ch~*Mpc scales. The aim of this paper is to present a
about whether the computations had sufficient dynami@@dagogical exposition of our work, so that the expert can
range meant the precise quantitative details of the problerffProduce and interpret our results. In the final section, we
were not fully understood. Most previous work on this prob_dlscus_s its rglatpn to that of others and point to directions of
lem relied on separate calculations for the large-angle cMpfuture investigation.
which is normalized to COBE, and the linear matter power
spectrum, using analytic expressions to relate the two, via,
for example, the mass per unit length in the case of cosmic
strings. Our calculationgas well as those of Pegt al. [9]) A. CMBFAST

do not use any such extrapolation, with the perturbatlo_ns N\ order to calculate CMB anisotropies, one must solve
the matter(dark and baryonicand the photor{plus neutri- . . . . .
the linearized Einstein-Boltzmann equations. Recent years

nog distributions being calculated in a self-consistent way, . ;
] o pave seen techniques developed to solve these equations to
across all observable scales. Hence, a single normalization 1Q

: 0 ) .
COBE gives the normalized linear matter power spectrum. very high precisior(~1%) for the standard adiabatic models

based on inflatioi25], culminating in the public release of
We should note th.at the scalle of IDG Mp(_: was chosen CMBFAST [26] which can perform this task in under a minute
for three reasons. Firstly, 180~ Mpc is sufficiently large

that non-linear effects are not expected to affect the owecr)n a modern workstation. The standard Boltzmann method
P b volves evolving over 3000 highly oscillatory linear ordi-

. . i
spectrum. _Seco!‘d'y’ the discrepancy |n_the power spectra ﬁrée\ry differential equation§ODES from some time deep in
this scale is at its most extreme. And finally, it is unlikely the radiation era to the present day, which can take many
that the power spectrum on these scales can be affected E%urs The line of sight methof®7] u:sed in this code re-
changes in the cosmogony, for example, the introduction o uces the time drastically by splitting the prohibitively oscil-

hot dark matte(HDM). . )
The price of our solution to the dynamic range problem iSIatory geometric effects from the dynamical processes due

that (1) we can only calculate the power spectrum of theto’ for example, the Doppler effect and potential evolution.

matter and CMB, since we have only included the two—pointThIS reduces the number of ODEs down to about 30, but

functions of the sourcE20] — no non-Gaussian effects are adds. an integration along the line of S'g.ht' .

: - It is usual to express temperature anisotropies in terms of
included — and2) the results depend on the validity of the decomposition into spherical harmonics

simple scaling picture over many orders of magnitude of P P '

cosmic expansion. Even though there is substantial support AT o |

for this assumption, both from numerical simulations and —(0,0)=2, > amYim(6, ). 1)
analytic modelling21-23,17-19 there are also reasons to T 1=0 m=-I

think that it may not be perfect. One of the important com-

ponents of our work is an investigation of possible deviations=g; 5 Gaussian random field, such as those generated by
from scaling. Our approach to modelling the defect Wo-jnfation the statistics of anisotropies are entirely specified

point functions has also allowed us to explore other variaby the angular power spectru@]—(|a2 |) where the angled
- Im
ackets denote an ensemble average.

tions, besides deviations from scaling. These variations reg;
resent possible differences between defect models and For the moment, let us assume that we only require the
Sanisotropies for a simple inflationary model which creates no

possible systematic errors in numerical defect simulation
We have found that solving thiyg problem requires ex- appreciable vector and tensor fluctuations. In this case, the
angular power spectrum is given by

treme departures from the standard pictdirterestingly, we
are learning that defect networks@h,<1 cosmologies may
exhibit interesting levels non-scaling behaviéd.

In the next section, we discuss some aspects of the linear- 2( ., s Sk
ized Einstein-Boltzmann solver, in particular, the inclusion CI:;f k°dk(Ap(k, 70) A (K, 70)), )
of source stress-energy, the Einstein-Boltzmann equations
for vector perturbations and ways of calculating the en-
semble average for incoherent perturbations. Section Ill prewhere the photon distribution function\P(k,7,) at the
sents in detail our modelling of the source two-point func-present day conformal time= 7, is given by the line of
tions, by reference to a specific string motivated model. Thesight integration,

Il. LINEAR EINSTEIN-BOLTZMANN SOLVER
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70
AP(k,70) = fo d7(SH(k, )i TK( 7o~ 7)1+ St(k, 7)ji"° Ot g(®00+®)—®D=0,
X[k(ro— )]+ 7k, ifTk(ro= DD, (3) T
Op+ —0p+ =k¥(0®+205=0. 7
and S%(k,7), St(k,7), S3(k,7) can be deduced from Ref. a 3
[28], with Hence, in order to incorporate this source stress-energy, one
00 o\ T must add Eq(7) to the ODE solver, modify the linearized
IE)=1i00, JT0=]1 (%), Einstein equations to include the forcing terms and specify
two quantities from®qy, Op, ® andOS,
i) =1 @Bj(x)+]ji(x)). (4) The initial conditions for the Einstein-Boltzmann equa-
tions must also be modified. The idea is that one sets up
For the coherent limit, implicit in phase focus¢8l] infla-  initial conditions for a pure growing mode deep in the radia-
tionary models, one can perform the ensemble average tiyon era. In order to enforce Causality, one requires that com-
simply replacing{AF(k, 7o) A7 (K, 70) ) =| A (K, 7o) |%. ponents of the pseudo-stress-energy tenggrbe zero[13],

In the rest of this section, we will describe how this ap-Which creates a balance between the initial metric perturba-

proach can be modified to include active sources such a#0ns, the defect stress-energy and the matter perturbations.
cosmic defects. Firstly, we show how simple coherent scalaiowever, there is a residual degree of freedom which allows
sources may be added. Then we discuss the inclusion of tHé& 0 just simply set everything to zero. Physically, this im-
vector and tensor sources, almost generic in any activlies that the initial conditions are unimportant relative to the
model. Finally, we show how one may perform the ensembléctual sources themselve;, which is implicit in the distinction
average when the source is not coherent and discuss the vapetween passive and active sources.
ous implications of decoherence. We have already noted that Theé most common defect based models are thought to
for non-Gaussian sources, such as the topological defecg$ale for most of the history of the universe and so for the
under consideration here, the angular power spectrum dod8oment at least, we specialize our discussion to scaling
not entirely specify the nature of the anisotropies. Howeversources. This requires that 7“0 oo(k, 7) = F1(k7),
most realistic models are thought to lead to only mildly non-Tm@gk'T): Fao(kr),  70p(k,7)=Fs(kr)  and
Gaussian anisotropies through the central limit theorem fof©*(k, 7) =F4(k7), with the functionsF;(x) having well
the superposition of non-Gaussian probability distributionsdefined power series expansions aronrd. Moreover, fur-
Hence, it should be a useful discriminant between differenther constraints can be placed on the leading order behavior
models for structure formation. We will discuss the efficacyof these functions by causality and analyticig]. In par-
of using power spectra to distinguish between different modticular, this implies that,
els of structure formation in the conclusions.
(0@t =ZK'+0(k?), (O®%05)=YK+0O(k?),
B. Coherent active scalar sources

As a first step, therefore, let us introduce an independent (0@ )=Xk?+ O(k*),
covariantly conserved component of stress-enégy, into
the Einstein equations, (0O%)=WI+0(K?), (Bp0%)=VK+O(k), (8)
G,,=8a[T,,+0,] 5 . .

ur =87 Tyt 0] © with all the other correlators and cross-correlators being
where T, is the stress-energy of CDM, baryons photonsdeduced in a similar way or by assuming stress-energy
e : ; i i onservation. In the coherent limit (©y®>*)
and neutrinos present in a particular cosmogony. This extr% AL/2) O S SN2 gt ) L\ 00
component, usually assumed to be “stiff,” that is, unaffected = (©00@00 " (0~0 < >S*’ Wh'4Ch using Eq/8) implies that
by gravity at first order, adds a forcing term to the Einstein-Y =0 and in fack®>0>*)~k". This very specialized limit
Boltzmann equations which represents the active sources. 1€ads to some slight subtleties which will not in general be
For the moment let us assume that the Fourier transforrRfesent for active sources. This will be discussed in the sec-

of the stress-energy can be decomposed @g=  UON On incoherent sources. , ,
1Ok /k and One simple choice which is consistent with the coherent
DM

limit is to define[30]

1
®ij :_5ij+

o1
3 kik; — 55”)@5, (6) 3a sinAkr

470 = TT/Z —AkT y

wherek; is a unit vector in Fourier spac@),, is the velocity
field, O is the isotropic pressure, or three times the pressure, . .
and®% is the anisotropic stress. The conservation equations 47r®5=£ 5 6 2/ sinBkr _ sinCkr '
for this decomposition are A2 B*~C?| Bkr Ckr

€)
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100 A T T T taining these values with spacindd, Ak and A+, before

I B ] performing the line of sight integration ovewvalues. Obvi-

] ously, the most accurate results are obtained by using the
smallest possible values afl, Ak andA 7; the cost being an
increase in the CPU time. We systematically reduced all
three spacings from the values in the original version and
found that the results converged whaAk was reduced by
about a factor of two, witlAl and A = being left the same.
We also varied the number of equations solved by the ODE
integrator and found that there was no discernible improve-
ment from any increase. We concluded that the line of sight
integration method is also useful to calculate the predictions
of active models for structure formation.

((1+1) C/2mV2 xT,, uK

20 - 1 C. Generalization to include vector and tensor modes

The split of the energy momentum teng@) is not the
] most general, since it includes only scalar sources. A more
Lol TR general split is

@i v
FIG. 1. The angular power spectrum for the simple coherent ©0i=—10pki/k+ 0y,

sources(a, solid line and (b, dotted lingé normalized to COBE.

Note no vector or tensor components are calculated here. 1 .1 R R
0;j=3 8,0+ kiki— 33 05+ (ko] +k0)+0],

whereA, B, C, « andB are constants. The angular power (10
spectra for this source are presented in Fig. 1(&ra=1,
B=0 andA=1 (b) a=1, B=1, A=1, B=1 andC=0.5.
Taking into account the arbitrary normalization used in Ref.
[30], the results seem to be identical. A A A A

At a very technical level, various modifications to internal kiOgi=k0/=k0[=k06[=0]=0. (19
systems parameters a@MBFAST were also required. The _ _ _ R
source function for\(k, 7) is dependent on three variables Without loss of generality, one can fix the direction in Fou-
and the code sets up a discrete three-dimensional array corier space and choosirig=(0,0,1) gives

which includes vector @y;,0,") and tensor @) sources
such that

® 00 O01 G} ~i0p/k
\ 1 1 S T T \%
0,= 1 1 , 12
" 00, 03 ~0-2-0%-0], 0 (12
3 3
1 2
—i0p/k oY 0y §®+§S

with @%,=0Y¥=0%L=01,=0 for i=1,2,3 and®],+0®], C,=C7+C)+C/ which are defined in analogy to E®) by
=0. There appear to be four independent vector components
(0Y,0,0¢,,0¢,) and two tensor component®{,,01,). ,
However, two of the vector components are related to the . 2 | 1%
other two by stress-energy conservation, and hence there are G _;f Kodk(a(k, 70) 41" (K, 70)), (13
also just two independent components.
These vector and tensor sources can be identified with
their respective contributions to the angular power spectrurwhere the indeX runs overl =S,V,T corresponding to the
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scalar, vector, tensor contributions. The scalar photon distrivhere®" is the vector source, eith@Y or @Y, py is the
bution function is given in Eq.3), with the vector and tensor average photon density,, is equivalent quantity for neutri-

versions defined by nos andNy is the quadrupole component of the neutrino
distribution. Vg is the vector(vortical) component of the
A|V(|<,To)=f dr(VT(k o Ui 70— 7)] baryon velocity which satisfies
2 02 y A K v
+VE(k,7)j{k(mo—7)]), Vg=V——(Vp=V)+ (34— Vp), (20)

0 : hereR=3p,/4p., andpy is the average baryon density. As
Al (k, =f dr(T3(k,DjAk(ro— 1], (14 W 3Pyl Py ANAPy ge baryc y
1 (Ki7o) 0 m(Tr(k. 7 *Tk(ro= 7)) (14 already discussed, the standard approach is to solve these
linear differential equations fdr<lI .., plus the equivalent
whereV7, V2, T2 are the source functions for the vector equations for the polarization distribution functions, which

and tensor perturbations and we have not included here for brevity. The line of sight in-
tegration method which we use only requitgg,~7, hence
11 I(1+1) j,(x) reducing the amount of CPU time required. However, we
J(x)= 2  x need one final ingredient, the source functions for vector
perturbations, which are given by
[BI(T+1) [ (X))’ :
J| x)= % %) ) V-}-=K67K(VB—V),

i . 1
3(1+2)! 2__ -kpV —K
0= \/§E|_2;!J|;()- (15) Vi=wxe TPT+ \/§e KV, (21)

The Boltzmann equations for the scalar and tensor pertUtWhere
bations are well studied both analytically and numerically, %o.
but the same is not true for vector perturbations. Here, we ( 7-)=f k(7")dr', (22
include the Boltzmann equations for the vector perturbations, 4
along with a discussion of their salient features. For a more
in depth study of scalar, vector and tensor perturbations, the
reader is referred to Ref28] which also includes all the
other relevant Boltzmann equations.

We split up the photon distribution function for the vector
sources into its angular multipole moments

is the optical depth due to Thomson scattering. We should
Mote that exactly analogous expressions exist for both the
electric and magnetic components of the polarization. These
are also presented in R¢R8].
The important thing to notice is that vector perturbations
are not created at any significant level in the absence of a
% source. This can be seen from the Einstein equatiofd,if
AV(k, 7o, p) = > (=)' (21+1)P,(w)AY(k,7), (16) =0, thenVeca™?, since the effects ot andNy are negli-
=1 gible. Hence, they are not present in inflationary models, but

] ] i ) are generic in any active model.
where u=cosé is the angular variable. With this decompo-

sition the Boltzmann equations become
D. Incoherent sources

v_ JI? JIZ+ 2l v C oy In the previous few sections, we have studied how the
AY=k ST 1 A 17 o5 A1 TKATES (17D inearized Einstein-Boltzmann equations can be modified to
include active sources which create scalar, vector and tensor
anisotropies and we have shown how it is possible to relate
to the measured quantities, such as the angular power spec-
trum, when the sources are coherent. Such sources are, how-
— Le(AY— JBEY) ever, very unngtural, generically rely_ing on assumptions such
10 as pure spherical symmetry to maintain coherence. There-

(18) fore, we are forced to consider methods for calculating the

andS,=0 for |>2. In the above expressioKy is the quad- ggjcrecrzts)le average for theories which include incoherent

rapole of the electric component of the photon polarization This subject was studied in a series of works which first

distribution andV is the vector metric perturbation which d o
satisfies |scus§ed the equ_all_y unnatural, but prol?ably more realistic,
totally incoherent limi{8,31] and then multi-parameter mod-
. els which allowed for a gradual relaxation from total coher-
V+ EV: _ 64nG ——(p, AY+p,NY)— G 2@V, (199 enceto total decoheren¢82]. One key advantage that the
a NES ! ' current work has over, for example, RE82] is that once a

for 1>0, wherex is the differential cross-section due to Th-
omson scattering,

S =31k(Vg+V), S,=-1tpPY
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given source model is chosen, there is no uncertainty in relasors of the new SGI Origin 2000 owned the UK Computa-
tive normalization of the anisotropy created by acoustic ostional Cosmology Consortium. Setting aside the apparent
cillations at the time of last scattering and that created muclsomputational inefficiency,we believe that this method is
later by the integrated Sachs-Wolf§W) effect. The meth- more physically transparent, since each of the source histo-
ods used in the earlier work suffered from large uncertaintiesies will be causal and at the very least provides a useful
in this aspect of the calculation. We shall see that decohercheck on the diagonalization method.
ence is actually prevalent in most active models and the con- For these incoherent source histories, the nature of the
tribution to the anisotropy from the surface of last scatteringanisotropic stress sources will be seen to be important on
does not, in general, give rise to noticeable acoustic typsuper-horizon scale, since it is implicitly linked to the vector
signatures in the angular power spectrum. We also find and tensor sources. As mentioned earlier, in the special case
suppression of the anisotropy created at last scattering witbf the coherent limit(®505*)~k?, which is not true in
respect to the ISW effect, not anticipated in R¢&31,33.  general. Using similar arguments, it was shown in R29],

The main problem in dealing with decoherence is that thehat
unequal time correlatordJETC) do not factorize, that is,

<P(k!Tl) P*(kaTZ)>
* U2 % 2 where all indices are summed. The reason for this is that
#(P(k, ) P* (K, 7)) *XP(k, m2) P* (K, 72)) ™5, each of the components is linked via the anisotropic part of
(23)  the space-space component of the source stress-energy ten-
sor. Using a simple model, it was deduced that

(105%):(|10Y1*)(|0|?)=3:2:4, (25)

for some arbitrary quantity’(k,7) and r,# 7,. There are
two methods which one can use to overcome this problem. CF:CY:CF=1.461:0.29, (26)
The first[33,34], used in Ref.[9], is to treat the UETC,
evaluated at the discrete times used in the linear Einsteirat aroundl =10. While it is true that, the vector and tensor
Boltzmann solver, as a matrix which is symmetric and henceontributions to the angular power spectrum are likely to be
diagonalizable. This diagonalization yields a change of basisimilar to the scalar contributions on large angular scales,
and the source can then be written as a sum of coheretitere is no general formula or constraint for this ratio and
sources, indeed, the model we present in the subsequent sections will
be seen to have a larger scalar component than that of Refs.
. . [9,29. We should note that the incoherent case, where
(P(k, )P (kv7'2)>=§i: Avi(k,m)ui (K 72), (24 (@505)~K°, the formation of anisotropies along the line of
sight, that is, the ISW effect, will be influenced by super-
horizon correlations, in a way not possible in a coherent

where the\; are the eigenvectors, ordered such that
model.

>N\o>...>\,, andu;(k,7) are the orthogonal, coherent ba-
sis functions. Since everything is linear, one can use each of
these basis functions, as a source in the modified version of ll. THE STANDARD SCALING MODEL
CMBFAST and the sum of the individual angular power spec-
tra yields the total. Although each of these coherent sources
is has a degree of acausality, it appears to give good conver- Here, we present the model for defect two-point functions
gence from using only the ten largest eigenvali@swhich ~ based on a description of scaling cosmic strings. First, we set
indicates that the full calculation is well behaved. out the motivation for the model, then we give the math-

The second methdd], which is used in Ref.10] and the ematical details, explaining each of the parameters. Finally,
current work, is to not work directly with the UETC. Instead, We show some two-point functions calculated within the
we create an ensemble of source histories which has tHéamework of the model, demonstrating an acceptable level
same two-point correlation statistics as the required UETCOf agreement between these two-point functions and those
The exact process for doing this is discussed in the nexiieasured in simulations. _ .
section, but once it is done, the ensemble average can be The starting point for our model is ReB5]. In this work,
estimated by averaging the angular power spectra from ma,zeasurements of the string two-point correlation functions in
individual source histories. Since our ensemble is finite, ondinkowski space simulations of network evolution were
can also calculate its standard deviation to give an idea ofhade and a strikingly simple analytic model was put for-
how accurate the calculated average is. The results presentd@rd, capable of reproducing the important features of these
in this work used either 100 or 400 source histories to givdWo-point functions with good accuracy. The basic assump-
small statistical errors. However, it was possible to gain dion of this model is that a string network can be represented
qualitative feel from as little as 40 source histories.

This method is clearly more computationally intensive
than the eigenvalue decomposition requirdgsrAST to be 10bviously, there will be some overhead in doing the eigenvalue
run over 100 times as opposed to about 10. We improved th@ecomposition for any particular UETC and also in creating the
turnaround speed by doing the calculations in parallel andJETC from simulations. Therefore, we are not quite comparing like
100 realizations took about an hour onXll810000 proces- with like.

A. Modeling the source histories
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as a collection of randomly oriented straight segments, each 2 x

of length &t, wheret is the physical time ang is a constant erf(x)= —f

parameterizing the coherence length of the string. To model Vo

the motion of the strings, each of these segments is assigned

a randomly oriented velocity whose magnitude is chosen The expression for the energy two-point correlator in Eq.

from a Gaussian distribution with zero mean and standard32) has the wrong scaling behavior, since changes in string

deviationv. segment length and density have not been incorporated. It is
Under these assumptions, an analytic expression can hssible to introduce the right scaling behavior into this

derived for the string energy two-point correlation function model by hand using

as follows: the Fourier transformed stress energy tensor of a

string in Minkowski space is given by (O00(k, 1) O5(K,t2) ) sca

7X72

dx'e (33

@Pw(k,t):ﬂf do(X,X, =X, X )ekXet —(27) -

l 21,2 2
P(k,t1)P(k,ty)e Yovkiti—ta)"
VEt 6ty

where X(o,t) is the position of the string labelled hy at (39
timet, and hence the energy two-point correlator is given by
where P(k,t) is &t times the equal time energy correlator

(Ogo(k,t1)OFo(k,t5)) from Eq.(32), that is,
=M2<f daldazeik.(xwl,tl)X(,rz,tz))>_ (28) PP(K,t) = Et{O ook, 1) O5y(K,1)). (35

. Similar expressions can be derived for the all the other equal
If one now assumes that the quantityX(oq,ty) and unequal time correlators.

—X(072,t5)) is Gaussianly distributed, with mean zero and  1hjs model has a number of shortcomings, primarily be-

variancel’, then it follows that cause certain simplifying assumptions have been made in
order to make it possible to derive analytic expressions for
@ o (K1) O (K t,))=1 2f do.do e~ WOKT(o_ tty), the two-point _functlons. By contrast, we need not work with
(Oook,t1)Ogokit2)) =2 w " simple analytic forms, since we do not work with the un-

equal time correlators directly. Instead, we use numerical

) _technigues to generate histories for the source functions with

whereo, =0+ 0, ando_ =0~ 0. To estimate the vari- the correct two-point statistics. This has made it possible to
ancel’, one makes use of the idea that on scales smaller théﬂhprove and extend the model in a number of ways. In par-
the correlation lengtlit the string network resembles a col- ticylar, we include an improved treatment of causality and
lection of straight line segments with velociéy which im-  scaling, and extract a different set of components of the
plies that string stress-energy. We briefly sketch these differences, be-
fore embarking on a detailed mathematical description of our

[(o- ty,ty)=(1-v?)e? +0%(t]-t)% (30  model.
Causality: One problem with the analytic model is that it

for |o_|<¢ty/2 and on scales larger thajt there are no does not fully respect the constraints imposed by causal-
correlations, so that ity, which require that there can be no correlations be-
tween source components at space-time points whose past
I'(o_ ,ty,ty) =00, (31 light cones do not intersect. In particular, by assuming

that the lagX(o() —X(o5,) between two-points on a
for |o_|>&t, /2. In this picture, the length and number den-  string segment is Gaussianly distributed, one assigns a
sity of string segments does not change, so that scaling be- nonzero value to the probability of correlations existing
havior will have to be imposed on the correlators later by on scales larger than the causal horizon, making the

hand. Substituting foF in Eg. (29), performing the integra- model manifestly acausal. For this reason the oscillations,
tion overo_, and using; fdo, =V& 2 (assuming a length which should appear generically in the two-point func-
of string V&2 per simulation volum@/), one finds that tions of causal theorieg33], are not present in the ana-
Iytic expressions for the correlators. By contrast, our
(@oo(k,t1)O%(K,15)) model is causal by design, because we do not assume that
this lag is Gaussianly distributed.
Vu? 1 6w [kéty| 6022t Scaling behaviorin Ref.[35], the unequal time correla-
= \/T—vg ng kgtlerf m v tion functions were simply multiplied by appropriate fac-
tors by hand in order to enforce the correct scaling behav-
(32 ior. We extend the model by making the scaling form of
the unequal time correlators arise in a natural way, as a
where erf§) is the error function, consequence of the decay of the string segments. It will
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be seen that a different super-horizon form for the un-The functionT°" is a smooth segment decay function, cho-
equal time correlators arises as a result of this assumptiosen so that the segment starts to disappe&s dt, and has
Choice of stress-energy componemdthough we make disappeared completely af’, with the additional features
use of the same basic picture of the string network inthat the stress-energy and its time derivative are continuous
order to calculate the two-point functions, we extract agt L;7" and 7", which are necessary in order for the ODE

different set of components of the string stress-energy tefspjver to function properly. With these properties in mind,
sor, calculating the others to maintain stress-energy conge chose the following form for°':

servation. We extract the ener@y,, and the anisotropic
stress® S, as opposed t®, and since we also include 1, o<l
tensor and vector contributions in our calculation, we also

off —{ L 1,3
compute vector and tensor source compondtsand o7 b=y 2 +3 (=3, ...Lym=r<7y,
OT. As discussed in Refl9], this particular choice of 0, CT> T,
scalar components is very natural, as the remaining two (39

components of the stress-energy tensor are found to be

well behaved on integration of the conservation equations‘{"here

which is not necessarily true for the choi@g, and@p . IN(L,7/7)

Also, taken in conjunction witt®V and®T, these com- x=o—— 7 _q (40)
ponents specify the super-horizon perturbations in the In(Ly)

most direct manner. imilarly, T°"is a smooth segment appearance function, with
Having outlined the main differences between our model'S v ) goﬁ bpeara ’
almost identical properties f6°" except that it represents the

and that described in Ref35], we now proceed to set out ; :
o . . mooth turning on of the segment at early times. By analogy
the specific mathematical details. For a general network OEJ T we chose

strings in an expanding universe, the stress energy tensor has

the form T 7,7 L2 7|_i2)

.. O, et Lil’Tf ’
@My(x,r)zﬂf do(eX, X,— e X, X)) (x—X(a,7)), L )

(36) =¢ 1+ 1@3y-yd, ...Lin<r<L{r,
1, o>,

where u is the string mass per unit lengtK, are the coor- (41)
dinates of the string world sheet, parameterized by conformal
time = and spatial variabler, dot and prime represent dif- where
ferentiation with respect tor and o, respectively, €2 .
=X"2/(1—X?), and5®)(x) denotes the Dirac delta function In(Liri/7)

in three dimensions. Note that now we are working in an y=2 In(LY/L?) L. (42)

expanding universe, each of the string segments will have

sizeé7. We are interested in histories for the Fourier trans-This function is only included for computational efficiency,

form of the string stress-energy tensor, which is defined viasince it is possible to ignore any particular string segment at

times earlier tharL.!7;, providedL! andL? are sufficiently

small. We checked this by varying the vaIuesLdTand Li2

and found that these variations make very little difference to

the total stress-energy provided the values are small enough.

:Mf doelk X@D(exXrXr— e~ 1IX XY, This is beca_use at any time, the stress-energy tensor is domi-

nated by strings whose decay times lie in the near future. We

(37) choose values fot.! and L? which are small enough that

results are not changed by any further decrease.

During the generation of a particular string history, it is
not practical to keep track of every piece of string in our
conceptual simulation volume. This is because the number
density of stringsn(7) scales liker 3, so that to have of
ofrder one string segment remaining by the final simulation
ime 7y, the number of strings we would need to follow from
he initial simulation timer, would be of order £,/7;)3. In
the case of a mode tracked from well before radiation-matter
equality (for instance, from an initial timer;=0.02r,

_ m off  _ _m oy .m 1,2 wherer, is the conformal time of radiation-matter equality
®’”(k'7)_§ Ok VT T L) THr e L L) to the pﬁesent day, this would require us to follow of order
(38) 10 strings. Instead, since the

0,.(k,7)= f d*xe’*0 , (X, 7)

Our conceptual “string network™ consists of a collection
of straight line segments, each with an individual labgl
which “decay” in a smooth way, completely vanishing by
some final timer{". A history for the evolution of the com-
plete string stress-energy tensor is then written as a sum
the histories for the stress-energy tensors of the individua}
segments,
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N¢=V[n(7¢) —n(r;+d7y)] (43 m .
00= — £7sindkX3¢7/2)

Vvi—vp,

strings decaying between times and 7;+dr; in our con-

ceptual “simulation” volumeV are randomly located, we X (COK K. X)) COS kX301 7) — SIN(K. Xy) SIN(K X0 7)),
can replace them by a single string, whose amplitude is mul-

tiplied by Nfl/z; the power of 1/2 coming from the fact that (49
random locations in real space correspond to random phases 28 & 2181 & 1eam

in Fourier space, so that the amplitude of the Fourier trans-®ij=[vmXiXj—(1—vy) X'iX"j]Ogp. (50
form of a number of such segments sums as a random walk i ) . o
for all k0. where sinck) =sin(x)/x and the subscripts refer to the indi-

The equation for a single source history then becomes vidual spatial components. For conciseness, we have now
dropped the subscriph on X here, and in the following

equations.

®,w(k,7')=V1/22 [n(a-'f“’l)—n(a-?")]l’z(@l’f,,(k,f) As already noted, there are two independent vector and

m tensor components of the stress-energy, which are sourcing
the perturbations. However, each of these components will
have the same two-point correlation statistics and hence, we
need only evolve one of each and multiply by the appropriate
For each source history, we ud& individual string seg- normalization once the power spectra are calculated. The an-
ments, with values ofr; equally spaced on a logarithmic isotropic stress, vector and tensor components are given in
scale betweerr; and F ..o, whereF ..o must be later terms of the spatial stressek; by
than the final simulation timer, in order that all strings

XTM( 7,70 L) T 7,74, L}, LD). (44)

inducing significant perturbations at timg are included- 0°5=(2033-01,-0,))/2, (53)
The Fourier transform for each individual string segment
is given by 0V=07=0,;, (52)
g2 o 0T=01,=0,,. (53
07, (k,7)= uf doe'* Xm(eXtXr—e X X' 1),
—érl2 45 For each individual string segment, we find that
1 VIRY, VIAVa)
where é7 is the length of the string segment at timeand ®S:§[Ur2n(3x3x3_1)_(1_Ur2n)(3x3x3_1)]®00i
Xm(o,7) are the coordinates of the string world sheet, given (54)
by
. . 0V=[0FX X3 (1-v7)X{X51O g, (55
Xm=Xm+t X'+ vmm™Xm. (46)
OT=[viX1 Xz~ (1-v5)X{X5]100. (56)

For each string segmen,, is a random locatiofin practice,

we generatk.x,, as a random number between 0 and)2  Integrating over the random orientation vectors, we find that
while X’,, andX,, are randomly oriented perpendicular unit for & single string, the super-horizon ratios are in agreement
vectors, such that, with Eq. (25) and since the total stress-energy tensor for the
string network is just a sum over the contributions from the

individual segments, we find that the super-horizon forms of

X" ml=Xml=1, 47 the total stress-energy are also in this ratio. However, we
have already noted that the ratio ©f° to ©, is not con-
X' 0. Xn=0. (4g)  strained in a similar way, and is likely to be highly model
dependent. For our model, we find that on super-horizon
scales,

The string velocityv,, is a random number chosen from a
Gaussian distribution with mean zero and standard deviation <|®S|2>'<|® |2>=2—2v2+6v4'10 (57)
v, truncated to prevenv ,|>1. oo T

Performing the integration over, and taking only the it we assume that the velocities are Gaussianly distributed,
real part, we find that rather than the truncated Gaussian which we use in practice.
This limit, which has been used to make the problem ana-

lytically tractable, will be realized for smail.

’The effective total number of strings at any time is given by Having worked out the energy and anisotropic stress, the
S[n(A" Y —n(#MIT (7, 74, L) TO(7,7¢,LE,L?), and the nor- remaining scalar components follow by stress-energy conser-
malization ofn(7) is chosen to ensure that this quantity is equal tovation. By rearranging these equations, we find the following
(¢7)73. differential equation fo®p in terms of @y, and @ ¢
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. a K2 [a .
®D:_2_®D__ ._(®D_®00)_®00+2®S :0,
a 3 a
(58
while O is just
a .
=£(®D_®oo)_®oo- (59

In practice, we use the techniques described earlier to co
pute histories for the componen&y,, 05 0V and OT.

Values of each component are stored for a set of times whic

are closely enough spaced that a linear interpolation scheme : > :
dated using these techniques. In the left hand graph of Fig. 2

can accurately reproduce the full history for the function an

PHYSICAL REVIEW D59 023508

all the components of,, and hence, we have the total,
0,,. In the model described here, we have effectively done
this by settingSy=S°=0. Although this choice does not
correspond to a particular, identifiable fluid, we have found
in studies of the CMB anisotropies created at the surface of
last scattering, that it gives results which are very similar to
physical models forS,,, such as free-streaming massless
particles. In particular, the main conclusions of this paper
and Ref.[10] will be unchanged. However, more detailed

rTpjodeling will be required if accurate predictions are re-

quired. The results of an in depth study of this issue will be
presented elsewhef86].
We now present a sample of two-point functions calcu-

its derivative. These interpolated functions are then used as'#€ show equal time two-point functions féq, and Op,

set of driving terms to the ODE solver TMBFAST [26]. In
order to increase speed, the evolution®§ is only carried
out for times satisfyindk <Xy, Where the parametet,,.,

together with fitting functions for the same two-point func-
tions as measured in the simulations of R86]. The noisy
curves are those computed in our model, using 8000 realiza-

is chosen to be large enough that further increases do ndipns, while the smooth truncated curves are those of Ref.
affect the results, and for later timé¥; is set to zero. This [35]. The two-point functions fo®, in this graph are ob-
can be done because in all the models we consider here pdained by integrating Eq58) for each history. In order to
turbations in® are suppressed on scales much smaller thamake sensible comparisons between our expanding universe
the horizon scale. calculations and the Minkowski space simulations, we com-
At this point we comment on the way in which stress-pare our conformal lengths and times with their physical
energy conservation and compensation are treated in oWngths and times. Firstly, it should be noted that the dy-
model. In constructing forms fob o and®®, we have only  namic range probed by the simulations is small, whereas
been thinking about the behavior of the long string, and nofithin the framework of the model, the dynamic range can
about the behavior of the loops and gravitational waves intg)e extended arbitrarily. Within the range probed by the simu-

which the long string decays. We have ensured that stresgstions, the model appears to give two-point functions in

energy conservation is satisfied by only computing two Scal%ood agreement; the one exception being the limiting behav-

lar components and using the conservation equations to WOi r of the ®p self-correlator. However, it should be noted

out the other two. : ; _
One way to treat the loops and gravity waves explicitly isthat the S|mulat|ons_ or_1|y prob@_D _for the_long string, not_
the loops and gravitational radiation which the long string

to consider the sourd®@ ,, to be the sum of two components, o :
a long string componel;uw, and a second fluid component spltslotﬁ. Ihn fact, the fr']tt"?g fu?cUon ;thth@_o self—t t
S.,- We then model the rate at which energy and momen&OITelator has a super-horizon form which 1S Inconsisten
tum are being dumped from the long string into the secondith fausa;hty and stgess-energy conservation,  since
fluid, which in this case is loops and gravity waves, by in-{@p®p)~k" rather thark®. Our model, on the other hand,
troducing two functiongy, andgp , with L ,, satisfying fully respects stress-energy conservation witBp0F)
~k?, so it is not surprising that there is some level of dis-
crepancy between the limiting forms of the functions for this
particular component.

The exact forms of the two-point correlators within our
model depends on the choice of string parameteasd &.
We find that optimal agreement between our two-point func-
tions and those of Ref35] is obtained when we input values
of v and & which are slightly different to those which are
actually measured in the simulations. For Fig. 2, we use
=0.35, £=0.15. In this respect, our model does slightly
worse than that reported in Rdf35], which manages to
achieve a miraculously good fit to the amplitude and form of
the energy equal time cross correlator using exactly the val-
ues of the parameters=0.6 andé=0.15 which were mea-
sured in simulations. In spite of this, the limiting behavior of
the two-point functions has the correct form in our model
Given a model forLgy, Lp, L and LS, such as the one and for some choice of the parameterandé we are able to
described above, plus an equation of state for the secombtain a good fit to the correlators measured in the simula-
fluid, we can then compute the loop production functions andions.

. a
Loot 5(L00+ L)—Lp=—0o.,

. a k?
LD+25LD+§(L+2LS)=—gD, (60)
andS,, satisfying

. a
Soot 5(500"' S)—Sp=0o.,

. a k?
sD+2asD+§(s+zss)=gD. (61)
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FIG. 2. The left hand graph shows equal time two-point correlation functions from our standard scaling 7@dg(k, 7) O5(k, 7))
(solid ling), (O (k,7)O%(k,7))/k? (dashed ling (O oo(k, 7) OF (k,7))/k (dotted ling. Two-point functions measured in Minkowski space
string simulations are shown for comparison, using the same line types, but truncated to illustrate the approximate range probed by the
simulations. The right hand graph also shows equal time two-point correlation functions from our standard scaling model:
T(@OO(k,'r)@Sf(k,T)) (dash-ling, 7(©S(k,7)®% (k,7)) (dotted-Iing, 7(O ook, 7)O5* (k,7)) (solid-ling). On each graph, theaxis isT and
kis 0.1 Mpc .

In the right hand graph of Fig. 2 we show equal time manifests itself in the range=20 to =100 (in units of
two-point functions for®,,, ®S and their cross correlator, Mpc). We should note that the noisy behavior of the cross
along with Zr error-bars, computed using 8000 realizations.correlator far outside the horizon does not appear to have too
We see that far outside the horizon, the cross-correlator igrge an effect on the matter and CMB power spectra, for
relatively noisy, but its behavior is consistent with a powerwhich the ensemble average has a relatively small variance
law of k? everywhere except inside the horizon, where it iseven for only 40 realizations.
of order the two self correlators. In fact, it is easy to show In Fig. 3 shows the unequal time correlation function for
analytically within the framework of the model that the crossthe energy and the corresponding plot from R88]. It can
correlator must go liké? outside the horizon in the limit of be seen that the sub-horizon form of the unequal time corr-
a large number of realizations and this behavior clearlyelators is similar in both models. However, we see that our

FIG. 3. The left hand graph shows the unequal time correlation fun¢@ig(k, 7,) ®@§4(k, 7)) from our standard scaling model. The
z-axis is (r17,) 1’2((900@30), the x-axis is logy(k7;) and the y-axis is log(k,). The right hand graph shows the same plot created using
the model from Ref[30].
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unequal time correlators have a distinctly different form on B. Power spectra for the standard scaling model
super-horizon scales. We quantify this difference by using \ye define the standard scaling model to be one which
the functionU(k, 7, ) defined in terms of the violation of ses the above two-point functions with the model param-
the factorization relatioi23) as etersy=0.65 andé=0.3, measured in expanding universe
(P(K,71)P* (K, 7)) fsei:r;u]!g:irﬁgﬁoin?oatr;]:ssumption of perfect scaling from'de-
, present day. Also, we must specify a
(P(K,71)P*(k, 7)) P(K, 72) P* (k, 7)) "2 particular cosmogony and we do this by analogy to what has
(62 become called standard cold dark matter, that is, a flat back-

U(krTliTZ):

ground Q,4=1) spacetime comprising 95% collisionless

for some arbitrary functiof(k,7), wherer; andr, are the cold dark matter and 5% baryon€(=0.95, (1, =0.05),

i i [ ith,> 7. X
two times in question, with,> ;. In our model, only those with a Hubble constant at the present day bf,

strings which are present both at and 7, can contribute to — 50 km sec *MpcL. Figure 4 shows the resulting power

the cross cor_relator and hence on_ly those_ strings present g;t)ectra, normalized to COBE, for the CMB and CIblid
the later time 7, can contribute, implying that

* . . lines) compared with the standard adiabatic scenario based

(P(k, 1) P* (k,5))<(P(k, ) P* (k, 7). Hence, we find  "oq o (dot-dashed lineand the published data points
" with error-bars based on the assumption of Gaussianity
(P(k,72)P (k,7'2)>’ (63) [37,39.
(P(k,m)P*(K,79)) The CMB angular power spectrum appears to have no
. ) ) . pronounced “Doppler peak” for two reasons: firstly, there is
which outside the horizon gives a substantial ISW component to the scalar, vector and tensor

)1,2 anisotropies. The split into the different components is illus-
.

U(k,7,m5)x

(64)  trated for this model in Fig. 5 and we see that the scalars are
larger than the vectors, with the tensors further suppressed
relative to the other two. More precisely, we find that the

a(iontributions to the angular power spectrum are in the ratio,

U(k,Tl,’Tz)oc

On the other hand, in Ref35], the super-horizon fall-off of
the unequal time correlators is modelled as an exponenti

decay, with CP:C):C[=3:1:0.4, (66)

U(k,rl,72)=e*(71*72>2’7§ (65  at1=10. Although the difference between our models and
) ) ) those presented Ref®,29 are only at the level of a factor

where the coherence time grows likek™* outside the ho-  of two or so, it is still worth noting the discrepancy as a
rizon. This behavior gives a good fit on the sub-horizongjrection for future work. We suggest that this is due to a
scales which their simulations primarily probe. However, ongifference in super-horizon ratio d{®S2) and (|©4g2),
super-horizon scales, the power-law fall-off evident in OUrgjready discussed in an earlier section.
model must eventually dominate. _ And secondly, the component of the angular power spec-

In summary, therefore, we have outlined methods for creyryym created at the surface of last scattering is incoherent,
ating source histories based on a model with two parameterg,ith the secondary Doppler peaks being cancelled out by
the rms spe€tof the stringsu and the persistence lengéh  gecoherence as suggested in RE8s31,33. This leads to a
which are measured in simulations. In doing this, we haveyrther suppression of the amplitude in the ensemble aver-
been forced to introduce various “system” parameters, to3ge, relative to the large angular scales, since we are averag-
allow the problem to be solved in a finite time on a discreteing high peaks and low troughs. We should note that al-
system, such as a computer. The value of each of these pgrough the comparison with the published CMB data does
rameters was chosen, so that further increases or decreasgs appear to be good, the plotted error-bars are only at the
toward the continuum value resulted in no change in thgeyel of one sigma and deviations from non-Gaussianity may
two-point functions. In particular, for results presented inyequire even larger error bars, particularly for experiments
this paper, we usedty,=1000, L{=0.001,L7=0.01,Ns  with small sky coverage. We expect the situation to be much
=200 andF 5= 10.0. We have also introduced the param-clearer when the new CMB data begins to arrive in the very
eter L;, quantifying the rate at which string segments arenear future.
turned off. Unlike the systems parametels, clearly has However, the situation seems to be much more clear-cut
some degree of physical significance. However, in Sec. Ill Gn the case of the CDM power spectrum. Once normalized to
we demonstrate that the dependence of the results on ti@OBE, the linear power spectrum of the CDM appears to fit
value of L; is relatively weak, and we choose to use the
valueL;=0.5 for the rest of our computations.

4Although, note the earlier comment, that we find better agree-
ment with the two-point functions measured in flat space simula-
3As mentioned earlier, the distribution of strings has been truntions for slightly different values ob and ¢ when we use our
cated to prevent strings moving faster than the speed of light. Thisausal, stress-energy conserving model. We have decided to use the
preventsv from being exactly the rms value, the difference from calculated values from expanding universe simulations as our stan-
the rms value being minimized for smaill dard, since they are likely to be more relevant for our model.
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FIG. 4. The COBE normalized angular power spectrum of CMB anisotroffefshand graphand the matter power spectrumght-
hand graphfor the standard string mod&olid curve. The contributions from the defects during two time windows (:326:100 — long
dashed, 106 z<1.6 — short dashedare also included for comparison. Standard ClRMt-dash curveand observational datdata points

are included for comparison.

the data extremely badly, with the predicted curve lyingincrease their size, but the level of disagreement is much
much further outside the observational error bars than in th&arger than seems likely in any of the realistic scenarios,
case of the CMB angular power spectrum. Again the errowhich are thought to be only mildly non-Gaussian on these
bars are based on an assumption of Gaussianity and consiskales. If we assume for the moment that we can compare the
eration of a non-Gaussian theory will no doubt require us taheoretical curves with the data in this very naive way, reso-
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FIG. 5. The COBE normalized angular power spectrum of CMB anisotrofiefshand graphand the matter power spectrugmght-
hand graphfor the standard string model. The total anisotrdpglid line) is illustrated, along with the partial contributions from scalar
(dotted, vector (short-dash and tensorlong-dash components in the case of the CMB anisotropies. The error bars shostatistical
uncertainties derived from the finite number of realizations in our calculations. Observational data and the prediction for standard CDM
(dot-dash curveare also illustrated in the case of the matter power spectrum. The dotted line on the matter spectrum shows the prediction

of Ref.[20], as discussed in the text.
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lution of the absence of power on any particular scale rewe have not attempted account for in our model, could give
quires us to postulate a bias between the CDM and the datase to variations irGu. Instead, we are primarily interested
While the idea of a bias between the CDM and baryonidn the relative normalization of anisotropies on different
matter, probed by the catalogues of galaxies and clusters atales, in particular between COBE amghy, which can be
galaxies which make up the data set, is not uncommon, largebtained without knowledge of the absolute valuésgf. In
values(>2) are thought to be unrealistic. future sections we present a number of variations on our

The bias required on a scale Bfh~1Mpc, where now standard scaling model, each giving rise to a different value
Ho=10th kmsec *Mpc™?, can be estimated by calculating for the string mass per unit length. To emphasize the fact that
the fractional matter over-density in a ball of radius we do not intend to use our model to obtain precise predic-
Rh™1Mpc, tions for the absolute value @ in realistic cosmic string
scenarios, we quote all subsequent values in terms of the
ratio u/ us, whereug is the value obtained for our standard
scaling model. We should note that large valueg.bi s are
likely to be excluded by the absence of residuals in timing
where the window functioW(x) is given by measurements for milli-second pulsafs].

As one final point, in Fig. 5 we include the prediction for
the matter power spectrum for strings in a background of
CDM computed in Ref[20]. The dotted line on the matter
graph shows the prediction from the | model described in
and comparing it targ calculated from a hypothetical curve this reference, normalized to give the same valuedigras
which fits the data, that isbR=oR/chM . The scaleR=8 our standard scaling model. We note that the predictions are
corresponds terg~ 1, that is, scales turning non-linear at the in extremely close agreement, although in the current work
present day, and is the most common scale on which conthe amplitude is no longer arbitrary, but fixed by normaliza-
parisons are made. For standard CRM¢=1.2 forh=0.5, tion of the associated CMB fluctuations to COBE.
while the value favored by observationssig= 0.5, illustrat-
ing the celebrated excess of power on small scales for this
model. When we perform the same calculation for the string
model, we getrg=0.31 and hence the bias on these scales is In order to test the robustness of the conclusions about the
bg~1.5. Such a value is around the limit of what is thoughtstandard model, we have repeated the calculations for differ-
to be possible, but given the uncertainties involved is noent values of andv. These variations could either represent
totally unreasonable. fundamentally different types of cosmic strings to those

This comparison does, however, ignore the obvious woemodelled in simulations, for example, those with supercon-
ful absence of power on much larger scales. In order to quarducting currents, or any possible systematic uncertainties in
tify this, we chooseR=100, since(1) it is unlikely that the measurement of these quantities. Figure 6 shows the
scales of 100~ Mpc are affected by non-linear gravitational power spectra for different values gfwith v =0.65, while
evolution,(2) the distribution of galaxies is likely to be more Fig. 7 shows the power spectra for different values ofith
Gaussian than on smaller scales, a8d such scales are ¢=0.3, with the values 0b;qg, bg, and u/ug summarized
above the neutrino free-streaming scale and so the introduda Table I. All other parameters are as in the standard scaling
tion of a hot dark matte(HDM) component cannot be used model.
to modify the shape of the spectrum. We estimate that the The first thing to note is that, although our choice of val-
standard string model requires a biasbgf,=5.4 to recon- ues spans the possible parameter space, none of the models
cile it with the data. Since the chances of either the actuatloes significantly better than the standard scaling case as far
Universe] 39,40 or the physical moddKk1,42 having sucha as the value ob,q, is concerned and there is also no pro-
bias seem remote, we conclude that the standard stringounced “Doppler peak” in the CMB spectrum. However,
model is in serious conflict with the current observations ormat a more microscopic level, there are differences which fol-
scales around 160 * Mpc. low the trends of previous calculations, giving us confidence

The COBE normalization of our standard scaling modelthat the model is reproducing intuitive results.
also allows us to calculate a value for the dimensionless As ¢ decreases, one is reducing the scale at which the
quantityGu, whereu is the string mass per unit length, and two-point functions turnover from white-noise, with=2.0
G is Newton’s gravitational constant. For our standard scalbeing close the causal linfi#4]. It was predicted in Ref31]
ing model, we find thaGu=2.0x 10 °. Including the ef- that this would lead to the contribution to the CMB anisot-
fects of small-scale structure on the string network is likelyropy from the surface of last scattering being peaked at
to reduce the required value &u by around a factor of 2, smaller scales, which is indeed what we see in Fig. 6, al-
giving a result very close to theX110™ © obtained from cal- though this feature is slightly masked out by the large ISW
culations of large angle CMB anisotropies using high resocomponent. This can be seen more clearly in the CDM
lution local string simulationg16]. Although these values power spectrum which turns over at a schle ékgq. One
are in good agreement, we stress that the purpose of owvould of course expect a reduction éto result in a sub-
work has not been to compu@yu to high precision and we stantially higher peak, but this is partially counterbalanced
expect that variations in details of the string evolution whichby an almost equivalent increase in the ISW component, the

k
agM:47rf d?k3P(k)|W(kR)|2, (67)

W(x)= %(sinx—xcosx), (68)

C. Modifications to model parameters

023508-14



DETAILED STUDY OF DEFECT MODELS FOR COSMI . .. PHYSICAL REVIEW D 59 023508

100 T T 11000 [T ) ' T - ;
///,/f' T
— 4 ;I\/ { i ~
™~
:é 8o R 7 } iox N

o I 2\ . ¥ \'\,

& HH | - g i X \\
e = : E
o OF v 5 ¥ :
> " i ]

T / N .
o A Sl Ay e —
~ KT I & e \\\\\%\

= 40 | (SIS, PSRN N < P N

3 A et N e — -
—+ e — %’\“ _______ N
- 1125 3 ~ .
TR D ~
S \@ o
= 2or BN AN
~ | | N
0 n MR | " r0a gl L N | 1 1 ' PR S |
1 10 100 1000 001 0.1
1 k/h Mpc!

FIG. 6. Varyingé, the string coherence length: We plot the COBE normalized angular power spectrum of CMB anisofiefpieand
graph and the matter power spectrumght-hand graphfor various values of the parameté&r with v =0.65. (¢=2.0 — long-short-dash
line, £=1.0 — dotted line £=0.3 — short-dash lineé=0.03 — long-dash line Observational data and the prediction for standard CDM

(dot-dash curveare included for comparison.

only direct evidence for such an effect being that smallemore coherent, since the strings are not moving, creating
values of¢ require a smaller value d&u. This change in  perturbations in the same place. However, such a limit does
Gu can be understood from the formutg~ u/&?; if the  not correspond in any way to the standard picture of string
value of ¢ decreases, the value pf must also decrease to evolution. If the strings are moving slowly or are stationary,
keep the string density and hence the amplitude of the CMBhen reconnection will take place only very infrequently and
anisotropy the same. the scaling regime will be difficult to attain. But scaling is
The lack of dependence anis less intuitive. One might implicit in our model, being put in by hand, so even if they
think that in the limit ofv —0, the network would become are not moving, the string