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Detailed study of defect models for cosmic structure formation
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We calculate predictions from a wide class of ‘‘active’’ models of cosmic structure formation which allows
us to scan the space of possible defect models. We calculate the linear cold dark matter power spectrum and
cosmic microwave background anisotropies over all observable scales using a full linear Einstein-Boltzmann
code. The calculations are performed entirely in an Einstein–de Sitter cosmology. Our main result, which has
already been reported, points to a serious problem reconciling the observed amplitude of the large-scale galaxy
distribution with the cosmic background explorer normalization. Here, we describe our methods and results in
detail. The problem is present for a wide range of defect parameters, which can be used to represent potential
differences among defect models, as well as possible systematic numerical errors. We explicitly examine the
impact of varying the defect model parameters and we show how the results substantiate these conclusions.
The standard scaling defect models are in serious conflict with the current data, and we show how attempts to
resolve the problem by considering non-scaling defects or modified stress-energy components would require
radical departures from what has become the standard picture.@S0556-2821~98!01122-9#

PACS number~s!: 98.80.Cq, 95.351d
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I. INTRODUCTION

Topological defects are an almost generic phenomen
nature and have been already detected in a number of l
ratory systems~see, for example, Ref.@1#!, where symmetry
breaking phase transitions take place. Probably the mos
citing possibility, however, is that they are formed duri
spontaneous symmetry breaking at a phase transition in
early universe@2–4#, since they could act as the primordi
seeds for galaxy formation, the most plausible models be
the so called cosmic string@5,6# and cosmic texture@7# theo-
ries.

Theories for galaxy formation can be described as eit
‘‘passive’’ or ‘‘active’’ @8#. In passive theories, such as tho
predicted by the inflationary paradigm, all the perturbatio
are set up effectively as~super-horizon! initial conditions at
very early times, which then evolve under a determinis
linear evolution, until very late when non-linear process
take over on the very smallest scales. By contrast, pertu
tions are created on all scales at all times in active mod
making predictions much more difficult to calculate. Typ
cally, one has to deal with the fundamental non-linearity
the source over a large dynamic range — approximately
orders of magnitude — from the defect formation to t
present.

The last few months have seen dramatic progress in
ning down the predictions from defect models of cosm
structure formation in what we shall describe as the stand
scenario, that is defect motivated stress-energy compon
0556-2821/98/59~2!/023508~31!/$15.00 59 0235
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with an assumption of perfect scaling from formation to t
present day. Three groups@9,10,12# have performed calcula
tions which integrate the linear Einstein-Boltzmann equ
tions using the latest technology for different models of t
defect stress-energy two-point functions to produce pre
tions of power spectra for the cold dark matter~CDM! den-
sity field and the cosmic microwave background~CMB!
anisotropies. This article gives a detailed presentation of
methods and results of Ref.@10#. Subsequently, these meth
ods were also applied to cosmologies with a non-zero c
mological constant, with interesting results@11#.

There are two traditional approaches to the study of de
dynamics. Some authors have used large-scale simulatio
provide the sources for their CMB and structure formati
calculations@13–16#, while others have developed analyt
models which attempt to describe the statistical propertie
the defects@17–19#. Even using the latest technology, mo
elling the source using simulations is severely constrained
dynamic range. In this work, we will use a model bas
approach to calculate the two-point correlation functio
which act as sources for a state-of-the-art linear Einste
Boltzmann solver. This has a number of advantages and
disadvantages when compared with the complemen
simulation based approach; the real strength being that on
not constrained to a particular defect based scenario, all
ing one to explore all possible scenarios and understand
robustness of any claims that one might make. The down
is that one must take care to construct the source str
energy, which has many possible degrees of freedom,
©1998 The American Physical Society08-1
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ALBRECHT, BATTYE, AND ROBINSON PHYSICAL REVIEW D59 023508
way which is at least physically plausible. This is genera
done by comparison to some kind of simulation.

The recent work by Penet al. @9# and our collaboration
@10#, has exposed an apparently deep conflict between C
mic Background Explorer~COBE! normalized defect model
and the observed galaxy correlations on large scales.
conflict was quantified in Ref.@10# in terms ofb100, the bias
between the dark matter and baryon distributions on scale
100h21 Mpc required to match the COBE normalized defe
models with the galaxy data. Although some evidence
such a problem has existed for some time, uncertain
about whether the computations had sufficient dyna
range meant the precise quantitative details of the prob
were not fully understood. Most previous work on this pro
lem relied on separate calculations for the large-angle CM
which is normalized to COBE, and the linear matter pow
spectrum, using analytic expressions to relate the two,
for example, the mass per unit length in the case of cos
strings. Our calculations~as well as those of Penet al. @9#!
do not use any such extrapolation, with the perturbation
the matter~dark and baryonic! and the photon~plus neutri-
nos! distributions being calculated in a self-consistent w
across all observable scales. Hence, a single normalizatio
COBE gives the normalized linear matter power spectrum

We should note that the scale of 100h21 Mpc was chosen
for three reasons. Firstly, 100h21 Mpc is sufficiently large
that non-linear effects are not expected to affect the po
spectrum. Secondly, the discrepancy in the power spect
this scale is at its most extreme. And finally, it is unlike
that the power spectrum on these scales can be affecte
changes in the cosmogony, for example, the introduction
hot dark matter~HDM!.

The price of our solution to the dynamic range problem
that ~1! we can only calculate the power spectrum of t
matter and CMB, since we have only included the two-po
functions of the source@20# — no non-Gaussian effects ar
included — and~2! the results depend on the validity of th
simple scaling picture over many orders of magnitude
cosmic expansion. Even though there is substantial sup
for this assumption, both from numerical simulations a
analytic modelling@21–23,17–19#, there are also reasons
think that it may not be perfect. One of the important co
ponents of our work is an investigation of possible deviatio
from scaling. Our approach to modelling the defect tw
point functions has also allowed us to explore other va
tions, besides deviations from scaling. These variations
resent possible differences between defect models
possible systematic errors in numerical defect simulatio
We have found that solving theb100 problem requires ex-
treme departures from the standard picture.~Interestingly, we
are learning that defect networks inVm,1 cosmologies may
exhibit interesting levels non-scaling behavior@24#.

In the next section, we discuss some aspects of the lin
ized Einstein-Boltzmann solver, in particular, the inclusi
of source stress-energy, the Einstein-Boltzmann equat
for vector perturbations and ways of calculating the e
semble average for incoherent perturbations. Section III p
sents in detail our modelling of the source two-point fun
tions, by reference to a specific string motivated model. T
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results for the standard scaling model are presented a
with quantification of theb100 problem. We also show tha
simple modifications to the model and cosmological para
eters, such as the Hubble constant and baryon density,
little impact on theb100 problem. In Sec. IV we discus
possible deviations from the standard scaling assumption
Sec. V explores further modifications to the model, whi
might lead to an improvement in the comparison with t
data. We find that it is possible to get better agreement,
though only the most extreme modifications come close
100h21 Mpc scales. The aim of this paper is to presen
pedagogical exposition of our work, so that the expert c
reproduce and interpret our results. In the final section,
discuss its relation to that of others and point to directions
future investigation.

II. LINEAR EINSTEIN-BOLTZMANN SOLVER

A. CMBFAST

In order to calculate CMB anisotropies, one must so
the linearized Einstein-Boltzmann equations. Recent ye
have seen techniques developed to solve these equatio
very high precision~;1%! for the standard adiabatic mode
based on inflation@25#, culminating in the public release o
CMBFAST @26# which can perform this task in under a minu
on a modern workstation. The standard Boltzmann met
involves evolving over 3000 highly oscillatory linear ord
nary differential equations~ODEs! from some time deep in
the radiation era to the present day, which can take m
hours. The line of sight method@27# used in this code re-
duces the time drastically by splitting the prohibitively osc
latory geometric effects from the dynamical processes
to, for example, the Doppler effect and potential evolutio
This reduces the number of ODEs down to about 30,
adds an integration along the line of sight.

It is usual to express temperature anisotropies in term
a decomposition into spherical harmonics,

DT

T
~u,f!5(

l 50

`

(
m52 l

l

almYlm~u,f!. ~1!

For a Gaussian random field, such as those generate
inflation, the statistics of anisotropies are entirely specifi
by the angular power spectrumCl5^ualm

2 u& where the angled
brackets denote an ensemble average.

For the moment, let us assume that we only require
anisotropies for a simple inflationary model which creates
appreciable vector and tensor fluctuations. In this case,
angular power spectrum is given by

Cl5
2

pE k2dk^D l
S~k,t0!D l

S* ~k,t0!&, ~2!

where the photon distribution functionD l
S(k,t0) at the

present day conformal timet5t0 is given by the line of
sight integration,
8-2
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DETAILED STUDY OF DEFECT MODELS FOR COSMIC . . . PHYSICAL REVIEW D 59 023508
D l
S~k,t0!5E

0

t0
dt„ST

0~k,t! j l
00@k~t02t!#1ST

1~k,t! j l
10

3@k~t02t!#1ST
2~k,t! j l

20@k~t02t!#…, ~3!

and ST
0(k,t), ST

1(k,t), ST
2(k,t) can be deduced from Re

@28#, with

j l
00~x!5 j l~x!, j 10~x!5 j l8~x!,

j l
20~x!5 1

2 „3 j l9~x!1 j l~x!…. ~4!

For the coherent limit, implicit in phase focused@8# infla-
tionary models, one can perform the ensemble average
simply replacinĝ D l

S(k,t0)D l
S* (k,t0)&5uD l

S(k,t0)u2.
In the rest of this section, we will describe how this a

proach can be modified to include active sources such
cosmic defects. Firstly, we show how simple coherent sc
sources may be added. Then we discuss the inclusion o
vector and tensor sources, almost generic in any ac
model. Finally, we show how one may perform the ensem
average when the source is not coherent and discuss the
ous implications of decoherence. We have already noted
for non-Gaussian sources, such as the topological def
under consideration here, the angular power spectrum d
not entirely specify the nature of the anisotropies. Howev
most realistic models are thought to lead to only mildly no
Gaussian anisotropies through the central limit theorem
the superposition of non-Gaussian probability distributio
Hence, it should be a useful discriminant between differ
models for structure formation. We will discuss the effica
of using power spectra to distinguish between different m
els of structure formation in the conclusions.

B. Coherent active scalar sources

As a first step, therefore, let us introduce an independ
covariantly conserved component of stress-energyQmn into
the Einstein equations,

Gmn58p@Tmn1Qmn#, ~5!

where Tmn is the stress-energy of CDM, baryons, photo
and neutrinos present in a particular cosmogony. This e
component, usually assumed to be ‘‘stiff,’’ that is, unaffect
by gravity at first order, adds a forcing term to the Einste
Boltzmann equations which represents the active source

For the moment let us assume that the Fourier transf
of the stress-energy can be decomposed asQ0i5

2 iQDk̂i /k and

Q i j 5
1

3
d i j Q1S k̂i k̂ j2

1

3
d i j DQS, ~6!

wherek̂i is a unit vector in Fourier space,QD is the velocity
field, Q is the isotropic pressure, or three times the press
andQS is the anisotropic stress. The conservation equati
for this decomposition are
02350
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Q̇001
ȧ

a
~Q001Q!2QD50,

Q̇D1
2ȧ

a
QD1

1

3
k2~Q12QS!50. ~7!

Hence, in order to incorporate this source stress-energy,
must add Eq.~7! to the ODE solver, modify the linearize
Einstein equations to include the forcing terms and spe
two quantities fromQ00, QD , Q andQS.

The initial conditions for the Einstein-Boltzmann equ
tions must also be modified. The idea is that one sets
initial conditions for a pure growing mode deep in the rad
tion era. In order to enforce causality, one requires that co
ponents of the pseudo-stress-energy tensortmn be zero@13#,
which creates a balance between the initial metric pertur
tions, the defect stress-energy and the matter perturbat
However, there is a residual degree of freedom which allo
us to just simply set everything to zero. Physically, this i
plies that the initial conditions are unimportant relative to t
actual sources themselves, which is implicit in the distinct
between passive and active sources.

The most common defect based models are though
scale for most of the history of the universe and so for
moment at least, we specialize our discussion to sca
sources. This requires that t1/2Q00(k,t)5F1(kt),
t1/2Q(k,t)5F2(kt), t1/2QD(k,t)5F3(kt) and
t1/2QS(k,t)5F4(kt), with the functionsFi(x) having well
defined power series expansions aroundx50. Moreover, fur-
ther constraints can be placed on the leading order beha
of these functions by causality and analyticity@29#. In par-
ticular, this implies that,

^Q00Q00* &5Zk01O~k2!, ^QSQS* &5Yk01O~k2!,

^Q00Q
S* &5Xk21O~k4!,

^QQ* &5Wk01O~k2!, ^QDQD* &5Vk41O~k6!, ~8!

with all the other correlators and cross-correlators be
deduced in a similar way or by assuming stress-ene
conservation. In the coherent limit ^Q00Q

S* &
5^Q00Q00* &1/2^QSQS* &1/2, which using Eq.~8! implies that
Y50 and in fact̂ QSQS* &;k4. This very specialized limit
leads to some slight subtleties which will not in general
present for active sources. This will be discussed in the s
tion on incoherent sources.

One simple choice which is consistent with the coher
limit is to define@30#

4pQ5
3a

t1/2

sinAkt

Akt
,

4pQS5
b

t1/2

6

B22C2S sinBkt

Bkt
2

sinCkt

Ckt D , ~9!
8-3
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ALBRECHT, BATTYE, AND ROBINSON PHYSICAL REVIEW D59 023508
whereA, B, C, a andb are constants. The angular pow
spectra for this source are presented in Fig. 1 for~a! a51,
b50 andA51 ~b! a51, b51, A51, B51 andC50.5.
Taking into account the arbitrary normalization used in R
@30#, the results seem to be identical.

At a very technical level, various modifications to intern
systems parameters ofCMBFAST were also required. The
source function forD l

S(k,t) is dependent on three variable
and the code sets up a discrete three-dimensional array

FIG. 1. The angular power spectrum for the simple coher
sources~a, solid line! and ~b, dotted line! normalized to COBE.
Note no vector or tensor components are calculated here.
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taining these values with spacingsD l , Dk and Dt, before
performing the line of sight integration overl values. Obvi-
ously, the most accurate results are obtained by using
smallest possible values ofD l , Dk andDt; the cost being an
increase in the CPU time. We systematically reduced
three spacings from the values in the original version a
found that the results converged whenDk was reduced by
about a factor of two, withD l andDt being left the same.
We also varied the number of equations solved by the O
integrator and found that there was no discernible impro
ment from any increase. We concluded that the line of si
integration method is also useful to calculate the predicti
of active models for structure formation.

C. Generalization to include vector and tensor modes

The split of the energy momentum tensor~6! is not the
most general, since it includes only scalar sources. A m
general split is

Q0i52 iQDk̂i /k1Q0i
V ,

Q i j 5
1

3
d i j Q1S k̂i k̂ j2

1

3
d i j DQS1~ k̂iQ j

V1 k̂ jQ i
V!1Q i j

T ,

~10!

which includes vector (Q0i
V ,Q i

V) and tensor (Q i j
T ) sources

such that

k̂iQ0i
V 5 k̂iQ i

V5 k̂iQ i j
T 5 k̂ jQ i j

T 5Q i i
T50. ~11!

Without loss of generality, one can fix the direction in Fo
rier space and choosingk̂5(0,0,1) gives

t

Qmn5S Q00 Q01
V Q02

V 2 iQD /k

Q01
V 1

3
Q2

1

3
QS1Q11

T Q21
T Q1

V

Q02
V Q21

T 1

3
Q2

1

3
QS2Q11

T Q2
V

2 iQD /k Q1
V Q2

V 1

3
Q1

2

3
QS

D , ~12!
with Q03
V 5Q3

V5Q3i
T 5Q i3

T 50 for i 51,2,3 andQ11
T 1Q22

T

50. There appear to be four independent vector compon
(Q1

V ,Q2
V ,Q01

V ,Q02
V ) and two tensor components (Q11

T ,Q21
T ).

However, two of the vector components are related to
other two by stress-energy conservation, and hence ther
also just two independent components.

These vector and tensor sources can be identified
their respective contributions to the angular power spect
ts

e
are

th
m

Cl5Cl
S1Cl

V1Cl
T which are defined in analogy to Eq.~2! by

Cl
I5

2

pE k2dk^D l
I~k,t0!D l

I* ~k,t0!&, ~13!

where the indexI runs overI 5S,V,T corresponding to the
8-4
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DETAILED STUDY OF DEFECT MODELS FOR COSMIC . . . PHYSICAL REVIEW D 59 023508
scalar, vector, tensor contributions. The scalar photon di
bution function is given in Eq.~3!, with the vector and tenso
versions defined by

D l
V~k,t0!5E

0

t0
dt„VT

1~k,t! j l
11@k~t02t!#

1VT
2~k,t! j l

21@k~t02t!#…,

D l
T~k,t0!5E

0

t0
dt„TT

2~k,t! j 22@k~t02t!#…, ~14!

whereVT
1 , VT

2 , TT
2 are the source functions for the vect

and tensor perturbations and

j l
11~x!5Al ~ l 11!

2

j l~x!

x
,

j l
21~x!5A3l ~ l 11!

2 S j l~x!

x D 8
,

j l
22~x!5A3

8

~ l 12!!

~ l 22!!

j l~x!

x2 . ~15!

The Boltzmann equations for the scalar and tensor per
bations are well studied both analytically and numerica
but the same is not true for vector perturbations. Here,
include the Boltzmann equations for the vector perturbatio
along with a discussion of their salient features. For a m
in depth study of scalar, vector and tensor perturbations,
reader is referred to Ref.@28# which also includes all the
other relevant Boltzmann equations.

We split up the photon distribution function for the vect
sources into its angular multipole moments

DV~k,t0 ,m!5(
l 51

`

~2 i ! l~2l 11!Pl~m!D l
V~k,t0!, ~16!

wherem5cosu is the angular variable. With this decomp
sition the Boltzmann equations become

Ḋ l
V5kSAl 221

2l 11
D l 21

V 2
Al 212l

2l 11
D l 11

V D 2k̇D l
V1Sl ~17!

for l .0, wherek̇ is the differential cross-section due to T
omson scattering,

S15 1
3 k̇~VB1V̇!, S252 1

5 PV5 1
10 k̇~D2

V2A6E2
V!,

~18!

andSl50 for l .2. In the above expression,E2
V is the quad-

rapole of the electric component of the photon polarizat
distribution andV is the vector metric perturbation whic
satisfies

V̇1
2ȧ

a
V52

64pG

A3k
~rgD2

V1rnN2
V!2

8pG

k
QV, ~19!
02350
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whereQV is the vector source, eitherQ1
V or Q2

V , rg is the
average photon density,rn is equivalent quantity for neutri-
nos andN2

V is the quadrupole component of the neutri
distribution. VB is the vector~vortical! component of the
baryon velocity which satisfies

V̇B5V̇2
ȧ

a
~VB2V!1

k̇

R
~3D1

V2VB!, ~20!

whereR53rb/4rg andrb is the average baryon density. A
already discussed, the standard approach is to solve t
linear differential equations forl , l max, plus the equivalent
equations for the polarization distribution functions, whi
we have not included here for brevity. The line of sight i
tegration method which we use only requiresl max'7, hence
reducing the amount of CPU time required. However,
need one final ingredient, the source functions for vec
perturbations, which are given by

VT
15k̇e2k~VB2V!,

VT
25k̇e2kPV1

1

A3
e2kkV, ~21!

where

k~t!5E
t

t0
k̇~t8!dt8, ~22!

is the optical depth due to Thomson scattering. We sho
note that exactly analogous expressions exist for both
electric and magnetic components of the polarization. Th
are also presented in Ref.@28#.

The important thing to notice is that vector perturbatio
are not created at any significant level in the absence
source. This can be seen from the Einstein equation: ifQV

50, thenV}a22, since the effects ofD2
V andN2

V are negli-
gible. Hence, they are not present in inflationary models,
are generic in any active model.

D. Incoherent sources

In the previous few sections, we have studied how
linearized Einstein-Boltzmann equations can be modified
include active sources which create scalar, vector and te
anisotropies and we have shown how it is possible to re
to the measured quantities, such as the angular power s
trum, when the sources are coherent. Such sources are,
ever, very unnatural, generically relying on assumptions s
as pure spherical symmetry to maintain coherence. Th
fore, we are forced to consider methods for calculating
ensemble average for theories which include incoher
sources.

This subject was studied in a series of works which fi
discussed the equally unnatural, but probably more realis
totally incoherent limit@8,31# and then multi-parameter mod
els which allowed for a gradual relaxation from total cohe
ence to total decoherence@32#. One key advantage that th
current work has over, for example, Ref.@32# is that once a
8-5
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ALBRECHT, BATTYE, AND ROBINSON PHYSICAL REVIEW D59 023508
given source model is chosen, there is no uncertainty in r
tive normalization of the anisotropy created by acoustic
cillations at the time of last scattering and that created m
later by the integrated Sachs-Wolfe~ISW! effect. The meth-
ods used in the earlier work suffered from large uncertain
in this aspect of the calculation. We shall see that deco
ence is actually prevalent in most active models and the c
tribution to the anisotropy from the surface of last scatter
does not, in general, give rise to noticeable acoustic t
signatures in the angular power spectrum. We also fin
suppression of the anisotropy created at last scattering
respect to the ISW effect, not anticipated in Refs.@8,31,32#.

The main problem in dealing with decoherence is that
unequal time correlators~UETC! do not factorize, that is,

^P~k,t1!P* ~k,t2!&

Þ^P~k,t1!P* ~k,t1!&1/2^P~k,t2!P* ~k,t2!&1/2,

~23!

for some arbitrary quantityP(k,t) and t1Þt2 . There are
two methods which one can use to overcome this probl
The first @33,34#, used in Ref.@9#, is to treat the UETC,
evaluated at the discrete times used in the linear Einst
Boltzmann solver, as a matrix which is symmetric and he
diagonalizable. This diagonalization yields a change of ba
and the source can then be written as a sum of cohe
sources,

^P~k,t1!P* ~k,t2!&5(
i

l iv i~k,t1!v i* ~k,t2!, ~24!

where thel i are the eigenvectors, ordered such thatl1
.l2.....ln , andv i(k,t) are the orthogonal, coherent b
sis functions. Since everything is linear, one can use eac
these basis functions, as a source in the modified versio
CMBFAST and the sum of the individual angular power spe
tra yields the total. Although each of these coherent sou
is has a degree of acausality, it appears to give good con
gence from using only the ten largest eigenvalues@9#, which
indicates that the full calculation is well behaved.

The second method@8#, which is used in Ref.@10# and the
current work, is to not work directly with the UETC. Instea
we create an ensemble of source histories which has
same two-point correlation statistics as the required UE
The exact process for doing this is discussed in the n
section, but once it is done, the ensemble average ca
estimated by averaging the angular power spectra from m
individual source histories. Since our ensemble is finite,
can also calculate its standard deviation to give an idea
how accurate the calculated average is. The results prese
in this work used either 100 or 400 source histories to g
small statistical errors. However, it was possible to gain
qualitative feel from as little as 40 source histories.

This method is clearly more computationally intensi
than the eigenvalue decomposition requiringCMBFAST to be
run over 100 times as opposed to about 10. We improved
turnaround speed by doing the calculations in parallel
100 realizations took about an hour on 163R10000 proces-
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sors of the new SGI Origin 2000 owned the UK Compu
tional Cosmology Consortium. Setting aside the appar
computational inefficiency,1 we believe that this method i
more physically transparent, since each of the source hi
ries will be causal and at the very least provides a use
check on the diagonalization method.

For these incoherent source histories, the nature of
anisotropic stress sources will be seen to be important
super-horizon scale, since it is implicitly linked to the vect
and tensor sources. As mentioned earlier, in the special
of the coherent limit^QSQS* &;k4, which is not true in
general. Using similar arguments, it was shown in Ref.@29#,
that

^uQSu2&:^uQ i
Vu2&:^uQ i j

T u2&53:2:4, ~25!

where all indices are summed. The reason for this is t
each of the components is linked via the anisotropic par
the space-space component of the source stress-energy
sor. Using a simple model, it was deduced that

Cl
S :Cl

V :Cl
T51.46:1:0.29, ~26!

at aroundl 510. While it is true that, the vector and tens
contributions to the angular power spectrum are likely to
similar to the scalar contributions on large angular sca
there is no general formula or constraint for this ratio a
indeed, the model we present in the subsequent sections
be seen to have a larger scalar component than that of R
@9,29#. We should note that the incoherent case, wh
^QSQS&;k0, the formation of anisotropies along the line
sight, that is, the ISW effect, will be influenced by supe
horizon correlations, in a way not possible in a coher
model.

III. THE STANDARD SCALING MODEL

A. Modeling the source histories

Here, we present the model for defect two-point functio
based on a description of scaling cosmic strings. First, we
out the motivation for the model, then we give the ma
ematical details, explaining each of the parameters. Fina
we show some two-point functions calculated within t
framework of the model, demonstrating an acceptable le
of agreement between these two-point functions and th
measured in simulations.

The starting point for our model is Ref.@35#. In this work,
measurements of the string two-point correlation functions
Minkowski space simulations of network evolution we
made and a strikingly simple analytic model was put fo
ward, capable of reproducing the important features of th
two-point functions with good accuracy. The basic assum
tion of this model is that a string network can be represen

1Obviously, there will be some overhead in doing the eigenva
decomposition for any particular UETC and also in creating
UETC from simulations. Therefore, we are not quite comparing l
with like.
8-6
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DETAILED STUDY OF DEFECT MODELS FOR COSMIC . . . PHYSICAL REVIEW D 59 023508
as a collection of randomly oriented straight segments, e
of lengthjt, wheret is the physical time andj is a constant
parameterizing the coherence length of the string. To mo
the motion of the strings, each of these segments is assi
a randomly oriented velocity whose magnitude is cho
from a Gaussian distribution with zero mean and stand
deviationv.

Under these assumptions, an analytic expression ca
derived for the string energy two-point correlation functi
as follows: the Fourier transformed stress energy tensor
string in Minkowski space is given by

Qmn~k,t !5mE ds~ẊmẊn2Xm8 Xn8!eik.X~s,t !, ~27!

whereX(s,t) is the position of the string labelled bys at
time t, and hence the energy two-point correlator is given

^Q00~k,t1!Q00* ~k,t2!&

5m2K E ds1ds2eik.~X~s1 ,t1!2X~s2 ,t2!!L . ~28!

If one now assumes that the quantity„X(s1 ,t1)
2X(s2 ,t2)… is Gaussianly distributed, with mean zero a
varianceG, then it follows that

^Q00~k,t1!Q00* ~k,t2!&5 1
2 m2E ds1ds2e2 ~1/6! k2G~s2 ,t1 ,t2!,

~29!

wheres15s11s2 ands25s12s2 . To estimate the vari-
anceG, one makes use of the idea that on scales smaller
the correlation lengthjt the string network resembles a co
lection of straight line segments with velocityv, which im-
plies that

G~s2 ,t1 ,t2!5~12v2!s2
2 1v2~ t1

22t2
2!2, ~30!

for us2u,jt1 /2 and on scales larger thanjt there are no
correlations, so that

G~s2 ,t1 ,t2!5`, ~31!

for us2u.jt1 /2. In this picture, the length and number de
sity of string segments does not change, so that scaling
havior will have to be imposed on the correlators later
hand. Substituting forG in Eq. ~29!, performing the integra-
tion overs2 , and using1

2 *ds15Vj22 ~assuming a length
of string Vj22 per simulation volumeV), one finds that

^Q00~k,t1!Q00* ~k,t2!&

5
Vm2

A12v2

1

jt1

A6p

kjt1
erfS kjt1

2A6
D e2 ~1/6! v2k2~ t12t2!2

,

~32!

where erf(x) is the error function,
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erf~x!5
2

Ap
E

0

x

dx8e2x82
. ~33!

The expression for the energy two-point correlator in E
~32! has the wrong scaling behavior, since changes in st
segment length and density have not been incorporated.
possible to introduce the right scaling behavior into th
model by hand using

^Q00~k,t1!Q00* ~k,t2!&sca

5
1

Ajt1jt2

AP~k,t1!P~k,t2!e2 1/6v2k2~ t12t2!2
,

~34!

where P(k,t) is jt times the equal time energy correlat
from Eq. ~32!, that is,

Pr~k,t !5jt^Q00~k,t !Q00* ~k,t !&. ~35!

Similar expressions can be derived for the all the other eq
and unequal time correlators.

This model has a number of shortcomings, primarily b
cause certain simplifying assumptions have been mad
order to make it possible to derive analytic expressions
the two-point functions. By contrast, we need not work w
simple analytic forms, since we do not work with the u
equal time correlators directly. Instead, we use numer
techniques to generate histories for the source functions
the correct two-point statistics. This has made it possible
improve and extend the model in a number of ways. In p
ticular, we include an improved treatment of causality a
scaling, and extract a different set of components of
string stress-energy. We briefly sketch these differences,
fore embarking on a detailed mathematical description of
model.

Causality:One problem with the analytic model is that
does not fully respect the constraints imposed by cau
ity, which require that there can be no correlations b
tween source components at space-time points whose
light cones do not intersect. In particular, by assum
that the lag X(s1)2X(s2) between two-points on a
string segment is Gaussianly distributed, one assign
nonzero value to the probability of correlations existi
on scales larger than the causal horizon, making
model manifestly acausal. For this reason the oscillatio
which should appear generically in the two-point fun
tions of causal theories@33#, are not present in the ana
lytic expressions for the correlators. By contrast, o
model is causal by design, because we do not assume
this lag is Gaussianly distributed.
Scaling behavior:In Ref. @35#, the unequal time correla
tion functions were simply multiplied by appropriate fa
tors by hand in order to enforce the correct scaling beh
ior. We extend the model by making the scaling form
the unequal time correlators arise in a natural way, a
consequence of the decay of the string segments. It
8-7
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ALBRECHT, BATTYE, AND ROBINSON PHYSICAL REVIEW D59 023508
be seen that a different super-horizon form for the u
equal time correlators arises as a result of this assump
Choice of stress-energy components:Although we make
use of the same basic picture of the string network
order to calculate the two-point functions, we extrac
different set of components of the string stress-energy
sor, calculating the others to maintain stress-energy c
servation. We extract the energyQ00 and the anisotropic
stressQS, as opposed toQD , and since we also includ
tensor and vector contributions in our calculation, we a
compute vector and tensor source componentsQV and
QT. As discussed in Ref.@9#, this particular choice of
scalar components is very natural, as the remaining
components of the stress-energy tensor are found to
well behaved on integration of the conservation equatio
which is not necessarily true for the choiceQ00 andQD .
Also, taken in conjunction withQV and QT, these com-
ponents specify the super-horizon perturbations in
most direct manner.
Having outlined the main differences between our mo

and that described in Ref.@35#, we now proceed to set ou
the specific mathematical details. For a general network
strings in an expanding universe, the stress energy tenso
the form

Qmn~x,t!5mE ds~eẊmẊn2e21Xm8 Xn8!d~3!
„x2X~s,t!…,

~36!

wherem is the string mass per unit length,X are the coor-
dinates of the string world sheet, parameterized by confor
time t and spatial variables, dot and prime represent dif
ferentiation with respect tot and s, respectively, e2

5X82/(12Ẋ2), andd (3)(x) denotes the Dirac delta functio
in three dimensions. Note that now we are working in
expanding universe, each of the string segments will h
sizejt. We are interested in histories for the Fourier tran
form of the string stress-energy tensor, which is defined

Qmn~k,t!5E d3xeik.xQmn~x,t!

5mE dseik.X„s,t…~eẊmẊn2e21X8mX8n!.

~37!

Our conceptual ‘‘string network’’ consists of a collectio
of straight line segments, each with an individual labelm,
which ‘‘decay’’ in a smooth way, completely vanishing b
some final timet f

m . A history for the evolution of the com
plete string stress-energy tensor is then written as a sum
the histories for the stress-energy tensors of the individ
segments,

Qmn~k,t!5(
m

Qmn
m ~k,t!Toff~t,t f

m ,L f !T
on~t,t f

m ,Li
1 ,Li

2!.

~38!
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The functionToff is a smooth segment decay function, ch
sen so that the segment starts to disappear atL ft f

m , and has
disappeared completely att f

m , with the additional features
that the stress-energy and its time derivative are continu
at L ft f

m andt f
m , which are necessary in order for the OD

solver to function properly. With these properties in min
we chose the following form forToff:

Toff~t,t f ,L f !5H 1, . . .t,L ft f ,

1
2 1 1

4 ~x323x!, . . . L ft f,t,t f ,

0, . . .t.t f ,
~39!

where

x52
ln~L ft f /t!

ln~L f !
21. ~40!

Similarly, Ton is a smooth segment appearance function, w
almost identical properties toToff except that it represents th
smooth turning on of the segment at early times. By analo
to Toff, we chose

Ton~t,t f ,Li
1 ,Li

2!

5H 0, . . .t,Li
1t f ,

1
2 1 1

4 ~3y2y3!, . . . Li
1t f,t,Li

2t f ,

1, . . .t.Li
2t f ,

~41!

where

y52
ln~Li

1t f /t!

ln~Li
1/Li

2!
21. ~42!

This function is only included for computational efficienc
since it is possible to ignore any particular string segmen
times earlier thanLi

1t f , providedLi
1 andLi

2 are sufficiently
small. We checked this by varying the values ofLi

1 andLi
2

and found that these variations make very little difference
the total stress-energy provided the values are small eno
This is because at any time, the stress-energy tensor is d
nated by strings whose decay times lie in the near future.
choose values forLi

1 and Li
2 which are small enough tha

results are not changed by any further decrease.
During the generation of a particular string history, it

not practical to keep track of every piece of string in o
conceptual simulation volume. This is because the num
density of stringsn(t) scales liket23, so that to have of
order one string segment remaining by the final simulat
time t0 , the number of strings we would need to follow fro
the initial simulation timet i would be of order (t0 /t i)

3. In
the case of a mode tracked from well before radiation-ma
equality ~for instance, from an initial timet i50.02teq,
whereteq is the conformal time of radiation-matter equalit!
to the present day, this would require us to follow of ord
1012 strings. Instead, since the
8-8
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DETAILED STUDY OF DEFECT MODELS FOR COSMIC . . . PHYSICAL REVIEW D 59 023508
Nf5V@n~t f !2n~t f1dt f !# ~43!

strings decaying between timest f and t f1dt f in our con-
ceptual ‘‘simulation’’ volumeV are randomly located, we
can replace them by a single string, whose amplitude is m
tiplied by Nf

1/2; the power of 1/2 coming from the fact tha
random locations in real space correspond to random ph
in Fourier space, so that the amplitude of the Fourier tra
form of a number of such segments sums as a random w
for all kÞ0.

The equation for a single source history then become

Qmn~k,t!5V1/2(
m

@n~t f
m21!2n~t f

m!#1/2Qmn
m ~k,t!

3Toff~t,t f ,L f !T
on~t,t f ,Li

1 ,Li
2!. ~44!

For each source history, we useNs individual string seg-
ments, with values oft f equally spaced on a logarithmi
scale betweent i and Fmaxt0 , whereFmaxt0 must be later
than the final simulation timet0 in order that all strings
inducing significant perturbations at timet0 are included.2

The Fourier transform for each individual string segme
is given by

Qmn
m ~k,t!5mE

2jt/2

jt/2

dseik.Xm~eẊm
mẊm

n 2e21X8m
mX8m

n !,

~45!

wherejt is the length of the string segment at timet and
Xm(s,t) are the coordinates of the string world sheet, giv
by

Xm5xm1sX̂8m1vmtXN m. ~46!

For each string segment,xm is a random location~in practice,
we generatek.xm as a random number between 0 and 2p),
while X̂8m andXN m are randomly oriented perpendicular un
vectors, such that,

uX̂8mu5uXN mu51, ~47!

X̂8m.XN m50. ~48!

The string velocityvm is a random number chosen from
Gaussian distribution with mean zero and standard devia
v, truncated to preventuvmu.1.

Performing the integration overs, and taking only the
real part, we find that

2The effective total number of strings at any time is given
(@n(t f

m21)2n(t f
m)#Toff(t,t f ,L f)T

on(t,t f ,Li
1 ,Li

2), and the nor-
malization ofn(t) is chosen to ensure that this quantity is equal
(jt)23.
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m

A12vm
2

jt sinc~kX̂38jt/2!

3„cos~k.xm!cos~kX6 3vmt!2sin~k.xm!sin~kX6 3vmt!…,

~49!

Q i j
m5@vm

2 X6 iX6 j2~12vm
2 !X̂8 i X̂8 j #Q00

m . ~50!

where sinc(x)5sin(x)/x and the subscripts refer to the ind
vidual spatial components. For conciseness, we have
dropped the subscriptm on X here, and in the following
equations.

As already noted, there are two independent vector
tensor components of the stress-energy, which are sour
the perturbations. However, each of these components
have the same two-point correlation statistics and hence
need only evolve one of each and multiply by the appropri
normalization once the power spectra are calculated. The
isotropic stress, vector and tensor components are give
terms of the spatial stressesQ i j by

QS5~2Q332Q112Q22!/2, ~51!

QV5Q1
V5Q13, ~52!

QT5Q12
T 5Q12. ~53!

For each individual string segment, we find that

QS5
1

2
@vm

2 ~3X6 3X6 321!2~12vm
2 !~3X̂38X̂3821!#Q00,

~54!

QV5@vm
2 X6 1X6 32~12vm

2 !X̂18X̂38#Q00, ~55!

QT5@vm
2 X6 1X6 22~12vm

2 !X̂18X̂28#Q00. ~56!

Integrating over the random orientation vectors, we find t
for a single string, the super-horizon ratios are in agreem
with Eq. ~25! and since the total stress-energy tensor for
string network is just a sum over the contributions from t
individual segments, we find that the super-horizon forms
the total stress-energy are also in this ratio. However,
have already noted that the ratio ofQS to Q00 is not con-
strained in a similar way, and is likely to be highly mod
dependent. For our model, we find that on super-horiz
scales,

^uQSu2&:^uQ00u2&5222v216v4:10, ~57!

if we assume that the velocities are Gaussianly distribu
rather than the truncated Gaussian which we use in prac
This limit, which has been used to make the problem a
lytically tractable, will be realized for smallv.

Having worked out the energy and anisotropic stress,
remaining scalar components follow by stress-energy con
vation. By rearranging these equations, we find the follow
differential equation forQD in terms ofQ00 andQS
8-9
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ALBRECHT, BATTYE, AND ROBINSON PHYSICAL REVIEW D59 023508
Q̇D522
ȧ

a
QD2

k2

3
Xa
ȧ

~QD2Q̇00!2Q0012QSC50,

~58!

while Q is just

Q5
a

ȧ
~QD2Q̇00!2Q00. ~59!

In practice, we use the techniques described earlier to c
pute histories for the componentsQ00, QS, QV and QT.
Values of each component are stored for a set of times w
are closely enough spaced that a linear interpolation sch
can accurately reproduce the full history for the function a
its derivative. These interpolated functions are then used
set of driving terms to the ODE solver inCMBFAST @26#. In
order to increase speed, the evolution ofQD is only carried
out for times satisfyingkt,xmax, where the parameterxmax
is chosen to be large enough that further increases do
affect the results, and for later timesQD is set to zero. This
can be done because in all the models we consider here
turbations inQD are suppressed on scales much smaller t
the horizon scale.

At this point we comment on the way in which stres
energy conservation and compensation are treated in
model. In constructing forms forQ00 andQS, we have only
been thinking about the behavior of the long string, and
about the behavior of the loops and gravitational waves
which the long string decays. We have ensured that str
energy conservation is satisfied by only computing two s
lar components and using the conservation equations to w
out the other two.

One way to treat the loops and gravity waves explicitly
to consider the sourceQmn to be the sum of two component
a long string componentLmn and a second fluid componen
Smn . We then model the rate at which energy and mom
tum are being dumped from the long string into the seco
fluid, which in this case is loops and gravity waves, by
troducing two functionsg0 andgD , with Lmn satisfying

L̇001
ȧ

a
~L001L !2LD52g0 ,

L̇D12
ȧ

a
LD1

k2

3
~L12LS!52gD , ~60!

andSmn satisfying

Ṡ001
ȧ

a
~S001S!2SD5g0 ,

ṠD12
ȧ

a
SD1

k2

3
~S12SS!5gD . ~61!

Given a model forL00, LD , L and LS, such as the one
described above, plus an equation of state for the sec
fluid, we can then compute the loop production functions a
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all the components ofSmn and hence, we have the tota
Qmn . In the model described here, we have effectively do
this by settingS005SS50. Although this choice does no
correspond to a particular, identifiable fluid, we have fou
in studies of the CMB anisotropies created at the surface
last scattering, that it gives results which are very similar
physical models forSmn , such as free-streaming massle
particles. In particular, the main conclusions of this pap
and Ref.@10# will be unchanged. However, more detaile
modeling will be required if accurate predictions are r
quired. The results of an in depth study of this issue will
presented elsewhere@36#.

We now present a sample of two-point functions calc
lated using these techniques. In the left hand graph of Fi
we show equal time two-point functions forQ00 and QD ,
together with fitting functions for the same two-point fun
tions as measured in the simulations of Ref.@35#. The noisy
curves are those computed in our model, using 8000 rea
tions, while the smooth truncated curves are those of R
@35#. The two-point functions forQD in this graph are ob-
tained by integrating Eq.~58! for each history. In order to
make sensible comparisons between our expanding univ
calculations and the Minkowski space simulations, we co
pare our conformal lengths and times with their physi
lengths and times. Firstly, it should be noted that the
namic range probed by the simulations is small, wher
within the framework of the model, the dynamic range c
be extended arbitrarily. Within the range probed by the sim
lations, the model appears to give two-point functions
good agreement; the one exception being the limiting beh
ior of the QD self-correlator. However, it should be note
that the simulations only probeQD for the long string, not
the loops and gravitational radiation which the long stri
spits off. In fact, the fitting function for theQD self-
correlator has a super-horizon form which is inconsist
with causality and stress-energy conservation, si
^QDQD* &;k2 rather thank4. Our model, on the other hand
fully respects stress-energy conservation with^QDQD* &
;k4, so it is not surprising that there is some level of d
crepancy between the limiting forms of the functions for th
particular component.

The exact forms of the two-point correlators within o
model depends on the choice of string parametersv and j.
We find that optimal agreement between our two-point fu
tions and those of Ref.@35# is obtained when we input value
of v and j which are slightly different to those which ar
actually measured in the simulations. For Fig. 2, we usv
50.35, j50.15. In this respect, our model does slight
worse than that reported in Ref.@35#, which manages to
achieve a miraculously good fit to the amplitude and form
the energy equal time cross correlator using exactly the
ues of the parametersv50.6 andj50.15 which were mea-
sured in simulations. In spite of this, the limiting behavior
the two-point functions has the correct form in our mod
and for some choice of the parametersv andj we are able to
obtain a good fit to the correlators measured in the simu
tions.
8-10
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FIG. 2. The left hand graph shows equal time two-point correlation functions from our standard scaling model:t^Q00(k,t)Q00* (k,t)&
~solid line!, t^QD(k,t)QD* (k,t)&/k2 ~dashed line!, t^Q00(k,t)QD* (k,t)&/k ~dotted line!. Two-point functions measured in Minkowski spac
string simulations are shown for comparison, using the same line types, but truncated to illustrate the approximate range prob
simulations. The right hand graph also shows equal time two-point correlation functions from our standard scaling
t^Q00(k,t)Q00* (k,t)& ~dash-line!, t^QS(k,t)QS* (k,t)& ~dotted-line!, t^Q00(k,t)QS* (k,t)& ~solid-line!. On each graph, thex-axis ist and
k is 0.1 Mpc21.
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In the right hand graph of Fig. 2 we show equal tim
two-point functions forQ00, QS and their cross correlator
along with 2s error-bars, computed using 8000 realizatio
We see that far outside the horizon, the cross-correlato
relatively noisy, but its behavior is consistent with a pow
law of k2 everywhere except inside the horizon, where it
of order the two self correlators. In fact, it is easy to sh
analytically within the framework of the model that the cro
correlator must go likek2 outside the horizon in the limit o
a large number of realizations and this behavior clea
02350
.
is
r

y

manifests itself in the ranget520 to t5100 ~in units of
Mpc!. We should note that the noisy behavior of the cro
correlator far outside the horizon does not appear to have
large an effect on the matter and CMB power spectra,
which the ensemble average has a relatively small varia
even for only 40 realizations.

In Fig. 3 shows the unequal time correlation function f
the energy and the corresponding plot from Ref.@35#. It can
be seen that the sub-horizon form of the unequal time c
elators is similar in both models. However, we see that
e
ing
FIG. 3. The left hand graph shows the unequal time correlation function^Q00(k,t1)Q00* (k,t2)& from our standard scaling model. Th
z-axis is (t1t2)1/2^Q00Q00* &, the x-axis is log10(kt1) and the y-axis is log10(kt2). The right hand graph shows the same plot created us
the model from Ref.@30#.
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unequal time correlators have a distinctly different form
super-horizon scales. We quantify this difference by us
the functionU(k,t1 ,t2) defined in terms of the violation o
the factorization relation~23! as

U~k,t1 ,t2!5
^P~k,t1!P* ~k,t2!&

^P~k,t1!P* ~k,t1!&1/2^P~k,t2!P* ~k,t2!&1/2
,

~62!

for some arbitrary functionP(k,t), wheret1 andt2 are the
two times in question, witht2.t1 . In our model, only those
strings which are present both att1 andt2 can contribute to
the cross correlator and hence only those strings prese
the later time t2 can contribute, implying tha
^P(k,t1)P* (k,t2)&}^P(k,t2)P* (k,t2)&. Hence, we find

U~k,t1 ,t2!}A^P~k,t2!P* ~k,t2!&

^P~k,t1!P* ~k,t1!&
, ~63!

which outside the horizon gives

U~k,t1 ,t2!}S t1

t2
D 1/2

. ~64!

On the other hand, in Ref.@35#, the super-horizon fall-off of
the unequal time correlators is modelled as an expone
decay, with

U~k,t1 ,t2!5e2~t12t2!2/tc
2

~65!

where the coherence timetc grows likek21 outside the ho-
rizon. This behavior gives a good fit on the sub-horiz
scales which their simulations primarily probe. However,
super-horizon scales, the power-law fall-off evident in o
model must eventually dominate.

In summary, therefore, we have outlined methods for c
ating source histories based on a model with two parame
the rms speed3 of the stringsv and the persistence lengthj,
which are measured in simulations. In doing this, we ha
been forced to introduce various ‘‘system’’ parameters,
allow the problem to be solved in a finite time on a discr
system, such as a computer. The value of each of these
rameters was chosen, so that further increases or decre
toward the continuum value resulted in no change in
two-point functions. In particular, for results presented
this paper, we usedxmax51000, Li

150.001, Li
250.01, NS

5200 andFmax510.0. We have also introduced the para
eter L f , quantifying the rate at which string segments a
turned off. Unlike the systems parameters,L f clearly has
some degree of physical significance. However, in Sec. I
we demonstrate that the dependence of the results on
value of L f is relatively weak, and we choose to use t
valueL f50.5 for the rest of our computations.

3As mentioned earlier, the distribution of strings has been tr
cated to prevent strings moving faster than the speed of light.
preventsv from being exactly the rms value, the difference fro
the rms value being minimized for smallv.
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B. Power spectra for the standard scaling model

We define the standard scaling model to be one wh
uses the above two-point functions with the model para
etersv50.65 andj50.3, measured in expanding univer
simulations4 and an assumption of perfect scaling from d
fect formation to the present day. Also, we must specify
particular cosmogony and we do this by analogy to what
become called standard cold dark matter, that is, a flat ba
ground (V tot51) spacetime comprising 95% collisionles
cold dark matter and 5% baryons (Vc50.95, Vb50.05),
with a Hubble constant at the present day ofH0
550 km sec21Mpc21. Figure 4 shows the resulting powe
spectra, normalized to COBE, for the CMB and CDM~solid
lines! compared with the standard adiabatic scenario ba
on inflation ~dot-dashed line! and the published data point
with error-bars based on the assumption of Gaussia
@37,38#.

The CMB angular power spectrum appears to have
pronounced ‘‘Doppler peak’’ for two reasons: firstly, there
a substantial ISW component to the scalar, vector and te
anisotropies. The split into the different components is illu
trated for this model in Fig. 5 and we see that the scalars
larger than the vectors, with the tensors further suppres
relative to the other two. More precisely, we find that t
contributions to the angular power spectrum are in the ra

Cl
S :Cl

V :Cl
T53:1:0.4, ~66!

at l 510. Although the difference between our models a
those presented Refs.@9,29# are only at the level of a facto
of two or so, it is still worth noting the discrepancy as
direction for future work. We suggest that this is due to
difference in super-horizon ratio of̂uQSu2& and ^uQ00u2&,
already discussed in an earlier section.

And secondly, the component of the angular power sp
trum created at the surface of last scattering is incoher
with the secondary Doppler peaks being cancelled out
decoherence as suggested in Refs.@8,31,32#. This leads to a
further suppression of the amplitude in the ensemble a
age, relative to the large angular scales, since we are ave
ing high peaks and low troughs. We should note that
though the comparison with the published CMB data do
not appear to be good, the plotted error-bars are only at
level of one sigma and deviations from non-Gaussianity m
require even larger error bars, particularly for experime
with small sky coverage. We expect the situation to be mu
clearer when the new CMB data begins to arrive in the v
near future.

However, the situation seems to be much more clear
in the case of the CDM power spectrum. Once normalized
COBE, the linear power spectrum of the CDM appears to

-
is

4Although, note the earlier comment, that we find better agr
ment with the two-point functions measured in flat space simu
tions for slightly different values ofv and j when we use our
causal, stress-energy conserving model. We have decided to us
calculated values from expanding universe simulations as our s
dard, since they are likely to be more relevant for our model.
8-12
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FIG. 4. The COBE normalized angular power spectrum of CMB anisotropies,~left-hand graph! and the matter power spectrum~right-
hand graph! for the standard string model~solid curve!. The contributions from the defects during two time windows (1300,z,100 — long
dashed, 100,z,1.6 — short dashed! are also included for comparison. Standard CDM~dot-dash curve! and observational data~data points!
are included for comparison.
ng
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ro
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t

uch
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the data extremely badly, with the predicted curve lyi
much further outside the observational error bars than in
case of the CMB angular power spectrum. Again the er
bars are based on an assumption of Gaussianity and co
eration of a non-Gaussian theory will no doubt require us
02350
e
r
id-
o

increase their size, but the level of disagreement is m
larger than seems likely in any of the realistic scenari
which are thought to be only mildly non-Gaussian on the
scales. If we assume for the moment that we can compare
theoretical curves with the data in this very naive way, re
ar

rd CDM
rediction
FIG. 5. The COBE normalized angular power spectrum of CMB anisotropies,~left-hand graph! and the matter power spectrum~right-
hand graph! for the standard string model. The total anisotropy~solid line! is illustrated, along with the partial contributions from scal
~dotted!, vector ~short-dash! and tensor~long-dash! components in the case of the CMB anisotropies. The error bars show 1s statistical
uncertainties derived from the finite number of realizations in our calculations. Observational data and the prediction for standa
~dot-dash curve! are also illustrated in the case of the matter power spectrum. The dotted line on the matter spectrum shows the p
of Ref. @20#, as discussed in the text.
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ALBRECHT, BATTYE, AND ROBINSON PHYSICAL REVIEW D59 023508
lution of the absence of power on any particular scale
quires us to postulate a bias between the CDM and the d
While the idea of a bias between the CDM and baryo
matter, probed by the catalogues of galaxies and cluster
galaxies which make up the data set, is not uncommon, la
values~.2! are thought to be unrealistic.

The bias required on a scale ofRh21 Mpc, where now
H05100h km sec21Mpc21, can be estimated by calculatin
the fractional matter over-density in a ball of radi
Rh21 Mpc,

sR
DM54pE dk

k
k3P~k!uW~kR!u2, ~67!

where the window functionW(x) is given by

W~x!5
3

x3 ~sinx2x cosx!, ~68!

and comparing it tosR calculated from a hypothetical curv
which fits the data, that is,bR5sR /sR

DM . The scaleR58
corresponds tosR'1, that is, scales turning non-linear at th
present day, and is the most common scale on which c
parisons are made. For standard CDMs851.2 for h50.5,
while the value favored by observations iss850.5, illustrat-
ing the celebrated excess of power on small scales for
model. When we perform the same calculation for the str
model, we gets850.31 and hence the bias on these scale
b8'1.5. Such a value is around the limit of what is thoug
to be possible, but given the uncertainties involved is
totally unreasonable.

This comparison does, however, ignore the obvious w
ful absence of power on much larger scales. In order to qu
tify this, we chooseR5100, since~1! it is unlikely that
scales of 100h21Mpc are affected by non-linear gravitation
evolution,~2! the distribution of galaxies is likely to be mor
Gaussian than on smaller scales, and~3! such scales are
above the neutrino free-streaming scale and so the intro
tion of a hot dark matter~HDM! component cannot be use
to modify the shape of the spectrum. We estimate that
standard string model requires a bias ofb10055.4 to recon-
cile it with the data. Since the chances of either the ac
Universe@39,40# or the physical model@41,42# having such a
bias seem remote, we conclude that the standard s
model is in serious conflict with the current observations
scales around 100h21 Mpc.

The COBE normalization of our standard scaling mo
also allows us to calculate a value for the dimensionl
quantityGm, wherem is the string mass per unit length, an
G is Newton’s gravitational constant. For our standard sc
ing model, we find thatGm52.031026. Including the ef-
fects of small-scale structure on the string network is lik
to reduce the required value ofGm by around a factor of 2,
giving a result very close to the 131026 obtained from cal-
culations of large angle CMB anisotropies using high re
lution local string simulations@16#. Although these values
are in good agreement, we stress that the purpose of
work has not been to computeGm to high precision and we
expect that variations in details of the string evolution wh
02350
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we have not attempted account for in our model, could g
rise to variations inGm. Instead, we are primarily intereste
in the relative normalization of anisotropies on differe
scales, in particular between COBE ands100, which can be
obtained without knowledge of the absolute value ofGm. In
future sections we present a number of variations on
standard scaling model, each giving rise to a different va
for the string mass per unit length. To emphasize the fact
we do not intend to use our model to obtain precise pred
tions for the absolute value ofGm in realistic cosmic string
scenarios, we quote all subsequent values in terms of
ratio m/mS , wheremS is the value obtained for our standa
scaling model. We should note that large values ofm/mS are
likely to be excluded by the absence of residuals in tim
measurements for milli-second pulsars@43#.

As one final point, in Fig. 5 we include the prediction fo
the matter power spectrum for strings in a background
CDM computed in Ref.@20#. The dotted line on the matte
graph shows the prediction from the I model described
this reference, normalized to give the same value fors8 as
our standard scaling model. We note that the predictions
in extremely close agreement, although in the current w
the amplitude is no longer arbitrary, but fixed by normaliz
tion of the associated CMB fluctuations to COBE.

C. Modifications to model parameters

In order to test the robustness of the conclusions about
standard model, we have repeated the calculations for dif
ent values ofj andv. These variations could either represe
fundamentally different types of cosmic strings to tho
modelled in simulations, for example, those with superc
ducting currents, or any possible systematic uncertaintie
the measurement of these quantities. Figure 6 shows
power spectra for different values ofj with v50.65, while
Fig. 7 shows the power spectra for different values ofv with
j50.3, with the values ofb100, b8 , andm/mS summarized
in Table I. All other parameters are as in the standard sca
model.

The first thing to note is that, although our choice of va
ues spans the possible parameter space, none of the m
does significantly better than the standard scaling case a
as the value ofb100 is concerned and there is also no pr
nounced ‘‘Doppler peak’’ in the CMB spectrum. Howeve
at a more microscopic level, there are differences which
low the trends of previous calculations, giving us confiden
that the model is reproducing intuitive results.

As j decreases, one is reducing the scale at which
two-point functions turnover from white-noise, withj52.0
being close the causal limit@44#. It was predicted in Ref.@31#
that this would lead to the contribution to the CMB aniso
ropy from the surface of last scattering being peaked
smaller scales, which is indeed what we see in Fig. 6,
though this feature is slightly masked out by the large IS
component. This can be seen more clearly in the CD
power spectrum which turns over at a scalek;jkeq. One
would of course expect a reduction inj to result in a sub-
stantially higher peak, but this is partially counterbalanc
by an almost equivalent increase in the ISW component,
8-14
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DETAILED STUDY OF DEFECT MODELS FOR COSMIC . . . PHYSICAL REVIEW D 59 023508
FIG. 6. Varyingj, the string coherence length: We plot the COBE normalized angular power spectrum of CMB anisotropies,~left-hand
graph! and the matter power spectrum~right-hand graph! for various values of the parameterj, with v50.65. (j52.0 — long-short-dash
line, j51.0 — dotted line,j50.3 — short-dash line,j50.03 — long-dash line!. Observational data and the prediction for standard CD
~dot-dash curve! are included for comparison.
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only direct evidence for such an effect being that sma
values ofj require a smaller value ofGm. This change in
Gm can be understood from the formulars;m/j2; if the
value of j decreases, the value ofm must also decrease t
keep the string density and hence the amplitude of the C
anisotropy the same.

The lack of dependence onv is less intuitive. One might
think that in the limit ofv→0, the network would become
02350
r

B

more coherent, since the strings are not moving, crea
perturbations in the same place. However, such a limit d
not correspond in any way to the standard picture of str
evolution. If the strings are moving slowly or are stationa
then reconnection will take place only very infrequently a
the scaling regime will be difficult to attain. But scaling
implicit in our model, being put in by hand, so even if the
are not moving, the strings will have to decay in some w
M

FIG. 7. Varyingv, the string velocity: We plot the COBE normalized angular power spectrum of CMB anisotropies,~left-hand graph!
and the matter power spectrum~right-hand graph! for various values of the parameterv, with j50.3. (v50.0 — long-short-dash line,v
50.3 — dotted line,v50.65 — short-dash line,v50.99 — long-dash line!. Observational data and the prediction for standard CD
~dot-dash curve! are included for comparison.
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ALBRECHT, BATTYE, AND ROBINSON PHYSICAL REVIEW D59 023508
which is essentially random, introducing decoherence.
only discernible effect of changingv is a weak dependenc
of the amplitude of the matter power spectrum, believed
be due to the dependence of the relative amplitudes ofQ00
andQS on v already discussed. Also interesting, however
the apparent independence of the turnover of the ma
power spectrum, suggesting that the corresponding turn
in the two-point functions is also independent ofv. Once
again, the values ofb8 , b100 and m/ms are summarized in
Table I.

We have also tested the dependence of our results on
parameterL f , representing the rate at which the strings a
turned off. CMB and matter power spectra for various valu
of L f are illustrated in Fig. 8. The results have a weak
pendence onL f , with smaller values ofL f giving slightly
better values forb100 than larger values. We note that furth
decreases inL f below 0.01 do not change the results furth
Since the dependence onL f is only weak, we choose a
intermediate value ofL f50.5 for the remaining calculation
in this paper~with the exception of Fig. 11 in which we
illustrate the possible improvement tob100 which could re-
sult from exploiting all conceivable uncertainties in o

TABLE I. Table of biases and values ofm/mS for the standard
scaling model, and the simplest variations described in this pa
Each model is labelled by the figure and line type where it appe

Description Figure Line type b8 b100 m/mS

Standard scalinga 4 Solid 1.61 5.36 1.0
j52.0 6 Long-short dash 2.46 7.31 5.5
j51.0 Dotted 2.16 6.57 2.88
j50.3 Short-dash 1.74 5.81 1.0
j50.03 Long-dash 1.45 5.67 0.25
v50.0 7 Long-short dash 1.04 3.39 1.9
v50.3 Dotted 1.27 4.13 1.64
v50.65 Short-dash 1.74 5.81 1.00
v50.9 Long-dash 1.66 5.58 0.92
L f50.01 8 Long-short dash 1.45 4.79 0.4
L f50.1 Dotted 1.52 5.04 0.45
L f50.3 Short-dash 1.64 5.45 0.56
L f50.5 Solid-dash 1.74 5.81 1.0
L f50.7 Long-dash 1.83 6.13 1.48
L f50.9 Dot-short dash 1.91 6.40 2.12
h50.3 9 Long-short dash 2.68 6.78 0.4
h50.4 Dotted 2.08 6.18 0.71
h50.6 Short-dash 1.52 5.57 1.32
h50.7 Long-dash 1.36 5.39 1.67
Vb50.01 10 Long-short dash 1.64 5.76 1.0
Vb50.03 Dotted 1.64 5.78 1.00
Vb50.1 Short-dash 1.87 5.86 1.00
Vb50.2 Long-dash 2.17 5.94 1.00
‘‘Best of all worlds’’ 11 Long-short dash 0.3 1.56 0.03

aWe should note that the standard scaling model is referred
number of times in the following tables and an observant rea
will notice that the values quoted are slightly different. The valu
quoted here are for 400 realizations and all the others are for
realizations.
02350
e

o

s
er
er

he
e
s
-

.

model!. The fact that the results depend minimally onL f also
represents evidence to suggest that the results will not
pend strongly on the exact way in which the decay of lo
string is treated.

D. Modifications to cosmological parameters

We must also consider the possibility of different co
mogonies, since most cosmological parameters are not
strained to better than a factor two. It is simple to change
Hubble constant and also the relative content of baryons
CDM. The resulting spectra are presented in Fig. 9 forh
50.3 to h50.7 and in Fig. 10 forVb50.01 to Vb50.2,
keepingV tot51 and using the standard scaling model for t
two-point functions. Once again, no model significantly im
proves the value ofb100 ~see Table I!.

The CMB angular power spectrum is largely unaffect
by the changes in cosmological parameters that we h
tried. However, we do see that the shape of the CDM po
spectrum is modified by changes inh, via the time of equal-
matter radiation and the well-known shape parameterG
'Vh. This fixes the position of the turnover in the pow
spectrum, with larger values ofh leading to a turnover a
smaller scales. We also notice slight oscillations in the pow
spectrum for larger values ofVb . In these models, the os
cillations that are present in the photon-baryon fluid a
transferred to the CDM, but in contrast to an inflationa
model, they are damped out by the effects of decoheren

We should comment on the apparent absence of
marked dependence on these cosmological parameters,
the CMB spectrum forl .100 is very strongly dependent o
them in the case of the standard adiabatic scenario, and
dependence has been suggested as a way of making
tremely accurate estimations of many cosmological para
eters using satellite experiments. To understand this dif
ence, we should remember that the anisotropies created a
surface of last scattering by acoustic waves are incoher
leading an absence of secondary peaks, effectively was
out the strong dependence onVb andH0 . And more impor-
tantly, any contribution from the last scattering surfa
seems to be swamped by the ISW effect, which is less s
sitive to changes in the cosmogony.

One modification to the standard scenario which is of
used to allow the standard cold dark matter model to ob
a better fit to the galaxy data is to introduce a small amo
of hot dark matter in the form of neutrinos. A similar, pro
cedure would also allow the standard string model to fit
shape of the observed power spectrum on scales below
neutrino free streaming scalel'20h21 Mpc, but we antici-
pate that this will not be as efficient on larger scales, and
particular, we expect the introduction of HDM to have litt
bearing on theb100 problem. Nonetheless, we plan to inve
tigate the implications of making such a changes in fut
work.

E. Summary

In summary, we have scanned the range of each of
parameters in our model, while maintaining perfect scali
and we have found that none of these simple variations

r.
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a
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s
00
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DETAILED STUDY OF DEFECT MODELS FOR COSMIC . . . PHYSICAL REVIEW D 59 023508
FIG. 8. VaryingL f , the string ‘‘turn off’’ parameter: We plot the COBE normalized angular power spectrum of CMB anisotro
~left-hand graph! and the matter power spectrum~right-hand graph! for various values of the parameterL f , with j50.3, v50.65. (L f

50.01 — long-short-dash line,L f50.1 — dotted line,L f50.3 — solid line,L f50.5 — short-dash line,L f50.7 — long-dash line,L f

50.9 — dot-short-dash line!. Observational data and the prediction for standard CDM~dot-long-dash curve! are included for comparison
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capable of significantly reducing the deficit of power
scales around 100h21 Mpc. However, some of the param
eters do marginally improve the situation, in some cases
ducing the requiredb100 from '5 to '3. One might postu-
late, therefore, that modifications to all these parame
simultaneously might lead to a more substantive amoun
power on 100h21 Mpc scales, and indeed this is the case.
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illustrate this, we performed a run withj50.0001,v50, h
50.7, Vb50.01, andL f50.01, which we describe as th
‘‘best of all worlds’’ model, and the result is presented
Fig. 11. We see that the situation is improved, but still t
bias required,b10051.6, is not unity and we now find a larg
excess of power on scales around 8h21 Mpc. Also, the CMB
angular power spectrum appears to be worse fit to the d
or
FIG. 9. Varyingh: We plot the COBE normalized angular power spectrum of CMB anisotropies,~left-hand graph! and the matter power
spectrum~right-hand graph! for various values of the cosmological expansion rateh, with Vb50.05. (h50.3 — long-short-dash line,h
50.4 — dotted line,h50.5 — solid line,h50.6 — short-dash line,h50.7 — long-dash line!. Observational data and the prediction f
standard CDM~dot-dash curve! are included for comparison.
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FIG. 10. VaryingVb : We plot the COBE normalized angular power spectrum of CMB anisotropies,~left-hand graph! and the matter
power spectrum~right-hand graph! for various values of the cosmological expansion rateVb , with h50.5. (Vb50.01 — long-short-dash
line, Vb50.03 — dotted line,Vb50.05 — solid line,Vb50.1 — short-dash line,Vb50.2 — long-dash line!. Observational data and th
prediction for standard CDM~dot-dash curve! are included for comparison.
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While this model serves as a useful caveat to our argume
we believe that pushing the model this far is not realis
within the current understanding of defect models. Nonet
less, it may serve as impetus for future model building.

Except for the caveat described above, the minimal
pendence ofb100 on the wide variations in these paramete
02350
ts,
c
-

-

is already strong evidence to suggest that theb100 problem
will be a feature of most scaling defect models. In the n
two sections, we further test this idea by examining the
sults of further modifications and generalizations of the st
dard model, with all deviations being described as pertur
tions from the standard scaling model.
the

standard
FIG. 11. The ‘‘best of all worlds’’ models: The COBE normalized angular power spectrum of CMB anisotropies,~left-hand graph! and
the matter power spectrum~right-hand graph! for the standard scaling model~dotted line! and two ‘‘best of all worlds’’ models. In the first
of these models,~long-short dash line!, the values of each of the parametersj, v, h, Vb andL f have been pushed as far as possible in
direction which favors highs100, while a standard scaling law is used. The second model,~solid line! is identical, except that it also
incorporates a fairly plausible deviation from scaling over the matter-radiation transition. Observational data and the prediction for
CDM ~dot-dash curve! are included for comparison.
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DETAILED STUDY OF DEFECT MODELS FOR COSMIC . . . PHYSICAL REVIEW D 59 023508
We should note that there are two simple variations of
cosmogony which we have ignored in the section on cos
logical parameters, namely an open universe (V,1) or the
introduction of cosmological constant (Vm1VL51). We
anticipate that these variations will lead to modifications
scaling similar to those described in the next section@45–
48#, and might lead to more acceptable values ofb100. An in
depth investigation of this problem is the subject of ongo
research@11# ~see also Ref.@24#!.

IV. VARIATIONS FROM STANDARD SCALING

A. Motivation and implementation

In the previous section, we introduced theb100 problem
for scaling defect models and showed that it is appare
robust for a range of different parameters. However, we h
also noted that this scaling assumption has only been te
using defect simulations with a very small dynamic ran
Hence, in the spirit of testing of the standard model,
should allow for the possibility of modifications to scalin
In fact, this is the most obvious resolution to theb100 prob-
lem, since the scaling assumption is what relates the co
butions from defects on different scales. Deviating from sc
ing would allow us to effectively tilt the power spectrum.
similar approach has become a popular solution to the ex
power on small scales in standard CDM models based in
tion, but in our case we want to create more power on la
scales.

This point can be illustrated most effectively by recons
ering Fig. 4 which shows the results for the standard mo
and also the partial contributions from the strings presen
during z51300 toz5100 ~short dashed curve! and between
z5100 andz51.6 ~long dashed curve!. These two curves
give us intuition about when the perturbations relevant
COBE normalization andb100 are laid down. For example, i
one could create an imbalance between the strings pre
during these two time windows, one could hope to chan
their relative amplitude and reconcile the current data po
with COBE normalization. This is possible if one modifie
the scaling picture, with most graphic illustration being t
total removal of the string network aroundz5100.

The first type of deviation we consider is motivated by t
mild shift in the behavior of a string network which is ob
served in simulations under going a radiation-matter tra
tion. Typically, quantities such as the string velocity, pers
tence length, string density, and level of small scale struc
are seen to undergo a small change at around radia
matter equality. In general, this shift tends to make strin
move slower and be less dense.

One simple way to implement this step-type transition
to allow the effective energy per unit length to change, w
the mass per unit length being a factorx larger before the
transition than after it~Table II!. We generate histories for
source with normal scaling behavior and then for each
tory, we multiply the value of each source component at e
time t by some factorf R(t). Since we require our sourc
histories to behave smoothly, we implement a smooth s
in the value off R using
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f R~t!511~x21!Toff~t,tT ,LT!, ~69!

whereToff is the same smoothly varying function which wa
used for turning the string segments off, defined in Eq.~39!,
but nowLTtT is the starting time of the transition, andtT is
the end time.

We have also tried other ways of implementing a tran
tion, such as introducing a shift in the time dependence
the number of strings per unit volume. In the standard ca
we haven(t)5(jt)23, which we modify by settingn(t)
5 f R(t)(jt)23, wheref R is the smoothly varying transition
function given in Eq.~69!. We find that the net results from
these two ways of implementing the transition are very sim
lar and so in the results section, we concentrate on
former, simpler case.

The second type of deviation we consider is a deviation
the scaling exponent. We implement such a transition
altering the dependence of the number of strings per
volume on time. In the standard scaling picture, there
roughly one piece of string per correlation length cube
Since the correlation length is proportional to the horiz
sizet, we find that the number density of strings as a fun
tion of time is, n(t)}t23, which we modify by setting
n(t)}t2(312a), with a50 being the standard value. Usin
Eq. ~44! we see that the power spectra of theQmn’s depend
on n(t) and hence, the time dependence ofQ00 ~which be-
haves like the square root of the power spectrum! outside the
horizon is nowQ005t2(1/21a).

TABLE II. Table of biases and values ofm/mS for each of the
models with deviations from scaling. Each model is labelled by
figure and line type where it appears.

Description Figure Line type b8 b100 m/mS

tT5100 12 Long-short dash 1.19 4.84 1.0
tT5400 Dotted 0.86 3.96 1.00
tT51000 Short-dash 0.81 3.29 0.9
tT55000 Long-dash 0.93 3.09 0.84
x52 13 Long-short dash 1.19 4.84 1.0
x55 Dotted 0.86 3.96 1.00
x510 Short-dash 0.81 3.29 0.98
x520 Long-dash 0.81 3.29 0.98
tT5100,LT50.1 14 Long-short dash 0.64 4.01 1.0
tT5100,LT50.8 Dotted 0.37 2.59 1.00
tT51000,LT50.1 Short-dash 0.35 1.63 0.91
tT51000,LT50.8 Long-dash 0.46 1.60 0.68
x5100, varyingn 15 Long-short dash 0.72 3.95 0.9
x5400, varyingn Dotted 0.38 2.37 0.97
x5100, varyingm Short-dash 0.34 1.67 0.91
x5400, varyingm Long-dash 0.54 1.81 0.57
a50.25 16 Long-short dash 0.56 2.66 8.1
a50.5 Dotted 0.20 1.33 59.96
a50.75 Short-dash 0.08 0.66 375.
a51.0 Long-dash 0.03 0.28 1887.
‘‘Best of all worlds’’ 11 Solid dash 0.12 0.82 0.02
8-19
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FIG. 12. VaryingtT , the end time for the modelled non-scaling radiation-matter transition: We plot the COBE normalized angular
spectrum of CMB anisotropies,~left-hand graph! and the matter power spectrum~right-hand graph! for a matter radiation transition with
various values of the final timetT , with LT50.1 andx52. (tT5100 — long-short-dash line,tT5400 — dotted line,tT51000 —
short-dash line,tT55000 — long-dash line!. Observational data and the prediction for standard CDM~dot-dash curve! are included for
comparison.
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B. Illustrative examples

Figures 12, 13 and 14 illustrate the results for radiatio
matter transition runs~implemented by varyingm) with vari-
ous choices of the parametersx, tT andLT . The first~Fig.
15! shows mild transitions, with an amplitudex52, each
02350
-

lasting for a factor of 10 in conformal timet, that is, LT

50.1. Each curve shows results for a different choice of fi
time tT . Initially, we see that as the time of the transition
moved later, the peak in the matter power spectrum g
higher and is shifted to larger scales. However, as discus
alized
FIG. 13. Varyingx, the factor by whichmeff is assumed to be larger before the radiation-matter transition: We plot the COBE norm
angular power spectrum of CMB anisotropies~left-hand graph! and the matter power spectrum~right-hand graph! for a matter radiation
transition with various values of the factorx, with tT51000 andLT50.1. (x52 — long-short-dash line,x55 — dotted line,x510 —
short-dash line,x520 — long-dash line!. Observational data and the prediction for standard CDM~dot-dash curve! are included for
comparison.
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FIG. 14. VaryingLT , the start time~in units of the end time! of the non-scaling radiation-matter transition modelled in the defect sour
We plot the COBE normalized angular power spectrum of CMB anisotropies,~left-hand graph! and the matter power spectrum~right-hand
graph! for matter radiation transition models with different values of the lengthLT , with amplitudex55 (tT5100,LT50.1 — long-short-
dash line,tT5100,LT50.8 — dotted line,tT51000,LT50.1 — short-dash line,tT51000,LT50.8 — long-dash line!. Observational data
and the prediction for standard CDM~dot-dash curve! are included for comparison.
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in the standard scaling section illustrating the two time w
dows, we find that as the time of the transition is increa
beyondtT51000, the height of the peak in the matter pow
spectrum actually falls again. This is because a very
transition tends to boost the perturbations on COBE scale
well as those on scales relevant to the large scale m
power spectrum. It is clear that a transition occurring as
as today is equivalent to having no transition at all. None
these reasonable, mild transitions (x52) significantly im-
proves theb100 problem.

In the second figure~Fig. 13!, we stick to a transition time
of tT51000, which as we have discussed gives us the
chance of introducing a shift between the COBE and la
scale matter normalization. Using a transition length ofLT
50.1, we vary the amplitudex of the transition. A value of
x510 improves things significantly on scales
100h21 Mpc and x520 does better still, but we find tha
further increases only affect the features of the matter sp
trum on smaller scales. It is interesting that there is a limit
value for the relative COBE/s100 normalization, and that this
limiting value happens to fit the observations very well. W
note however that the cases which fit the large scale ma
data require implausibly large values of the transition am
tude x, for which no precedent has been seen in studie
defect evolution. Furthermore, extremely drastic additio
alterations would have to be made to the model in order to
the small scale matter and CMB data.

In the third figure~Fig. 14!, we illustrate the dependenc
on the lengthLT of the transition, for two different choices o
the final timetT , with x fixed to be 5. We see that the leng
of the transition does not strongly influence thes100 normal-
ization. In fact, we have been unable to find any region
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our transition parameter space capable of fittings100, where
the choices of parameter values is more plausible than th
illustrated in Fig. 13.

Figure 15 illustrates the comparison between a radiati
matter transition in whichm is varied, with one in whichn is
varied. The first pair of curves shows a transition withLT
50.1 andtT5100. In the case wherem is varied, we choose
x55 ~short-dash line! whereas in the case thatn is varied,
we choosex525 ~long-short dash line!. The reason for this
difference in amplitudes is that increasingm by a factor ofx
increases the power spectrum of the perturbations by a fa
of x2, while the same increase inn affects the power spec
trum of perturbations by a factor ofx. We see that the re
sulting spectra for this pair of models are very similar. T
second pair of curves illustrate a transition withLT50.1 and
tT5400, for the same choices ofx as above. Again, the
curves are very similar for each of the transition mode
Hence, the resulting spectra of perturbations does not s
to be strongly dependent on the way in which the transit
is implemented.

Figure 16 shows deviations in the scaling exponent
various degrees. We see that models where the devia
from scaling is significant enough to bring about a subst
tial increase in the amount of power in the matter spectr
on scales around 100h21 Mpc are so extreme that they com
pletely miss the small scale matter and CMB data. We fi
that further increases in the scaling exponent beyonda
51.0 do not affect thes100 normalization, only giving rise to
significant differences in the resulting power spectra
smaller scales. As in the case of the radiation-matter tra
tion, it is interesting to note that there is a limiting value
s100 normalization with increasing alpha, and that this lim
8-21
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FIG. 15. Different types of non-scaling radiation-matter transitions: We plot the COBE normalized angular power spectrum o
anisotropies,~left-hand graph! and the matter power spectrum~right-hand graph! for two different implementations of the matter matt
radiation transition, each withx55 and L50.1. (tT5100, varyingn — long-short-dash line,tT5400, varyingn — dotted line,tT

5100, varyingm — short-dash line,tT5400, varyingm — long-dash line!. Observational data and the prediction for standard CD
~dot-dash curve! are included for comparison.
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iting value happens to pass through the large scale m
data.

As one final point, Fig. 11 shows the results of a relativ
mild deviation from scaling~varying m, x52, tT510teq ,
LT50.8) where all of the other standard parameters h
been pushed as far as possible in a direction which favo
02350
ter

e
a

large value forb100 as in the ‘‘best of all worlds model’’
(j50.0001, v50, h50.7, Vb50.01, andL f50.01) dis-
cussed earlier. In this case,b100 is of order one. However, in
obtaining a reasonable value forb100, the resulting model
totally fails to fit the shape of the matter power spectru
with an extreme excess of power on smaller scales. Altho
r
e

FIG. 16. Power law deviations from scaling: We plot the COBE normalized angular power spectrum of CMB anisotropies~left-hand
graph! and the matter power spectrum~right-hand graph! for a power law deviation from scaling with various values of the parametea.
(a50.25 — long-short-dash line,a50.5 — dotted line,a50.75 — short-dash line,a51.0 — long-dash line!. Observational data and th
prediction for standard CDM~dot-dash curve! are included for comparison.
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FIG. 17. Various coherent limits: We plot the COBE normalized angular power spectrum of CMB anisotropies~left-hand graph! and the
matter power spectrum~right-hand graph! for a range of coherent models discussed in the text.~Non-causal models: C1 — long-short-das
line, C2 — dotted line. Causal Models: C3 — short-dash line, C4 — long-dash line!. Observational data and the prediction for standa
CDM ~dot-dash curve! are included for comparison.
e
p
d

r
od
m
a
rg

o
l fi

ib
w
ca
III

te
ea
ila
e
e
nt
c

fi-
in
om

ter
ss-
t
that
ess
ias

atio
te
le
he

to

pic
s re-

e
ome
d
del
we do not believe this limit will allow the resurrection of th
standard defect scaling defect scenario, it does present a
sible road of attack for the construction of more exotic mo
els which could fit all of the data.

To summarize, we have presented results for a numbe
models showing deviations from scaling. None of these m
els is able to fit the large scale matter data without extre
corrections to the standard scaling picture, or forcing
other model parameters in the direction which favors la
b100 ~see Table II!. Even in the cases where the value ofb100
is reasonable, a very considerable amount of further w
would need to be carried out in order to make the mode
small scale matter and CMB data.

V. FURTHER MODIFICATIONS TO THE MODEL

In the previous sections, we have discussed poss
variations from our standard scaling string model, and
showed that only extreme deviations from the standard s
ing model can significantly rectify the problem. In Sec.
we showed how theb100 problem is relatively robust to
changes in the model parametersv, j andL f ~as well as the
cosmological parametersVb and h). Although all of the
variations we have considered take place within the con
of our string model, the robustness to these changes alr
provides evidence to suggest that the results will be sim
for other types of defect. For instance, the independenc
the results on the parameterj suggests that results will b
similar for other types of defect for which the two-poi
functions cut off at different sub-horizon values. In this se
tion, we further test this idea by introducing further modi
cations to the forms of our two-point functions by hand,
order to see how extreme these modifications must bec
before theb100 situation is significantly improved.
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One change which might alleviate the problem is to al
the relative strength of various components of the stre
energy. Recent work@49#, which makes use of a coheren
approximation to model source behavior, has suggested
defect models with a highly suppressed anisotropic str
might give rise to more acceptable values of the matter b
factorb and indeed we have already mentioned that the r
of QS and Q00 is model dependent. In order to investiga
this possibility in the context of our work, we make a simp
modification to our standard scaling model. We multiply t
energyQ00 by n, where in models with values ofunu,1, the
significance of the anisotropic stress is boosted relative
that of the energy, while in models withunu.1, the energy is
boosted. We should note that the ratio of the anisotro
stress to vector and tensor components is unaltered, a
quired by isotropy and causality.

Before presenting results for our full string model, w
discuss the effect of these changes in the context of s
simple coherent models.5 In Fig. 17 we present the CMB an
matter power spectra for four such models. The first mo
~which we call C1! has

Q005H t21/2, kt<5,

0, kt.5,

QS50, ~70!

while for the second model~C2!

5Since in each of these models, eitherQ00 or QS is zero, super
horizon constraints on the cross-correlator^Q00Q

S& place no con-
straints on the super horizon behavior ofQS ~see Sec. II B!.
8-23
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FIG. 18. Varyingn, the enhancement factor forQ00 which artificially modifies the ratio between energy and anisotropic stress:
COBE normalized angular power spectrum of CMB anisotropies~left-hand graph! and the matter power spectrum~right-hand graph! for
standard scaling subject to various values of the parametern. (n51 — solid line,n50 — long-short-dash line,n521 — dotted line,
n50.5 — short-dash line,n5` — long-dash line!. Observational data and the prediction for standard CDM~dot-dash curve! are included
for comparison.
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Q0050,

QS5H t21/2, kt<5,

0, kt.5.
~71!

For this pair of models, the version with suppressed an
tropic stress has a more acceptable value ofb100 than the
version with suppressed energy. However, this pair of m
els is not exactly causal, because the real space two-p
correlation functions do not exactly vanish outside the ho
zon. We also present results for the following pair of mode
which do exactly satisfy this condition. They are~C3!, with

Q005t21/2
sin~kt!

kt
,

QS50, ~72!

and ~C4! with

Q0050,

QS5t21/2
sin~kt!

kt
. ~73!

The sources in the second pair of models are designe
exhibit sub-horizon decay at a similar value ofkt as the first
pair of models we have discussed. However, we see tha
this explicitly causal case, the model with suppressed ene
actually gives a more acceptableb100 than the model with
suppressed anisotropic stress. These results represent
prising contrast to those of the case which is not exa
causal, implying that exact imposition of causal constraint
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necessary for physically meaningful results. Activity outsi
the causal horizon presents opportunities to seed stan
‘‘adiabatic’’ perturbations~which will naturally make the
b100 look better!. We suspect our slightly acausal model h
done this to a remarkable degree.

In Fig. 18 we present the results for different values of t
energy factorn, modifying our standard string two-poin
functions. As in the causal coherent case above, we see
s100 is actually better for models with suppressed ene
rather than suppressed anisotropic stress and in fact no v
of n would give rise to a significant improvement in theb100

problem~see Table III!.
Another way in which we have modified our standa

model is by imposing a sharper sub-horizon cutoff in t
source stress-energy. By doing this, we hope to have cov
a range of possible defect behavior including that of cosm
textures, whose stress-energy tensor will exhibit a faster s
horizon fall-off than that of strings, reflecting the fact th
they have less features on small scales. We implement
particular modification without violating the requirements
causality as follows. We introduce a parametere, and
specify that the number of strings with decay timest f satis-
fying kt f.e is zero, while the number of strings with deca
times satisfyingkt f,e is unchanged. Results for variou
choices of the parametere are shown in Fig. 19. We see tha
b100 does not depend strongly on the the value ofe.

Finally, we allow modifications to the way in which sca
ing is enforced in our model. We note that our standa
scaling model contains two time dependent functions, o
being the number of strings per unit volumen(t), the other
m(t) being the mass per unit length of the strings. In t
case of standard scaling,n(t);t23 while m(t) is a con-
8-24
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FIG. 19. Varying the cutoff parametere: The COBE normalized angular power spectrum of CMB anisotropies,~left-hand graph! and the
matter power spectrum~right-hand graph! for our standard scaling source, with various values of the parametere, representing the value o
kt at which the source is subject to a sharp subhorizon cutoff. (e52 — long-short-dash line,e55 — dotted line,e510 — short-dash line,
e520 — long-dash line!. Observational data and the prediction for standard CDM~dot-dash curve! are included for comparison.
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stant. We note that an extreme case which would also exh
scaling behavior would be a model in which the number
stringsn was constant, but wherem evolved liket23/2. Such
a case would bear some resemblance to the inflation
mimic model of Turok@33#, where there is a constant num
ber of expanding shells, but some feedback mechanism
required to modify the shell surface density in order to int
duce the correct scaling behavior. In fact, if we modeln(t)
as t231p and m(t) as tq, then it is easy to verify that al
models satisfyingp12q50 will give rise to scaling behav
ior. We modify our model by allowing variations in the pa
rameterq from the value zero. As discussed, the choiceq
523/2 represents a type of coherent limit. Results for su
variations are shown in Fig. 20. We see that as we appro
the coherent limit (q523/2), the value ofb100 is increased,
but still does not come close to the data.

We now present one final extreme variation on our st
dard scaling model, which does significantly improve t
b100 problem. Figure 21 illustrates the effect of varying t
parameterq in the limit that both the string velocity and th
coherence length are very small. We find that in the cohe
limit ( q523/2), the matter spectrum comes close to
data on large scales. So in the coherent limit, thes100 nor-
malization depends more strongly on changes in the par
etersv and j than it did in the standard, incoherent cas
Although this extreme model~like the mimic model@33#!
demonstrates that theb100 problem is not a necessary cons
quence of the assumption of scaling, we stress that our m
fications of the degree of coherence via the parameterq as
far as the coherent limit had no physical motivation. A
known defects achieve scaling behavior by having some k
of random decay process, such as loop production in the
of strings, or decay into Goldstone bosons during unwind
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in the case of textures. Consequently, scaling seems ne
sarily to imply incoherence, which suggests that scal
models with constantn(t) are a special, unphysical limit. W
see in the figure that it is only in the coherent limit that t
choice of lowj andv significantly reduces theb100 problem.

VI. MIMIC INFLATION AND VARIATIONS

One obvious counterexample to the arguments we h
put forward is Turok’s mimic inflation@33#. This is a scaling
active model which is quite different from a standard def
model, which has been shown to produce the same struc
of acoustic peaks in the small scale CMB as adiabatic th
ries. It is of interest here because it also manages to o
come the difficulties of the majority of models discussed
this paper by giving rise to a COBE normalized mat
power with no deficit of power on large scales.

Mimic inflation is also of interest because the compone
of the source stress energy which are directly modelled
Q001Q andQD ~as opposed toQ00 andQS which we ex-
tract in our string model!. The componentQ001Q is par-
ticularly interesting because it accounts for essentially al
the contributions to the scalar CMB fluctuations created
the surface of last scattering and also to the matter po
spectrum.

In this section, we briefly explore variations on the mim
model in which the ratio ofQ001Q to QD is allowed to vary
freely. These variations do not respect the constra
^Q00Q

S&;k2 outside the horizon. However, we believe th
they are worth looking at because they illustrate a po
about the relative dependence of ISW and matter contr
tions onQ001Q andQD .

Our mimic model is based on the version presented
8-25
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ALBRECHT, BATTYE, AND ROBINSON PHYSICAL REVIEW D59 023508
TABLE III. Table of biases and values ofm/mS for each of the
models where our standard source has been further modified.
model is labelled by the figure and line type where it appears. N
that we have not calculatedm/mS for coherent models, which ar
not based on string-like two-point functions.

Description Figure Line type b8 b100 m/mS

C1 17 Long-short dash 0.38 1.84 –
C2 Dotted 1.29 3.20 –
C3 Short-dash 6.18 19.19 –
C4 Long-dash 1.71 3.62 –
n50 18 Long-short dash 2.10 6.14 1.23
n521 Dotted 2.73 9.36 0.70
n50.5 Short-dash 1.64 4.99 1.27
n5` Long-dash 2.11 7.91 –
e52 19 Long-short dash 2.06 4.43 7.28
e55 Dotted 1.85 4.78 2.86
e510 Short-dash 1.70 4.86 1.65
e520 Long-dash 1.63 5.01 1.23
q50 20 Long-short dash 1.74 5.81 1.00
q521 Dotted 1.42 4.68 0.72
q521.25 Short-dash 1.52 5.04 0.77
q521.5 Long-dash 1.35 4.16 –
q50 21 Long-short dash 0.54 2.55 0.07
q521.0 Dotted 0.35 1.64 0.06
q521.25 Short-dash 0.40 1.89 0.06
q521.5 Long-dash 0.19 1.00 –
on
-
he

02350
Hu, Spergel and White~Ref. @30#!. We take

Q001Q5C1t21/2
sin~Akt!

~Akt!
, ~74!

QD5 f DC2t21/2
6

B2
22B1

2

1

kt

3S sin~B1kt!

~B1kt!
2

sin~B2kt!

~B2kt! D , ~75!

with

C15~tȧ/a!21, ~76!

and

C25
2

3

1

114tȧ/a
. ~77!

We have varied the model of@30# by multiplying QD by
a factorf D . The results for such variations are shown in F
22 ~for this figure we have made use of the valuesA51,
B151.0, B250.5). The long-short-dash curves show t
standard mimic model, normalized on COBE scales. T
model has an identical acoustic peak structure to stand
CDM, though the ratio of plateau to peak height is sligh
higher. The matter spectrum actually lies well above the
servational data. If the model is normalized to CMB data
scales larger thanl 5100, then matter spectrum lies ex
tremely close to that of standard CDM. In other words, t

ch
te
rmalized
FIG. 20. Scaling can be enforced by varying either the string density or the mass per unit length. Here we plot the COBE no
angular power spectrum of CMB anisotropies~left-hand graph!, and the matter power spectrum~right-hand graph! for a scaling source, with
various values of the parameterq, which parameterizes the way scaling is enforced (q50 corresponds to constant mass per unit length!. We
usev50.65 andj50.3. (q50 — long-short-dash line,q521 — dotted line,q521.25 — short-dash line,q521.5 — long-dash line!.
Observational data and the prediction for standard CDM~dot-dash curve! are included for comparison.
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FIG. 21. Varying the scaling quality parameterq with v50.0 andj50.001: We plot the COBE normalized angular power spectrum
CMB anisotropies~left-hand graph!, and the matter power spectrum~right-hand graph! for a scaling source, withq50 — long-short-dash
line, q521 — dotted line,q521.25 — short-dash line,q521.5 — long-dash line. Observational data and the prediction for stan
CDM ~dot-dash curve! are included for comparison.
at

e

n
d
er

this
ic
W

the
mimic model matches the matter spectrum of an adiab
model as well as the acoustic peak structure.

The short-dash curves show the results for a run wh
QD is set to be 1000 times bigger thanQ001Q. As ex-
pected, this model gives rise to extremely small contributio
for the matter and oscillatory components, as compare
the ISW. The dotted curve shows the result of a run wh
02350
ic

re

s
to
e

QD is set to zero. We see that the matter spectrum in
case is of order, but slightly lower than in the basic mim
model. Therefore, the relative amplitude of matter and IS
contributions seems to depend in a nontrivial way on
relative amplitude ofQD and Q001Q, except in the limit
that Q001Q is small.

In Fig. 23 we show the results of varying thef D for dif-
FIG. 22. Variations on the mimic inflation model: We plot the COBE normalized angular power spectrum of CMB anisotropies~left-hand
graph!, and the matter power spectrum~right-hand graph! for variations on the mimic inflation model. The amplitude of theQD component
is multiplied by a factorf D , with f D51.0 ~long-short-dash line!, f D50.0 ~dotted line! and f D51000 ~long-dash line!. Observational data
and the prediction for standard CDM~dot-dash curve! are included for comparison.
8-27
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FIG. 23. Further variations on the Mimic inflation model: We plot the COBE normalized angular power spectrum of CMB aniso
~left-hand graph!, and the matter power spectrum~right-hand graph! for variations on the parametersA, B1 , B2 . The amplitude of these
parameters is varied from the standard case by multiplying each one by a factorf p . Also the ratio ofQ001Q to QD is varied by multiplying
QD by a factor f D . We takef p51.0, f D51.0 ~dot-dash line!, f p50.4, f D51.0 ~dot line!, f p51.0 f D50.0 ~short-dash line!, f p50.4 f D

50.0 ~short-dash line!. Observational data and the prediction for standard CDM~dot-dash curve! are included for comparison.
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not
ferent choices of the parametersA, B1 and B2 , which we
vary by multiplying each one by a factorf p from its original
value. We see that withf p50.4, the matter power spectrum
lacks power on large scales in the standard case off D
51.0. However, this deficit of power can be made up for
setting f D50.0. The resulting matter power spectrum is
strikingly good agreement with the observational data. T
is in contrast to the casef P51.0 where the effect of reducin
f D to zero is to diminish the matter spectrum.

To summarize, the results of this section illustrate t
models can be constructed which are capable of solving
b100 problem. However the examples of this and previo
sections have also indicated that changes in the param
can give contradictory results, particularly in the coher
limit. We reemphasize that in the coherent limit, there is
physical motivation for the concept of scaling~which comes
about as a result of random processes in all known sca
models!. Furthermore, the case which gave a good fit to
matter spectrum did not satisfy constraints on the superh
zon anisotropic stress that are required by isotropy. Ne
theless, these are interesting cases which should be inv
gated further to see if they could give rise to plausib
models of structure formation.6

VII. DISCUSSION AND CONCLUSIONS

Substantial progress has been made in understanding
predictions from cosmic defect models of structure form

6As we complete this work, we learned of a report@51#, which
discusses this issue.
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tion. The modern state-of-the-art calculations@9,10,12# all
represent significant advances over previous work@20,52–
54,13,55,14,56,16,50#. While our ‘‘Modeling’’ approach is
not as explicitly tied to simulations as the work of Penet al.
@9# and Allen et al. @12#, its strength is that it allows us to
probe the robustness of our key results, as a function
variations in the defect stress-energy histories. This lets
investigate possible variations among different defect mod
and possible systematic uncertainties in the simulations.

We have found a serious conflict between standard s
ing defect models and the current observational data. T
conflict can be clearly expressed in terms of the ‘‘b100 prob-
lem,’’ whereb100 is the bias on scales of 100h21 Mpc. Cur-
rent theoretical and experimental results indicate that the
tual value ofb100 is close to unity, but the standard defe
models we considered, once COBE normalized, requ
b100'5 to reconcile the predictions for the density field flu
tuations with the observed galaxy distribution. The proble
is robust over a wide variations in parameters describing
defect sources and over variations inVb andh as well. It is
tempting to exploit current uncertainties in the standard s
ing picture to resurrect the defect picture, but we have fou
that truly radical deviations from the standard scaling
sumption are required to produce a more viable mod
While one variation from the standard model could getb100
'1.6 ~or even of order 1 if a deviation from scaling is intro
duced as well!, to get this close is done at the expense
totally failing to fit the shape of the matter spectrum a
most of our ideas about how defects interact and evo
would also have to be wrong.

Structure formation on 100h21 Mpc scales is not strongly
affected by changes in the matter content, and we do
8-28
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DETAILED STUDY OF DEFECT MODELS FOR COSMIC . . . PHYSICAL REVIEW D 59 023508
expect that changes in the dark matter could save the sc
defect models. Probably, the most interesting direction
take the standard defect scenario is toward an open univ
or one with a nonvanishing cosmological constant. Th
have been some suggestions@46# that sufficient deviations
from scaling might be realized in some lowV0 or cosmo-
logical constant models to result in a viable scenario.
also discovered a handful of very different scaling mod
~see Table III! which had more reasonable values ofb100,
but which have very little to do with the standard defe
scenarios. They may however, represent interesting di
tions for future model building.

Our results were anticipated in a number of ways by e
lier work. Pen, Spergel and Turok~Ref. @13#! noted a serious
bias problem for specific global defect models on scales
to 20h21 Mpc and the compilation of Refs.@20# and@16# in
Ref. @57# looks very much like our results~and theshapeof
the CDM curve in Ref.@20# is almost identical to ours!.
However, in each case it was far from clear that suffici
dynamic range had been achieved to predict the COBE
malized density field accurately. One of the strengths of
current method is that dynamic range is not a problem
we feel we have covered the range of other possible un
tainties in the ‘‘model scanning’’ described in Secs. III–
In cases where comparisons are appropriate, our result
consistent with those of Pen, Seljak and Turok@9#, where
dynamic range is also not a problem.

Our results are extremely negative for the standard sca
defect models and it is essential that results of this sign
cance are critically scrutinized. We see four possible ar
where this scrutiny might be directed.

Linear Einstein-Boltzmann solver:We have used standar
technology to solve the linearized Einstein-Boltzma
equations. Initially, we modified a passive scalar code
include sources and we checked this with the equiva
code used in Ref.@9#. The vector and tensor codes ha
not at this stage been checked. We should note, howe
that an accurate Einstein-Boltzmann solver is the ultim
quantitative authority in this subject and that analytic
ting formulas have only limited usage if they do n
agree. Calculations based on these fitting formulas ma
wrong by up to a factor of two.
Modeling of two-point functions:Clearly, our results de-
pend on our choices of defect stress-energy two-p
functions, which were designed to fit flat space stri
simulations. We have extensively probed variations ab
these two-point functions and we found that only mu
less motivated models are even marginally consistent w
the data. Nonetheless, we have illustrated that some m
els, which at this stage are physically unmotivated, can
the data on 100h21 Mpc. Obviously, much more work
will be done on this subject.
Bias: It appears thatb100'5 ~or even b100'3) is not
consistent with the data and also that defect models
unable to generate such a large bias. If either of th
turns out to be false, the case against defects will
weakened.
Comparison with data:It is essential that we have mad
the comparison with the data correctly. If the current d
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turns out to be dramatically inaccurate, our conclusio
would of course change. A more subtle problem might
the assumption of Gaussianity which goes into produc
the error bars used in the comparisons between theory
data. We believe that the dependence of the error bar
the sample size, be it the sky coverage in a CMB exp
ment or the depth of a redshift survey, is likely to be ve
model dependent. Although the central limit theore
seems to ensure that the comparisons we make are
sonable in most defect models@58,59#, in more exotic
cases@60# the effect can be large.

We have carefully scrutinized all four of these issues, and
this stage, stand by our conclusions. However, we are ha
to engage in critical dialogues on these topics.

Much of the early calculations of defect models have
volved various heuristic arguments, particularly concentr
ing on the effect of an individual defect on the microwa
background or on matter accretion. Such approaches w
able to give an intuitive picture of the effects of defects
structure formation, but in the modern age, we feel stron
that arguments such as ‘‘model X does not look so ba
must be translated into expressions for the two-point fu
tions before we are willing to take them seriously — facto
of two can be important and would obviously change t
conclusions of this work. We have also demonstrated t
results from coherent models can have very little to do w
the fully active decoherent case and that it is essential
causality be strictly enforced if physically meaningful resu
are to be obtained. We are not arguing against the utility
heuristic discussions, but it is essential for the heuristic p
tures to be brought into contact with the modern calculatio
if they are to have an impact.

The complete failure of the bulk of the models we co
sidered here is in striking contrast with the~inflation moti-
vated! nearly scale invariant adiabatic models~which have
no trouble gettingb100 right!. These two types of model ar
different in many ways and it is not necessarily easy to
the problems on a single physical difference. Still, it is wo
noting a number of effects which all cause problems for
defect scenarios.

Firstly, the defect models areisocurvaturemodels and
passive isocurvature models are know to have the CDM p
turbation at a given wavelength~relative to temperature per
turbations at the same wavelength! down by a factor of 6 as
compared with the adiabatic case. A similar effect is pres
in the active cases@61#, although this is not directly relevan
to theb100 problem, which compares temperature and CD
fluctuations on different scales. The scaling~or other! as-
sumption which links these two scales is a crucial part of
story. This difference between defect and adiabatic mode
more directly connected with the problem of matching t
galaxy data with the smaller scale CMB measurements,
example, within the early time window of Fig. 4, a matt
which is problematic for defects, but which we have n
emphasized here.

Secondly, the growth of the CDM perturbations und
gravitational collapse is crucial to both pictures. The fact t
defect models lay down perturbations throughout time~as
compared with the inflationary models, for which the pertu
8-29
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bations are ‘‘set up’’ early on! means that the average defe
perturbation benefits less from the gravitational collapse.
temperature perturbations benefit more equally from the c
stant active seeding, so this is another physical effect wh
suppresses the relative perturbations in matter versus ra
tion.

Finally, the previous effect is further enhanced by t
generic presence of vector and tensor perturbations in
active models. These do not excite growing modes in
CDM, but make added contributions to the temperature fl
tuations, especially on COBE scales.

Having made these points, we must emphasize that
ability for a causal active model to duplicate the successe
an adiabatic model are purely a technical matter. There is
formal ‘‘no go theorem’’ against active models, it is just th
the models which best match our current ideas about def
do not work. The best counter example is Turok’s ‘‘infl
tionary mimic’’ model @33#. We have confirmed Turok’s
conjecture that the mimic model produces adiabatic-like p
dictions for the CDM spectrum, as well as for the CM
anisotropies~which were the original focus in@33#!, and we
have added a few new scaling models to the list. We are
investigating a number of physical processes which co
produce extremely non-scaling sources. All these models
however, radical departures from the original standard s
ing defect picture and they require further work to determ
if they correspond to realistic physical scenarios.

The problems with the standard defect models are lik
to have a significant impact on our understanding of the
gin of cosmic structure. The defect models were the cla
examples of models of structure formation in which stand
r
e,

ys

tt

tt

l-

02350
e
n-
h
ia-

he
e
-

he
of
o

ts

-

so
ld
re,
l-

e

y
i-
ic
d

big bang~SBB! causality holds. That is, one started with
perfectly homogeneous universe and seeded perturba
via causal processes in the SBB. With the demise of
standard defect models, the question arises whetheranyplau-
sible SBB causal model exists. If the answer is negative, t
this is very strong evidence for an inflationary origin of co
mic structure, in which SBB causality is violated to produ
fluctuations of the standard ‘‘adiabatic’’ form. We are cu
rently investigating the other possibilities of SBB caus
models of structure formation mentioned above. Perhaps
most promising of these at the moment is the standard st
model with a cosmological constant@11#. All the alternatives
we are currently considering will leave ample signatures
the new cosmological data, so we are optimistic that
causal nature of the primordial perturbations will be und
stood in the foreseeable future.
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