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No supercritical supercurvature mode conjecture in one-bubble open inflation
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In the path integral approach to false vacuum decay with the effect of gravity, there is an unsolved problem,
called the negative mode problem. We show that the appearance of a supercritical supercurvature mode in the
one-bubble open inflation scenario is equivalent to the existence of a negative mode around the Euclidean
bounce solution. Supercritical supercurvature modes are those whose mode functions diverge exponentially for
a large spatial radius on the time constant hypersurface of the open universe. Then we propose a conjecture that
there should be “no supercritical supercurvature mode.” For a class of models that contains a wide variety of
tunneling potentials, this conjecture is shown to be corf&556-282(198)07524-9

PACS numbd(s): 98.80.Cq, 98.70.Vc

I. INTRODUCTION order to find variables that can lead us to a well-behaved
reduced action, it was necessary to resort to the Hamiltonian
The Euclidean path integral approach has been used formalism. In the Hamiltonian formalism, conjugate mo-
investigate the true vacuum bubble nucleation through quammenta are introduced, and hence wider varieties of choice of
tum tunneling[1,2]. In the lowest WKB approximation, variables are allowed. In Ref4], we derived a well-behaved
quantum tunneling is described by a bounce solution. Theeduced action for fluctuations around tB¢4)-symmetric
bounce solution is a solution of the Euclidean equation ohounce solution. We found that the action for fluctuations
motion, which connects the configurations before and afteyhich conserve th@(4)-symmetry has an unusual signa-

tunneling. The bounce solution that takes account of the, e Namely the kinetic term is negative definite. To deal

%?Vitational effect was found by Coleman and De Lucciai, this action, we proposed a prescription analogous to the

conformal rotatiorj5]. Then, from the path integral measure,
there arises one imaginary umitThis suggests there should
be no negative mode in the final form of the reduced action,
|e_<s<Eboun°9_s<E"ivia'>) (1.1) since the factor in K has been already taken care of by the
' ' above-mentioned prescription. Therefore, we proposed the
where SP°U"°¢ is the classical Euclidean action for the “NO negative mode conjecture[4].
bounce solution an$(Etrivia|) is that for the trivial solution On the other hand, in recent years the process of fz_ilse
that stays at the false vacuum. In the path integral approacacuum decay with the effect of gravity has been studied
the prefactoiK| is evaluated by the Gaussian integral overextensively in the context of the one-bubble open inflation
fluctuations around the background bounce solution. In &cenario. In this scenario, an open universe is created inside
standard System which does not take account of gra\/ity@ nucleated bubble. In one-bubble open inﬂation, one of the
there is one perturbation mode in the direction of which themost important issues is to calculate the spectrum of quan-
action decreases. It is called a negative mode. For this mod#&m fluctuations after the bubble nucleation because it deter-
the Gaussian integral is not well defined. To make the intemines the spectrum of cosmological perturbations. By com-
gral finite, the integration path should be deformed on theparing the predicted spectrum with the observed one, we can
complex plane. Consequently, one imaginary factprap- test a model of one-bubble open inflation.
pears inK. In the Euclidean path integral approach to tun- Fluctuations in an open universe can be decomposed by
neling, this imaginary unit plays a crucial role to interpfet using spatial harmonics on the unit 3-dimensional hyperbolic
as the decay rate. space. We denote the eigenvalue of a spatial harmonic by
However, in the case when gravity is taken into account— (p?+1). The spatial harmonics with positivp? are
the situation changes drastically. Since there are gauge deguare-integrable functions on a time constant hypersurface
grees of freedom, we have various possibilities in choosingn an open universe in the sense that they can be normalized
variables to describe the physical degrees of freedom. If wly using the Dirac delta function. As a result the spectrum is
choose inappropriate variables, the equation that determine®ntinuous fop?>0. On the other hand, the spatial harmon-
the fluctuation mode can become singular. In Rél, we ics are no longer square-integrable fpf<0. However,
have shown that it is impossible to obtain a well-behavedsince a time constant hypersurface in an open universe is not
reduced action as long as we stick to variables that appear @ Cauchy surface, this divergence does not directly exclude
the original Lagrangian in the second order formalism. Insuch modes. By considering the normalization of perturba-
tion modes on a Cauchy surface, we find that the spectrum
for p?><0 becomes discrete. These modes are called super-
*Electronic address: tama@vega.ess.sci.osaka-u.ac.jp curvature modes since they give rise to correlations on scales
"Electronic address: misao@vega.ess.sci.osaka-u.ac.jp greater than the spatial curvature sd@g/].

The decay rate per unit volume and per unit time interval
I', is given by the formuld1]

r=|K

0556-2821/98/5@)/0235069)/$15.00 59 023506-1 ©1998 The American Physical Society



TAKAHIRO TANAKA AND MISAO SASAKI PHYSICAL REVIEW D 59 023506

\V(¢) configurations before and after tunneling. In the present case,
the geometry before false vacuum decay is given by a de
Sitter space. After tunneling, there appears a true vacuum
bubble in the false vacuum sea. This bounce solution is ob-
False tained by Coleman and De Lucdig] under the assumption
bl > of the O(4)-symmetry:

¢ ds?>=a?( 77){d772+d)(2+sir12)(dﬂ(22)}, D=¢(n).

FIG. 1. A typical shape of a scalar field potential under consid- 2.2
eration.

N

The Euclidean equations of motion are

There are two classes of supercurvature modes, which we

call supercritical and subcritical modes. The precise defini- " ,_ 2dV(P) =
. ¢"+2Hep' —a*———=0, (2.3

tion will be presented later. Here we mention that supercriti- d¢
czzil modes have smaller valug<., larger absolute valugsf
p< than subcritical modes, and their mode functions diverge K ,
exponentially for large spatial radius in the open universe. H?-1= 3 (§¢ 2_azv(¢)), 2.4
We shall show that the existence of a supercritical supercur-
vature mode is equivalent to the existence of a negative K
mode. Thus the “no negative mode conjecture” presented in H —H2+1=— > ¢'? (2.9
Ref.[4] can be restated as the “no supercritical supercurva-

ture mode conjecture. Note that there EXIStS N0 SUPErcUNVgy o o prime represents differentiation with respect;to
ture mode for a model with a sufficiently thin bubble wall and H:=a'/a. Requiring the regularity of the bounce solu-
[8]; hence there is no supercritical mode in such a mode ion. the bouhdary condition is determined as

The purpose of this paper is to examine this conjecture for a
wider class of models. In particular, a class of models we &' e 2l
consider naturally allows thick bubble wall solutions. Re- '
cently the negative mode problem has been discussed
Lavrelashvili [9] in the context of the singular Hawking-
Turok instantor{ 10]. In this paper, however, we exclude the
possibility of the Hawking-Turok instanton and focus on
regular bounce solutions.

In Sec. Il, we show the equivalence between the existenci
gi 21nseugpeglr\(/:?it?ggldgigérceu;\G/}:tt(;(eadnfou dcélozﬁa{]hgcélggc?rt?ntho? is number, we need to derive the reduced action for fluc-

. . ) uations around the bounce solution. The fluctuations can be

cosmological perturbations. In Sec. Ill, we give a method to

. ; : expanded in terms of the spherical harmonics on the unit
construct potential models which allow an analytical treat5 - here say, with n=0.1,2 which satisfy[®)A
ment. By using this method, we give a set of models WhichJr nF()n+2,)]Y ”':mo After ap’pr,op-rié.te, gauge fixing, we ob-
seemingly violate our conjecture. In Sec. IV, for such models[ain [4.11] nim= = '
that have a bounce solution with a negative mode, we show '

that there should be another bounce solution that has a

axe I (p—Fw). (2.6)

tﬁ’y choosing the initial value of at »— — appropriately,

we obtain a solution which satisfies the required boundary
condition. For definiteness, we choogeto be in the false
vacuum side forp— —oo.

As noted before, the number o6 in the prefactoK has
crucial meaning in the path integral approach. To evaluate

. ) + -
smaller value of the action and has no negative mode. The 5@ s= w
conclusions are given in Sec. V. nim 2
H nImd i nim|2
Il. NEGATIVE MODE AND SUPERCRITICAL X | dy| —im d—+ §|’7T |
SUPERCURVATURE MODE K
We consider a system composed of a real scalar fie)d, + E[U+(n+3)(n—1)]|q”'m|2 1 2.7
coupled with the Einstein gravity. The Euclidean action is 2
given by

whereq"'™ is the coefficient of the harmonic expansion of a
1 1 gauge-invariant variable, and ="'™ its conjugate. In our
~ o< RT Eg“vﬁ,ﬂ)ﬁv‘DJrV(q))}- original derivation[4], we used the variable:=g/a and its
2.1) conjugate momentum. The varialijes equal to the Euclid-
ean version ofy introduced in Ref[11]. Here, the potential

The potential of the scalar field is assumed to have the forn¥ is given by
as shown in Fig. 1, and initially the field is assumed to be
trapped in the false vacuum. As mentioned in Introduction,
the bounce solution is a Euclidean solution that connects the

SE: f d4X\/§

n

K
U=Z¢ =W +W2, W=7 (2.9

| S
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Physically, the variablg represents the curvature perturba- f
tion in the Newton gauge when analytically continued to the
open universe inside the bubble. The explicit form of the
perturbation in this gauge is

ds?=a2 [ 14 = q
a

jor

+l1- %) (dx?+sirxd0%) |,

1 d
<P==‘D—¢=a75,ﬁ(¢ a), (2.9

whereg is the perturbation of the scalar field. Recall that the
prefactorK is evaluated afl] f-

Kzf [dmdqle?”S. (2.10 FIG. 2. Conformal diagram of a de Sitter—like space with a
bubble wall. The Cauchy surface exists in regrbut not in the

Looking at Eq.(2.7), we find that the action disappears °P€" UNIVerse inside bubble, the region marke®as

for n=1. This just reflects the fact that tlee=1 modes are . . .
: ifunction [13,4]. In this approach, any bounce solution that

them. This is very different from the case of false vacuumconnects false and true vacua will contribute to the tunnel-
' i putting aside the issue of which bounce dominates.

decay in flat spacetime, in which there is a zero mode in thd'9: Pt der that th . be keot b h h
n=1 modes. This zero mode describes spacetime translatiowus' 'P order t ﬂtt edcohnS|stencyf € gpt etween; ehpat
modes and its existence implies the existence of a uniqu@tegra approach an the wave function approach, t cre
negative mode in the@=0 [i.e., O(4) symmetri¢ modes should be no negative mode for the Coleman—De Luccia

[12]. In the present case of false vacuum decay with gravityt.)Ounce solution, provi_d_ed it gives the smallest Eu_clidean ac-
the coefficient in front of 7" 2 becomes negative fan tion among the non-trivial bounce solutions. This is the con-
=0. Therefore, if we try to perform the integration with re- Jecﬁjre plrotpos?d mtR?ﬁ'A']' bl £ th turbati
spect tor, we find that the Gaussian integral does not con- ow, 1€L us turn to the probiem of tn€ perturbation Spec-
verge forn=0. To resolve this difficulty, we proposed fid] trum in the context of the one-bubble open inflation scenario.
a prescription analogous to the co,nformal rotation. ByT0 stqd_y It, we need to quantize the perturbation. field on th_e
changing the variables as— — i, q—ig, the above path non-trivial background that appears after tunneling. For this
integral becomes well defined To’ carry 6ut the path integralpurpose’ the redgced action f_or the per‘gurbaﬂon field must be
the variables must be discretiied Then the numbensasfd talculated. In doing so, the time coordinate must be chosen
X s so that the time constant hypersurface is a Cauchy surface. A

g integrals will differ by 1. Therefore, this change of vari- ; hoice i h di hat is obtained b
ables will produce one imaginary unitfor the prefactokK. convenlenF choice IS tq use the coor Inate that is obtained by
aEhe analytic continuation of: x.=i(x—m/2). Then, the

This is in contrast to the case of false vacuum decay in fl . . .
T ; : . o . coordinates f.,7,{()) span the regiorC of Fig. 2. In
spacetime in which the imaginary unitn K arises from the reqionC. the metric takes the form
negative mode. Note that there is no negative modenfor 9 k
=2 [9].
Let us examine the=0 case in more detail. If we know

the spectrum of eigenvalues,;, of the Shralinger-type ) ) .
equation It should be remembered thaf is not a time coordinate

there. The reduced action in this region is obtained as

ds’=a?(7)(dy?—dxi+cositx,dQ%,). (2.1

d2
<—d—772+u—3)quhjq], (21]) aq|_m R (9q|m

—O0
IXc IXc

costy,

S2=3 % f dch d7
wheregq; is thejth eigenfunction, the contribution % from hm

n=0 modes will be given by-(—i)IIx; "%, where the fac- . .

tor (—i) comes from the rotation of the variables as ex- —qlm('){'('+l)+(0—3)COSﬁXc}qlm}, (2.13
plained above. If there is a mode with a negative eigenvalue,

there arises another imaginary factor, and hence the prefactor

K becomes real. If so, this bounce solution will not contrib- 1Rigorous|y speaking, there can be even number of negative
ute to the tunneling process in the path integral approach. Omodes, depending on the choice of the canonical variables. How-
the other hand, there is another approach to describe thever, for the present choice of the variables ), we conjecture
tunneling. That is the approach of constructing a WKB wavethat there is no negative mode.
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where@ is defined by Thus the required boundary conditiof{— =1 for »—
F oo, is automatically satisfied. Once we kndw, we can
- 92 determinea by integratingH{. Here an integration constant
O:=— (9—772+U, (2.14  appears, which determines the absolute value of the poten-

tial, say the potential at the false vacuip. Finally, using

and U is the same as the one given in EQ.8). In this Eq. (2.4), the potentiaV is determined as a function af as

expression, they-dependence appears only through the op-
eratorO. Thus the perturbation can be expanded by using V(g(n))=

eigenfunctions 0fO: ™= ,gP(7)f"™(x.). The equation
that determines eigenvalues and eigenfunctions is

6—6H%+k'?
T. (3.1)

By assumption, sincep is a monotonic function ofyp, by
inversely expressing in terms of ¢, the shape of the poten-

d? . . .
— +U|gP=(p2+4)gP. (2.15 tial is uniquely determined.
W a P a Next we turn to the eigenvalue equati¢hll). If there is

) ) ) ] a negative mode, the solution wikh=0 must have, at least,
Analyzing the asymptotic behavior @, we findU—4 for  gne node. Hence, it is sufficient to examine the equation for
n— F . Hence the spectrum is continuous fof>0. On A =0, which is written as
the other hand, the spectrum fpf<0 is discrete, which is

called a supercurvature mode. Here we call modes whth d?z &
< —1 supercritical supercurvature, while we call modes with - Wz + 5 ¢'2—W' +W?—-3|q=0. (3.2

0>p?>—1 subcritical supercurvature. When analytically
continued to the open universe g= x.+im/2, the super-
critical modes diverge exponentially fgir— 0. By compar-
ing Egs.(2.11) and(2.15, the existence of a negative mode

around the bounce solution is manifestly equivalent to that o unction W, we can construct a model in which the second

a supercritical supercurvature mode in the spectrum of dUaerm is negligibly small without changing the other terms.

:Eg J\I,lécgtj:tté%nzblonvghﬁaﬁpgg r:g't\;?ézeégmjes“tnhf sCuor:a]?ccrEE:;a ence, we neglect this positive definite term for the moment.
P From the boundary condition, we find that behaves as

supercurvature mode conjecture.”

If the second termg ¢’ /2 is large enough, the potential will
stay positive and hencq will have no node. Since the
hange in the overall amplitude af’ does not alter the

W—*2 (np—Fx).
IIl. MODEL CONSTRUCTION
[Except for this boundary conditiolly can be arbitrarily cho-
sen. Then, by choosing/ to stay close to zero for a suffi-

At first sight, there seems no reason to deny the possibi
ity of a potential model that allows a bounce solution with a ] . , o
supercritical supercurvature mode. In fact, there is a methoa'emly, long mterv_al of 7, the potential te_rm,—W +W
to construct such models, as described in a separate paper Will have a wide negative-valued region, and the solu-
[8]. However, as mentioned there, this method does not gualo" for g will have a nod,e. In contrast, if we consider a
antee that the thus obtained bounce solution gives the smaffHfficiently thin wall, theW" term will dominate the poten-
est Euclidean action among non-trivial solutions. Hencell@ when|W| is small andW’<0. Then, the potential will
given a bounce solution that allows a supercritical supercurStay positive, and henag has no nod¢8]. _
vature mode, if one can prove that its action is not the small- _ For instance, let us consider a set of models in whicts
est, our conjecture remains intact. given by

In this section, we review the method to construct a po-
tential model and a bounce solution, and give an example in W= —2tanfi(7—{)/A], (3.3

which a supercritical supercurvature mode appears when a
model parameter is varied. We then construct a potential/Nere the model parametefsand A represent the wall lo-

model that allows a continuous series of bounce solutiongation and its thickness, respectively. This is realized by set-
under the weak gravitational back reaction approximation:‘Ing
which will be used for the investigation of the negative mode
problem in the next section. b= it (3.4)
Our method for model construction is as follows. We first {cosh (n—)IA]}*A" '
give ¢'. It can be specified rather arbitrarily except for the
conditions that it vanish as~2" for np— o and it be whereu is a constant. Then, neglecting the'2/2 term, Eq.
positive (or negativé definite so that is a monotonic func- (3.2 becomes
tion of z. Then we solve Eq(2.5) to find H anda. For

— ¥, H is solved as B d? . 3_4 1 +1]q=0. 35
d72 \A ") cosl(p—0ia] )T
H-1 _C_ e
H+1 =€ For A=1, this equation has a regular nodeless solution
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1 Since ¢'2~e 47l for p— + oo, the above equation can be
= Cos7—0) (3.6)  integrated and we findN=0(x¢’'?) everywhere. If we
substitute thisSN back into Eq.(2.3), we can calculate the

: 2
Thus the lowest eigenvalue is zero the=1. Since the po- correction ofO(«x¢') to ¢. _
tential term in Eq(3.5) is a monotonically decreasing func- Next we evaluate the action under the weak back reaction

tion of A, there will be a negative mode far>1. Now letus ~ @Pproximation. The Euclidean action for @{4)-symmetric
turn on thek¢'2/2 term while keepingV the same. As we configuration is given by
increaseu, the critical value ofA for the existence of a _
negative mode will increase. Faru®=1, a negative mode Se=Sqal+ Sala, 4],
will disappear completely for any value &f 3 3

In principle, one can explicitly construct the potential sg[a];:2772J dﬂ[ ——a'?2— —g%2+ a4vmp}, (3.10
for the above model, say by numerically the background K Kk
equations. However, it will be much nicer if we have an
analytically tractable model. For this purpose, let us consider S.[a, ] :=2W2f dz
the weak back reaction limit, in which the geometry can be
approximated by a pure de Sitter space. From (Ed), we ] o .
see that this will be the case#fp’2<1. In the above model, Inserting a,+ éa to the zgrawtatl_onal part of the action,
we ?ave seen that a negative mode will disappear if thavhereda=apdN=0(x¢’?), we find
k¢'“I2 term gives a large contributiofof order unity or _ 1212
giate} to thegpotential. 'Ighis will be true for most co):meiv- Solapt da]=Sya {1+ 0((«x4™)}, (312

able potential models. Hence we may restrict our attention 1 nic, follows from the fact thaa, is a solution to the equa-
a cla_ss of moq_els that au.tomat|_call.y satisfy th.e weak baClﬁon obtained from the actio§;[a]. Hence, to the first order
reaction condition when investigating the existence of 8¢ x$'2, we have

negative mode.
In the first non-trivial order of the weak back reaction Se=S,[ap]+ Sl @y, b1, (3.13

approximation, we find that the negative mode problem can

be analyzed on a fixed de Sitter background geometry. Let ughere S,[a, ,¢] is O(k¢'?) relative to Sylap]. Thus the

explicitly show this fact. action evaluated on a fixed de Sitter background is correct to
First we examine the background field equations. Neglectthe first non-trivial order. Since the background geometry is

ing relative errors ofO(x¢'?), Eqg. (2.5) can be readily fixed, we focus on the matter part of the action and denote it

q

2

a
?¢’2+a45V(¢)} (3.11

solved as by Sy ¢] in the following.
Finally, we conside©O(4)-symmetric fluctuations around
a— 1 2= —tanh 3.7 the bounce solution in the weak back reaction approxima-
" H coshy’ b 7 ' tion. We rewrite the eigenvalue equati¢h11) by using the

variable ¢ introduced in Eqs(2.9). We find

where H is defined byH2:=(;</3)Vtc,p where Vi, is the .
value ofV at the top of the potential barrier. It is worthwhile ni | oH— k$'¢ ,

. . . @
to note that the weak back reaction approximation does not '
imply a small potential difference between the false and true 2 ¢'°—\—3
vacua. The vacuum energy inside the bubble can be much
smaller thanV as long as the bubble radius is sufficiently P k$'¢"
smaller tharH ~ . However, the weak back reaction approxi- [ A=2xd AtV ¢=0,
mation does implyV,,,—Ve<Ve. Hence we may replace §¢'2—)\—3
Viop With V¢ in the definition ofH. Here we have chosen
Viop for later convenience. Then substituting the lowest or- (3.19
der solutions ofa and X in Eq. (2.3), the scalar field equa-

tion becomes where 32V=d?V(¢)/d¢?. Unless\ is close to—3, this

equation reduces in the weak back reaction limit to

@'+ 2Hb¢’—a§%(5V)=O, (3.9 ¢+ 2Mpe' —apd*(8V)e=—\e. (3.19
o _ Here we note that the terafd?(6V) can be as large &4 2
whereéV=V—V,. This gives the lowest order solution of eyen in the weak back reaction limit. The above equation is
¢. Introducing the variabléN:=loga, and expanding it as the same as the equation f@r(4)-symmetric scalar field
Ny+ 6N, Eq. (2.5 gives the equation for the first order cor- fiyctuations on a fixed de Sitter background, i.e., without
rection toa: taking account of the metric perturbation. Thus we see that it
is sufficient to consider the problem on a fixed de Sitter
1 d (cosH’- d(5N)) _ £¢,2 (3.9 background in the first non-trivial order of the weak back
cosﬁn dzy 7 dy 2 ' ' reaction approximation.

023506-5



TAKAHIRO TANAKA AND MISAO SASAKI PHYSICAL REVIEW D 59 023506

We note that Eq(3.15 has a solutionp=¢'/a, with a  where we have set the integration constant so #vat 0 at
negative eigenvalug = — 3. If the gravitational effect were the top of the potential. Then by choosing andc, as
completely neglected, this would be the negative mode that
would give rise to the factar of the path integral. However, 1 cosh+1
as we have noted, the approximate equatidri5 is no ¢i=3sinh{, Cp=—"b, (3.19
longer valid forA =~ — 3 even in the weak back reaction limit.

It should be emphasized that H§.14) is not a Schrdinger- e find that all the solutions parametrized bgre solutions
type equation. Thus the correspondence between the numbgy; the same potential given by
of nodes and the increasing order of eigenvalues does not

hold for ¢. In fact, from the definition ofp in Eq. (2.9), we 2H?2
readily see that a nodeless solution fprcorresponds to a N=——d*(dp— ¢,)%. (3.20
solution with one node fop. Thus if there exists a one-node *

negative mode solution fap, there will be a nodeless nega- ) ) ) )
tive mode solution fox. Note that the eigenfunction for the=0 mode is also given

Now let us return to the model wittV=— 2 tanh(;—?) by taking the derivative of the background solution with re-

under the weak back reaction approximation. We assgime SPect 1o “@xde /disinh(p—¢)/costf(y—{). For (=0,
>0 since the 3-sphere of the maximum radius should be OHwe scalar_fleld stays still on top of the potennal barrier. This
the false vacuum side in order for the bounce solution tdS & Hawking-Moss type solutiofL5]. It is easy to see that
describe false vacuum decay. As mentioned tharel is € actionSy[ ¢,-o] vanishes. Since, is a continuous se-
the critical case in this model in the weak back reaction limit./i€S Of solutions, the action must be the same for all the
This was shown by the fact that there is a regular, nodelesé@/ues of¢. This impliesS,[ ¢]=0 for any . This can be
solution of Eq.(2.11) with A=0 for A=1, which is given by ~ &/S0 checked by direct substitution.

Eqg. (3.6), and that the potentidl is a monotonically de-

creasing function oAA. The solution forp that corresponds to IV. PERTURBATION ANALYSIS

the nodeless solutio(8.6) for g in the critical case is given

by In the previous section, we found a potential model in

which a continuous series of bounce solutions exists under
; _ the weak back reaction approximation. In this section, we
sinh(7—{) . . - : .
px cosR(n=0)° (3.1 consider a small but arbitrary deviation from this potential
costt(n—¢ model and show that, if a bounce solution has a negative
mode, there will be another non-trivial bounce solution with

As mentioned in the previous paragraph, this solution has % smaller Euclidean action in this class of models.

node. But it does not imply the existence of a negative mode. .
_ . L Let us denote the matter part of the acti®[ ¢], corre-
For A=1, the background solution fa is given by sponding to the critical case of the model discussed in the
$=do=d.lcrtantin—{)+c,], (317  Previous section by

whereg, is a constant which determines the typical scale of 2

2
a
O £7.— b o2 4 20 4 2
¢ andc, andc, are integration constants to be determined STl4] '_J d”( 2 ¢y ¢7 PP b)7).

*

later. The potentiabV is reconstructed as 4.0
~ oV 1 , We consider a set of models whose action is given by
Vmiirgz gz | an e
Sl ¢1=S7[ 1+ S 4], (4.2
1 b}?
~ HZg? fdﬂ?(WﬁL 2Hy,) where SU[¢] is a small perturbation of orde¢<1. We
* b need not specify the explicit form &)[ ¢]. In the follow-
@ ing, we neglect th@®©(e?) terms.
= EJ ncos—n [—2tank 7—¢) For convenience, we introduce the following notation for
costi(—¢) variations of the action:
—2tanhy] S 5S
Sll= [ dnso wn,
,sintP(29—¢) o op(n|,

~ “Vcosh(n—0)

2 . . . . .
2Jaume Garriga pointed out to us that this series of instantons can

1 .
T 2sinkt é,[(smhg“ tant(7—{) be obtained by a conformal transformation of the Fubini instanton
in flat space[14]. Some implications of these instantons to open
+cosh¢)?—17?, (3.18 inflation models are discussed in a separate pgjer
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S Then dSd¢ in Eq. (4.8 can be expressed by using Eq.
5¢[¢ = 5600, (4.10 as
8’s d_S___‘SZS(O){ 99 5 } (4.19)
Sl 2] ac= " agr [P e |

52

::f d771d’72m ¢

1(m1) Yo m2),

and this vanishes because of E4.5).

Next we consider the shift of the lowest eigenvalue,
due toSV), and show thatl?’S/d¢? has the same signature as

\ does. In the unperturbed case, the lowest eigenvalue is
zero, A\=\9=0, whose eigenfunction is given by
=d¢,/d{. To evaluate the shift of, we consider the eigen-
value problem given by

ZS 2

sl | @ s

and analogous expressions for higher variations.
Let us first write down useful formulas for our discussion

2

+8¢;%,@]=Nale. 4.1
below. Sinceg, is a solution to the unperturbed equation of W[qbg ¢l b¥ 412
motion for any value of, successive differentiations of the icul h
equation of motion with respect @give In particular, we have
(0) 5°S
%[qg(;*]:o, (4.4 547 [+ 5¢;¢,<P]=)\f aple|’d 7. (4.13
250 dg We (g)eno'?% the O(e) correction to ¢ by oM
{¢g, _f} 0, (4.5 o=¢"+¢'*). Using Eq.(4.5), the left hand side of Eq.
Era d¢ (4.13 reduces to
5380 d¢§ do, (0 d2¢§ 5°S 5350
- e 0) ,0)1= . (0) ,(0)
(4.9

52

+ 5—¢2—[¢g 09,007

(4.19

In addition, we haves”[ ¢,]=0 as mentioned at the end of
the previous section. Hence, for arbitrafp of O(e) we

have The first term on the right hand side of the above equation
S0 can be rewritten by using Eq#1.6) and(4.10 as
S b+ 8pl= ——[ ;61 +S V[ ¢, 1=SV[o,]. 5350 5250 do'®
o0 [6;:56.0,00]= - G106, —
(47) ¢3 g: QD 1(10 5¢2 é‘: dé’
Then the derivatives of[ ¢,+ 4] with respect to{ are SV de®
expressed as = 5d n b d_g (4.15
d_S oSt d‘f’( 4.9 Thus, toO(e€), we obtain
¢ 8¢ [T '
21 12 828 0) _(0)
42s 523<1>{ dg; dd)g} 53@{ 24, )\fab|¢| d7I=T¢z[¢;,¢( @]
12 <12 L 1 Y + ; 42 |-
dg? 8¢° 22 ¢ d¢ S |78 deP Pty de©] d2s
. + 5| %0 g | = az 416
8¢ |74 d¢ | d¢*

Now we analyze the behavior of the action under a varia-
tion of £ and its relation to the value of the lowest eigenvaluewhere the last equality follows from E4.9). Therefore the
for the O(4)-symmetric fluctuations. sign of the eigenvalué is the same as that af>S/dZ?.

First we show thad§ ¢+ 6¢]/d{=0 if ¢,+ ¢ isa Taking account of the fact theEE(l)[qu is a continuous
solution to the equation of motion t®(e). Note that a function of {, this tells us that when there appears a negative
bounce solution generally ceases to exist for continuous vaklode: i.e., ifA <0, the action of the bounce solution cannot
ues ofZ, but it exists only at discrete values gfAssuming be the smallest among the actions of all the non-trivial solu-
that ¢§+ d¢ is a solution, we have tions.

To gain a more definite picture of the behavior of the
action, we consider possible models 8t with a certain
variable parameter. Among all the possibilities, we give
schematic plots of three typical cases & ¢+ d¢]

_ 9’89 st

(4 10
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s[s.]

Ts“”[tpg] the other hand, if we choose 2{+az)=—a and

< =>* 4a,=2a, the situation as shown in Fig(l3 is realized.
Within this limited class of perturbations, the situation as
shown in Fig. 3c) is not realized.

Iy

FIG. 3. Three typical cases of the behavior of the Euclidean V. CONCLUSION

action as a function of when a model parameter is varied. We have investigated the negative mode problem associ-

ated with false vacuum decay with gravity. We have shown
Sth_at the existence of a negative mode around a non-trivial
Buclidean solution, called the Coleman—De Luccia bounce
solution, is equivalent to that of a supercritical supercurva-
ture mode in the perturbation spectrum of the quantum fluc-
Ruations in the open universe that appears inside the bubble.
Supercritical supercurvature modes are those for which the
mode functions diverge exponentially for a large spatial ra-
1) , dius in the open universe. Then we have proposed a conjec-
¢ at the lextremur(nl)olS [¢,] does not shift much, but e that there exists no supercritical supercurvature mode. If
th‘f amplitude ofS™[¢,] changes. At the moment when his is true, there will be no negative mode around the
s )[ff’g] is given by the dashed line, an infinite number of coleman—De Luccia bounce solution that dominates the pro-
solutions become degenerate, just like the case of the unpefass of false vacuum decay.
turbed actionS®. Beyond this critical point, there appears  Tq investigate the validity of our conjecture, we have first
again one non-trivial solution, but with negatie#S/d¢’.  provided a potential model that admits a continuous series of
The action is manifestly greater than that of the Hawking-Coleman—De Luccia type bounce solutions under the weak
Moss solution atf=0. In case(c), at the moment when gravitational back reaction approximation. This series con-
SM[¢,] is given by the dashed line, there appears=a0  tains a Hawking-Moss type solution as a limiting case and
mode at the extremum o8Y)[¢,]. Beyond this critical each of these bounce solutions has a zero mode as the lowest
point, there appear three non-trivial extrema. Two of themeijgenvalue. Then for a class of potentials that can be realized
that newly appeared have positive valuesdd8/d¢? while by small modifications of this potential model, we have ana-
the one corresponding to the original solution has negativéyzed the behavior of the Euclidean action around a bounce
d?S/d¢?, and hence has a negative mode. Also in this casesolution. We have shown that its Euclidean action is not the
the latter solution with a negative mode has a larger actiogmallest among non-trivial solutions if there exists a negative
than that for either of the other two solutions. mode.
As an example o8BV, let us consider the one given by  We have considered three typical cases of the behavior of
4 the action when a model parameter is varied. In all of these
~ cases, we have found that, when there appears a bounce so-
S(1>:€j d7apVy, V12H4nzo an¢". (41D yion with a negative mode, it does not give the smallest
action but there exists another bounce solution, either
whereg:=2(p/ b, )— 1. In this caseS™M[ ¢,] can be calcu- Coleman-De Luccia type or Hawking-Moss type, with a

=SV ¢,] in Figs. 38)-3(c). In each plot, the dotted line
represents the case of a parameter for which the bounce
lution has a positivel’S/d/?. As the parameter is varied, the
shape of SY[¢,] smoothly passes through one like the
dashed line and changes to one given by the rigid line. |
case(a), the value off at whichS™)[ ¢,] takes an extremum
value shifts toward zero, and only the Hawking-Moss type
bounce atZ=0 is left in the end. In casé), the value of

lated analytically as lower action that has no negative mode. This evidence
strongly supports the conjecture that there is no negative
<D 4 2(aq1+ as) ) mode for the Coleman—De Luccia bounce solution that
[¢]=€|z(aot @)+ —s 7 (cosh{ sinh {—{) dominates the tunneling process.
4C¥2
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