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No supercritical supercurvature mode conjecture in one-bubble open inflation

Takahiro Tanaka* and Misao Sasaki†

Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
~Received 6 August 1998; published 8 December 1998!

In the path integral approach to false vacuum decay with the effect of gravity, there is an unsolved problem,
called the negative mode problem. We show that the appearance of a supercritical supercurvature mode in the
one-bubble open inflation scenario is equivalent to the existence of a negative mode around the Euclidean
bounce solution. Supercritical supercurvature modes are those whose mode functions diverge exponentially for
a large spatial radius on the time constant hypersurface of the open universe. Then we propose a conjecture that
there should be ‘‘no supercritical supercurvature mode.’’ For a class of models that contains a wide variety of
tunneling potentials, this conjecture is shown to be correct.@S0556-2821~98!07524-9#

PACS number~s!: 98.80.Cq, 98.70.Vc
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I. INTRODUCTION

The Euclidean path integral approach has been use
investigate the true vacuum bubble nucleation through qu
tum tunneling @1,2#. In the lowest WKB approximation
quantum tunneling is described by a bounce solution. T
bounce solution is a solution of the Euclidean equation
motion, which connects the configurations before and a
tunneling. The bounce solution that takes account of
gravitational effect was found by Coleman and De Luc
@3#.

The decay rate per unit volume and per unit time interv
G, is given by the formula@1#

G5uKue2~SE
~bounce!

2SE
~ tr i v ial !

!, ~1.1!

where SE
(bounce) is the classical Euclidean action for th

bounce solution andSE
(tr i v ial ) is that for the trivial solution

that stays at the false vacuum. In the path integral appro
the prefactoruKu is evaluated by the Gaussian integral ov
fluctuations around the background bounce solution. I
standard system which does not take account of grav
there is one perturbation mode in the direction of which
action decreases. It is called a negative mode. For this m
the Gaussian integral is not well defined. To make the in
gral finite, the integration path should be deformed on
complex plane. Consequently, one imaginary factor,i , ap-
pears inK. In the Euclidean path integral approach to tu
neling, this imaginary unit plays a crucial role to interpretG
as the decay rate.

However, in the case when gravity is taken into accou
the situation changes drastically. Since there are gauge
grees of freedom, we have various possibilities in choos
variables to describe the physical degrees of freedom. If
choose inappropriate variables, the equation that determ
the fluctuation mode can become singular. In Ref.@4#, we
have shown that it is impossible to obtain a well-behav
reduced action as long as we stick to variables that appe
the original Lagrangian in the second order formalism.

*Electronic address: tama@vega.ess.sci.osaka-u.ac.jp
†Electronic address: misao@vega.ess.sci.osaka-u.ac.jp
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order to find variables that can lead us to a well-beha
reduced action, it was necessary to resort to the Hamilton
formalism. In the Hamiltonian formalism, conjugate m
menta are introduced, and hence wider varieties of choic
variables are allowed. In Ref.@4#, we derived a well-behaved
reduced action for fluctuations around theO(4)-symmetric
bounce solution. We found that the action for fluctuatio
which conserve theO(4)-symmetry has an unusual sign
ture. Namely the kinetic term is negative definite. To de
with this action, we proposed a prescription analogous to
conformal rotation@5#. Then, from the path integral measur
there arises one imaginary uniti . This suggests there shoul
be no negative mode in the final form of the reduced acti
since the factori in K has been already taken care of by t
above-mentioned prescription. Therefore, we proposed
‘‘no negative mode conjecture’’@4#.

On the other hand, in recent years the process of fa
vacuum decay with the effect of gravity has been stud
extensively in the context of the one-bubble open inflat
scenario. In this scenario, an open universe is created in
a nucleated bubble. In one-bubble open inflation, one of
most important issues is to calculate the spectrum of qu
tum fluctuations after the bubble nucleation because it de
mines the spectrum of cosmological perturbations. By co
paring the predicted spectrum with the observed one, we
test a model of one-bubble open inflation.

Fluctuations in an open universe can be decomposed
using spatial harmonics on the unit 3-dimensional hyperb
space. We denote the eigenvalue of a spatial harmonic
2(p211). The spatial harmonics with positivep2 are
square-integrable functions on a time constant hypersur
in an open universe in the sense that they can be norma
by using the Dirac delta function. As a result the spectrum
continuous forp2.0. On the other hand, the spatial harmo
ics are no longer square-integrable forp2,0. However,
since a time constant hypersurface in an open universe is
a Cauchy surface, this divergence does not directly excl
such modes. By considering the normalization of pertur
tion modes on a Cauchy surface, we find that the spect
for p2,0 becomes discrete. These modes are called su
curvature modes since they give rise to correlations on sc
greater than the spatial curvature scale@6,7#.
©1998 The American Physical Society06-1
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TAKAHIRO TANAKA AND MISAO SASAKI PHYSICAL REVIEW D 59 023506
There are two classes of supercurvature modes, which
call supercritical and subcritical modes. The precise defi
tion will be presented later. Here we mention that superc
cal modes have smaller values~i.e., larger absolute values! of
p2 than subcritical modes, and their mode functions dive
exponentially for large spatial radius in the open univer
We shall show that the existence of a supercritical super
vature mode is equivalent to the existence of a nega
mode. Thus the ‘‘no negative mode conjecture’’ presente
Ref. @4# can be restated as the ‘‘no supercritical supercur
ture mode conjecture.’’ Note that there exists no supercu
ture mode for a model with a sufficiently thin bubble wa
@8#; hence there is no supercritical mode in such a mo
The purpose of this paper is to examine this conjecture fo
wider class of models. In particular, a class of models
consider naturally allows thick bubble wall solutions. R
cently the negative mode problem has been discussed
Lavrelashvili @9# in the context of the singular Hawking
Turok instanton@10#. In this paper, however, we exclude th
possibility of the Hawking-Turok instanton and focus o
regular bounce solutions.

In Sec. II, we show the equivalence between the existe
of a negative mode in the reduced Euclidean action and
of a supercritical supercurvature mode in the spectrum
cosmological perturbations. In Sec. III, we give a method
construct potential models which allow an analytical tre
ment. By using this method, we give a set of models wh
seemingly violate our conjecture. In Sec. IV, for such mod
that have a bounce solution with a negative mode, we sh
that there should be another bounce solution that ha
smaller value of the action and has no negative mode.
conclusions are given in Sec. V.

II. NEGATIVE MODE AND SUPERCRITICAL
SUPERCURVATURE MODE

We consider a system composed of a real scalar fieldF,
coupled with the Einstein gravity. The Euclidean action
given by

SE5E d4xAgF2
1

2k
R1

1

2
gmn]mF]nF1V~F!G .

~2.1!

The potential of the scalar field is assumed to have the f
as shown in Fig. 1, and initially the field is assumed to
trapped in the false vacuum. As mentioned in Introducti
the bounce solution is a Euclidean solution that connects

FIG. 1. A typical shape of a scalar field potential under cons
eration.
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configurations before and after tunneling. In the present c
the geometry before false vacuum decay is given by a
Sitter space. After tunneling, there appears a true vacu
bubble in the false vacuum sea. This bounce solution is
tained by Coleman and De Luccia@3# under the assumption
of the O(4)-symmetry:

ds25a2~h!$dh21dx21sin2xdV~2!
2 %, F5f~h!.

~2.2!

The Euclidean equations of motion are

f912Hf82a2
dV~f!

df
50, ~2.3!

H 2215
k

3 S 1

2
f822a2V~f! D , ~2.4!

H82H 21152
k

2
f82, ~2.5!

where a prime represents differentiation with respect toh
andHªa8/a. Requiring the regularity of the bounce solu
tion, the boundary condition is determined as

f8}e22uhu, a}e2uhu ~h→7`!. ~2.6!

By choosing the initial value off at h→2` appropriately,
we obtain a solution which satisfies the required bound
condition. For definiteness, we choosef to be in the false
vacuum side forh→2`.

As noted before, the number ofi ’s in the prefactorK has
a crucial meaning in the path integral approach. To evalu
this number, we need to derive the reduced action for fl
tuations around the bounce solution. The fluctuations can
expanded in terms of the spherical harmonics on the
3-sphere, sayYnlm with n50,1,2, . . . , which satisfy@ (3)D
1n(n12)#Ynlm50. After appropriate gauge fixing, we ob
tain @4,11#

d~2!S5(
nlm

~n13!~n21!

2

3E dhF2 ipnlm
dqnlm

dh
1

1

2
upnlmu2

1
1

2
@U1~n13!~n21!#uqnlmu2G , ~2.7!

whereqnlm is the coefficient of the harmonic expansion of
gauge-invariant variableq, and pnlm its conjugate. In our
original derivation@4#, we used the variablehªq/a and its
conjugate momentum. The variableq is equal to the Euclid-
ean version ofq introduced in Ref.@11#. Here, the potential
U is given by

U5
k

2
f822W81W2, W5

f9

f8
. ~2.8!

-
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NO SUPERCRITICAL SUPERCURVATURE MODE . . . PHYSICAL REVIEW D 59 023506
Physically, the variableq represents the curvature perturb
tion in the Newton gauge when analytically continued to
open universe inside the bubble. The explicit form of t
perturbation in this gauge is

ds25a2F S 11
kf8q

a Ddh2

1S 12
kf8q

a D ~dx21sin2xdV~2!
2 !G ,

wªF2f5
1

af8

d

dh
~f8q!, ~2.9!

wherew is the perturbation of the scalar field. Recall that t
prefactorK is evaluated as@1#

K5E @dpdq#e2d~2!S. ~2.10!

Looking at Eq.~2.7!, we find that the action disappea
for n51. This just reflects the fact that then51 modes are
pure gauge and there is no physical degree of freedom
them. This is very different from the case of false vacuu
decay in flat spacetime, in which there is a zero mode in
n51 modes. This zero mode describes spacetime transla
modes and its existence implies the existence of a un
negative mode in then50 @i.e., O(4) symmetric# modes
@12#. In the present case of false vacuum decay with grav
the coefficient in front ofupnlmu2 becomes negative forn
50. Therefore, if we try to perform the integration with r
spect top, we find that the Gaussian integral does not co
verge forn50. To resolve this difficulty, we proposed in@4#
a prescription analogous to the conformal rotation.
changing the variables asp→2 ip, q→ iq, the above path
integral becomes well defined. To carry out the path integ
the variables must be discretized. Then the numbers ofp and
q integrals will differ by 1. Therefore, this change of var
ables will produce one imaginary uniti for the prefactorK.
This is in contrast to the case of false vacuum decay in
spacetime in which the imaginary uniti in K arises from the
negative mode. Note that there is no negative mode fon
>2 @9#.

Let us examine then50 case in more detail. If we know
the spectrum of eigenvalues,l j , of the Shro¨dinger-type
equation

S 2
d2

dh2 1U23Dqj5l jqj , ~2.11!

whereqj is the j th eigenfunction, the contribution toK from
n50 modes will be given by;(2 i )Pl j

21/2, where the fac-
tor (2 i ) comes from the rotation of the variables as e
plained above. If there is a mode with a negative eigenva
there arises another imaginary factor, and hence the prefa
K becomes real. If so, this bounce solution will not contr
ute to the tunneling process in the path integral approach
the other hand, there is another approach to describe
tunneling. That is the approach of constructing a WKB wa
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function @13,4#. In this approach, any bounce solution th
connects false and true vacua will contribute to the tunn
ing, putting aside the issue of which bounce dominat
Thus, in order that the consistency be kept between the
integral approach and the wave function approach, th
should be no negative mode for the Coleman–De Luc
bounce solution, provided it gives the smallest Euclidean
tion among the non-trivial bounce solutions. This is the co
jecture proposed in Ref.@4#.1

Now, let us turn to the problem of the perturbation spe
trum in the context of the one-bubble open inflation scena
To study it, we need to quantize the perturbation field on
non-trivial background that appears after tunneling. For t
purpose, the reduced action for the perturbation field mus
calculated. In doing so, the time coordinate must be cho
so that the time constant hypersurface is a Cauchy surfac
convenient choice is to use the coordinate that is obtained
the analytic continuation ofx : xc5 i (x2p/2). Then, the
coordinates (xc ,h,V (2)) span the regionC of Fig. 2. In
regionC, the metric takes the form

ds25a2~h!~dh22dxc
21cosh2xcdV~2!

2 !. ~2.12!

It should be remembered thath is not a time coordinate
there. The reduced action in this region is obtained as

S~2!5(
l ,m

1

2 E dxcE dh Fcosh2xc

]qlm

]xc
Ô

]qlm

]xc

2qlmÔ$ l ~ l 11!1~Ô23!cosh2xc%q
lmG , ~2.13!

1Rigorously speaking, there can be even number of nega
modes, depending on the choice of the canonical variables. H
ever, for the present choice of the variables (p,q), we conjecture
that there is no negative mode.

FIG. 2. Conformal diagram of a de Sitter–like space with
bubble wall. The Cauchy surface exists in regionC but not in the
open universe inside bubble, the region marked asR.
6-3
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TAKAHIRO TANAKA AND MISAO SASAKI PHYSICAL REVIEW D 59 023506
whereÔ is defined by

Ôª2
]2

]h2 1U, ~2.14!

and U is the same as the one given in Eq.~2.8!. In this
expression, theh-dependence appears only through the
erator Ô. Thus the perturbation can be expanded by us
eigenfunctions ofÔ: qlm5(pqp(h) f plm(xc). The equation
that determines eigenvalues and eigenfunctions is

F2
d2

dh2 1UGqp5~p214!qp. ~2.15!

Analyzing the asymptotic behavior off, we find U→4 for
h→7`. Hence the spectrum is continuous forp2.0. On
the other hand, the spectrum forp2,0 is discrete, which is
called a supercurvature mode. Here we call modes withp2

,21 supercritical supercurvature, while we call modes w
0.p2.21 subcritical supercurvature. When analytica
continued to the open universe byxR5xc1 ip/2, the super-
critical modes diverge exponentially forxR→`. By compar-
ing Eqs.~2.11! and~2.15!, the existence of a negative mod
around the bounce solution is manifestly equivalent to tha
a supercritical supercurvature mode in the spectrum of qu
tum fluctuations in the open universe. Thus the conject
that we stated above can be restated as the ‘‘no supercr
supercurvature mode conjecture.’’

III. MODEL CONSTRUCTION

At first sight, there seems no reason to deny the poss
ity of a potential model that allows a bounce solution with
supercritical supercurvature mode. In fact, there is a met
to construct such models, as described in a separate p
@8#. However, as mentioned there, this method does not g
antee that the thus obtained bounce solution gives the sm
est Euclidean action among non-trivial solutions. Hen
given a bounce solution that allows a supercritical superc
vature mode, if one can prove that its action is not the sm
est, our conjecture remains intact.

In this section, we review the method to construct a p
tential model and a bounce solution, and give an exampl
which a supercritical supercurvature mode appears whe
model parameter is varied. We then construct a poten
model that allows a continuous series of bounce soluti
under the weak gravitational back reaction approximati
which will be used for the investigation of the negative mo
problem in the next section.

Our method for model construction is as follows. We fi
give f8. It can be specified rather arbitrarily except for t
conditions that it vanish ase22uhu for h→7` and it be
positive~or negative! definite so thatf is a monotonic func-
tion of h. Then we solve Eq.~2.5! to find H and a. For h
→7`, H is solved as

H21

H11
5C7e2h.
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Thus the required boundary condition,H→61 for h→
7`, is automatically satisfied. Once we knowH, we can
determinea by integratingH. Here an integration constan
appears, which determines the absolute value of the po
tial, say the potential at the false vacuumVF . Finally, using
Eq. ~2.4!, the potentialV is determined as a function ofh as

V„f~h!…5
626H 21kf82

2ka2 . ~3.1!

By assumption, sincef is a monotonic function ofh, by
inversely expressingh in terms off, the shape of the poten
tial is uniquely determined.

Next we turn to the eigenvalue equation~2.11!. If there is
a negative mode, the solution withl50 must have, at least
one node. Hence, it is sufficient to examine the equation
l50, which is written as

F2
d2

dh2 1
k

2
f822W81W223Gq50. ~3.2!

If the second term,kf82/2 is large enough, the potential wi
stay positive and henceq will have no node. Since the
change in the overall amplitude off8 does not alter the
function W, we can construct a model in which the seco
term is negligibly small without changing the other term
Hence, we neglect this positive definite term for the mome

From the boundary condition, we find thatW behaves as

W→62 ~h→7`!.

Except for this boundary condition,W can be arbitrarily cho-
sen. Then, by choosingW to stay close to zero for a suffi
ciently long interval ofh, the potential term,2W81W2

23, will have a wide negative-valued region, and the so
tion for q will have a node. In contrast, if we consider
sufficiently thin wall, theW8 term will dominate the poten-
tial when uWu is small andW8,0. Then, the potential will
stay positive, and henceq has no node@8#.

For instance, let us consider a set of models in whichW is
given by

W522 tanh@~h2z!/D#, ~3.3!

where the model parametersz and D represent the wall lo-
cation and its thickness, respectively. This is realized by
ting

f85
m

$cosh@~h2z!/D#%2D , ~3.4!

wherem is a constant. Then, neglecting thekf82/2 term, Eq.
~3.2! becomes

F2
d2

dh2 1S 2

D
24D 1

cosh2@~h2z!/D#
11Gq50. ~3.5!

For D51, this equation has a regular nodeless solution
6-4
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q5
1

cosh~h2z!
. ~3.6!

Thus the lowest eigenvalue is zero forD51. Since the po-
tential term in Eq.~3.5! is a monotonically decreasing func
tion of D, there will be a negative mode forD.1. Now let us
turn on thekf82/2 term while keepingW the same. As we
increasem, the critical value ofD for the existence of a
negative mode will increase. Forkm2*1, a negative mode
will disappear completely for any value ofD.

In principle, one can explicitly construct the potentialV
for the above model, say by numerically the backgrou
equations. However, it will be much nicer if we have
analytically tractable model. For this purpose, let us cons
the weak back reaction limit, in which the geometry can
approximated by a pure de Sitter space. From Eq.~2.5!, we
see that this will be the case ifkf82!1. In the above model
we have seen that a negative mode will disappear if
kf82/2 term gives a large contribution~of order unity or
greater! to the potential. This will be true for most conceiv
able potential models. Hence we may restrict our attentio
a class of models that automatically satisfy the weak b
reaction condition when investigating the existence o
negative mode.

In the first non-trivial order of the weak back reactio
approximation, we find that the negative mode problem
be analyzed on a fixed de Sitter background geometry. Le
explicitly show this fact.

First we examine the background field equations. Negle
ing relative errors ofO(kf82), Eq. ~2.5! can be readily
solved as

ab5
1

H coshh
, Hb52tanhh, ~3.7!

where H is defined byH2
ª(k/3)Vtop where Vtop is the

value ofV at the top of the potential barrier. It is worthwhil
to note that the weak back reaction approximation does
imply a small potential difference between the false and t
vacua. The vacuum energy inside the bubble can be m
smaller thanVF as long as the bubble radius is sufficien
smaller thanH21. However, the weak back reaction approx
mation does implyVtop2VF!VF . Hence we may replace
Vtop with VF in the definition ofH. Here we have chose
Vtop for later convenience. Then substituting the lowest
der solutions ofa andH in Eq. ~2.3!, the scalar field equa
tion becomes

f912Hbf82ab
2 d

df
~dV!50, ~3.8!

wheredV5V2Vtop . This gives the lowest order solution o
f. Introducing the variableNª log a, and expanding it as
Nb1dN, Eq. ~2.5! gives the equation for the first order co
rection toa:

1

cosh2h

d

dh S cosh2h
d~dN!

dh D52
k

2
f82. ~3.9!
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Sincef82;e24uhu for h→6`, the above equation can b
integrated and we finddN5O(kf82) everywhere. If we
substitute thisdN back into Eq.~2.3!, we can calculate the
correction ofO(kf82) to f.

Next we evaluate the action under the weak back reac
approximation. The Euclidean action for anO(4)-symmetric
configuration is given by

SE5Sg@a#1Sm@a,f#,

Sg@a#ª2p2E dhF2
3

k
a822

3

k
a21a4VtopG , ~3.10!

Sm@a,f#ª2p2E dhFa2

2
f821a4dV~f!G . ~3.11!

Inserting ab1da to the gravitational part of the action
whereda5abdN5O(kf82), we find

Sg@ab1da#5Sg@ab#$11O„~kf82!2
…%, ~3.12!

which follows from the fact thatab is a solution to the equa
tion obtained from the actionSg@a#. Hence, to the first orde
of kf82, we have

SE5Sg@ab#1Sm@ab ,f#, ~3.13!

whereSm@ab ,f# is O(kf82) relative toSg@ab#. Thus the
action evaluated on a fixed de Sitter background is correc
the first non-trivial order. Since the background geometry
fixed, we focus on the matter part of the action and denot
by Sm@f# in the following.

Finally, we considerO(4)-symmetric fluctuations aroun
the bounce solution in the weak back reaction approxim
tion. We rewrite the eigenvalue equation~2.11! by using the
variablew introduced in Eqs.~2.9!. We find

w91S 2H2
kf8f9

k

2
f822l23D w8

1S l22kf822a2]2V1
kf8f9

k

2
f822l23D w50,

~3.14!

where ]2V5d2V(f)/df2. Unless l is close to23, this
equation reduces in the weak back reaction limit to

w912Hbw82ab
2]2~dV!w52lw. ~3.15!

Here we note that the termab
2]2(dV) can be as large asH b

2

even in the weak back reaction limit. The above equation
the same as the equation forO(4)-symmetric scalar field
fluctuations on a fixed de Sitter background, i.e., witho
taking account of the metric perturbation. Thus we see tha
is sufficient to consider the problem on a fixed de Sit
background in the first non-trivial order of the weak ba
reaction approximation.
6-5
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TAKAHIRO TANAKA AND MISAO SASAKI PHYSICAL REVIEW D 59 023506
We note that Eq.~3.15! has a solutionw5f8/ab with a
negative eigenvaluel523. If the gravitational effect were
completely neglected, this would be the negative mode
would give rise to the factori of the path integral. However
as we have noted, the approximate equation~3.15! is no
longer valid forl'23 even in the weak back reaction limi
It should be emphasized that Eq.~3.14! is not a Schro¨dinger-
type equation. Thus the correspondence between the nu
of nodes and the increasing order of eigenvalues does
hold for w. In fact, from the definition ofw in Eq. ~2.9!, we
readily see that a nodeless solution forq corresponds to a
solution with one node forw. Thus if there exists a one-nod
negative mode solution forw, there will be a nodeless nega
tive mode solution forq.

Now let us return to the model withW522 tanh(h2z)
under the weak back reaction approximation. We assumz
.0 since the 3-sphere of the maximum radius should be
the false vacuum side in order for the bounce solution
describe false vacuum decay. As mentioned there,D51 is
the critical case in this model in the weak back reaction lim
This was shown by the fact that there is a regular, node
solution of Eq.~2.11! with l50 for D51, which is given by
Eq. ~3.6!, and that the potentialU is a monotonically de-
creasing function ofD. The solution forw that corresponds to
the nodeless solution~3.6! for q in the critical case is given
by

w}
sinh~h2z!

cosh2~h2z!
. ~3.16!

As mentioned in the previous paragraph, this solution ha
node. But it does not imply the existence of a negative mo

For D51, the background solution forf is given by

f5fzªf* @c1tanh~h2z!1c2#, ~3.17!

wheref* is a constant which determines the typical scale
f and c1 and c2 are integration constants to be determin
later. The potentialdV is reconstructed as

dṼª
dV

H2f
*
2 5

1

H2f
*
2 E dh ]~dV!fz8

5
1

H2f
*
2 E dh

fz8
2

ab
2 ~W12Hb!

5c1
2E dh

cosh2h

cosh4~h2z!
@22 tanh~h2z!

22 tanhh#

52c1
2 sinh2~2h2z!

cosh4~h2z!

52
c1

2

2 sinh2 z
@~sinh z tanh~h2z!

1coshz!221#2, ~3.18!
02350
at

ber
ot
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.
ss

a
e.

f

where we have set the integration constant so thatdV50 at
the top of the potential. Then by choosingc1 andc2 as

c15
1

2
sinh z, c25

coshz11

2
, ~3.19!

we find that all the solutions parametrized byz are solutions
for the same potential given by2

dV52
2H2

f
*
2 f2~f2f* !2. ~3.20!

Note that the eigenfunction for thel50 mode is also given
by taking the derivative of the background solution with r
spect toz: w}dfz /dz}sinh(h2z)/cosh2(h2z). For z50,
the scalar field stays still on top of the potential barrier. T
is a Hawking-Moss type solution@15#. It is easy to see tha
the actionSm@fz50# vanishes. Sincefz is a continuous se-
ries of solutions, the action must be the same for all
values ofz. This impliesSm@fz#50 for anyz. This can be
also checked by direct substitution.

IV. PERTURBATION ANALYSIS

In the previous section, we found a potential model
which a continuous series of bounce solutions exists un
the weak back reaction approximation. In this section,
consider a small but arbitrary deviation from this potent
model and show that, if a bounce solution has a nega
mode, there will be another non-trivial bounce solution w
a smaller Euclidean action in this class of models.

Let us denote the matter part of the action,Sm@f#, corre-
sponding to the critical case of the model discussed in
previous section by

S~0!@f#ªE dhS ab
2

2
f822ab

4 2H2

f
*
2 f2~f2f* !2D .

~4.1!

We consider a set of models whose action is given by

Sm@f#5S~0!@f#1S~1!@f#, ~4.2!

where S(1)@f# is a small perturbation of ordere!1. We
need not specify the explicit form ofS(1)@f#. In the follow-
ing, we neglect theO(e2) terms.

For convenience, we introduce the following notation f
variations of the action:

dS

df
@f;c#ªE dh

dS

df~h!
U

f

c~h!,

2Jaume Garriga pointed out to us that this series of instantons
be obtained by a conformal transformation of the Fubini instan
in flat space@14#. Some implications of these instantons to op
inflation models are discussed in a separate paper@8#.
6-6
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dS

df
@f;* #ª

dS

df~h!
U

f

,

d2S

df2 @f;c1 ,c2#

ªE dh1dh2

d2S

df~h1!df~h2!
U

f

c1~h1!c2~h2!,

d2S

df2 @f;* ,c#ªE dh8
d2S

df~h!df~h8!
U

f

c~h8!, ~4.3!

and analogous expressions for higher variations.
Let us first write down useful formulas for our discussi

below. Sincefz is a solution to the unperturbed equation
motion for any value ofz, successive differentiations of th
equation of motion with respect toz give

dS~0!

df
@fz ;* #50, ~4.4!

d2S~0!

df2 Ffz ;* ,
dfz

dz G50, ~4.5!

d3S~0!

df3 Ffz ;* ,
dfz

dz
,
dfz

dz G1
d2S~0!

df2 Ffz ;* ,
d2fz

dz2 G50.

~4.6!

In addition, we haveS(0)@fz#50 as mentioned at the end o
the previous section. Hence, for arbitrarydf of O(e) we
have

S@fz1df#5
dS~0!

df
@fz ;df#1S~1!@fz#5S~1!@fz#.

~4.7!

Then the derivatives ofS@fz1df# with respect toz are
expressed as

dS

dz
5

dS~1!

df Ffz ;
dfz

dz G , ~4.8!

d2S

dz2 5
d2S~1!

df2 Ffz ;
dfz

dz
,

dfz

dz G1
dS~1!

df Ffz ;
d2fz

dz2 G .
~4.9!

Now we analyze the behavior of the action under a va
tion of z and its relation to the value of the lowest eigenva
for the O(4)-symmetric fluctuations.

First we show thatdS@fz1df#/dz50 if fz1df is a
solution to the equation of motion toO(e). Note that a
bounce solution generally ceases to exist for continuous
ues ofz, but it exists only at discrete values ofz. Assuming
that fz1df is a solution, we have

05
dS

df
@fz1df;* #5

d2S~0!

df2 @fz ;* ,df#1
dS~1!

df
@fz ;* #.

~4.10!
02350
-

l-

Then dS/dz in Eq. ~4.8! can be expressed by using E
~4.10! as

dS

dz
52

d2S~0!

df2 Ffz ;
dfz

dz
,df G , ~4.11!

and this vanishes because of Eq.~4.5!.
Next we consider the shift of the lowest eigenvalue,l,

due toS(1), and show thatd2S/dz2 has the same signature a
l does. In the unperturbed case, the lowest eigenvalu
zero, l5l (0)50, whose eigenfunction is given byw (0)

5dfz /dz. To evaluate the shift ofl, we consider the eigen
value problem given by

d2S

df2 @fz1df;* ,w#5lab
2w. ~4.12!

In particular, we have

d2S

df2 @fz1df;w,w#5lE ab
2uwu2dh. ~4.13!

We denote the O(e) correction to w by w (1):
w5w (0)1w (1). Using Eq. ~4.5!, the left hand side of Eq
~4.13! reduces to

d2S

df2 @fz1df,w~0!,w~0!#5
d3S~0!

df3 @fz ;df,w~0!,w~0!#

1
d2S~1!

df2 @fz ,w~0!,w~0!#. ~4.14!

The first term on the right hand side of the above equat
can be rewritten by using Eqs.~4.6! and ~4.10! as

d3S~0!

df3 @fz ;df,w~0!,w~0!#52
d2S~0!

df2 Ffz ;df,
dw~0!

dz G
5

dS~1!

df Ffz ;
dw~0!

dz G . ~4.15!

Thus, toO(e), we obtain

lE ab
2uwu2dh5

d2S~1!

df2 @fz ,w~0!,w~0!#

1
dS~1!

df Ffz ;
dw~0!

dz G5
d2S

dz2 , ~4.16!

where the last equality follows from Eq.~4.9!. Therefore the
sign of the eigenvaluel is the same as that ofd2S/dz2.
Taking account of the fact thatS(1)@fz# is a continuous
function ofz, this tells us that when there appears a nega
mode: i.e., ifl,0, the action of the bounce solution cann
be the smallest among the actions of all the non-trivial so
tions.

To gain a more definite picture of the behavior of t
action, we consider possible models forS(1) with a certain
variable parameter. Among all the possibilities, we gi
schematic plots of three typical cases ofS@fz1df#
6-7
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5S(1)@fz# in Figs. 3~a!–3~c!. In each plot, the dotted line
represents the case of a parameter for which the bounce
lution has a positived2S/dz2. As the parameter is varied, th
shape ofS(1)@fz# smoothly passes through one like th
dashed line and changes to one given by the rigid line.
case~a!, the value ofz at whichS(1)@fz# takes an extremum
value shifts toward zero, and only the Hawking-Moss ty
bounce atz50 is left in the end. In case~b!, the value of
z at the extremum ofS(1)@fz# does not shift much, but
the amplitude ofS(1)@fz# changes. At the moment whe
S(1)@fz# is given by the dashed line, an infinite number
solutions become degenerate, just like the case of the un
turbed actionS(0). Beyond this critical point, there appea
again one non-trivial solution, but with negatived2S/dz2.
The action is manifestly greater than that of the Hawkin
Moss solution atz50. In case~c!, at the moment when
S(1)@fz# is given by the dashed line, there appears al50
mode at the extremum ofS(1)@fz#. Beyond this critical
point, there appear three non-trivial extrema. Two of the
that newly appeared have positive values ofd2S/dz2 while
the one corresponding to the original solution has nega
d2S/dz2, and hence has a negative mode. Also in this ca
the latter solution with a negative mode has a larger act
than that for either of the other two solutions.

As an example ofS(1), let us consider the one given by

S~1!5eE dhab
4V1 , V15H4(

n50

4

anf̃n, ~4.17!

wheref̃ª2(f/f* )21. In this case,S(1)@fz# can be calcu-
lated analytically as

S~1!@fz#5eF4

3
~a01a4!1

2~a11a3!

sinh3 z
~coshz sinh z2z!

1
4a2

sinh z
~z coth z21!G . ~4.18!

If we choose a one-parameter family of models, say, l
2(a11a3)5221a and 4a253, wherea is the variable
parameter, the situation as shown in Fig. 3~a! is realized. On

FIG. 3. Three typical cases of the behavior of the Euclide
action as a function ofz when a model parameter is varied.
l,
es

02350
so-

n

e

f
er-

-

e
e,
n

e

the other hand, if we choose 2(a11a3)52a and
4a252a, the situation as shown in Fig. 3~b! is realized.
Within this limited class of perturbations, the situation
shown in Fig. 3~c! is not realized.

V. CONCLUSION

We have investigated the negative mode problem ass
ated with false vacuum decay with gravity. We have sho
that the existence of a negative mode around a non-tri
Euclidean solution, called the Coleman–De Luccia boun
solution, is equivalent to that of a supercritical supercur
ture mode in the perturbation spectrum of the quantum fl
tuations in the open universe that appears inside the bub
Supercritical supercurvature modes are those for which
mode functions diverge exponentially for a large spatial
dius in the open universe. Then we have proposed a con
ture that there exists no supercritical supercurvature mod
this is true, there will be no negative mode around t
Coleman–De Luccia bounce solution that dominates the p
cess of false vacuum decay.

To investigate the validity of our conjecture, we have fi
provided a potential model that admits a continuous serie
Coleman–De Luccia type bounce solutions under the w
gravitational back reaction approximation. This series c
tains a Hawking-Moss type solution as a limiting case a
each of these bounce solutions has a zero mode as the lo
eigenvalue. Then for a class of potentials that can be real
by small modifications of this potential model, we have an
lyzed the behavior of the Euclidean action around a bou
solution. We have shown that its Euclidean action is not
smallest among non-trivial solutions if there exists a nega
mode.

We have considered three typical cases of the behavio
the action when a model parameter is varied. In all of th
cases, we have found that, when there appears a bounc
lution with a negative mode, it does not give the small
action but there exists another bounce solution, eit
Coleman–De Luccia type or Hawking-Moss type, with
lower action that has no negative mode. This eviden
strongly supports the conjecture that there is no nega
mode for the Coleman–De Luccia bounce solution t
dominates the tunneling process.
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