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Inflation, singular instantons, and eleven dimensional cosmology

S. W. Hawking* and Harvey S. Reall†

DAMTP, Silver Street, Cambridge, CB3 9EW, United Kingdom
~Received 5 August 1998; published 7 December 1998!

We investigate cosmological solutions of eleven dimensional supergravity compactified on a squashed seven
manifold. The effective action for the four dimensional theory contains scalar fields describing the size and
squashing of the compactifying space. The potential for these fields consists of a sum of exponential terms. At
early times only one such term is expected to dominate. The condition for an exponential potential to admit
inflationary solutions is derived and it is shown that inflation is not possible in our model. The criterion for an
exponential potential to admit a Hawking-Turok instanton is also derived. It is shown that the instanton
remains singular in eleven dimensions.@S0556-2821~98!01024-8#

PACS number~s!: 98.80.Hw, 04.50.1h, 04.65.1e, 98.80.Cq
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I. INTRODUCTION

Until recently it was thought that slow-roll inflation a
ways gives rise to a flat universe. This assumption w
proved incorrect in@1,2# ~building on the earlier work of@3#
and @4# on bubble nucleation and ‘‘old’’ inflation! where it
was demonstrated that an open universe can arise after q
tum tunneling of a scalar field initially trapped in a fals
vacuum. ~One can also obtain open inflation in two fie
models@5,6#.! However, such models of open inflation a
pear rather contrived owing to the special form that the sc
potential must be assumed to take. They also do not add
the problem of the initial conditions for the universe, i.e.,
explanation is given of how the scalar field became trap
in the false vacuum. These two objections were confron
in @7# within the framework of the ‘‘no boundary proposal
@8#. It was described there how an open universe could
created without assuming any special form for the poten
The approach was to construct an instanton~i.e., a solution to
the Euclidean field equations! and analytically continue to
Lorentzian signature. The novel feature of the instanton
that it is singular although the singularity is sufficiently mi
for the instanton to possess a finite action. Several object
have been raised against the use of such instantons, the
serious of which is Vilenkin’s argument@9# that if such in-
stantons are allowed then flat space should be unstable t
nucleation of singular bubbles. Another objection is that
singularity can be viewed as a boundary of the instan
~there is a finite contribution to the action from the bounda
@9#! which is unacceptable according to the no boundary p
posal.

There have been three different approaches to dea
with the problems raised by a singular instanton. The firs
to regularize the singularity with matter in the form of
membrane@10,11#. An alternative approach@12# is to ana-
lytically continue the instanton across a deformed surf
that does not include the singularity. The problem with this
that the surface does not have vanishing second fundam
form which means that one obtains a region of spacet
which does not have purely Lorentzian signature. It w
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pointed out that this region is not in the open universe and
it may not have observable consequences. The third
proach, due to Garriga@13#, is to construct a four dimen
sional singular instanton from a higher dimensional no
singular one. This approach is particularly appealing beca
M-theory is eleven dimensional. Garriga gives a non-singu
five dimensional instanton that reduces to Vilenkin’s in fo
dimensions but with a cutoff to the scale of bubble nuc
ation that makes the decay rate of flat space unobserv
small. He also gives a five dimensional solution with cosm
logical constant that reduces to a four dimensional instan
of Hawking-Turok type.~Garriga’s five dimensional instan
tons are just Euclidean Schwarzschild and the five sph
respectively.! One purpose of this paper is to examin
whether it is possible to obtain Hawking-Turok instantons
four dimensions from non-singular instantons of eleven
mensional supergravity, the low energy limit ofM-theory.

Our second aim is to investigate whether solutions
eleven dimensional supergravity corresponding to four
mensional inflating universes exist. Since inflation is no
widely accepted as the standard explanation of several
mological problems~see e.g.@14#!, one would expect the
existence of inflationary solutions ofM-theory if it is indeed
the correct theory of everything. However, compactificatio
of D511 supergravity usually give anegativecosmological
constant~see@15#! which is precisely the opposite of wha
we need for inflation. The reason for this is that if the co
pactifying space has positive curvature then the field eq
tions imply that our space has negative curvature. This s
gests that a way around the problem may be to look
solutions with the seven dimensional compactifying spa
M7 negatively curved at early times but positively curved
late times. We do this by takingM7 to be a coset space an
squashing it~the meaning of squashing is explained below!,
treating the squashing parameters as dynamical scalar fi

Upon reduction to four dimensions we obtain a mod
with scalar fields evolving according to a potential consist
of a sum of exponential terms. At early times only one te
in the sum is expected to be significant. Cosmological so
tions involving scalar fields with exponential potentials ha
been investigated by several workers. Lucchin and Matarr
@16# showed that power-law inflation can result from su
potentials. This was further investigated by Barrow@17# who
gave an exact scaling solution to the equations of mot
©1998 The American Physical Society02-1
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which was subsequently generalised by Liddle@18#. Halli-
well @19# has conducted a phase-plane analysis of the e
tions of motion resulting from an exponential potential. W
terich has derived scaling solutions for cosmologies with
scalar field coupled to other matter@20#. For the single scala
case we have found a first integral of the equations of mo
and give an exact expression for the number of inflation
e-foldings. It is found that a significant inflationary perio
only results from solutions that approach the scaling so
tions at late times. The results are generalized to the m
scalar case. We have analyzed the behavior of scalars
an exponential potential near the singularity of the instan
and give a criterion for the singularity to be integrable.~This
was discussed in@21# but the analysis was incomplete.!

Applying the results on exponential potentials to o
model from eleven dimensions yields the disappointing
sult that the potential is too steep for inflation to occur. W
find that unlike in Garriga’s models the instanton is singu
in eleven dimensions. The reason for this is that Garrig
potential comes from a five dimensional cosmological c
stant whereas ours comes from the Ricci scalar of the c
pactifying space and has too steep a dependence on the s
field that measures the size of the internal space~i.e. its
‘‘breathing’’ mode!. It is this same dependence that rules o
inflationary behavior which leads us to speculate that if o
could fix the size of the internal space then a solution w
more appealing properties might be found.

As this paper was nearing completion we received a pa
by Bremeret al. @22# which has some overlap with our work
They also consider cosmological solutions with dynami
squashing in various dimensions. TheirS7 example is not the
same as ours: they obtain squashed metrics onS7 by viewing
it as aU(1) bundle overCP3 and squashing corresponds
varying the length of theU(1) fibers whereas we treatS7 as
a S3 bundle overS4 and squashing corresponds to varyi
the size of theS3 fibers. Our methods are applicable to a
squashed coset space~although we always use the Freun
Rubin ansatz@23#!. Integrability of the instanton singularity
is not discussed in@22# ~indeed the examples discussed the
all appear to be non-integrable! and neither is the condition
for inflation. ~In the conclusions section of@22# it is stated
that the instanton solutions can be continued to give o
inflationary universes. This is not the case: the potentials
too steep to yield a significant inflationary period.!

Note added in proof. Cosmological equations resultin
from compactifying anS7 with dynamical squashing and
non-zero four form onS7 were derived in@28# but solutions
of these equations were not discussed.

II. ELEVEN DIMENSIONAL SUPERGRAVITY

The action for the bosonic sector ofD511 supergravity is
@15#

Ŝ5E d11xA2ĝS 1

2k̂2
R̂2

1

48
F̂MNPQF̂MNPQ

1
A2k̂

~12!4

1

A2ĝ
eM1¯M11F̂M1¯M4

F̂M5¯M8
ÂM9¯M11D

1Sboundary. ~2.1!
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Carets will be used to distinguish eleven dimensional qu
tities from four dimensional ones. Uppercase Roman let
will be used for eleven dimensional indices and lowerca
Greek letters for four dimensional ones.k̂258pĜ is the
eleven dimensional Planck scale. We will use a positive s
nature metric and a curvature convention such that a sp
has positive Ricci scalar.eM1¯M11 is the alternating tenso
density. The four formF̂MNPQ is related to its three form
potentialÂMNP by

F̂MNPQ54] [ MÂNPQ] ~2.2!

where square brackets denote antisymmetrization.
Sboundaryis a sum of boundary terms which are essentia

quantum cosmology:

Sboundary5B11B2 , ~2.3!

whereB1 is the Gibbons-Hawking boundary term@24# and
B2 is needed because we want to consider the Har
Hawking wave function@8# as a function of the four-form on
the boundary, hence it is the variation of the four form th
should vanish on the boundary, not that of the three fo
See@12# for a discussion of this point. We shall only con
sider solutions with a vanishing Chern-Simons term,
which

B25
1

6 E d11x]M~A2ĝF̂MNPQÂNPQ!. ~2.4!

The equations of motion following from the action~2.1! are

R̂MN5
k̂2

6 S F̂M PQRF̂N
PQR2

1

12
F̂PQRSF̂

PQRSĝMND ,

~2.5!

]M~A2ĝF̂MNPQ!52
k̂

576A2
eNPQM1¯M8F̂M1¯M4

F̂M5¯M8
.

~2.6!

If F∧F∧n vanishes on the boundary~wheren is the 1-form
normal to the boundary!, then the action is gauge invarian
and the second boundary term is

B25
1

24 E d11xA2ĝF̂MNPQF̂MNPQ . ~2.7!

III. SQUASHED MANIFOLDS

Given a Lie groupG, the manifolds admitting a transitive
action ofG can be viewed as coset spacesG/H whereH is
the isotropy subgroup. We are interested in the most gen
G-invariant metric on such a manifold~i.e. the most genera
metric for which the left action ofG yields a group of isom-
etries!. If G/H is isotropy irreducible~see@15#!, then there is
a unique~up to scale! such metric which is actually an Ein
stein metric. For example, ifG5SO(8) and H5SO(7),
then the uniqueG-invariant metric onG/H is the round met-
ric on S7. If the coset space is not isotropy irreducible, th
2-2
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INFLATION, SINGULAR INSTANTONS, AND ELEVEN . . . PHYSICAL REVIEW D 59 023502
the generalG-invariant metric contains arbitrary paramete
This is what is meant by squashing. An example isG
5SO(5) andH the SO(3) subgroup such thatG/H hasS7

topology. The most generalG-invariant metric contains
seven arbitrary parameters and there aretwo G-invariant Ein-
stein metrics.

It is discussed in@25# how one can squash a coset spa
by rescaling the vielbein i.e.ea→laea ~no summation!. A
criterion is given for deciding if a particular rescaling w
preserve the isometry group of the metric. This is the m
general kind of deformation that preserves theG-invariant
metric onG/H ~see@26# for a review!.

IV. DIMENSIONAL REDUCTION WITH DYNAMICAL
SQUASHING

Our metric ansatz is

dŝ25e2B~x!gmn~x!dxmdxn1gmn~x,y!dymdyn, ~4.1!

wherexm and ym are coordinates on the four and seven
mensional manifolds with metricsgmn andgmn respectively.
We shall choose the fieldB(x) so that the reduced action
in the Einstein frame. The siebenbein on the internal ma
fold is assumed to be

em
a ~x,y!5eAa~x!ēm

a ~y! ~no summation!, ~4.2!

where ḡmn(y)5(aēm
a (y)ēn

a(y) is the unsquashed metric
The squashing is described by the seven scalar fieldsAa(x).
Note that for squashing in the sense described above~i.e.
preserving the isometry group! these scalar fields will not be
independent.

In the following discussion we shall not specify a partic
lar squashed coset forM7 . The choice is not arbitrary: the
eleven dimensional field equations have to be satisfied.
shall assume that a suitable coset has been found bu
conclusions will be independent of the details of the inter
space. As an example we shall considerS7 as a
SO(5)/SO(3) coset with a two parameter family of metric
~i.e. only two of theAa are independent!, one parameter
being the size and the other the squashing. This choice
satisfy theD511 field equations.

B(x) is calculated by observing

A2ĝR̂5A2gAḡ7e(Aa~x!e2B~x!~R1••• !, ~4.3!

so after integrating overym the reduced action will be in the
Einstein frame provided that

B~x!52
1

2 (
a

Aa~x!. ~4.4!

In the Einstein frame the components of the eleven dim
sional Ricci tensor are~see Appendix A!
02350
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R̂mn5Rmn1
1

2
¹2S (

a
AaDgmn2

3

2 (
a

A,m
a A,n

a

2
1

2 (
aÞb

A,m
a A,n

b , ~4.5!

R̂ab5Rab@M7#2e(Aa diag~¹2Aa!. ~4.6!

The four dimensional part has been written with curved
dices and the seven dimensional part with tangent space
dices for notational clarity.

We shall use the Freund-Rubin ansatz@23# for the four
form i.e.

F̂mnrs~x,y!5Fmnrs~x! other components vanish.
~4.7!

~Some other ansa¨tze for the four form were considered i
@22#.!

One can substitute these ansa¨tze into the field equations to
obtain equations of motion for the effective four dimension
theory. Alternatively one can obtain the same equations
varying the reduced action obtained by substituting into E
~2.1!:

S5E d4xA2gF 1

2k2 R2
1

4k2 (
a,b

~]Aa!Mab~]Ab!

1
1

2k2 expS 2( AaDR@M7#

2
1

48
expS 3( AaDFmnrsFmnrsG1B, ~4.8!

whereB is a boundary term and indices are raised withgmn.
The integration over ym gives a volume factorV7

5*d7yAḡ7 which is absorbed into the definition of the fou
dimensional Planck scale:k̂25k2V7 . A factor of AV7 has
also been absorbed intoFmnrs . The matrixMab has 3’s on
its diagonal and 1’s everywhere else.R@M7# is the ~seven
dimensional! Ricci scalar of the internal space comput
treatingAa(x) as constant parameters.

Note that there is no guarantee that solutions of the f
dimensional equations of motion obtained from this act
are solutions of the eleven dimensional field equations. T
is because we have not considered the field equation as
ated with the seven internal dimensions. However, if o
chooses a coset such that this field equation can be satis
then the resulting equations of motion will be the same
those obtained from the reduced action. In ourS7 example
the Ricci tensor of the internal space~see Appendix B! splits
into two independent diagonal parts. This will give two i
dependent field equations. In order to satisfy them~at least
for non-constant scalar fields!, we must include at least two
degrees of freedom in the metric onS7. So in addition to
squashingS7 we allow its size to vary. This is achieved b
multiplying its metric by an overall conformal factore2C(x).
Then the scalarsAa are given by
2-3
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A15A25A35A45C, A55A65A75A1C, ~4.9!

whereeA is the squashing parameter defined in Appendix
The two field equations coming from the internal space g
the equations of motion forA andC. The same equations o
motion can be obtained from the four dimensional redu
action.

Returning to the general case, the kinetic term can
diagonalized by defining

fk5
1

kAk~k11!
S (

j 51

k

Aj2kAk11D , k51, . . . ,6,

~4.10!

c5
3

kA14
(
j 51

7

Aj . ~4.11!

If the scalar fieldsAa are not linearly independent, then th
fields fk will not be independent and the kinetic terms w
still not be correctly normalized. This occurs in our squash
S7 example:

f15f25f350,

A4.5f45A5.6f55A6.7f652
4A

k
,

c5
3

kA14
~3A17C!. ~4.12!

Since f4 , f5 and f6 are not independent, we defin
f5A(12/7)(A/k) so that

1

2
~]f4!21

1

2
~]f5!21

1

2
~]f6!25

1

2
~]f!2; ~4.13!

so now the scalar fieldsA andC have been replaced byf and
c with diagonal kinetic terms.

Note that a scaling of the internal manifoldAa(x)
→Aa(x)1C(x) only affectsc, which measures its size. I
general one must allow the size to vary in order to satisfy
D511 field equations~i.e. one could not imposec5const
except in special cases corresponding to static solutio!;
hencec and fk will be independent. Thus the kinetic term
for c is correctly normalized andc will not need rescaling. It
is this that will allow us to draw general conclusions later
about the possibility of inflation or higher dimensional no
singular instantons in our model.

The inverse transformation relatingAj to fk andc is

Aj5kS 2Aj 21

j
f j 211(

k5 j

6
1

Ak~k11!
fk1

A14

21
c D .

~4.14!

Substituting into the reduced action gives
02350
.
e

d

e

d

e

S5E d4xA2gS 1

2k2 R2 (
k51

6 1

2
~]fk!

22
1

2
~]c!2

2W~fk ,c!2
1

48
ekA14cFmnrsFmnrsD 1B ~4.15!

where the scalar potential is

W~fk ,c!52
1

2k2 e~2A14/3!kcR@M7#. ~4.16!

The equations of motion following from this action are

Rmn52k2F(
k

1

2
]mfk]nfk1

1

2
]mc]nc1

1

2
Wgmn

1
1

12
ekA14cS FmrstFn

rst2
3

8
FlrstF

lrstgmnD G ,
~4.17!

¹2fk5
]W

]fk
, ~4.18!

¹2c5
]W

]c
1

kA14

48
ekA14cFmnrsFmnrs, ~4.19!

]m~A2gekA14cFmnrs!50. ~4.20!

Note that the final equation is obtained by varyingAmnr .
This equation has the unique solution

Fmnrs5A2gemnrse2kA14cF, ~4.21!

for some constantF. If we substitute this solution into Eq
~4.19!, then we get

¹2c5
]V

]c
, ~4.22!

where

V~fk ,c!5W~fk ,c!1
1

2
F2e2kA14c ~4.23!

is the effective potential that determines the evolution of
field c. Note that we can replaceW by V in the field equation
for fk and substitute the solution forFmnrs into Eq.~4.17! to
yield

Rmn52k2S (
k

1

2
~]mfk!~]nfk!

1
1

2
~]mc!~]nc!1

1

2
VgmnD ; ~4.24!

so nowV occurs in all of the equations of motion and on
can forget aboutW.

For our squashedS7 example, the potential is
2-4
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V~f,c!52
1

2k2 e23A14kc/7S 3

2
e24A21kf/21112eA21kf/7

23e10A21kf/21D1
1

2
F2e2A14kc. ~4.25!

Plotted as a function off this tends to6` as f→6`.
There is a local minimum atf50 corresponding to the
round metric on theS7. There is also a local maximum at
negative value off corresponding to the squashed Einste
metric onS7. The qualitative behavior asc varies depends
on the value off. There is a positive constantf0 such that at
f5f0 the F-independent part of the potential vanishes. F
f.f0 , V is a monotonically decreasing function ofc tend-
ing to 1` as c→2` and to 0 asc→1`. For f,f0
~which includes the two Einstein metrics!, the asymptotic
behavior is similar but there is a local minimum at som
value of c corresponding to a negative value ofV. Hence
there exist static solutions ofD511 supergravity withc sit-
ting at this minimum andf corresponding to either the roun
or the squashed Einstein metric. These have been extens
discussed from the point of view of Kaluza-Klein theo
@15#. We are interested in solutions with a positive poten
at early times in the hope that these may exhibit inflation
behavior. Such solutions start withf large and positive, cor-
responding to a negatively curved metric onS7. One would
expect solutions to exist in whichf rolls down to the local
minimum so that the solution settles into the Freund-Ru
solution @23# AdS43S7 ~with a round metric! at late times.
Note that this solution appears unstable becausef can tunnel
past the local maximum and roll off to2`. However,
Breitenlohner and Freedman@27# have shown how boundar
conditions at infinity can stabilize AdS space, at least aga
small perturbations; so one would expect a similar argum
to be valid here.

A second example that we have considered involves
ing the compactifying space to beS13S33S3. HereS3 is a
group manifold, and so one can squash all three direct
independently@15#. Thus thisM7 can be squashed with a
sevenAa independent. TheD511 field equations can b
satisfied with thisM7 . The Ricci scalar ofS3 with squashing
described byA5 , A6 andA7 is

R5e22A51e22A61e22A7

2
1

2
~e2~A52A62A7!1e2~A62A72A5!1e2~A72A52A6!!.

~4.26!

Thus in order to get a negatively curvedS3 the second group
of terms must dominate the first: Note that there is no st
Freund-Rubin solution in this case becauseS13S33S3 can-
not be given an Einstein metric. Thus the potentialV does
not have any extrema.

V. CONDITION FOR INFLATION

We shall now seek a solution of the field equations
rived above that describes a four dimensional universe. S
02350
r

ely

l
y

n

st
nt

k-

ns

ic

-
a-

tial homogeneity and isotropy imply that the metric mu
take the form

ds252dt21a~ t !2ds3
2 ~5.1!

whereds3
2 is the line element of a three-space of const

curvature. Substituting this into Eq.~4.17! yields the equa-
tions

S ȧ

aD 2

5
k2

3 S (
k

1

2
ḟk

21
1

2
ċ21VD 2

k

a2
, ~5.2!

ä52
k2

3
aS (

k
ḟk

21ċ22VD . ~5.3!

k is the sign of the curvature of the spatial sections.
Inflation is defined byä.0; so Eq.~5.3! implies that for

inflation we need

V.(
k

ḟk
21ċ2. ~5.4!

Since the potentials we have obtained consist of a sum
exponential terms with no extrema ofc at positive values of
the potential, one would expect that if inflation occurs then
would do so at a large value of the potential where typica
only one exponential is significant. For simplicity we sha
consider a single scalar model

V~f!5V0eakf. ~5.5!

The equation of motion for the scalar field is

2f̈23Hḟ5
dV

df
~5.6!

where the Hubble parameter isH(t)5ȧ/a. We shall assume
that a.0, which can always be achieved by reversing t
signs ofa andf.

For inflation we needV to be larger than the scalar kinet
term and curvature term~if kÞ0); so one would expect the
Hubble parameter to behave likeeaf/2. ~We have set
k51.) After substituting this into the equation of motion fo
the scalar field it is natural to seek a solution of the fo
ḟ}eaf/2. With this in mind, define a new variable by

F52ḟe2af/2. ~5.7!

If one replacesf̈ by (d/df)@(1/2)ḟ2#, eliminatesḟ in fa-
vor of F and neglects the curvature term~this is the only
approximation that we shall make!, then one obtains

1

2

d

df
F21

a

2
F22A3S 1

2
F21V0DF1aV050.

~5.8!

Now definex by F5A2V0 sinhx to give
2-5
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dx

df
5

1

2
~A62a coth x!. ~5.9!

It is obvious that there is a solution withx5const whena
,A6. This is the solution obtained previously by Barro
@17# and Liddle@18#. However, we can investigate the ge
eral solution by using the change of variabley5e2x to give

ea~f2f
*

!/25F~y![ya/2~A61a!Uy2
A61a

A62a
Ua2/~62a2!

.

~5.10!

f* is a constant of integration. If we are interested in r
solutions obtained by analytical continuation from a Eucl
ean instanton, then we must impose the initial conditions

f5f0 , ḟ50⇒y51. ~5.11!

In the model of open inflation described in@7#, one analyti-
cally continues the instanton to an open universe at a p
where the scale factor vanishes. This means that initially
not a good approximation to neglect the curvature term in
Einstein constraint equation as we have done here. Howe
if there is a significant inflationary period, then the curvatu
term will rapidly become negligible. So, strictly speakin
our analysis is only applicable after this term has beco
negligible, by which time the above boundary conditions w
not hold ~since thenḟ,0 and soy.1). However, as we
shall show, the condition for a significant period of inflatio
is not sensitive to the initial value ofḟ, and so we shall take
the above value for simplicity. Of course our results are
act for flat (k50) universes.

With these boundary conditions, Eq.~5.10! becomes

ea~f2f0!/25
F~y!

F~1!
. ~5.12!

The condition for inflation is ḟ2,V or, equivalently,
sinh2 x,1/2. This is satisfied if, and only if,

22),y,21). ~5.13!

Since we are starting withḟ50, we will always getsome
inflation. How much we get depends onF(y), the qualitative
behavior of which depends on the magnitude ofa. There are
two cases to consider:~i! a2,6 and~ii ! a2.6. In the first
case F(y) has zeros aty50 and y5y0[(A61a)/(A6
2a) and a local maximum aty51. For largey, F(y) tends
to infinity as a power ofy. The solutionx5const corre-
sponds to the second zero ofF(y) ~but this solution is in-
compatible with the boundary conditionḟ50 since it corre-
sponds to an eternally inflating universe!.

If a2,2, then the second zero ofF(y) lies within the
range of values ofy corresponding to inflation. This implie
that the solution will inflate all the way toF(y)50 i.e., to
f52`. For largera inflation will stop beforeF(y)50 is
reached. In case~ii ! the only zero ofF(y) is at y50. Once
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again F(y) has a maximum aty51, beyond which it de-
creases monotonically to zero asy→`.

We have succeeded in finding a first integral for the sca
field equation of motion. This relatesf and ḟ implicitly. It
does not seem possible to integrate this again to find
explicit solution forf(t) but this is not necessary in order t
calculate the number of inflationary efoldingsN, defined by

N5E
0

tmax
H~ t !dt, ~5.14!

where tmax is the ~comoving! time at which inflation stops.
One can now substitute the expression forH(t) in terms of
F andf and then substitute forF andf in terms ofy using
the definition ofy and Eq.~5.10!. To transform the integra
over t into an integral overy one needs to knowdy/dt,
which is obtained by differentiating Eq.~5.10! with respect
to t. Here y runs from 1 ~when ḟ50) to 21) ~end of
inflation!. This gives

N5
2

a)
E

1

21)S y11

y21D S 2F8~y!

F~y! Ddy, ~5.15!

which is infinite if a,& and otherwise evaluates to

N5
A6

3~A61a!
F1

2
log~21) !

1
A6

A62a
logS 11

A62a

)~a2& !
D G . ~5.16!

This is small unlessa is exponentially close to&. We can
conclude that an exponential potential can only give a s
nificant inflationary period ifa<&. Note that the result is
independent off0 in contrast with the result for power law
potentials. As mentioned above, the initial value ofḟ does
not significantly affect the amount of inflation as can be ve
fied by changing the lower limit of integration in Eq.~5.15!.

It is easy to calculate the asymptotic behavior of t
solutions found above.f→2` at late times, and so
F(y)→0. Hencey→y0 in case~i! andy→` in case~ii !. In
the first case one hasF→F05const; so using the definition
of F one obtains the solution forf(t). The kinetic and po-
tential energy densities and the scale factor have the foll
ing asymptotic behavior:

1

2
ḟ25

2

a2~ t2t0!2
, ~5.17!

V5V0eaf5
62a2

a4

2

~ t2t0!2
, ~5.18!

a5a0~ t2t0!2/a2
. ~5.19!
2-6
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It is clear from these expression that it is only consisten
neglect the curvature term in the Einstein constraint equa
at large times ifa2,2; otherwise these results are restrict
to flat (k50) cosmologies.

In case~ii !, y→` implies x→`. Substituting this into
Eq. ~5.9! and solving gives the following:

1

2
ḟ25

1

3~ t2t0!2
, ~5.20!

V5V0eaf5
1

~ t2t0!2a/A6
, ~5.21!

a5a0~ t2t0!1/3. ~5.22!

Note that the potential energy density is negligible compa
with the kinetic energy density ast→` ~indeed this
asymptotic solution may be obtained by simply neglectingV
in the field equations!. The curvature term in not negligibl
in this case, and so these results are only valid fork50.

If we include extra scalar fields but still assume that
potential is dominated by a single exponential te
V0eafebc, then the situation just gets worse because
potential must now dominate two kinetic terms to yield i
flation. One can make progress analytically by defin
Q5bf2ac. Then the equations of motion forf and c
imply that u obeys

Q̈13HQ̇50, ~5.23!

where the Hubble parameter is given by the Einstein c
straint equation with two scalar fields. This equation can
integrated to give

Q̇5A expS 23E t

H~ t8!dt8 D , ~5.24!

whereA is a constant. If the scale factor grows sufficien
fast, then this term will be asymptotically negligible andQ
'const will be a good approximation. Then we can wr
c5(b/a)f1const. Now define

u5
Aa21b2

a
f ~5.25!

and the equations of motion reduce to those for a sin
scalar fieldu moving in an exponential potential with param
eterAa21b2. We can now apply the results derived abo
to give the asymptotic behavior ofu(t) and the scale factor
The asymptotic behavior ofQ̇ can then be found: when
a21b2,6, Q̇}(t2t0)26/(a21b2) and otherwise
Q̇}(t2t0)21. In both cases,ḟ and ċ are proportional to
(t2t0)21, and so only whena21b2,6 is it consistent to
neglectQ̇. In this case one simply applies the single sca
result with parameterAa21b2 to concluded that the solutio
is still inflating at large times only whena21b2,2. By
analogy with the single scalar results one would only exp
a significant inflationary period from such solutions.
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If a21b2.6, then an asymptotic solution~for k50) can
be found in analogy with the single scalar case by neglec
V. The scalar equations of motion can be immediately in
grated and the result plugged into the Einstein constr
equation to give the scale factor. The results are simila
the single scalar case. Our results can obviously be gen
ized when there are more than two scalar fields present.

We can now return to our model obtained from elev
dimensional supergravity. The final~F! term inV is too steep
to drive inflation, and so we turn to the term coming from t
~seven dimensional! Ricci scalar. This depends upon the sp
cific internal manifold that we choose to squash but it
possible to extract thec dependence in the general case.
see this, note that the scalarsAj all have the same depen
dence onc Eq. ~4.14!; hence the metric on the internal spa
depends onc only through the conformal factore2A14c/2l . It
follows that the dependence of the first term inV on c is
given by a factore(23A14)c/7. This multiplies afk dependent
pieceṼ. Since (3A14/7)2.2, the above work shows that
is not possible to get inflationary behavior driven by a sin
exponential term in the potential. If inflationary solutions a
possible, then they must arise from a combination of sev
such terms leading to a less steep region of the potential
example near a local maximum. However, the potential c
not possess a local maximum inc and only possesses a loc
minimum whenṼ,0 and this occurs at a negative value f
V, which is obviously not suitable for inflation.

VI. SINGULAR INSTANTONS

The behavior of the Hawking-Turok instanton@7# corre-
sponding to an exponential potential can be analyzed i
similar manner. The instanton is assumed to possess anO(4)
symmetry; so its metric can be written

ds25ds21b~s!2dV2. ~6.1!

The Euclidean field equations are

S b8

b D 2

5
1

3 S 1

2
f822VD1

1

b2
, ~6.2!

b952
1

3
~f821V!b, ~6.3!

f913
b8

b
f85

dV

df
. ~6.4!

Hawking and Turok consider solutions to these equati
that look like deformed four-spheres, regular at the No
pole and singular at the South pole. As the singularity
approached they assume that the scalar kinetic term do
nates its potential. We shall investigate this assumption
V5V0eaf. If the curvature term 1/b2 is negligible in the
Einstein constraint equation, then near the singularity we
write
2-7
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b8

b
52A1

3 S 1

2
f822VD . ~6.5!

Substituting this into the scalar equation of motion and
fining F5f8e2af/2 gives

d

df S 1

2
F2D1

a

2
F22A3S 1

2
F22V0DF2aV050.

~6.6!

Now let F5A2V0 coshx; so we are assuming that the k
netic term is larger than the potential term~otherwise the
above expressions do not make sense!. For definiteness, take
x>0. This gives the equation

dx

df
5

1

2
~A62a tanhx!, ~6.7!

which can be integrated by definingy5e2x to give

ea~f2f
*

!/25G~y![ya/2~A61a!Uy1
A61a

A62a
Ua2/~62a2!

.

~6.8!

There are two cases to consider:~i! a,A6 and~ii ! a.A6.
~Once again we can restricta>0 through reversing the sign
of a andf.!

Case~i!. G(y) is a monotonically increasing function; s
y becomes large asf becomes large. Asymptotically w
have

e~f2f
*

!/2'ya/2~A62a!

5e@a/~A62a!#x⇒x'
1

2
~A62a!~f2f* !.

~6.9!

This gives

f8eaf/25F'A2V0 cosh
1

2
~A62a!~f2f* !

'AV0

2
e~A62a!~f2f

*
!/2, ~6.10!

which is a differential equation that we can solve forf to
give

e2A6f/2'A3V0

4
e2~A62a!f

*
/2~s f2s!, ~6.11!

where s f is a constant of integration corresponding to t
coordinate of the singularity. The behavior of the poten
and kinetic terms near the singularity is

V}~s f2s!22a/A6, ~6.12!

1

2
f82'

1

3
~s f2s!22; ~6.13!
02350
-
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so near the singularity the kinetic term will dominate. T
behavior of the scale factor is easily obtained from the E
stein constraint equation

b'b0~s f2s!1/3. ~6.14!

b0 is a constant that is determined by matching the solut
near the South pole to the solution at the North pole. N
that it is consistent to neglect the curvature term near
singularity.~These results agree with those obtained in@21#
but it was not pointed out there that they are only valid
a,A6.)

For the singularity to be integrable,*dsb3V must con-
verge@7# ~one must include the boundary termB2 to derive
this result!. It is easy to see that it does in this case.

Case~ii !. For a.A6,

G~y!5ya/2~a1A6!Uy2
a1A6

a2A6
U2a2/~a226!

. ~6.15!

Now G(y) has a singularity aty5y0[(a1A6)/(a2A6)
and tends to zero at largey. Thus near the singularity the
behavior is f→`, y→y0 which implies x→x0 and
F→F0 . This gives a differential equation with solution

eaf/2'
2

aF0
~s f2s!21. ~6.16!

Hence near the singularity the potential and kinetic ter
behave as follows:

V'
2

a2 cosh2 x0

~s f2s!22 ~6.17!

1

2
f82'

2

a2
~s f2s!22; ~6.18!

so now they only differ by a constant factor, which must
taken account of in order to determine the solution forb.
Substituting these asymptotic solutions into the Einstein c
straint equation and eliminatingx0 in favor of a yields

b'b0~s f2s!2/a2
. ~6.19!

~Hence it is consistent to neglect the curvature term.! So
now we have

b3V}~s f2s!6/a222, ~6.20!

but 6/a222,21, and so the singularity is not integrable
this case.

In the two scalar case, arguments similar to those p
sented in the previous section show that the singularity
only integrable fora21b2,6, with obvious generalization
to more than two fields.

In our model the potentialV contains a term coming from
the 4-form. We shall assume that the correct analytic c
tinuation of the 4-form to Euclidean signature is the one t
leavesV unchanged. This means thatF must be unchanged
2-8
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so Fmnrs must be imaginary in the Euclidean theory~be-
causeA2g→ iAg) in agreement with the discussion in@22#.

If the F-term is the dominant term in the potential near t
singularity, then the above work shows that the singularity
not integrable. Hence for a Hawking-Turok instanton to ex
the dominant part of the potential must come from the Ri
scalar of the internal space. If one exponential te
V0exp(23A14c/7) exp((lifi) is dominant, then the condi
tion for an integrable singularity is(l i

2,24/7. This is not
satisfied in the case of the squashedS7 considered above
since (10A21/21)2.24/7. Hence the squashedS7 does not
give an integrable singularity. For theS13S33S3 example
we need at least one of the three spheres to have neg
curvature; so the dominant term must be one of those in
second set of brackets in Eq.~4.26!. Without loss of gener-
ality we may assume it is the first one. If one writes this
terms of the fieldsfk andc, then one finds that the expone
is 2k@A4/5f41A6/5f51A6/7f61(A14/21)c#; so the sum
of squares offk coefficients is 80/7.24/7 and hence the
singularity is not integrable in this case either.

VII. SINGULARITY IN ELEVEN DIMENSIONS

The examples provided by Garriga@13# are encouraging
evidence in favor of being able to obtain Hawking-Tur
instantons in four dimensions by dimensional reduction
higher dimensional non-singular instantons. However, Ga
ga’s cosmological~as opposed to flat! example is specia
because it requires the presence of a cosmological con
in the higher dimensional theory. This always gives rise t
potential in the dimensionally reduced action that gives b
inflation and an integrable singularity on the instanto
Eleven dimensional supergravity does not have a cosmol
cal constant which is why we have been considering squ
ing as an alternative mechanism of generating a positive
tential in the four dimensional effective action
Unfortunately it is easy to see that the instantons of the t
that we have considered remain singular even when vie
from within the higher dimensional framework. If one tak
the trace of the eleven dimensional field equations, then
obtains

R̂5
k̂2

72
F̂PQRSF̂

PQRS, ~7.1!

which, upon substituting the solution forF̂PQRS~and remem-
bering that a factor ofAV7 was absorbed intoF!, becomes

R̂52
k2

3
F2e22A14kc/3. ~7.2!

Sincec→2` at the~four dimensional! singularity indepen-
dently of the sign ofR@M7# ~the exponents inV are nega-
tive, and soc→2` rather than1` as considered above!,
one sees immediately thatR̂→2`; so the Hawking-Turok
singularity is an eleven dimensional curvature singularity
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VIII. DISCUSSION AND CONCLUSIONS

The results of the previous sections are rather dishear
ing: our aim was to find a non-singular instanton in elev
dimensions that gives rise to a Hawking-Turok instanton
four dimensions and an inflationary period after continui
to Lorentzian signature. Instead we have found that
model realizes neither of these objectives. However,
stumbling block appears to be the same in both cases. In
tion was ruled out because the potential depends too ste
on c. The singularity of the eleven dimensional instanton
also due to the dependence onc. Note that the eleven dimen
sional Ricci scalar is independent offk , and so if some
means were found of fixing the size of the compactifyi
space~i.e. keepingc constant!, then the instanton may be
come non-singular in eleven dimensions even w
fk→6` ~and hence singular in four dimensions!. The prob-
lem with keepingc fixed is in satisfying the eleven dimen
sional field equations. One would have to introduce ex
degrees of freedom in the metric of the compactifying spa
which involves going beyond squashing.

It is conceivable that by modifying our ansatz for th
four-form more interesting results might be obtained. T
work in this paper is only applicable to cosmological so
tions using the Freund-Rubin ansatz@23#. Bremeret al. @22#
consider solutions with some more general four-form co
figurations. However, neither of theirS7 examples~round or
squashed! appear to admit inflationary solutions or instanto
with integrable singularities. The Freund-Rubin ansatz is
tractive as an explanation of why there are four non-comp
spacetime dimensions but leads to a large negative cos
logical constant. In@12# it was suggested that this may b
balanced by a contribution from supersymmetry breaki
Such symmetry breaking would also have a dynamical ef
at early times and might generate corrections to the effec
potential that make inflation possible.
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APPENDIX A: DERIVATION OF RICCI TENSOR

The non-zero Christoffel symbols for the metric~4.1! are
given in terms of those for the (D511) metric withB50 by

Ĝnr
m 5Gnr

m 1dn
mB,r1dr

mB,n2B,
mgnr ,

Ĝmn
m 52e22B(

a
Aa,

mem
a en

a ,

Ĝnr
m 5(

a
Aa,rea

men
a , Ĝnp

m 5Gnp
m . ~A1!

Indices are raised withgmn andem
a is the rescaled sieben

bein.
The Ricci tensor is most easily computed using norm

coordinates in the four dimensional spacetime i.e.Gnr
m 50.
2-9
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~Note that we are not free to choose normal coordinates
the whole eleven dimensional manifold because such c
dinates will not preserve the product form we have assum
for the metric.! The result is

R̂mn5Rmn2F¹2B1S 2B,r1(
a

Aa,rDB,
rGgmn

2¹m¹nS 2B1(
a

AaD 12B,mB,n

1(
a

~Aa,mB,n1Aa,nB,m!2(
a

Aa,mAa,n , ~A2!

R̂mn5Rmn@M7#2e22B

3(
a

em
a en

aF¹2Aa1Aa,
rS 2B,r1(

b
Ab,rD G .

~A3!

Rmn@M7# is the Ricci tensor of the squashed internal ma
fold computed treating the scalarsAa as constants. Note tha
substantial simplification occurs when we use the Eins
frame, given by Eq.~4.3!.

APPENDIX B: THE SQUASHED SEVEN SPHERE

As discussed in Sec. III,S7 can be regarded as the cos
SO(5)/SO(3). Themost generalSO(5) invariant metric on
S7 contains seven parameters. Here we restrict ourselves
02350
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two parameter subset. The particular squashing we use
is described in more detail in@15#.

Using letters near the start of the Greek or Roman alp
bet to denote tangent space indices, the metric is give
terms of the siebenbein asgmn5dabem

a en
b where

e05dm, ei5
1

2
sin mv i , eî 5

1

2
eA~x!~n i1cosmv i !.

~B1!

The indicesi and î run from 1 to 3. Herem is a coordinate
taking values in the range@0,p# andA(x) is a scalar field that
measures the amount of squashing. The roundS7 is given by
A50. The one formsn i andv i are given by

n i5s i1S i , v i5s i2S i ~B2!

wheres i andS i each satisfy theSU(2) algebra:

ds i52
1

2
e i jks j∧sk , dS i52

1

2
e i jkS j∧Sk . ~B3!

The tangent space components of the Ricci tensor are@15#

Rab5diag~a,a,a,a,b,b,b!, ~B4!

where

a53S 12
1

2
e2AD , b5e2A1

1

2
e22A. ~B5!
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