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Inflation, singular instantons, and eleven dimensional cosmology
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We investigate cosmological solutions of eleven dimensional supergravity compactified on a squashed seven
manifold. The effective action for the four dimensional theory contains scalar fields describing the size and
squashing of the compactifying space. The potential for these fields consists of a sum of exponential terms. At
early times only one such term is expected to dominate. The condition for an exponential potential to admit
inflationary solutions is derived and it is shown that inflation is not possible in our model. The criterion for an
exponential potential to admit a Hawking-Turok instanton is also derived. It is shown that the instanton
remains singular in eleven dimensiofS0556-282198)01024-§

PACS numbe(s): 98.80.Hw, 04.50t+h, 04.65+e, 98.80.Cq

[. INTRODUCTION pointed out that this region is not in the open universe and so
it may not have observable consequences. The third ap-
Until recently it was thought that slow-roll inflation al- proach, due to Garrigfl3], is to construct a four dimen-
ways gives rise to a flat universe. This assumption wagional singular instanton from a higher dimensional non-
proved incorrect if1,2] (building on the earlier work of3] singular one. This approach is particularly appealing because
and[4] on bubble nucleation and “old” inflationwhere it  M-theory is eleven dimensional. Garriga gives a non-singular
was demonstrated that an open universe can arise after qudive dimensional instanton that reduces to Vilenkin’s in four
tum tunneling of a scalar field initially trapped in a false dimensions but with a cutoff to the scale of bubble nucle-
vacuum. (One can also obtain open inflation in two field ation that makes the decay rate of flat space unobservably
models[5,6].) However, such models of open inflation ap- small. He also gives a five dimensional solution with cosmo-
pear rather contrived owing to the special form that the scalalogical constant that reduces to a four dimensional instanton
potential must be assumed to take. They also do not addres$ Hawking-Turok type(Garriga’s five dimensional instan-
the problem of the initial conditions for the universe, i.e., notons are just Euclidean Schwarzschild and the five sphere
explanation is given of how the scalar field became trappedespectively. One purpose of this paper is to examine
in the false vacuum. These two objections were confrontedvhether it is possible to obtain Hawking-Turok instantons in
in [7] within the framework of the “no boundary proposal” four dimensions from non-singular instantons of eleven di-
[8]. It was described there how an open universe could benensional supergravity, the low energy limit iEtheory.
created without assuming any special form for the potential. Our second aim is to investigate whether solutions of
The approach was to construct an instar(ian, a solutionto  eleven dimensional supergravity corresponding to four di-
the Euclidean field equationsind analytically continue to mensional inflating universes exist. Since inflation is now
Lorentzian signature. The novel feature of the instanton isvidely accepted as the standard explanation of several cos-
that it is singular although the singularity is sufficiently mild mological problems(see e.g[14]), one would expect the
for the instanton to possess a finite action. Several objectiorexistence of inflationary solutions &-theory if it is indeed
have been raised against the use of such instantons, the madisé correct theory of everything. However, compactifications
serious of which is Vilenkin's argume®] that if such in-  of D=11 supergravity usually give megativecosmological
stantons are allowed then flat space should be unstable to tikenstant(see[15]) which is precisely the opposite of what
nucleation of singular bubbles. Another objection is that thewe need for inflation. The reason for this is that if the com-
singularity can be viewed as a boundary of the instantorpactifying space has positive curvature then the field equa-
(there is a finite contribution to the action from the boundarytions imply that our space has negative curvature. This sug-
[9]) which is unacceptable according to the no boundary progests that a way around the problem may be to look for
posal. solutions with the seven dimensional compactifying space
There have been three different approaches to dealinlyl; negatively curved at early times but positively curved at
with the problems raised by a singular instanton. The first idate times. We do this by takinil, to be a coset space and
to regularize the singularity with matter in the form of a squashing i{the meaning of squashing is explained below
membrang10,11. An alternative approacfil?] is to ana- treating the squashing parameters as dynamical scalar fields.
lytically continue the instanton across a deformed surface Upon reduction to four dimensions we obtain a model
that does not include the singularity. The problem with this iswith scalar fields evolving according to a potential consisting
that the surface does not have vanishing second fundamenisll a sum of exponential terms. At early times only one term
form which means that one obtains a region of spacetimén the sum is expected to be significant. Cosmological solu-
which does not have purely Lorentzian signature. It wagions involving scalar fields with exponential potentials have
been investigated by several workers. Lucchin and Matarrese
[16] showed that power-law inflation can result from such
*Email address: S.W.Hawking@damtp.cam.ac.uk potentials. This was further investigated by Baridw] who
"Email address: H.S.Reall@damtp.cam.ac.uk gave an exact scaling solution to the equations of motion
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which was subsequently generalised by Lidflg]. Halli- Carets will be used to distinguish eleven dimensional quan-
well [19] has conducted a phase-plane analysis of the equaities from four dimensional ones. Uppercase Roman letters
tions of motion resulting from an exponential potential. Wet-will be used for eleven dimensional indices and lowercase
tericI:h ?_aTdderiVﬁd(;scalinﬁ 50'““‘2{% f0|£ coshmol_ogiles Witlh thesreek letters for four dimensional onek?=8xG is the
scalar field coupled to other mat{@0]. For the single scalar ; ; ; - ;
case we have fgund a first integr'[al c}f the eQUatio?’ls of motioﬁleven d|me_n5|ona| Planck scale. We V-w" use a positive sig-
ature metric and a curvature convention such that a sphere

and give an exact expression for the number of inflationar " o My -Maq s .
e-foldings. It is found that a significant inflationary period has positive Ricci scalare™ ™1t is the alternating tensor

only results from solutions that approach the scaling soludensity. The four formFyypq is related to its three form
tions at late times. The results are generalized to the multipotential Ay np by
scalar case. We have analyzed the behavior of scalars with

an exponential potential near the singularity of the instanton ﬁMNPQ: 4(9[MANPQ] (2.2
and give a criterion for the singularity to be integralglEhis
was discussed if21] but the analysis was incomplete. where square brackets denote antisymmetrization.

Applying the results on exponential potentials to our  S;,,nqanis @ sum of boundary terms which are essential in
model from eleven dimensions yields the disappointing requantum cosmology:
sult that the potential is too steep for inflation to occur. We
find that unlike in Garriga’s models the instanton is singular Shoundary= B11 B2, (2.3
in eleven dimensions. The reason for this is that Garriga’s
potential comes from a five dimensional cosmological conwhereB; is the Gibbons-Hawking boundary terf84] and
stant whereas ours comes from the Ricci scalar of the conB, is needed because we want to consider the Hartle-
pactifying space and has too steep a dependence on the scatiwking wave functiori8] as a function of the four-form on
field that measures the size of the internal spéee its  the boundary, hence it is the variation of the four form that
“breathing” mode). It is this same dependence that rules outshould vanish on the boundary, not that of the three form.
inflationary behavior which leads us to speculate that if onesee[12] for a discussion of this point. We shall only con-

could fix the size of the internal space then a solution withsider solutions with a vanishing Chern-Simons term, for
more appealing properties might be found. which

As this paper was nearing completion we received a paper
by Bremeret al.[22] which has some overlap with our work. 1 . .
They also consider cosmological solutions with dynamical Ba=5% f d* Xy (V- gFMNPRApo). (2.4
squashing in various dimensions. Th8lrexample is not the
same as ours: they obtain squashed metricS’dmy viewing

; A - The equations of motion following from the actié®.1) are
it as aU(1) bundle ovelCP*® and squashing corresponds to

varying the length of th&J(1) fibers whereas we tre& as . 2 £ POR 1 . + pOR
a S® bundle overS* and squashing corresponds to varying Run=% (FMPQRFN ~ 12 FPorS RYGun | »
the size of theS® fibers. Our methods are applicable to any (2.5

squashed coset spatathough we always use the Freund-

Rubin ansat£23]). Integrability of the instanton singularity pa

is not discussed if22] (indeed the examples discussed thered,,(y—§FM"NPQ = - —— eNPQ'V'l‘"MBIEMl...MAIEMS...MS.
all appear to be non-integrabland neither is the condition 5762
for inflation. (In the conclusions section ¢22] it is stated (2.6

that the instanton solutions can be continued to give ope . .
inflationary universes. This is not the case: the potentials ar‘ﬁ}olr:rEaFIDtg Yﬁglzgﬁﬁ d0£ t?ﬁego%gdgggﬁrzn 'lehi ilr;fl?arrri?;mt
too steep to yield a significant inflationary peripd. and the second boundgr term is gaug

Note added in proof. Cosmological equations resulting y
from compactifying anS’ with dynamical squashing and a 1
non-zero four form or&’ were derived if28] but solutions B2=2; f dHx/— gFMNPOF | b 2.7
of these equations were not discussed.

Il. ELEVEN DIMENSIONAL SUPERGRAVITY ll. SQUASHED MANIFOLDS
The action for the bosonic sector Bf= 11 supergravity is Given a Lie groupG, the manifolds admitting a transitive
[15] action of G can be viewed as coset spacedH whereH is
1 1 the isotropy subgroup. We are interested in the most general
&_ 1, Al = BH_ — F EMNPQ G-invariant metric on such a manifol@e. the most general
5= f d 1x\/_g( 212 R 48 Funeol metric for which the left action o6 yields a group o? isom-
etrie9. If G/H is isotropy irreducibléseg[15]), then there is
2k 1 MM & . A a unique(up to scalg such metric which is actually an Ein-
+ (12 \/?@ R L SR VI VIS VI stein metric. For example, iI6=SQ(8) and H=SQ(7),
then the uniqué&-invariant metric orG/H is the round met-
+ Spoundary (2.1)  riconS'. If the coset space is not isotropy irreducible, then
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the generalG-invariant metric contains arbitrary parameters. . 1 3

This is what is meant by squashing. An exampleGs RW=RW+§V2(E Aa)gw—z > ALAY
=SQ(5) andH the SO(3) subgroup such tha/H hasS’ a a
topology. The most generaBG-invariant metric contains 1
seven arbitrary parameters and thereteix@ G-invariant Ein- )
stein metrics.

It is discussed if25] how one can squash a coset space A SA o )
by rescaling the vielbein i.ee*—\,e* (no summation A Rap=Rap[M7]—e""a diag V*A,). (4.6)
criterion is given for deciding if a particular rescaling will
preserve the isometry group of the metric. This is the mos
general kind of deformation that preserves thénvariant
metric onG/H (see[26] for a review.

> ALAR, (4.5)

a#h

El'he four dimensional part has been written with curved in-
dices and the seven dimensional part with tangent space in-
dices for notational clarity.

We shall use the Freund-Rubin ansg23] for the four
form i.e.
IV. DIMENSIONAL REDUCTION WITH DYNAMICAL R

SQUASHING Fuvpe(X,Y)=F ,,,6(X) other components vanish.

(4.7

(Some other ansze for the four form were considered in

d2=e2BMg (x)dx“dx"+ g, (x,y)dy"dy", (4.1 [22]) i
9yl Imey)dyTdy?, (4.1 One can substitute these atzssinto the field equations to

Our metric ansatz is

u m _ . Obtain equations of motion for the effective four dimensional
wherex* andy™ are coordinates on the four and seven di-theory. Alternatively one can obtain the same equations by

mensional manifolds with metricg,, andg, respectively.  yarying the reduced action obtained by substituting into Eq.
We shall choose the fielB(x) so that the reduced action is 2.1):

in the Einstein frame. The siebenbein on the internal mani-
fold is assumed to be

1 1
S:j d“xv—g[ﬁ R-72 Zb (9A2)M ap(9A)
a,
el (x,y)=ea™el(y) (no summatioh, (4.2

+%exp{—2 Aa)R[M7]

where gmn(y) =2 €5(Y)€(y) is the unsquashed metric.
The squashing is described by the seven scalar figls). 1
Note that for squashing in the sense described aljpge N exp{ 32 A ),: Furpo
preserving the isometry grouthese scalar fields will not be 48 a) wree
independent.
In the following discussion we shall not specify a particu-WhereB is a boundary term and indices are raised vgittf.
lar squashed coset fovi;. The choice is not arbitrary: the The integration overy™ gives a volume factorV;
eleven dimensional field equations have to be satisfied. We [d’y+\/g; which is absorbed into the definition of the four
shall assume that a suitable coset has been found but odimensional Planck scaléc2:K2V7. A factor of \V; has
conclusions will be independent of the details of the internal|so been absorbed inf,,,,. The matrixM,, has 3's on
space. As an example we shall consid& as a ts diagonal and 1's everywhere el$g[M-] is the (seven
SO(5)/SO(3) coset with a two parameter family of metrics dimensional Ricci scalar of the internal space computed
(i.e. only two of theA, are independept one parameter treatingA,(x) as constant parameters.
being the size and the other the squashing. This choice does Note that there is no guarantee that solutions of the four
satisfy theD =11 field equations. dimensional equations of motion obtained from this action
B(x) is calculated by observing are solutions of the eleven dimensional field equations. This
is because we have not considered the field equation associ-
—a SAL(X) a2B(x ated with the seven internal dimensions. However, if one
\/—_gR— \/—_g@e HetPIR ), (4.3 chooses a coset such that this field equation can be satisfied,
then the resulting equations of motion will be the same as
so after integrating ovey™ the reduced action will be in the those obtained from the reduced action. In &lrexample
Einstein frame provided that the Ricci tensor of the internal spatsee Appendix Bsplits
into two independent diagonal parts. This will give two in-
1 dependent field equations. In order to satisfy th@inleast
B(x)=— > E Aa(x). (4.4  for non-constant scalar fieldsve must include at least two
a degrees of freedom in the metric @f. So in addition to
squashingS’ we allow its size to vary. This is achieved by
In the Einstein frame the components of the eleven dimenmultiplying its metric by an overall conformal factefc™,
sional Ricci tensor arésee Appendix A Then the scalarg, are given by

+B, (4.8
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6

jdw—( R— (owsk ——uw)z

Al A2 A3 A4 C A5 A6:A7:A+C, (49)

wheree” is the squashing parameter defined in Appendix B.
The two field equations coming from the internal space give

. : : 1
the equations of motion foh andC. The same equations of ~W( ¢y, b)) — — e’”l“‘”FMMFW”" +B (4.1
motion can be obtained from the four dimensional reduced 48
action.

Returning to the general case, the kinetic term can bd'here the scalar potential is
diagonalized by defining

. W(¢k l,b) _ie( \14/3)K¢R[M ] (416)

1
s A;—KA , k=1,...,6, . . . . .
P kVk(k+1) E k“) The equations of motion following from this action are
(4.10
) 1 1 1
7 RMVZZK Ek E au¢kav¢k+ E all,dlavl/i—’— E Wg;u}
(4.11
K\/_4 Z 1 Ty poT 3 ApoT,
+ 1_2 € F,upo’TFV - § F)\pO’TF g,uv '
If the scalar fieldsA, are not linearly independent, then the
fields ¢, will not be independent and the kinetic terms will (4.1
still not be correctly normalized. This occurs in our squashed "
S’ example: Vz(ﬁk:&—, 4.18
zom
$1= 2= p3=0,
) IW K\/ﬂ- —
aA VA=t ag & FuneFr (419
\/I5¢4= \/5_-6¢5: \/6_-7¢6: T
3,(—geEurre) =0, (4.20
3 Note that the final equation is obtained by varyiAg
= vp
«\14 (3A+7C). (4.12 This equation has the unique solution
— — ~k\Ty
Since ¢4, ¢s and ¢g are not independent, we define Fuvpa 9€purpo® F, (4.21
¢=(12/7)(A/ ) so that for some constank. If we substitute this solution into Eq.
L L L L (4.19, then we get
5 (092)*+ 5 (0¢)*+ 5 (d¢6)*=5 (94)% (413 PY;
2 2 2 2 v2y="" (4.22
ap’
so now the scalar fields andC have been replaced hyand
 with diagonal kinetic terms. where
Note that a scaling of the internal manifold,(x) 1
—AL(X) +C(x) only affectsy, which measures its size. In V(b ) =W( i, i) + > F2~ «VTay 4.23

general one must allow the size to vary in order to satisfy the

D=11 field equationdi.e. one could not impos¢=const . he effecti ial that d . h luti fth
except in special cases corresponding to static solt)tions'?c't e effective potential that determines the evolution of the

hencey and ¢, will be independent. Thus the kinetic term 11€/d #. Note that we can replad®/by V in the field equation
for is correctly normalized ang will not need rescaling. It 17 @« and substitute the solution 16, into Eq.(4.17) to
is this that will allow us to draw general conclusions later ony eld

about the possibility of inflation or higher dimensional non-

,uvp(r

singular instantons in our model. R,,=2k? > 1 (9,1 (9, )
The inverse transformation relatiry to ¢, and ¢ is k 2
1 1
m +5 (0@ + 5V | (429
¢J l k ] ( ) ¢k '

(4.14 SO0 nowV occurs in all of the equations of motion and one
can forget aboutv.
Substituting into the reduced action gives For our squashe8’ example, the potential is
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tial homogeneity and isotropy imply that the metric must

3 o~
Z e 4721 1 9p\2ikglT take the form

1L
V((Z),l//)z _ EZ e_3vl4l<l///7 5

=—dt2+ 2 .
gutomesns) , % 2o Tt s ds’=—dt*+a(t)?ds} (5.2)

whereds; is the line element of a three-space of constant

Plotted as a function ofp this tends to+o as ¢— *+ . curvature. Substituting this into E¢4.17) yields the equa-
There is a local minimum at=0 corresponding to the tions
round metric on the&s’. There is also a local maximum at a
negative value ofp corresponding to the squashed Einstein
metric onS’. The qualitative behavior ag varies depends

on the value ofp. There is a positive constagt, such that at

¢= ¢q the F-independent part of the potential vanishes. For 2
¢> g, V is a monotonically decreasing function gftend- 3=——a
ing to +o as y——o and to 0 asy— +x. For ¢p<d¢g 3
(which includes the two Einstein metrjcshe asymptotic ) _ ) )
behavior is similar but there is a local minimum at someK iS the sign of the curvature of the spatial sections.

a

a (5.2

2 g2 1., 1.
_ 42, T 42 _
3 <§k: 2 Ptz VY a?’

. (5.3

S v

value of s corresponding to a negative value \¢f Hence _Inflation is defined bya>0; so Eq.(5.3) implies that for
there exist static solutions @ =11 supergravity withy sit-  inflation we need

ting at this minimum andb corresponding to either the round

or the squashed Einstein metric. These have been_ extensively v>> B2+ 2. (5.4
discussed from the point of view of Kaluza-Klein theory K

[15]. We are interested in solutions with a positive potential

at early times in the hope that these may exhibit inflationary Since the potentials we have obtained consist of a sum of

behavior. Such solutions start withlarge and positive, cor- exponential terms with no extrema ¢fat positive values of

responding to a negatively curved metric 8h One would the potential, one would expect that if inflation occurs then it

expect solutions to exist in whict rolls down to the local would do so at a large value of the potential where typically

minimum so that the solution settles into the Freund-Rubironly one exponential is significant. For simplicity we shall

solution[23] AdS,x S’ (with a round metrig at late times. ~ consider a single scalar model

Note that this solution appears unstable becatisan tunnel

past the local maximum and roll off te-. However, V(¢)=Voe™ . (5.9

Breitenlohner and Freedm&f7] have shown how boundary

conditions at infinity can stabilize AdS space, at least againsthe equation of motion for the scalar field is

small perturbations; so one would expect a similar argument

to be valid here. av
A second example that we have considered involves tak- d¢

ing the compactifying space to I8 x S*x S%. HereS® is a

group manifold, and so one can squash all three direction&here the Hubble parametertgt) = a/a. We shall assume

independently{15]. Thus thisM; can be squashed with all that >0, which can always be achieved by reversing the

sevenA, independent. Thé =11 field equations can be signs ofa and ¢.

—¢—3Hp= (5.6

satisfied with thisM ;. The Ricci scalar 08® with squashing For inflation we need to be larger than the scalar kinetic
described byAg, Ag andA; is term and curvature terrif k#0); so one would expect the
o on . on Hubble parameter to behave like*??. (We have set
R=e “s+e “Tot+e 77 xk=1.) After substituting this into the equation of motion for
1 the scalar field it is natural to seek a solution of the form
-3 (e2(As A6~ A7) + @2(Ae= A7~ As) 4 @2(A7-As~Ag)) poce®®2 With this in mind, define a new variable by
(4.26 O=—pe @92 (5.7

Thus in order to get a negatively curv&d the second group
of terms must dominate the first: Note that there is no stati
Freund-Rubin solution in this case beca@e S®x S® can-
not be given an Einstein metric. Thus the potentiatioes

not have any extrema.
Ld per @ g2 [ L w2y b+ avy-0
2d¢ 2 2 o T aVo=E

V. CONDITION FOR INFLATION
(5.9

{f one replacesp by (d/d¢)[(1/2)¢?], eliminates¢ in fa-
vor of ® and neglects the curvature terthis is the only
approximation that we shall makehen one obtains

We shall now seek a solution of the field equations de-
rived above that describes a four dimensional universe. Sp&ow definex by ® =2V, sinhx to give
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dx 1 againF(y) has a maximum ay=1, beyond which it de-
dé_ 2 (\6—a cothx). (5.9  creases monotonically to zero gs».
We have succeeded in finding a first integral for the scalar

It is obvious that there is a solution with=const whena  field equation of motion. This relates and'ii) implicitly. It
<6. This is the solution obtained previously by Barrow does not seem possible to integrate this again to find an
[17] and Liddle[18]. However, we can investigate the gen- explicit solution for¢(t) but this is not necessary in order to
eral solution by using the change of variaple e to give  calculate the number of inflationary efoldinys defined by

\/€+a
y J6—a

a?/(6—a?)

tmax
a(p—py )2 — 2B+ a N:f H(t)dt, 5.1
eX(d= ¢ IR (y)=y/2 B+ a) . (t) (5.14

5.1
(519 wheret, . is the (comoving time at which inflation stops.
¢, 1s a constant of integration. If we are interested in realOne can now substitute the expression ) in terms of
solutions obtained by analytical continuation from a Euclid-® and ¢ and then substitute fab and ¢ in terms ofy using
ean instanton, then we must impose the initial conditions the definition ofy and Eq.(5.10. To transform the integral
overt into an integral ovely one needs to knowvdy/dt,
b=y, ¢=0=y=1. (5.11)  which is obtained by differentiating E¢5.10 with respect
to t. Herey runs from 1(when ¢=0) to 2+v3 (end of
In the model of open inflation described [i]], one analyti- inflation). This gives
cally continues the instanton to an open universe at a point
where the scale factor vanishes. This means that initially it is
not a good approximation to neglect the curvature term in the N= ——
Einstein constraint equation as we have done here. However, av3 J1
if there is a significant inflationary period, then the curvature

term will rapidly become negligible. So, strictly speaking, which is infinite if «<v2 and otherwise evaluates to
our analysis is only applicable after this term has become

—F'(y)

F(y)

2 2+v3(y+1
=

)dy, (5.15

negligible, by which time the above boundary conditions will /6 1

not hold (since then<}5<0 and soy>1). However, as we =—— |z log(2+v3)

shall show, the condition for a significant period of inflation 3(V6+a) |2

is not sensitive to the initial value @, and so we shall take J6 N

the above value for simplicity. Of course our results are ex- + Iog( 1+ —) ) (5.16)
act for flat (k=0) universes. J6—a V3(a—v2)

With these boundary conditions, E¢h.10 becomes
This is small unlessy is exponentially close to2. We can
(b bo)l2_ F(y). (5.12 Cpncludg thgt an expopent.ial potential can only give a sig-
F(1) nificant inflationary period ifle<v2. Note that the result is
independent ofp, in contrast with the result for power law

The condition for inflation is ¢2<V or, equivalently, potentials. As mentioned above, the initial valueégbfdoes

sink? x<1/2. This is satisfied if, and only if, not significantly affect the amount of inflation as can be veri-
fied by changing the lower limit of integration in E.15.
2—V3<y<2+V3. (5.13 It is easy to calculate the asymptotic behavior of the

solutions found aboveg— —« at late times, and so
Since we are starting witlp=0, we will always getsome F(y)—0. Hencey—y, in case(i) andy— = in case(ii). In
inflation. How much we get depends Biy), the qualitative the first case one haB— ®,= const; so using the definition
behavior of which depends on the magnitudexoThere are  of ® one obtains the solution fap(t). The kinetic and po-
two cases to considefi) «?<6 and(ii) «®>6. In the first tential energy densities and the scale factor have the follow-
case F(y) has zeros aty=0 and y=y,=(\/6+a)/(\/6 ing asymptotic behavior:
—a) and a local maximum at=1. For largey, F(y) tends
to infinity as a power ofy. The solutionx=const corre- 1. 2
sponds to the second zero Bfy) (but this solution is in- 5 Pp=— (5.17

2 2’
compatible with the boundary conditiah=0 since it corre- a*(t=to)
sponds to an eternally inflating univeyse

If a?<2, then the second zero &(y) lies within the 6—a? 2
range of values of corresponding to inflation. This implies V=Vpe*’= 4 (t——t)2
that the solution will inflate all the way t&(y)=0 i.e., to « 0
¢=—o. For largera inflation will stop beforeF(y)=0 is )
reached. In caséi) the only zero ofF(y) is aty=0. Once a=ag(t—tg)?~". (5.19

(5.18
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It is clear from these expression that it is only consistent to If a?+ 82>6, then an asymptotic solutidfor k=0) can
neglect the curvature term in the Einstein constraint equatiobe found in analogy with the single scalar case by neglecting
at large times ifa?<2; otherwise these results are restrictedV. The scalar equations of motion can be immediately inte-

to flat (k=0) cosmologies. grated and the result plugged into the Einstein constraint
In case(ii), y—o implies x—o. Substituting this into equation to give the scale factor. The results are similar to
Eq. (5.9 and solving gives the following: the single scalar case. Our results can obviously be general-
ized when there are more than two scalar fields present.
1., 1 We can now return to our model obtained from eleven
2 ¢ :3(,[_—%)2* (5.20 dimensional supergravity. The find¥) term inV is too steep

to drive inflation, and so we turn to the term coming from the
(seven dimensiongRicci scalar. This depends upon the spe-

V:\/Oew:;m (5.20) cific internal manifold that we choose to squash but it is
(t—tg)2e/\® possible to extract th¢s dependence in the general case. To

see this, note that the scalaks all have the same depen-

a=ap(t—to)*>. (5.22  dence ony Eq. (4.14); hence the metric on the internal space

. L . epends ony only through the conformal facta® /2 |t
Note that the potential energy density is negligible compare bllows that the dependence of the first term\inon i is
with the kinetic energy density as—~ (indeed this

; (—3IA)yi7 ; inli
asymptotic solution may be obtained by simply neglecting g!venpy a' factoe ~ This multiplies ad dependent.
in the field equations The curvature term in not negligible Pi€ceV. Since (3y14/7)°>2, the above work shows that it

in this case, and so these results are only valickfe. is not possible to get inflationary behavior driven by a single

If we include extra scalar fields but still assume that theSXPonential term in the potential. If inflationary solutions are
potential is dominated by a single exponential termPOssible, then they must arise from a (;omb|nat|on of sgveral
Voe“%ef?, then the situation just gets worse because thisuch terms leading to a Ie_ss steep region of the potentlal, for
potential must now dominate two kinetic terms to yield in- €<@mple near a local maximum. However, the potential can-
flation. One can make progress analytically by definingn®t Possess a local maximum nand only possesses a local
®=B¢—ay. Then the equations of motion fap and 4 ~ Minimum whenV<0 and this occurs at a negative value for
imply that 6 obeys V, which is obviously not suitable for inflation.

©+3HO=0, (5.23 V1. SINGULAR INSTANTONS

where the Hubble parameter is given by the Einstein con- The behavior of the Hawking-Turok instantf#] corre-
straint equation with two scalar fields. This equation can b&ponding to an exponential potential can be analyzed in a
integrated to give similar manner. The instanton is assumed to posse&x 4
symmetry; so its metric can be written

: (5.29

0=A exp(—sftH(t')dt'
ds’=do?+b(0)2d02. (6.2)

whereA is a constant. If the scale factor grows sufficiently ] . )
fast, then this term will be asymptotically negligible afd ~ The Euclidean field equations are
~const will be a good approximation. Then we can write

= (Bl a) ¢+ const. Now define b'\2 1/(1 1

F _§ E(ﬁ/z—v +E, (6.2

[+ B2
0= T'B 1) (5.25
1
"__ 12

and the equations of motion reduce to those for a single b Y (¢"“+V)b, 6.3
scalar fieldd moving in an exponential potential with param-
eter/a?+ B2. We can now apply the results derived above b dv
to give the asymptotic behavior @{t) and the scale factor. ¢ +3— ' =—. (6.4)
The asymptotic behavior 0® can then be found: when b dé
Q&+ B2<6,  Ox(t—ty) ¥« and  otherwise

} —1 . . ) Hawking and Turok consider solutions to these equations
oc(t_}lo) - In both casesg andzz// are proportional 10 {hat |ook like deformed four-spheres, regular at the North
(t—to) ", and so only whem“+ g°<6 is it consistent to  5je and singular at the South pole. As the singularity is
neglect®. In this case one simply applies the single scalarapproached they assume that the scalar kinetic term domi-
result with parametey/a>+ 2 to concluded that the solution nates its potential. We shall investigate this assumption for
is still inflating at large times only whem?+ 82<2. By  V=V,e*®. If the curvature term b? is negligible in the
analogy with the single scalar results one would only expecEinstein constraint equation, then near the singularity we can
a significant inflationary period from such solutions. write
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b’ /11,2\/)
v V3lz? V)

(6.9

Substituting this into the scalar equation of motion and de-

fining ®= ¢’ e~ *%? gives

4L o) @2 3| L 02— v, |d—avy=0
dg 1277 T2 T NP2 P Vo P aVo=0

(6.6)

Now let & =+/2V, coshx; so we are assuming that the ki-

netic term is larger than the potential terfotherwise the

above expressions do not make senker definiteness, take

x=0. This gives the equation

dx 1
%=§(\/5—atanhx), (6.7)
which can be integrated by definiryg=e?* to give
2 2
- \/€+ o a“l(6—a”)
ea((b*gb*)/Z:G —ya/2(V6+a) +
(y)=y Y o

(6.9

There are two cases to considé): <6 and(ii) a>/6.

(Once again we can restriat=0 through reversing the signs

of @ and ¢.)

Case(i). G(y) is a monotonically increasing function; so
y becomes large ag becomes large. Asymptotically we

have

e(¢_ ¢* )/2% ya/2( J6— @)

—gle/(B-a)lxoyy~ % (V6—a)(p—by).

(6.9
This gives
1
¢'e* =D~ 2V, coshs (V6—a)(¢— ¢,)
~ % e(\gfa)((ﬁ*‘b* )/2’ (61@

which is a differential equation that we can solve fprto

give
_ 3V =
Y o P M CE e

where o is a constant of integration corresponding to the

PHYSICAL REVIEW D 59 023502

so near the singularity the kinetic term will dominate. The
behavior of the scale factor is easily obtained from the Ein-
stein constraint equation

b~bg(os— o)

(6.19

by is a constant that is determined by matching the solution
near the South pole to the solution at the North pole. Note
that it is consistent to neglect the curvature term near the
singularity. (These results agree with those obtained 2]

but it was not pointed out there that they are only valid for

a<6.)

For the singularity to be integrablgdob®V must con-
verge[7] (one must include the boundary tely to derive
this resul}. It is easy to see that it does in this case.

Casel(ii). For a>/6,

—a2l(a?-6)

a+ \/6
y a6
Now G(y) has a singularity ay=yy=(a+ 6)/(a—6)
and tends to zero at large Thus near the singularity the

behavior is ¢—x, y—y, which implies x—x, and
®—®,. This gives a differential equation with solution

G(y):ya/Z(a+v“€) (615)

(6.16

2
adl2_ "~ _ -1
e ady (os—0) ™.
Hence near the singularity the potential and kinetic terms
behave as follows:

2

Ve ————
a? cosit xq

(o5—0)7? (6.17)

1 2
5 ¢'’~— (0y—0) %
2 o2

(6.18

so now they only differ by a constant factor, which must be
taken account of in order to determine the solution tfor
Substituting these asymptotic solutions into the Einstein con-
straint equation and eliminating, in favor of « yields

(6.19

(Hence it is consistent to neglect the curvature tgrngo
now we have

b*bo(o'f—(f)zmz-

b3Voc(0-f_o.)6/a272, (6.20
but 6/x®—2< —1, and so the singularity is not integrable in
this case.

In the two scalar case, arguments similar to those pre-

coordinate of the singularity. The behavior of the potentialsented in the previous section show that the singularity is

and kinetic terms near the singularity is

—2al\6
1

(6.12

Vo (os—0o)

1
§¢,2%§(0’f_0')72; (6.13

only integrable fora®+ 82< 6, with obvious generalization
to more than two fields.

In our model the potential contains a term coming from
the 4-form. We shall assume that the correct analytic con-
tinuation of the 4-form to Euclidean signature is the one that
leavesV unchanged. This means tiatmust be unchanged;
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so F,,,, must be imaginary in the Euclidean thealtye-

causey—g—i+/g) in agreement with the discussion[i22].

If the F-term is the dominant term in the potential near the

PHYSICAL REVIEW D 59 023502

VIII. DISCUSSION AND CONCLUSIONS

The results of the previous sections are rather dishearten-
ing: our aim was to find a non-singular instanton in eleven

singularity, then the above work shows that the singularity isjjmensions that gives rise to a Hawking-Turok instanton in

not integrable. Hence for a Hawking-Turok instanton to exist;
the dominant part of the potential must come from the RicCky | grentzian signature.

scalar of the internal space.
Voexp(—3\/ﬂ¢/7) expE\¢,) is dominant, then the condi-
tion for an integrable singularity i€\?<24/7. This is not
satisfied in the case of the squasH®dconsidered above
since (1G/21/21f>24/7. Hence the squash&l does not
give an integrable singularity. For tH&x S*x S® example

four dimensions and an inflationary period after continuing
Instead we have found that our

If one exponential t€rMyqqe| realizes neither of these objectives. However, the

stumbling block appears to be the same in both cases. Infla-
tion was ruled out because the potential depends too steeply
on . The singularity of the eleven dimensional instanton is
also due to the dependence ¢inNote that the eleven dimen-
sional Ricci scalar is independent g, and so if some

we need at least one of the three spheres to have negativgeans were found of fixing the size of the compactifying
curvature; so the dominant term must be one of those in thepace(i.e. keepingy constant, then the instanton may be-

second set of brackets in E@.26). Without loss of gener-

come non-singular in eleven dimensions even with

ality we may assume it is the first one. If one writes this in ¢, — + % (and hence singular in four dimensionghe prob-
terms of the fieldsp, andy, then one finds that the exponent lem with keepingy fixed is in satisfying the eleven dimen-

is 2k[\4/5¢ 4+ \J6/5¢s+ \[6/Tde+ (\14/21)4]; so the sum
of squares of¢, coefficients is 80/%24/7 and hence the
singularity is not integrable in this case either.

VII. SINGULARITY IN ELEVEN DIMENSIONS

The examples provided by Garrigga3] are encouraging

sional field equations. One would have to introduce extra
degrees of freedom in the metric of the compactifying space,
which involves going beyond squashing.

It is conceivable that by modifying our ansatz for the
four-form more interesting results might be obtained. The
work in this paper is only applicable to cosmological solu-
tions using the Freund-Rubin ans§3]. Bremeret al. [22]

evidence in favor of being able to obtain Hawking-Turok consider solutions with some more general four-form con-
instantons in four dimensions by dimensional reduction offigurations. However, neither of the®” examples(round or
higher dimensional non-singular instantons. However, Garrisquashedappear to admit inflationary solutions or instantons

ga’s cosmologicalas opposed to flatexample is special

with integrable singularities. The Freund-Rubin ansatz is at-

because it requires the presence of a cosmological constaffidctive as an explanation of why there are four non-compact
in the higher dimensional theory. This always gives rise to &pacetime dimensions but leads to a large negative cosmo-
potential in the dimensionally reduced action that gives botHogical constant. I12] it was suggested that this may be
inflation and an integrable singularity on the instanton.balanced by a contribution from supersymmetry breaking.
Eleven dimensional supergravity does not have a cosmologSuch symmetry breaking would also have a dynamical effect
cal constant which is why we have been considering squastat early times and might generate corrections to the effective
ing as an alternative mechanism of generating a positive pdrotential that make inflation possible.

tential in the four dimensional effective action.
Unfortunately it is easy to see that the instantons of the type
that we have considered remain singular even when viewed
from within the higher dimensional framework. If one takes
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the trace of the eleven dimensional field equations, then on@nd Neil Turok.

obtains

;‘(2

:7_2FPQR

X»

FPORS (7.)

which, upon substituting the solution fﬁrpQRS(and remem-
bering that a factor oi/V_7 was absorbed int&), becomes

2
R=— — F2g2VT4yl3

3 (7.2

Sincey— — o at the(four dimensional singularity indepen-
dently of the sign ofR[M-] (the exponents iV are nega-
tive, and soy— — o rather than+« as considered aboye
one sees immediately th&— —o; so the Hawking-Turok
singularity is an eleven dimensional curvature singularity.

APPENDIX A: DERIVATION OF RICCI TENSOR

The non-zero Christoffel symbols for the metfit 1) are
given in terms of those for théX=11) metric withB=0 by

Iy,=ry,+6,B,+46,B,-B"g,,,

e —-2B aa
re.=-—e éAavf‘emen,

Im=> A,,eled, Tm=rm. (A1)
a
Indices are raised with,,, and ef, is the rescaled sieben-
bein.

The Ricci tensor is most easily computed using normal
coordinates in the four dimensional spacetime I'¢,=0.
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(Note that we are not free to choose normal coordinates otwo parameter subset. The particular squashing we use here
the whole eleven dimensional manifold because such cooiis described in more detail if5].

dinates will not preserve the product form we have assumed Using letters near the start of the Greek or Roman alpha-
for the metric) The result is bet to denote tangent space indices, the metric is given in
terms of the siebenbein a@g,,= 5.,e2e> where
R,,=R,,—|V?B+

uv

ZB’p+§a‘, Aa,p) B®

Ouv

1 =1
e®=du, e'=§ sin po;, e'=§ eAX(p,+cos pw;).
+2B,B, (B1)

—-V,V,| 2B+ A,
a

The indicesi andi run from 1 to 3. Hereu is a coordinate
+> (A, WBL,TALB )~ > A, Aoy, (A2) taking values in the rand®,7] andA(x) is a scalar field that
a o v a measures the amount of squashing. The rohis given by
R A=0. The one formg; and w; are given by
Rmn= Rmn[MYJ_e_ZB

vi=oit3, w=0-3% (B2
X; €men V2A3+Aa'p(ZB'P+§b: Ab"’”' whereo; and3; each satisfy th&U(2) algebra:
(A3) 1 1
RmiM<] is the Ricci tensor of the squashed internal mani- doy=- 2 Sk Do, dxi=- 2 €ije 02 (B3)

fold computed treating the scalafg as constants. Note that o
substantial simplification occurs when we use the Einsteir he tangent space components of the Ricci tensof 1k
frame, given by Eq(4.3).

Rip=diag a,a,a,a,8,8,8), (B4)
APPENDIX B: THE SQUASHED SEVEN SPHERE Where
As discussed in Sec. II57 can be regarded as the coset
SO(5)/SQ(3). Themost generabO(5) invariant metric on -3l1- } 2A _a2A E —2A
- : ) a= e, B=el+ e N (B5)
S’ contains seven parameters. Here we restrict ourselves to a 2 2
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