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We show that in large-field inflationary scenarios, superhdawgny orders of magnitude larger than the
weak scalgdark matter will be produced in cosmologically interesting quantities if superheavy stable particles
exist in the mass spectrum. We show that these particles may be produced naturally during the transition from
the inflationary phase to either a matter-dominated or radiation-dominated phase as a result of the expansion of
the background spacetime acting on vacuum quantum fluctuations of the dark matter field. We find that as long
as there are stable particles whose mass is of the order of the inflatonpnessmably around 1®GeV),
they will be produced in sufficient abundance to gidg=1, quite independently of any details of the
nongravitational interactions of the dark-matter field.
[S0556-282198)03124-3

PACS numbdrs): 98.80.Cq, 04.62:v, 95.35:+d

[. INTRODUCTION Because the assumption of relatively low-mass DM seems
quite natural, it is rarely questionédlhe goal of this paper

is to show that the Universe might be made of superheavy
IMPs (we will refer to them asX particleg, with mass
rger than the weak scale by seveiérhaps manyorders

It is now commonly accepted that most of the mass i
galactic halos as well as in the Universe as a whole is comp,

posed of dark matteiDM). There are many indications that ¢ magnitude. Two conditions are necessary for this to hap-

the DM consists of some new, and yet undiscovered, weakljen: () the X particles must be cosmologically stable and
interacting massive particld$VIMPs). ~ (b their interaction rate must be sufficiently weak such that

Despite the fact that the nature of the DM is still thermal equilibrium with the primordial plasma was never
unknown, it is usually thought that DM particles cannot beghtained. This second condition is easy to satisfy as long as
too heavy. If the WIMP is a thermal relic, then it was oncethe particle is extremely massivef the order of the Hubble
in local thermodynamic equilibrium(LTE) in the early parameter at the end of inflatipn
Universe, and its present abundance is determined by its We point out that superheavy dark matter may be created
self-annihilation cross section. From unitarity arguméais  during the evolution of the Universe in a number of ways. If
one expects the mass of a thermal relic to be less thaitis produced during the process of reheating after inflation,
about 500 TeV. The present abundance of non-thermal relidghien the upper bound on its malgs, can be as large as the
is not determined by their self-annihilation cross sectionreheating temperaturégy. The latter should be less than
since they need not have been ever in LTE in the earlybout 18 GeV in order to avoid overproducing dangerous
Universe. An example of a non-thermal relic is the axion,relics such as quasistable gravitinos in supergravity inspired
and the present axion abundance is determined by thecenarios. The mass upper bound can be pushed higher than
dynamics of the phase transition associated with symmetrihe reheating temperature if one allows the DM to be pro-
breaking. Non-thermal relics are typically very light; duced directly through the decay of the inflaton field. In that
e.g., the axion mass is expected to be in the range
10°°-102 eV [2].

10f course, superheavy dark matter particles have been considered
before to a certain extent. In particular, there is an extensive litera-

*Email address: djchung@yukawa.uchicago.edu ture regarding observational constraints on unusually heavy dark

"Email address: rocky@rigoletto.fnal.gov matter candidategfor example, see Ref$3,4,5, and references

*on leave from Department of Theoretical Physics, University ofthereir). However, they do not restrict our scenario; nor do they
Oxford, UK. Email address: riotto@nxth04.cern.ch consider our production mechanism.

0556-2821/98/5@)/0235018)/$15.00 59 023501-1 ©1998 The American Physical Society



CHUNG, KOLB, AND RIOTTO PHYSICAL REVIEW D59 023501

case, the mass upper bound is the inflaton field mass, whickmall masses, with an abrupt transition from an inflationary
is presumably less than about!i@eV. On the other hand, phase to a radiation dominated phase. In our work, we con-
if reheating after inflation is preceded by a preheating stagsider extremely massive, conformally coupled fields and cal-
[6], it is certainly possible to produce by resonance effectsulate particle production exactly by numerically solving the
copious amounts of dark matter particles with masses mucmode equation. We treat the conformally coupled case be-
larger than the inflaton ma$g]. cause conformal coupling generally minimizes the number of
In this paper, we consider yet another mechanism of genparticles produced, particularly in small mass ranges. Unlike
erating heavy DM. We study the possibility that DM is pro- Yajnik, we also consider the case where the metric is an
duced in the transition between an inflationary and a matteranalytic function of the conformal time and show that this
dominated (or radiation-dominated universe due to the leads to a qualitatively different behavior of the density of
“nonadiabatic” expansion of the background spacetime dur-particles produced for large masses. The analyticity implies a
ing the transition acting on the vacuum quantum fluctuationsgonservative estimate since fewer particles are produced in
The distinguishing feature of this mechanism is the capaihat case than in the abrupt transition case.
bility of generating particles with mass of the order of the ggome of the ideas present in our scenario are also con-
inflaton mass(usually much larger than the reheating tem-iained in the work of Linde and Kofmafi1,12,13. How-
peraturg even when the particles only interact extremely gyer the purpose of their work was to point out that isocur-
weakly (or not at al) with other particles and do not couple 54,16 cosmological(large scalg perturbations can be
to the inflatorfs). We find that they may still be produced in roduced during inflation. They did not consider the impor-

sufficient abundance to achieve critical density today due t ance of the nonadiabaticity of the transition at the end of

the classical gravitational effect on the vacuum state at the . o : .
. . . . . ihflation which is responsible for the production of our su-
end of inflation. More specifically, we will show that in the

range 0.0&My/H=<2, where H~m,~10° GeV is the perheavy dark mgtter. Instee}d, they mainly reIi(_ad upon esti-

Hubble constant at thé end of inﬂati(lﬁl(/, being the mass of mates of Fhe particle production during the de Sitter ph.ase or

the inflaton, the DM produced gravitationally can have a the classmal(long_ wavelength compongnt of the particle

density today of the order of the critical density. This resultfi€ld énergy density left over after inflation. ,

is quite robust with respect to the “fine” details of the tran- 1 hiS paper is organized as follows. In the next section, we

sition between the inflationary phase and the matter€laborate on the dark matter scenario and _the calculational

dominated phase, and independent of the coupling of the DNethod. In Sec. llI, we discuss the numerical results. We

to any other particle. This result is reasonably robust alsé€n summarize our work in Sec. IV. In the Appendix, we

with respect to the ambiguity associated with the choice oflerive the asymptotic mass dependence of the dark matter

vacua as we have tried to minimize the number of particle§lensity presented in Sec. II.

produced by choosing an infinite adiabatic order in-out

vacua. The only “non-trivial” requirements, other than that

large field inflation occur, are that the WIMPs possess a mass  |l. SCENARIO AND CALCULATIONAL METHOD

close to the inflaton mass and that they be stable.
Mechanically, the DM particle creation scenario is similar

to the inflationary generation of gravitational perturbations

In this section we discuss the dark matter abundance cal-
culation in our scenario. First, we give an expression for the
dark matter density today in terms of the number density

that seed the formation of large scale structy for ex- when it was produced. We then consider the mass range of
ample the review given in Ref8]). In the usual scenarios of P R ; ing
the dark matter necessary if it is never to thermalize. Finally,

this form, however, the quantum generation of energy den- ~ . ) o .

sity fluctuations from inflation is associated with the inflaton V¢ Q'SCUSS the r_nechamcs O.f the gravitational produ_ct|0n qf

field which dominated the mass density of the universe, ang_a_rtlcles. In particular, we d'scqss the number density defi-

not a generic, sub-dominant scalar field. n|t|or! and present t_he asymptotic dependence of the number
density on the particle mass.

Because it is usually assumed that DM forms from the Suppose the dark matter never attains LTE and is nonrel-

decays or interactions of the reheating products, it usually ™ "% . . 9
has a stage of LTE in its early history. In our scenario th(gét'v'suc at the time of production. The usual quantityh

large mass of the dark-matter particle will prevent it from associated with the dark matter density today can be related

thermalizing, and its abundance will depend only on its masgg the dark matter density when it was produced. To develop

and the behavior of the spacetime, not on its weak couplin e relation, we begin by writing
to other nongravitational fields.

Others have considered gravitational particle production
at the end of inflation. For example, Fd@l and Yajnik[10] -
both consider particle production as a result of the nonadia- pr(to)  pr(tre)
baticity of the transition from an inflationary phase to a mat-
ter or radiation dominated phasalthough with a different
cosmological implication in mind Ford treats only mass- wherepgr denotes the energy density stored in radiatjpp,
less, non-conformally coupled fields using a well-known per-denotes the energy density residing in the dark maktigg,is
turbation techniquésee references withif®]). Yajnik con-  the reheating temperatur@, is the temperature todayg
siders minimally coupled scalar field theory in the limit of denotes the time today, ang, denotes the approximate

px(to)  px(trn) (E) )

To
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time of reheating completiohTo obtain py(trn)/pr(trH), forces[14]. In gauge-mediated supersymmetric models there
we must determine wheK particles are produced with re- are two sectors with possible stable particles which might act
spect to the completion of reheating and the effective equaas superheavy dark matter candidates:
tion of state operative betweéhproduction and the comple- (1) The secluded sector, which is strongly interacting: Su-
tion of reheating. persymmetry is broken dynamically and sof¢erm gets a

At the end of inflation the universe may have a brief pe-nonvanishing expectation value, where the scale of super-
riod of matter domination resulting either from the coherentsymmetry breaking, as usual, is denoted\By.
oscillations phase of the inflaton condensate or from the pre- (2) The messenger sector: This sector contains the fields
heating phas¢6]. If the X particles are produced at time charged under th8U(3):.®SU(2),®U(1)y gauge interac-
t=t. when the de Sitter phase ends and the coherent oscilions, and communicates supersymmetry breaking to the
lation period just begins, then both thé particle energy sparticles in the observable sector. The mass of the messen-
density and the inflaton energy density will redshift at ap-ger fields is usually denoted byl .
proximately the same rate until reheating is completed and After the messengers have been integrated out, sfermions
radiation domination begins. Hence, the ratio of energy denreceive a mass squar&if~ «?A2, wherea is the appropri-
sities preserved in this way until the time of radiation domi-ate gauge coupling andl=F/M. Notice, in particular, that

nation is the spectrum of the superparticles depends on the ratio
=F/M which is fixed to be relatively small and in the range
px(trn) 87 px(te) 10-1G TeV. However, this does not necessarily mean that
pr(trn) 3 MpPHA(ty)’ @ JF andM are of the same order of magnitude &g 15]

since it is only their ratio which is fixed around*LTeV: the
where Mp~10'° GeV is the Planck mass and most of the hierarchyy/F,M> A is certainly allowed16].
energy density in the universe just before titpg, is pre- The secluded sector often has accidental symmetries
sumed to turn into radiation. Thus, using Ef), we may get analogous to the baryon number. This means that the lightest
an expression for the quantit2y=px(to)/pc(ty), where particle in the secluded sector might be stable and a good

pc(to)=3H2ZMp2/8m andHo=10Ch km sec* Mpc™%: candidate for dark matter with a mass of the order/sf,
much larger than the weak scale. The lightest messenger
) o[ Tru| 87 [ My | nx(te) field might also be a good candidate for superheavy DM.
Qxh“~Qgh T, 3 My MaHZt) (3 Indeed, if the supersymmetry breaking sector contains only

singlets under th&U(3)c® SU(2), ® U(1)y gauge interac-
tions and if there are no direct couplings between the ordi-
density that s in radiation today amy is the density ofx  1a"y and messenger sectors, then the theory is characterized
particles at the time when they were produced. y a conserved global quantum number carried only by the

Note that because the reheating temperature must HEESSENger fields. The typical madsof the DM component
much greater than the temperature todal(/To=4.2 In the messenger sector may be much larger than the weak

X 10'%), in order to satisfy the cosmological bouttlh? scale. . _ _
=<1, the fraction of total energy density in the dark matter at Another framework in which we might expect the pres-

the time when they were produced must be extremely smalf"c® Qf superheavy st_able partjcles Is a Ka!uza-K!ein thgory
To ilusate this, ket (1) s and p(t)-miNaf. o oG G M s shace e dinensons
Then Qyh?~107(Try/10° GeV)[px(t)/p(ty)]. It is in- 9 - A pop pie 1S p y y

. : 17] where the number of dimensionshis=11. These theo-
deed a very small fraction of the total energy density we; .
. . . : ries are characterized by the presence of a tower of Kaluza-
wish to extract in the form of massivé particles.

This means that if the dark matter particle is extremelyKIem modes which are left after the compactification of the

. o : extraD —4 dimensions. For instance,if=5, the existence
massive, the challenge lies in creating very few of them natu-

. o : of a compact fifth dimension implies an infinite tower of
r?\'}Z'S Yr\]/g r\ll\(lalg dzzesahatre%r;\é';at;\?gf; tﬂ;di?igﬁgagﬁtugﬂgufgur-dimensional particles corresponding to quantized exci-
9 PP L 9 0CCUR(ions of the extra dimension. These massive particles have
abruptly at the end of inflation, then the matter domlnatlonbeen called “pyrgons’T18]. If any of the pyrgon states are

SEZ:Z Tn?; t}illg?':?;tr’r:ijig?enlyag?tet?iggdéﬁéogfd?nrzg]ﬂ:?%table or have a lifetime greater than the age of the universe,

However, this does not change H). they might act as DM with a mass of the order of the inverse

: . of the physical size of the compact dimensi@k@l, which
For the superheav)( particles to be good candidates for . likely to be larger than the weak scale by many orders of

DM, they have to be stable or at least have a lifetime greatelfiagnitude
than the age of the universe. This may occur in supersym- : I . . -
9 y persy For the gravitational production scenario to be distin-

metric theories where the breaking of supersymmetry is . hable f th : i th i
communicated to the ordinary sparticles via the usual gaug uishable from otner scenariox, must never thermalize.
he condition for the dark matter particles to be out of equi-

librium and their comoving number density to be constant is

Here Qgh?~4.31x 10 ° is the fraction of critical energy

2More specifically, this is approximately the time at which the
universe becomes radiation dominated. Ny{oalv])<H, 4
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whereH is the Hubble parameter afd|v|) is the thermal sity produced, we start with the canonical quantization of the
averaged self-annihilation cross section times théllédo X field in an action of the fornfiin the coordinatels?= dt?
speed for the dark matter particl¥s Since the cross section —a?(t)dx?]

op is expected to be at most abolutg2 (usually smaller; 3
sometimes much smalf@randny is bounded by the condi- S:j dtf d3x a-
tion thatQh?<1, we obtain, from Eq(3), 2

. (VX)?
X2— 7 M2X2—¢RX?| (7)

nx(alv]) 7% 1019 (H/Mp) whereR is the Ricci scalar. After transforming to conformal
XA~ e (5)  time coordinate, we use the mode expansion
H (Tre/10° GeV) (My/Mp)

d? . 4
_ . + “ik.
as the quantity which must be less than 1 at, to avoid X(X)_j 2m¥%(7) [ahi( 7)™ *+aghk (n)e "],

thermalization. For a low reheating temperature of &V (8)

and a typical value oH=10 ®Mp, for inflationary sce-

narios, we find a conservative conditidhy/H=1 for the = where because the creation and annihilation operators obey
particles never to reach chemical thermal equilibrium. Notethe commutator[akl,aﬁz]=5(3)(k1—k2), the h's obey a

that this is a rather conservative estimate since the reheating,majization conditiorhch)* —hih* =i to satisfy the ca-

temperature is likely to be larger and the cross section iggnical field commutatorghenceforth, all primes on func-
likely to be smaller. We also remark that because the reheafions of 5 refer to derivatives with respect tg). The result-
ing temperature is likely to be much smaller than¥mass,  ing mode equation is

the thermal production of th¥ particles is negligiblé.
Now let us describe the basic physics underlying our hi(7) +W2(7)h(7)=0, 9)
mechanism of the gravitational production of DM.
In this paper we take space-time both in and out of thevhere
inflationary era to be spatially flat, homogeneous, and isotro- _ 2 o
pic, with a line element of the form wi=k+Mja“+(6£—1)a"/a. (10

_ 52 2_ 442 The parametek is 1/6 for conformal coupling and 0 for
ds'=a%()(dy"~dx). © minimal coupling. From now on, we will sgt=1/6 for sim-

For simplicit d without hi f . plicity but without much loss of generality. By a change in
or simplicity (and without much loss of generalifywe re- variable n—k/a, one can rewrite the differential equation

strict ourselves to a massive scalar field coupled to classic%l . /
. . ) uch that it depends only dd(7), H'(7)/k, k/a(7), and
gravity and nothing else. The other couplings are assumed t|9|X_ Hence, V\?e introdu)ée tég)paragnne)ter and(ani) corre-

pla1¥haer;elnzlr%nI\];Igﬁgltjéoilﬁelguﬁcglg;?v\l\tlggzng; %ﬁgﬁgﬁg thesponding to thg Hubble parametgr and the_ scale factor evalu-
. . ) : ; .._ated at an arbitrary conformal time;, which we take to
particle production due to interaction of a classical grawta-be the approximate time at whicK are producedi.e
tional field with the vacuuntsee for exampl€19,20,21). In — 1(t)]. We then rewrite Eq(9) as e
our work, we use the method of finding the Bogoliubov co- 7= 7(te) wh q
efficient for the transformation between positive frequency
modes defined at two different times. We will show below
that the large mass dependence of the DM number density is ~ o
determined by either the differentiabilitpr the smoothneys ~ Where?=na;H;, a=a/a;, andk=k/(a;H;). For simplicity
of the scale factor or the choice of the vacuum. On the othef notation, we shall drop all the tildes from now on. This
hand, forMy/H=<1 whereH is the value at the end of Q|fferent|al equation can be solved'o_nc_e the boundary gondl—
inflation, the results are quite insensitive to the differentia-tions are supplied. Since the annihilation operator is just a
bility or the fine details of the scale factor's time depen-Ccoefficient of an expansion in a particular basis, fixing the
dence. For 0.04 M /H=2, we find that all the dark matter Poundary conditions is equivalent to fixing the vacuum.
needed for closure of the universe can be made gravitation- TO Obtain the number density of the particles produced,
ally, quite independently of the details of the transition be-We Will perform a Bogoliubov transformation from the
tween the inflationary phase and the matter dominated phas¢acuum mode solution with the boundary condition at
To see the effects of vacuum choice and the scale factor 7o (the initial time at which the vacuum of the universe is
differentiability on the largeX mass behavior of th¥ den- ~ determinedlinto the one with the boundary condition at
=7, (any later time at which the particles are no longer
being created In the examples given in the next sectiop,

3 _ _ _ - will be taken to be— while 7, will be taken to be at-
For example, if there is a heavy gauge particle mediating thq

process, then the effective coupling will be further suppressed anci1 order to define vacua of infinite adiabatic ordexplained
the relevant mass scale for the cross section will be the mediating___
particle mass instead of ti% mass.

“Since for times larger thar, the interaction rate continues to be  °This differential equation is he(y) + (LH)H' (y)he(y) + (1
smaller tharH, the particles will not thermalize later either. + M>2</y2)/H2(y)hk=0, wherey=k/a.

(@) +(K+b%)hi(7)=0 [b=My/H] (1D
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below) which results in a smaller particle production than for adiabatic vacuum, then ds—c the number density will
any finite adiabatic order vac@alhe exact values of, and  behave liké
77, are not important for those examples as long as they are

in a region in whicha’/a?<1 orba/k<1. Defining the Bo-

goliubov transformation aB, () = axh°(7)+ Bkhy ()  wherer=Min(p,n) provided that §*a/d»")/a"* < for

(the superscripts denote where the boundary condition)is se@ll 7€ [ 70,711 and all natural numbets. It is important to

we have the following energy density in the particles pro-hote that for a fixed time, the asymptotic expansion gener-
duced: ated by Eq(A2) (in the Appendix generally only converges

up to a finite order. Hence, except under special circum-
stances an adiabatic vacuum of only a finite order can be

ny~b~(2r+1) (14)

3 e dk generated. This means that, in general, the number density
px(171) =Myny(777) =MyH? 5(—77)) 52 k?| 8K, will fall off with a finite power of 1b for largeb. Only when
1 0

an adiabatic vacuum of infinite adiabatic order can be gen-
(12 erated, which usually means that the domaim@#) can be
extended to*+o with the property given above, does the
(,ﬂumber of particles produced fall off faster than any finite
power of 1b (e.g., exponential suppressjomn practice, we
find that a spacetime which admits an infinite adiabatic order
4 vacuum has the “advantage” of all the vacua defined in a
berg representation. sufficiently adiabatic region being numerically equivalent re-

As usual, there is an ambiguity in the definition of the 45 qless of the vacua’s adiabatic order and the exact time at
vacuum, which is equivalent to an ambiguity in the boundaryyhich the vacua are defined.

conditions of Eq.(9). One method of systematically classi-

fying the various inequivalent vacuum states is through the I1l. NUMERICAL RESULTS

adiabatic vacuurh22] definition. The adiabatic vacuum defi-

nition allows one to construct and classify a set of mode We shall employ the method elaborated in the previous
equation solutions which reduce to the usual plane wavesection to calculate the gravitational production of particles
whena’(7)=0 for all 5. The classification is based on a in a couple of toy models of inflation. We will see that
type of WKB asymptotic expansion in powers of conformal €nough dark matter may be produced through this mecha-
time derivatives ofv, . In particular, the classification allows NiSm as to give critical density of dark matter today.

one to quantify how two solutions with different boundary ~ ©Our toy model looks at & function for a() which
conditions(hence two vacuawill differ in terms of deriva- ~ 2€haves like the de Sitter space fr> —2 and the matter
tives of wy. Each derivative with respect to the conformal or radiation dominated universe foF—c:

where one should note that the number operator is defined
7, while the quantum stat@pproximated to be the vacuum
statg defined aty, does not change in time in the Heisen-

time is assigned a bookkeeping small parameter, and this 1—exd — (9/5;)?] [ 1—tanh 5/ 7;/2+1)
small parameter’s power in an expansion is referred to as the a(n)=a; (7l 77)2 ( 2
adiabatic order. We define thth adiabatic(orden vacuum K

at time »* by using the boundary condition (nl ;)P

Tr3exg—ninm)

h(75)=hP (%),  hi(p*)=h/P(*), (13 ]1/2
+tanh( n/ n;—\)—tanh( 5/ 5;— 2\) (15

whereh(™(#) is a systematically chosen approximate solu-where =1.07 is needed for proper normalization. The func-
tion to the mode equation that satisfies the mode equation ujonal form was chosen rather arbitrarily except for the re-
to Ath adiabatic order in the asymptotic limit that the adia- quirements of monotonicity,d’a/d»"*)/a” 1< for all 7
batic parameter goes to zero. Roughly speaking, the largemd natural numbersy, and appropriate power law
the adiabatic order of the vacuum, the closer it is to theasymptotic behavior. This spacetime admits a vacuum of in-
Minkowski vacuum in the sense that it is le@s the adia- finite adiabatic order ay= +. In Fig. 1 we show how this
batic limit) dependent on the time at which it is defined. Wemodel compares with the numerical result obtained by solv-
refer the reader to the Appendier Ref.[20]) for a more ing the (1/2)713[,(;52 inflationary model’s equations of motion.
precise definition. In Fig. 2, we show the number density obtained numeri-
As shown in the Appendix, the asymptotic behavior of thecally in this toy model. The peak &flx/H;~1 is similar to
number density a— can be obtained by the following the case presented in RE23]. As we expect, for largb, the
rule: If the vacuum aty, corresponds to anth adiabatic number densny falls off faster than any inverse powepof
vacuum, and the vacuum ag, corresponds to gpth  Note that if My~Hj~m, for Tgy~1C°GeV, X will

8This behavior is also noted on p. 69 [@0] although there it is
8in the numerical calculation, one can only approximate thesearrived at differently than in our Appendix.
infinities with large numbers, but the limit is not singular. Note that by definition given in the Appendip, andn can be
"Here we restored the tildes for clarity. only even natural numbers or 0.
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15 T T T T T T T T

— — . toy model

with the right coupling, enough may be produced to have
critical density of superheavy dark matter today.

— V(¢)=1/2 m% ¢? numerical ] -
IV. SUMMARY

—
[=]

To conclude, we have investigated the scenario of creat-
ing nonthermalizing dark matter gravitationally at the end of
inflation (or the beginning of the coherent oscillation phase
There is a significant mass rang@.1m,—m,, wherem,
~10' GeV) for which the X particles will have a critical
e = =7 density today regardless of the fine details of the inflation-
matter—radiation transition. Because this production mecha-
nism is inherent in the dynamics between the classical gravi-

FIG. 1. The scale factonormalized to its value ay=7;) is  tational field and a quantum field, it needs no fine-tuning of
plotted as a function of the scaled conformal timiey; . The curve  field couplings or any coupling to the inflaton field. How-
labeled “toy model” corresponds to the scale factor of the model inever, only if the particles are stabler sufficiently long
which the universe makes a transition from an inflationary phase téived) will these particles give contributions of the order of
a matter dominated phase. Ag7;,— —, the scale factor behaves the critical density. For even larger dark matter masses, the
as 1/(y/7;)? corresponding to a de Sitter space, and74%;  broad resonance mechanism of preheatifig occurs) will

— +¢2, the scale factor behaves a/ ;) corresponding to amat-  produce these particles in sufficient abundance as to achieve
ter dominated universe. The solid curve shows an analogous no,=1.

merical solution of the scale factor for a (mﬁ,qsz inflaton poten-
tial.

a(n)/a(n,)

(o)

1
[}
|
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the density of particles produced peaks, if the reheating tem-

perature is below about 1@eV, this mechanism will most APPENDIX

likely not generate a significant amount of dark matter. In the ) ) )

case that this mechanism cannot produce particles Mith In this appendix, we derive Eq14) and Eq.(A13), the

>H,, if these heavy particles couple to the inflaton field @Symptotic dependence of the dark matter density on the
mass parametdo=My/H; as b—o. This asymptotic be-

havior is, in general, dependent upon the choice of the

g 10%e ' ' : "3 vacuum state and the differentiability of the scale factor in a
21103: ............... matter | ] Friedmann-Robertson-Walkei=RW) type spacetime. We

© e T= H/2n | o . . . .

S F |thermalization employ the adiabatic vacua ansf22] to classify the various

> 108 L - possible(restricted choices of vacua. Strictly speaking, our

- F conditions for the various asymptotic behaviors are only suf-
= . ficient conditions, but they have wide applicability as we
f,; 3 demonstrate in this paper.

< E Let us first review the concept of an adiabatic vacuum
:;fl 1 (see for example p. 66 of Ref20]). We first define the

= F ] concept of an adiabatic order as the power af thiat results

o 1('_3 R IR : i ey ] for any term in a IF expansion after one makes the trans-

M,/H, formation »— » and d/dp—T 'd/d7. Note that if T~*
. ~ —0, then this is equivalent to an expansion in the “small-
FIG. 2. The dark matter abundance today is shown as a functioRess” of conformal time derivatives. The basic idea is that if
of the particle mass for various models. The mass is given in tefrmga derivatives of the mode frequenay, are indeed small
=~ 76 = i i - - - !
of Hi~10""Mp, (the Hubble parameter at=;, the beginning of  1hep the degree to which the field theory breaks time trans-
the coherent oscillation perigdThe curve labeled “radiation” cor- | ouonal symmetry can be characterized by the adiabatic or-

W . . . . .
the inflationary phase whereas the curve labeled “matter” corre-aer' This breaking of the time transational Symmiaptms

sponds to the case in which a matter domination phase follows the

inflationary phase. The curve label€e-H; /(27) shows a thermal

density with this temperature. The unshaded region satisfies the'°Conformal time translation generates conformal transformation
conservative nonthermalization condition obtained by setting in a FRW universe, and the mass term breaks the conformal sym-
(oalv]y=1/MZ in Eq. (4). metry.
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what is responsible for particle creation in our isotropic ex-the coefficient ofa? term insidew?, we see that a sufficient

panding Universe. condition for the higher than zeroth adiabatic order terms to
To define the adiabatic vacuum, we first make a change igo to zero for largé is (d”a/dn")/a’* 1<« for all 7 in the
variables fromh, to W, by writing domain and any finite natural numberHence, we will as-

sume this to be true and use the adiabatic expansion to de-

1 (7 , , termine the asymptotic power dependencegfas 1b—0.
hi= \/z_Wkex _'f Wi(7')d7 (A1) The key is that the recursion equatioh4) can be used as
a generator of an asymptotic expansion of the exact solution
and obtain a new differential equation in the limit that the higher than Oth adiabatic order terms tend

to zero. One can easily show that this map has the property
WE=wWg— VAW W, — (31 (Wi /W )%, (A2)  if A[WM /WM ~1+O(1h%) +O(1b* #) with u=>1,
o then AJA[WM I/ A[WM ]~ 1+ O(1/b*"2)+ O(1Ie "2 #)
where we hgvlel used EQL1) and definedv to be the coef- \yhere ~ represents the asymptotic limit that-o. Since
ficient of hy in** Eq. (11). Hence, let us define a map W(k2)=wk+(9(1/b), we arrive at an useful property

1

AlW ] = \/Wﬁ— >
which shows how each successive approximation generates
which is a map that raises the adiabatic order by 2 and alsoorrections of only increasingly higher order irb1/Thus,
define

() r(n)\ 2
V\:’\;n) _E(Wk(nr;) } (A3) W =W "2+ 0o(1" Y, (A7)
2\ W,
k k

Al2-1
W2 = ATWY, Ad) Wl ~wi(m+ X (WP W) + (1A

n=0
where the superscript denotes the adiabatic orderVa(ld (A8)

=Ww. We can now write an approximate mode equationis an asymptotic expansion of the solution to E42) with
solutiont? good toAth adiabatic order as the boundary condition

1

hi = exd —i | WP (p)dy' |, (a5)
k W k \m)un .

Finally, we define the adiabatic vacuum/th order at some
value of » which we call »* by using the boundary whereh(7)~O(1/b**1). Let us call this solutiorf,. Note

Wi (7*) =W (7* ) +h(7*),

Wi (7%) =W, A (5*)+h"(5*) (A9)

conditiont® that f,, satisfies a boundary condition that differs from one
e implied by Eq.(A6) by O(1bA*1).
h(7*)=h(n*), h(n*)=h " (5*),  (AB) To check that this is the asymptotic expansion for the

) _ solution satisfying a different boundary conditipine. the
whereh, on the left hand side solves the mode equatid) ¢ specified by EqA6)], one can now perturb abofit by

exactly. Since for a generic finite* and fixedb the recur- - . )
sion generated by EqA4) eventually increases without WNiNg W (m)=T(n) +u(7) where the superscript on

bound in general, the recursion relation generates at best 3¢ corresponds to the time at which the boundary condi-
asymptotic expansion in the limit that the higher than zerotHion (A6) is imposed and by using this in EGA2) to obtain
adiabatic order terms go to zero. In particular, an infinitea differential equation linear im, . One then finds that the
adiabatic order vacuum usually cannot be generated at $purced solution contributes onl@(1/b”**) to u(7).
“nonsingular” z*. Hence, if the initial data oru,(7) are of the order of

Now, we examine how different boundary conditigdd- ~ O(1b”"?), then the behavior ofu(n) as b—w is
ferent adiabatic order vacugive rise to different asymptotic O(1/”*1). In particular, if we have the boundary condition
behaviors ap— . First let us restrict our attention to the (A6) instead of Eq. (A9), then we find uy(7*)
case wheray( ) is C” in the domain of interest. Sind# is ~ ~O(1/b**1) and

*
W ()~ WM () + O(1A* 1) (A10)
e have dropped all tildes for simplicity in notation. Note also A+l . * .
that a constant factor normalization choice of EAL) is unimpor- where theO(1/b™"") vanishes aty=»". This is of course
tant for the Bogoliubov transformation. what we would naively expgzct. .
pfter finishing our paper, we learned that a complete and more Y€ can now see howy will depend asymptotically ob.

precise analysis of the asymptotic behavior of the adiabatic modeSUPPOSe the vacuum in the past is defineg-aty, with nth
can be found in Ref[24]. adiabatic order boundary condition and the vacuum today is

Bin the spirit of the adiabatic expansion, the equality needs tglefined aty=», with pth adiabatic order boundary condi-
only be enforced td\th adiabatic order. However, we will for sim- tion. Carrying out the Bogoliubov transformation with the
plicity of argument assume throughout that it is enforced exactly. solution written in the form of Eq(Al), we find
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)2

where the right hand side can be evaluated at gnyn
light of Eq. (A10), if we substituteW,°=W{"+ O(1/b"*?)
and W/t =W+ O(1/bP*Y), then Wo— W/ =O(1/b"*1)
where  r=Min(n,p) and W, "/W/°—W, /W,
=0O(1/b""?). Now, since

q

+(W§°—Wg1)2] , (A11)

Ny f | Bl ?k2dK, (A12)
0

after making a change of variable frok to y through
k=yb, we obtain the result in Eq14).

PHYSICAL REVIEW D59 023501

<s—2<r=Min(p,n), and there are no discontinuities for
g<s, then Eqg.(A1l) will receive leading contributions at
the discontinuity. Note that the asymptotic expansion is valid
in each “continuous” region because the discontinuity is of
the first kind. Hence, with similar considerations as with the
smooth case above, we can obtain
Ny~b~ (253, (A13)
However, unlike in the continuous case, the asymptotic ex-
pansion can be used to evaluate E411) only at »= 7y
because the asymptotic expansion cannot be extended be-
yond each of the continuous regions. d4fis even, then
W, 7g) =W/ (174) ~O(1°" 1) will give the leading
contribution in Eq(A11) becausa&V"(s~2)/W(~2) s discon-
tinuous. If s is odd, then the leading contribution to
Eq. (A11) will come from the difference
W, "(77q) /W 76) = W, " (70) W () ~ O(1b>" ) be-

If within the domain of interest there is one discontinuity cause W"(~3)/W(~3))" s discontinuous. Note that a frac-

of the first kind(left and right hand limits exist but are un-
equa) in (d%/dy%)/a%"! at =gy for g=s where —2

tional power dependence onblill be possible if the dis-
continuity is not of the first kinde.g.,a(7)= »? at »=0].
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