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We show that in large-field inflationary scenarios, superheavy~many orders of magnitude larger than the
weak scale! dark matter will be produced in cosmologically interesting quantities if superheavy stable particles
exist in the mass spectrum. We show that these particles may be produced naturally during the transition from
the inflationary phase to either a matter-dominated or radiation-dominated phase as a result of the expansion of
the background spacetime acting on vacuum quantum fluctuations of the dark matter field. We find that as long
as there are stable particles whose mass is of the order of the inflaton mass~presumably around 1013 GeV!,
they will be produced in sufficient abundance to giveV051, quite independently of any details of the
nongravitational interactions of the dark-matter field.
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I. INTRODUCTION

It is now commonly accepted that most of the mass
galactic halos as well as in the Universe as a whole is c
posed of dark matter~DM!. There are many indications tha
the DM consists of some new, and yet undiscovered, wea
interacting massive particles~WIMPs!.

Despite the fact that the nature of the DM is st
unknown, it is usually thought that DM particles cannot
too heavy. If the WIMP is a thermal relic, then it was on
in local thermodynamic equilibrium~LTE! in the early
Universe, and its present abundance is determined by
self-annihilation cross section. From unitarity arguments@1#,
one expects the mass of a thermal relic to be less t
about 500 TeV. The present abundance of non-thermal re
is not determined by their self-annihilation cross sect
since they need not have been ever in LTE in the ea
Universe. An example of a non-thermal relic is the axio
and the present axion abundance is determined by
dynamics of the phase transition associated with symm
breaking. Non-thermal relics are typically very ligh
e.g., the axion mass is expected to be in the ra
1025– 1022 eV @2#.
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Because the assumption of relatively low-mass DM see
quite natural, it is rarely questioned.1 The goal of this paper
is to show that the Universe might be made of superhe
WIMPs ~we will refer to them asX particles!, with mass
larger than the weak scale by several~perhaps many! orders
of magnitude. Two conditions are necessary for this to h
pen: ~a! the X particles must be cosmologically stable a
~b! their interaction rate must be sufficiently weak such th
thermal equilibrium with the primordial plasma was nev
obtained. This second condition is easy to satisfy as long
the particle is extremely massive~of the order of the Hubble
parameter at the end of inflation!.

We point out that superheavy dark matter may be crea
during the evolution of the Universe in a number of ways.
it is produced during the process of reheating after inflati
then the upper bound on its massMX can be as large as th
reheating temperatureTRH . The latter should be less tha
about 109 GeV in order to avoid overproducing dangero
relics such as quasistable gravitinos in supergravity insp
scenarios. The mass upper bound can be pushed higher
the reheating temperature if one allows the DM to be p
duced directly through the decay of the inflaton field. In th

f

1Of course, superheavy dark matter particles have been consid
before to a certain extent. In particular, there is an extensive lit
ture regarding observational constraints on unusually heavy d
matter candidates~for example, see Refs.@3,4,5#, and references
therein!. However, they do not restrict our scenario; nor do th
consider our production mechanism.
©1998 The American Physical Society01-1
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case, the mass upper bound is the inflaton field mass, w
is presumably less than about 1013 GeV. On the other hand
if reheating after inflation is preceded by a preheating st
@6#, it is certainly possible to produce by resonance effe
copious amounts of dark matter particles with masses m
larger than the inflaton mass@7#.

In this paper, we consider yet another mechanism of g
erating heavy DM. We study the possibility that DM is pr
duced in the transition between an inflationary and a mat
dominated ~or radiation-dominated! universe due to the
‘‘nonadiabatic’’ expansion of the background spacetime d
ing the transition acting on the vacuum quantum fluctuatio

The distinguishing feature of this mechanism is the ca
bility of generating particles with mass of the order of t
inflaton mass~usually much larger than the reheating te
perature! even when the particles only interact extreme
weakly ~or not at all! with other particles and do not coup
to the inflaton~s!. We find that they may still be produced i
sufficient abundance to achieve critical density today due
the classical gravitational effect on the vacuum state at
end of inflation. More specifically, we will show that in th
range 0.04&MX /H&2, where H;mf;1013 GeV is the
Hubble constant at the end of inflation~mf being the mass o
the inflaton!, the DM produced gravitationally can have
density today of the order of the critical density. This res
is quite robust with respect to the ‘‘fine’’ details of the tra
sition between the inflationary phase and the mat
dominated phase, and independent of the coupling of the
to any other particle. This result is reasonably robust a
with respect to the ambiguity associated with the choice
vacua as we have tried to minimize the number of partic
produced by choosing an infinite adiabatic order in-o
vacua. The only ‘‘non-trivial’’ requirements, other than th
large field inflation occur, are that the WIMPs possess a m
close to the inflaton mass and that they be stable.

Mechanically, the DM particle creation scenario is simi
to the inflationary generation of gravitational perturbatio
that seed the formation of large scale structures~see for ex-
ample the review given in Ref.@8#!. In the usual scenarios o
this form, however, the quantum generation of energy d
sity fluctuations from inflation is associated with the inflat
field which dominated the mass density of the universe,
not a generic, sub-dominant scalar field.

Because it is usually assumed that DM forms from
decays or interactions of the reheating products, it usu
has a stage of LTE in its early history. In our scenario
large mass of the dark-matter particle will prevent it fro
thermalizing, and its abundance will depend only on its m
and the behavior of the spacetime, not on its weak coup
to other nongravitational fields.

Others have considered gravitational particle product
at the end of inflation. For example, Ford@9# and Yajnik@10#
both consider particle production as a result of the nona
baticity of the transition from an inflationary phase to a m
ter or radiation dominated phase~although with a different
cosmological implication in mind!. Ford treats only mass
less, non-conformally coupled fields using a well-known p
turbation technique~see references within@9#!. Yajnik con-
siders minimally coupled scalar field theory in the limit
02350
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small masses, with an abrupt transition from an inflation
phase to a radiation dominated phase. In our work, we c
sider extremely massive, conformally coupled fields and c
culate particle production exactly by numerically solving t
mode equation. We treat the conformally coupled case
cause conformal coupling generally minimizes the numbe
particles produced, particularly in small mass ranges. Un
Yajnik, we also consider the case where the metric is
analytic function of the conformal time and show that th
leads to a qualitatively different behavior of the density
particles produced for large masses. The analyticity implie
conservative estimate since fewer particles are produce
that case than in the abrupt transition case.

Some of the ideas present in our scenario are also c
tained in the work of Linde and Kofman@11,12,13#. How-
ever, the purpose of their work was to point out that isoc
vature cosmological~large scale! perturbations can be
produced during inflation. They did not consider the impo
tance of the nonadiabaticity of the transition at the end
inflation which is responsible for the production of our s
perheavy dark matter. Instead, they mainly relied upon e
mates of the particle production during the de Sitter phas
the classical~long wavelength! component of the particle
field energy density left over after inflation.

This paper is organized as follows. In the next section,
elaborate on the dark matter scenario and the calculati
method. In Sec. III, we discuss the numerical results.
then summarize our work in Sec. IV. In the Appendix, w
derive the asymptotic mass dependence of the dark m
density presented in Sec. II.

II. SCENARIO AND CALCULATIONAL METHOD

In this section we discuss the dark matter abundance
culation in our scenario. First, we give an expression for
dark matter density today in terms of the number dens
when it was produced. We then consider the mass rang
the dark matter necessary if it is never to thermalize. Fina
we discuss the mechanics of the gravitational production
particles. In particular, we discuss the number density d
nition and present the asymptotic dependence of the num
density on the particle mass.

Suppose the dark matter never attains LTE and is non
ativistic at the time of production. The usual quantityVXh2

associated with the dark matter density today can be rel
to the dark matter density when it was produced. To deve
the relation, we begin by writing

rX~ t0!

rR~ t0!
5

rX~ tRH!

rR~ tRH! S TRH

T0
D , ~1!

whererR denotes the energy density stored in radiation,rX
denotes the energy density residing in the dark matter,TRH is
the reheating temperature,T0 is the temperature today,t0
denotes the time today, andtRH denotes the approximat
1-2
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SUPERHEAVY DARK MATTER PHYSICAL REVIEW D59 023501
time of reheating completion.2 To obtainrX(tRH)/rR(tRH),
we must determine whenX particles are produced with re
spect to the completion of reheating and the effective eq
tion of state operative betweenX production and the comple
tion of reheating.

At the end of inflation the universe may have a brief p
riod of matter domination resulting either from the cohere
oscillations phase of the inflaton condensate or from the
heating phase@6#. If the X particles are produced at tim
t5te when the de Sitter phase ends and the coherent o
lation period just begins, then both theX particle energy
density and the inflaton energy density will redshift at a
proximately the same rate until reheating is completed
radiation domination begins. Hence, the ratio of energy d
sities preserved in this way until the time of radiation dom
nation is

rX~ tRH!

rR~ tRH!
'

8p

3

rX~ te!

MPl
2H2~ te!

, ~2!

where MPl'1019 GeV is the Planck mass and most of t
energy density in the universe just before timetRH is pre-
sumed to turn into radiation. Thus, using Eq.~1!, we may get
an expression for the quantityVX[rX(t0)/rC(t0), where
rC(t0)53H0

2MPl
2/8p andH05100h km sec21 Mpc21:

VXh2'VRh2S TRH

T0
D 8p

3 S MX

MPl
D nX~ te!

MPlH
2~ te!

. ~3!

Here VRh2'4.3131025 is the fraction of critical energy
density that is in radiation today andnX is the density ofX
particles at the time when they were produced.

Note that because the reheating temperature mus
much greater than the temperature today (TRH /T0*4.2
31014), in order to satisfy the cosmological boundVXh2

&1, the fraction of total energy density in the dark matter
the time when they were produced must be extremely sm
To illustrate this, takeH2(te);mf

2 and r(te);mf
2 MPl

2.
Then VXh2;1017(TRH/109 GeV)@rX(te)/r(te)#. It is in-
deed a very small fraction of the total energy density
wish to extract in the form of massiveX particles.

This means that if the dark matter particle is extrem
massive, the challenge lies in creating very few of them na
rally. We will see that gravitational production natural
gives the needed suppression. Note that if reheating oc
abruptly at the end of inflation, then the matter dominat
phase may be negligibly short and the radiation domina
phase may follow immediately after the end of inflatio
However, this does not change Eq.~3!.

For the superheavyX particles to be good candidates f
DM, they have to be stable or at least have a lifetime gre
than the age of the universe. This may occur in supers
metric theories where the breaking of supersymmetry
communicated to the ordinary sparticles via the usual ga

2More specifically, this is approximately the time at which t
universe becomes radiation dominated.
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forces@14#. In gauge-mediated supersymmetric models th
are two sectors with possible stable particles which might
as superheavy dark matter candidates:

~1! The secluded sector, which is strongly interacting: S
persymmetry is broken dynamically and someF-term gets a
nonvanishing expectation value, where the scale of su
symmetry breaking, as usual, is denoted byAF.

~2! The messenger sector: This sector contains the fi
charged under theSU(3)C^ SU(2)L ^ U(1)Y gauge interac-
tions, and communicates supersymmetry breaking to
sparticles in the observable sector. The mass of the mes
ger fields is usually denoted byM .

After the messengers have been integrated out, sferm
receive a mass squaredm̃2;a2L2, wherea is the appropri-
ate gauge coupling andL.F/M . Notice, in particular, that
the spectrum of the superparticles depends on the ratiL
5F/M which is fixed to be relatively small and in the rang
10– 103 TeV. However, this does not necessarily mean t
AF and M are of the same order of magnitude asL @15#
since it is only their ratio which is fixed around 103 TeV: the
hierarchyAF,M@L is certainly allowed@16#.

The secluded sector often has accidental symmet
analogous to the baryon number. This means that the ligh
particle in the secluded sector might be stable and a g
candidate for dark matter with a mass of the order ofAF,
much larger than the weak scale. The lightest messen
field might also be a good candidate for superheavy D
Indeed, if the supersymmetry breaking sector contains o
singlets under theSU(3)C^ SU(2)L ^ U(1)Y gauge interac-
tions and if there are no direct couplings between the o
nary and messenger sectors, then the theory is characte
by a conserved global quantum number carried only by
messenger fields. The typical massM of the DM component
in the messenger sector may be much larger than the w
scale.

Another framework in which we might expect the pre
ence of superheavy stable particles is a Kaluza-Klein the
~a unified theory which requires space-time dimensio
higher than 4!. A popular example is provided by M-theor
@17# where the number of dimensions isD511. These theo-
ries are characterized by the presence of a tower of Kalu
Klein modes which are left after the compactification of t
extraD24 dimensions. For instance, ifD55, the existence
of a compact fifth dimension implies an infinite tower
four-dimensional particles corresponding to quantized ex
tations of the extra dimension. These massive particles h
been called ‘‘pyrgons’’@18#. If any of the pyrgon states ar
stable or have a lifetime greater than the age of the unive
they might act as DM with a mass of the order of the inve
of the physical size of the compact dimensionsRD

21 , which
is likely to be larger than the weak scale by many orders
magnitude.

For the gravitational production scenario to be dist
guishable from other scenarios,X must never thermalize
The condition for the dark matter particles to be out of eq
librium and their comoving number density to be constan

nX^sAuvu&&H, ~4!
1-3
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CHUNG, KOLB, AND RIOTTO PHYSICAL REVIEW D59 023501
whereH is the Hubble parameter and^sAuvu& is the thermal
averaged self-annihilation cross section times the Mo” ller
speed for the dark matter particlesX. Since the cross sectio
sA is expected to be at most aboutMX

22 ~usually smaller;
sometimes much smaller3! andnX is bounded by the condi
tion thatVXh2,1, we obtain, from Eq.~3!,

nX^sAuvu&
H

'
7310219

~TRH/109 GeV!

~H/MPl!

~MX /MPl!
3 ~5!

as the quantity which must be less than 1 att5te to avoid
thermalization. For a low reheating temperature of 102 GeV
and a typical value ofH51026MPl for inflationary sce-
narios, we find a conservative conditionMX /H*1 for the
particles never to reach chemical thermal equilibrium. N
that this is a rather conservative estimate since the rehea
temperature is likely to be larger and the cross section
likely to be smaller. We also remark that because the reh
ing temperature is likely to be much smaller than theX mass,
the thermal production of theX particles is negligible.4

Now let us describe the basic physics underlying o
mechanism of the gravitational production of DM.

In this paper we take space-time both in and out of
inflationary era to be spatially flat, homogeneous, and iso
pic, with a line element of the form

ds25a2~h!~dh22dx2!. ~6!

For simplicity ~and without much loss of generality!, we re-
strict ourselves to a massive scalar field coupled to class
gravity and nothing else. The other couplings are assume
play an insignificant role in the gravitational production.

There are various inequivalent ways of calculating
particle production due to interaction of a classical grav
tional field with the vacuum~see for example@19,20,21#!. In
our work, we use the method of finding the Bogoliubov c
efficient for the transformation between positive frequen
modes defined at two different times. We will show belo
that the large mass dependence of the DM number dens
determined by either the differentiability~or the smoothness!
of the scale factor or the choice of the vacuum. On the ot
hand, for MX /H&1 where H is the value at the end o
inflation, the results are quite insensitive to the different
bility or the fine details of the scale factor’s time depe
dence. For 0.04&MX /H&2, we find that all the dark matte
needed for closure of the universe can be made gravitat
ally, quite independently of the details of the transition b
tween the inflationary phase and the matter dominated ph

To see the effects of vacuum choice and the scale fa
differentiability on the largeX mass behavior of theX den-

3For example, if there is a heavy gauge particle mediating
process, then the effective coupling will be further suppressed
the relevant mass scale for the cross section will be the media
particle mass instead of theX mass.

4Since for times larger thante the interaction rate continues to b
smaller thanH, the particles will not thermalize later either.
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sity produced, we start with the canonical quantization of
X field in an action of the form@in the coordinateds25dt2

2a2(t)dx2#

S5E dtE d3x
a3

2 S Ẋ22
~¹X!2

a2 2MX
2X22jRX2D ~7!

whereR is the Ricci scalar. After transforming to conform
time coordinate, we use the mode expansion

X~x!5E d3k

~2p!3/2a~h!
@akhk~h!eik–x1ak

†hk* ~h!e2 ik–x#,

~8!

where because the creation and annihilation operators o
the commutator@ak1

,ak2

† #5d (3)(k12k2), the hk’s obey a

normalization conditionhkhk8* 2hk8hk* 5 i to satisfy the ca-
nonical field commutators~henceforth, all primes on func
tions of h refer to derivatives with respect toh!. The result-
ing mode equation is

hk9~h!1wk
2~h!hk~h!50, ~9!

where

wk
25k21MX

2a21~6j21!a9/a. ~10!

The parameterj is 1/6 for conformal coupling and 0 fo
minimal coupling. From now on, we will setj51/6 for sim-
plicity but without much loss of generality. By a change
variable h→k/a, one can rewrite the differential equatio
such that it depends only onH(h), H8(h)/k, k/a(h), and5

MX . Hence, we introduce the parameterHi and ai corre-
sponding to the Hubble parameter and the scale factor ev
ated at an arbitrary conformal timeh i , which we take to
be the approximate time at whichX are produced@i.e.,
h i5h(te)#. We then rewrite Eq.~9! as

h
k̃
9~ h̃ !1~ k̃21b2ã2!hk̃~ h̃ !50 @b[MX /Hi # ~11!

whereh̃5haiHi , ã5a/ai , andk̃5k/(aiHi). For simplicity
of notation, we shall drop all the tildes from now on. Th
differential equation can be solved once the boundary co
tions are supplied. Since the annihilation operator is jus
coefficient of an expansion in a particular basis, fixing t
boundary conditions is equivalent to fixing the vacuum.

To obtain the number density of the particles produc
we will perform a Bogoliubov transformation from th
vacuum mode solution with the boundary condition ath
5h0 ~the initial time at which the vacuum of the universe
determined! into the one with the boundary condition ath
5h1 ~any later time at which the particles are no long
being created!. In the examples given in the next section,h0
will be taken to be2` while h1 will be taken to be at1`
in order to define vacua of infinite adiabatic order~explainede
d

ng

5This differential equation ishk9(y)1(1/H)H8(y)hk8(y)1(1
1MX

2/y2)/H2(y)hk50, wherey5k/a.
1-4
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SUPERHEAVY DARK MATTER PHYSICAL REVIEW D59 023501
below! which results in a smaller particle production than f
any finite adiabatic order vacua.6 The exact values ofh0 and
h1 are not important for those examples as long as they
in a region in whicha8/a2!1 or ba/k!1. Defining the Bo-
goliubov transformation ashk

h1(h)5akhk
h0(h)1bkhk

* h0(h)
~the superscripts denote where the boundary condition is!,
we have the following energy density in the particles p
duced:

rX~h1!5MXnX~h1!5MXHi
3S 1

ã~h1! D
3E

0

` dk̃

2p2 k̃2ub k̃u2,

~12!

where7 one should note that the number operator is define
h1 while the quantum state~approximated to be the vacuum
state! defined ath0 does not change in time in the Heise
berg representation.

As usual, there is an ambiguity in the definition of th
vacuum, which is equivalent to an ambiguity in the bound
conditions of Eq.~9!. One method of systematically class
fying the various inequivalent vacuum states is through
adiabatic vacuum@22# definition. The adiabatic vacuum defi
nition allows one to construct and classify a set of mo
equation solutions which reduce to the usual plane wa
when a8(h)50 for all h. The classification is based on
type of WKB asymptotic expansion in powers of conform
time derivatives ofwk . In particular, the classification allow
one to quantify how two solutions with different bounda
conditions~hence two vacua! will differ in terms of deriva-
tives of wk . Each derivative with respect to the conform
time is assigned a bookkeeping small parameter, and
small parameter’s power in an expansion is referred to as
adiabatic order. We define theAth adiabatic~order! vacuum
at timeh* by using the boundary condition

hk~h* !5hk
~A!~h* !, hk8~h* !5hk8

~A!~h* !, ~13!

wherehk
(A)(h) is a systematically chosen approximate so

tion to the mode equation that satisfies the mode equatio
to Ath adiabatic order in the asymptotic limit that the ad
batic parameter goes to zero. Roughly speaking, the la
the adiabatic order of the vacuum, the closer it is to
Minkowski vacuum in the sense that it is less~in the adia-
batic limit! dependent on the time at which it is defined. W
refer the reader to the Appendix~or Ref. @20#! for a more
precise definition.

As shown in the Appendix, the asymptotic behavior of t
number density asb→` can be obtained by the following
rule: If the vacuum ath0 corresponds to annth adiabatic
vacuum, and the vacuum ath1 corresponds to apth

6In the numerical calculation, one can only approximate th
infinities with large numbers, but the limit is not singular.

7Here we restored the tildes for clarity.
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adiabatic vacuum, then asb→` the number density will
behave like8

nX;b2~2r 11! ~14!

where r 5Min( p,n) provided that (dna/dhn)/an11,` for
all hP@h0 ,h1# and all natural numbers9 n. It is important to
note that for a fixed time, the asymptotic expansion gen
ated by Eq.~A2! ~in the Appendix! generally only converges
up to a finite order. Hence, except under special circu
stances an adiabatic vacuum of only a finite order can
generated. This means that, in general, the number den
will fall off with a finite power of 1/b for largeb. Only when
an adiabatic vacuum of infinite adiabatic order can be g
erated, which usually means that the domain ofa(h) can be
extended to6` with the property given above, does th
number of particles produced fall off faster than any fin
power of 1/b ~e.g., exponential suppression!. In practice, we
find that a spacetime which admits an infinite adiabatic or
vacuum has the ‘‘advantage’’ of all the vacua defined in
sufficiently adiabatic region being numerically equivalent
gardless of the vacua’s adiabatic order and the exact tim
which the vacua are defined.

III. NUMERICAL RESULTS

We shall employ the method elaborated in the previo
section to calculate the gravitational production of partic
in a couple of toy models of inflation. We will see tha
enough dark matter may be produced through this mec
nism as to give critical density of dark matter today.

Our toy model looks at aC` function for a(h) which
behaves like the de Sitter space forh→2` and the matter
or radiation dominated universe forh→`:

a~h!5ai H 12exp@2~h/h i !
2#

~h/h i !
2 S 12tanh~h/h i /211!

2 D
1

~h/h i !
2p

@113 exp~2h/h i !#
2

1tanh~h/h i2l!2tanh~h/h i22l!J 1/2

~15!

wherel51.07 is needed for proper normalization. The fun
tional form was chosen rather arbitrarily except for the
quirements of monotonicity, (dna/dhn)/an11,` for all h
and natural numbersn, and appropriate power law
asymptotic behavior. This spacetime admits a vacuum of
finite adiabatic order ath56`. In Fig. 1 we show how this
model compares with the numerical result obtained by so
ing the (1/2)mf

2 f2 inflationary model’s equations of motion
In Fig. 2, we show the number density obtained nume

cally in this toy model. The peak atMX /Hi;1 is similar to
the case presented in Ref.@23#. As we expect, for largeb, the
number density falls off faster than any inverse power ofb.
Note that if MX'Hi'mf for TRH'109 GeV, X will

e

8This behavior is also noted on p. 69 of@20# although there it is
arrived at differently than in our Appendix.

9Note that by definition given in the Appendix,p and n can be
only even natural numbers or 0.
1-5
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have critical energy density today. On the other hand,
gravitational production mechanism will not genera
enough dark matter in the Universe to give a critical dens
for much larger masses (MX@mf) even if such stable heav
particles exist. Furthermore, even in the mass range in w
the density of particles produced peaks, if the reheating t
perature is below about 107 GeV, this mechanism will mos
likely not generate a significant amount of dark matter. In
case that this mechanism cannot produce particles withMX
@Hi , if these heavy particles couple to the inflaton fie

FIG. 1. The scale factor~normalized to its value ath5h i! is
plotted as a function of the scaled conformal timeh/h i . The curve
labeled ‘‘toy model’’ corresponds to the scale factor of the mode
which the universe makes a transition from an inflationary phas
a matter dominated phase. Ash/h i→2`, the scale factor behave
as 1/(h/h i)

2 corresponding to a de Sitter space, and ash/h i

→1`, the scale factor behaves as (h/h i)
2 corresponding to a mat

ter dominated universe. The solid curve shows an analogous
merical solution of the scale factor for a (1/2)mf

2 f2 inflaton poten-
tial.

FIG. 2. The dark matter abundance today is shown as a func
of the particle mass for various models. The mass is given in te
of Hi'1026MPl ~the Hubble parameter ath5h i , the beginning of
the coherent oscillation period!. The curve labeled ‘‘radiation’’ cor-
responds to the case in which a radiation dominated phase fol
the inflationary phase whereas the curve labeled ‘‘matter’’ co
sponds to the case in which a matter domination phase follows
inflationary phase. The curve labeledT5Hi /(2p) shows a thermal
density with this temperature. The unshaded region satisfies
conservative nonthermalization condition obtained by settin
^sAuvu&51/MX

2 in Eq. ~4!.
02350
is

y

h
-

e

with the right coupling, enough may be produced to ha
critical density of superheavy dark matter today.

IV. SUMMARY

To conclude, we have investigated the scenario of cre
ing nonthermalizing dark matter gravitationally at the end
inflation ~or the beginning of the coherent oscillation phas!.
There is a significant mass range~0.1mf –mf , wheremf
'1013 GeV! for which the X particles will have a critical
density today regardless of the fine details of the inflatio
matter–radiation transition. Because this production mec
nism is inherent in the dynamics between the classical gr
tational field and a quantum field, it needs no fine-tuning
field couplings or any coupling to the inflaton field. How
ever, only if the particles are stable~or sufficiently long
lived! will these particles give contributions of the order
the critical density. For even larger dark matter masses,
broad resonance mechanism of preheating~if it occurs! will
produce these particles in sufficient abundance as to ach
V051.
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APPENDIX

In this appendix, we derive Eq.~14! and Eq.~A13!, the
asymptotic dependence of the dark matter density on
mass parameterb5MX /Hi as b→`. This asymptotic be-
havior is, in general, dependent upon the choice of
vacuum state and the differentiability of the scale factor in
Friedmann-Robertson-Walker~FRW! type spacetime. We
employ the adiabatic vacua ansatz@22# to classify the various
possible~restricted! choices of vacua. Strictly speaking, ou
conditions for the various asymptotic behaviors are only s
ficient conditions, but they have wide applicability as w
demonstrate in this paper.

Let us first review the concept of an adiabatic vacuu
~see for example p. 66 of Ref.@20#!. We first define the
concept of an adiabatic order as the power of 1/T that results
for any term in a 1/T expansion after one makes the tran
formation h→h and d/dh→T21d/dh. Note that if T21

→0, then this is equivalent to an expansion in the ‘‘sma
ness’’ of conformal time derivatives. The basic idea is tha
the derivatives of the mode frequencywk are indeed small,
then the degree to which the field theory breaks time tra
lational symmetry can be characterized by the adiabatic
der. This breaking of the time translational symmetry10 is

10Conformal time translation generates conformal transforma
in a FRW universe, and the mass term breaks the conformal s
metry.

to

u-

n
s

s
-

he

he
1-6



x

e

al

io

t
t

ot
ite
at

e

t
to

de-

tion
nd
erty

ates

ne

he

di-

n

y is
i-
e

so

or
d

t
-
ly.

SUPERHEAVY DARK MATTER PHYSICAL REVIEW D59 023501
what is responsible for particle creation in our isotropic e
panding Universe.

To define the adiabatic vacuum, we first make a chang
variables fromhk to Wk by writing

hk5
1

A2Wk

expS 2 i Eh
Wk~h8!dh8 D ~A1!

and obtain a new differential equation

Wk
25wk

221/2@Wk9/Wk2~3/2!~Wk8/Wk!
2#, ~A2!

where we have used Eq.~11! and definedwk
2 to be the coef-

ficient of hk̃ in11 Eq. ~11!. Hence, let us define a map

A@Wk
~n!#5Awk

22
1

2 FWk9
~n!

Wk
~n! 2

3

2 S Wk8
~n!

Wk
~n! D 2G ~A3!

which is a map that raises the adiabatic order by 2 and
define

Wk
~n12!5A@Wk

~n!#, ~A4!

where the superscript denotes the adiabatic order andWk
(0)

5wk . We can now write an approximate mode equat
solution12 good toAth adiabatic order as

hk
~A!5

1

A2Wk
~A!

expS 2 i Eh
Wk

~A!~h8!dh8 D . ~A5!

Finally, we define the adiabatic vacuum ofAth order at some
value of h which we call h* by using the boundary
condition13

hk~h* !5hk
~A!~h* !, hk8~h* !5hk8

~A!~h* !, ~A6!

wherehk on the left hand side solves the mode equation~11!
exactly. Since for a generic finiteh* and fixedb the recur-
sion generated by Eq.~A4! eventually increases withou
bound in general, the recursion relation generates at bes
asymptotic expansion in the limit that the higher than zer
adiabatic order terms go to zero. In particular, an infin
adiabatic order vacuum usually cannot be generated
‘‘nonsingular’’ h* .

Now, we examine how different boundary conditions~dif-
ferent adiabatic order vacua! give rise to different asymptotic
behaviors asb→`. First let us restrict our attention to th
case wherea(h) is C` in the domain of interest. Sinceb2 is

11We have dropped all tildes for simplicity in notation. Note al
that a constant factor normalization choice of Eq.~A1! is unimpor-
tant for the Bogoliubov transformation.

12After finishing our paper, we learned that a complete and m
precise analysis of the asymptotic behavior of the adiabatic mo
can be found in Ref.@24#.

13In the spirit of the adiabatic expansion, the equality needs
only be enforced toAth adiabatic order. However, we will for sim
plicity of argument assume throughout that it is enforced exact
02350
-

in

so

n

an
h

a

the coefficient ofa2 term insidewk
2 , we see that a sufficien

condition for the higher than zeroth adiabatic order terms
go to zero for largeb is (dna/dhn)/an11,` for all h in the
domain and any finite natural numbern. Hence, we will as-
sume this to be true and use the adiabatic expansion to
termine the asymptotic power dependence ofnX as 1/b→0.

The key is that the recursion equation~A4! can be used as
a generator of an asymptotic expansion of the exact solu
in the limit that the higher than 0th adiabatic order terms te
to zero. One can easily show that this map has the prop
if A@Wk

(n)#/Wk
(n);11O(1/ba)1O(1/ba1m) with m>1,

then A@A@Wk
(n)##/A@Wk

(n)#;11O(1/ba12)1O(1/ba121m)
where; represents the asymptotic limit thatb→`. Since
Wk

(2)5wk1O(1/b), we arrive at an useful property

Wk
~n!5Wk

~n22!1O~1/bn21!, ~A7!

which shows how each successive approximation gener
corrections of only increasingly higher order in 1/b. Thus,

Wk~h!;wk~h!1 (
n50

A/221

~Wk
~2n12!2Wk

~2n!!1O~1/bA11!

~A8!

is an asymptotic expansion of the solution to Eq.~A2! with
the boundary condition

Wk~h* !5Wk
~A!~h* !1h~h* !,

Wk8~h* !5Wk8
~A!~h* !1h8~h* ! ~A9!

whereh(h);O(1/bA11). Let us call this solutionf k . Note
that f k satisfies a boundary condition that differs from o
implied by Eq.~A6! by O(1/bA11).

To check that this is the asymptotic expansion for t
solution satisfying a different boundary condition@i.e. the
one specified by Eq.~A6!#, one can now perturb aboutf k by

writing Wk
h* (h)5 f k(h)1uk(h) where the superscript on

Wk
h* corresponds to the time at which the boundary con

tion ~A6! is imposed and by using this in Eq.~A2! to obtain
a differential equation linear inuk . One then finds that the
sourced solution contributes onlyO(1/bA11) to uk(h).
Hence, if the initial data onuk(h) are of the order of
O(1/bA11), then the behavior ofuk(h) as b→` is
O(1/bA11). In particular, if we have the boundary conditio
~A6! instead of Eq. ~A9!, then we find uk(h* )
;O(1/bA11) and

Wk
h* ~h!;Wk

~A!~h!1O~1/bA11! ~A10!

where theO(1/bA11) vanishes ath5h* . This is of course
what we would naively expect.

We can now see hownX will depend asymptotically onb.
Suppose the vacuum in the past is defined ath5h0 with nth
adiabatic order boundary condition and the vacuum toda
defined ath5h1 with pth adiabatic order boundary cond
tion. Carrying out the Bogoliubov transformation with th
solution written in the form of Eq.~A1!, we find

e
es

o
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ubk~h1 ,h0!u25
1

4Wk
h0Wk

h1 H 1

4 S Wk
8h0

Wk
h0

2
Wk

8h1

Wk
h1 D 2

1~Wk
h02Wk

h1!2J , ~A11!

where the right hand side can be evaluated at anyh. In
light of Eq. ~A10!, if we substituteWk

h05Wk
(n)1O(1/bn11)

and Wk
h15Wk

(p)1O(1/bp11), then Wk
h02Wk

h15O(1/br 11)

where r 5Min(n,p) and Wk
8h0/Wk

h02Wk
8h1/Wk

h1

5O(1/br 12). Now, since

nX}E
0

`

ubku2k2dk, ~A12!

after making a change of variable fromk to y through
k5yb, we obtain the result in Eq.~14!.

If within the domain of interest there is one discontinu
of the first kind~left and right hand limits exist but are un
equal! in (dqa/dhq)/aq11 at h5hd for q5s where 22
g-
8.
S.

v.
,

-
d
d
o
A

ys

02350
,s22<r5Min( p,n), and there are no discontinuities fo
q,s, then Eq.~A11! will receive leading contributions a
the discontinuity. Note that the asymptotic expansion is va
in each ‘‘continuous’’ region because the discontinuity is
the first kind. Hence, with similar considerations as with t
smooth case above, we can obtain

nX;b2~2s23!. ~A13!

However, unlike in the continuous case, the asymptotic
pansion can be used to evaluate Eq.~A11! only at h5hd
because the asymptotic expansion cannot be extended
yond each of the continuous regions. Ifs is even, then
Wk

h0(hd)2Wk
h1(hd);O(1/bs21) will give the leading

contribution in Eq.~A11! becauseW9(s22)/W(s22) is discon-
tinuous. If s is odd, then the leading contribution t
Eq. ~A11! will come from the difference
Wk

8h0(hd)/Wk
h0(hd)2Wk

8h1(hd)/Wk
h1(hd);O(1/bs21) be-

cause (W9(s23)/W(s23))8 is discontinuous. Note that a frac
tional power dependence on 1/b will be possible if the dis-
continuity is not of the first kind@e.g.,a(h)5h2 at h50#.
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