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Vacuum defects without a vacuum
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Topological defects can arise in symmetry breaking models where the scalar field potentialV(f) has no
minima and is a monotonically decreasing function ofufu. The properties of such vacuumless defects are quite
different from those of the ‘‘usual’’ strings and monopoles. In some models such defects can serve as seeds for
structure formation, or produce an appreciable density of mini-black holes.@S0556-2821~99!50102-1#
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Symmetry-breaking phase transitions in the early unive
can result in the formation of topological defects: doma
walls, strings, monopoles, and their hybrids@1,2#. A proto-
typical symmetry breaking model is of the form

L5 1
2 ]mfa]mfa2V~ f !, ~1!

where fa is a set of scalar fields,a51, . . . ,N, f
5(fafa)1/2, and the potentialV( f ) has a minimum at a
non-zero value off . Domain walls, for example, are ob
tained for a singlet scalar field,N51. Domain wall solutions,
f5f(x), interpolate between2h at x→2` and1h at x
→1`, where f 5h is the minimum ofV( f ).

In this paper, we are going to consider defects in mod
whereV( f ) has a local maximum atf 50 but no minima;
instead, it monotonically decreases to zero atf→`. Poten-
tials with this asymptotic behavior can arise, for examp
due to non-perturbative effects in supersymmetric ga
theories@3#. In a cosmological context, they have been d
cussed in the so-called quintessence models@4#. Defects aris-
ing in such models could be called ‘‘quintessential,’’ but w
shall resist this temptation and use a more descriptive t
‘‘vacuumless.’’ We shall see that the properties and evo
tion of vacuumless defects can be quite different from
usual ones.

We begin with the simplest case of a domain wall d
scribed by a real scalar fieldf with a potential

V~ f !5lM4 cosh22~ f /M !. ~2!

The field equation

f 9~x!5V8~ f ! ~3!

has a domain wall solution

sinh~f/M !5~2l!1/2Mx ~4!

with a finite energy per unit area

s5E T0
0dx5p~2l!1/2M3. ~5!

Similarly, for an inverse power-law potential
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V~ f !5lM41n~Mn1 f n!21, ~6!

one finds f }uxu2/(n12) and T0
0(x)}uxu22n/(n12) at uxu→`.

For n.2, this energy distribution is integrable and the ma
per unit areas is finite. In this respect, vacuumless walls a
quite similar to ordinary domain walls.

The situation with strings and monopoles is more intere
ing. Let us first consider global strings described by a sca
doublet (f1 ,f2) with a power-law potential~6!. In the cy-
lindrical coordinates (r ,u,z), the string ansatz isf1
5 f (r )cosu, f25 f (r )sinu, and f (r ) satisfies the equation

f 91
f 8

r
2

f

r 2
2

dV

d f
50. ~7!

The asymptotic solution of Eq.~7! at r @l21/2M 21 is

f ~r !5AM~r /d!2/n12, ~8!

where A5(n12)2/(n12)(n14)21/(n12);1, and d
5l21/2M 21 is the size of the string core. The energy dens
around the string isT0

0}r 22n/(n12) and the energy per uni
length of string is

m~R!52pE
0

R

T0
0rdr;M2~R/d!4/n12;@ f ~R!#2. ~9!

The cutoff radiusR has the meaning of a distance to th
nearest string~or of the loop radius in the case of a close
loop!. We see from Eq.~9! that vacuumless strings are ve
diffuse objects with most of the energy distributed at lar
distances from the string core. They are much more diff
than ordinary global strings which havem(R)} ln R, so that
most of the energy is concentrated near the core.

For the exponential potential~2!, numerical integration of
Eq. ~7! indicates that the derivative terms in that equation
negligible at larger , while the last two terms are nearl
equal. The asymptotic behavior off (r ) at larger is given by

f ~r !'M ln~r /d! ~10!

and the dominant contribution tom(R) is

m~R!'E
d

R f 2

2r 2
2prdr'

p

3
M2@ ln~R/d!#3. ~11!
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A global monopole is described by a triplet of scalar fie
fa , a51,2,3. The monopole ansatz isfa5 f (r )xa /r , where
r is the distance from the monopole center. For the pow
law potential~6!, it is easily verified that the field equatio
for f (r ) admits a solution of the same form~8! as for a
global string ~with a different coefficientA;1!. The total
energy of a global monopole is

M;M2R~R/d!4/n12;R@ f ~R!#2, ~12!

where the cutoff radiusR is set by the distance to the neare
antimonopole. For the exponential potential~2!, f (r ) is given
by Eq. ~10! andM(R);4pM2R@ ln(R/d)#2.

The structure of gauge vacuumless strings and monop
is more unusual. A gauge symmetry breaking model is
tained from Eq.~1! by adding the gauge field Lagrangian a
replacing]m by gauge covariant derivatives. We shall fir
consider strings with a power-law potential~6!. The string
ansatz for the gauge field isAu(r )52a(r )/er, wheree is
the gauge coupling. We found numerical solutions to
field equations fora(r ) and f (r )

f 91
f 8

r
2~a21!2

f

r 2
2

dV

d f
50 ~13!

a92
a8

r
2e2f 2~a21!50 ~14!

in a finite range 0<r<R, with boundary conditionsf (0)
5a(0)50, a(R)51. The value off (R) was chosen so tha
the total field energy in the volume under consideration
minimized. As f (r ) grows towards larger , the effective
mass of the gauge field also grows, anda(r ) approaches its
asymptotic value,a51, very quickly @see Fig. 1~a!#. The
gauge flux tube is therefore very well localized and t
boundary conditiona(R)51 is a good approximation.

The solution for f (r ) in the casen52 and e2/l58 is
shown in Fig. 1~b! for several values ofR. The most remark-
able feature of these solutions is that, at a givenr , they do
not approach any limit as the integration rangeR is in-
creased. This can be understood as follows. Outside
gauge flux tube, we can seta51 and drop the third term in
Eq. ~13!. Then there are two possibilities. Either all thr
remaining terms in Eq.~13! are of comparable magnitude i
the asymptotic region of larger , or two of the three are
comparable, while the third term is negligible. Now, if th
potential term is comparable to one or both of the derivat
terms, then the solution is a power law, Eq.~8!. It is easily
seen that the coefficientA for this solution cannot be a pos
tive real number, and thus the solution is unphysical. T
only remaining possibility is that the two derivative terms a
comparable, while the potential term is negligible. This giv
the solution

f ~r !5A ln~r /d!1B. ~15!

The problem with this solution is that withf (r ) given by Eq.
~15!, the potential term in Eq.~13! decreases more slowl
than the derivative terms. This indicates that Eq.~15! cannot
02170
r-

t

es
-

e

s

he

e

e

s

apply in the whole asymptotic ranger @d. The potential
term catches up with the derivative terms near the poinr
5R, where the boundary conditions are imposed. Assum
thatB&A ln(R/d) and requiring thatf 9;dV/d f at r;R, we
have

A;M ~R/d!2/n12@ ln~R/d!#2n11/n12. ~16!

We have integrated Eqs.~13!, ~14! with n52 numerically
for several values of parametersR/d and l/e2. The results
are in a good agreement with Eqs.~15!, ~16!.

The energy per unit length of a gauge vacuumless strin
m(R);2pA2(R)ln(R/d), with the main contribution coming
from f 82/2 andV( f ) terms inT0

0. Apart from a logarithmic
factor, this is the same as Eq.~9! for a global vacuumless
string. In the case of an exponential potential~2!, a similar
analysis yieldsA'M andm(R);pM2 ln(R/d).

The force per unit length due to inter-string interaction
Fi;dm(R)/dR, and the force due to the string tension
Ft;m(R)/R ~assuming that the typical curvature radius
strings in the network is comparable to the average sep
tion R!. For vacuumless strings with an exponential pote
tial, Ft /Fi; ln(R/d), and we expect the Nambu action to giv
an adequate description of macroscopic strings@ ln(R/d)
;100#. For a power-law potential,Fi;Ft , and the Nambu
action cannot be used.

FIG. 1. ~a! Gauge fielda(r ) and~b! scalar fieldf (r ) of a gauge
vacuumless string for a potential~6! with n52 ande2/l58. The
top, middle, and bottom curves are forR5400, 100, and 20, re-
spectively.
1-2
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Finally, we consider vacuumless gauge monopoles. O
again, we find numerically that the potential term in t
equation forf (r ) is negligible forr !R. An analytic solution
for both scalar and gauge fields can be given in this rang
is the Prasad-Sommerfield solution@5#

f ~r !5A coth~eAr!21/er,

a~r !5eAr/sinh~eAr!,

wherea(r ) is defined in terms of the gauge fieldAm
a asAi

a

52@12a(r )#eai jxj /er2. As before,A can be estimated by
requiring that the potential term catches up with the grad
terms atr;R. For the power-law potential, this gives

A~R!;M ~leM3R3!1/~n11!. ~17!

The size of the monopole core isr A;1/eA. Much of the
monopole energy is concentrated near the core; the tota
ergy in that region is

M5
4p

e
A. ~18!

In addition, there is a nearly constant energy densityT0
0

'V(A) outside the core. The corresponding total energy
E;V(A)R3;M. We note that the monopole core becom
a black hole forf (R)'A*mp , wheremp is the Plank mass
Quite similarly, for the exponential potential we findA
;M ln(R/d), whileM is still given by Eq.~18!.

Let us now briefly discuss the formation and cosmologi
evolution of vacuumless defects. At high temperatures in
early universe, the potentialV( f ) acquires the usua
temperature-dependent term,

VT~ f !5aT2f 2, ~19!

wherea depends on the coupling off to other fields. When
T is sufficiently large, the minimum of the potential is atf
50. As T decreases, this minimum turns into a maximum
some critical temperatureTc . For the exponential potentia
~2! and for the power-law potential~6! with n52, Tc
5(l/a)1/2M @6#. When the universe cools down toT5Tc ,
the symmetry-breaking phase transition occurs and the
fects are formed in the usual way.

It should be noted that Eq.~19! for the thermal correction
to the potential is valid only at smallf . As f gets large,
particles coupled tof acquire large masses and disapp
from the thermal bath. As a result,VT( f ) decreases expo
nentially at largef . The thermal defect production mech
nism will work only if f is initially localized nearf 50.

An alternative way of triggering the symmetry-breakin
phase transition is to use the coupling off to the scalar
curvature,VR( f )5jRf 2. The curvatureR drops from a
large value to near zero at the end of inflation, and de
formation can occur at that point. The phase transition
also be triggered by a coupling off to the inflation field.

By analogy with ordinary defects, one can expect t
vacuumless strings and monopoles will eventually reac
scaling regime in which the typical distance between the
02170
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fects is comparable to the horizon,R;t. The main dissipa-
tion mechanism of vacuumless defects is similar to that
ordinary global strings and monopoles which lose most
their energy by radiating massless Goldstone bosons. Gl
vacuumless defects will also radiate Goldstone bosons, b
addition they will radiate masslessf -particles~which corre-
spond to radial excitations of the fieldf!. For gauge vacu-
umless defects, there are no Goldstone bosons,
f -particles will still be emitted. Thus in all cases the dom
nant dissipation mechanism is the radiation of massless
ticles.

For global strings with a power-law potential, the ma
per unit length of string is given by Eq.~9! with R replaced
by t. The relative contribution of strings to the energy de
sity of the universe is given by

rs /r;m~ t !/mp
2;@ f ~ t !/mp#2, ~20!

wheref (t);M (t/d)2/(n12) is the characteristic magnitude o
f in the space between the strings. We see that the frac
of energy in strings monotonically grows with time, and t
universe becomes dominated by the strings whenf (t)
;mp .

The observed isotropy of the cosmic microwave ba
ground ~CMB! implies m(t0)/mp

2&1025, where t0 is the
present time. The corresponding constraint onM is M
&1 MeV for n52 andM&100 GeV forn54 ~assumingl
;1!. For values ofM saturating this constant, the string
would make a non-negligible contribution to the observ
CMB anisotropy on the largest scales. Such strings, howe
cannot be used to explain structure formation. The charac
istic scale of the observed large-scale structure crossed
horizon att;teq;1026t0 . The density fluctuations due t
strings on that scale are of the orderdr/r;m(teq)/mp

2

!1025. Very similar conclusions are reached for gau
strings and global monopoles.

In the case of an exponential potential, the evolution
global and gauge vacuumless strings is similar to that
ordinary global strings, and the evolution of global mon
poles is similar to that of ordinary global monopoles. T
strings serve as seeds for structure formation withM
;1013GeV andM;1015GeV in the global and gauge case
respectively. Global monopoles can seed structure forma
for M;1014GeV. The difference in the required energ
scaleM for different defects is due to the different power
the large logarithm in the expression for their mass.

Let us finally discuss the evolution of vacuumless gau
monopoles. A monopole and an antimonopole separated
distanceR are attracted with a forceF;dM/dR;M/R ~for
the power-law potential! and develop an accelerationa
;R21. They reach relativistic speeds and oscillate with
characteristic period;R, rapidly losing their energy by ra
diation of masslessf-particles. Eventually, they annihilat
into f- and gauge bosons. IfR is large enough so tha
f (R).mp , then the monopole cores are black holes, an
Schwarzschild black hole of mass;M ~without a magnetic
charge! is produced as a result of annihilation.

Apart from close monopole-antimonopole pairs which a
about to annihilate, the typical distance between the mo
1-3



e

on
he

RAPID COMMUNICATIONS

INYONG CHO AND ALEXANDER VILENKIN PHYSICAL REVIEW D 59 021701
poles at timet is R;t, and their relative contribution to th
energy density of the universe is

rm /r;M~ t !/mp
2t}t22n/n11. ~21!

For n52, rm /r;(l/e2)1/3(M /mp)25const, while for n
.2 it decreases with time.

Monopoles turn into black holes at timet* such that
f (t* );mp . The mass of black holes formed at timet f is
m;M(t f). For t f in the radiation era,t f,teq , the mass
distribution of black holes at the present time is

m
dVBH

dm
;

mteq
1/2

mp
2t f

3/2
;1027S l

eD 1/2S M

mp
D 5/2S M

emD ~n21!/2

,

~22!
nd
-
d

ys

02170
and for t f.teq ,

m
dVBH

dm
;

m

mp
2t f

;S l

e2D 1/3S M

mp
D 2S M

emD ~n22!/3

. ~23!

The usual bounds@7# on the density of primordial black
holes can be used to constrain the parametersM , l, andn.
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the manuscript. This work was supported in part by t
National Science Foundation.
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