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Vacuum defects without a vacuum
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Topological defects can arise in symmetry breaking models where the scalar field pdtéetjahas no
minima and is a monotonically decreasing functioriif The properties of such vacuumless defects are quite
different from those of the “usual” strings and monopoles. In some models such defects can serve as seeds for
structure formation, or produce an appreciable density of mini-black H@€§56-282(199)50102-1]

PACS numbseps): 11.27+d, 98.80.Cq

Symmetry-breaking phase transitions in the early universe V(f)=AM*T (M "+ £M) 1, (6)
can result in the formation of topological defects: domain
walls, strings, monopoles, and their hybrids2]. A proto-  one findsfo|x|?""2) and T3(x)o<|x|2"("*2) at |x|—oo.

typical symmetry breaking model is of the form For n>2, this energy distribution is integrable and the mass
1 per unit areau is finite. In this respect, vacuumless walls are
L=30,u¢a0"Pa=V(T), @) quite similar to ordinary domain walls.

The situation with strings and monopoles is more interest-
ing. Let us first consider global strings described by a scalar
doublet ($1,®,) with a power-law potentia{6). In the cy-
lindrical coordinates 1,6,z), the string ansatz is¢;
=f(r)cos, ¢p,=1(r)sing, andf(r) satisfies the equation

where ¢, is a set of scalar fieldsa=1,... N, f
=(¢pa¢2)*% and the potentiaV(f) has a minimum at a
non-zero value off. Domain walls, for example, are ob-
tained for a singlet scalar field{=1. Domain wall solutions,
¢= ¢(X), interpolate between-  at x— —o and + » at x
— +o, wheref = » is the minimum ofV(f). ,

In this paper, we are going to consider defects in models £ 4 f__ i_ d_VZO @)
whereV(f) has a local maximum at=0 but no minima; ro 2 df 7
instead, it monotonically decreases to zerd -ate. Poten-
tials with this asymptotic behavior can arise, for example The asymptotic solution of Eq7) atr>\"YM 1 is
due to non-perturbative effects in supersymmetric gauge
theories[3]. In a cosmological context, they have been dis- f(r)=AM(r/8)2"+2, (8)
cussed in the so-called quintessence modgIDefects aris-
ing in such models could be called “quintessential,” but wewhere  A=(n+2)?"*2(n+4)~Y"*2~1  and &
shall resist this temptation and use a more descriptive terre A~ M ~ ! is the size of the string core. The energy density
“vacuumless.” We shall see that the properties and evoluaround the string igger ~2"("*2) and the energy per unit
tion of vacuumless defects can be quite different from thdength of string is
usual ones.

We begin with the simplest case of a domain wall de-

R
_ Or 4y N2 an+2__ 2
scribed by a real scalar field with a potential 'LL(R)_ZWL Tordr ~M*(R/9) (RIS O

V(f)=AM*cosh *(f/M). 2 The cutoff radiusR has the meaning of a distance to the

nearest stringor of the loop radius in the case of a closed

The fiel ion :
e field equatio loop). We see from Eq(9) that vacuumless strings are very

7 (x)=V'(f) (3)  diffuse objects with most of the energy distributed at large
distances from the string core. They are much more diffuse
has a domain wall solution than ordinary global strings which haygR)=In R, so that
most of the energy is concentrated near the core.
sinh( /M) =(2\)"Mx 4 For the exponential potenti&®), numerical integration of

Eq. (7) indicates that the derivative terms in that equation are
negligible at larger, while the last two terms are nearly
equal. The asymptotic behavior tfr) at larger is given by

with a finite energy per unit area
o= f Todx=m(2\) M8, (5)
f(r)y=MIn(r/ &) (10

Similarly, for an inverse power-law potential and the dominant contribution ta(R) is

R f2
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A global monopole is described by a triplet of scalar fields
¢, a=1,2,3. The monopole ansatzdg=f(r)x,/r, where
r is the distance from the monopole center. For the power-
law potential(6), it is easily verified that the field equation
for f(r) admits a solution of the same for@®) as for a
global string(with a different coefficientA~1). The total o
energy of a global monopole is

M~M?R(R/ 6" 2~R[f(R)]?, (12)

where the cutoff radiuR is set by the distance to the nearest
antimonopole. For the exponential potent@), f(r) is given - - - - .
by Eq.(10) and M(R)~47M2R[In(R/8)]>. ' ' ' /5
The structure of gauge vacuumless strings and monopoles @

is more unusual. A gauge symmetry breaking model is ob-
tained from Eq(1) by adding the gauge field Lagrangian and l
replacingd,, by gauge covariant derivatives. We shall first
consider strings with a power-law potenti@). The string

ansatz for the gauge field &B4(r)=— «a(r)/er, wheree is =r
the gauge coupling. We found numerical solutions to the oM =
field equations forx(r) andf(r)

oy = el Voo 13
7 ~(a—1 2odr (13 |
n_ a_’_ 2.2 B _ 10° u;" ulu" 1;7' u‘f
@ e“f“(a—1)=0 (14 /8
r ®)
in a finite range &r<R, with boundary conditiondg(0) FIG. 1. () Gauge fieldx(r) and(b) scalar fieldf(r) of a gauge

=a(0)=0, a(R)=1. The value off (R) was chosen so that vacuumless string for a potenti¢8) with n=2 ande?/A=8. The
the total field energy in the volume under consideration igop, middle, and bottom curves are fB&=400, 100, and 20, re-
minimized. Asf(r) grows towards large, the effective  spectively.
mass of the gauge field also grows, and) approaches its
asymptotic valuea=1, very quickly [see Fig. 1a)]. The apply in the whole asymptotic range>s. The potential
gauge flux tube is therefore very well localized and theterm catches up with the derivative terms near the point
boundary conditiorn(R)=1 is a good approximation. =R, where the boundary conditions are imposed. Assuming
The solution forf(r) in the casen=2 ande’A=8 is thatB=AIn(R/é) and requiring that”"~dV/df atr~R, we
shown in Fig. 1b) for several values dR. The most remark- have
able feature of these solutions is that, at a givethey do
not approach any limit as the integration ranBeis in-
creased. This can be understood as follows. Outside t
gauge flux tube, we can set=1 and drop the third term in
Eq. (13). Then there are two possibilities. Either all three
remaining terms in Eq.13) are of comparable magnitude in
the asymptotic region of large, or two of the three are
comparable, while the third term is negligible. Now, if the
potential term is comparable to one or both of the derivativ
terms, then the solution is a power law, E). It is easily
seen that the coefficiert for this solution cannot be a posi-
tive real number, and thus the solution is unphysical. Th
only remaining possibility is that the two derivative terms are
comparable, while the potential term is negligible. This gives
the solution

A~M(R/ 8P 2[In(R/ )] "T1n+2, (16)

h\‘;Ve have integrated Eq$13), (14) with n=2 numerically
for several values of parameteRés and \/e?. The results
are in a good agreement with Eq45), (16).

The energy per unit length of a gauge vacuumless string is
w(R)~27A%(R)In(R/8), with the main contribution coming
e]‘rom f2/2 andV(f) terms inTg. Apart from a logarithmic
factor, this is the same as E() for a global vacuumless

string. In the case of an exponential potent@l, a similar
@nalysis yieldsA~M and u(R)~7M? In(R/4).

The force per unit length due to inter-string interaction is
F~du(R)/dR, and the force due to the string tension is
Fi~u(R)/R (assuming that the typical curvature radius of

strings in the network is comparable to the average separa-
f(r)=AlIn(r/8)+B. (15  tion R). For vacuumless strings with an exponential poten-
tial, F,/F;~In(R/$), and we expect the Nambu action to give
The problem with this solution is that witt(r) given by Eq. an adequate description of macroscopic strifgsR/6)
(15), the potential term in Eq(13) decreases more slowly ~100]. For a power-law potentiak;~F;, and the Nambu
than the derivative terms. This indicates that Bdp) cannot  action cannot be used.
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Finally, we consider vacuumless gauge monopoles. Oncfects is comparable to the horizdR~t. The main dissipa-
again, we find numerically that the potential term in thetion mechanism of vacuumless defects is similar to that of
equation forf(r) is negligible forr <R. An analytic solution ordinary global strings and monopoles which lose most of
for both scalar and gauge fields can be given in this range. their energy by radiating massless Goldstone bosons. Global

is the Prasad-Sommerfield solutif vacuumless defects will also radiate Goldstone bosons, but in
addition they will radiate masslegsparticles(which corre-
f(r)=AcothleAr)—1ler, spond to radial excitations of the fielfl). For gauge vacu-
. umless defects, there are no Goldstone bosons, but
a(r)=eAr/sinn(eAr), f-particles will still be emitted. Thus in all cases the domi-
wherea(r) is defined in terms of the gauge fiekﬁ asA? Egr;tsdlssmatlon mechanism is the radiation of massless par

_ iiyifar2 ;
=—[1-a(r)]e*'x//er®. As before A can be estimated by £q giohal strings with a power-law potential, the mass
requiring that the potential term catches up with the gradlenber unit length of string is given by E¢9) with R replaced

terms atr~R. For the power-law potential, this gives by t. The relative contribution of strings to the energy den-
A(R)~M(AeM3R3)Un+1), (17) sity of the universe is given by

~ 2 _ 2
The size of the monopole core is~1/eA. Much of the ps!p~n(O/Mp~[F()/m,]%, (20

monopole energy is concentrated near the core; the total en- _ 2An+2) ; - :
ergy in that region is wheref(t) ~M(t/6) is the characteristic magnitude of

¢ in the space between the strings. We see that the fraction

47 of energy in strings monotonically grows with time, and the
M= ?A. (19 universe becomes dominated by the strings wHégt)
~m,.

p ) . .
In addition, there is a nearly constant energy denmgy The observed isotropy of the cosmic microwave back-

. . 2 —5 .
~V(A) outside the core. The corresponding total energy i@round (CMB) implies m(to)/my=10">, wheret, is the

£~V(A)R3~ M. We note that the monopole core becomesPréSent time. The corresponding constraint ln is M
a black hole forf (R)~A=m,, wherem, is the Plank mass. =1 MeV for n=2 andM =100 GeV forn=4 (assuming\

Quite similarly, for the exponential potential we findl ~1). For values of sa_tL!rating thi_s constant, the strings
~M In(R/8), while M is still given by Eq.(18) would make a non-negligible contribution to the observed
Let us now briefly discuss the formation and cosmologicalCMB anisotropy on the largest scales. Such strings, however,

evolution of vacuumless defects. At high temperatures in thgannot be used to explain structure formation. The character-
early universe, the potentiaV(f) acquires the usual istic scale of the observed large-scale structure crossed the

. — — _6 . .
temperature-dependent term, ho_rlzon att~teq~10""ty. The density fluctuations due; to
strings on that scale are of the ordép/p~ u(teq)/my

Vo(f)=aT?f?, (199 <10"°. Very similar conclusions are reached for gauge
strings and global monopoles.
wherea depends on the coupling @f to other fields. When In the case of an exponential potential, the evolution of

T is sufficiently large, the minimum of the potential isfat global and gauge vacuumless strings is similar to that of
=0. As T decreases, this minimum turns into a maximum atordinary global strings, and the evolution of global mono-
some critical temperatur€,. For the exponential potential poles is similar to that of ordinary global monopoles. The
(2) and for the power-law potential6) with n=2, T,  strings serve as seeds for structure formation with

=(Ma)¥?M [6]. When the universe cools down To=T,, ~10"GeV andM~10"GeV in the global and gauge cases,
the symmetry-breaking phase transition occurs and the deespectively. Global monopoles can seed structure formation
fects are formed in the usual way. for M~10“GeV. The difference in the required energy

It should be noted that Eq19) for the thermal correction scaleM for different defects is due to the different power of
to the potential is valid only at smafl. As f gets large, the large logarithm in the expression for their mass.
particles coupled tap acquire large masses and disappear Let us finally discuss the evolution of vacuumless gauge
from the thermal bath. As a resul,;(f ) decreases expo- monopoles. A monopole and an antimonopole separated by a
nentially at largef. The thermal defect production mecha- distancer are attracted with a forde~dM/dR~ M/R (for
nism will work only if f is initially localized nearf =0. the power-law potentialand develop an acceleration

An alternative way of triggering the symmetry-breaking ~R~1. They reach relativistic speeds and oscillate with a
phase transition is to use the coupling ¢#fto the scalar characteristic period-R, rapidly losing their energy by ra-
curvature,Vy(f )=£&Rf2. The curvatureR drops from a diation of masslesg-particles. Eventually, they annihilate
large value to near zero at the end of inflation, and defecinto ¢- and gauge bosons. R is large enough so that
formation can occur at that point. The phase transition cari(R)>m,, then the monopole cores are black holes, and a
also be triggered by a coupling 6fto the inflation field. Schwarzschild black hole of massM (without a magnetic

By analogy with ordinary defects, one can expect thaitharge is produced as a result of annihilation.
vacuumless strings and monopoles will eventually reach a Apart from close monopole-antimonopole pairs which are
scaling regime in which the typical distance between the deabout to annihilate, the typical distance between the mono-
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poles at timet is R~t, and their relative contribution to the and fort;>t.,
energy density of the universe is

pmlp~M(t)/mitect2= NN (22)
ey m (A M\ M\ (-2
For n=2, py/p~(Ne?)(M/m,)2=const, while forn M—am 2 |z (m_> (?n (23
>2 it decreases with time. myte \e P

Monopoles turn into black holes at timg such that
f(t,)~m,. The mass of black holes formed at tirheis

m~ M(t;). For t; in the radiation erat;<t.q, the mass ) _ _
distribution of black holes at the present time is The usual bound$7] on the density of primordial black
holes can be used to constrain the parameigrsa., andn.
)\) 1/2( M

e mp

dQgH _ mtng .

2,32
dm mptf
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