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Domain walls and the decay rate of the excited vacua in largeN Yang-Mills theory
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Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455

~Received 28 September 1998; published 2 December 1998!

In the ~nonsupersymmetric! Yang-Mills theory in the largeN limit, there exists an infinite set of nondegen-
erate ‘‘vacua.’’ The distinct vacua are separated by domain walls whose tension determines the decay rate of
the false vacua. I discuss the phenomenon from a field-theoretic point of view, starting from supersymmetric
gluodynamics and then breaking supersymmetry by introducing a gluino mass. By combining previously
known results, the decay rate of the excited vacua is estimated,G;exp(2const3N4). The fourth power ofN
in the exponent is a consequence of the fact that the wall tension is proportional toN.
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PACS number~s!: 12.38.Aw, 11.27.1d, 11.30.Pb, 12.60.Jv
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The u dependence of the pure Yang-Mills theories in t
strong coupling regime has been investigated for a long ti
A qualitative picture gradually emerged explaining vario
observations regarding theu dependence of the vacuum e
ergyE. This picture~for a very clear summary see Sec. 1
Ref. @1#! predicts the existence of a set of states—only one
them is the true vacuum, while all others are ‘‘excit
vacua’’—intertwined together in the process of theu evolu-
tion. Each timeu crossesp, 3p, and so on, the levels cros
and change their relative roles: one of the excited vacua
comes the true one andvice versa. Then,E(u) is a multi-
branch function ofu of the type

E~u!5N2 mink FS u12pk

N D ,

whereN is the number of colors andF(x) is someN inde-
pendent function. This vacuum structure can be proven
softly broken supersymmetric~SUSY! theories@2,3#. A simi-
lar picture emerges from the M-theory five-brane appro
@4#. Recently, it was derived@1# in the context of ideas con
nected with the correspondence between the confor
gauge field theory and quantum gravity on anti–de-Si
space@5#. Maldacena’s duality is believed to give rise to
large N gauge theory belonging to the same universa
class as QCD, starting from a string theory. It was shown@1#,
that for everyu, there is a set of infinitely many vacua stab
at N5`. The true vacuum is obtained by minimizing ener
over this set. Cusps occur atu5p(2k11) wherek is an
integer. At these points, an additional twofold degener
emerges. The adjacent vacua from the above set are s
rated by domain walls which can be described in terms
wrapped six-branes@1#.

Here I describe how these qualitative results regarding
structure of the QCD vacuum are naturally obtained in
field theoryper se, and calculate the life time of the ‘‘false’
vacua, which turns out to be proportional to exp(2CN4). The
constantC can be found up to a numerical factor of ord
unity; the uncertainty is due to extrapolation from the sup
symmetric to non-SUSY limit. The method is based on t
extrapolation and on the fact that in the SUSY limit both, t
vacuum structure and the domain wall tension, are exa
known @6–8#. I start from SUSY gluodynamics and, in ord
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to break supersymmetry, introduce a mass termmg to the
gluino fields. At mg!L ~where L is the dynamical mass
scale! calculations are exact. Asmg grows and, eventually
crossesL the gluinos decouple, and one recovers pure Ya
Mills theory. Extrapolating the smallmg results tomg;L
yields the overall structure of the pure Yang-Mills theory w
are interested in, allowing one to establish fully theN depen-
dencies. In fact, this approach has been already applied
viously @2,3#. A new element which I add is combining
with the N counting. A surprising finding is the existence
the stationary domain walls in the~nonsupersymmetric!
Yang-Mills theory in the limitN→`, whose tension can be
evaluated. These domain walls occur as the boundaries s
rating the distinct stable vacua from the intertwined set.

The vacuum structure in SUSY gluodynamics is ve
simple @9,10,6#. We haveN degenerate chirally asymmetri
vacua, labeled by the value of the gluino condensate

^Tr ll&5NL3expS i ~2pk1u!

N D , k50,1,. . . ,N21,

~1!

plus a possible chirally symmetric vacuum at^Tr ll&50.
The chirally asymmetric vacua form a family ofN states
intertwined in the process of theu evolution. At u
5p,3p, . . . thevacuum restructuring takes place, so that t
physical 2p periodicity inu is maintained. The chirally sym
metric vacuum at̂ Tr ll&50 plays no role in this process
and will be disregarded hereafter.

With the exact supersymmetry, allN vacua from the
above family have the vanishing energy density and
physically equivalent. If one considers two distinct vac
separated ‘‘geographically,’’ the border between them i
domain wall discussed in@7,8,11#. If the wall is BPS satu-
rated, then the tension of the wall separating two adjac
vacua is

«5
N

8p2 ^Tr ll&0UexpS 2p ik

N D2expS 2p i ~k11!

N D U,
~2!
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where u is set equal to zero, and̂Tr ll&0 is the gluino
condensate atk50. Since^Tr ll&0 scales asN, in the large
N limit the tension of the saturated wall is

«5
N

4p
L3. ~3!

It is important to note that the asymptotic behavior is line
in N. Even in the unlikely case the wall is not saturated,1 its
tension must differ from Eq.~3! only by a numerical factor
which does not alter theN dependence of«.

Now, what happens if one adds to the Lagrangian
SUSY gluodynamics a soft SUSY-breaking term?

The gluino mass term has the form

DLm5
mg

g2 ^Tr ll&1H.c. ~4!

To begin with, we assume thatmg /g2!L. Now SUSY is
broken, and with it is gone the degeneracy ofN vacua of
supersymmetric gluodynamics. To first order inmg , the en-
ergy density of thekth vacuum becomes

Ek52Re
mg

g2 ^Tr ll&k52S 2 cos
2pk

N D S mg

g2 DNL3.

~5!

I assumemg /g2 to be real and positive.~This can be always
achieved by adjustingu appropriately.! Note that the combi-
nation mg /g2 is renormalization-group invariant to leadin
order, and scales asN. The combination renormalization
group invariant to all orders can also be found@16#,

mg

g2 2mg

N

8p2 .

For our purposes, it is sufficient to limit ourselves to t
leading order.

Generically, all vacua are shifted from zero byDE;N2,
in full accordance with the general expectations regard
the vacuum energy in the nonsupersymmetric gauge theo
The true vacuum corresponds tok50. The states atkÞ0
have a higher energy density. The spectrum of the st
corresponding to Eq.~5! consists of two distinct parts~call
them the first and the second part, respectively!. For k that
does not scale withN, the argument of the cosine is sma
and the level splitting between the neighboring vacua is

1The issue whether or not the walls interpolating between
adjacent vacua~the so called complex walls! are Bogomol’nyi-
Prasad-Sommerfield~BPS! saturated is being debated@12#. For N
52 and 3, the amended@6# Veneziano-Yankielowicz Lagrangia
@13# exhibits no complex walls at all. For largeN, the walls sepa-
rating the adjacent vacua must exist. Arguments were given@15#
that the Veneziano-Yankielowicz Lagrangian is inappropriate
the explorations of the complex walls. To see whether or not
BPS saturated walls are present, cusps inherent to this Lagran
must be smoothed out, see, e.g.,@14#.
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DE;8p2S k1
1

2D mg

Ng2 L3;N0. ~6!

As is seen from this expression, for higherk the level split-
tings grow and become of orderN whenk becomes propor-
tional to N. This is the maximal dependence of the lev
splittings onN. For k;N, Eq. ~6! is not valid, since it was
obtained by expanding Eq.~5!. One can see directly from Eq
~5! that atk;N the energy splittingsDE;N. Note that at
N5`, the number of states belonging to the part of t
vacuum family with the level splittings of orderN0 ~i.e., the
first part of the spectrum! is infinite by itself. The fate of the
vacua from this part of the spectrum, on the one hand,
the higher-lying states~from the second part!, on the other
hand, is different. The height of the barrier in the function
space, separating the adjacent vacua is of orderN @see Eq.
~3!#. It is determined by the wall tension. One should keep
mind that the wall width;L21;N0. Although so far the
wall tension was obtained in SUSY gluodynamics, the glu
mass term does not affect it as long asmg!L. Even atmg
*L the walls, interpolating between those vacua that belo
to the first part of the spectrum, persist as static objects,
their tension changes only by order unity. TheN dependence
of « remains intact. Therefore, the vacua from the first par
the spectrum are stable in spite of the fact that they are n
degenerate. Below we will evaluate their decay rate to
exp(2CN4).

As for the vacua from the second part of the spectrum
k}N they may disappear at all as local minima in the fun
tional space. Or, else, some of them may survive as sha
minima. In any case, they disappear as stationary states
the walls interpolating between these former vacua, eve
they survive as shallow minima, are not static objects, th
tend to ‘‘decay.’’ Needless to say that for such walls t
estimate of their tension from Eq.~3! would be wrong.

If the decay rates of the vacua from the first part of t
family tend to zero atN→` as exp(2CN4), the decay rates
of the states from the second part are either of order unit
k;N or vanish slower than exp(2CN4) if k scales asNs

with s,1.
Now we estimate the decay rate of the stable vacua.

false ones decay into the true vacuum through the bub
formation. The quasiclassical theory of these decays is w
developed@17#, it is applicable if the radius of the critica
bubble is large, much larger than the wall width. In our ca
the radius of the critical bubble is proportional toN ~this is
the radius corresponding to a balance between the vol
energy gained and the surface energy lost!, while the wall
width is N independent. Therefore, at largeN the quasiclas-
sical theory is valid. The general result of this theory is

G}expS 2
27

2
p2

«4

~DE!3D , ~7!

whereDE is the difference of the vacuum energy densities
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the false and true vacua, and« is the surface energy densit
of the domain wall. With our values of« andDE, we get2

G;expS 2U Tr^ll&0

@m/~Ng2!#3U N3

~k11/2!3

33

218p8D . ~8!

The result for the exponent is rigorously valid formg!L
and k!N. I will now extrapolate it to the point of the
gaugino decoupling, i.e.,mg /(Ng2);L ~still assuming that
k!N). Then

G;expS 2h
33

218p8

N4

~k11/2!3D , ~9!

where a dimensionless coefficienth is introduced to take
account of the uncertainty of the extrapolation,h;100. This
coefficient is purely numerical, it isN independent.

Equation ~9! presents an estimate of the false vacu
decay rate to its neighbor in the largeN ~nonsupersymmet
ric! Yang-Mills theory. Even though we know the expone
only by an order of magnitude, the presence of a very str
numerical suppression of the exponent seems evident. I
our derivations are practically applicable only to very lar
N*100 even atk;1.

It would be very interesting to check how bo
conclusions—theN4 functional dependence of lnG and a
numerical suppression of the coefficient in front
N4—appear directly within the Maldacena-Witten approa

2For N52 a similar calculation has been carried out in Ref.@8#.
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Narrow quasistable excited vacua were detected rece
within an effective Lagrangian approach in Ref.@18#. Al-
though some aspects in this consideration remain ques
able and require further clarification, it seems worth trying
apply the method to check whether some of the exci
vacua survive at lowN, and, if so, to estimate their deca
rate and possible phenomenological manifestations.

One of potentially important points is the lattice calcul
tions. Since they are always done in finite volume, wh
reduces the field-theoretic system to quantum-mechanica
vacua contribute to the correlation functions calculated in
lattice Yang-Mills theory, generally speaking. This mig
lead to a contamination of the lattice results by false vac
Certainly, practically all calculations are done atN52 or 3.
At such low values ofN, the false vacua may not exist a
local minima in the functional space, or may be so shallo
that there is no barrier separating them from the true one
this case they do not affect determination of the physica
measurable quantities~such as the particle masses and co
pling constants! from the finite-volume lattice results.

In summary, starting from supersymmetric gluodynam
and extrapolating in the gluino mass, one can argue tha
infinite set of the stable vacua exist in the largeN nonsuper-
symmetric Yang-Mills theory. Static domain walls interp
late between these vacua. The decay rate of the false vac
given by the formula~9!.
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