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In the (nonsupersymmetricYang-Mills theory in the larg®\ limit, there exists an infinite set of nondegen-
erate “vacua.” The distinct vacua are separated by domain walls whose tension determines the decay rate of
the false vacua. | discuss the phenomenon from a field-theoretic point of view, starting from supersymmetric
gluodynamics and then breaking supersymmetry by introducing a gluino mass. By combining previously
known results, the decay rate of the excited vacua is estimBte@gxp(—constxN?). The fourth power oN
in the exponent is a consequence of the fact that the wall tension is proportionaN. to
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The 6 dependence of the pure Yang-Mills theories in theto break supersymmetry, introduce a mass tenqto the
strong coupling regime has been investigated for a long timegluino fields. Atmy<A (where A is the dynamical mass
A qualitative picture gradually emerged explaining variousscalg calculations are exact. As, grows and, eventually,
observations regarding thedependence of the vacuum en- crosses\ the gluinos decouple, and one recovers pure Yang-
ergy E. This picture(for a very clear summary see Sec. 1 in Mills theory. Extrapolating the smalh, results tomy~ A
Ref.[1]) predicts the existence of a set of states—only one ofjields the overall structure of the pure Yang-Mills theory we
them is the true vacuum, while all others are *“excitedare interested in, allowing one to establish fully th&epen-
vacua’—intertwined together in the process of thevolu-  dencies. In fact, this approach has been already applied pre-
tion. Each time# crossesr, 3w, and so on, the levels cross viously [2,3]. A new element which | add is combining it
and change their relative roles: one of the excited vacua bewith the N counting. A surprising finding is the existence of
comes the true one andce versa Then,E(6) is a multi-  the stationary domain walls in thénonsupersymmetric

branch function ofé of the type Yang-Mills theory in the limitN— o, whose tension can be
evaluated. These domain walls occur as the boundaries sepa-
E(6)=N2 min, F 6+ 277") rating the distinct stable vacua from the intertwined set.
K N ' The vacuum structure in SUSY gluodynamics is very

simple[9,10,6. We haveN degenerate chirally asymmetric

whereN is the number of colors anBl(x) is someN inde-  vacua, labeled by the value of the gluino condensate
pendent function. This vacuum structure can be proven in
softly broken supersymmetriSUSY) theorieq2,3]. A simi- 2kt 6)
lar picture emerges from the M-theory five-brane approach 1(2mk+ 6
[4]. Recently, it was derivefll] in the context of ideas con- (Tr )\)\):NA3ex;{ N ) k=01,..,N—1,
nected with the correspondence between the conformal D
gauge field theory and quantum gravity on anti—de-Sitter
space[5]. Maldacena’s duality is believed to give rise to a
large N gauge theory belonging to the same universalityPlus a possible chirally symmetric vacuum @ A\)=0.
class as QCD, starting from a string theory. It was shfiyn ~ The chirally asymmetric vacua form a family of states
that for everys, there is a set of infinitely many vacua stable intertwined in the process of the evolution. At ¢
atN=cc. The true vacuum is obtained by minimizing energy = =,37, . . . thevacuum restructuring takes place, so that the
over this set. Cusps occur &= m(2k+1) wherek is an  physical 27 periodicity in 6 is maintained. The chirally sym-
integer. At these points, an additional twofold degeneracynetric vacuum atTr AX)=0 plays no role in this process,
emerges. The adjacent vacua from the above set are seppd will be disregarded hereafter.
rated by domain walls which can be described in terms of With the exact supersymmetry, al vacua from the
wrapped six-branefl |. above family have the vanishing energy density and are

Here | describe how these qualitative results regarding thghysically equivalent. If one considers two distinct vacua
structure of the QCD vacuum are naturally obtained in theseparated “geographically,” the border between them is a
field theoryper se and calculate the life time of the “false” domain wall discussed ifi7,8,11. If the wall is BPS satu-
vacua, which turns out to be proportional to ex@N*). The  rated, then the tension of the wall separating two adjacent
constantC can be found up to a numerical factor of order vacua is
extrapolation and on the fact that in the SUSY limit both, the N (Tr ) exp<2mk e 2K 1))
vacuum structure and the domain wall tension, are exactly &7 8n2 0 N N

unity; the uncertainty is due to extrapolation from the super-
symmetric to non-SUSY limit. The method is based on this
known[6-8]. | start from SUSY gluodynamics and, in order 2
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where 6 is set equal to zero, an@lr A\\)q is the gluino
condensate &=0. Since(Tr A\\), scales ad\, in the large
N limit the tension of the saturated wall is

N
e=— AS.

41 ©)

It is important to note that the asymptotic behavior is linea

in N. Even in the unlikely case the wall is not saturatets,
tension must differ from Eq(3) only by a numerical factor
which does not alter thBl dependence of.

Now, what happens if one adds to the Lagrangian o

SUSY gluodynamics a soft SUSY-breaking term?
The gluino mass term has the form

Mg
A£m=?(Tr A\)+H.c. 4

To begin with, we assume thmg/gz</\. Now SUSY is
broken, and with it is gone the degeneracyMfvacua of
supersymmetric gluodynamics. To first ordemny, the en-
ergy density of thékth vacuum becomes

m

9 27k [ mgy 3
Ex=—Re 7 (Tr A\\)=—| 2 cos—— e NA®.

N
(5

I assumerng/g2 to be real and positiveThis can be always
achieved by adjusting appropriately). Note that the combi-

nation mg/g2 is renormalization-group invariant to leading
order, and scales ad. The combination renormalization-

group invariant to all orders can also be foUrnd],

% N

92 —mgﬁ.

For our purposes, it is sufficient to limit ourselves to the

leading order.
Generically, all vacua are shifted from zero B ~N?,

in full accordance with the general expectations regardin
the vacuum energy in the nonsupersymmetric gauge theori

The true vacuum corresponds ke=0. The states ak#0

have a higher energy density. The spectrum of the stat

corresponding to Eq5) consists of two distinct part&all
them the first and the second part, respectivehpr k that

does not scale witiN, the argument of the cosine is small

and the level splitting between the neighboring vacua is

r

e
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m
AE~87? N_SZ A3~NO, (6)

k-l—l
2

As is seen from this expression, for highethe level split-
tings grow and become of orddr whenk becomes propor-
tional to N. This is the maximal dependence of the level
splittings onN. Fork~N, Eg. (6) is not valid, since it was
obtained by expanding E(5). One can see directly from Eq.
(5) that atk~N the energy splitting?dE~N. Note that at

1N=oo, the number of states belonging to the part of the

vacuum family with the level splittings of ord®?® (i.e., the

first part of the spectrujris infinite by itself. The fate of the
vacua from this part of the spectrum, on the one hand, and
the higher-lying state¢from the second parton the other
hand, is different. The height of the barrier in the functional
space, separating the adjacent vacua is of okigsee Eq.
(3)]. It is determined by the wall tension. One should keep in
mind that the wall width~A ~1~NO. Although so far the
wall tension was obtained in SUSY gluodynamics, the gluino
mass term does not affect it as longrag<A. Even atm,

= A the walls, interpolating between those vacua that belong
to the first part of the spectrum, persist as static objects, and
their tension changes only by order unity. TRelependence

of & remains intact. Therefore, the vacua from the first part of
the spectrum are stable in spite of the fact that they are non-
degenerate. Below we will evaluate their decay rate to be
exp(—CNY).

As for the vacua from the second part of the spectrum, at
kN they may disappear at all as local minima in the func-
tional space. Or, else, some of them may survive as shallow
minima. In any case, they disappear as stationary states, and
the walls interpolating between these former vacua, even if
they survive as shallow minima, are not static objects, they
tend to “decay.” Needless to say that for such walls the
estimate of their tension from E¢3) would be wrong.

If the decay rates of the vacua from the first part of the
family tend to zero aN—x as expt-CNY), the decay rates

{f the states from the second part are either of order unity at

~N or vanish slower than exp(CN) if k scales adN”

with o<1.
Now we estimate the decay rate of the stable vacua. The

e .
f?;\lse ones decay into the true vacuum through the bubble

formation. The quasiclassical theory of these decays is well-
developed17], it is applicable if the radius of the critical

" bubble is large, much larger than the wall width. In our case,

the radius of the critical bubble is proportional kb(this is
the radius corresponding to a balance between the volume
energy gained and the surface energy)lostile the wall

The issue whether or not the walls interpolating between thayidth is N independent. Therefore, at larbethe quasiclas-

adjacent vacugthe so called complex wa)lsare Bogomol'nyi-
Prasad-Sommerfiel(BPS saturated is being debat¢di2]. For N

=2 and 3, the amend€ed] Veneziano-Yankielowicz Lagrangian

[13] exhibits no complex walls at all. For lard¢, the walls sepa-
rating the adjacent vacua must exist. Arguments were git&h

that the Veneziano-Yankielowicz Lagrangian is inappropriate for

sical theory is valid. The general result of this theory is

27 et
) : (7)

2

the explorations of the complex walls. To see whether or not the
BPS saturated walls are present, cusps inherent to this Lagrangian

must be smoothed out, see, e[d4].

whereAE is the difference of the vacuum energy densities in
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the false and true vacua, ands the surface energy density Narrow quasistable excited vacua were detected recently

of the domain wall. With our values ef andAE, we gef

p( Tr(M) | N° 33 )
P~ ~ i 7| (kv 127 2,8) @

The result for the exponent is rigorously valid forz<A

and k<N. | will now extrapolate it to the point of the
gaugino decoupling, i.emg/(Ngz)~A (still assuming that

k<N). Then

r s N 9
e TS (120 ©

where a dimensionless coefficiegt is introduced to take

account of the uncertainty of the extrapolatiop; 10°. This
coefficient is purely numerical, it il independent.

within an effective Lagrangian approach in Rgi8]. Al-
though some aspects in this consideration remain question-
able and require further clarification, it seems worth trying to
apply the method to check whether some of the excited
vacua survive at lowN, and, if so, to estimate their decay
rate and possible phenomenological manifestations.

One of potentially important points is the lattice calcula-
tions. Since they are always done in finite volume, which
reduces the field-theoretic system to quantum-mechanical, all
vacua contribute to the correlation functions calculated in the
lattice Yang-Mills theory, generally speaking. This might
lead to a contamination of the lattice results by false vacua.
Certainly, practically all calculations are doneNst=2 or 3.

At such low values olN, the false vacua may not exist as

local minima in the functional space, or may be so shallow,
that there is no barrier separating them from the true one. In
this case they do not affect determination of the physically

Equation (9) presents an estimate of the false vacuummeasurable quantitigsuch as the particle masses and cou-

decay rate to its neighbor in the lar$fe (nonsupersymmet-
ric) Yang-Mills theory. Even though we know the exponent

pling constantsfrom the finite-volume lattice results.
In summary, starting from supersymmetric gluodynamics

only by an order of magnitude, the presence of a very strongnd extrapolating in the gluino mass, one can argue that an
numerical suppression of the exponent seems evident. If s)finite set of the stable vacua exist in the lafgaonsuper-
our derivations are practically applicable only to very largeSymmetric Yang-Mills theory. Static domain walls interpo-

N=100 even ak~1.

late between these vacua. The decay rate of the false vacua is

It would be very interesting to check how both given by the formul9).

conclusions—theN* functional dependence of Ih and a
suppression of the coefficient in front of
N*—appear directly within the Maldacena-Witten approach.

numerical

2For N=2 a similar calculation has been carried out in Féf.
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