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Weyl-van der Waerden formalism for helicity amplitudes of massive particles
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The Weyl—-van der Waerden spinor technique for calculating helicity amplitudes of massive and massless
particles is presented in a form that is particularly well suited to a direct implementation in computer algebra.
Moreover, we explain how to exploit discrete symmetries and how to avoid unphysical poles in amplitudes in
practice. The efficiency of the formalism is demonstrated by giving explicit compact results for the helicity
amplitudes of the processesy— ff, ff—yyy, u u*—ffy. [S0556-282099)02101-3

PACS numbgs): 11.55.Bqg, 11.80.Cr, 12.15.Ji

I. INTRODUCTION the Lorentz group, and the related spinor calcukee also
Ref.[4]). Since WvdW spinors are closely related to lightlike

The calculation of scattering amplitudes and cross secvectors, the application of the WvdW spinor calculus is ex-
tions in the lowest order of perturbation theory is one of thetremely simple for massless particles. Such applications can
standard problems of elementary particle phenomenology ihe found, e.g., in Ref5]. The WvdW technique can also be
practice. Although this task is very simple for-12 particle  used for massive particles if timelike momenta are decom-
decays and 22 particle reactions, the situation can becomePosed into two lightlike ones. This procedure was applied in
arbitrarily complicated for more particles in the final state, asiRefs.[6,7] for the calculation of bremsstrahlung corrections
the numberNp of contributing Feynman diagrams rapidly fto production processes of massive weak gauge bosons, lead-

increases. Squaring amplitudes and using completeness rel39 t© rather compact results. However, the WvdW spinor

tions for the wave functions does not represent an appropr-ormal'sm for massive particles is not yet well documented

ate approach iNy, is large, because one would gd% con- M the literature. In connection with the actual applications

tributi A bl ¢ id losi f th presented in Refs][6,7], the formalism was only briefly
rioutions. A reasonable way fo avold an explosion o esketched, as far as was relevant for the special cases under
algebraic work consists in using spinor formalisms for the,

) ) o o ) investigation. More complete presentations of the technique
evaluation of amplitudes for definite polarization configura-¢,r massive particles are either not suited for direct practical

tions. The squaring of the amplitudes and the spin SUMM&;se(8] or appeared in unpublished stud[@s10].

tions are then performed numerically. Of course, the number |, addition to the more technical motivation above for
of different polarization configurations also grows for more considering amplitudes with definite polarization configura-
and more external particles, but in practice this fact is muchjons, one should add some remarks on the physical role of
less problematic than squaring amplitudes. In particular, th@olarized massive particles. In contrast with massless par-
number of independent matrix elements can be reduced bitles, the spin orientations of massive particles do not trans-
exploiting discrete symmetries. Although the commonly ap-form covariantly under Lorentz transformations; in particu-
plied spinor formalisms rely on the four dimensionality of lar, the property of being a helicity eigenstate is frame
space-time, they are also useful for the calculation of higherdependent. Nevertheless, the polarization states of a massive
order corrections if the singularities in dimensional regular-particle also carry valuable physical information about the

ization are split off and controlled separately. structure of its interaction. For instance, the longitudinal
Various spinor techniques have been proposed and sucodes of the massive weak gauge bosons serve as a window
cessfully applied in recent years. The first versiphspro-  into the scalar sector of the electroweak theory, and the re-

posed a clever choice of photon and gluon polarization veceonstruction of the top-quark spin from its decay products
tors, which was dictated by the momenta of the attachedeveals information about its static properties and form fac-
fermions. This choice forces a lot of terms in the calculationtors. For various aspects of physics with polarized massive
to vanish, and relatively compact amplitudes result. Al-particles, see Refl11] and references therein.
though the initial restriction to massless particles could be The aim of this paper is threefold. First, we give an intro-
overcomg 2], all those formalisms have in common that the duction to the WvdW spinor technique for massive and
usual Dirac algebra is still present. The final results for am-massless particles. The presentation is deliberately held at a
plitudes are given in terms of standard productsbasic and detailed level, in order to facilitate the practical use
Uy(py)us(p,) of Dirac spinors. This form is useful for nu- of the method. In particular, we present all ingredients
merical evaluations, but too involved for further analytical needed for an implementation in computer algebra. As wave
purposes. functions for massive spif-and spin-1 particles, we take the

It is more elegant and transparent to express all needetklicity eigenstates formulated in R¢1.0], which appear to
ingredients, i.e., momenta, polarization vectors, and Dirabe very simple. The wave functions and the momenta of the
spinors, in terms of a single mathematical object. This leadsorresponding massive particles are composed of the same
us to two-component Weyl-van der WaerdéwvdWw) set of auxiliary spinors, leading to simplifications in the cal-
spinors[3], which form the fundamental representations ofculation of amplitudes. Second, we show how to exploit the
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advantages of the formalism in practice. We explain the usg(0,1)®D(0,%) onto the trivial representation. For this rea-

of discrete symmetries, in order to reduce the algebraic worksop, ‘it is possible to define a Lorentz-invariant spinor prod-
and give a prescription for avoiding unphysical poles in am-¢ through

plitudes. In the presented examples, we treat the polariza-

tions of massive fermions in a generic way; i.e., explicit (DY) = pa¢"= b1th— Potfy,
results for definite helicity configurations follow from a few
compact generic amplitudes upon setting auxiliary spinors to () = ¢A¢A= (brtho— boithy)* 2.4

specific values. Third, we give explicit results for helicity
amplitudes of phenomenologically relevant processes involvand e is called aspinor metric By definition, the spinor
ing massive particles. We explicitly treat the reactiong  product is antisymmetric:

—ff, ff— yvy, u~pt—ffyinthe framework of the elec-
troweak standard model and show how these results can be (phy=—(y), (P#)=0. (2.9

carried over to other processes such @g—ffy, € ¥  The fact that an antisymmetric tensor built of two-

B c o \ . .
—€ yy, & y—e e e Dby using crossing relations. dimensional objects cannot have a rank higher than 2 implies
The outline of the paper is as follows. In Sec. Il we set; genouten identity for the spinor metric

our basic conventions for the WvdW spinor calculus and

introduce helicity eigenstates for spjrand spin-1 particles. e"BeCD 1 ACEPB L ADBC_ (2.6)
The necessary ingredients for calculating helicity amplitudes

are described in Sec. IV, specifically containing a prescripwhich in terms of spinor products reads

tion for translating Feynman rules into the Wvdw formal-

ism, a formulation of discrete symmetries for helicity ampli- (P (Em)+ (PN )+ (b} (4p§)=0.  (2.7)
tudes, and a prescription for avoiding unphysical poles in
amplitudes. The physical applications are presented in Sec. B. Four-vectors

V, and Sec. VI contains a summary. . . .
y Minkowski four-vectors belong to the representation

D(3,3)=D(3,0)©D(0,3) of the Lorentz group. The transi-

Il. BASIC DEFINITIONS .
tion of the usual form of a four-vectdk*=(k° k) to the

A. Spinors spinor representatioB (3,3) is provided by the matrices
The basic philosophy of the WvdW formalism is to re- :
duce all mathematical objects that belong to higher- ot PB=(0%0), ohi=(0"~0), (2.9

dimensional representations of the Lorentz group to the two-

dimensional irreducible representatidBg$,0) andD(0,3).  consisting of the two-dimensional :Jr_‘it matrix’ and the
According to these representations, we distinguish covariarff@uli matricess. Each four-vectok” is related to a X2

and contravariant WvdW spinorg, and 4, respectively. atrix

Indices of WvdW spinors are denoted by capital letters KO+ k3 Kkl+ik2

throughout. The transition between the two-dimensional rep- Kag=k“o, pg= Klmik2 KO—K3 | (2.9
resentations, which are nonequivalent, is achieved by com-

plex conjugation and a similarity transformation. Complexwhich is Hermitian if the components df* are real. The
conjugation is consistently indicated by dottifgndotting  ryles for dotting, undotting, raising, and lowering spinor in-
indices, i.e., dices also apply to the indices of teematrices; in particu-

- lar, we have
Pa=(a)*,  PP=(yH*. (2.1

The similarity transformation is mediated by the antisymmet-

fic 2X 2 matrix _6:"72* whereo?® (a=1,2,3) are the stan- \ye note that the coefficients of the transpéSeof a matrix
dard Pauli matrices: K readK g, if the ones ofK are denoted b 5 ; i.e., trans-
posing a matrix interchanges the spinor indices without mov-
(AB_ AB_ €an= €AB=( 0 + 1)_ 2.2 ing the position of the overdot. Thus the Hermiticity of the
-1 0 matrices is expressed by

B _ _uCD_.. mo_ o b
Tag= 0" €caépp, Tp=(0,5)%. (2.10

The matrixe defines how to raise and lower spinor indices: o"U"ABZO"U“'BA, ‘TZB: UgA' (2.11)
PP=e"Byn, YP=e"Byy, Ya=yPean, U= UPupa. The o matrices obey the important relations
(2.3

a'ﬁBa'V‘AB= 2g#7, UﬁBO'V'AC‘f‘ O';BO"“’AC: 29"”’53 ,
Moreover,e provides the set of Clebsch-Gordan coefficients u
that project the product representatidé; ,0)® D(3,0) and O AT u,CD = 2€ACERD - (212
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The first of these relations translates the Minkowski innerin this contextk, is called amomentum spinor

product of 2 four-vector&* andp#* into Finally, we remark that the decompositith15 is a very
. . convenient, but not unique, possibility to express a four-
2k-p=k,2g*"p, =k, 0o 0""®p,=KgP*®, vectork® with k?#0 in terms of WvdW spinors. Any split-

(2.13 ting of k* into two lightlike four-vectors yields a decompo-
o sition into spinors, since lightlike vectors factorize, as seen
and the second one implies above. For instance, choosing an arbitrary lightlike four-

Ac 2 vectora* (a®>=0) with a-k>0 and defining
KasKAC=k26S . (2.14
2

2a-k’

In order to reduce terms involving a mati,g to spinor a=
products, it is necessary to expré§gg in terms of spinors.
For a real four-vector, the matriX 5z is Hermitian and can
be decomposed into its eigenvectars, (i=1,2) and eigen-

b#=k*— aa*, (2.29

yields a possible decompositidt = aa*+b*. In terms of
WvdW spinors, this corresponds to an arbitrarily chosen

values\; : i } b i »
spinora, with Kepa~a”>0, leading to the decomposition
o . _1,0
KAB_i§’2 NiMaNig,  No=kE (K], K ag= aaxag+babg,
P P with
e 'Ycos- sin- ,
= 2 = 2 Kgpa® k2

NiaA= P v Noa= 0| b BA _ (2.22

sin = —e*i¢cos- AT —— T T o :

2 2 VK epaCaP KepataP
(2.15

where 6 and ¢ denote the polar and azimuthal angleskof  lll. WAVE FUNCTIONS FOR HELICITY EIGENSTATES

=|k|e, respectively: A. Spin-} particles

C95¢ s.in 4 Dirac spinorsW¥ belong to the representatiob(3,0)
e=| sin¢ Sén 0. (2.19 ®D(0,3) of the Lorentz group. Thus, in terms of WvdwW
cos spinors, they are represented by
For timelike vectors K?>0), it is often convenient to in- &
clude the eigenvalues; in the normalization of the eigen- \p:( A)_ (3.0
vectors, resulting in s

_ _ The WvdW formalism consistently employs the chiral repre-
KAB=i;12 KiaKiB:  Kia= VAN AL (217 sentation of the Dirac matriceg”:

The phases oh; 5 are chosen such that the orthonormality 0 ch-B 5 . 0123 a® 0
relations read YVTlgras o |0 YTEYYYY g —40)
(niny=0, (nyny)=—(niny)=+1. (2.19 3.2

Note also the relations for the eigenvalues We .are (1r)1tere§ted in plane-wave solutiond/ =
exp[Fikx}W,~ of Dirac’s equation

detKag) =N\ p=k?, =N p= KA
e(Kag) =Naho=K?, (k)= VNihp= K2 219 (i—m)w =0, (33

The special case of a lightlike vectok*¥=0) is of par-  which describe the propagation of free Dirac fermions and
ticular importance. In this case the eigenvalug of Eqs.  antifermions, respectively. Inserting E¢8.1) and(3.2) into
(2.19 vanishes, and the matriX 55 factorizes into a single Dirac’s equation, we obtain the coupled pair\Wkyl equa-
product of two spinors: tions

Kag=k*o, ap=Kkakg, . (*).B + : = +).A
AB #ABTDATE K" :imd)t(,A)v KAB¢(k,B):im¢(k) )

. 0
e %cos= kK’=m?. (3.9

kA:\Zk nl/_\z \2k 0 . (22@

sin - Upon applying the decompositid@.17) of K 5g, the follow-
2 ing solutions can be easily constructed:
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N KlA L + KAZ.A
‘P&J):(;Ké)* ‘Pf(z)=( K,l\ ) (3.5
The corresponding adjoint spinois="¥ 'y, read
‘I’(k,tl):(IKQ:KM)- ‘I'k,iz):(Kla—KzA) (3.6
The solutions obey the standard normalization
VW =2k08, L8, Wi W =x2m5,. 5.
3.7

Moreover, it is straightforward to check that they indeed

form eigenstates of the helicity projector

L KOk
Sk:_

— uom (38)
m |k| g . .

ki_ 2(1xy ék) |k|
More preciselyS.¢ projects onto¥ () and¥{>), 3, onto
w7 and‘l’fj’z), ie., \If(” describes a right-handed fermion,
\If( 2) a right-handed antifermion, etc.

For massless fermions the Weyl equatiédgl) decouple,
and the helicity eigenstates take the simple form

Wi =(0ky), Wi5=(kA0). (3.9

For the decompositiof2.22 of K g, also simple plane-
wave solutions exist, namely,
ba

L

which are, however, not related to definite helicity states.

. W=

(i\/EaA

bA ), (3.10

B. Massive spin-1 particles

Spin-1 fieldsV# transform like ordinary four-vectors un-

PHYSICAL REVIEW D 59 016007

K2=m?, Kk’,(K)=1K"Bs,5(k)=0.  (3.13
For m#0 there are three linearly independent, spacelike po-
larization vectors#(k), which are usually orthonormalized

according to

sl (K)er (K= Lo an()e X Bk =~ 8, 1,j=0%,
(3.19

where s*AB=g* 5AB_ A helicity basis for thes?(k) is
given by

e¥id
eh(k)= (0,—cos 6 cosg=i sin ¢,
—Cos 6 sin g¥i cos ¢,sin 9),
K [ |k o
eh(kK)=sf=— F,cos¢ sin #,sin ¢ sin 6,cos @ |,

(3.19

wheres}’ is related tok* as given in Eqs(3.8). In terms of
WvdW spinors, this spin basis reads

g+ ps(K)=V2nyan15, &_ ap(K)=Vv2N1aN,g,

g0a(K)=— (K1aK18— K2AK2B), (3.1

3l

where the spinorg; 5 and; , are defined in Eq€2.15 and
(2.17), respectively. Note that care has to be taken when
dealing with conjugate polarization vectors, which, in par-
ticular, occur for outgoing spin-1 particles in transition am-
plitudes. In such cases the transition from the four-vector
e** to the 2x2 matrix SAB upon contraction with ther
matrices has to be consistently performed for the conjugated
polarization vector, i.e.sAB—s a® ., which in general is

~~AB’
different from taking the complex conjugate ef,z. For

der Lorentz transformations. This means that polarizatior¢larity, we give also the helicity basis for an outgoing spin-1

vectorse* for such fields can be related tox2 matrices
eag in the same way as described in EQ.9) for a general

four-vectork”. However, one should keep in mind that po-

larization vectors need not be real so thag is not Hermit-
ian in general.

The free fieldv# of a massive vector particle is governed

by Proca’s equation

[(9*+m?)gH*— 3"V, =0, (3.11
which for m#0 is equivalent to th&lein-Gordon equation
in conjunction with the transversality condition:

(P+m?)VE=0, 4-V=0. (3.12
With the ansata/*=exp{Fikxje,(K) for particles and anti-
particles, respectively, we arrive at

particle:
8:,AB(k):ﬁnl,An2,Bv St’AB(k):\/anAnl,B,
* 1 _ _
ops(K)= m (K1AK1B™ K2AK28), (3.19

which correspond to the conjugate polarization vectdrof
g; given in Egs.(3.15. From Egs.(3.16 and (3.17), we
obtain the relations

eia(K)=e_gak)=8", (k=g (k). (3.18

Finally, we give a simple spin basis for the decomposition
(2.22 of Kag,
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TABLE I. Prescriptions for translating ordinary Feynman rules for external fields and propaga-

tors into the WyvdW formalism.

Incoming fields: Outgoing fields:

> e ‘I’it) — @i-t)
Y @k,_i) ————— ‘Ijgc,_z)

AB AB *
f\;\/\/\/\. ei,u(k) —_— 6i,AB(k) .VV\/\L/‘V 6:"‘(]9) — ei,AB(k)
Propagators:

. . ms08 K,

B k a i(E4+my) i 194 AB
S T _ 2 - 2 _ 2
AB CD —igu —2ie€BD
M ————k2 — M% — —k2 = M‘Z/

V2apbg V2baag tion amplitudes do not depend on the choice of gauge

8+,AB(P)=W, 8—,AB(p):W.

1
eops(P)= m (babg—@asag), (3.19
which is, however, not related to helicity eigenstates.

C. Massless spin-1 particles

In contrast with the case of spinparticles, the zero-mass

spinors. This means that tlge. o can be appropriately cho-
sen to simplify the algebraic expression. Note that it is even
possible to take different sets of gauge spinors for each he-
licity channel.

IV. CALCULATION OF HELICITY AMPLITUDES
A. Feynman rules

Feynman rules are usually written down in terms of four-

limit for vector bosons confronts us with a new physical vectors and Dirac matrices. Here we describe how such

situation. Foom— 0 the polarization vectog§ does not ex-

ist, since the longitudinal polarization does not yield a phys
cal state for massless spin-1 particles. The corresponding d
gree of freedom manifests itself in the arbitrariness of gaug

for the two polarization vectorg’ . In the language of
WvdW spinors, this fact is expressed very elegantly:
V29, Ak V2kag- B
er ag(K)=——5, e_agk)=—F———,
+,AB( ) <g+k>* & ,AB( ) <g_k>
* _ ‘/zkAg+B *

€, AB

V2g_ akg
"ok 0 SN T g
(3.20

whereg.. 5 denote arbitrary spinors witfy.. k) #0; they are

called gauge spinors The difference of two matrices

Feynman rules can be directly translated into the language of
i_WvdW spinors. Obviously, this procedure is much more
ractical than going back to the underlying Lagrangian and
éntroducing WvdW spinors there.
Given any Feynman graph, the trick is to contract each
vector-boson leg of a vertex with the identity),

=30,°0% and to shift the factor to the vector-boson

propagator or to the external wave function of the vector
boson that is attached to this vertex. Moreover, for each oc-
curring Dirac matrix, the chiral representatit82) has to be
used. In particular, the unit matrikin the Dirac space and a
slashed quantity read

8 0
35 -

B

0

o
1= B SB), (4.2

a

e; as(K) for differently chosen gauge spinors is proportional
to the momentum matrik kg, as can be easily checked by respectively. Tables | and Il summarize the necessary

applying the Schouten identi{.6). The transversality con-
dition k-£.. =0 is still fulfilled for any g. 4; i.e., the Lor-
entz gauge is maintained for the. of Egs.(3.20. Transi-

changes of the generic Feynman rules for the electroweak
standard model in the 't Hooft—Feynman gauge. The explicit
values for the couplings can, for instance, be found in Ref.

016007-5
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TABLE Il. Prescriptions for translating ordinary Feynman rules for vertices into the WvdW formalism.
Scalar fields, fermion fields, and vector fields are generically denotefl HyandV, respectively, ando -
=2(1%°) are the chirality projectors.

Vertices:
0 - 898D
iev*C 7 s w — ; . VAR B A
T EVRRYT re O+,  (ACBD 0
Vhif
B o Ct. &8 0
-—-=- ieCgz  wr — ie f1f2 .
M hif2 0 ;|
1 Sfife”B
" .
o o ieCvivyvs (9" (k1 — k2)? + 9" (k2 — k3 ) + g"* (ks — k1)"]
3 . . . . - . .
o - - f;ecvlvzvs [6ACCBD(K1 _ K2)EF + 6CE'€DF(A2 _ KS)AB
A L .
J + eAEeBF(KB _ KI)CD]
N
1
AB .
e ieC uy — ieC AC _BD
sVivL3g z€Lsv 1 €77 €
cD
2
v
~ < 1
~ o AB . ) i
_ SANANANAN lec'ysls2 (k‘l - kQ)” — éecvslsz (Kl —_ AZ)AB
_ . /2 H
: 2
ie?Cvivvy, 26" 977 — g*°g"° ~ g7 g**]
; i_' 62Cv1v2vsv4 [26,40 ¢BDEG FH _ AE BF CG DH
_ (AGBH CE 6DF]
i3
1 4 .-
AB _- L.
. 2 M
- i€°Cv,v,8,8,9" — %e2C'v1V25354 €ACBD
cD <
2 3~
14

[12]. The new Feynman rules for other conventions or dif-provide convenient cross-checks for results or they allow for
ferent models can easily be worked out by the reader. a reduction of the algebraic work by generating various am-

Once the Feynman rules are settled, it is very easy tplitudes from a generic set of amplitudes. In the following
explicitly write down helicity amplitudes for any process at we show how to derive the relations implied by crossing
the tree level. Expressing all particle momenta in terms okymmetry, parity, andCP symmetry, which are the most
spinors, as described in Sec. Il B, each helicity amplitude i$mportant discrete symmetries in practice.
reduced to an algebraic expression in terms of antisymmetric (i) Crossing symmetryCrossing symmetry transforms an
spinor productg ¢y after all spinor indices are contracted. incoming particle into the corresponding outgoing antipar-
These spinor contractions can be performed like usual corticle or vice versa. Denoting the momentum of a given par-
tractions of Lorentz indices, apart from taking care of theticle byk, the inversiork— —k can be consistently obtained
antisymmetry. The form of the amplitudes obtained this wayby substituting
is already well suited to numerical evaluations.

Kipa—= ~Kip,  Kia—=tKia (4.2
B. Discrete symmetries

Discrete symmetries relate helicity amplitudes of differentin the decompositiori2.17) of k, i.e., by inverting the con-
processes or of one and the same process. Thus they eitheavariant parts only. In order to relate helicity amplitudes, it

016007-6
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is also necessary to consider the relation between the wave
functions of the respective incoming and outgoing fields. In-
specting the explicit form of the wave functions for the he-
licity eigenstates of Sec. lll, one finds that the substitution
(4.2) transforms incomindoutgoing particles into outgoing
(incoming antiparticles with reversed helicity modulo sign
change. Specifically, there is a global facted for each
crossed spin-1 field and a factarsgn() for each incoming-
outgoing fermion with helicityo that is involved in the

FIG. 1. Subdiagrams containing the fermion propagator denomi-
nator[(p—k)z—mf]’1 for processes with an incoming photon of
; momentumk (k?=0) and an outgoing fermion or antifermion of
crossing. o - _ momentump (p?=mg).

(ii) Parity. If parity is a symmetry, every helicity ampli-
tude, up to a phase factor, agrees with the correspondingiany terms as possible in an amplitude vanish. However, as
amplitude with opposite helicities, after the spatial parts ofcan be seen from Eq$3.20, an arbitrary choice ofj in
all momenta are inverted. At the level of WvdW spinors, thegeneral leads to unphysical poles at the zero&kf in in-
inversion of the spatial parts of momenta is connected withjividual terms that contribute to an amplitude. Of course, the
the interchange of the spinors, and ¢*. It turns out that unphysical pole drops out in the final result, but this cancel-
each helicity amplitude, up to a global sign factor, agreedation can cause instabilities in a numerical evaluation.
with the complex conjugate amplitude with opposite helicity ~Unphysical poles can, for instance, consistently be
configuration. More precisely, itM (o ;) is an amplitude ~ avoided by settingya=n,, wheren,, is related to the
involving n fermions andn antifermions with helicitiesr; momentumk of the massless spin-1 particle as specified in
andny, vector bosons with helicities; , we get the relations Egs.(2.19. This choice is identical with Eq$3.16) for the

transverse modes of a massive spin-1 particle. The drawback

M(=0a7;=\)=(— 1)FSgr(O'1"'O'n+ﬁ)M(0'i N of this choice is that no algebraic simplifications resuilt.
4.3 Another possibility to avoid numerical problems that are

due to unphysical poles is to cancel such poles analytically
for tree-level amplitudes. If parity is violated, these relationsbefore the numerical evaluation. In general, this task can be
for amplitudes remain valid if left- and right-handed cou- extremely cumbersome, and the additional work devalues
plings are appropriately substituted. The explicit derivationpreceding simplifications. In the following we give a very
of Eq. (4.3 and the modifications for broken parity can be convenient choice 0f,, yielding desirable simplifications
found in the Appendix. without leaving uncanceled unphysical poles.

(iii) CP symmetryCP is the product of parity, which is Consider a process with an incoming photon of momen-
explained above, and charge conjugation, which intertum k and an outgoing fermiofi of momentump; the mo-
changes particles with the respective antiparticles. Thereforenentum matrix forp is denoted by
CP symmetry leads to relations between the helicity ampli-
tudes of a given process and the complex conjugate helicity
amplitudes with reversed helicities of the process involving
the respective antiparticles. We consider an amplitude .
iM(oi;\j)) and the one for theCP-related process, We choose the same gauge spinor

Phe= 2 Kiakig: (4.5

i M (oj;)\;), where the respective helicities for the fermions ,
and vector bosons are assigned as abovE€PFlfs an exact ga=Papk®= 2 ki a(KiK)* (4.6)
symmetry, these two matrix elements are related by i=12

for both photon helicities. The problematic denominators
contained in the photon polarization vect§gs20 are given

=(=)V W sgoy o Mo )t (44 DY

M(=oi;—Nj)

at the tree level, whene,,+1;, is the total number of incom- (gk) =Kk PAk®=2(p-k). 4.7
ing fermions and antifermions. The explicit derivation of _ ] ) )
these relations and their modificationsGP is violated are NS has the form of the inverse propagatpr(k)“—mj=
given in the appendix. —2(p-k) that appears if the incoming photon_ directly
The actual use of these symmetries will be illustratedcOUples to the outgoing fermidrso that no unphysical pole

when we consider helicity amplitudes of concrete processe$ introduced at all. The subdiagram containing this propaga-
in Sec. V. tor is shown in Fig. (a). In Feynman graphs that contain this

subdiagram, we obtain the factqu-(k) “2; one power is due

to the propagator, and another is due to the polarization vec-

tor. For small -k) we again get an unwanted cancellation
Since a helicity amplitude does not depend on the actuadf one power in p-k). However, this cancellation can be

insertions for gauge spinors, they can, in principle, be chosesaasily performed analytically. Denoting the Dirac spinor of

arbitrarily. Usually, a gauge spina@, is chosen such that as the outgoing fermion with helicityr, generically, by

C. Remarks on the choice of gauge spinors

016007-7
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v p(ﬁ)=(¢c,¢'c),
with

fori=1 (o=+),
for i=2 (o=-),

(Kk1,— K2)

(Kk2,K1) 4.8

(¢.9h)=

and using the wave functios,g for the photon with helicity
\, the subdiagram reads

Qre 0 sAst
o= 5059 <¢°,¢¢>( (ACBD DO'SC)
. mfﬁg (p_k)DE
XSAB (p—k)DE mf52 , (49)

where Qs is the relative electromagnetic charge of the fer-
mion f. Upon inserting Eq(4.5), Eqg. (4.6), and the explicit
expression3.20 for £ Ag, We get

Qre
2v2(p-k)?

X (2(p- K)KE+my[( pyr)KE— (ki) pF
+ (k) ¥F1,0). (4.10

Here we have used tha®ag= dadp+ yahg and ()
=m; for both fermion helicities. The expression within
square brackets in EQq(4.10 vanishes according to
Schouten’s identity(2.6) so that one factor - k) cancels.
Performing a similar calculation fof ?'(o), we find the
simple results

T (o) = (k)

Qre
yf — E
()= o (ki)
Qre
vf — * .
T (o) V1K) (kp)* (OKg). (4.11)

Considering an outgoing antifermion instead of a fermion, as

shown in Fig. 1b), we get

s Qfe (kE>
yf - _
— Qqe 0)
yf — * R
T-(0) Va(p-k) ey (kE ’ 412

where the Dirac spinor for the antifermion is generically de-

noted by

bc
b

),

*If(p,i>=(

with

PHYSICAL REVIEW D 59 016007

(ky,6p)  for

(_KZ!Kl)

From the result$4.11) and(4.12) for diagramga) and(b) of
Fig. 1, respectively, all similar diagrams involving outgoing
photons and/or incomingantfermions follow by crossing,
as described in the previous section.

The above procedure also works if tkent)fermions in
Fig. 1 are replaced by charged gauge bosons, e.g., bwthe
boson of the electroweak standard model. In this case, how-
ever, one has to take into account the contribution of the
associated would-be Goldstone boson, which appears on in-
ternal lines(vertical lines in Fig. 1

(¢, 4)=

i=1
for i=2

V. APPLICATIONS

In order to illustrate the actual use of the formalism de-
scribed above, we calculate full sets of helicity amplitudes
for some processes with massive particles and photons in
lowest order. The presented results have been derived ana-
Iytically and simplified as far as possible; this demonstrates
the analytical power of the technique. In addition, the ampli-
tudes have been evaluated by performing the spinor contrac-
tions automatically inMATHEMATICA [13], which is very
simple. The results of both approaches have been compared
numerically.

The following examples only include massive external
fermions. For an application of the helicity basis for massive
spin-1 particles, we refer to Ref7], where the radiative
processeg” y—W v.y,e” Zy are discussed.

A. ProceSSyy—m‘_
For illustration, we start with the simple QED process

Y(KiA) + ¥(ka )= f(p,o) +f(p’,07).

The momentum matrix and the wave function for the outgo-
ing fermionf are denoted as in Egét.5 and(4.8), respec-
tively. For the outgoing antifermion we define

(5.9

Pis= 21,2 ki Akl g (5.2
and
\P(—): ¢C
p’ lﬂ,c )
with
(K1,K5) for o'=—,
)= 5.3
S (—ky,ky) for o'=+. ©3

Since we want to make use of the results of the previous
section, we set the gauge spirgy » for the nth photon to

Ona=Paskn= (5.9

%

Ki,A<Kikn>*! n=1,2.
2

016007-8
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AN : As explained in Sec. IV B, parity relates amplitudes with
}i opposite-helicity configurations through complex conjuga-
RPN tion, modulo a sign factor. According to E@.3), these
lations explicitly read
(a) (b) e
FIG. 2. Born diagrams fofyy— ff. M(=Nq,—Np,—0,—0d")
In lowest order the two Feynman graphs of Fig. 2 contribute. =—sgnoo')M(N\y,\p,0,0")%, (5.9

Let us first calculate the contributiol,) of diagram(a) to ) ) .
the full helicity amplitude M. We identify the photon consistent with the above results. Alternatively, these rela-

y(k,\) in the subgraph shown in Fig(a with v(k;,\;) tions can be used to generate all helicity amplitudes from the
generic results forM(+,+,0,0’) and M(+,—,0,0’)

o yf o given in Egs(5.6). The procesyy— ff is also CP symmet-
M) then follows upon multiplication of (), whichis ¢, Taking into account that the CP transformation inter-

given in Egs.(4.11), with the secondyff vertex and the changed andf, Eq. (4.4) implies
wave functions for the second photon and the antifermion:

M(_)\l,_)\z,_o",_ﬂ')

and denote the contribution of this subgraph 'ﬁzf(a).

iM(a)()\la)\Zaa-yo-’)

:Sgr(O'U,)M()\l,)\Z,O',OJ)* |p<—>p’ ’ (59)
:Tylf(o_)(_iQ ol ; 0 6552 ¢E o where the substitutiop<— p’ also includes the interchange
51 A AR 4 A of the respective spinorg; and «; .

(5.5 B
B. Processff —yyy and related reactions
Note that we follow the common practice to split off a factor
+i from helicity amplitudes throughout. It is trivial to carry
out the spinor contractions in E¢p.5) for the explicit inser-

Next, we consider fermion-antifermion annihilation into
three photons:

; 1t : ih it —

tpns of TM (_U) ande,gy. The contr|but|onM(b) of the F(p,a)+F(p's 0" ) — y(Kg N g) + (Ko A o) + 7(Ka hg).
diagram in Fig. 2o) follows from M, by consistently in- (5.10
terchanging the incoming photons. This leads us to the final _ '
result for the full helicity amplitudesit= M a+ M) The momentum matriceB and P’ for the momentep and

p’, respectively, are again decomposed into the respective

2 5 spinorsk; A and; 5, as defined in Eq¢4.5) and(5.2). The

N €My ok Dirac spinors are generically assigned by
M(+v+10-10- )_ 2(pk1)(pk2) <klk2>2<¢¢ > ’ ¢
\I’E,”=(¢ﬁ), \PPKT):(I//'A,cﬁ,';) (5.1
(A $e2mf k k *\2 ’
M(=.=.0,07)= 2(p-ky)(p-ky) ((kaka)™) (6" ), with the actual insertions
(k1,—Ky) for o=+,
2.2 =
Mt 0= i (P A {<K2’K1> for o=-,
X((k1g" ) (ko)™ +(kyih)(koth")*), (ky,k5)  for o'=—,
(¢" ') = (—xb.k!) for o' =+ (5.12
./\/l(—,+,0',0")=./\/l(+,—,O',U’)|k1Hk2. (5.6 K2, K1 goT

For all helicity configurations, we havégy)y=(y' ")

=m;. The polarization spinors: (ki) for the outgoing
photons are defined as in Eq8.20. Following the strategy
of Sec. IV C and “crossing” the resultgt.11) or (4.12) for

the subdiagrams of Fig. 1, the actual calculation of the six
(5.7 diagrams forff — yyy (see Fig. 3is rather simple. In order
to minimize the number of generic amplitudes that have to
Moreover, we mention that Schouten’s identit®.6) has be calculated, we first give the relations that follow from
been used in order to get compact resultsNoE \,= =*. discrete symmetries. Parity, CP, and Bose symmetry imply

Here we have introduced the abbreviation

<kIPkn>:kI,APABkn,B:i=§;2 (kiki)*(knki), 1,n=1,2.

016007-9



STEFAN DITTMAIER

M(_O-!_O-Il_)\l!_)\zi_)\s)_

M(_O'I,_O',_)\l,_)\z,_)\g,):

M(U,U',Kilyhizyhig):M(U,U',M,7\277\3)|klﬂkil,kfki2,k3ﬂki3-

Therefore, for any givend,o’) combination, it suffices to

PHYSICAL REVIEW D 59 016007
—sgn(oa’ ) M(o,0" N1, Ao, N3)%,
—sgn(oo" )M(o,0" N1, A2, 03)% g pr s
(5.13

calculate the helicity amplitudes wih ,&o,A3)=(+ + +),

(++—), from which all other amplitudes follow by Eq€5.13. These generic results can be expressed in a very compact

form

M(O’,O',,)\l,)\z,)\:;):

3,3 ’
Qre”Appg(0,0")

where

((kakg)*)?
(p"-kyq)
((kiko)*)?
" 2(p’ ka)
~ (kaPkg)
(p"-kyp)

Aiii(o,0’)=m;

A,; (o,0')=m

In addition to the shorthan¢k,Pk,) of Eq. (5.7) we have
introduced the useful abbreviations

<k|P,|':)k|>:kl,-Al:),ABF)(-:Bkl(::i jglz <k|Ki,>*<Kj Ki,><Kjk|>*,

1=1,2,3. (5.16

The above results foff— vvyvy can also be used to gen-

4v2(p-ky)(p-ka)(p-ks)

(5.19

(kyP'Pky){ ¢y )+cyclic permutations inky,ky, ks,

((k3P'Pkg)* (¢’ ) +2(p-k3)(k3d)(Ksy'))

[(kiP"Pky)((kot)* (Kstp' )+ (Koo' )*(Ka)) +2(p-Ky)(Kzp) (k1" )* (Kikp)* 1+ (k= ky).

(5.19

in all expressions, and adding the factor sgi)(wheregd’ is

the helicity of the outgoinge™ in Eq. (5.17. Finally, we
mention that our helicity amplitudes have been numerically
reproduced(up to phase factoysin the framework of the
calculation presented in Ref14] by employing the spinor
method of Ref.[2] and by a third, completely different
method.

C. Processu~u*—ff y and related reactions

erate the helicity amplitudes for the bremsstrahlung pro-

cessesyy— ff_y ande” y—e™ yy, if the crossing relations

of Sec. IV B are applied. In particular, we get a set of helicity

amplitudes for the so-called double Compton process

e (p,a)+y(kN)—e (p',o')+ y(ky )+ y(kz \3)

(5.17
by identifying f=e™, consistently replacing
K§— —k*, ksa—ksa, ksa——Kksa, Az——N\,
p'H——p'#, Kk a— K A, Ki,VAH - Ki,,A , o' ——0d'
(5.18
— AN
l V.V + five permutations of the photons
— AN

FIG. 3. Born diagrams foff— yyy.

As a final example, we consider the process

p(p,o)+ut(p o) —f(q,n)+f(q,7)+y(k\),
(5.19

which will be of relevance at future muon colliders. The
momenta p,p’ and the corresponding Dirac spinors
\Ifff),?p@ for the incoming muons are defined in the same
way as in the last sectioisee Eqs(5.11) and (5.12]. The
momentum matrice® andQ’ for the outgoing momentg
andq’ are decomposed into the spingrs, and p; 5, re-
spectively:

etc.

I !
FIG. 4. Born diagrams fO}lf,quHff_‘y, where graphs with the
outgoing photon attached to the other charged fields are suppressed.
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, . wherel, ;= *+ 3 is the weak isospin of the left-handed part
QAB:iZ12 Pi.API B QABZiZ12 piaPis- (520 of the fermion fieldf. In Egs.(5.23 we follow the conven-
o o tions of Ref.[12] for the standard model parameters and

The respective Dirac spinors are generically given by fields; in particular,y denotes the would-be Goldstone part-
ner to theZ boson, andH is the physical Higgs boson. Since
o A =) A standard electroweak theory does not conserve parity, the
V=080, Yo =1 Al (5.2)  parity-induced relations between helicity amplitudes with
K opposite helicity configurations involve also an interchange
with the actual insertions of the chiral couplings:
(p1,—py) for 7=+, M(—o,—o',—7,—7',—\)
(guﬂ): (P P) for 7= —
b ! =sgnoo’ 77 ) M(0,0" ;7,7 N)*|(g* ¢ g* -
(p1.p3)  for 7/=—, (5.24
Lm')= ' e 5.2 :
(&) [(_pzm for =+ (5.22

On the other hand, the processd® symmetric at the con-
i.e., we have(én)=(»'§")=m;. The polarization spinors sidered perturbative level, and the relations inducedCBy
SI,AB(k) for the outgoing photon are defined as in Egs.symmetry read
(3.20. For f# u~, 16 diagrams contribute to the process in
the standard model at the tree level; they are schematically ~M(—o¢',—0o,—7',—7,—\)
indicated in Fig. 4. The cask=u~ will not be considered
here explicitly; the results for this particular channel follow
from the ones forf # 4~ by adding the amplitudes for the (5.29
crossed processu ™ — fu ™ y with a negative sign. Since the
interaction is mediated by the exchange of neutral particledhe matrix elements\ are decomposed according to the
only, the electromagnetic currents of the muon and ferrhion boson in thes channel,
are conserved separately. This means that the gauge spinor
for the outgoing photon can be chosen differently for initial-
and final-state radiation, which simplifies the calculation. In
the following we generically denote the couplings of the neu-
tral bosons to the fermions by

=—sgnoo’ 77" )M(o,0', 7,7 N *|pepr goqr -

M(o,o' 7,7 \)=V2e3 VEZ A;V)(U,O",T, 7')
=7

+ 2 A;S)(O',O',,T,T,) , (.26
S=x,H

. Sw _ Sw Tw
0,1=—Qr, 97:=— —Qr, 0z=—— Qs+ ' . . :
7 2 ey 2 ey CwSw leading to two generic functiona{”) and A{® for the ex-

change of a vector field and a scalar field, respectively. Ow-
(5.23 ing to Egs.(5.24) or (5.25), it is sufficient to give the results

1 m N ilws Mg
W for \=+:

gﬁf:_ama Oyt

A(Jrv)(a',a’,r,f’):{ Q,(kP'PK) QKkQ'QK ]

2(p-K)(p’-K)[(a+q")2=MZ] 2(q-K)(q'-K)[(p+p)?—MZ]
X(Gv, vl @' E* (PE)+9v, v ') (b 1)+ 9y, vl YE* (W' &)+ 0y, Iy )* (' 7))

Q vk ) | o
G | (o Gk (D) +aukn' V()

Ovu k™ )
- V(Mé—k; (g k&)* (' &Y +aykn’ Y (¢’ 77))}

g\7f<k§>*
(q-k)

3 Qs
(p+p')2-M2

ouikn)* )
_\?(j’—:](; (gvﬂ<k¢:>*<¢ﬂ>+gvﬂ<kw>*<¢/ 7]>)

(9vu(ke")* (H€") +ay,(kip)* (Y €))
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Ais)(a',a",r, T')=

Q(kQ"QK) ~ Q,(kP'PK) ]
4(q-k)(@" - K[(p+p)2=MZ] 4(p-K)(p'-K)[(a+a")>—MZ]

><(9§M<¢l/f'>+g§#<¢"/f>*)(g§f<§' 7 +09sKEn')*)
N Q.9s.(kd")* (k)™
(q+q')>—M3

| Qusike)* (kn')*
(p+p)2—M3

+ ’ - I\ * 1 1

(5.27

1

The quantitieskP’Pk) and(kQ'Qk) are defined in com- ations, immediately after all spinor indices have been con-
plete analogy tgk,;P'Pk;) in Eq.(5.16). The results foAgv) tracted to so-called spinor products. These contractions are
andAgs) are written down in the 't Hooft—Feynman gauge; technically similar to the usual ones for Lorentz indices.
i.e., we haveM =M. We mention, however, that we have Since all mathematical objects, such as momenta, polariza-
reproduced the result for the complete matrix elemant tion vectors, and Dirac spinors, are expressed in terms of
also in an arbitraryR, gauge for the photon an#-boson WvdW spinors, the spinor calculus often allows for further
fields, in which the individual contributionA(AV) and Ag\S) simplifications at the an_alypcal level. More_over, we have
look different. fprmulated how to e?<pI0|t discrete symmetries for a _reduc-

The above results have also been used to derive the helif®" ©f the algebraic vyork, or for providing additional
ity amplitudes for the process checks, and how to avoid pro.blems t.hat are due to the ap-

pearance of unphysical poles in amplitudes.
e (p,o)+y(k\)—e (p,o")+e (q,7n+e"(q",7) The use and the power of the described spinor technique
(5.29 have been demonstrated by the explicit c_alcﬂation of the

helicity amplitudes for the processesy—ff, ff—yyy,

u~ut—ffy with massive fermions and of reactions that
can be obtained from those by crossing symmetry. The re-
L%Jlts, which have been analytically simplified as far as pos-
sible, are very compact and well suited to numerical evalua-
tions.

in QED. The QED part of the amplitudé€5.26) is obtained
by taking the contribution 0¥ =y in Eq. (5.26 only. More-
over, we identifyQ,, = Q;= Q.= — 1. The crossing proceeds
analogously to the case described at the end of the previo
section; i.e., one has to perform the replacements

ki —KE,  ka—ka, Ka——Ka, A——X\,

ACKNOWLEDGMENTS
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p'r——p", KA KA, K AT TK
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o
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(5.29 The author thanks D. de Florian, A. Denner, and W. Vo-
gelsang for a critical reading of the manuscript and for their

and to apply the sign factor sgri(), whereo' is the helicity ~ aid in making the presentation as transparent as possible.

of the outgoinge™ in Eq. (5.28. Finally, we have to anti-

symmetrize al[ amplitudes with respect to the intgrchange of  APPENDIX: MORE DETAILS ABOUT DISCRETE

the two outgoing electrons. Moreover, the amplitudes have SYMMETRIES

been numerically reproduced by an independent helicity

method in the framework of the calculation discussed in Ref. In this appendix we supplement the discussion of parity

[14]. The polarized cross sections®fy—e e e contrib-  andCP symmetry in Sec. IV B by further details.

ute, in particular, to the left-right asymmetAy g of polar-

ized Compton scattering as background. The numerical 1. Parity

agreement of the results presented in R&4] for this con- o . . o

tribution to A_r with the completely independent ones of In order to explicitly derive the relations between helicity

Ref.[15] represents an additional check of the calculation. @mplitudes that are connected by parity, we inspect the indi-
vidual terms in an amplitudé after complex conjugation.

Contractions between momentum matrices, which are just
Minkowski inner products according to E¢R.13, are not
The Weyl-van der Waerde@WvdW) spinor technique changed at all, since the result is real. Contractions between
for the calculation of helicity amplitudes of massive anda momentunk and a polarization vectog or between two
massless particles has been described in detail, providing glolarization vectors turn into the products for the corre-
necessary ingredients for an implementation in computer alsponding polarization vectors with opposite helicity, since
gebra. This formalism leads to rather compact results fofKag)* =Kag=Kga and (e ag)* =&\ as=¢-xr8a (A=0,
amplitudes, which can be directly used for numerical evalu<1). Coupling factordC for interactions between bosons

VI. SUMMARY
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simply turn into —iC*, and boson propagators receive aderlying model in which all couplings between bosons are
factor —1 owing to the explicit factor in the numerator. The CP-conserving, as is the case in the electroweak standard
only nontrivial terms are those originating from Dirac matri- model. Then, for bosonic fields, the situation is simple, be-
ces and fermionic wave functions. The complex conjugateause the wave functions of particles and antiparticles are
amplitude remains unchanged if we multiply each fermionicformally identical, and the bosonic couplings that are related
vertex by a factol'2= — 1 from the left and from the right, by charge conjugation differ by at most the sign factses,
where the matriX'p is defined as e.g., the Feynman rules in R¢.2]). Specifically, there is a
factor (—1)" between each vertex facté€ and the expres-
(A1) sioniC for the vertex involving the corresponding charge-
conjugated fields, where is the number of vector bosons
Shifting then a factol'p to the fermion propagators or fer- EE?%T??N;OS:&? avfe;tcet\;(.r_lg fgrrdeegctﬁ V%ittorrl_dboosfotnhtlaeéagftc:;

tmh:gr:/lgr\t/é?(vgnﬁlgﬁilfct)izs t:?;:}(gi ?ttﬁghtii ?gﬁtgﬁjggvr:,t:li? %ertex to the attached vector-boson propagators or external
the following replace?nents wherF; going over fr(,)M t% wave functions, resulting in an overall factor()"v for
M each diagram, whera,, is the number of external vector
' bosons. After this procedure the bosonic propagators and
vertices for the charge-conjugated fields consistently differ
by a factor—1 from the complex-conjugated counterparts
involving the original fields.
For fermionic fields we proceed in a way similar to the
treatment of parity described above. In addition to taking the
* complex conjugate of a Dirac chain, we now also transpose
w,]*Tp i . R
each term and invert the order in the chain, since charge
conjugation reverses the directions of fermionic lines. Then
=—lied_ x(CVf f ) o, we multiply fermionic vertices, propagators, and wave func-
tions by the matrix

0 €

Fp—lyzyS— e 0

iekcgﬂfzwﬁ — rp[iekcgafzw,]* I'p

|eI£(CVf -, Yo

ied CVf £, 07 I'plied, CVf f,

ieC—

_ H T_ * *
Shf, 7 Fp[|eCSflf2a)T] I'p= |e(CSff) @,

o5 (0 1
l_‘CP:_')’ Y= -1 0/’ (A3)
F(K+mg)—Tp[i(K+mg)]* (= T'p)=—i(K+my),
with T'Z = — 1 in the same way as done with, above. This

V=T VST =+ (7, leads to the replacements

V[ V(T =+ VY, iekCr( w,——Tcpl —iekCyr w1 Tep
WG = Te WG = -, = —ieK(CJp )"
V[V (-Te)=— Wi, (A2)

ied cvffwfa—rcp[ ied cfo ] Tcp

where the notation for the generic Feynman rules of Tables |

and Il is used. The relations betweeW(o;;\;)* and =—ied_,(Clr ) *,,
M(—oj;—N\;) can be read off from Eq$A2) and the above 172
considerations. The substitutions for the chiral couplings are o o "
explicitly given; in particular, there is no substitution in ieCgp ¢ @~ ~TcplieCqpy @-'I'cp

parity-conserving theories, in whlcﬂJVf ; —(Cvflfz)*, etc.
_ *
There is a global change of sign due to vertices and propa- Ie(CSf f, ) o
gators, since each of them introduces a factdrand since
their total number is always odd in tree-level amplitudes. i(K+mp)—Tcpli(K+mo)]T(=Tcp)
Another factor—1 comes from our convention of extracting .
the factori from the amplitudeé M. Finally, we encounter a =—i(—=K+my),
factor sgng;) for each external fermion with helicity; and . . _
a factor —sgn(;) for each external antifermion, leading us VY= [V (~Tep)=— w7,
directly to relation(4.3). -
Vi —Teel Wi TT=+¥7,
2. CP symmetry
(%) ()7t _ — L)
As in the case of parity, we derive tl@&P-induced rela- Wi =i I'(=Tep)=+ V2,
tions between helicity amplitudes by considering the com- - _
plex conjugate of a given amplitudet. We assume an un- Vi —Te Vi 1T=-93. (A4)
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Note that we had to inc_lude a factorl for t_he_vector- overall sign between the amplitudet(o;;\;)* and the one
boson—fermion coupling in the first two substitutions, so 3Sor the CP-related processM (— o;; ;) is deduced as

to be consistent with the above treatment of bosonic COUlows. At the tree level there is an overall facter. from
plings. Moreover, one should realize the correct change O'Eﬁe ver.tices and propag:ators and anothdr from the con-
sign in the momentum of the fermion propagdteee fourth vention for M, as in the case of parity. From Eq#d4) one
substitution in Eqs(Ad)], corresponding to the inversion of can see that i,ncoming fermions gnd éﬁtifermions with helic-

the fermion line. In the case @P violation, the necessary . i . .
substitutions for the couplings can be read off from EqslY i introduce each a factor sgni), while outgoing fer-

(A4): if CPis conserved, no substitution is necessary, beMionic lines yield a factor sgn{). Taking into account the
T AT T T factor (—1)"v derived above, we obtain relatida.4).
cause therCVflfz_(CVflfz)* and CSflfz_(CSflfz)*' The
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