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Weyl–van der Waerden formalism for helicity amplitudes of massive particles

Stefan Dittmaier
Theory Division, CERN, CH-1211 Geneva 23, Switzerland
~Received 11 August 1998; published 10 December 1998!

The Weyl–van der Waerden spinor technique for calculating helicity amplitudes of massive and massless
particles is presented in a form that is particularly well suited to a direct implementation in computer algebra.
Moreover, we explain how to exploit discrete symmetries and how to avoid unphysical poles in amplitudes in
practice. The efficiency of the formalism is demonstrated by giving explicit compact results for the helicity

amplitudes of the processesgg→ f f̄ , f f̄→ggg, m2m1→ f f̄ g. @S0556-2821~99!02101-3#

PACS number~s!: 11.55.Bq, 11.80.Cr, 12.15.Ji
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I. INTRODUCTION

The calculation of scattering amplitudes and cross s
tions in the lowest order of perturbation theory is one of
standard problems of elementary particle phenomenolog
practice. Although this task is very simple for 1→2 particle
decays and 2→2 particle reactions, the situation can becom
arbitrarily complicated for more particles in the final state,
the numberND of contributing Feynman diagrams rapid
increases. Squaring amplitudes and using completeness
tions for the wave functions does not represent an appro
ate approach ifND is large, because one would getND

2 con-
tributions. A reasonable way to avoid an explosion of t
algebraic work consists in using spinor formalisms for t
evaluation of amplitudes for definite polarization configu
tions. The squaring of the amplitudes and the spin sum
tions are then performed numerically. Of course, the num
of different polarization configurations also grows for mo
and more external particles, but in practice this fact is mu
less problematic than squaring amplitudes. In particular,
number of independent matrix elements can be reduced
exploiting discrete symmetries. Although the commonly a
plied spinor formalisms rely on the four dimensionality
space-time, they are also useful for the calculation of high
order corrections if the singularities in dimensional regul
ization are split off and controlled separately.

Various spinor techniques have been proposed and
cessfully applied in recent years. The first versions@1# pro-
posed a clever choice of photon and gluon polarization v
tors, which was dictated by the momenta of the attac
fermions. This choice forces a lot of terms in the calculat
to vanish, and relatively compact amplitudes result.
though the initial restriction to massless particles could
overcome@2#, all those formalisms have in common that t
usual Dirac algebra is still present. The final results for a
plitudes are given in terms of standard produ
ū1(p1)u2(p2) of Dirac spinors. This form is useful for nu
merical evaluations, but too involved for further analytic
purposes.

It is more elegant and transparent to express all nee
ingredients, i.e., momenta, polarization vectors, and D
spinors, in terms of a single mathematical object. This le
us to two-component Weyl–van der Waerden~WvdW!
spinors@3#, which form the fundamental representations
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the Lorentz group, and the related spinor calculus~see also
Ref. @4#!. Since WvdW spinors are closely related to lightlik
vectors, the application of the WvdW spinor calculus is e
tremely simple for massless particles. Such applications
be found, e.g., in Ref.@5#. The WvdW technique can also b
used for massive particles if timelike momenta are deco
posed into two lightlike ones. This procedure was applied
Refs.@6,7# for the calculation of bremsstrahlung correctio
to production processes of massive weak gauge bosons,
ing to rather compact results. However, the WvdW spin
formalism for massive particles is not yet well document
in the literature. In connection with the actual applicatio
presented in Refs.@6,7#, the formalism was only briefly
sketched, as far as was relevant for the special cases u
investigation. More complete presentations of the techni
for massive particles are either not suited for direct pract
use@8# or appeared in unpublished studies@9,10#.

In addition to the more technical motivation above f
considering amplitudes with definite polarization configu
tions, one should add some remarks on the physical rol
polarized massive particles. In contrast with massless
ticles, the spin orientations of massive particles do not tra
form covariantly under Lorentz transformations; in partic
lar, the property of being a helicity eigenstate is fram
dependent. Nevertheless, the polarization states of a ma
particle also carry valuable physical information about t
structure of its interaction. For instance, the longitudin
modes of the massive weak gauge bosons serve as a win
into the scalar sector of the electroweak theory, and the
construction of the top-quark spin from its decay produ
reveals information about its static properties and form f
tors. For various aspects of physics with polarized mass
particles, see Ref.@11# and references therein.

The aim of this paper is threefold. First, we give an intr
duction to the WvdW spinor technique for massive a
massless particles. The presentation is deliberately held
basic and detailed level, in order to facilitate the practical u
of the method. In particular, we present all ingredien
needed for an implementation in computer algebra. As w
functions for massive spin-1

2 and spin-1 particles, we take th
helicity eigenstates formulated in Ref.@10#, which appear to
be very simple. The wave functions and the momenta of
corresponding massive particles are composed of the s
set of auxiliary spinors, leading to simplifications in the ca
culation of amplitudes. Second, we show how to exploit
©1998 The American Physical Society07-1
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advantages of the formalism in practice. We explain the
of discrete symmetries, in order to reduce the algebraic w
and give a prescription for avoiding unphysical poles in a
plitudes. In the presented examples, we treat the polar
tions of massive fermions in a generic way; i.e., expli
results for definite helicity configurations follow from a fe
compact generic amplitudes upon setting auxiliary spinor
specific values. Third, we give explicit results for helici
amplitudes of phenomenologically relevant processes inv
ing massive particles. We explicitly treat the reactionsgg

→ f f̄ , f f̄→ggg, m2m1→ f f̄ g in the framework of the elec
troweak standard model and show how these results ca
carried over to other processes such asgg→ f f̄ g, e2g
→e2gg, e2g→e2e2e1 by using crossing relations.

The outline of the paper is as follows. In Sec. II we s
our basic conventions for the WvdW spinor calculus a
introduce helicity eigenstates for spin-1

2 and spin-1 particles
The necessary ingredients for calculating helicity amplitu
are described in Sec. IV, specifically containing a presc
tion for translating Feynman rules into the WvdW forma
ism, a formulation of discrete symmetries for helicity amp
tudes, and a prescription for avoiding unphysical poles
amplitudes. The physical applications are presented in
V, and Sec. VI contains a summary.

II. BASIC DEFINITIONS

A. Spinors

The basic philosophy of the WvdW formalism is to r
duce all mathematical objects that belong to high
dimensional representations of the Lorentz group to the t

dimensional irreducible representationsD( 1
2 ,0) andD(0,1

2 ).
According to these representations, we distinguish covar

and contravariant WvdW spinorscA and c Ȧ, respectively.
Indices of WvdW spinors are denoted by capital lett
throughout. The transition between the two-dimensional r
resentations, which are nonequivalent, is achieved by c
plex conjugation and a similarity transformation. Compl
conjugation is consistently indicated by dotting~undotting!
indices, i.e.,

c Ȧ5~cA!* , cA5~c Ȧ!* . ~2.1!

The similarity transformation is mediated by the antisymm
ric 232 matrix e5 is2, wheresa (a51,2,3) are the stan
dard Pauli matrices:

eAB5e ȦḂ5eAB5e ȦḂ5S 0
21

11
0 D . ~2.2!

The matrixe defines how to raise and lower spinor indice

cA5eABcB , c Ȧ5e ȦḂc Ḃ , cA5cBeBA , c Ȧ5c Ḃc ḂȦ .

~2.3!

Moreover,e provides the set of Clebsch-Gordan coefficie

that project the product representationsD( 1
2 ,0)^ D( 1

2 ,0) and
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D(0,1
2 ) ^ D(0,1

2 ) onto the trivial representation. For this re
son, it is possible to define a Lorentz-invariant spinor pro
uct through

^fc&5fAcA5f1c22f2c1 ,

^fc&* 5f Ȧc Ȧ5~f1c22f2c1!* , ~2.4!

and e is called aspinor metric. By definition, the spinor
product is antisymmetric:

^fc&52^cf&, ^ff&50. ~2.5!

The fact that an antisymmetric tensor built of tw
dimensional objects cannot have a rank higher than 2 imp
a Schouten identity for the spinor metric,

eABeCD1eACeDB1eADeBC50, ~2.6!

which in terms of spinor products reads

^fc&^jh&1^fj&^hc&1^fh&^cj&50. ~2.7!

B. Four-vectors

Minkowski four-vectors belong to the representati

D( 1
2 , 1

2 )5D( 1
2 ,0)^ D(0,1

2 ) of the Lorentz group. The transi
tion of the usual form of a four-vectorkm5(k0,k) to the

spinor representationD( 1
2 , 1

2 ) is provided by the matrices

sm,ȦB5~s0,s!, s
AḂ

m
5~s0,2s!, ~2.8!

consisting of the two-dimensional unit matrixs0 and the
Pauli matricessa. Each four-vectorkm is related to a 232
matrix

KȦB5kmsm,ȦB5S k01k3

k12 ik2
k11 ik2

k02k3 D , ~2.9!

which is Hermitian if the components ofkm are real. The
rules for dotting, undotting, raising, and lowering spinor i
dices also apply to the indices of thes matrices; in particu-
lar, we have

s
ȦB

m
5sm,ĊDe ĊȦeDB , s

AḂ

m
5~s

ȦB

m
!* . ~2.10!

We note that the coefficients of the transposeKT of a matrix
K readKḂA if the ones ofK are denoted byKȦB ; i.e., trans-
posing a matrix interchanges the spinor indices without m
ing the position of the overdot. Thus the Hermiticity of thes
matrices is expressed by

sm,ȦB5sm,BȦ, s
AḂ

m
5s

ḂA

m
. ~2.11!

The s matrices obey the important relations

s
ȦB

m
sn,ȦB52gmn, s

ȦB

m
sn,ȦC1s

ȦB

n
sm,ȦC52gmndB

C ,

s
ȦB

m
sm,ĊD52e ȦĊeBD . ~2.12!
7-2



e

-

ity

ur-

-
en

ur-

en

re-

nd

WEYL–van der WAERDEN FORMALISM FOR HELICITY . . . PHYSICAL REVIEW D 59 016007
The first of these relations translates the Minkowski inn
product of 2 four-vectorskm andpm into

2k•p5km2gmnpn5kms
ȦB

m
sn,ȦBpn5KȦBPȦB,

~2.13!

and the second one implies

KȦBKȦC5k2dB
C . ~2.14!

In order to reduce terms involving a matrixKȦB to spinor
products, it is necessary to expressKȦB in terms of spinors.
For a real four-vector, the matrixKȦB is Hermitian and can
be decomposed into its eigenvectorsni ,A ( i 51,2) and eigen-
valuesl i :

KȦB5 (
i 51,2

l ini ,Ȧni ,B , l1,25k06uku,

n1,A5S e2 ifcos
u

2

sin
u

2

D , n2,A5S sin
u

2

2e1 ifcos
u

2

D ,

~2.15!

whereu and f denote the polar and azimuthal angles ofk
5ukue, respectively:

e5S cosf sin u
sin f sin u

cosu
D . ~2.16!

For timelike vectors (k2.0), it is often convenient to in-
clude the eigenvaluesl i in the normalization of the eigen
vectors, resulting in

KȦB5 (
i 51,2

k i ,Ȧk i ,B , k i ,A5Al ini ,A . ~2.17!

The phases ofni ,A are chosen such that the orthonormal
relations read

^nini&50, ^n2n1&52^n1n2&511. ~2.18!

Note also the relations for the eigenvaluesl i :

det~KȦB!5l1l25k2, ^k2k1&5Al1l25Ak2.
~2.19!

The special case of a lightlike vector (k250) is of par-
ticular importance. In this case the eigenvaluel2 of Eqs.
~2.15! vanishes, and the matrixKȦB factorizes into a single
product of two spinors:

KȦB5kmsm,ȦB5kȦkB ,

kA5A2k0n1,A5A2k0S e2 ifcos
u

2

sin
u

2

D . ~2.20!
01600
rIn this context,kA is called amomentum spinor.
Finally, we remark that the decomposition~2.15! is a very

convenient, but not unique, possibility to express a fo
vectorkm with k2Þ0 in terms of WvdW spinors. Any split-
ting of km into two lightlike four-vectors yields a decompo
sition into spinors, since lightlike vectors factorize, as se
above. For instance, choosing an arbitrary lightlike fo
vectoram (a250) with a•k.0 and defining

a5
k2

2a•k
, bm5km2aam, ~2.21!

yields a possible decompositionkm5aam1bm. In terms of
WvdW spinors, this corresponds to an arbitrarily chos

spinoraA with KĊDaĊaD.0, leading to the decomposition

KȦB5aaȦaB1bȦbB ,

with

bA52
KḂAaḂ

AKĊDaĊaD
, a5

k2

KĊDaĊaD
. ~2.22!

III. WAVE FUNCTIONS FOR HELICITY EIGENSTATES

A. Spin-1
2 particles

Dirac spinors C belong to the representationD( 1
2 ,0)

% D(0,1
2 ) of the Lorentz group. Thus, in terms of WvdW

spinors, they are represented by

C5S fA

c ȦD . ~3.1!

The WvdW formalism consistently employs the chiral rep
sentation of the Dirac matricesgm:

gm5S 0

sm,ȦB

s
AḂ

m

0
D , g55 ig0g1g2g35S s0

0
0

2s0D .

~3.2!

We are interested in plane-wave solutionsC5

exp$7ikx%Ck
(6) of Dirac’s equation

~ i ]”2m!C50, ~3.3!

which describe the propagation of free Dirac fermions a
antifermions, respectively. Inserting Eqs.~3.1! and~3.2! into
Dirac’s equation, we obtain the coupled pair ofWeyl equa-
tions

KAḂck
~6 !,Ḃ56mfk,A

~6 ! , KȦBfk,B
~6 !56mck

~6 !,Ȧ ,

k25m2. ~3.4!

Upon applying the decomposition~2.17! of KȦB , the follow-
ing solutions can be easily constructed:
7-3
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Ck,1
~6 !5S k1,A

7k2
ȦD , Ck,2

~6 !5S 6k2,A

k1
Ȧ D . ~3.5!

The corresponding adjoint spinorsC̄5C†g0 read

C̄ k,1
~6 !5~7k2

A ,k1,Ȧ!, C̄ k,2
~6 !5~k1

A ,6k2,Ȧ!. ~3.6!

The solutions obey the standard normalization

Ck,i
~6 !†Ck, j

~t!52k0dt6d i j , C̄ k,i
~6 !Ck, j

~t!562mdt6d i j .
~3.7!

Moreover, it is straightforward to check that they inde
form eigenstates of the helicity projector

Sk
65 1

2 ~16g5s”k!, sk
m5

k0

m

km

uku
2gm0

m

uku
. ~3.8!

More precisely,Sk
1 projects ontoCk,1

(1) andCk,2
(2) , Sk

2 onto
Ck,1

(2) andCk,2
(1) ; i.e.,Ck,1

(1) describes a right-handed fermio
Ck,2

(2) a right-handed antifermion, etc.
For massless fermions the Weyl equations~3.4! decouple,

and the helicity eigenstates take the simple form

Ck,1
~6 !5S kA

0 D , Ck,2
~6 !5S 0

kȦD ,

C̄ k,1
~6 !5~0,kȦ!, C̄ k,2

~6 !5~kA,0!. ~3.9!

For the decomposition~2.22! of KȦB , also simple plane-
wave solutions exist, namely,

Ck,1
~6 !5S bA

7AaaȦD , Ck,2
~6 !5S 6AaaA

bȦ D , ~3.10!

which are, however, not related to definite helicity states

B. Massive spin-1 particles

Spin-1 fieldsVm transform like ordinary four-vectors un
der Lorentz transformations. This means that polarizat
vectors«m for such fields can be related to 232 matrices
« ȦB in the same way as described in Eq.~2.9! for a general
four-vectorkm. However, one should keep in mind that p
larization vectors need not be real so that« ȦB is not Hermit-
ian in general.

The free fieldVm of a massive vector particle is governe
by Proca’s equation

@~]21m2!gmn2]m]n#Vn50, ~3.11!

which for mÞ0 is equivalent to theKlein-Gordon equation,
in conjunction with the transversality condition:

~]21m2!Vm50, ]•V50. ~3.12!

With the ansatzVm5exp$7ikx%«m(k) for particles and anti-
particles, respectively, we arrive at
01600
n

k25m2, kn«n~k!5 1
2 KȦB« ȦB~k!50. ~3.13!

For mÞ0 there are three linearly independent, spacelike
larization vectors« i

m(k), which are usually orthonormalize
according to

« i
m~k!« j ,m* ~k!5 1

2 « i ,ȦB~k!« j*
ȦB~k!52d i j , i , j 50,6,

~3.14!

where «* ȦB5«m* sm,ȦB. A helicity basis for the« i
m(k) is

given by

«6
m ~k!5

e7 if

&
~0,2cosu cosf6 i sin f,

2cosu sin f7 i cosf,sin u!,

«0
m~k!5sk

m5
k0

m S uku
k0 ,cosf sin u,sin f sin u,cosu D ,

~3.15!

wheresk
m is related tokm as given in Eqs.~3.8!. In terms of

WvdW spinors, this spin basis reads

«1,ȦB~k!5&n2,Ȧn1,B , «2,ȦB~k!5&n1,Ȧn2,B ,

«0,ȦB~k!5
1

m
~k1,Ȧk1,B2k2,Ȧk2,B!, ~3.16!

where the spinorsni ,A andk i ,A are defined in Eqs.~2.15! and
~2.17!, respectively. Note that care has to be taken wh
dealing with conjugate polarization vectors, which, in pa
ticular, occur for outgoing spin-1 particles in transition am
plitudes. In such cases the transition from the four-vec
«* m to the 232 matrix «

ȦB
* upon contraction with thes

matrices has to be consistently performed for the conjuga
polarization vector, i.e.,«

ȦB
* 5«m* s

ȦB

m
, which in general is

different from taking the complex conjugate of« ȦB . For
clarity, we give also the helicity basis for an outgoing spin
particle:

«
1,ȦB
* ~k!5&n1,Ȧn2,B , «

2,ȦB
* ~k!5&n2,Ȧn1,B ,

«
0,ȦB
* ~k!5

1

m
~k1,Ȧk1,B2k2,Ȧk2,B!, ~3.17!

which correspond to the conjugate polarization vectors« i* of
« i given in Eqs.~3.15!. From Eqs.~3.16! and ~3.17!, we
obtain the relations

« i ,ȦB~k!5«2 i ,BȦ~k!5«
2 i ,ȦB
* ~k!5«

i ,BȦ
* ~k!. ~3.18!

Finally, we give a simple spin basis for the decompositi
~2.22! of KȦB ,
7-4
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TABLE I. Prescriptions for translating ordinary Feynman rules for external fields and prop
tors into the WvdW formalism.
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«1,ȦB~p!5
&aȦbB

^ab&*
, «2,ȦB~p!5

&bȦaB

^ab&
,

«0,ȦB~p!5
1

m
~bȦbB2aaȦaB!, ~3.19!

which is, however, not related to helicity eigenstates.

C. Massless spin-1 particles

In contrast with the case of spin-1
2 particles, the zero-mas

limit for vector bosons confronts us with a new physic
situation. Form→0 the polarization vector«0

m does not ex-
ist, since the longitudinal polarization does not yield a phy
cal state for massless spin-1 particles. The corresponding
gree of freedom manifests itself in the arbitrariness of ga
for the two polarization vectors«6

m . In the language of
WvdW spinors, this fact is expressed very elegantly:

«1,ȦB~k!5
&g1,ȦkB

^g1k&*
, «2,ȦB~k!5

&kȦg2,B

^g2k&
,

«
1,ȦB
* ~k!5

&kȦg1,B

^g1k&
, «

2,ȦB
* ~k!5

&g2,ȦkB

^g2k&*
,

~3.20!

whereg6,A denote arbitrary spinors witĥg6k&Þ0; they are
called gauge spinors. The difference of two matrices
« i ,ȦB(k) for differently chosen gauge spinors is proportion
to the momentum matrixkȦkB , as can be easily checked b
applying the Schouten identity~2.6!. The transversality con
dition k•«650 is still fulfilled for any g6,A ; i.e., the Lor-
entz gauge is maintained for the«6 of Eqs. ~3.20!. Transi-
01600
l

i-
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e

l

tion amplitudes do not depend on the choice of gau
spinors. This means that theg6,A can be appropriately cho
sen to simplify the algebraic expression. Note that it is ev
possible to take different sets of gauge spinors for each
licity channel.

IV. CALCULATION OF HELICITY AMPLITUDES

A. Feynman rules

Feynman rules are usually written down in terms of fou
vectors and Dirac matrices. Here we describe how s
Feynman rules can be directly translated into the languag
WvdW spinors. Obviously, this procedure is much mo
practical than going back to the underlying Lagrangian a
introducing WvdW spinors there.

Given any Feynman graph, the trick is to contract ea
vector-boson leg of a vertex with the identitydn

m

5 1
2 sn

ȦBs
ȦB

m
and to shift the factors

ȦB

m
to the vector-boson

propagator or to the external wave function of the vec
boson that is attached to this vertex. Moreover, for each
curring Dirac matrix, the chiral representation~3.2! has to be
used. In particular, the unit matrix1 in the Dirac space and a
slashed quantitya” read

15S dA
B

0

0

d
Ḃ

ȦD , a”5S 0

aȦB

aAḂ

0 D , ~4.1!

respectively. Tables I and II summarize the necess
changes of the generic Feynman rules for the electrow
standard model in the ’t Hooft–Feynman gauge. The expl
values for the couplings can, for instance, be found in R
7-5
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TABLE II. Prescriptions for translating ordinary Feynman rules for vertices into the WvdW formali
Scalar fields, fermion fields, and vector fields are generically denoted byS, f, andV, respectively, andv6

5
1
2 (16g5) are the chirality projectors.
if

at
o

tr
d.
o
he
a

n
it

for
m-
g

ng
t

n
ar-
ar-
d

, it
@12#. The new Feynman rules for other conventions or d
ferent models can easily be worked out by the reader.

Once the Feynman rules are settled, it is very easy
explicitly write down helicity amplitudes for any process
the tree level. Expressing all particle momenta in terms
spinors, as described in Sec. II B, each helicity amplitude
reduced to an algebraic expression in terms of antisymme
spinor productŝfc& after all spinor indices are contracte
These spinor contractions can be performed like usual c
tractions of Lorentz indices, apart from taking care of t
antisymmetry. The form of the amplitudes obtained this w
is already well suited to numerical evaluations.

B. Discrete symmetries

Discrete symmetries relate helicity amplitudes of differe
processes or of one and the same process. Thus they e
01600
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provide convenient cross-checks for results or they allow
a reduction of the algebraic work by generating various a
plitudes from a generic set of amplitudes. In the followin
we show how to derive the relations implied by crossi
symmetry, parity, andCP symmetry, which are the mos
important discrete symmetries in practice.

~i! Crossing symmetry. Crossing symmetry transforms a
incoming particle into the corresponding outgoing antip
ticle or vice versa. Denoting the momentum of a given p
ticle by k, the inversionk→2k can be consistently obtaine
by substituting

k i ,Ȧ→2k i ,Ȧ , k i ,A→1k i ,A ~4.2!

in the decomposition~2.17! of k, i.e., by inverting the con-
travariant parts only. In order to relate helicity amplitudes
7-6
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is also necessary to consider the relation between the w
functions of the respective incoming and outgoing fields.
specting the explicit form of the wave functions for the h
licity eigenstates of Sec. III, one finds that the substitut
~4.2! transforms incoming~outgoing! particles into outgoing
~incoming! antiparticles with reversed helicity modulo sig
change. Specifically, there is a global factor21 for each
crossed spin-1 field and a factor6sgn(s) for each incoming-
outgoing fermion with helicitys that is involved in the
crossing.

~ii ! Parity. If parity is a symmetry, every helicity ampli
tude, up to a phase factor, agrees with the correspon
amplitude with opposite helicities, after the spatial parts
all momenta are inverted. At the level of WvdW spinors, t
inversion of the spatial parts of momenta is connected w

the interchange of the spinorscA and c Ȧ. It turns out that
each helicity amplitude, up to a global sign factor, agre
with the complex conjugate amplitude with opposite helic
configuration. More precisely, ifiM(s i ;l j ) is an amplitude
involving n fermions andn̄ antifermions with helicitiess i ,
andnV vector bosons with helicitiesl j , we get the relations

M~2s i ;2l j !5~21! n̄sgn~s1¯sn1n̄!M~s i ;l j !*
~4.3!

for tree-level amplitudes. If parity is violated, these relatio
for amplitudes remain valid if left- and right-handed co
plings are appropriately substituted. The explicit derivat
of Eq. ~4.3! and the modifications for broken parity can b
found in the Appendix.

~iii ! CP symmetry. CP is the product of parity, which is
explained above, and charge conjugation, which in
changes particles with the respective antiparticles. Theref
CP symmetry leads to relations between the helicity am
tudes of a given process and the complex conjugate hel
amplitudes with reversed helicities of the process involv
the respective antiparticles. We consider an amplitu
iM(s i ;l j ) and the one for theCP-related process
i _M̄ (s i ;l j ), where the respective helicities for the fermio
and vector bosons are assigned as above. IfCP is an exact
symmetry, these two matrix elements are related by

_M̄ ~2s i ;2l j !

5~21!nV1nin1n̄in sgn~s1¯sn1n̄!M~s i ;l j !* ~4.4!

at the tree level, wherenin1n̄in is the total number of incom
ing fermions and antifermions. The explicit derivation
these relations and their modifications ifCP is violated are
given in the appendix.

The actual use of these symmetries will be illustra
when we consider helicity amplitudes of concrete proces
in Sec. V.

C. Remarks on the choice of gauge spinors

Since a helicity amplitude does not depend on the ac
insertions for gauge spinors, they can, in principle, be cho
arbitrarily. Usually, a gauge spinorgA is chosen such that a
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many terms as possible in an amplitude vanish. However
can be seen from Eqs.~3.20!, an arbitrary choice ofgA in
general leads to unphysical poles at the zeros of^gk& in in-
dividual terms that contribute to an amplitude. Of course,
unphysical pole drops out in the final result, but this canc
lation can cause instabilities in a numerical evaluation.

Unphysical poles can, for instance, consistently
avoided by settinggA5n2,A , where n2,A is related to the
momentumk of the massless spin-1 particle as specified
Eqs.~2.15!. This choice is identical with Eqs.~3.16! for the
transverse modes of a massive spin-1 particle. The drawb
of this choice is that no algebraic simplifications result.

Another possibility to avoid numerical problems that a
due to unphysical poles is to cancel such poles analytic
before the numerical evaluation. In general, this task can
extremely cumbersome, and the additional work deval
preceding simplifications. In the following we give a ve
convenient choice ofgA , yielding desirable simplifications
without leaving uncanceled unphysical poles.

Consider a process with an incoming photon of mom
tum k and an outgoing fermionf of momentump; the mo-
mentum matrix forp is denoted by

PȦB5 (
i 51,2

k i ,Ȧk i ,B . ~4.5!

We choose the same gauge spinor

gA5PAḂkḂ5 (
i 51,2

k i ,A^k ik&* ~4.6!

for both photon helicities. The problematic denominato
contained in the photon polarization vectors~3.20! are given
by

^gk&5kAPAḂkḂ52~p•k!. ~4.7!

This has the form of the inverse propagator (p2k)22mf
25

22(p•k) that appears if the incoming photon direct
couples to the outgoing fermionf so that no unphysical pole
is introduced at all. The subdiagram containing this propa
tor is shown in Fig. 1~a!. In Feynman graphs that contain th
subdiagram, we obtain the factor (p•k)22; one power is due
to the propagator, and another is due to the polarization v
tor. For small (p•k) we again get an unwanted cancellatio
of one power in (p•k). However, this cancellation can b
easily performed analytically. Denoting the Dirac spinor
the outgoing fermion with helicitys, generically, by

FIG. 1. Subdiagrams containing the fermion propagator deno
nator @(p2k)22mf

2#21 for processes with an incoming photon o
momentumk (k250) and an outgoing fermion or antifermion o
momentump (p25mf

2).
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C̄ p,i
~1 !5~cC,f Ċ!,

with

~f,c!5 H ~k1 ,2k2!

~k2 ,k1!

for i 51 ~s51 !,
for i 52 ~s52 !, ~4.8!

and using the wave function« ȦB for the photon with helicity
l, the subdiagram reads

Tl
g f~s!52

Qfe

2~p•k!
~cC,f Ċ!S 0

e ȦĊeBD
dD

ȦdC
B

0
D

3« ȦBS mfdD
E

~p2k!ḊE

~p2k!DĖ

mfd Ė

Ḋ D , ~4.9!

whereQf is the relative electromagnetic charge of the f
mion f. Upon inserting Eq.~4.5!, Eq. ~4.6!, and the explicit
expressions~3.20! for «1,ȦB , we get

T1
g f~s!5

Qfe

2&~p•k!2
^kc&

3„2~p•k!kE1mf@^fc&kE2^kc&fE

1^kf&cE#,0…. ~4.10!

Here we have used thatPȦB5f ȦfB1c ȦcB and ^fc&
5mf for both fermion helicities. The expression with
square brackets in Eq.~4.10! vanishes according to
Schouten’s identity~2.6! so that one factor (p•k) cancels.
Performing a similar calculation forT2

g f(s), we find the
simple results

T1
g f~s!5

Qfe

&~p•k!
^kc&~kE,0!,

T2
g f~s!5

Qfe

&~p•k!
^kf&* ~0,kĖ!. ~4.11!

Considering an outgoing antifermion instead of a fermion
shown in Fig. 1~b!, we get

T1
g f̄~s!52

Qfe

&~p•k!
^kf&S kE

0 D ,

T2
g f̄~s!52

Qfe

&~p•k!
^kc&* S 0

kĖD , ~4.12!

where the Dirac spinor for the antifermion is generically d
noted by

Cp,i
~2 !5S fC

c ĊD ,

with
01600
-

s

-

~f,c!5H ~k1 ,k2! for i 51 ~s52 !,

~2k2 ,k1! for i 52 ~s51 !.
~4.13!

From the results~4.11! and~4.12! for diagrams~a! and~b! of
Fig. 1, respectively, all similar diagrams involving outgoin
photons and/or incoming~anti!fermions follow by crossing,
as described in the previous section.

The above procedure also works if the~anti!fermions in
Fig. 1 are replaced by charged gauge bosons, e.g., by thW
boson of the electroweak standard model. In this case, h
ever, one has to take into account the contribution of
associated would-be Goldstone boson, which appears on
ternal lines~vertical lines in Fig. 1!.

V. APPLICATIONS

In order to illustrate the actual use of the formalism d
scribed above, we calculate full sets of helicity amplitud
for some processes with massive particles and photon
lowest order. The presented results have been derived
lytically and simplified as far as possible; this demonstra
the analytical power of the technique. In addition, the amp
tudes have been evaluated by performing the spinor cont
tions automatically inMATHEMATICA @13#, which is very
simple. The results of both approaches have been comp
numerically.

The following examples only include massive extern
fermions. For an application of the helicity basis for mass
spin-1 particles, we refer to Ref.@7#, where the radiative
processese2g→W2neg,e2Zg are discussed.

A. Processgg˜f f̄

For illustration, we start with the simple QED process

g~k1 ,l1!1g~k2 ,l2!→ f ~p,s!1 f̄ ~p8,s8!. ~5.1!

The momentum matrix and the wave function for the outg
ing fermion f are denoted as in Eqs.~4.5! and ~4.8!, respec-
tively. For the outgoing antifermion we define

P
ȦB
8 5 (

i 51,2
k

i ,Ȧ
8 k i ,B8 ~5.2!

and

Cp8
~2 !

5S fC8

c8ĊD ,

with

~f8,c8!5H ~k18 ,k28! for s852,

~2k28 ,k18! for s851.
~5.3!

Since we want to make use of the results of the previ
section, we set the gauge spinorgn,A for the nth photon to

gn,A5PAḂkn
Ḃ5 (

i 51,2
k i ,A^k ikn&* , n51,2. ~5.4!
7-8
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In lowest order the two Feynman graphs of Fig. 2 contribu
Let us first calculate the contributionM(a) of diagram~a! to
the full helicity amplitudeM. We identify the photon
g(k,l) in the subgraph shown in Fig. 1~a! with g(k1 ,l1)
and denote the contribution of this subgraph byTl1

g1f(s).

M(a) then follows upon multiplication ofTl1

g1f(s), which is

given in Eqs.~4.11!, with the secondg f f̄ vertex and the
wave functions for the second photon and the antifermio

iM~a!~l1 ,l2 ,s,s8!

5Tl1

g1f
~s!~2 iQ fe!S 0

e ĖĠeFH
d

Ḟ

Ġ
dE

H

0
D S fF8

c8ḞD «2,ĠH .

~5.5!

Note that we follow the common practice to split off a fact
1 i from helicity amplitudes throughout. It is trivial to carr
out the spinor contractions in Eq.~5.5! for the explicit inser-
tions of Tl1

g1f(s) and «2,ĠH . The contributionM(b) of the

diagram in Fig. 2~b! follows fromM(a) by consistently in-
terchanging the incoming photons. This leads us to the fi
result for the full helicity amplitudesM5M(a)1M(b) :

M~1,1,s,s8!5
Qf

2e2mf

2~p•k1!~p•k2!
^k1k2&

2^fc8&* ,

M~2,2,s,s8!5
Qf

2e2mf

2~p•k1!~p•k2!
~^k1k2&* !2^f8c&,

M~1,2,s,s8!52
Qf

2e2

2~p•k1!~p•k2!
^k2Pk1&

3~^k1f8&^k2f&* 1^k1c&^k2c8&* !,

M~2,1,s,s8!5M~1,2,s,s8!uk1↔k2
. ~5.6!

Here we have introduced the abbreviation

^kl Pkn&5kl ,ȦPȦBkn,B5 (
i 51,2

^klk i&* ^knk i&, l ,n51,2.

~5.7!

Moreover, we mention that Schouten’s identity~2.6! has
been used in order to get compact results forl15l256.

FIG. 2. Born diagrams forgg→ f f̄ .
01600
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As explained in Sec. IV B, parity relates amplitudes w
opposite-helicity configurations through complex conjug
tion, modulo a sign factor. According to Eq.~4.3!, these
relations explicitly read

M~2l1 ,2l2 ,2s,2s8!

52sgn~ss8!M~l1 ,l2 ,s,s8!* , ~5.8!

consistent with the above results. Alternatively, these re
tions can be used to generate all helicity amplitudes from
generic results forM(1,1,s,s8) and M(1,2,s,s8)
given in Eqs.~5.6!. The processgg→ f f̄ is also CP symmet-
ric. Taking into account that the CP transformation inte
changesf and f̄ , Eq. ~4.4! implies

M~2l1 ,2l2 ,2s8,2s!

5sgn~ss8!M~l1 ,l2 ,s,s8!* up↔p8 , ~5.9!

where the substitutionp↔p8 also includes the interchang
of the respective spinorsk i andk i8 .

B. Processf f̄ ˜ggg and related reactions

Next, we consider fermion-antifermion annihilation in
three photons:

f ~p,s!1 f̄ ~p8,s8!→g~k1 ,l1!1g~k2 ,l2!1g~k3 ,l3!.

~5.10!

The momentum matricesP and P8 for the momentap and
p8, respectively, are again decomposed into the respec
spinorsk i ,A andk i ,A8 , as defined in Eqs.~4.5! and~5.2!. The
Dirac spinors are generically assigned by

Cp
~1 !5S fA

c ȦD , C̄ p8
~2 !

5~c8A,f
Ȧ
8 ! ~5.11!

with the actual insertions

~f,c!5H ~k1 ,2k2! for s51,

~k2 ,k1! for s52,

~f8,c8!5H ~k18 ,k28! for s852,

~2k28 ,k18! for s851.
~5.12!

For all helicity configurations, we havêfc&5^c8f8&
5mf . The polarization spinors«

l i ,ȦB
* (ki) for the outgoing

photons are defined as in Eqs.~3.20!. Following the strategy
of Sec. IV C and ‘‘crossing’’ the results~4.11! or ~4.12! for
the subdiagrams of Fig. 1, the actual calculation of the
diagrams forf f̄→ggg ~see Fig. 3! is rather simple. In order
to minimize the number of generic amplitudes that have
be calculated, we first give the relations that follow fro
discrete symmetries. Parity, CP, and Bose symmetry imp
7-9
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M~2s,2s8,2l1 ,2l2 ,2l3!52sgn~ss8!M~s,s8,l1 ,l2 ,l3!* ,

M~2s8,2s,2l1 ,2l2 ,2l3!52sgn~ss8!M~s,s8,l1 ,l2 ,l3!* up↔p8 ,

M~s,s8,l i 1
,l i 2

,l i 3
!5M~s,s8,l1 ,l2 ,l3!uk1→ki 1

,k2→ki 2
,k3→ki 3

. ~5.13!

Therefore, for any given (s,s8) combination, it suffices to calculate the helicity amplitudes with (l1 ,l2 ,l3)5(111),
(112), from which all other amplitudes follow by Eqs.~5.13!. These generic results can be expressed in a very com
form

M~s,s8,l1 ,l2 ,l3!5
Qf

3e3Al1l2l3
~s,s8!

4&~p•k1!~p•k2!~p•k3!
, ~5.14!

where

A111~s,s8!5mf

~^k2k3&* !2

~p8•k1!
^k1P8Pk1&^fc8&1cyclic permutations ink1 ,k2 ,k3 ,

A112~s,s8!5mf

~^k1k2&* !2

2~p8•k3!
~^k3P8Pk3&* ^fc8&12~p•k3!^k3f&^k3c8&!

2
^k2Pk3&
~p8•k1!

@^k1P8Pk1&~^k2c&* ^k3c8&1^k2f8&* ^k3f&!12~p•k1!^k3f&^k1f8&* ^k1k2&* #1~k1↔k2!.

~5.15!
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In addition to the shorthand̂kl Pkn& of Eq. ~5.7! we have
introduced the useful abbreviations

^kl P8Pkl&5kl ,ȦP8ȦBPĊBkl
Ċ5 (

i , j 51,2
^klk i8&* ^k jk i8&^k j kl&* ,

l 51,2,3. ~5.16!

The above results forf f̄→ggg can also be used to gen
erate the helicity amplitudes for the bremsstrahlung p
cessesgg→ f f̄ g ande2g→e2gg, if the crossing relations
of Sec. IV B are applied. In particular, we get a set of helic
amplitudes for the so-called double Compton process

e2~p,s!1g~k,l!→e2~p8,s8!1g~k18 ,l18!1g~k28 ,l28!
~5.17!

by identifying f 5e2, consistently replacing

k3
m→2km, k3,A→k3,A , k3,Ȧ→2k3,Ȧ , l3→2l,

p8m→2p8m, k i ,A8 →k i ,A8 , k
i ,Ȧ
8 →2k

i ,Ȧ
8 , s8→2s8

~5.18!

FIG. 3. Born diagrams forf f̄→ggg.
01600
-

in all expressions, and adding the factor sgn(s8), wheres8 is
the helicity of the outgoinge2 in Eq. ~5.17!. Finally, we
mention that our helicity amplitudes have been numerica
reproduced~up to phase factors! in the framework of the
calculation presented in Ref.@14# by employing the spinor
method of Ref.@2# and by a third, completely differen
method.

C. Processµ2µ1
˜f f̄ g and related reactions

As a final example, we consider the process

m2~p,s!1m1~p8,s8!→ f ~q,t!1 f̄ ~q8,t8!1g~k,l!,
~5.19!

which will be of relevance at future muon colliders. Th
momenta p,p8 and the corresponding Dirac spino

Cp
(1) , C̄ p8

(2) for the incoming muons are defined in the sam
way as in the last section@see Eqs.~5.11! and ~5.12!#. The
momentum matricesQ andQ8 for the outgoing momentaq
and q8 are decomposed into the spinorsr i ,A and r i ,A8 , re-
spectively:

FIG. 4. Born diagrams form2m1→ f f̄ g, where graphs with the
outgoing photon attached to the other charged fields are suppre
7-10
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QȦB5 (
i 51,2

r i ,Ȧr i ,B , Q
ȦB
8 5 (

i 51,2
r

i ,Ȧ
8 r i ,B8 . ~5.20!

The respective Dirac spinors are generically given by

C̄ q
~1 !5~hA,j Ȧ!, Cq8

~2 !
5S jA8

h8ȦD , ~5.21!

with the actual insertions

~j,h!5 H ~r1 ,2r2!

~r2 ,r1!

for t51,
for t52,

~j8,h8!5H ~r18 ,r28!

~2r28 ,r18!

for t852,
for t851; ~5.22!

i.e., we havê jh&5^h8j8&5mf . The polarization spinors
«

l,ȦB
* (k) for the outgoing photon are defined as in Eq

~3.20!. For f Þm2, 16 diagrams contribute to the process
the standard model at the tree level; they are schematic
indicated in Fig. 4. The casef 5m2 will not be considered
here explicitly; the results for this particular channel follo
from the ones forf Þm2 by adding the amplitudes for th
crossed processf m1→ f m1g with a negative sign. Since th
interaction is mediated by the exchange of neutral partic
only, the electromagnetic currents of the muon and fermiof
are conserved separately. This means that the gauge s
for the outgoing photon can be chosen differently for initi
and final-state radiation, which simplifies the calculation.
the following we generically denote the couplings of the ne
tral bosons to the fermions by

gg f
6 52Qf , gZ f

1 52
sw

cw
Qf , gZ f

2 52
sw

cw
Qf1

I W, f

cwsw
,

gH f
6 52

1

2sw

mf

MW
, gx f

6 56
i I W, f

sw

mf

MW
, ~5.23!
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whereI W, f56 1
2 is the weak isospin of the left-handed pa

of the fermion fieldf. In Eqs.~5.23! we follow the conven-
tions of Ref. @12# for the standard model parameters a
fields; in particular,x denotes the would-be Goldstone pa
ner to theZ boson, andH is the physical Higgs boson. Sinc
standard electroweak theory does not conserve parity,
parity-induced relations between helicity amplitudes w
opposite helicity configurations involve also an interchan
of the chiral couplings:

M~2s,2s8,2t,2t8,2l!

5sgn~ss8tt8!M~s,s8,t,t8,l!* u~g
...
6 !*↔g

...
7 .

~5.24!

On the other hand, the process isCP symmetric at the con-
sidered perturbative level, and the relations induced byCP
symmetry read

M~2s8,2s,2t8,2t,2l!

52sgn~ss8tt8!M~s,s8,t,t8,l!* up↔p8,q↔q8 .

~5.25!

The matrix elementsM are decomposed according to th
boson in thes channel,

M~s,s8,t,t8,l!5&e3F (
V5g,Z

Al
~V!~s,s8,t,t8!

1 (
S5x,H

Al
~S!~s,s8,t,t8!G , ~5.26!

leading to two generic functionsAl
(V) and Al

(S) for the ex-
change of a vector field and a scalar field, respectively. O
ing to Eqs.~5.24! or ~5.25!, it is sufficient to give the results
for l51:
A1
~V!~s,s8,t,t8!5H Qm^kP8Pk&

2~p•k!~p8•k!@~q1q8!22MV
2 #

2
Qf^kQ8Qk&

2~q•k!~q8•k!@~p1p8!22MV
2 #J

3~gVm
1 gV f

1 ^f8j&* ^fj8&1gVm
1 gV f

2 ^f8h8&* ^fh&1gVm
2 gV f

1 ^cj&* ^c8j8&1gVm
2 gV f

2 ^ch8&* ^c8h&!

2
Qm

~q1q8!22MV
2 FgVm

1 ^kf8&*

~p8•k!
~gV f

1 ^kj&* ^fj8&1gV f
2 ^kh8&* ^fh&!

2
gVm

2 ^kc&*

~p•k!
~gV f

1 ^kj&* ^c8j8&1gV f
2 ^kh8&* ^c8h&!G

2
Qf

~p1p8!22MV
2 FgV f

1 ^kj&*

~q•k!
~gVm

1 ^kf8&* ^fj8&1gVm
2 ^kc&* ^c8j8&!

2
gV f

2 ^kh8&*

~q8•k!
~gVm

1 ^kf8&* ^fh&1gVm
2 ^kc&* ^c8h&!G ,
7-11
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A1
~S!~s,s8,t,t8!5H Qf^kQ8Qk&

4~q•k!~q8•k!@~p1p8!22MS
2#

2
Qm^kP8Pk&

4~p•k!~p8•k!@~q1q8!22MS
2#J

3~gSm
1 ^fc8&1gSm

2 ^f8c&* !~gS f
1 ^j8h&1gS f

2 ^jh8&* !

1
QmgSm

2 ^kf8&* ^kc&*

~q1q8!22MS
2 ~gS f

1 ^j8h&1gS f
2 ^jh8&* !F 1

2~p•k!
1

1

2~p8•k!G
2

QfgS f
2 ^kj&* ^kh8&*

~p1p8!22MS
2 ~gSm

1 ^fc8&1gSm
2 ^f8c&* !F 1

2~q•k!
1

1

2~q8•k!G . ~5.27!
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The quantitieŝ kP8Pk& and ^kQ8Qk& are defined in com-
plete analogy tôkl P8Pkl& in Eq. ~5.16!. The results forAl

(V)

andAl
(S) are written down in the ’t Hooft–Feynman gaug

i.e., we haveMx5MZ . We mention, however, that we hav
reproduced the result for the complete matrix elementM
also in an arbitraryRj gauge for the photon andZ-boson
fields, in which the individual contributionsAl

(V) and Al
(S)

look different.
The above results have also been used to derive the h

ity amplitudes for the process

e2~p,s!1g~k,l!→e2~p8,s8!1e2~q,t!1e1~q8,t8!

~5.28!

in QED. The QED part of the amplitudes~5.26! is obtained
by taking the contribution ofV5g in Eq. ~5.26! only. More-
over, we identifyQm5Qf5Qe521. The crossing proceed
analogously to the case described at the end of the prev
section; i.e., one has to perform the replacements

km→2km, kA→kA , kȦ→2kȦ , l→2l,

p8m→2p8m, k i ,A8 →k i ,A8 , k
i ,Ȧ
8 →2k

i ,Ȧ
8 , s8→2s8,

~5.29!

and to apply the sign factor sgn(s8), wheres8 is the helicity
of the outgoinge2 in Eq. ~5.28!. Finally, we have to anti-
symmetrize all amplitudes with respect to the interchange
the two outgoing electrons. Moreover, the amplitudes h
been numerically reproduced by an independent heli
method in the framework of the calculation discussed in R
@14#. The polarized cross sections ofe2g→e2e2e1 contrib-
ute, in particular, to the left-right asymmetryALR of polar-
ized Compton scattering as background. The numer
agreement of the results presented in Ref.@14# for this con-
tribution to ALR with the completely independent ones
Ref. @15# represents an additional check of the calculatio

VI. SUMMARY

The Weyl–van der Waerden~WvdW! spinor technique
for the calculation of helicity amplitudes of massive a
massless particles has been described in detail, providin
necessary ingredients for an implementation in computer
gebra. This formalism leads to rather compact results
amplitudes, which can be directly used for numerical eva
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ations, immediately after all spinor indices have been c
tracted to so-called spinor products. These contractions
technically similar to the usual ones for Lorentz indice
Since all mathematical objects, such as momenta, polar
tion vectors, and Dirac spinors, are expressed in terms
WvdW spinors, the spinor calculus often allows for furth
simplifications at the analytical level. Moreover, we ha
formulated how to exploit discrete symmetries for a redu
tion of the algebraic work, or for providing additiona
checks, and how to avoid problems that are due to the
pearance of unphysical poles in amplitudes.

The use and the power of the described spinor techni
have been demonstrated by the explicit calculation of
helicity amplitudes for the processesgg→ f f̄ , f f̄→ggg,
m2m1→ f f̄ g with massive fermions and of reactions th
can be obtained from those by crossing symmetry. The
sults, which have been analytically simplified as far as p
sible, are very compact and well suited to numerical eval
tions.
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APPENDIX: MORE DETAILS ABOUT DISCRETE
SYMMETRIES

In this appendix we supplement the discussion of pa
andCP symmetry in Sec. IV B by further details.

1. Parity

In order to explicitly derive the relations between helici
amplitudes that are connected by parity, we inspect the in
vidual terms in an amplitudeM after complex conjugation
Contractions between momentum matrices, which are
Minkowski inner products according to Eq.~2.13!, are not
changed at all, since the result is real. Contractions betw
a momentumk and a polarization vector« or between two
polarization vectors turn into the products for the cor
sponding polarization vectors with opposite helicity, sin
(KȦB)* 5KAḂ5KḂA and («l,ȦB)* 5«l,AḂ5«2l,ḂA (l50,
61). Coupling factorsiC for interactions between boson
7-12
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simply turn into 2 iC* , and boson propagators receive
factor21 owing to the explicit factori in the numerator. The
only nontrivial terms are those originating from Dirac mat
ces and fermionic wave functions. The complex conjug
amplitude remains unchanged if we multiply each fermio
vertex by a factorGP

2 521 from the left and from the right,
where the matrixGP is defined as

GP5 ig2g55S 0
e

e
0D . ~A1!

Shifting then a factorGP to the fermion propagators or fer
mionic wave functions that are attached on the right side
this vertex and shifting a factor2GP to the left side, we get
the following replacements when going over fromM to
M* :

iek/C
V f̄1f 2

t
vt→2GP@ iek/C

V f̄1f 2

t
vt#* GP

52 iek/~C
V f̄1f 2

2t
!* vt ,

ie«/lC
V f̄1f 2

t
vt→2GP@ ie«/lC

V f̄1f 2

t
vt#* GP

52 ie«/2l~C
V f̄1f 2

2t
!* vt ,

ieC
S f̄1f 2

t
vt→2GP@ ieC

S f̄1f 2

t
vt#* GP52 ie~C

S f̄1f 2

2t
!* vt ,

i ~k/1mf !→GP@ i ~k/1mf !#* ~2GP!52 i ~k/1mf !,

Ck,1
~6 !→GP@Ck,1

~6 !#* 51Ck,2
~6 ! ,

C̄ k,1
~6 !→@ C̄ k,1

~6 !#* ~2GP!51 C̄ k,2
~6 ! ,

Ck,2
~6 !→GP@Ck,2

~6 !#* 52Ck,1
~6 ! ,

C̄ k,2
~6 !→@ C̄ k,2

~6 !#* ~2GP!52 C̄ k,1
~6 ! , ~A2!

where the notation for the generic Feynman rules of Tabl
and II is used. The relations betweenM(s i ;l j )* and
M(2s i ;2l j ) can be read off from Eqs.~A2! and the above
considerations. The substitutions for the chiral couplings
explicitly given; in particular, there is no substitution
parity-conserving theories, in whichC

V f̄1f 2

t
5(C

V f̄1f 2

2t
)* , etc.

There is a global change of sign due to vertices and pro
gators, since each of them introduces a factor21 and since
their total number is always odd in tree-level amplitud
Another factor21 comes from our convention of extractin
the factori from the amplitudeiM. Finally, we encounter a
factor sgn(si) for each external fermion with helicitys i and
a factor2sgn(si) for each external antifermion, leading u
directly to relation~4.3!.

2. CP symmetry

As in the case of parity, we derive theCP-induced rela-
tions between helicity amplitudes by considering the co
plex conjugate of a given amplitudeM. We assume an un
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derlying model in which all couplings between bosons a
CP-conserving, as is the case in the electroweak stand
model. Then, for bosonic fields, the situation is simple, b
cause the wave functions of particles and antiparticles
formally identical, and the bosonic couplings that are rela
by charge conjugation differ by at most the sign factors~see,
e.g., the Feynman rules in Ref.@12#!. Specifically, there is a
factor (21)v between each vertex factoriC and the expres-
sion iC̄ for the vertex involving the corresponding charg
conjugated fields, wherev is the number of vector boson
attached to the vertex. In order to get rid of the facto
(21)v, we shift a factor21 for each vector-boson leg of
vertex to the attached vector-boson propagators or exte
wave functions, resulting in an overall factor (21)nV for
each diagram, wherenV is the number of external vecto
bosons. After this procedure the bosonic propagators
vertices for the charge-conjugated fields consistently di
by a factor21 from the complex-conjugated counterpa
involving the original fields.

For fermionic fields we proceed in a way similar to th
treatment of parity described above. In addition to taking
complex conjugate of a Dirac chain, we now also transp
each term and invert the order in the chain, since cha
conjugation reverses the directions of fermionic lines. Th
we multiply fermionic vertices, propagators, and wave fun
tions by the matrix

GCP52g0g55S 0
21

1
0D , ~A3!

with GCP
2 521 in the same way as done withGP above. This

leads to the replacements

iek/C
V f̄1f 2

t
vt→2GCP@2 iek/C

V f̄1f 2

t
vt#

†GCP

52 iek/~C
V f̄1f 2

t
!* vt ,

ie«/lC
V f̄1f 2

t
vt→2GCP@2 ie«/lC

V f̄1f 2

t
vt#

†GCP

52 ie«/2l~C
V f̄1f 2

t
!* vt ,

ieC
S f̄1f 2

t
vt→2GCP@ ieC

S f̄1f 2

t
vt#

†GCP

52 ie~C
S f̄1f 2

2t
!* vt ,

i ~k/1mf !→GCP@ i ~k/1mf !#
†~2GCP!

52 i ~2k/1mf !,

Ck,1
~6 !→@Ck,1

~6 !#†~2GCP!52 C̄ k,1
~7 ! ,

C̄ k,1
~6 !→GCP@ C̄ k,1

~6 !#†51Ck,1
~7 ! ,

Ck,2
~6 !→@Ck,2

~6 !#†~2GCP!51 C̄ k,2
~7 ! ,

C̄ k,2
~6 !→GCP@ C̄ k,2

~6 !#†52Ck,2
~7 ! . ~A4!
7-13
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Note that we had to include a factor21 for the vector-
boson–fermion coupling in the first two substitutions, so
to be consistent with the above treatment of bosonic c
plings. Moreover, one should realize the correct change
sign in the momentum of the fermion propagator@see fourth
substitution in Eqs.~A4!#, corresponding to the inversion o
the fermion line. In the case ofCP violation, the necessary
substitutions for the couplings can be read off from E
~A4!; if CP is conserved, no substitution is necessary,
cause thenC

V f̄ f

t
5(C

V f̄ f

t
)* and C

S f̄ f

t
5(C

S f̄ f

2t
)* . The
1 2 1 2 1 2 1 2

s.

01600
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of

.
-

overall sign between the amplitudeM(s i ;l j )* and the one

for the CP-related process_M̄ (2s i ;2l j ) is deduced as
follows. At the tree level, there is an overall factor21 from
the vertices and propagators and another21 from the con-
vention forM, as in the case of parity. From Eqs.~A4! one
can see that incoming fermions and antifermions with he
ity s i introduce each a factor2sgn(si), while outgoing fer-
mionic lines yield a factor sgn(si). Taking into account the
factor (21)nV derived above, we obtain relation~4.4!.
.
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