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Nonperturbative renormalization and the electron’s anomalous moment in large-a QED
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We study the physical electron in quantum electrodynamics expanded on the light-cone Fock space in order
to address two problems:~1! the physics of the electron’s anomalous magnetic momentae in nonperturbative
QED and~2! the practical problems of ultraviolet regularization and renormalization in truncated nonpertur-
bative light-cone Hamiltonian theory. We present results forae computed in a light-cone gauge Fock space
truncated to include one bare electron and at most two photons, i.e., up to two photons in flight. The calcula-
tional scheme uses an invariant mass cutoff, discretized light-cone quantization~DLCQ!, a Tamm-Dancoff
truncation of the Fock space, and a photon mass regulator. We introduce new weighting methods which greatly
improve convergence to the continuum within DLCQ. Nonperturbative renormalization of the coupling and
electron mass are carried out, and a limit on the magnitude of the effective physical coupling strength is
computed. A large renormalized coupling strengthaR50.1 is then used to make the nonperturbative effects in
the electron anomalous moment from the one-electron, two-photon Fock state sector numerically detectable.
@S0556-2821~99!00101-0#

PACS number~s!: 11.15.Tk, 02.60.Nm, 11.10.Gh, 12.20.Ds
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I. INTRODUCTION

Many years ago Feynman issued the following challen
@1#: ‘‘It seems that very little physical intuition has yet bee
developed in this subject@of quantum electrodynamics#. In
nearly every case we are reduced to computing exactly
coefficient of some specific term. We have no way to ge
general idea of the result to be expected.. . . As aspecific
challenge, is there any method of computing the anoma
moment of the electron which, on first rough approximatio
gives a rough approximation to thea term and a crude one t
a2; and when improved, increases the accuracy of thea2

term, yielding a rough estimate toa3 and beyond?’’ This
challenge was taken up by Drell and Pagels@2#, who used a
sideways dispersion relation and low-energy theorems
Compton scattering@3# to construct consistency condition
for the anomalous moment. Their approach did meet w
some success, particularly in understanding the sign of tha
term; however, the dispersion relation requires an ultravio
cutoff, and low-energy approximations of the integrand
not completely adequate.

We propose to meet Feynman’s challenge by using
cretized light-cone@4# quantization@5# ~DLCQ! @6#. By con-
structing the dressed electron state in Fock space we ca
principle compute physical properties of the electron exa
@7,8#. In practice, various truncations are required, but
approach remains nonperturbative. Instead of producing
expansion ina, we produce an expansion in Fock particle
i.e., the number of photons in flight. The computation
equivalent to a selective summation of graphs to all ord
but is actually done by diagonalizing a matrix approximati
of the light-cone mass-squared operator. In this form the
culation becomes a testing ground for techniques of non
turbative renormalization.

When two-photon intermediate states are allowed, gra
0556-2821/98/59~1!/016006~18!/$15.00 59 0160
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such as the multiloop graph in Fig. 1~a! enter the calculation
and are summed to all orders. Even at the one-photon le
the calculation is nonperturbative because there are infin
order contributions from graphs of the sort in Figs. 1~b! and
1~c!. However, in the case of Fig. 1~c!, crossed-photon
graphs andZ graphs are needed to cancel a divergence
zero longitudinal momentum for any instantaneous electr
Because of these cancellations, we place the nonperturb
part of the one-photon contribution into a two-photon calc
lation.

The selection of the graphs to be summed is driven by
truncations made and is designed to make the calcula
tractable. The truncation in particle number is physically re
sonable; the work of Drell and Pagels@2# shows that states
with few photons in flight are dominant. As the actual num
ber of particles is varied and as different truncations of

FIG. 1. Typical loop graphs that contribute to an infinite-ord
resummation. Wavy lines represent photons and straight lines
resent electrons. A crossed line corresponds to an instantan
exchange on the light cone.
©1998 The American Physical Society06-1
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interactions are explored, one can gain a better understan
of the physics of the anomalous moment. Thus our calc
tion can be viewed as the beginning of a possible progr
with systematic improvements available. It might even b
come a model for how to proceed with nonperturbative c
culations in quantum chromodynamics~QCD!.

In the work presented here we regulate the theory by
invariant-mass cutoff, which limits the light-cone energy
the Fock states included in the basis, and by a Tam
Dancoff truncation@9# of the number of constituents. Thes
restrictions keep the numerical calculation to a very reas
able size but they do complicate the renormalization. T
truncations turn the bare parameters of the theory into Fo
sector-dependent functions of momentum@10# and require
careful construction of appropriate counterterms@11# to cor-
rectly approximate the solution to the original theory@12#.
We fix these functions by applying conditions on mass
genvalues and vertices in the presence of spectator con
ents.

Two alternative renormalization procedures now ex
One is the similarity transformation developed by Wils
and Glazek@13# and Wegner@14#, where counterterms ar
generated perturbatively as the Hamiltonian matrix is n
rowed in the range of allowed light-cone energies; the fi
Hamiltonian matrix is used nonperturbatively. This approa
has been applied by Perry and co-workers@15#. The other is
based on introduction of Pauli-Villars regulators@16# before
the quantization and numerical schemes are selected, so
counterterms can be supplied simply by adjusting the b
parameters. This approach has just recently been succes
tested in a simple model@17#, and it should soon be consid
ered for the anomalous-moment problem studied here.

We compute the anomalous moment@18,19# from a spin-
flip matrix element of the plus component of the electrom
netic current@20#. We approximate the Fock-state expansi
of the dressed electron with a truncation to no more than
photons and one electron. The eigenvalue problem for
wave functions becomes a coupled set of three integral e
tions. To construct these equations we use the light-c
Hamiltonian derived by Tanget al. @21#, regulated by the
invariant-mass cutoff. The photon mass is taken to be
tenth of the electron mass, to help control infrared div
gences. The coupling strength is set ata5 1

10 , because limi-
tations on numerical accuracy make nonperturbative eff
discernible only at large coupling. The calculation is not
attempt to compete with the accuracy of the perturbative
culations by Kinoshita and co-workers@22#.

The bare electron mass in the one-photon sector is c
puted from the one-loop correction allowed by the tw
photon states, where one photon is a spectator. We the
quire that the bare mass in the no-photon sector be such
physical mass is an eigenvalue of the light-cone Ham
tonian.

The three-point bare coupling is also sector depend
There are no vacuum polarization effects, because pair
duction is removed by the Tamm-Dancoff truncation. Ho
ever, the truncation violates the Ward identity so that ver
and wave function renormalization do not cancel@23#. A
consequence of this is that the physical coupling is limited
01600
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a cutoff-dependent finite range of allowed values. We co
pute the critical coupling that defines the upper limit.

The vertex renormalization is fixed by considering t
proper part of the transition amplitude for photon absorpt
by an electron at zero photon momentum. A means by wh
this transition amplitude can be computed from the low
eigenstate is constructed. Full diagonalization of the Ham
tonian is not required; however, the renormalization con
tion and the eigenvalue problem must be solved as a cou
system. The wave function renormalization is directly ava
able from the bare amplitude in the Fock state expansion

To within the accuracy of the calculation, the values f
the anomalous moment become constant for an ultravi
cutoff sufficiently large. However, most four-point graph
that arise in the bound-state problem are log divergent.
any order the divergences cancel if all graphs are includ
but the Tamm-Dancoff truncation spoils this. The resulti
logarithmic effects are not detectable in the numerical
sults.

The calculations presented here build on the signific
amount of work that has been done recently on the use
light-cone quantization@4,5,24,25# in the construction of
solvable bound-state problems for strongly interacting th
ries. The coordinates used are based on the choice oft1z as
the time coordinate, wheret is the ordinary time andz any
Cartesian spatial coordinate. A variety of field theories ha
been analyzed in this way@6,26–36,21,37–41#. Most theo-
ries considered have been simple model theories in one s
dimension@6,26–33,40,41#; however, there have been stu
ies of three dimensional theories, including the Wic
Cutkosky model@42,34,35#, the Yukawa model@36#, quan-
tum electrodynamics ~QED! @21,37#, and quantum
chromodynamics~QCD! @38#. There has also been som
work on nonperturbative scattering calculations@43–45# and
on the stationary phase approximation to the soliton inf111

4

@46#.
Much of this work has involved numerical studies. Bro

sky, Pauli, and co-workers have analyzed various o
dimensional theories~Yukawa @6#, QED @27#, and QCD
@28#! and have devoted a considerable amount of effort
three-dimensional QED@21,37#. Some work on the three
dimensional Wick-Cutkosky model@42# has been done by
Sawicki and co-workers, Ji and Furnstahl@34#, and Wivoda
and Hiller @35#. One-dimensional scalar theories,f3 andf4,
have been studied by Harindranath and Vary@26#. Work on
the one-dimensional Yukawa model has been done by Ha
dranath, Shigemitsu, and Perry@30#; this was based on a
Tamm-Dancoff truncation@9# and used basis-function meth
ods as well as a discretization technique. The basis-func
methods have been extended to the three-dimensional
by Głazeket al. @36#. A preliminary treatment of QCD in
three dimensions has been attempted by Hollenberg and
workers@38#. Dimensional reduction of QCD to an effectiv
theory in 111 dimensions has also been considered@40,41#.

Other nonperturbative approaches applicable to QCD
clude lattice gauge theory@47,48#, sum rules @49#, and
Schwinger-Dyson equations@50#. A particularly successful
form of lattice theory has been developed by Lepage
collaborators@51# who use tadpole-improved actions to r
6-2
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NONPERTURBATIVE RENORMALIZATION AND THE . . . PHYSICAL REVIEW D 59 016006
duce discretization errors. The Hamiltonian form of latti
theory @52# is actually similar to the approach usually tak
in light-cone quantization, in that a Hamiltonian operator
constructed and partially diagonalized@53#. There has also
been work on combinations of the lattice with light-co
methods in the transverse lattice method@54# and in direct
use of a light-cone lattice@55#.

Two important aspects of QCD that all these metho
address are vacuum structure and symmetry breaking
light-cone quantization, the vacuum appears to be the tri
perturbative vacuum. This has the advantage that one
compute massive states immediately without first compu
the vacuum state. However, in equal-time quantization,
nontrivial structure of the QCD vacuum is known to be im
portant. This paradox of the trivial vacuum has receiv
much attention. Nonperturbative analyses of various lig
cone models indicate that interactions induced by z
modes@56–58# and other considerations@11# play important
roles in generating effects such as symmetry break
@59,60# that are usually associated with the vacuum.

The progress made recently in the application of lig
cone quantization owes much to earlier work@61#. The de-
velopment then was aimed at perturbation theory, and in
ticular its application to deep inelastic scattering, but mu
has been carried over to bound-state problems. New wor
perturbation theory has also been done@62,19#.

An outline of the remainder of the paper is as follow
The discretized light-cone formulation of the anomalous m
ment problem is given in Sec. II. The nonperturbative m
and coupling renormalization that we use are described
Sec. III. Finite corrections associated with photon ze
modes and with ambiguities in infinite renormalizations a
discussed in Sec. IV. Our results are presented in Sec. V,
a brief summary is given in Sec. VI.

II. DISCRETIZED LIGHT-CONE QUANTIZATION

A. Light-cone quantization

We define light-cone coordinates@5# by

x65t6z, x'5~x,y! . ~2.1!

Momentum variables are similarly constructed as

p65E6pz , p'5~px ,py! . ~2.2!

The time variable is taken to bex1, and time evolution of a
system is then determined byP2, the operator associate
with the momentum component conjugate tox1. Usually
one seeks stationary states obtained as eigenstates ofP2.
Frequently the eigenvalue problem is expressed in terms
light-cone Hamiltonian@6# ~mass-squared operator!

HLC5P1P22P'
2 ~2.3!

as

HLCC5M2C , ~2.4!
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whereM is the mass of the state, andP1 andP' are mo-
mentum operators conjugate tox2 andx' .

It is convenient to work in a Fock basis$un:pi
1 ,p' i&%

whereP1 andP' are diagonal, withn the number of par-
ticles andi ranging between 1 andn. To simplify the nota-
tion only one particle type is included explicitly. The stateC
is given by an expansion

C5(
n
E @dx#n@d2k'#ncn~x,k'!

3un:p15xP1,p'5xP'1k'&, ~2.5!

with

@dx#n54pdS 12(
i 51

n

xi D)
i 51

n
dxi

4pAxi

,

@d2k'#n54p2dS (
i 51

n

k' i D)
i 51

n
d2k' i

4p2
, ~2.6!

(P1,P') the total light-cone momentum, andcn interpreted
as the wave function of the contribution from states withn
particles. The solution of Eq.~2.4! in principle yields these
wave functions.

The anomalous momentae is computed from the standar
form factorF2(q2) at zero momentum transfer:

ae5F2~0!. ~2.7!

In the standard light-cone frame@63# where

q5~0,q'
2 /p1,q'5q1x̂!, ~2.8!

the form factor can be computed from the spin-flip mat
element of the plus component of the current:

2
q1

2me
F2~q2!5

1

2p1 ^p1q,↑uJ1~0!up,↓&. ~2.9!

Brodsky and Drell@20# have given a reduction of this matri
element to a convenient form that depends directly on
wave functions. From this we have

ae522me(
j

ej(
n
E @dx#n@d2k'#ncn↑* ~x,k'!

3(
iÞ j

xi

]

]k1i
cn↓~x,k'!, ~2.10!

whereej is the fractional charge of the struck constituent
Up to this point, we have used formally exact expressio

A key approximation to be made is the truncation of all su
to a finite number of particles. The result is the light-co
equivalent of the Tamm-Dancoff approximation@9#. The ei-
genvalue problem becomes a finite set of equations that
in principle solvable. However, the truncation has many c
sequences for the renormalization of the theory@10# and for
comparisons to Feynman perturbation theory@62,19#. Some
of these consequences are discussed in Sec. III.
6-3
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JOHN R. HILLER AND STANLEY J. BRODSKY PHYSICAL REVIEW D59 016006
In addition, QED requires regularization and renormaliz
tion. To regularize it, we use a cutoff on the invariant ma
of the allowed Fock states@5#

(
i

mi
21k' i

2

xi
<L2. ~2.11!

This limits the relative transverse momentumk' of each
constituent and keeps the longitudinal momentum away fr
zero. The latter aspect is important for control of spurio
infrared singularities, which are discussed in Sec. III C.
additional cutoff, that limits the change in invariant ma
across any matrix element of the Hamiltonian@64#, could be
considered.

When only states with at most one photon and no p
are retained, and instantaneous interactions are negle
Brodsky and Drell@20# have shown that Eq.~2.10! reduces
to

ae5
ame

2

p2 E dx d2k'

3
me

12x

u@L22~me
21k'

2 !/~12x!2~mg
21k'

2 !/x#

@me
22~me

21k'
2 !/~12x!2~mg

21k'
2 !/x#2

,

~2.12!

which in the limit of L→` becomes

ae5ae
S[

a

2p E
0

1 2x2~12x!dx

x21~12x!~mg /me!
2

. ~2.13!

Because the instantaneous interactions are higher ordera,
this is the leading perturbative result. The integrals involv
can all be done analytically even for finite cutoff, althou
the final form is not instructive. Formg50, the resulting
formula yields the standard Schwinger@18# contribution of
a/2p at infinite cutoff. In general this provides a point o
comparison for numerical calculations with one or more p
tons. The inclusion of the dependence on the photon mas
the analytic result is crucial for comparison with numeric
results calculated with nonzeromg because the mass depe
dence is quite strong, as can be seen in Fig. 2.

B. Discretization

The most systematic approach to discretization of the
genvalue problem is the method originally suggested
Pauli and Brodsky@6#, discretized light-cone quantizatio
~DLCQ!. In essence it is the replacement of integrals
trapezoidal approximations, with equally spaced intervals
the longitudinal and transverse momenta

p1→
p

L
n, p'→S p

L'

nx ,
p

L'

nyD . ~2.14!

The length scalesL and L' determine the resolution of th
calculation. Because the plus component of momentum
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always positive, the limitL→` can be exchanged for a limi
in terms of the integerresolution@6#

K[
L

p
P1. ~2.15!

The combination of momentum components that definesHLC
is then independent ofL. The longitudinal momentum frac
tions xi become ratios of integersni /K. Because theni are
all positive, DLCQ automatically limits the number of pa
ticles to no more thanK. The integersnx and ny range be-
tween limits associated with some maximum integerN'

fixed by the invariant-mass cutoff. A finite matrix problem
then obtained without an explicit Tamm-Dancoff truncatio
however, this number of particles is much too large in pr
tice for numerical treatments of three-dimensional theorie

We use antiperiodic boundary conditions for the fermio
and periodic boundary conditions for the photons. These
strict the integersn associated with longitudinal momenta
being odd for fermions and even for photons. The desc
tion of the dressed electron state must then use odd value
K.

In most applications, DLCQ is introduced at the level
second quantization. This can yield a compact expressio

FIG. 3. Complete set of diagrams for the fundamental inter
tions of QED in light-cone quantization. Solid lines represent f
mions; wavy lines represent photons. A line with a bar through
indicates an instantaneous interaction expressed in the Hamilto
as a four-body operator. Only the first three diagrams are inclu
in the present calculation, and for the third, the piece kinematic
equivalent to aZ graph is neglected.

FIG. 2. The one-photon perturbative contribution to the anom
lous momentae as a function of photon massmg . It is the
Schwinger term, given by Eq.~2.13!.
6-4
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NONPERTURBATIVE RENORMALIZATION AND THE . . . PHYSICAL REVIEW D 59 016006
the eigenvalue problem. Recently, a transformation of
DLCQ Hamiltonian to a Gaussian basis has been sugge
@65#; however, the steps for renormalization in that ba
have not been worked out.

The application of DLCQ to QED is summarized in Re
@21#, which we use as a starting point. This includes use
light-cone gauge@66#, with A150. Modifications of this
gauge choice due to zero modes@57# are discussed in Sec
IV.

The fundamental interactions of light-cone QED are illu
trated in Fig. 3. For the calculation reported here we do
01600
e
ed
s

f

-
t

include any pair production processes. The instantane
photon interactions are then completely excluded beca
each Fock state has only one fermion. We also exclude
fourth diagram~and its conjugate! to decouple two-photon
states from the bare electron state; this simplifies the ca
lation and limits the role of two-photon states to that of pr
viding the basis for inclusion of crossed-photon grap
There is also a technical modification of the interaction
sociated with the third diagram of Fig. 3 which is discuss
in Sec. III C. After the exclusions have been made, the lig
cone Hamiltonian becomes
HLC5(
nI

(
s561/2

me
21~n'p/L'!2

n/K
bnI ,s

† bnI ,s1(
mI

(
l561

me
21~m'p/L'!2

m/K
amI ,l

† amI ,l

1
eKme

2ApL'

(
nI 1 ,nI 2 ,mI

(
s561/2

1

Am
H dnI 11mI ,nI 2S 1

n1
2

1

n2
DbnI 2 ,s

† bnI 1 ,2samI ,2s1H.c.J
1

eApK

&L'
2 (

nI 1 ,nI 2 ,mI
(

s561/2

1

Am
dnI 11mI ,nI 2H e',2s•S m'

m
2

n'1

n1
DbnI 2 ,s

† bnI 1 ,samI ,2s1H.c.

1e',22s•S m'

m
2

n'2

n2
DbnI 2 ,s

† bnI 1 ,samI ,22s1H.c.J
1

e2K

4pL'
2 (

nI 1 ,nI 2 ,mI 1 ,mI 2
(

s561/2

1

Am1m2

dnI 21mI 2 ,nI 11mI 1H 1

n11m1
bnI 2 ,s

† bnI 1 ,samI 2 ,22s
† amI 1 ,22s

1
1

m22n1
bnI 2 ,s

† bnI 1 ,samI 2,2s
† amI 1,2sJ ~2.16!

with e',l52(l,i )/&.
The discrete form of the spin-s eigenstateCs is

Cs5c0sbKI ,s
† u0&1(

nI ,mI
dnI 1mI ,KI (

s1 ,l1

c1s~nI ,mI ;s1 ,l1!bnI ,s1

† amI ,l1

† u0&

1 (
nI ,mI 1 ,mI 2

dnI 1mI 11mI 2 ,KI (
s1 ,l1 ,l2

c2s~nI ,mI 1 ,mI 2 ;s1 ,l1 ,l2!
1

&
bnI ,s1

† amI 1 ,l1

† amI 2 ,l2

† u0&, ~2.17!

whereKI 5(K,K'50). According to the eigenvalue equationHLCC5M2C the amplitudesc is must satisfy the following
~discretized! integral equations:

~M22m0
2!c0s5e0

Kme

2ApL'

(
nI ,mI

dnI 1mI ,KI

1

Am
S 1

n
2

1

K Dc1s~nI ,mI ;2s,2s!

1e0

KAp

&L'
2 (

nI ,mI
dnI 1mI ,KI

1

Am
H e',2s•S m'

m
2

n'

n Dc1s~nI ,mI ;s,2s!1e',22s •
m'

m
c1s~nI ,mI ;s,22s!J ,

~2.18!
6-5
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S M22Fm1
2~nI 8!1~n'8 p/L'!2

n8/K
1

mg
21~m'8 p/L'!2

m8/K
G D c1s~nI 8,mI 8;s1 ,l1!

5
K

4pL'
2 (

nI ,mI
dnI 1mI ,KI

1

Am8m
H e0

2dl1 ,22s1

1

K
c1s~nI ,mI ;s1 ,22s1!2e1~nI 8!e1~nI !dl1,2s1

u~n2m8!

n2m8
c1s~nI ,mI ;s1,2s1!J

1e0

Kme

2ApL'

1

Am8
S 1

n8
2

1

K D dl1,2sds1 ,2sc0s

1e0

KAp

&L'
2

1

Am8
H e',l1

* •S m'8

m8
2

n'8

n8
D dl1,2sds1 ,s1e',l1

* •

m'8

m8
dl1 ,22sds1 ,sJ c0s

1e1~nI 8!
Kme

2ApL'

(
nI ,mI

dnI 1mI 1mI 8,KI

1

A2m
S 1

n
2

1

n1mD $c2s~nI ,mI ,mI 8;2s1,2s1 ,l1!1c2s~nI ,mI 8,mI ;2s1 ,l1,2s1!%

1e1~nI 8!
KAp

&L'
2 (

nI ,mI
dnI 1mI 1m8I ,KI

1

A2m
H e',2s1

•S m'

m
2

n'

n Dc2s~nI ,mI ,mI 8;s1,2s1 ,l1!

1e',2s1
•S m'

m
2

n'

n Dc2s~nI ,mI 8,mI ;s1 ;l1,2s1!1e',22s1
•S m'

m
2

n'8

n8
D c2s~nI ,mI ,mI 8;s1 ,22s1 ,l1!

1e',22s1
•S m'

m
2

n'8

n8
D c2s~nI ,mI 8,mI ;s1 ,l1 ,22s1!J , ~2.19!

and

S M22Fme
21~n'8 p/L'!2

n8/K
1

mg
21~m'18 p/L'!2

m18/K
1

mg
21~m'28 p/L'!2

m28/K
G D c2s~nI 8,mI 18 ,mI 28 ;s1 ,l1 ,l2!

5
Kme

2A2pL'

H dl2 ,22s1

e1~nI 81mI 28!

Am28
S 1

n8
2

1

n81m28
Dc1s~nI 81mI 28 ,mI 18 ;2s1 ,l1!

1dl1 ,22s1

e1~nI 81mI 18!

Am18
S 1

n8
2

1

n81m18
Dc1s~nI 81mI 18 ,mI 28 ;2s1 ,l2!J

1
KAp

2L'
2 H dl2,2s1

e1~nI 81mI 28!

Am2

e',l2
* •S m'28

m28
2

n'8

n! D c1s~nI 81mI 28 ,mI 18 ;s1 ,l1!

1dl1,2s1

e1~nI 81mI 18!

Am1

e',l1
* •S m'18

m18
2

n'8

n8
D c1s~nI 81mI 18 ,mI 28 ;s1 ,l2!

1dl2 ,22s1

e1~nI 81mI 28!

Am2

e',l2
* •S m'28

m28
2

n'8 1m'28

n81m28
D c1s~nI 81mI 28 ,mI 18 ;s1 ,l1!

1dl1 ,22s1

e1~nI 81mI 18!

Am1

e',l1
* •S m'18

m18
2

n'8 1m'18

n81m18
D c1s~nI 81mI 18 ,mI 28 ;s1 ,l2!J . ~2.20!
016006-6
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In anticipation of the discussion of renormalization in Se
III, bare massesm0 and m1 and bare couplingse0 and e1
have been introduced. These equations are so
numerically, with the first step being the use of Eq.~2.20! to
eliminatec2 from Eq.~2.19!. Once a solution is obtained fo
one value of total spins, the solution for the opposite spi
can be computed directly from

c1↓~s1521/2,l1571!52c1↑* ~11/2,61! ~2.21!

and

c1↓~s1511/2,l1571!51c1↑* ~21/2,61!. ~2.22!

These follow from the symmetries of the integral equatio
Other symmetries lead to relationships between amplit

components, which can be summarized as follows:

c1↑~x,k' ;s151/2,l1561!

5kxf rl1
~ ukxu,ukyu!1 ikyf il1

~ ukxu,ukyu!

~2.23!

and

c1↑~x,k' ;s1521/2,l1561!

5grl1
~ ukxu,ukyu!1 ikxkygil1

~ ukxu,ukyu!,

~2.24!

where the functionsf rl , f il , grl , and gil are real. The
problem can then be reduced to a smaller matrix problem
these real functions. Fors15 1

2 we storekxf r 6(kx.0,0),
kyf i 6(0,ky.0), kxf r 6(kx.0,ky.0), and kyf i 6(kx.0,ky
.0). For s152 1

2 we store gr 6(0,0),gr 6(kx.0,0),
gr 6(0,kx.0), gr 6(kx.0,ky.0), and kxkygi 6(kx.0,ky
.0). The use of symmetry reduces the matrix storage
quirement by a factor of 8. The Hermitian matrix of th
original eigenvalue equation~2.19! can be expressed as a re
symmetric matrix in the reduced equation by using a tw
component representation of complex arithmetic:

~c1 id !~a1 ib!→S c 2d

d cD S a
b D ~2.25!

and

~a1 ib!*→S 1 0

0 21D S a
b D . ~2.26!

The leading perturbative result@20# is recovered by keep
ing only c0s terms on the right-hand side of Eq.~2.19!. This
equation can then be immediately solved forc1s , which can
be used to form a discrete approximation to Eq.~2.12!. The
approximation includes a finite difference approximation
the derivatives that appear in Eq.~2.10! and therefore is no
simply a trapezoidal approximation to Eq.~2.12!.
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C. Discretization errors

Results obtained with ordinary DLCQ show an irregu
dependence on the numerical parametersK and N' , which
interferes with extrapolation to infinite resolution. Th
causes of the irregularities have been determined to be
numerical approximation of the derivative in the formu
~2.10! for ae and boundary effects in the numerical integr
tions. The error in the derivative can be controlled by cho
ing N'>7 andK>21. The bound onK is consistent with the
resolution needed to resolve the one-photon peak in theae
integrand whenmg5me/10, which is the photon mass w
use. Smaller values ofmg shift the peak to smaller photo
momenta and would increase the lower bound onK. The
shape of the integrand for various values ofmg is illustrated
in Fig. 4. The mass sensitivity of the numerical convergen
rate is shown in Table I.

The integration boundary effects are more difficult to co
trol. These effects arise from use of the DLCQ grid which
incommensurate with the integration domain. At the boun
aries, the trapezoidal rule misses contributions beyond
last grid point; this error is not a smooth function of the gr
spacing. To overcome this error, one can replace the t
ezoidal rule by open-closed Newton-Cotes formulas tailo
specifically to the boundary@17#. Grid points near the bound
ary are then associated with unequal integration weights.
unequal weights must be taken into account in normaliza
sums and symmetrization of the Hamiltonian matrix, but t
is easily done. One can even consider use of Simpson’s
although this does not appear useful in the anomalous
ment calculation. The improvement brought by these weig
ing methods can be dramatic, as shown in Ref.@17#.

III. RENORMALIZATION

A. Mass renormalization

Here we are interested in ultraviolet divergences ass
ated with largek' . Electron self-energy contributions, whic
are divergent, shift the mass and, through wave funct

FIG. 4. The integrand for the one-photon perturbative contri
tion. The integrals over the transverse momentum have been
formed and only the integral over longitudinal momentumx re-
mains, as given in Eq.~2.13!.
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TABLE I. The DLCQ approximation to the perturbative one-photon integral in Eq.~2.13!. The values at different DLCQ resolutionsK
show that the convergence rate depends on the photon massmg .

K

mg /me

0 0.001 0.01 0.1 0.3162

11 0.8182 0.8182 0.8173 0.7455 0.5041
21 0.9048 0.9047 0.9025 0.7708 0.5079
41 0.9512 0.9512 0.9461 0.7728 0.5090
81 0.9753 0.9752 0.9648 0.7731 0.5093

161 0.9876 0.9873 0.9699 0.7732 0.5094
321 0.9938 0.9933 0.9703 0.7732 0.5094
641 0.9969 0.9959 0.9703 0.7732 0.5094

1281 0.9984 0.9968 0.9703 0.7732 0.5094
2561 0.9992 0.9969 0.9703 0.7732 0.5094

` 1.0000 0.9969 0.9703 0.7732 0.5094
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renormalization, change the coupling. These induceL2 and
log L dependencies in the eigenvalues. In the discrete t
cated problem these effects depend on the Fock sector
sidered@10#. For example, an electron in a Fock state
which a transition to a state with more photons is not
lowed, perhaps due to truncation in photon number, will
experience any self-energy corrections. If one additio
photon is allowed, but not instantaneous interactions, o
single loops can occur. If two or more additional photons c
appear, then an infinite number of overlapping loops c
contribute to self-energy corrections, a truly nonperturbat
situation. In each case, the leading divergence is remove
introduction of counterterms associated with bare mas
that are sector dependent and momentum dependent@67#.

To be specific, consider the case where there are at m
two photons and only one electron. The Fock-state expan
can be written schematically as

C5c0ue&1c1ueg&1c2uegg&. ~3.1!

Here c1 and c2 are column vectors that contain the amp
tudes for individual Fock states with one and two photo
respectively. The eigenvalue problem~2.4! becomes a
coupled set of three integral equations~2.18!, ~2.19!, and
~2.20!, which we write more compactly as

m0
2c01b1

†
•c11b2

†
•c25M2c0 ,

b1c01A11c11A12c25M2c1 , ~3.2!

b2c01A12
† c11A22c25M2c2 ,

wherem0 is the bare electron mass and the vectorsbi
† and

the tensorsA i j are integral operators obtained fromHLC . We
now require thatm0 be such thatM25me

2 is an eigenvalue.
The second and third equations can be solved forc1 /c0 and
c2 /c0 . Then the first equation yieldsm0 . Normalization of
C fixes the value ofc0 .
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Suppose now that this two-photon problem is embed
in some larger problem where one needs to know the b
mass of an electron in a Fock state that can couple to F
states obtained by adding at most two photons. The sam
of equations can be applied, with all constituents in the lo
est Fock state, other than the electron, acting as specta
One need only replacem0

2 in Eq. ~3.2! by (m0
21k'

2 )/x and
M25me

2 by M25(me
21k'

2 )/x, with x andk' the longitudi-
nal momentum fraction and transverse momentum of the
tial electron. Notice thatm0 is now a function ofx andk' .

This can be generalized to cases with more photons,
reduced to the case of only one contributing photon. Th
one obtains a mechanism for a sector-depend
momentum-dependent mass renormalization that is u
from the topn-photon sector down to the bare electron st
ue&. The last step automatically includes the solution of t
full eigenvalue problem for the dressed electron state.

For the one-photon case embedded in the two-pho
problem we have

m1
21k'

2

x
c1s~x,k'!1b†~x,k'!•c25

me
21k'

2

x
c1s~x,k'!,

~3.3!

bc1s~x,k'!1Ac25
me

21k'
2

x
c2s . ~3.4!

The second photon is a spectator. The coupling toc2 then
induces the one-loop self-energy correction with this spe
tor present. The explicit form is obtained from Eqs.~2.19!
and ~2.20! with M25(me

21k'
2 )/x1(mg

21k'
2 )/(12x) and

with any interaction involving the spectator dropped. Equ
tion ~2.20! can then be solved forc2 and the result substi
tuted into the modified Eq.~2.19! to obtain
6-8
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me
21~n'8 p/L'!2

n8/K
c1s~nI 8,mI 8;s1 ,l1!

5
m1

2~nI 8!1~n'8 p/L'!2

n8/K
c1s~nI 8,mI 8;s1 ,l1!

1e1
2~nI 8!

K2me
2

4pL'
2 (

nI ,mI

dnI 1mI ,nI 8 /m~1/n821/n!2c1s~nI 8,mI 8;s1 ,l1!

~K/n8!@me
21~n'8 p/L'!2#2~K/n!@me

21~n'p/L'!2#2~K/m!@mg
21~m'p/L'!2#

1e1
2~nI 8!

K2p

4L'
4 (

nI ,mI

dnI 1mI ,nI 8 /m$~m' /m2n' /n!21~m' /m2n'8 /n8!2%c1s~nI 8,mI 8;s1 ,l1!

~K/n8!@me
21~n'8 p/L'!2#2~K/n!@me

21~n'p/L'!2#2~K/m!@mg
21~m'p/L'!2#

. ~3.5!

The Kronecker deltas from helicity conservation have been used to simplify the result, and only terms in which the
photon is a spectator have been kept. Rearrangement of the coefficient ofc1s yields

m1
2~nI 8!5me

22
n8

K
e1

2~nI 8!
K2p

4L'
4

3(
nI ,mI

dnI 1mI ,nI 8
m

~meL' /p!2~1/n821/n!21~m' /m2n' /n!21~m' /m2n'8 /n8!2

~K/n8!@me
21~n'8 p/L'!2#2~K/n!@me

21~n'p/L'!2#2~K/m!@mg
21~m'p/L'!2#

~3.6!
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as the one-loop mass.
If electron-positron pairs are included, the photon mas

renormalized and must be treated in the analogous fash
In general, the two mass renormalizations are coupled,
must be carried out simultaneously.

All of the steps in mass renormalization depend on kno
ing all couplings. This information is actually not immed
ately available because the couplings are to be renormali

B. Coupling renormalization

The bare coupling for the electron-photon three-point v
tex depends on the initial and final momenta of the elect
and on the sectors between which the coupling acts@10#. The
momentum dependence is present because the amou
momentum available constrains the extent to which hig
order corrections can contribute. Similarly, the sector dep
dence makes itself felt when the number of additional p
ticles in higher-order corrections is restricted.

We fix these bare coupling functions by matching pho
absorption amplitudes to the fundamental three-point ver
The amplitudes are computed from the numerical eigenfu
tion of the light-cone Hamiltonian. Therefore, the coupli
renormalization conditions and the mass eigenvalue prob
form a coupled set of equations that are solved iterativel

1. Renormalization conditions

When vacuum polarization is absent, the bare couplinge0
is related to the physical couplingeR by

e0~kI i ,kI f !5
Z1~kI f !eR

AZ2i~kI i !Z2 f~kI f !
, ~3.7!
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wherekI i5(ki
1 ,k' i) is the initial electron momentum andkI f

the final momentum. The renormalization functionsZ1(kI )
andZ2(kI ) are generalizations of the usual constants@23#.

The wave function renormalization functionZ2 is easily
computed since it is the probability of the bare electron Fo
state in the dressed electron state. In the earlier notatio
Eq. ~3.1!, we have

Z2~kI !5uc0u2, ~3.8!

wherekI is the light-cone momentum of the dressed electr
The amplitudec0 must be computed in a basis where on
allowed particles appear. For example, if the vertex is
photon absorption process,Z2i must be computed with one
less photon in the basis than in the basis used forZ2 f . From
this example one can see that the Tamm-Dancoff approxi
tion has destroyed the usual Ward identity.

The functionZ1 can be fixed by considering the transitio
amplitudeTf i for photon absorption by an electron at ze
photon momentum. The proper part of this amplitude, me
ing that without self-energy corrections to the legs, is
quired to be proportional to the elementary three-point
flip vertex Vf i whenqI 5kI f2kI i→0:

Tf i
proper5

1

Z1~kI f !
Vf i . ~3.9!

In the limit, only kI f5kI i dependence can remain.1 Numeri-
cally the limit can be taken by using a photon with mome

1There are, of course, finite corrections that are not properly r
resented here. These are discussed in Sec. IV.
6-9



hi
it
ad
lu

n
an

a

th

n
-
In

to
o

of

ne

ust
ce-
ing
cou-

ned.
sses
two
ho-
be
d in
w.

ho-
nor-
q.

y
ton

per

itial
the
he

JOHN R. HILLER AND STANLEY J. BRODSKY PHYSICAL REVIEW D59 016006
tum (2P1/K,q̂'p/L'); in the DLCQ limit of K→` and
L'→`, this momentum becomes zero. Of course, if t
particular state does not satisfy the cutoff, a state w
slightly larger longitudinal momentum must be used inste

The full transition amplitude can be computed from so
tions to the eigenvalue problem~2.4!. Let H0 be the free
light-cone Hamiltonian with physical masses. The eige
states ofH0 are then the asymptotic states of the electron
photon. The transition is driven by the interactionV[HLC
2H0 . Define resolvents for the free and full Hamiltonians

G15
1

s1 i e2H0

and

G15
1

s1 i e2HLC
, ~3.10!

with s the square of the center-of-mass energy. TheT matrix
can be formally expressed in terms of these as

G1TG15G1VG11G1VG1TG15G1VG1. ~3.11!

When sandwiched between the initial and final states,
yields

1

s2me
2 Tf i

1

s2si
5(

n

cn0

s2Mn
2 ^CnuVu i &

1

s2si
, ~3.12!

where theuCn& are eigenstates ofHLC with eigenvaluesMn
2

and bare-electron amplitudescn0 . In the limit2 that s be-
comesme

2, we obtain

Tf i5c0^CuVu i &, ~3.13!

in which uC& is the dressed electron state andc0

5AZ2 f(kI f).
The connection betweenTf i and Tf i

proper is made by con-
sidering the matrix element of G1TG1

5G1V(n50
` (G1V)nG1. We have

^ f uG1TG1u i &5( ^ f uG1V¯VG1u f &

3^ f uVG1V¯G1u i &^ i uG1V¯VG1u i &.

~3.14!

The factors on the right are illustrated in Fig. 5. The seco
factor contains no intermediateuf& states and the initial pho
ton is absorbed beforeui& appears as an intermediate state.
the third factor, the initial photon remains a specta
throughout. The sum runs over all possible combinations
these forms and yields

^ f uG1TG1u i &5^ f uG1u f &Tf i
proper^ei uGg

1uei&, ~3.15!

2This limit neglects the small photon mass.
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whereGg
1 is the propagator for the electron in the presence

the initial photon as a spectator. In the limit wheres andsi

approachme
2, we obtain

1

s2me
2 Tf i

1

s2si
5

uc f 0u2

s2me
2 Tf i

proper
uc i0u2

s2si
. ~3.16!

This then reduces to an expression forTf i
proper

Tf i
proper5

1

Z2 fZ2i
Tf i . ~3.17!

Thus the solution of the eigenvalue problem for only o
state can be used to computeZ1 . Full diagonalization ofHLC
is not needed.

2. Application of renormalization conditions

BecauseZ1 is needed in the construction ofHLC , the
eigenvalue problem and the renormalization conditions m
be solved simultaneously. This leads to an iterative pro
dure that begins with an initial guess for the bare coupl
functions. One then computes bare masses and new bare
plings. The process is repeated until convergence is attai
This must be done from the top sector down; the bare ma
in any one sector and the bare couplings between any
depend only on the sectors above, the ones with more p
tons. The structure of the Hamiltonian matrix can then
determined once and for all at these levels and then use
the determination of the structure at the levels further belo

When the Fock basis is limited to no more than one p
ton, and instantaneous interactions are neglected, the re
malization conditions are quite simple. We have from E
~3.13!

Tf i5c0c0* Vf i5Z2 fVf i ~3.18!

and from this, with Eqs.~3.9! and ~3.17!,

Z15Z2 fZ2i

Vf i

Z2 fVf i
5Z2i51, ~3.19!

where the last equality follows from the unavailability of an
state that can correct the initial electron line when a pho
spectator is present. The bare charge is then given by

FIG. 5. Representative diagram for the extraction of the pro
vertex amplitudeTf i

proper from the full amplitudeTf i . The vertical
lines separate the three regions of the diagram. To the left the in
photon is a spectator to the dressing of the initial electron. To
right only corrections to the final electron line are present. T
proper vertex is in the center.
6-10
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e15
Z1eR

AZ2 fZ2i

5
eR

c0
. ~3.20!

The subscript of 1 corresponds to use in couplings betw
one and two-photon states.

We now consider the solution of the problem in the ca
of a basis with no more than two photons. Equation~3.20!
provides the solution for the bare coupling between one
two-photon states and, through spectator dependence ofc0 ,
makese1 a function of the final electron momentum. W
then need to consider the bare coupling between the
electron and the one-photon states. On substitution of E
~3.9! and ~3.17!, Eq. ~3.7! becomes

e05AZ2 fZ2i

Vf i

Tf i
eR . ~3.21!

This is a nonlinear equation fore0 becauseTf i has a com-
plicated dependence on this bare charge. To make this
pendence explicit, we first use the fact thatuC& is an eigen-
state ofH01V to reduce Eq.~3.13! to the form

Tf i5Fme
22

me
21p2/L'

2

122/K
2

mg
21p2/L'

2

2/K G
3c0c1* ~122/K,x̂p/L'!. ~3.22!

The amplitudec1 satisfies the middle equation of Eq.~3.2!,
which can be written as

b1c01@A81e0
2cc†#•c15me

2c1 , ~3.23!

whereA8 is an effective interaction obtained by integratin
out thec2 amplitude and thee0

2cc† term is the finite instan-
Th

th

i-
ff
ity
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taneous fermion interaction. The coupling toc0 containse0
as a simple factor. We extract this in the following defin
tions:

b18[b1 /e0 and c18[c1 /~e0c0!. ~3.24!

The scaled amplitudec18 can then be obtained as a form
solution to Eq.~3.23! that shows alle0 dependence3

c185B2e0
2 c†

•B

11e0
2c†

•D
D, ~3.25!

with

B[2~A82me
2!21b18

and

D[~A82me
2!21c. ~3.26!

The amplitude for two-photon states is then given by

c25e0c0c285e0c0Rc18 , ~3.27!

whereR is a rectangular matrix independent ofe0 .
The discrete normalization condition is

15uc0u21uc1u21uc2u25uc0u2@11e0
2uc18u

21e0
2uc28u

2#.
~3.28!

This yields

c051/A11e0
2~ uc18u

21uc28u
2!, ~3.29!

which can be used with Eqs.~3.22! and ~3.21! to obtain
e05
AZ2iVf i8 eRA11e0

2~ uc18u
21uc28u

2!

c18* ~122/K,x̂p/L'!@me
22~me

21p2/L'
2 !/~122/K !2~mg

21p2/L'
2 !/~2/K !#

, ~3.30!
.

whereV8[V/e0 is independent ofe0 . The phases ofc18 and
Vf i8 are such that the right-hand side is real, as it must be.
remaining implicit dependence one0 is in c18 , which is
given by Eq.~3.25!, and inc285Rc18 , with R independent of
e0 . Notice thatB andD are independent ofe0 and need to be
computed only once. The equation fore0 is best solved it-
eratively after it is squared to eliminate the square root on
right-hand side.

A real solution exists only for a finite range of the phys
cal couplingeR . This is an artifact of the Tamm-Danco
truncation and the consequent failure of the Ward ident
The value of the critical couplingeR

crit , the upper limit of the
e

e

.

allowed range, can be found by studying thee0→` limit. In
this limit we find

aR
crit5

~eR
crit!2

4p
5

@c18* ~122/K,x̂p/L'!#2

4pZ2iVf i8
2~ uc18u

21uc28u
2!

3Fme
22

me
21p2/L'

2

122/K
2

mg
21p2/L'

2

2/K G2

, ~3.31!

3Notice thatA8 is independent ofe0 , as can be seen from Eqs
~2.19! and ~2.20!.
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with c18 calculable asB2(c†
•B/c†

•D)D. Values of the criti-
cal coupling are plotted in Fig. 6. The change from a ba
with no more than one photon to a basis with no more tha
is quite small. To stay within the limit imposed by this resu
we will use a physical coupling ofaR50.1.

C. Infrared singularities

A nonzero photon massmg is used to eliminate the usua
infrared singularities. Because the calculation deals wit
charged system, there would otherwise be considerable
ficulty with soft photons@68#. On the light cone, there ar
other singularities not removed by the photon mass. They
associated with contributions that involve zero longitudin
momentum.

The fundamental four-point vertices can be infrared s
gular, in the limit of zero longitudinal momentum for th
instantaneous fermion. They must be allowed to can
against iterations of the three-point vertices which are a
singular. This constrains the bare couplings in the four-po
vertices to forms derived from the three-point couplinge0 .
The pairs of diagrams are shown in Fig. 7. The first pair d
not actually involve a singularity; however, we do match t
four-point coupling to the iterated three-point coupling. T
second requires basis states with two photons, which
available in the calculation. The third pair requires the pr
ence of electron-positron pairs in the basis, or an effec
interaction in the Hamiltonian. Neither is included at prese
and therefore this piece of the instantaneous interaction m
also be excluded from the Hamiltonian. Detection ofk1

,0 in the instantaneous interaction can be easily done
exclude this graph.

Other infrared singularities are associated with the em
sion and absorption of real photons with longitudinal m

FIG. 6. The critical couplingaR
crit as a function of cutoffL. This

is the upper limit of the range allowed for the physical couplin
beyond this value there is no solution for the bare coupling, a
consequence of the truncations of the theory. The one-photon
ues are obtained from extrapolations usingaR

crit1a1 /K1a2 /K2

1b1 /N'1b2 /N'
2 1c11/(KN'); the error bars represent the diffe

ence between this fit and one without theb1 /N' term. The two-
photon values come from a fit toaR

crit1a1 /K1a2 /K21b1 /N'

1b2 /N'
2 ; the error bars are obtained from a fit without the qu

dratic terms. For all the photon mass ismg5me/10.
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mentum near zero@69#. In perturbative calculations these a
regulated by the Mandelstam-Leibbrandt prescription@70#.
Viewed inx1-ordered perturbation theory, each intermedia
state contributes a denominator in which the light-cone
ergy k25(mg

21k'
2 )/k1 of the photon becomes large, an

each vertex can contain a factor of (k1)23/2. If k1 is sepa-
rately regulated, with some lower cutoffe, graphs with mul-
tiple photons will contribute powers of loge or evene21.
For a Tamm-Dancoff approximation to a charged syste
these cannot be expected to cancel. The choice of the inv
ant mass cutoff~2.11! instead couples the regulation of sma
k1 to that of largek' . The combination prevents the sma
k1 region of integration from making large contributions e
cept in cases where there are already ultraviolet transv
divergences. These spurious infrared infinities are th
handled by the mass and coupling renormalization discus
in this section.

D. Four-point graphs

There remains a logarithmic divergence associated w
four-point graphs of the sort illustrated in Figs. 8~a! and 8~b!.

;
a

al-

-

FIG. 7. Instantaneous fermion interactions paired with cor
sponding iterated three-point interactions. The vertical dashed l
indicate the intermediate states of the iterated interactions. In~b! the
longitudinal momentum of the instantaneous fermion is positive
in ~c! it is negative; this represents a separation of the cross
photon graph into two pieces.

FIG. 8. Logarithmically divergent four-point graphs. Those wi
no more than two photons in any intermediate state,~a! and~b!, are
included in the present calculation. The nonperturbative nature
the calculation implies that~b! can have an arbitrary number o
loops. Diagram~c!, which contains three photons in flight, is no
included.
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If all graphs of this order are included in a perturbative c
culation, the logarithms cancel. However, the Tam
Dancoff truncation of the present calculation exclud
some graphs, such as the one shown in Fig. 8~c!, and the
cancellation can no longer take place. In a nonperturba
calculation one must include the equivalent of diagrams w
an arbitrary number of interlocked loops, such as Fig. 8~b!,
which are also logarithmically divergent. The needed co
terterm is of the forml(pi

1 ,pf
1)log L but cannot be found

analytically without summing all the infinite chains of inte
locked loops.

One way to approach the construction ofl(pi
1 ,pf

1) is to
fit Compton amplitudes to data@7#. This will require devel-
opment of techniques to describe scattering processes w
DLCQ. A generalization of earlier work@45,71# on the in-
version of the full Greens function may be useful as a me
for computing theT matrix and thus scattering amplitude
We do not consider this further here. The results presente
Sec. V do still contain the logL divergence.

IV. FINITE CORRECTIONS

A. Photon zero modes

As applied to QED, DLCQ requires the use of period
boundary conditions for the photon field. This is becau
photons couple to fermion bilinears, which are automatica
periodic, even if the preferred antiperiodic boundary con
tions are used for the fermions. For fields periodic in t
longitudinal directionx2, there are contributions from zer
modes@26,57–60#, modes independent ofx2 that correspond
to zero longitudinal momentum. As shown by Pauli and K
loniatis @57#, these modes prevent the choice of ordina
light-cone gauge because the zero-mode piece ofA1 cannot
be gauged away. Instead this piece must satisfy a const
equation. In fact, careful application of DLCQ to mo
bosonic theories will result in constraint equations that re
the zero-mode contribution to the normal-mode operator
a nonlinear, nontrivial way. For QED there are zero mode
all the components of the photon field, for which constra
equations must be solved. What is more, the constraint e
tion for the dependent piece of the fermion field, which
easily solved in light-cone gauge in the continuum, becom
coupled to the zero-mode constraint equations. A formu
tion of the coupled system of constraints has been given
Kalloniatis and Robertson@56#. Extension of these con
straints to include a nonzero photon mass is straightforw

The constraint equations are difficult to solve, even
simpler theories@60#. This is partly because they coup
states with differentP1 and require study of convergence
a function of someP1 cutoff. The difficulty is also due to
the need for an ultraviolet cutoff and renormalization
masses and couplings. Because the renormalization is fo
lated in terms of solutions to the mass eigenvalue prob
and because the Hamiltonian cannot be formed until
zero-mode contribution is known, the problem expands t
very large nonlinear system of simultaneous equations. A
result of these difficulties, the calculations discussed here
not include zero modes. However, some progress has
made recently by Kalloniatis@72# in the solution of con-
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straint equations for SU~2! Yang-Mills in 111 dimensions
coupled to massive adjoint scalars.

For theories such as QED where symmetry breaking
fects are not expected, solution of constraint equations m
not be necessary. One can instead treat the end-point be
ior of photon amplitudes in a manner similar to that of t
‘‘ladder relations’’ studied by Antonuccio and Dalley@40#.
Behavior of amplitudes at small longitudinal momentum,
extracted from the integral equations, can be used to c
struct effective interactions that include zero modes to le
ing order in 1/K. This is equivalent to the approach used
Ref. @35# where the behavior of the exchange kernel w
studied in a scalar theory to determine the effective inter
tion @73#. To keep zero-mode terms to higher order in 1K
would actually be inconsistent with DLCQ’s neglect
higher order nonzero-mode terms. In the work of Ref.@35#
inclusion of the zero-mode contributionsO(1/K) did im-
prove convergence.

The whole issue may actually be moot when the invari
mass cutoff~2.11! is used. This cutoff explicitly excludes
contributions from states with zero longitudinal momentu
The meaning of this exclusion for nondynamical fields
unclear. The calculations that showed zero modes to be
ful for convergence@35# did not employ the invariant mas
cutoff. New calculations need to be carried out specifically
study the effect of cutoff choice on the importance of ze
modes.

B. Restoration of symmetries

The use of light-cone coordinates, combined with t
Tamm-Dancoff truncation in particle number and the inva
ant mass cutoff, explicitly break symmetries of the theo
@10#. In particular, rotational symmetry about the transve
axes is broken because the associated operators involv
interaction and therefore change particle number. The cha
in particle number cannot be accommodated in field the
without allowing an infinite number of particles.

Restoration of such symmetries can be accomplished
the addition of finite counter-terms to the Hamiltonia
@74,75# including adjustment of the ‘‘vertex mass,’’ whic
appears in the spin-flip vertex, relative to the ‘‘kinetic mas
@74#. The ambiguities associated with the infinite count
terms allow such finite terms to exist@10#. Restoration of
symmetries is then viewed as a source of conditions
which these finite parts can be determined. In practice,
might involve study of processes@76# such as Compton scat
tering @7# or electron-electron scattering.

Given the Tamm-Dancoff truncation, an alternative is
view the eigenvalue problem as a few-body problem@77# for
which the correct effective Hamiltonian and the generators
translations, rotations, and boosts must satisfy the u
Poincare´ algebra@78#. The effective operators might be con
structed by adding minimal finite corrections to their fiel
theoretic forms. The finite corrections are determined by
requirement that the Poincare´ algebra be satisfied. For th
results presented here, no attempt has been made to inc
these finite corrections.

V. RESULTS

An accurate DLCQ calculation for a basis with at mo
one photon can be easily done when instantaneous inte
6-13
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tions are neglected. The accuracy can be verified dire
because the integrals that yieldae can be performed analyti
cally @20#. In the limit of infinite cutoff and zero photon mas
this reproduces the Schwinger@18# result of aR/2p. The
only coupling renormalization is a trivial wave functio
renormalization. The DLCQ result at various cutoff values
shown in Fig. 9 for a photon mass ofme/10. Weighting
methods@17# are a critical part of the calculation.

Calculations with a basis that includes at most two p
tons have been done at five different values of the cutoff
a coupling ofaR50.1. They are also shown in Fig. 9. Th
two-photon contribution adds approximately 40%. This
much larger than the order of magnitude~a/p or 3%! that
one would expect. It is also opposite in sign to t
Sommerfield-Petermann contribution@79# of 20.328(a/p)2

to the anomalous moment. We attribute this large differe
to the absence ofZ graphs.

The basis sizes involved are on the order of 1 to 4 millio
which translates to solution of linear systems with 4000
10 000 variables once the two-photon states are integr
out and symmetries of the one-photon states are used.

The values obtained from DLCQ were extrapolated toK
5` andN'5` by fits to ae1a/K1b/N'1c/(KN'). Ex-
clusion of the last term provided an estimate of the erro
the fit, which is reflected in the error bars in Fig. 9. T
values ofK ranged from 21 to 31 and those ofN' from 7 to
9, 10, or 11, depending on matrix size limitations.

The time required for an extrapolated value at a fix
cutoff is roughly 10 h on a Cray X-MP, using less than
million words of memory. This seems quite competitive w
older lattice methods, where a quenched QCD calculatio
heavy-light meson wave functions@80# required 300 h on a
CM-200 @81#, but does not yet match the effort required wi
the latest methods@51#, for which calculation of theB meson
magnetic form factor might require 50 h on a good PC@82#.

VI. SUMMARY

The nonperturbative calculation of the anomalous m
ment of the electronae , besides being of intrinsic interes
itself, exposes many important issues for nonperturba
calculations within gauge theories which occur in the cont
of a truncated Fock space. These include nonperturba

FIG. 9. The ratio of the renormalized anomalous momentae to
the exact one-photon perturbative resultae

S at the same photon mas
mg , as a function of the invariant-mass cutoffL. Here mg

5me/10 andaR50.1. The Fock space is truncated to include
most one or two photons. The DLCQ results are extrapolated f
calculations done withK521 to 31, andN'58 to 15 for one pho-
ton andN'57 to 9, 10, or 11 for two photons.
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mass and coupling renormalization, control of spurious inf
red singularities, determination of zero-mode contributio
and the construction of finite counterterms which rest
symmetries. Each of these has been addressed in the pr
ing sections, and the first two have been incorporated in
DLCQ calculation where as many as two photons are
cluded in the basis.

We have presented results forae computed in a light-
cone-gauge Fock space truncated to include one bare
tron and at most two photons; i.e., up to two photons
flight. The calculational scheme uses an invariant mass
off, discretized light-cone quantization~DLCQ!, a Tamm-
Dancoff truncation of the Fock space, and a photon m
regulator. We have utilized new weighting methods whi
greatly improve convergence to the continuum with
DLCQ. A large renormalized coupling strengthaR50.1 is
then used to make the nonperturbative effects in the elec
anomalous moment from the one-electron, two-photon F
state sector numerically detectable. Results are given in
9.

The disagreement between these results and what
would expect from perturbation theory at ordera2 indicates
that the effect ofZ graphs needs to be included in a syste
atic way. This can be done as an effective interaction,
avoid expansion of the Fock basis to include pair states.
corresponding piece of the instantaneous fermion interact
as depicted in Fig. 7~c!, must then also be included to main
tain an infrared cancellation.

Further progress in computing the electron moment w
require the following.

~1! New counterterms: One piece of the infinite renorm
ization is missing in the calculation. As discussed in S
III D, it requires a new nonperturbative counterterm for t
logarithmic divergences present in diagrams of the ty
shown in Figs. 8~a! and 8~b!. The divergence arises becau
the Tamm-Dancoff truncation prevents certain cancellatio
Construction of the counterterm will likely require analys
of scattering processes.

~2! Zero modes in DLCQ: Before full consideration o
photon zero modes is undertaken, we recommend rene
study of zero modes in a scalar theory where the constr
equation can be solved exactly@35#. This may show that,
when the invariant mass cutoff~2.11! is used, zero modes d
not make a significant numerical contribution. If inste
there is an important contribution, it should be comput
only to leading order in the numerical resolution, to be co
sistent with the level of approximation used in the ba
DLCQ approach.

~3! Use of symmetries in DLCQ renormalization: The re
toration of symmetries should then complete construction
the light-cone Hamiltonian. One can normalize to spec
physical processes@76,7# or take an abstract approach bas
on the algebra of the Poincare´ generators@77,78#.

~4! Higher Fock states: Once the two-photon calculat
is fully under control, the addition ofeee1 states can be
considered. This will require analysis of photon mass a
wave function renormalization.

Many of the complications of the light-cone Fock sta
analysis presented here can be traced to the complexit

t
m
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sector-dependent renormalization. Given such complicat
the newly developed alternative of Pauli-Villars regulariz
tion @17# may be the preferred approach. Within such
scheme, it is also likely that the limitation to a small numb
of photons can be relaxed.

The analysis presented here is the first step in a system
program to compute physical quantities in gauge theory s
tematically utilizing a light-cone Fock expansion. It will als
be interesting to use these methods and the present kn
edge of the dressed-electron state in QED in order to sys
atically construct the neutral positronium state as a comp
e
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ite of a dressed electron and positron. Such an analysis
serve as the prototype for systemic nonperturbative const
tion of colorless bound state hadrons in QCD.
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dová, R. J. Perry, and K. G. Wilson, Phys. Rev. Lett.78, 1227
~1997!; B. D. Jones, R. J. Perry, and St. D. Głazek, Phys. R
D 55, 6561~1997!; B. D. Jones and R. J. Perry,ibid. 55, 7715
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