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Nonperturbative renormalization and the electron’s anomalous moment in largea QED
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We study the physical electron in quantum electrodynamics expanded on the light-cone Fock space in order
to address two problemsl) the physics of the electron’s anomalous magnetic moragitt nonperturbative
QED and(2) the practical problems of ultraviolet regularization and renormalization in truncated nonpertur-
bative light-cone Hamiltonian theory. We present resultsafprcomputed in a light-cone gauge Fock space
truncated to include one bare electron and at most two photons, i.e., up to two photons in flight. The calcula-
tional scheme uses an invariant mass cutoff, discretized light-cone quantidati@Q), a Tamm-Dancoff
truncation of the Fock space, and a photon mass regulator. We introduce new weighting methods which greatly
improve convergence to the continuum within DLCQ. Nonperturbative renormalization of the coupling and
electron mass are carried out, and a limit on the magnitude of the effective physical coupling strength is
computed. A large renormalized coupling strengi= 0.1 is then used to make the nonperturbative effects in
the electron anomalous moment from the one-electron, two-photon Fock state sector numerically detectable.
[S0556-282(199)00101-7

PACS numbss): 11.15.Tk, 02.60.Nm, 11.10.Gh, 12.20.Ds

[. INTRODUCTION such as the multiloop graph in Fig(al enter the calculation
and are summed to all orders. Even at the one-photon level,
Many years ago Feynman issued the following challengdghe calculation is nonperturbative because there are infinite-
[1]: “It seems that very little physical intuition has yet been order contributions from graphs of the sort in Figéb)land
developed in this subjedbf quantum electrodynamigsin ~ 1(c). However, in the case of Fig.(d), crossed-photon
nearly every case we are reduced to computing exactly th@raphs andZ graphs are needed to cancel a divergence at
coefficient of some specific term. We have no way to get &€ro longitudinal momentum for any instantaneous electron.
general idea of the result to be expected.. As aspecific =~ Because of these cancellations, we place the nonperturbative
challenge, is there any method of computing the anomalouBart of the one-photon contribution into a two-photon calcu-
moment of the electron which, on first rough approximation,ation. . o
gives a rough approximation to theterm and a crude oneto  The selection of the graphs to be summed is driven by the
a?; and when improved, increases the accuracy ofdfe truncations made an_d is de5|gned to mak_e the _calculatlon
term, yielding a rough estimate t@3 and beyond?” This tractable. The truncation in particle number is physically rea-
challenge was taken up by Drell and Padéls who used a sqnable; the Work_ of _DreII and Pa_ge{l%] shows that states
sideways dispersion relation and low-energy theorems foith few photons in flight are dominant. As the actual num-
Compton scattering3] to construct consistency conditions ber of particles is varied and as different truncations of the
for the anomalous moment. Their approach did meet with
some success, particularly in understanding the sign ofithe (a)
term; however, the dispersion relation requires an ultraviolet
cutoff, and low-energy approximations of the integrand are N w\
not completely adequate.
We propose to meet Feynman'’s challenge by using dis-
cretized light-cong4] quantizatior{ 5] (DLCQ) [6]. By con- b
structing the dressed electron state in Fock space we can in (b) L= e S
principle compute physical properties of the electron exactly ]
[7,8]. In practice, various truncations are required, but the
approach remains nonperturbative. Instead of producing an (©)
expansion ine, we produce an expansion in Fock particles,
i.e., the number of photons in flight. The computation is 1 1 /
equivalent to a selective summation of graphs to all orders,
but is actually done by diagonalizing a matrix approximation
of the light-cone mass-squared operator. In this form the cal- F|G. 1. Typical loop graphs that contribute to an infinite-order
culation becomes a testing ground for techniques of nonperesummation. Wavy lines represent photons and straight lines rep-
turbative renormalization. resent electrons. A crossed line corresponds to an instantaneous
When two-photon intermediate states are allowed, graphsxchange on the light cone.
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interactions are explored, one can gain a better understandirsgcutoff-dependent finite range of allowed values. We com-
of the physics of the anomalous moment. Thus our calculapute the critical coupling that defines the upper limit.

tion can be viewed as the beginning of a possible program, The vertex renormalization is fixed by considering the
with systematic improvements available. It might even be-proper part of the transition amplitude for photon absorption
come a model for how to proceed with nonperturbative calby an electron at zero photon momentum. A means by which
culations in quantum chromodynami@@CD). this transition amplitude can be computed from the lowest

In the work presented here we regulate the theory by aeigenstate is constructed. Full diagonalization of the Hamil-
invariant-mass cutoff, which limits the light-cone energy of tonian is not required; however, the renormalization condi-
the Fock states included in the basis, and by a Tammtion and the eigenvalue problem must be solved as a coupled
Dancoff truncatiorf9] of the number of constituents. These system. The wave function renormalization is directly avail-
restrictions keep the numerical calculation to a very reasonable from the bare amplitude in the Fock state expansion.
able size but they do complicate the renormalization. The To within the accuracy of the calculation, the values for
truncations turn the bare parameters of the theory into Fockhe anomalous moment become constant for an ultraviolet
sector-dependent functions of moment(it®] and require cutoff sufficiently large. However, most four-point graphs
careful construction of appropriate countertefrhd] to cor-  that arise in the bound-state problem are log divergent. To
rectly approximate the solution to the original the¢®2].  any order the divergences cancel if all graphs are included,
We fix these functions by applying conditions on mass ei-but the Tamm-Dancoff truncation spoils this. The resulting
genvalues and vertices in the presence of spectator constitlpgarithmic effects are not detectable in the numerical re-
ents. sults.

Two alternative renormalization procedures now exist. The calculations presented here build on the significant
One is the similarity transformation developed by Wilsonamount of work that has been done recently on the use of
and GlazeK13] and Wegnef14], where counterterms are light-cone quantizatiori4,5,24,23 in the construction of
generated perturbatively as the Hamiltonian matrix is narsolvable bound-state problems for strongly interacting theo-
rowed in the range of allowed light-cone energies; the finaries. The coordinates used are based on the choite pfas
Hamiltonian matrix is used nonperturbatively. This approacthe time coordinate, whereis the ordinary time and any
has been applied by Perry and co-workiS]. The other is  Cartesian spatial coordinate. A variety of field theories have
based on introduction of Pauli-Villars regulatdf] before  been analyzed in this way,26—36,21,37—-41 Most theo-
the quantization and numerical schemes are selected, so thigs considered have been simple model theories in one space
counterterms can be supplied simply by adjusting the bardimension[6,26—-33,40,4] however, there have been stud-
parameters. This approach has just recently been successfuigs of three dimensional theories, including the Wick-
tested in a simple mod¢l7], and it should soon be consid- Cutkosky mode[42,34,35, the Yukawa mode[36], quan-
ered for the anomalous-moment problem studied here. tum electrodynamics (QED) [21,37, and quantum

We compute the anomalous mom¢h8,19 from a spin-  chromodynamics(QCD) [38]. There has also been some
flip matrix element of the plus component of the electromagwork on nonperturbative scattering calculatipa8—45 and
netic curren{20]. We approximate the Fock-state expansionon the stationary phase approximation to the solito&ﬂml
of the dressed electron with a truncation to no more than tw46].
photons and one electron. The eigenvalue problem for the Much of this work has involved numerical studies. Brod-
wave functions becomes a coupled set of three integral equaky, Pauli, and co-workers have analyzed various one-
tions. To construct these equations we use the light-condimensional theoriegYukawa [6], QED [27], and QCD
Hamiltonian derived by Tangt al. [21], regulated by the [28]) and have devoted a considerable amount of effort to
invariant-mass cutoff. The photon mass is taken to be onéhree-dimensional QED21,37. Some work on the three-
tenth of the electron mass, to help control infrared diver-dimensional Wick-Cutkosky modg¢k2] has been done by
gences. The coupling strength is setat %, because limi-  Sawicki and co-workers, Ji and Furnst@B#], and Wivoda
tations on numerical accuracy make nonperturbative effectand Hiller[35]. One-dimensional scalar theorigs> and ¢*,
discernible only at large coupling. The calculation is not anhave been studied by Harindranath and Vi&§]. Work on
attempt to compete with the accuracy of the perturbative calthe one-dimensional Yukawa model has been done by Harin-
culations by Kinoshita and co-workef22]. dranath, Shigemitsu, and Perf80]; this was based on a

The bare electron mass in the one-photon sector is comFamm-Dancoff truncatiofi9] and used basis-function meth-
puted from the one-loop correction allowed by the two-ods as well as a discretization technique. The basis-function
photon states, where one photon is a spectator. We then reethods have been extended to the three-dimensional case
quire that the bare mass in the no-photon sector be such thay Glazeket al. [36]. A preliminary treatment of QCD in
physical mass is an eigenvalue of the light-cone Hamilthree dimensions has been attempted by Hollenberg and co-
tonian. workers[38]. Dimensional reduction of QCD to an effective

The three-point bare coupling is also sector dependentheory in 1+ 1 dimensions has also been considdr]41].
There are no vacuum polarization effects, because pair pro- Other nonperturbative approaches applicable to QCD in-
duction is removed by the Tamm-Dancoff truncation. How-clude lattice gauge theory47,4g, sum rules[49], and
ever, the truncation violates the Ward identity so that vertexSchwinger-Dyson equatiorf&0]. A particularly successful
and wave function renormalization do not cang2B]. A  form of lattice theory has been developed by Lepage and
consequence of this is that the physical coupling is limited tacollaboratorg51] who use tadpole-improved actions to re-
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duce discretization errors. The Hamiltonian form of latticewhereM is the mass of the state, a®l and P, are mo-
theory[52] is actually similar to the approach usually taken mentum operators conjugate xd andx, .

in light-cone quantization, in that a Hamiltonian operator is It is convenient to work in a Fock bas{gn:p;" ,p,;)}

constructed and partially diagonaliz€d3]. There has also whereP" and P, are diagonal, witm the number of par-
been work on combinations of the lattice with light-coneticles andi ranging between 1 and To simplify the nota-
methods in the transverse lattice metl{&d]| and in direct  tion only one particle type is included explicitly. The state

use of a light-cone latticg55]. is given by an expansion
Two important aspects of QCD that all these methods

address are vacuum structure and symmetry breaking. In . 2

light-cone quantization, the vacuum appears to be the trivial \P_; [dX]nldK, Jnin(x.K, )

perturbative vacuum. This has the advantage that one can

compute massive states immediately without first computing X[n:pt=xP*,p, =xP, +k,), (2.9

the vacuum state. However, in equal-time quantization, the .
nontrivial structure of the QCD vacuum is known to be im- wit
portant. This paradox of the trivial vacuum has received n n
much attention_. N_onperturbat_ive ana_\lyses_ of various light- [dx],= 4775( 1— 2 Xi)H
cone models indicate that interactions induced by zero [
modes[56-58 and other consideratiori4 1] play important
roles in generating effects such as symmetry breaking n
[59,60 that are usually associated with the vacuum. [dsz]n:‘l’ﬂ-zé( > kLi)_

The progress made recently in the application of light- =1 '
cone quantization owes much to earlier wged]. The de-
velopment then was aimed at perturbation theory, and in pat(
ticular its application to deep inelastic scattering, but muc
has been carried over to bound-state problems. New work
perturbation theory has also been d¢62,19.

An outline of the remainder of the paper is as follows.
The discretized light-cone formulation of the anomalous mo-

n

(2.6

,P,) the total light-cone momentum, anfg, interpreted
as the wave function of the contribution from states with
articles. The solution of Eq2.4) in principle yields these
%fave functions.

The anomalous momeat, is computed from the standard
form factorF,(q?) at zero momentum transfer:

ment problem is given in Sec. Il. The nonperturbative mass a.=F(0). 2.7
and coupling renormalization that we use are described in

Sec. lll. Finite corrections associated with photon zeroln the standard light-cone franjé3] where

modes and with ambiguities in infinite renormalizations are - R

discussed in Sec. IV. Our results are presented in Sec. V, and q=(047/p",q, =01%), 2.9

a brief summary is given in Sec. V. the form factor can be computed from the spin-flip matrix

element of the plus component of the current:
II. DISCRETIZED LIGHT-CONE QUANTIZATION

di

A. Light-cone quantization - —
2mg

1
Fo(o?)= 257 (P+a, 137 (Olp.1). (29
We define light-cone coordinats] by
Brodsky and Drel[20] have given a reduction of this matrix
=trz, X, =(Xy). (2.9 element to a convenient form that depends directly on the

wave functions. From this we have
Momentum variables are similarly constructed as

8- —2m,3 e@ [ taxira o k)

P =Exp,,  p.=(Px.Py)- 2.2
The time variable is taken to be", and time evolution of a X D X, —— i (%K), (2.10
system is then determined fy~, the operator associated 1#] 5"

with the momentum component conjugate 6. Usually , . .
one seeks stationary states obtained as eigenstates .of whereeg; is the fractional charge of the struck constituent.
Frequently the eigenvalue problem is expressed in terms of a UP {0 this point, we have used formally exact expressions.

light-cone Hamiltoniar{6] (mass-squared operaor A key approximation to be made is the truncation of all sums
to a finite number of particles. The result is the light-cone

equivalent of the Tamm-Dancoff approximatif@]. The ei-

Hic=P"P _Pf 23 genvalue problem becomes a finite set of equations that are
in principle solvable. However, the truncation has many con-
as sequences for the renormalization of the thdd§] and for
comparisons to Feynman perturbation the@g,19. Some
H ¥ =M2T (2.9 of these consequences are discussed in Sec. lll.
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In addition, QED requires regularization and renormaliza- 1.0
tion. To regularize it, we use a cutoff on the invariant mass
of the allowed Fock statd$] 0.8
2 2
m-+ k<. 3 06
> L a2 (2.11) >
! Xi & 04
This limits the relative transverse momentum of each
. oo 0.2 -
constituent and keeps the longitudinal momentum away from
zero. The latter aspect is important for control of spurious 00

infrared singularities, which are discussed in Sec. Ill C. An
additional cutoff, that limits the change in invariant mass
across any matrix element of the Hamilton{&4], could be

corc/ilrﬁiered.l tat ih at i hot d . FIG. 2. The one-photon perturbative contribution to the anoma-
en only stales with al most one photon and no pairg, ¢ momenta, as a function of photon mass,. It is the

are retained, and instantaneous interactions are neglecte§lchwinger term, given by Eq2.13.
Brodsky and Drel[20] have shown that Eq2.10 reduces '

00 02 04 06 08 1.0
mY/me

to
5 always positive, the limit. —c can be exchanged for a limit
am in terms of the integeresolution[6
A= ;dedzkL ¢ (6]
m L
=—P*. 2.1
me O AZ—(mZ+k2)/(1—x)—(m3+k?)/x] ™ (219
X
— 2_ 2 2 v 2 2 27
L=x [ = (Mg +k1)/(1 =) = (M +kT)/x] The combination of momentum components that defithgs
(2.12 is then independent df. The longitudinal momentum frac-
tions x; become ratios of integers /K. Because tha; are
which in the limit of A—o becomes all positive, DLCQ automatically limits the number of par-
ticles to no more thal. The integers, andn, range be-
s« Jl 2x%(1—x)dx 213 tween limits associated with some maximum intedér
a.—aS= — ) _ . . .y - ) .
e~ %= 5 |, x2+(1—x)(m7/me)2 fixed by the invariant-mass cutoff. A finite matrix problem is

then obtained without an explicit Tamm-Dancoff truncation;
however, this number of particles is much too large in prac-
Otice for numerical treatments of three-dimensional theories.
We use antiperiodic boundary conditions for the fermions
and periodic boundary conditions for the photons. These re-
. . L strict the integers associated with longitudinal momenta to
formula yields the standard Schwingei] contribution of being odd for fermions and even for photons. The descrip-

of2m at' infinite CUtOff'. In general' this prowdes a point of tion of the dressed electron state must then use odd values of
comparison for numerical calculations with one or more pho-

tons. The inclusion of the dependence on the photon mass in’
the analytic result is crucial for comparison with numerical
results calculated with nonzero, because the mass depen-
dence is quite strong, as can be seen in Fig. 2.

Because the instantaneous interactions are higher order in
this is the leading perturbative result. The integrals involve
can all be done analytically even for finite cutoff, although
the final form is not instructive. Fom, =0, the resulting

In most applications, DLCQ is introduced at the level of
second quantization. This can yield a compact expression of

SR

B. Discretization

- i
The most systematic approach to discretization of the ei- i i
genvalue problem is the method originally suggested by
Pauli and Brodsky[6], discretized light-cone quantization
(DLCQ). In essence it is the replacement of integrals by ; >}
trapezoidal approximations, with equally spaced intervals in

the longitudinal and transverse momenta

1
>§<>vv

FIG. 3. Complete set of diagrams for the fundamental interac-
- - tiqns of QED Fn light-cone quantization. Splid I.ines represent fer.-
pt——n, pj_*)(_ Ny, — ny)_ (2.14 mions; wavynllnes represent photo_ns. A line wnh_a bar throggh it
L L L. indicates an instantaneous interaction expressed in the Hamiltonian
as a four-body operator. Only the first three diagrams are included
The length scales andL, determine the resolution of the in the present calculation, and for the third, the piece kinematically
calculation. Because the plus component of momentum isquivalent to & graph is neglected.
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the eigenvalue problem. Recently, a transformation of thénclude any pair production processes. The instantaneous
DLCQ Hamiltonian to a Gaussian basis has been suggestquhoton interactions are then completely excluded because
[65]; however, the steps for renormalization in that basissach Fock state has only one fermion. We also exclude the
have not been worked out. fourth diagram(and its conjugafeto decouple two-photon

The application of DLCQ to QED is summarized in Ref. states from the bare electron state; this simplifies the calcu-
[21], which we use as a starting point. This includes use ofation and limits the role of two-photon states to that of pro-
light-cone gaugg66], with A" =0. Modifications of this viding the basis for inclusion of crossed-photon graphs.
gauge choice due to zero modés’] are discussed in Sec. There is also a technical modification of the interaction as-
V. sociated with the third diagram of Fig. 3 which is discussed

The fundamental interactions of light-cone QED are illus-in Sec. Il C. After the exclusions have been made, the light-
trated in Fig. 3. For the calculation reported here we do notone Hamiltonian becomes

2 2 2
mz+(n, /L, )? bt mg+(m, 7/L,) :
Hem 2 2, = ik Pabast 2 2 T Amdn

eK 1 1
m > ———)bT by, a2+ H-C.

2 n 1+mn ,sHn,,
2\/—LL ni,No,m s==1/2 \m { - _Z(nl n,/ 270

e\/—K 1 m, 11|, +
VAT s Sy~ o e
m, ng»
+e€ 25'( m —n—z) ;2|Sbr_11,sar_n,*25+H'C'
LS LI ! ——— by by <A
47TLf 0 my =1 Jmym, ny+m,,n;+my n1+m s Ulvsar_nzfzsamlfzs
1 t t
+ m,—n; boz,sbm,samzlkamr% (2.16
with €, ,=—(\,i)/V2.
The discrete form of the spiseigenstatel ¢ is
Vo= osbk o/ 00+ 2 Snemk 2 Yas(nmisy A )bl g af, [0)
i n,m - - _Sl')‘l o1 hR
+n,r§m2 On+my+m, K El)\z os(N, My, My; 81, Ay, 2) > nslaml x 2 m2 2,100 (2.17)

whereK =(K,K, =0). According to the eigenvalue equatieh ¥ =M?¥ the amplitudesy;,; must satisfy the following
(discretizedl integral equations:

(M ) - m r—( )¢ ( )
2—m U € 0 — |\ v n,m;—s,2s
o) Yos™ 02’_LD,_ n+m,K mi\n K 1s\th 12
Ky 1 ( n, nJ_) m;
+€ 1 —— ) € | —=——|¥1s(n,Mm;S$,25)+ €, _o5  — n,m;s,—2s);,
O\/_| 2 — n+m,K /—[ 1,28 m n 15(_ = ) L,—2s m ‘pls(_ - )

(2.18
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2 ’ ' 2 2 ' 2
mi(n’)+(n| @/L,)?> mi+(m| /L)
M2—| = |y’ m
n'/K m’/K
_47TLJZ_ nm '_1+r_n|§ m/m eo )\1,—251E wls(nvmrsll

5)\1,25551 ,—slﬂOs

Kme 1 [1 1
n K

!

* mJ— nj— 6 5 *
+€ €\, | = | Or, 2605, ,sT € )
v2L2 Jm' | M \m o) e M

fey(n') Kmg 2 5 1 (1 1
e.(n , -
! 2\/;LL n,m pmmK J2m\n n+m

!

m, n ,
m_ ’ lTIIZS(Dlm :m§51,)\1,—281) y
n

and

m2+(n| @/L, )?

n,

1 m,
Bm s m

mo+(miym/L )2 mi+(m],m/L,)?

PHYSICAL REVIEW D59 016006

"181,M1)

o(n—m’")

2s1) —ey(n’)ey(n) by 25, —— - th15(N,M;S1,257)

m{
W 5)\1,725551,5 ‘pOs
{l)bZS(D!r_n!r_n’; _S]_,ZS]_ 1)\l)+ l//ZS(r_]ar_n’ vr_nv _Sl,)\l,ZS]_)}

)t/fzs(n,m,m’;sl,Zsl,M)

’

m; n, .
F_ F ‘pZS(U,r_nyr_n !Sla_zsly)\l)

(2.19

-

n’'/K m;/K

eyn’+my) (1
Ox,,—25, T —=
2

1 1

n" n'+m

Km,

e
2\27L,

e;(n"+my)

.

+5}\1,—251

1
n" n’+m,
2

!
n

K eu(n’+mp) - (ml,
+E X125, N Q,)\Z'(mé
ey (n’+mj) .
Vmy
ey (n'+my)
Vm,

e;(n+my)

Jm,

’
nL

+ 0y 2
1251 m, n

!
N m,
€0, |

2:7 45 m,

!

N m
+5}‘l’_251 ej")‘l. _, —

nt

! !
n+m,

! !
n’+m;
! ’
n,+mj,

! !
m;  n'+m

n’,m;,m,:S;,Nq, A
mi/K D'ﬁzs(_ My ,M3;S1,A1,A2)

Y1s(N"+m;,my;—sg,N )

l/’ls(n,""mi,mé;_sly)\z)}

)wls(n’+m§,m1;sl,>\l)

mi,
EL,)\l'( ;o _,) P1s(n+ My, my;81,8p)

1s(N’+m;,my;S;,N )

(2.20

) P1s(N’+my,m5;s;,Np) (-
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In anticipation of the discussion of renormalization in Sec. <0
[ll, bare massesn, and m; and bare couplingg, and e; 2.0 1 . my;o.oo1 m
have been introduced. These equations are solved = r — m=001m.
numerically, with the first step being the use of E220 to & s _{{ _____ m=01m.
eliminatey, from Eq.(2.19. Once a solution is obtained for g’ ' ! PN m:=0-3169me
one value of total spirs, the solution for the opposite spin e {,l AN
can be computed directly from & 10 | AN
= /
P (s1=— 12N, = T1)= — g, (+12+1) (2.21) o)
%K 054/
{
and /
0.0 17
Py (S1=+12 N =F1)=+y7,(—1/12x1). (2.22 00 02 04 06 08 10
X

These follow from the symmetries of the integral equations.
Other symmetries lead to relationships between amplitude FIG. 4. The integrand for the one-photon perturbative contribu-
components, which can be summarized as follows: tion. The integrals over the transverse momentum have been per-
formed and only the integral over longitudinal momentunme-
Y1 (XK, ;S1= 12N =+ 1) mains, as given in Eq2.13.
:kxfr)\l(|kx|a|ky|)+ikyfix1(|kx|!|ky|)

(2.23

C. Discretization errors

Results obtained with ordinary DLCQ show an irregular
dependence on the numerical parametémnd N, , which
interferes with extrapolation to infinite resolution. The
causes of the irregularities have been determined to be the
numerical approximation of the derivative in the formula
(2.10 for a, and boundary effects in the numerical integra-
tions. The error in the derivative can be controlled by choos-
ing N, =7 andK=21. The bound oK is consistent with the
resolution needed to resolve the one-photon peak imathe

where the functionsf,,, f;\,g,,, and g;, are real. The integrand wherm,=m./10, which is the photon mass we

problem can then be reduced to a smaller matrix problem fogise. Smaller values ah,, shift the peak to smaller photon
momenta and would increase the lower boundkanThe

shape of the integrand for various valuesnof is illustrated
>0). For s;=—3% we store g,.(0,0),9,-(k,>0,0), in Fig. 4. The mass sensitivity of the numerical convergence
9, (0k>0),9,+(ke>0ky,>0), and k.k,gi-(k>0k, rateis shown in Table I.

>0). The use of symmetry reduces the matrix storage re- The integration boundary effects are more difficult to con-
guirement by a factor of 8. The Hermitian matrix of the trol. These effects arise from use of the DLCQ grid which is
original eigenvalue equatidi2.19 can be expressed as a real incommensurate with the integration domain. At the bound-

symmetric matrix in the reduced equation by using a two-aries, the trapezoidal rule misses contributions beyond the
last grid point; this error is not a smooth function of the grid

spacing. To overcome this error, one can replace the trap-
ezoidal rule by open-closed Newton-Cotes formulas tailored
specifically to the boundafyL7]. Grid points near the bound-
ary are then associated with unequal integration weights. The
unequal weights must be taken into account in normalization
sums and symmetrization of the Hamiltonian matrix, but this
is easily done. One can even consider use of Simpson’s rule,
although this does not appear useful in the anomalous mo-
ment calculation. The improvement brought by these weight-
ing methods can be dramatic, as shown in RET).

and

P11 (XK, ;81= — 12\ = *1)
= g, ([l [y |) + iy @in (Tl [y ),
(2.24

these real functions. Fos;=3 we storek,f,.(k,>0,0),
Kyfi-(0ky>0), Kyf,.(ke>0k,>0), and kyf;.(k,>0k,

component representation of complex arithmetic:

a) 22
B (2.25

(c+id)(a+i,8)—>(;: _C)

and

o

1 0
(a+i,8)*—>(o _1)(/3. (2.26

The leading perturbative resyR0] is recovered by keep-
ing only ¢, terms on the right-hand side of E@.19. This
equation can then be immediately solved fqt, which can o
be used to form a discrete approximation to Ej12). The A. Mass renormalization
approximation includes a finite difference approximation to Here we are interested in ultraviolet divergences associ-
the derivatives that appear in EQ.10 and therefore is not ated with largek, . Electron self-energy contributions, which
simply a trapezoidal approximation to E@.12). are divergent, shift the mass and, through wave function

IIl. RENORMALIZATION
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TABLE I. The DLCQ approximation to the perturbative one-photon integral in(Ed.3. The values at different DLCQ resolutiois
show that the convergence rate depends on the photonmmass

m, /me
K 0 0.001 0.01 0.1 0.3162
11 0.8182 0.8182 0.8173 0.7455 0.5041
21 0.9048 0.9047 0.9025 0.7708 0.5079
41 0.9512 0.9512 0.9461 0.7728 0.5090
81 0.9753 0.9752 0.9648 0.7731 0.5093
161 0.9876 0.9873 0.9699 0.7732 0.5094
321 0.9938 0.9933 0.9703 0.7732 0.5094
641 0.9969 0.9959 0.9703 0.7732 0.5094
1281 0.9984 0.9968 0.9703 0.7732 0.5094
2561 0.9992 0.9969 0.9703 0.7732 0.5094
o 1.0000 0.9969 0.9703 0.7732 0.5094
renormalization, change the coupling. These indiéeand Suppose now that this two-photon problem is embedded

log A dependencies in the eigenvalues. In the discrete trunn some larger problem where one needs to know the bare
cated problem these effects depend on the Fock sector comass of an electron in a Fock state that can couple to Fock
sidered[10]. For example, an electron in a Fock state forstates obtained by adding at most two photons. The same set
which a transition to a state with more photons is not al-of equations can be applied, with all constituents in the low-

lowed, perhaps due to truncation in photon number, will notest Fock state, other than the electron, acting as spectators.

experience any self-energy_ corrections. I_f one _additionabne need only replacmg in Eq. (3.2 by (mSJr kf)/x and
photon is allowed, but not instantaneous interactions, only,>

h > Y12=m2 by M2=(m2+k?)/x, with x andk, the longitudi-
single loops can occur. If two or more additional photons can | tum fraction and transverse momentum of the ini-
appear, then an infinite number of overlapping loops cal pat momenturn ir . .
contribute to self-energy corrections, a truly nonperturbativ al elgctron. Notice thqmo IS now a funf:tlon ok andk, .
situation. In each case, the leading divergence is removed b This can be generalized to cases W'.th more photons, and
introduction of counterterms associated with bare massd&duced to the case of only one contributing photon. Thus
that are sector dependent and momentum depefif@ht one obtains a mechanism for a sector-dependent,

To be specific, consider the case where there are at mo8tomentum-dependent mass renormalization that is used
two photons and only one electron. The Fock-state expansioiom the topn-photon sector down to the bare electron state
can be written schematically as le). The last step automatically includes the solution of the

full eigenvalue problem for the dressed electron state.
For the one-photon case embedded in the two-photon
V=yple)+ ley)+ gleyy). (3.)  problem we have

Here », and i, are column vectors that contain the ampli-

t for indivi | Fock states with one and two photon
udes for individual Fock states one and two photons, m§+kf M2+ K2

respectively. The eigenvalue probleri2.4) becomes a X KV+bT(x K. )= ——= X K
coupled set of three integral equatiof&19, (2.19, and x Ytk Hbix, 1) ¥ x st L)
(2.20, which we write more compactly as (3.3
Moo+ bl - g+ bl thy=M?yh,
k) A=y 3.4
X,k ) +Ag,= . .
bitho+ Anthy+ At =M%y, (3.2 1A 2 X 2

bato+ Al + Aty = M4,

The second photon is a spectator. The coupling/iahen
wheremy is the bare electron mass and the vectmTrsand induces the one-loop self-energy correction with this specta-
the tensorg\;; are integral operators obtained frafiyc. We  tor present. The explicit form is obtained from E¢8.19
now require thatm, be such thaM?=m; is an eigenvalue. and (2.20 with M2=(mZ+Kk%)/x+(m>+k?)/(1-x) and
The second and third equations can be solvedfar/y, and  with any interaction involving the spectator dropped. Equa-
¥, 1. Then the first equation yields,. Normalization of tion (2.20 can then be solved fog, and the result substi-
¥ fixes the value of,. tuted into the modified Eq2.19 to obtain
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m2+(n! a/L, )2
M Y1s(n’,m'3S1,Ap)
n'/K
Yy ' 2
mi(n’)+(n;@/L,)
= n',m’;sy,
K 2801 1.0 1)
2, K2m2 n+mn’/m(1/n _1/n) ‘//15(” Slv 1)
—’_el(r_'l ) 2 2 2 2 2 2 2
47LT am (K/n")[mi+(n] @/L,)“]—(K/n)[m;+(n, @/L,) ] (KIm)[mg+(m /L, )]
+ed(n') K*m D Sn+ma /M{(m /m=n, /m)?+(m, /m=nl/n")?}ysg(n’,m’;sy,\y) 35

417 am (K/n")[m2+(n| @/l )] = (K/m)[mZ+(n, a/L, )] = (K/m)[m2+(m, 7/L,)?]
The Kronecker deltas from helicity conservation have been used to simplify the result, and only terms in which the second
photon is a spectator have been kept. Rearrangement of the coefficignt wields

’ 2

n
mi(n’)=mi— K ef(n’) g
1

S+ mn’ (meL, /7)%(1in' = 1/n)%+(m, /m—n, /n)?+(m, /m—n|/n")?

3.6
am M (K/n)[mg+(n] a/L, )%= (KIm[mZ+(n, @/l )?]—(K/m)[m5+(m, a/L,)?%] @8

as the one-loop mass. wherek; = (k;" ,k, ;) is the initial electron momentum ard
If electron-positron pairs are included, the photon mass ighe final momentum. The renormalization functiofig(k)
renormalized and must be treated in the analogous fashioandZz,(k) are generalizations of the usual constd2(3).
In general, the two mass renormalizations are coupled, and The wave function renormalization functidh, is easily
must be carried out simultaneously. computed since it is the probability of the bare electron Fock
All of the steps in mass renormalization depend on know-state in the dressed electron state. In the earlier notation of
ing all couplings. This information is actually not immedi- Eq. (3.1), we have

ately available because the couplings are to be renormalized.
Z,(K)=ol?, (3.9

B. Coupling renormalization wherek is the light-cone momentum of the dressed electron.
The bare coupling for the electron-photon three-point ver-The amplitudey, must be computed in a basis where only
tex depends on the initial and final momenta of the electrorallowed particles appear. For example, if the vertex is the
and on the sectors between which the coupling @i The  photon absorption proces&;; must be computed with one
momentum dependence is present because the amount legs photon in the basis than in the basis usedfor. From
momentum available constrains the extent to which highethis example one can see that the Tamm-Dancoff approxima-
order corrections can contribute. Similarly, the sector depention has destroyed the usual Ward identity.
dence makes itself felt when the number of additional par- The functionZ, can be fixed by considering the transition
ticles in higher-order corrections is restricted. amplitudeT;; for photon absorption by an electron at zero
We fix these bare coupling functions by matching photonphoton momentum. The proper part of this amplitude, mean-
absorption amplitudes to the fundamental three-point vertexng that without self-energy corrections to the legs, is re-
The amplitudes are computed from the numerical eigenfuncguired to be proportional to the elementary three-point no-
tion of the light-cone Hamiltonian. Therefore, the couplingflip vertex V;; wheng=k;—k;—0:
renormalization conditions and the mass eigenvalue problem
form a coupled set of equations that are solved iteratively. Toroper_

V 3.9
o y Zy(kp) " 39
1. Renormalization conditions

When vacuum polarization is absent, the bare couping 'n the limit, only k;=k; dependence can remaiNumeri-
is related to the physical couplireg, by cally the limit can be taken by using a photon with momen-

Z,(ks)e
eo(ki ki) = &, 3.7 There are, of course, finite corrections that are not properly rep-
VZi(Ki)Z5 (k) resented here. These are discussed in Sec. IV.
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tum (2P*/K,§, #/L,); in the DLCQ limit of K—« and
L, — o, this momentum becomes zero. Of course, if this A
particular state does not satisfy the cutoff, a state with
slightly larger longitudinal momentum must be used instead.
The full transition amplitude can be computed from solu-
tions to the eigenvalue problei2.4). Let Hy be the free
light-cone Hamiltonian with physical masses. The eigen-
states oH are then the asymptotic states of the electron and F|G. 5. Representative diagram for the extraction of the proper
photon. The transition is driven by the interactiWF=H c  vertex amplitudeT?"* from the full amplitudeT;;. The vertical
—H,. Define resolvents for the free and full Hamiltonians aslines separate the three regions of the diagram. To the left the initial
photon is a spectator to the dressing of the initial electron. To the

L 1 right only corrections to the final electron line are present. The
T stie— Ho proper vertex is in the center.
and Whereg; is the propagator for the electron in the presence of
1 the initial photon as a spectator. In the limit wherands;
2 .
o= approachmz, we obtain
g S+i€_HLC, (31(» ¢
: : 1 L rol® e Wiol?
with sthe square of the center-of-mass energy. Theatrix 5 Tii = 5 ThHoP ——. (3.19
can be formally expressed in terms of these as S—mg  STS§ S—mg S—Si
G'TG'=G'VG"+G VG TG '=G"VG". (3.1)  This then reduces to an expression Tgf°**
When sandwiched between the initial and final states, this Toroper. - (3.17
yields i Tz, 2z, T .
. T. 1 _2 Yo ¥ Vi 1 Thus the solution of the eigenvalue problem for only one
2 i = 5 (WalVIi) , (3.12 ; .
s—mg s—s ‘n s—Mj S—§; state can be used to compite. Full diagonalization ofH | ¢
is not needed.
where the/ W) are eigenstates ¢, - with eigenvaluesMﬁ
and bare-electron amplitudes,,. In the limif that s be- 2. Application of renormalization conditions
2 .
comesmg, we obtain BecauseZ, is needed in the construction &f -, the
— TV eigenvalue problem and the renormalization conditions must
Tri=o(P|VIi), (313 pe solved simultaneously. This leads to an iterative proce-
in which [W) is the dressed electron state anth dure _that begins with an initial guess for the bare coupling
functions. One then computes bare masses and new bare cou-
=VZz¢(Ks).

h ion b g TProPe | de b plings. The process is repeated until convergence is attained.
. T .e connection etwge‘ﬁfi and T IS made +y co+n- This must be done from the top sector down; the bare masses
sidering ~ the  matrix  element of G'TG in any one sector and the bare couplings between any two

=G VI _,(G"V)"G". We have depend only on the sectors above, the ones with more pho-
tons. The structure of the Hamiltonian matrix can then be
(fIGTTG"|i)=>, (f|GTV---VG*|f) determined once and for all at these levels and then used in
the determination of the structure at the levels further below.
X(F[VGHV---GT|i)(i|G*V---VG*]i). When the Fock basis is limited to no more than one pho-

ton, and instantaneous interactions are neglected, the renor-
(3.19 malization conditions are quite simple. We have from Eg.

The factors on the right are illustrated in Fig. 5. The seconc1(3'13)
factor contains no intermediaif states and the initial pho- Th= ot V=2,V (3.18
ton is absorbed befol® appears as an intermediate state. In i Pt T 2t '
the third factor, the initial photon remains a spectatorgng from this, with Eqs(3.9) and (3.17),

throughout. The sum runs over all possible combinations of
these forms and yields Vi,
. L1=2a¢25 57—y =Za= 1, (3.19
(fIGTTG™[i)=(f|g"|)TH"e|g,le), (3.19 210

where the last equality follows from the unavailability of any
state that can correct the initial electron line when a photon
2This limit neglects the small photon mass. spectator is present. The bare charge is then given by
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Z,ex er taneous fermion interaction. The coupling#g containse,
e= =—. (3.20 as a simple factor. We extract this in the following defini-
VZ1Zy Yo tions:
The subscript of 1 corresponds to use in couplings between bi=b,/e, and W= /(eoto). (3.24)

one and two-photon states.

We now consider the solution of the problem in the cas
of a basis with no more than two photons. Equat{8r20
provides the solution for the bare coupling between one an
two-photon states and, through spectator dependengg,of

®I'he scaled amplitudey; can then be obtained as a formal
1
aolution to Eq.(3.23 that shows alk, dependence

T
makese; a function of the final electron momentum. We c//=B—e2 c-B D (3.25
then need to consider the bare coupling between the bare ! 0 1+e§cT-D '
electron and the one-photon states. On substitution of Egs.
(3.9 and(3.17), Eq.(3.7) becomes with
Vf BE_ A!_mz *lb!
€= V22123 -I——fI er. (3.21 ( e b
1
o _ . and
This is a nonlinear equation fa, becauseT;; has a com-
plicated dependence on this bare charge. To make this de- DE(A'_mg)*lc_ (3.2
pendence explicit, we first use the fact thit) is an eigen-
state ofHy+V to reduce Eq(3.13 to the form The amplitude for two-photon states is then given by
=e s =eooRY, , 3.2
. , m§+ WZ/LE m§+ 7T2/LJ2_ 2 0'/’0',”2 ol/fo '»[’1 ( 7)
i ¢ 1-2K 2/K whereR is a rectangular matrix independent &y.
The discrete normalization condition is
X oy (1= 2/K X7/ ). (3.22

i isf | i 1= |+ |+ [ o] *= [ 0| L 1+ 5 | >+ €5 5] ]
The amplitudey, satisfies the middle equation of E®.2), 0 1 2 0 oI5 ol%72 3'2
which can be written as (3.28

This yields
byho+[A’+egec]- gy =mZepy, (3.23

vo=1N1+e§(|us |+ [9l?), (3.29
whereA’ is an effective interaction obtained by integrating
out they, amplitude and th(e%ccT term is the finite instan- which can be used with Eq$3.22 and(3.21) to obtain

o VZaViier 1+ eg(| 4[>+ 45]?)
O W (- 20K K/l ) [m2— (m2+ 72/ L2)/(1— 2/K) — (m2+a2/L2)I(2/K)]

(3.30

whereV’'=V/e, is independent oé,. The phases of; and  allowed range, can be found by studying the- limit. In
V; are such that the right-hand side is real, as it must be. Thiis limit we find

remaining implicit dependence is in ¢, which is '
e 0% 1 Ih (€12 [yi*(1-2K RmlL,)

given by Eq.(3.29, and iny,= R4, with Rindependent of acRrit: _

€. Notice thatB andD are independent @&, and need to be A AmZyNVA( WP+ | )P
computed only once. The equation feg is best solved it- 2, 22 2, 2272
eratively after it is squared to eliminate the square root on the 2 me+miLy _ my+ /LY

. . X|mg , (3.3)
right-hand side. 1-2/K 2/K

A real solution exists only for a finite range of the physi-
cal couplingeg. This is an artifact of the Tamm-Dancoff
truncation and the consequent failure of the Ward identity. 3Notice thatA’ is independent o&,, as can be seen from Egs.
crit

The value of the critical couplingg™, the upper limit of the  (2.19 and(2.20.
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25 (a)

e |
2.0 |
] (b)
¥ ®*  two photons (©) I
1
051 ¢ 1
] .."‘0.... sass . . X . .
] ssxmasassEEEE FIG. 7. Instantaneous fermion interactions paired with corre-
0.0 T sponding iterated three-point interactions. The vertical dashed lines
0 5 10 15 20 25 30 35 40 45 50 indicate the intermediate states of the iterated interactior(®) lthe
(A/m,)? longitudinal momentum of the instantaneous fermion is positive and

in (c) it is negative; this represents a separation of the crossed-
FIG. 6. The critical coupling;zCRrit as a function of cutoff\. This photon graph into two pieces.

is the upper limit of the range allowed for the physical coupling;
beyond this value there is no solution for the bare coupling, as anentum near zerf69]. In perturbative calculations these are
consequence of the truncations of the theory. The one-photon Vafegulated by the Mandelstam-Leibbrandt prescripti@al.
ues are obtained from extrapolations usiafl"+a;/K+a,/K?>  vjiewed inx*-ordered perturbation theory, each intermediate
+b /N, +b,/N? +c11/(KN, ); the error bars represent the differ- gtate contributes a denominator in which the light-cone en-
ence between this fit and one _vvnthcc)rldt the/N, term.zThe two- ergy k*=(mi+ kf)/k* of the photon becomes large, and
photon values come from a fit tag t+a;/K+a,/K“+by /N each vertex can contain a factor dq‘*()’3’2 If k* is sepa-
+b,/N?; the error bars are obtained from a fit without the qua- rately regulated, with some lower Cutcrffg.raphs with mul-
dratic terms. For all the photon massnig=m,/10. . ! . : 1

tiple photons will contribute powers of lagor evene™ *.
. , " " . For a Tamm-Dancoff approximation to a charged system,
with ¢ calculable a8 —(c'-B/c'-D)D. Values of the criti-  these cannot be expected to cancel. The choice of the invari-
cal coupling are plotted in Fig. 6. The change from a basigint mass cutoff2.11) instead couples the regulation of small
with no more than one photon to a basis with no more than Z+ 1 that of largek, . The combination prevents the small
is qui_te small. To stay within_the limit imposed by this result |+ region of integration from making large contributions ex-
we will use a physical coupling aig=0.1. cept in cases where there are already ultraviolet transverse

divergences. These spurious infrared infinities are then

C. Infrared singularities handled by the mass and coupling renormalization discussed

. . in this section.
A nonzero photon mags,, is used to eliminate the usual

infrared singularities. Because the calculation deals with a
charged system, there would otherwise be considerable dif-
ficulty with soft photong[68]. On the light cone, there are There remains a logarithmic divergence associated with
other singularities not removed by the photon mass. They ar@ur-point graphs of the sort illustrated in FiggaBand 8b).
associated with contributions that involve zero longitudinal
momentum. (a)

The fundamental four-point vertices can be infrared sin- 1\ r-f \-\ rf 1\ rf
gular, in the limit of zero longitudinal momentum for the & L\f‘J b \‘\/‘J
instantaneous fermion. They must be allowed to cancel
against iterations of the three-point vertices which are also ® K/L\
singular. This constrains the bare couplings in the four-point N~
vertices to forms derived from the three-point couplig /%j‘/ N~
The pairs of diagrams are shown in Fig. 7. The first pair does
not actually involve a singularity; however, we do match the

f : : : : : ()

our-point coupling to the iterated three-point coupling. The

second requires basis states with two photons, which are \/\/:7(:\/\/

available in the calculation. The third pair requires the pres-

ence of electron-positron pairs in the basis, or an effective LL JJ

interaction in the Hamiltonian. Neither is included at present,

and therefore this piece of the instantaneous interaction must G g, Logarithmically divergent four-point graphs. Those with
a|SO be eXC|Uded fI'0m the Haml|t0nlan DeteCtIOI’l ldf no more than two photons in any intermediate St@band (b)' are

<0 in the instantaneous interaction can be easily done tgcluded in the present calculation. The nonperturbative nature of
exclude this graph. the calculation implies thatb) can have an arbitrary number of

Other infrared singularities are associated with the emistoops. Diagram(c), which contains three photons in flight, is not
sion and absorption of real photons with longitudinal mo-included.

D. Four-point graphs
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If all graphs of this order are included in a perturbative cal-straint equations for S@@) Yang-Mills in 1+ 1 dimensions
culation, the logarithms cancel. However, the Tamm-coupled to massive adjoint scalars.
Dancoff truncation of the present calculation excludes For theories such as QED where symmetry breaking ef-
some graphs, such as the one shown in Fig),&nd the fects are not expected, solution of constraint equations may
cancellation can no longer take place. In a nonperturbativeot be necessary. One can instead treat the end-point behav-
calculation one must include the equivalent of diagrams witHor of photon amplitudes in a manner similar to that of the
an arbitrary number of interlocked loops, such as Figp),8 ladder relations” studied by Antonuccio and Dallgs0].
which are also logarithmically divergent. The needed counBehavior of amplitudes at small longitudinal momentum, as
terterm is of the form\(p;" ,p; )log A but cannot be found extracted frpm _the mtegral equations, can be used to con-
analytically without summing all the infinite chains of inter- struct effective interactions that include zero modes to lead-
locked loops. ing order in 1K. This is eqqlvalent to the approach used in

. P Ref. [35] where the behavior of the exchange kernel was
_ One way to approach the construction\d;” ,py ) IS0 gy died in a scalar theory to determine the effective interac-
fit Compton amphtudes to da[z_?]. This WI!| require devel-_ tion [73]. To keep zero-mode terms to higher order i 1/
opment of techniques to describe scattering processes withigyld actually be inconsistent with DLCQ's neglect of

DLCQ. A generalization of earlier worf45,71] on the in-  hjgher order nonzero-mode terms. In the work of R&6]
version of the full Greens function may be useful as a meangclusion of the zero-mode contribution®(1/K) did im-

for computing theT matrix and thus scattering amplitudes. prove convergence.
We do not consider this further here. The results presented in The whole issue may actually be moot when the invariant

Sec. V do still contain the lod divergence. mass cutoff(2.11) is used. This cutoff explicitly excludes
contributions from states with zero longitudinal momentum.
IV. FINITE CORRECTIONS The meaning of this exclusion for nondynamical fields is
unclear. The calculations that showed zero modes to be use-
A. Photon zero modes ful for convergencd 35] did not employ the invariant mass

As applied to QED, DLCQ requires the use of periodic cutoff. New calculations need to be carrie_d out specifically to
boundary conditions for the photon field. This is becausestudy the effect of cutoff choice on the importance of zero
photons couple to fermion bilinears, which are automatically™°des:
periodic, even if the preferred antiperiodic boundary condi-
tions are used for the fermions. For fields periodic in the . i ) .
longitudinal directionx ™, there are contributions from zero _ 1he use of light-cone coordinates, combined with the

modeg26,57—60, modes independent af that correspond Tamm-Dancoff truncation in particle number and the invari-
to zero longitudinal momentum. As shown by Pauli and Kal-&"t mass cutoff, explicitly break symmetries of the theory

loniatis [57], these modes prevent the choice of ordinary[lo]' In particular, rotational symmetry about the transverse
light-cone g’auge because the zero-mode piectofannot axes is broken because the associated operators involve the

be gauded away. Instead this piece must satisfy a Constraii[ﬂteraction and therefore change particle number. The change
gaug Y. piece fy particle number cannot be accommodated in field theory
equation. In fact, careful application of DLCQ to most

) . . . : , without allowing an infinite number of particles.
bosonic theories will result in constraint equations that relate pasioration of such symmetries can be accomplished by

the zero-mode contribution to the normal-mode operators ifhe addition of finite counter-terms to the Hamiltonian

a nonlinear, nontrivial way. For QED there are zero modes 74,75 including adjustment of the “vertex mass,” which
all the components of the photon field, for which constraintappears in the spin-flip vertex, relative to the “kinetic mass”
equations must be solved. What is more, the constraint equ@z4]. The ambiguities associated with the infinite counter-
tion for the dependent piece of the fermion field, which isterms allow such finite terms to exif10]. Restoration of
easily solved in light-cone gauge in the continuum, becomesymmetries is then viewed as a source of conditions by
coupled to the zero-mode constraint equations. A formulawhich these finite parts can be determined. In practice, this
tion of the coupled system of constraints has been given bynight involve study of process¢g6| such as Compton scat-
Kalloniatis and Robertsori56]. Extension of these con- tering[7] or electron-electron scattering.
straints to include a nonzero photon mass is straightforward. Given the Tamm-Dancoff truncation, an alternative is to
The constraint equations are difficult to solve, even inview the eigenvalue problem as a few-body prob[&m] for
simpler theorie[60]. This is partly because they couple Which the correct effective Hamiltonian and the generators of
states with differenP* and require study of convergence as translations, rotations, and boosts must satisfy the usual
a function of someP* cutoff. The difficulty is also due to Poincarealgebra[78]. The effective operators might be con-
the need for an ultraviolet cutoff and renormalization of Structed by adding minimal finite corrections to their field-
masses and couplings. Because the renormalization is formi€oretic forms. The finite corrections are determined by the
lated in terms of solutions to the mass eigenvalue problenfduirement that the Poincaedgebra be satisfied. For the
and because the Hamiltonian cannot be formed until th&esults presented here, no attempt has been made to include
zero-mode contribution is known, the problem expands to hese finite corrections.
very large nonlinear system of simultaneous equations. As a
result of these difficulties, the calculations discussed here do
not include zero modes. However, some progress has been An accurate DLCQ calculation for a basis with at most
made recently by Kalloniati§72] in the solution of con- one photon can be easily done when instantaneous interac-

B. Restoration of symmetries

V. RESULTS
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1.5 . 3 3 mass and coupling renormalization, control of spurious infra-
0o 1.0 = red singularities, determination of zero-mode contributions,
g f and the construction of finite counterterms which restore
S 05 4¢ Twophotens:  *  DLCQ . symmetries. Each of these has been addressed in the preced-
i* Onephoton: ® DLCQ ——— A’=w . . . . .
0.0 ing sections, and the first two have been incorporated into a
. T T LA L SR AR T T

DLCQ calculation where as many as two photons are in-
cluded in the basis.
We have presented results fag computed in a light-

FIG. 9. The ratio of the renormalized anomalous monsro ~ Cone-gauge Fock space truncated to include one bare elec-
the exact one-photon perturbative resijiat the same photon mass tron and at most two photons; i.e., up to two photons in
m,, as a function of the invariant-mass cutof. Here m flight. The calculational scheme uses an invariant mass cut-
=m/10 andag=0.1. The Fock space is truncated to include atOff, discretized light-cone quantizatiofPLCQ), a Tamm-
most one or two photons. The DLCQ results are extrapolated fronancoff truncation of the Fock space, and a photon mass
calculations done with =21 to 31, andN, =8 to 15 for one pho- regulator. We have utilized new weighting methods which
ton andN, =7 to 9, 10, or 11 for two photons. greatly improve convergence to the continuum within

DLCQ. A large renormalized coupling strengity=0.1 is
tions are neglected. The accuracy can be verified directlthen used to make the nonperturbative effects in the electron
because the integrals that yiedd can be performed analyti- anomalous moment from the one-electron, two-photon Fock
cally [20]. In the limit of infinite cutoff and zero photon mass state sector numerically detectable. Results are given in Fig.
this reproduces the Schwing€i8] result of ag/27w. The 9.
only coupling renormalization is a trivial wave function  The disagreement between these results and what one
renormalization. The DLCQ result at various cutoff values iswould expect from perturbation theory at ordet indicates
shown in Fig. 9 for a photon mass ofi,/10. Weighting that the effect oZ graphs needs to be included in a system-
methodg 17] are a critical part of the calculation. atic way. This can be done as an effective interaction, to

Calculations with a basis that includes at most two pho-avoid expansion of the Fock basis to include pair states. The
tons have been done at five different values of the cutoff foicorresponding piece of the instantaneous fermion interaction,
a coupling ofag=0.1. They are also shown in Fig. 9. The as depicted in Fig. (), must then also be included to main-
two-photon contribution adds approximately 40%. This istain an infrared cancellation.
much larger than the order of magnitu@i®/# or 3% that Further progress in computing the electron moment will
one would expect. It is also opposite in sign to therequire the following.

Sommerfield-Petermann contributiffd] of —0.328(a/ ) (1) New counterterms: One piece of the infinite renormal-
to the anomalous moment. We attribute this large differencézation is missing in the calculation. As discussed in Sec.
to the absence &t graphs. Il D, it requires a new nonperturbative counterterm for the

The basis sizes involved are on the order of 1 to 4 million,Jogarithmic divergences present in diagrams of the type
which translates to solution of linear systems with 4000 toshown in Figs. 8a) and 8b). The divergence arises because
10 000 variables once the two-photon states are integratetie Tamm-Dancoff truncation prevents certain cancellations.
out and symmetries of the one-photon states are used.  Construction of the counterterm will likely require analysis

The values obtained from DLCQ were extrapolateto of scattering processes.
=0 andN, = by fits toa,+a/K+b/N, +c/(KN,). Ex- (2) Zero modes in DLCQ: Before full consideration of
clusion of the last term provided an estimate of the error inphoton zero modes is undertaken, we recommend renewed
the fit, which is reflected in the error bars in Fig. 9. Thestudy of zero modes in a scalar theory where the constraint
values ofK ranged from 21 to 31 and those f from 7 to  equation can be solved exac{$5]. This may show that,

9, 10, or 11, depending on matrix size limitations. when the invariant mass cutdf2.11) is used, zero modes do

The time required for an extrapolated value at a fixednot make a significant numerical contribution. If instead
cutoff is roughly 10 h on a Cray X-MP, using less than 32there is an important contribution, it should be computed
million words of memory. This seems quite competitive with only to leading order in the numerical resolution, to be con-
older lattice methods, where a quenched QCD calculation o$istent with the level of approximation used in the basic
heavy-light meson wave functiof80] required 300 h on a DLCQ approach.

CM-200([81], but does not yet match the effort required with  (3) Use of symmetries in DLCQ renormalization: The res-

the latest method$1], for which calculation of th& meson  toration of symmetries should then complete construction of
magnetic form factor might require 50 h on a good [82].  the light-cone Hamiltonian. One can normalize to specific
physical processg§6,7] or take an abstract approach based
on the algebra of the Poincagenerator§77,78.

(4) Higher Fock states: Once the two-photon calculation
The nonperturbative calculation of the anomalous mods fully under control, the addition oée€” states can be
ment of the electrora,, besides being of intrinsic interest considered. This will require analysis of photon mass and

itself, exposes many important issues for nonperturbativavave function renormalization.
calculations within gauge theories which occur in the context Many of the complications of the light-cone Fock state
of a truncated Fock space. These include nonperturbativanalysis presented here can be traced to the complexity of

0 10 20 30 40 50 60 70 80 90 100
(A/mg)?

VI. SUMMARY
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sector-dependent renormalization. Given such complicationge of a dressed electron and positron. Such an analysis can
the newly developed alternative of Pauli-Villars regulariza-serve as the prototype for systemic nonperturbative construc-
tion [17] may be the preferred approach. Within such ation of colorless bound state hadrons in QCD.

scheme, it is also likely that the limitation to a small number
of photons can be relaxed.

The analysis presented here is the first step in a systematic
program to compute physical quantities in gauge theory sys- This work was supported in part by the Minnesota Super-
tematically utilizing a light-cone Fock expansion. It will also computer Institute through grants of computing time and by
be interesting to use these methods and the present knovthe Department of Energy contract DE-AC03-76SF00515.
edge of the dressed-electron state in QED in order to systenWe thank G. McCartor, R. Perry, St. Glazek, D. Robertson,
atically construct the neutral positronium state as a composand A. Kalloniatis for helpful discussions.
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