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Potential NRQED: The positronium case
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We discuss in detail potential NRQED~pNRQED!, a previously proposed effective field theory for ultrasoft
photons. The pNRQED Lagrangian for the equal mass case is presented, and it is shown that it correctly
reproduces the positronium spectrum at orderma5. The pNRQED Lagrangian for the unequal mass case is
also presented at the same order. Dimensional regularization is used throughout.@S0556-2821~98!06423-6#
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I. INTRODUCTION

Nonrelativistic QED~NRQED! @1# is becoming increas
ingly popular for QED bound state calculations@1,2,3,4#. It
has the advantage over traditional Bethe-Salpeter equa
@5# that the nonrelativistic nature of the QED bound state
explicit, whereas relativistic and radiative corrections can
systematically incorporated by taking into account higher
ders in the 1/m expansion and by calculating the matchi
coefficients at higher order ina, respectively. However, the
NRQED Lagrangian still contains two dynamical scale
namely, the typical relative momentum in the bound statp
;ma and the bound state energyE;ma2, which implies
that the terms in the Lagrangian do not have a unique s
The leading size of each term is given by the next relev
scalep ~soft! ~except for the time derivative! and rules have
been provided to estimate the subleading contributions
to the scaleE ~ultrasoft! @6#. Nevertheless, it would be help
ful for bound state calculations to have an effective fie
theory~EFT! where each term in the Lagrangian had a we
defined size. This EFT has proved to be quite elusive
some time@7,8,9#.

In Ref. @10# we proposed potential NRQED~pNRQED!
as such an EFT and presented the form of its Lagrangian
positronium. In Ref.@11# we worked out pNRQED for hy-
drogenlike atoms and reproduced the Lamb shift in a v
straightforward way. It is the aim of this paper to discu
pNRQED for positronium in greater detail and to show th
it also allows one to reproduce the spectrum at orderma5,
where all regions of momenta~hard, soft, and ultrasoft! con-
tribute, very efficiently. We also illustrate how dimension
regularization helps in that.

pNRQED describes fermion-antifermion pairs with re
tive momentum of orderp and energy of orderE, and ultra-
soft photons with energy and momentum of orderE. This
should be compared with NRQCD, which describes degr
of freedom~fermions and photons! with energy and momen
tum less than a certain cutoffm such thatE,p!m!m. For-
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mally speaking, pNRQED has two UV cutoffsL1 andL2 ,
whereE!L1!p is the cutoff for the energy of the fermion
and for the energy and momentum of the ultrasoft photo
whereasp!L2!m is the cutoff for the relative momentum
of the fermion-antifermion system. In principle, we ha
some freedom to choose the relative importance betweenL1

and L2 . We chooseL2
2/m!L1 , which guarantees that th

UV behavior of the fermion propagators in pNRQED is th
of the static ones.

pNRQED is obtained from NRQED by integrating o
fermions and photons of energies and momenta of ordep
and photons of energies of orderE and momentap.1 The
pNRQED Lagrangian obtained is local in time but nonloc
in space~i.e., it has potential terms! and contains ultrasof
photons only. The size of each term becomes explicit o
the Lagrangian is projected onto the one-electron–o
positron subspace of the Fock space and written in term
a wave function field. This is due to the fact that in the lat
representation the ultrasoft photon fields can be multip
expanded about the center of mass. Moreover, the calc
tions in pNRQED are very close to those in nonrelativis
quantum mechanics.

The practical way in which we integrate out degrees
freedom is by a matching procedure. We impose that tw
fermion Green functions and four-fermion Green functio
~with an arbitrary number of ultrasoft photon legs! in
NRQED be equal to those in pNRQED once both are
panded about the external fermion energies and~ultrasoft!
photon energies and momenta. Dimensional regulariza
~DR! is used for both UV and IR divergences. Furthermo
we use static propagators, and hence the matching ca
done to a given order in 1/m anda. This is justified because
the fermion energies we are integrating out in loops are
orderma whereas the typical kinetic energy isO(ma2).

1Some authors@12,13# like to distinguishpotential photons, i.e.,
photons withk0;E andk;p, from softphotons, i.e., photons with
k0;p andk;p. This distinction is quite irrelevant in our formula
tion since bothpotentialandsoft photons are integrated out at th
same time when matching NRQED to pNRQED.
©1998 The American Physical Society05-1
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A. PINEDA AND J. SOTO PHYSICAL REVIEW D59 016005
The procedure above is similar to the matching betw
QED and NRQED as carried out in Refs.@10,14,15#. In that
case scales;m are integrated out and the matching reduc
to calculations in QED, wherem is the only scale in the
integrals. Here, the scales which are integrated out are;p
and the matching reduces to calculations in NRQED wherp
is the only scale in the integrals. Hence, the potential te
in pNRQED play a role analogous to the Wilson coefficie
in NRQED. Indeed, the former encode contributions due
physics at the scalep much in the same way as the latter d
of physics at the scalem. At each matching step the nonan
lytic behavior in the scale which is integrated out becom
explicit.

We organize the paper as follows. In Sec. II we descr
the matching procedure between NRQED and pNRQED
Sec. III we present the bound state calculation. Section IV
devoted to the conclusions and future prospects. In Appen
A the gauge independence is checked at orderma4 by cal-
culating the matching to this order in the Feynman gauge
Appendix B the pNRQED Lagrangian for the unequal ma
case is displayed.

II. MATCHING NRQED TO pNRQED

The pieces of the NRQED Lagrangian which are relev
to the calculation of the bound state energy atO(ma5) read

LNRQED5c†H iD 01
D2

2m
1

D4

8m3 1cFe
s•B

2m

1cDe
@“•E#

8m2 1 icSe
s•~D3E2E3D!

8m2 J c

1~xc ,e→2e!2
ds

m2 c†cxc
†xc

1
dv

m2 c†scxc
†sxc2

1

4
FmnFmn1

d2

m2 FmnD2Fmn,

~2.1!

wherec is the Pauli spinor field that annihilates the fermi
and xc is the Pauli spinor field that annihilates th
antifermion.2 iD 05 i ]02eA0, iD5 i“1eA on the fermion
field. The bilinear Lagrangian forxc is equal to thec La-
grangian with changee→2e.

This can be seen as follows. We draw all possible d
grams of the two-fermion-irreducible four-fermion Gree
function, which cannot be disconnected by cutting a pho
line, such thats1r<4, wheres is the number of 1/m factors
in the diagram andr the number of explicita @6,10,11#. This
rule can be easily justified if we take into account that
next relevant scale isp;ma and hence all 1/m must be
compensated for byma until we reach dimensions of en
ergy. For diagrams which can be disconnected by cuttin

2We use herexc5Cx* , whereC is the charge conjugation ma
trix, instead ofx as in Refs.@10,11# because it is more usual i
nonrelativistic systems.
01600
n

s

s
s
o

s

e
n
is
ix

In
s

t

-

n

e

a

photon line the same rule applies but there is an extra s
pression ifn time derivatives act on this photon line. This
due to the fact that these time derivatives are only sensi
to the typical energy. The extra suppression factor isan.
Recall also that any diagram may have subleading contr
tions which appear from the analytic expansion of the ex
nal energy about zero. In the Coulomb gauge the diagra
satisfying the above criteria are displayed in Figs. 1 and
Then both tree-level and one-loop diagrams are requi
Notice also thatcF , cD , andcS are needed at ordera andds
anddv at ordera2. All these Wilson coefficients are gaug
independent but depend on the renormalization scheme
the UV divergences of NRQED. We shall use dimensio
regularization with the modified minimal subtraction (MS)
scheme. In this scheme the Wilson coefficients of the bi
ear terms were given in@14# and the ones for the four
fermion terms in@10,15#. They read

cF511
a

2p
, ~2.2!

cD511
a

p S 4

3
log

m2

m2D ,

cS511
a

p
,

FIG. 1. The nonzero relevant diagrams for the matching at
tree level in the Coulomb gauge. The dashed and zigzag lines
resent theA0 andA fields, respectively, while the solid lines repre
sent the fermion and antifermion fields. The first diagram is
Coulomb potential. ForA0 the open circle is the vertex proportiona
to cD , the square tocS ~spin dependent!, and the solid circle tod2

~the vacuum polarization!, while for A the square is the vertex
proportional tocF and the other vertex appears from the covaria
derivative in the kinetic term. The last diagram is proportional tods

anddv . The symmetric diagrams are not displayed.
5-2
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POTENTIAL NRQED: THE POSITRONIUM CASE PHYSICAL REVIEW D59 016005
d25
a

60p
,

ds5
3pa

2 H 12
2a

3p S log
m2

m2 1
23

3
2 log 21 i

p

2 D J ,

dv52
pa

2 H 12
2a

p S 22

9
1 log 22 i

p

2 D J .

Hence our starting point is the Lagrangian~2.1! with the
Wilson coefficients~2.2!. We wish to integrate out fermion
and photons of energy and momenta;p and photons of
energy;E and momentum;p. Then the effective theory
we want to reach, namely, pNRQED, contains only ultras
photons~of energy and momentum;E! and fermions of
energy;E and momentum;p or less. Since we integrat
out photon momenta;p but keep fermion momenta of thi
order, pNRQED contains terms nonlocal in space, nam
potential terms. This is not a problem for a nonrelativis
EFT.

The practical way to obtain pNRQED is by enforcin
two- and four-fermion Green functions with arbitrary ultr
soft external photons to be equal to those of NRQED o
we expand about zero the energy in the external electron
and the energy and momenta of the ultrasoft photon le
This may produce IR divergences which are regulated
dimensional regularization, in the same way as the UV
vergences are. Since the IR behavior of NRQED a
pNRQED is the same, these IR divergences will cancel
in the matching. The UV divergences of NRQED must
renormalized in theMS if we want to use the matching co
efficients~2.2!. We still have a choice in the renormalizatio
scheme of pNRQED. However, it is most advantageous
use againMS. Indeed, in this scheme we can blindly useMS
for any divergence regardless of whether it is UV or IR in t
matching calculation. For the UV divergences of NRQE

FIG. 2. The nonzero relevant diagrams for the matching at
loop in the Coulomb gauge. The dashed and zigzag lines repre
theA0 andA fields, respectively, while the solid lines represent t
fermion and antifermion. The interactions forA are the ones which
appear from the covariant space derivatives in the kinetic te
while for A0 they come from the covariant time derivative. Th
symmetric diagrams are not displayed.
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and pNRQED it is just the scheme we choose, and for the
divergences it is irrelevant as long as we use the same t
ment in both theories, since the IR behavior is the same. T
allows us to put integrals with no scale equal to zero and
we will see later on, reduces the matching to a calculation
NRQED only.

Notice that we demand off-shell Green functions
NRQED and pNRQED to be equal and not on-shell Gre
functions as is customary in the matching from QED
NRQED @1,14#. This is due to the fact that we are eventua
interested in bound states, and particles in a bound state
typically off shell. The equations of motion of pNRQED
~with potential terms included!, or local field redefinitions,
may be consistently used later on to remove time derivati
in higher order terms and write the pNRQED Lagrangian
a standard form, within the philosophy advocated in R
@16# ~see also@17#!. We have checked in Appendix A tha
this procedure produces gauge-independent results
O(ma4).3 In fact the same argument applies to the match
between QED and NRQED, which accordingly should a
be carried out off shell. However, in that case, at lower
ders there is no difference between doing the matching
shell and replacing derivatives by covariant derivatives,
order to enforce gauge invariance, and doing the match
off shell and consistently using the equations of motion
local field redefinitions to get rid of time derivative term
@14,16#.

The remaining important ingredient to carry out th
matching efficiently is the use of static@heavy quark effec-
tive theory~HQET!# propagators for the fermions. This ha
been completely justified in the matching between QED a
NRQED @14,15#, since both energy and momentum in th
theory cannot exceed the same cutoffL which is smaller
thanm. Hence the UV behavior of the fermion propagator
NRQED is always dominated by the energy. This fact is n
automatically implemented in dimensional regularizatio
When dimensional regularization is used, the correct UV
havior of NRQED is only obtained when expanding abo
the static propagator.

In pNRQED we have a certain choice for the UV cutof
for the fermion energy and momentum. We shall choo
L1!p for the energy andL2!m for the momentum in such
a way thatL2

2/m!L1 . The proper way to implement thi
condition in dimensional regularization is again by expan
ing the fermion propagator in pNRQED about the sta
propagator.

Now we are in a position to prove that no pNRQED di
gram containing a loop contributes to the matching calcu
tion.

3However, there is still some freedom in the choice of the wa
function field, to be introduced later on, due to time-independ
unitary transformations which commute with the leading terms
the pNRQED Lagrangian. Therefore, in general, it is not to
expected that the standard forms of the pNRQED Lagrangian
culated with different gauges coincide, but only to be related by
such unitary transformation. This explains, for instance, why
potential presented in@19# is different from ours but leads to th
same physics.
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A. PINEDA AND J. SOTO PHYSICAL REVIEW D59 016005
Consider first the two-fermion Green function with an a
bitrary number of ultrasoft legs. For potential terms to co
tribute we need at least a four-fermion Green function a
hence we only have to care about ultrasoft photons. If
input a momentum;p in the fermion line, this momentum
cannot flow out through any external ultrasoft photon li
~by definition of ultrasoft!. Then it must flow through the
fermion line, which is a series of static propagators ins
sible to the momentum flowing. Hence upon expand
about external fermion energies and external energies
momenta of the ultrasoft photons there is no scale in
integral and therefore any loop contribution vanishes. In fa
exactly the same argumentation can be used for the NRQ
calculation. Then we conclude that terms bilinear in fermio
are exactly the same in NRQED and pNRQED. However,
have to keep in mind that the latter~by definition! must be
understood as containing ultrasoft~US! photons only.

Consider next the four-fermion Green function
pNRQED containing several potential terms but no US p
ton. Since no energy can flow through the potentials and
static propagators are insensitive to the momentum, u
expanding about the US external energy, the integrals o
internal energies have no scale. However, these integ
have IR~pinch! singularities which are not regulated by sta
dard DR. We shall take the additional prescription of putti
them to zero. Since the IR behavior of pNRQED a
NRQED is the same, the same kind of integrals appear in
NRQED calculation. If we put them consistently to zero, w
obtain the correct potential terms, which play a role simi
to the Wilson coefficients in the matching between QED a
NRQED. It is important to keep in mind that the Wilso
coefficients compensate for the different UV behavior of
effective theory~pNRQED! with respect to that of the ‘‘fun-
damental’’ theory~NRQED!. Hence they are not sensitive t
the details of the IR behavior, which legitimates the presc
tion above. Then any loop diagram in pNRQED with no U
photons can be put to zero. This still holds if an arbitra
number of US photon lines are included in the diagram.
deed, any potential line in the diagram now may also con
US momenta from the photon lines. These, however, can
expanded about zero since they are~by definition! much
smaller than the momentum transfer in the potential. He
the integrals over US photon energies and momenta con
no scale~again upon expanding the US external energy
the fermion static propagators! and can also be put to zero

In summary, we can directly identify the potential term
from a calculation in NRQED. We would like to stress aga
the similarity in the procedure with the matching betwe
QED and NRQED as carried out in Refs.@14,15#. The po-
tential terms in pNRQED play the role of Wilson coefficien
in the matching procedure.

The four-fermion terms appearing in the pNRQED L
grangian typically have the form4

4In principle, Eq.~2.3! could also depend on the total momentu
P52 i“X , with X5(x11x2)/2, or on ultrasoft photons, but thes
effects can be neglected to the accuracy we are working at.
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Lpot52E d3x1d3x2c†~ t,x1!xc
†~ t,x2!V~x,p,s1 ,s2!

3xc~ t,x2!c~ t,x1!, ~2.3!

wherex5x12x2 , p52 i“x ands15s1/2, s25s2/2 act on
the fermion and antifermion, respectively~the spin fermion
and antifermion indices are contracted with the potential
dices, which are not explicitly displayed!. V(x,p,s1 ,s2)
may also be written as an expansion of the type

V5V~0!1V~1!1V~2!1V~3!1¯ , ~2.4!

where^V(n)&;man. Our results are exact for the four firs
terms of this expansion.

We obtain, from the tree-level diagrams of Fig. 1~Ṽ rep-
resents the Fourier transform ofV!,

Ṽtree
~a!52

4pa

k2 , ~2.5!

Ṽtree
~b!5

pacD

m2 , ~2.6!

Ṽtree
~c! 52

i2pacS

m2

~p3k!•S

k2 , ~2.7!

Ṽtree
~d!52

16pad2

m2 , ~2.8!

Ṽtree
~e! 52

4pa

m2 S p2

k22
~p•k!2

k4 D , ~2.9!

Ṽtree
~ f !52

i4pacF

m2

~p3k!•S

k2 , ~2.10!

Ṽtree
~g!5

4pacF
2

m2 S s1•s22
s1•ks2•k

k2 D , ~2.11!

Ṽtree
~h!5~ds13dv!22dvS2, ~2.12!

whereS5s11s2 , and, for the one-loop diagrams of Fig. 2

Ṽ1 loop
~a! 5

a2

m2 S log
k2

m22
8

3
log 21

5

3D , ~2.13!

Ṽ1 loop
~b,c! 5

4a2

3m2 S log
k2

m2 12 log 221D .
~2.14!

The m dependence of Figs. 2b, 2c is of IR origin and w
eventually cancel with US contributions. However, them
dependence of Fig. 2a is of UV origin and cancels exac
with the m dependence ofds . Recall that there is an addi
tional m dependence incD which will also cancel against US
contributions. Upon Fourier transforming and putting t
gether the above results we obtain
5-4
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V5V~0!1dV, ~2.15!

where

V~0!52
a

uxu
~2.16!

and

dV52
a

2m2

1

uxu S p21
1

x2 x•~x•p!pD1
d~3!~x!

m2 S pa~cD22cF
2 !1ds13dv216pad21

a2

3
2

7a2

3
log m2D

2
7a2

6pm2 reg
1

uxu3 1
d~3!~x!

m2 S2S pa
4

3
cF

222dvD1
a

4m2

1

uxu3
L•S~2cS14cF!1

acF
2

4m2

1

uxu3 S12~ x̂!, ~2.17!

whereS12( x̂)5(2s1•s213s1• x̂s2• x̂) and ~see@18# for more details on the Fourier transform!

2
1

4p
reg

1

uxu3
5E d3k

~2p!3 eik•x log k. ~2.18!

The pNRQED Lagrangian now reads

LpNRQED5E d3xS c†H iD 01
D2

2m
1

D4

8m3J c1~xc ,e→2e!2
1

4
FmnFmnD

2E d3x1d3x2c†~ t,x1!xc
†~ t,x2!V~x,p,s1 ,s2!xc~ t,x2!c~ t,x1!, ~2.19!
q
e-
t

e
so

e

el
r

the

tion

of
ach

ives
where the photons are ultrasoft.
In order to make explicit the size of each term in E

~2.19! it is convenient to project pNRQED to the on
electron–one-position subspace~this can be easily done a
the Hamiltonian level!. This subspace is spanned by

E d3x1d3x2w~x1 ,x2!c†~x1!xc
†~x2!u0&, ~2.20!

whereu0& is the subspace of the Fock space containing z
electrons and positrons, but an arbitrary number of ultra
photons.

Then the dynamics of the wave function field is describ
by the Lagrangian

LpNRQED5E d3x1d3x2w†~x1 ,x2 ,t !

3S i ]01
“x

2

m
1

“X
2

4m
1

“x
4

4m32exi] iA0~ t,X!

22ie
A~ t,X!•“x

m
2V~x,p,s1 ,s2! D

3w~x1 ,x2 ,t !2E d3x
1

4
FmnFmn, ~2.21!

where we have made precise that the remaining photon fi
are ultrasoft by multipole expanding them about the cente
01600
.

ro
ft

d

ds
of

mass.5 Furthermore, gauge invariance at any order in
multipole expansion can be made explicit by introducing

w~x1 ,x2 ,t !5PFexpS ieE
x2

x1
A•dxD GS~x,X,t !. ~2.22!

Then, the gauge transformations of the above wave func
fields are

w~x1 ,x2 ,t !→g~x1 ,t !c~x1 ,x2 ,t !g21~x2 ,t !,

S~x,X,t !→S~x,X,t !. ~2.23!

We finally obtain

LpNRQED5E d3x d3X dt S†~x,X,t !H i ]02
p2

m
1

p4

4m32
P2

4m

2V~x,p,s1 ,s2!1ex•E~X,t !J
3S~x,X,t !2E d3x

1

4
FmnFmn, ~2.24!

which is explicitly gauge invariant. Moreover, the size
each term is unique and can be evaluated as follows. E

5As expected for a chargeless particle, the covariant derivat
for P are the ordinary ones.
5-5
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A. PINEDA AND J. SOTO PHYSICAL REVIEW D59 016005
relative momentum]x and inverse relative coordinateuxu21

have a size;ma. Each US photon field, derivatives actin
on it, the time derivative, and the center-of-mass momen
]X ~in the rest frame, when entering in recoil corrections d
to the virtual emission of US photons! on the wave function
field have a size;ma2. Formula ~2.23! has already been
presented in@10# ~except for a numerical factor in the pote
tial which was left arbitrary!. We shall use it to calculate th
spectrum atO(ma5) in the next section.

The gauge independence of the matching calculatio
checked atO(ma4) in Appendix A. The pNRQED Lagrang
ian for the unequal mass case can be built with no furt
difficulty. The result is displayed in Appendix B.

III. BOUND STATE CALCULATION IN pNRQED

In order to find the corrections to the bound state ene
of a state with principal quantum numbern we consider the
Green function~we will follow a procedure and notation
similar to Ref.@11#!

P~q,x!ªE dx0dX eiqx0
^T$w~0!w†~x,X,t !%& ~3.1!
01600
m
e

is

r

y

whenq→En , whereEn is the energy of the leading Hamil
tonian

ĥ052
“

2

m
2

a

uxu
. ~3.2!

The integral overX fixes the center-of-mass momentumP to
zero. We write

P~q,x!5
An1dAn

q2~En1dEn!
;

An1dAn

q2En
1

An

q2En
dEn

1

q2En
.

~3.3!

The contribution todEn coming from the correction to the
potential and the kinetic energy read

FIG. 3. The thick line and wavy lines are the positronium a
the transverse ultrasoft photon propagators, respectively.
, which
t

gauge
s

dVEn5^nl j udVunl j &5
ma4

8 H 2
3

n3~2l 11!
1

1

n4

2
2a

3p

d l0

n3 F2 log
m

m
17 log

mn

ma
26 log 21

17

5
27S (

k51

n
1

k
1

n21

2n D G2
7a

3p

12d l0

n3

1

l ~ l 11!~2l 11!

1
14

3

d l0ds1

n3 F11
3a

7p S 2
32

9
22 log 2D G1

~12d l0!ds1

l ~2l 11!~ l 11!n3 Cj ,lJ , ~3.4!

dKEn52
1

4m3 ^nl j u“4unl j &5
ma4

8

3~ l 11/2!24n

4n4~2l 11!
, ~3.5!

where

Cj ,l55
2

l 11

2l 21 S 2~3l 21!1
a

p
~4l 21! D , j 5 l 21,

222
a

p
, j 5 l ,

l

2l 13 S 2~3l 14!1
a

p
~4l 15! D , j 5 l 11.

~3.6!

There is also a contribution from a virtual exchange of an ultrasoft photon corresponding to the diagram in Fig. 3
has already been evaluated in dimensional regularization for the hydrogenlike atom@11# ~here the calculation is identical bu
using the reduced mass!. Notice that theMS scheme has to be used in the calculation. Since Eq.~2.24! is gauge invariant, we
can use any gauge to calculate this contribution. Still the Coulomb gauge continues to be advantageous, since in thisA0
can only contribute to tadpoles which can be safely put to zero in dimensional regularization. This contribution read

dUSEn52
8

3

a

p (
m

U K nU p

mUmL U2

~En2Em!S log
m

uEn2Emu
2 log 21

5

6D
52

ma5

3pn3 S d l0F log
^En,l&

2

m2 2
5

3G1~12d l0!log
4^En,l&

2

m2a4 D , ~3.7!
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where the last equation implicitly defines^En,l&. Once we add all these contributions the final result reads

dEn,l , j5dVEn1dKEn1dUSEn5
ma4

8 H 2
4

n3~2l 11!
1

11

8n4

2
2a

3p

d l0

n3 F9 log a17 log n18 log R~n,l !214 log 22
49

15
27S (

k51

n
1

k
1

n21

2n D G
2

16a

3p

12d l0

n3 S log R~n,l !1
7

16

1

l ~ l 11!~2l 11! D1
14

3

d l0ds1

n3 F11
3a

7p S 2
32

9
22 log 2D G

1
~12d l0!ds1

l ~2l 11!~ l 11!n3 Cj ,lJ , ~3.8!
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where logR(n,l)5log(2̂ En,l&/ma2) is called the Bethe loga
rithm. For theO(ma5) contribution we find agreement wit
Ref. @19# for the spin-independent piece and for thed l0ds1
piece, while for the (12d l0)ds1 piece we find agreemen
with Ref. @3# ~this last piece could also be obtained fro
results of Ref.@19#!.

We can also easily obtain the full decay width at lowe
order. It reads

Gn5
ma5

2n3 d10~12ds1!1 (
m,n

16

3
aU K nU p

mUmL U2

~En2Em!.

~3.9!

IV. DISCUSSION AND CONCLUSIONS

We have seen that pNRQED correctly reproduces the p
itronium spectrum atO(ma5). This is a nontrivial check of
the ideas behind this EFT since at this order all regions
momenta~hard, soft, and ultrasoft! contribute to the energy

We would like to emphasize that the procedure we p
pose for higher order corrections to the positronium~and
other QED bound states! is totally systematic. It uses two
EFTs, namely, NRQED and pNRQED. Both the matchi
from QED to NRQED and from NRQED to pNRQED ca
be done order by order in 1/m anda, and static propagator
for the fermions can be used. This together with the use
dimensional regularization simplifies a lot the calculatio
The actual bound state calculation is done at the leve
pNRQED for the wave function field and is very similar to
standard quantum mechanical calculation, the only diff
ence being that the wave function field couples to US p
tons in a field theoretical fashion.

We believe that the clarity and simplicity of this forma
ism will allow one to carry out higher order bound sta
calculations in QED very efficiently. In order to illustrat
this point let us pose ourselves the calculation of the posi
nium spectrum atO(ma6) and see the extra calculation
required in order to obtain the pNRQED Lagrangian at t
order. Clearly all contributions that we obtain atO(ma5)
which are multiplied by a Wilson coefficient will give a con
tribution at O(ma6) by just calculating the Wilson coeffi
cient to next order ina. This requires the matching from
01600
t

s-

f

-

of
.

of

r-
-

-

s

QED to NRQED at two loops. The relativistic correction
the kinetic energy,O(1/m5), in NRQED should be kept
TermsO(1/m4) in the NRQED Lagrangian would now con
tribute to the potential but they do so only at the tree lev
Hence their Wilson coefficients are only necessary at the
level. Those for the bilinear terms may be obtained from@20#
whereas those for the four-fermion operators from@21#.
Terms O(1/m3) also contribute at the tree level and ma
contribute at one loop. In either case the Wilson coefficie
are only needed at the tree level which are known@14#. In
addition O(1/m2) terms in the NRQED Lagrangian woul
now contribute to the potential at one loop andO(1/m) terms
at two loops. It is also easy to see by inspecting the n
order terms of the multipole expansion in the pNRQED L
grangian that, due to angular momentum conservation,
contribution of US photons arises atO(ma6). There would
only be a new qualitative feature, namely, that time deri
tives multiplying potential terms would arise~for instance,
from the expansion of the energy in the one-transver
photon exchange at the tree level!. This time derivatives can
be disposed of by using the equations of motion in pNRQ
~now with potential terms included! as has been done i
Appendix A, according to the philosophy of Ref.@16# ~see
also @17#!. This calculation would produce an independe
check of the existing results obtained very recently in R
@22#.

It is important to be able to calculate systematica
higher orders in QED as a test of the standard model i
sector where QCD does not play any relevant role. Any s
nal of new physics here should be much clearer than in
hadronic sector as, for instance, in orthopositronium de
where there seem to be some difficulties in explaining
data~see@23# and references therein!.6

Finally, we would like to stress that the idea of separat
the calculation of the binding energy~or any other observ-
able! of a nonrelativistic bound state system in three stag
namely,~i! integrating out the hard scale,~ii ! integrating out
the soft scale, and~iii ! calculating the bound state energ

6Only one experiment@24# seems to be compatible with theoret
cal predictions.
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when only ultrasoft degrees of freedom are present, is nei
confined to positronium nor to the QED realm. Indeed,
have already shown in Ref.@11# that it can be applied to
hydrogenlike atoms, and it should be easy to work
pNRQED for muonium, dimuonium, and other two-bod
QED bound states. In particular, pionium, a QED bou
state, which, however, decays strongly, has received con
erable attention lately@25#. Its decay width turns out to be
proportional to the pion scattering length, which is an ess
tial input to fix the parameters of the chiral Lagrangian@26#.
In order to extract the scattering length neatly from the
perimental data a good control on the electromagnetic
rections is necessary. pNRQED for pionium can definit
help in that goal. Beyond QED, heavy quarkonium syste
also form nonrelativistic bound states. We have already p
posed that potential NRQCD~pNRQCD!, an EFT for
NRQCD analogous to pNRQED for NRQED, should be u
ful to study these systems@10#. The techniques presente
here may also help in the understanding of nucleon-nucl
bound states from the heavy baryon chiral Lagrangian, wh
have also received quite some attention during the last y
@27#.
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APPENDIX A: O„ma4
… MATCHING IN THE FEYNMAN

GAUGE

In this appendix we check that the pNRQED Lagrang
is gauge independent atO(ma4) once it is written in the
standard form. By the standard form we understand tha
time derivatives in higher order terms are disposed of by
use of equations of motion or, alternatively, by local fie
redefinitions@14,16# ~see also@17#!. In order to do so, the
matching calculation is redone in the Feynman gauge.

The main difference between the Coulomb gauge and
Feynman gauge, as far as the matching of the four-p
Green function is concerned, is that, in the former, loop d
grams involvingA0 only can be set to zero in NRQED be
cause there is no scale for integration over the ene
whereas in the latter they must be kept because the pole
the A0 propagator now relate energy and momentum.

The counting in Sec. II implies now that the followin
extra diagrams must be considered:~i! the one-loop dia-

FIG. 4. The nonzero relevant diagrams for the matching at
loop in the Feynman gauge settingE to zero and with no 1/m
insertions.
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grams of Fig. 4@O(ma3)#, ~ii ! the same diagrams with
p2/2m insertion in either fermionic line@O(ma4)#, ~iii ! the
same diagrams with external energy insertions arising fr
the expansion of the propagators about zero external en
@O(ma4)#, and~iv! two-loop diagrams involvingA0 propa-
gators only@O(ma4)#.

It is easy to see that diagrams~i! cancel each other. Dia
grams~ii ! and ~iii ! vanish individually, essentially becaus
they have an odd number of static propagators. Diagra
~iv! have already been seen to cancel in Ref.@28#. Then we
are left with the same diagrams we had in the Coulo
gauge@all diagrams in Fig. 1, except~d! which is O(ma5)#,
but now they must be calculated in the Feynman gauge.

In fact, all the diagrams give the same result except F
1a and 1e. The latter now reads

Ṽtree
~e! ~Feynman!5Ṽtree

~e! ~Coulomb!2
pa

m2

~p22p82!2•

k4 .

~A1!

Figure 1a now receives a contribution due to the expans
of the external energies about zero in theA0 propagator,
which we depicted in Fig. 5. It reads

Ṽtree
new~Feynman!524paS k0

k2D 2

, ~A2!

wherek05E12E18 . HereE1 andE18 give rise to time deriva-
tives in the pNRQED Lagrangian:

Lnew~Feynman!52E d3x1d3x2]0
2@c†c~ t,x1!#

3E dk

~2p!3 eik•x
1

k4 xc
†xc~ t,x2!

5E d3x1d3x2]0@c†c~ t,x1!#

3E dk

~2p!3 eik•x
1

k4 ]0@xc
†xc~ t,x2!#.

~A3!

We can get rid of these derivatives by using the equation
motion. Notice, however, that now potential terms enter

e

FIG. 5. Correction to theA0 propagator due to energy insertion
in the Feynman gauge.
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the equations of motion. Their explicit inclusion can
avoided in this case by using the continuity equation in
last equality of Eq.~A3!:

]r

]t
1“• j50, ~A4!

wherer5c†c and

j52
i

2m
@c†

“c2~“c†!c#. ~A5!

Equation~A2! can now be written as
.

01600
e Ṽtree
new~Feynman!51

pa

m2

~p22p82!2

k4 , ~A6!

which just cancels the extra contribution in Eq.~A1!. We
have then proved that the pNRQED Lagrangian written
the standard form~i.e., with no time derivatives! at O(ma4)
is exactly the same in the Coulomb and Feynman gau
Notice that it has been crucial to write the time derivatives
a symmetric fashion in order to use the continuity equati
The naive use of the on-shell conditio
k05p2/2m2p82/2m in Eq. ~A2! leads to incorrect results.
and
APPENDIX B: pNRQED LAGRANGIAN FOR THE UNEQUAL MASS CASE

Here we display the Lagrangian relevant for the calculation of the mass toO(ma5) for the unequal mass case~we assume
m1 ,m2@p@E!. The charge of each particle has opposite sign:

LpNRQED5E d3xd3XdtS†~x,X,t !H i ]02
p2

m12
1

p4

8m1
3 1

p4

8m2
32

P2

2M
2V~x,p,s1 ,s2!1ex•E~X,t !J S~x,X,t !

2E d3x
1

4
FmnFmn, ~B1!

where M5m11m2 , m125m1m2 /(m11m2), x and X, and p and P are the relative and center-of-mass coordinate
momentum, respectively. The potential now reads

V52
a

uxu
2

a

2m1m2

1

uxu S p21
1

x2 x•~x•p!pD1
d~3!~x!

m1m2
FpaS cD

~2!m1
21cD

~1!m2
2

2m1m2
22cF

2 D 1ds13dv

216pad2S m1
21m2

2

m1m2
D 1

a2

3
2

7a2

3
log m2G2

7a2

6pm1m2
reg

1

uxu3 1
d~3!~x!

m1m2
S2S pa

4

3
cF

222dvD
1

acF

m1m2

1

uxu3
L•S1

acS

2m1m2

1

uxu3
L•S s2m1

21s1m2
2

m1m2
D 1

acF
2

4m1m2

1

uxu3 S12~ x̂!, ~B2!

where

cD
~ i !511

a

p S 4

3
log

mi
2

m2D , ~B3!

and nowds anddv read~see@10#!

ds52
a2

m1
22m2

2 H m1
2S log

m2
2

m2 1
1

3D 2m2
2S log

m1
2

m2 1
1

3D J , ~B4!

dv5
a2

m1
22m2

2 m1m2 log
m1

2

m2
2 . ~B5!

The Lagrangian~B2! must be corrected if there are charged particles of massesmi , i 53,4..., similar or smaller than
mªmax$m1,m2%. Each particle of massmi such thatm*mi@m12a gives an extra contribution 1/mi

2 multiplying to d2 in Eq.
~B2!. Each particle of massm12a*mi@m12a

2 gives extra nontrivial contributions to the potential@25#.
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