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We discuss in detail potential NRQEPNRQED), a previously proposed effective field theory for ultrasoft
photons. The pNRQED Lagrangian for the equal mass case is presented, and it is shown that it correctly
reproduces the positronium spectrum at onoier®. The pNRQED Lagrangian for the unequal mass case is
also presented at the same order. Dimensional regularization is used thro§ie&H6-282198)06423-9

PACS numbgs): 11.10.St, 12.20.Ds, 12.39.Hg, 36.10.Dr

I. INTRODUCTION mally speaking, pPNRQED has two UV cutoffs; and A,
whereE< A ;<p is the cutoff for the energy of the fermions
Nonrelativistic QED(NRQED) [1] is becoming increas- and for the energy and momentum of the ultrasoft photons,
ingly popular for QED bound state calculatiofis2,3,4. It  whereagpp<A,<m is the cutoff for the relative momentum
has the advantage over traditional Bethe-Salpeter equatiors the fermion-antifermion system. In principle, we have
[5] that the nonrelativistic nature of the QED bound states iSsome freedom to choose the relative importance betwgen
explicit, whereas relativistic and radiative corrections can bgyng A,. We chooseA2/m<A ;, which guarantees that the
systematically incorporated by taking into account higher or;y/ penavior of the fermion propagators in pNRQED is that
ders in the Ih expansion and by calculating the matching ¢ ihe static ones.
coefficients at higher order ia, respectively. However, the : ; : ;
NRQED Lagrangian still contains two dynamical scales,ferﬁ]'?loigiadlspﬁ :t?rlgegf fé?]g]rg,i\lezQaig rg?grl: éi?;a;«n gpggrt
namely, the typical relative momentum in the bound sate and photons of energies of ordErand momentsp.! The

~mea and the bound state ener@~ mea?, which implies . - . L
that the terms in the Lagrangian do not have a unique sizé’.'\IRQED Lagrangian obtained is local in time but nonlocal

The leading size of each term is given by the next relevant space(i.e., it has .potentlal termsand contains ultr.a.soft
scalep (soft) (except for the time derivatiyeand rules have photons only_. Thg size _of each term becomes explicit once
been provided to estimate the subleading contributions dul'® Lagrangian is projected onto the one-electron—one-
to the scaleE (ultrasof [6]. Nevertheless, it would be help- POSitron subspace of the Fock space and written in terms of
ful for bound state calculations to have an effective field@ Wave function field. This is due to the fact that in the latter
theory (EFT) where each term in the Lagrangian had a well-representation the ultrasoft photon fields can be multipole
defined size. This EFT has proved to be quite elusive foexpanded about the center of mass. Moreover, the calcula-
some timg7,8,9. tions in pPNRQED are very close to those in nonrelativistic
In Ref. [10] we proposed potential NRQE[PNRQED  quantum mechanics.
as such an EFT and presented the form of its Lagrangian for The practical way in which we integrate out degrees of
positronium. In Ref[11] we worked out pNRQED for hy- freedom is by a matching procedure. We impose that two-
drogenlike atoms and reproduced the Lamb shift in a verfjermion Green functions and four-fermion Green functions
straightforward way. It is the aim of this paper to discuss(With an arbitrary number of ultrasoft photon legé
pNRQED for positronium in greater detail and to show thatNRQED be equal to those in pNRQED once both are ex-
it also allows one to reproduce the spectrum at orde®,  Panded about the external fermion energies arittasofy
where all regions of momenthard, soft, and ultrasgfton- photon energies and momenta. Dimensional regularization
tribute, very efficiently. We also illustrate how dimensional (DR) is used for both UV and IR divergences. Furthermore,
regularization helps in that. we use static propagators, and hence the matching can be
pNRQED describes fermion-antifermion pairs with rela-done to a given order in @& anda. This is justified because
tive momentum of ordep and energy of ordeE, and ultra-  the fermion energies we are integrating out in loops are of
soft photons with energy and momentum of or@erThis  orderma whereas the typical kinetic energy @&ma?).
should be compared with NRQCD, which describes degrees
of freedom(fermions and photonswvith energy and momen- =~

tum less than a certain cutoff such thate,p<u<m. For- 1Some author$12,13 like to distinguishpotential photons, i.e.,
photons withk®~ E andk~p, from softphotons, i.e., photons with
k°~p andk~p. This distinction is quite irrelevant in our formula-

*Email address: a.pineda@fz-juelich.de tion since bothpotential and soft photons are integrated out at the
TEmail address: soto@ecm.ub.es same time when matching NRQED to pNRQED.
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The procedure above is similar to the matching between
QED and NRQED as carried out in Ref40,14,19. In that
case scales-m are integrated out and the matching reduces
to calculations in QED, wheren is the only scale in the
integrals. Here, the scales which are integrated out~gre
and the matching reduces to calculations in NRQED wipere
is the only scale in the integrals. Hence, the potential terms
in pNRQED play a role analogous to the Wilson coefficients
in NRQED. Indeed, the former encode contributions due to
physics at the scalp much in the same way as the latter do
of physics at the scale. At each matching step the nonana-
lytic behavior in the scale which is integrated out becomes
explicit.

We organize the paper as follows. In Sec. Il we describe
the matching procedure between NRQED and pNRQED. In
Sec. Il we present the bound state calculation. Section IV is
devoted to the conclusions and future prospects. In Appendix
A the gauge independence is checked at ordef by cal-
culating the matching to this order in the Feynman gauge. In
Appendix B the pNRQED Lagrangian for the unequal mass
case is displayed.

g

AAAAAAA*

VV'VV'V}
—_ — =
Sl----9 E|-=--

—_
=
~

—_
4]
~—

U]

’:?><
=

FIG. 1. The nonzero relevant diagrams for the matching at the
tree level in the Coulomb gauge. The dashed and zigzag lines rep-
resent theA, andA fields, respectively, while the solid lines repre-

[l. MATCHING NRQED TO pNRQED sent the fermion and antifermion fields. The first diagram is the

. . . Coulomb potential. FohA, the open circle is the vertex proportional
The pieces of the NRQED Lagrangian which are relevant ¢p, the square tas (spin dependeitand the solid circle tal,

; 5
to the calculation of the bound state energyodma”) read (the vacuum polarization while for A the square is the vertex
proportional toce and the other vertex appears from the covariant

2 4 .
ENRQED: ¢T iDO+ D_ + ig +cpe O-_B derivative in the kinetic term. The last diagram is proportional{o
2m  8m 2m andd, . The symmetric diagrams are not displayed.
[V-E] . o-(DXE—-EXD) ) ) _
+cpe Wﬂcse 8m2 ¥ photon line the same rule applies but there is an extra sup-

pression ifn time derivatives act on this photon line. This is
ds . due to the fact that these time derivatives are only sensitive
t(Xc 8=~ — 2 YdxeXc to the typical energy. The extra suppression factor's
Recall also that any diagram may have subleading contribu-
o 1 + 1 oy, 92 2y tions which appear from the analytic expansion of the exter-
t g v ovxeoxe 7 Fu Rt oo FLDTFERY nal energy about zero. In the Coulomb gauge the diagrams
satisfying the above criteria are displayed in Figs. 1 and 2.
(2.1)  Then both tree-level and one-loop diagrams are required.
Notice also thatg, cp, andcg are needed at orderandd,
andd, at ordera?. All these Wilson coefficients are gauge
independent but depend on the renormalization scheme for
the UV divergences of NRQED. We shall use dimensional

where s is the Pauli spinor field that annihilates the fermion
and y. is the Pauli spinor field that annihilates the
antifermion? iD%=ig,—eA°, iD=iV +eA on the fermion

field. The bilinear Lagrangian fox. is equal to theys La- regularization with the modified minimal subtractioM$)

grangian with change— —e. . : " i
This can be seen as follows. We draw all possible dig.Scheme. In this scheme the Wilson coefficients of the bilin

grams of the two-fermion-irreducible four-fermion Green ear Ferms Were given ip14] and the ones for the four-
function, which cannot be disconnected by cutting a photorgermlon terms in{10,15. They read

line, such thas+r=<4, wheresis the number of 1 factors

in the diagram and the number of explici [6,10,11. This

rule can be easily justified if we take into account that the Ce=1+5—, (2.2
next relevant scale ip~ma and hence all % must be
compensated for byna until we reach dimensions of en-
ergy. For diagrams which can be disconnected by cutting a

2We use herey,=Cyx*, whereC is the charge conjugation ma-
trix, instead ofy as in Refs.[10,11 because it is more usual in Ce=1+ a
nonrelativistic systems. S '
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and pNRQED it is just the scheme we choose, and for the IR

divergences it is irrelevant as long as we use the same treat-
ment in both theories, since the IR behavior is the same. This
allows us to put integrals with no scale equal to zero and, as
we will see later on, reduces the matching to a calculation in

NRQED only.

Notice that we demand off-shell Green functions in
NRQED and pNRQED to be equal and not on-shell Green
functions as is customary in the matching from QED to
NRQED[1,14]. This is due to the fact that we are eventually
interested in bound states, and particles in a bound state are
typically off shell. The equations of motion of pNRQED
(with potential terms included or local field redefinitions,
may be consistently used later on to remove time derivatives
in higher order terms and write the pNRQED Lagrangian in

FIG. 2. The nonzero relevant diagrams for the matching at oné standard form, within the philosophy advocated in Ref.
loop in the Coulomb gauge. The dashed and zigzag lines represelt6] (see alsq17]). We have checked in Appendix A that
the A, andA fields, respectively, while the solid lines represent thethis procedure produces gauge-independent results at
fermion and antifermion. The interactions farare the ones which O(ma*).? In fact the same argument applies to the matching
appear from the covariant space derivatives in the kinetic termbetween QED and NRQED, which accordingly should also
while for A, they come from the covariant time derivative. The be carried out off shell. However, in that case, at lower or-

(b)

symmetric diagrams are not displayed. ders there is no difference between doing the matching on
shell and replacing derivatives by covariant derivatives, in
@ order to enforce gauge invariance, and doing the matching
dy= 607" off shell and consistently using the equations of motion or
local field redefinitions to get rid of time derivative terms
3ra 2a m? 23 T [14.18. . . . .
de=—— [1__ (Iog—2+ ——log 2+i = ] The remaining important ingredient to carry out the
2 3m ® 3 2 matching efficiently is the use of stafibeavy quark effec-

tive theory(HQET)] propagators for the fermions. This has
d=— Ta [1_ 2_“ (2—2+Iog o i f” been completely justified in the matching between QED and
v 2 9 2/ NRQED [14,15], since both energy and momentum in this
theory cannot exceed the same cutdffwhich is smaller
Hence our starting point is the Lagrangiéhl) with the  thanm. Hence the UV behavior of the fermion propagator in
Wilson coefficients2.2). We wish to integrate out fermions NRQED is always dominated by the energy. This fact is not
and photons of energy and momentg and photons of automatically implemented in dimensional regularization.
energy~E and momentum~p. Then the effective theory When dimensional regularization is used, the correct UV be-
we want to reach, namely, pNRQED, contains only ultrasofthavior of NRQED is only obtained when expanding about
photons(of energy and momentum-E) and fermions of  the static propagator.
energy~E and momentum~p or less. Since we integrate In pPNRQED we have a certain choice for the UV cutoffs
out photon momenta-p but keep fermion momenta of this for the fermion energy and momentum. We shall choose
order, pNRQED contains terms nonlocal in space, namelyA ,<p for the energy and ,<m for the momentum in such
potential terms. This is not a problem for a nonrelativisticy way thatA§/m<Al. The proper way to implement this
EFT. . . _ ~ condition in dimensional regularization is again by expand-
The practical way to obtain pPNRQED is by enforcing jng the fermion propagator in pNRQED about the static
two- and four-fermion Green functions with arbitrary ultra- propagator.
soft external photons to be equal to those of NRQED once Now we are in a position to prove that no pNRQED dia-

we expand about zero the energy in the external electron legfram containing a loop contributes to the matching calcula-
and the energy and momenta of the ultrasoft photon legsion.

This may produce IR divergences which are regulated in
dimensional regularization, in the same way as the UV di
vergences are. Since the IR behavior of NRQED and , here is il treedom in the choice of th
PNRQED is the same, these IR divergences will cancel ouf H‘t’_wevf_erl'dt freb's _Stt' zomed Tete om 'r:jt etc t‘_)'ce _Odt € V‘:javet
in the matching. The UV divergences of NRQED must be'"¢ton 1I€d, to be introduced fater on, cue to ime-Independen

. . — . unitary transformations which commute with the leading terms in
renormalized in theMS if we want to use the matching co-

. . L .2~ the pNRQED Lagrangian. Therefore, in general, it is not to be
efficients(2.2). We still have a choice in the renormalization expected that the standard forms of the pNRQED Lagrangian cal-

scheme of pNRQED. However, it is most advantageous tQjated with different gauges coincide, but only to be related by one
use agairMS. Indeed, in this scheme we can blindly M8  such unitary transformation. This explains, for instance, why the
for any divergence regardless of whether itis UV or IR in thepotential presented ifil9] is different from ours but leads to the
matching calculation. For the UV divergences of NRQED same physics.
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Consider first the two-fermion Green function with an ar-
bitrary number of ultrasoft legs. For potential terms to con-  LP"= —f A3y Bx i (1, X0) X2 (1, %) V(X,P, 01, 072)
tribute we need at least a four-fermion Green function and
hence we only have to care about ultrasoft photons. If we X Xc(t,X2) (t,Xq), 2.3
input a momentum~p in the fermion line, this momentum .
wherex=x,—X,, p=—iV, ands;=01/2, S,= 0»/2 act on

cannot flow out through any external ultrasoft photon line ] . ; L 2 .
g y P the fermion and antifermion, respectivelthe spin fermion

(by definition of ultrasoft Then it must flow through the : S : o

: ) L . ; . and antifermion indices are contracted with the potential in-
fermion line, which is a series of static propagators INSeN < which are not explicitly displa wd V(X.p,07,0,)
sible to the momentum flowing. Hence upon expandin ' plcttly dispiay P 01, 02

. . . ngay also be written as an expansion of the type
about external fermion energies and external energies an

momenta of the ultrasoft photons there is no scale in any V=VOyvD 4@ py@g... (2.9
integral and therefore any loop contribution vanishes. In fact,

exactly the same argumentation can be used for the NRQE@here (V(M)~ma". Our results are exact for the four first
calculation. Then we conclude that terms bilinear in fermiongerms of this expansion.

are exactly the same in NRQED and pNRQED. However, we \ye optain, from the tree-level diagrams of Fig(\ rep-
have to keep in mind that the lattéoy definition must be  resents the Fourier transform o,

understood as containing ultras@fS) photons only.

Consider next the four-fermion Green function in ~(a) 4o
pNRQED containing several potential terms but no US pho- Viree™ ~ K2 2.9
ton. Since no energy can flow through the potentials and the
static propagators are insensitive to the momentum, upon  _ b TaCp
expanding about the US external energy, the integrals over  Viee™ 7 (2.6)
internal energies have no scale. However, these integrals
have IR(pinch) singularities which are not regulated by stan- ~0 i2macs (pxk)-S
dard DR. We shall take the additional prescription of putting Viee= — - R 2.7
them to zero. Since the IR behavior of pNRQED and
NRQED is the same, the same kind of integrals appear in the 16mad
NRQED calculation. If we put them consistently to zero, we f/gg)e: — _22 (2.8
obtain the correct potential terms, which play a role similar m
to the Wilson coefficients in the matching between QED and ) )
NRQED. It is important to keep in mind that the Wilson e - 4ma [p° (p-k) 2.9
coefficients compensate for the different UV behavior of the ree m? \k?  k* ) '
effective theory(pNRQED with respect to that of the “fun-
damental” theoryNRQED). Hence they are not sensitive to <) idmracg (pXk)-S
the details of the IR behavior, which legitimates the prescrip-  Viee™ = 12 2 (2.10
tion above. Then any loop diagram in pPNRQED with no US
photons can be put to zero. This still holds if an arbitrary N A7 a2 s, ks, -k
number of US photon lines are included in the diagram. In- Vgrege: _2F ( — —22) (2.11
deed, any potential line in the diagram now may also contain m k

US momenta from the photon lines. These, however, can be
expanded about zero since they dhy definition much V= (ds+3d,)—2d,S?, (2.12
smaller than the momentum transfer in the potential. Hence
the integrals over US photon energies and momenta containhereS=s;+s,, and, for the one-loop diagrams of Fig. 2,
no scale(again upon expanding the US external energy in
the fermion static propagatgrand can also be put to zero. “a a? k? 8 5
In summary, we can directly identify the potential terms Vi loop= 2 | 109 W23 log 2+ 3
from a calculation in NRQED. We would like to stress again
the similarity in the procedure with the matching between ~ A2 2
QED and NRQED as carried out in Refd4,15. The po- Vi oo™ 52 (Iog —+2log 2—1). (2.14
tential terms in pNRQED play the role of Wilson coefficients K ’
in the matching procedure.
The four-fermion terms appearing in the pNRQED La-The ;, dependence of Figs. 2b, 2c is of IR origin and will
grangian typically have the forn eventually cancel with US contributions. However, the
dependence of Fig. 2a is of UV origin and cancels exactly
with the u dependence ofiy. Recall that there is an addi-
“In principle, Eq.(2.3) could also depend on the total momentum tional u dependence inp which will also cancel against US
P=—iVy, with X=(x;+X,)/2, or on ultrasoft photons, but these contributions. Upon Fourier transforming and putting to-
effects can be neglected to the accuracy we are working at. gether the above results we obtain

: (2.13
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v=VO+5sv, (2.19
where
o
VO=-5 (2.16
and
PV N o~ 262)+ dy+ 3d, ~ 16mady o T log 2
_—WM p +PX-(X-p)p + m2 ma(Cp—2Cg)+ds+3d,— 16ma 2+?_T og u
7a° 1 69(x) 2

1 act 1
4 o o ) F A
—2 regﬁg—{- —2— S ( 3 Ck 2dv + W Wg L-S(2cg+ 4C,:)+ W Wg Slz(x), (2.17

whereS,»(X) = (— - o5+ 30 - X0, X) and(see[18] for more details on the Fourier transform

1
I reg—g f (—ge *log k. (2.18
The pNRQED Lagrangian now reads
3 tlin0 D D* 1 v
LpNRQED= d X lﬂ iD +%+ 8m lp"'(Xc,e% e)_ 4 F,U,VFM
- f A%, 0% 4" (1, %) X& (8, X) V(X,P, 1, 02) Xt X0) (1t Xy), (2.19
|
where the photons are ultrasoft. mass. Furthermore, gauge invariance at any order in the

In order to make explicit the size of each term in Eq.multipole expansion can be made explicit by introducing
(2.19 it is convenient to project pNRQED to the one-
X1
exp{ie f A-dx)
X2

electron—one-position subspaghis can be easily done at
the Hamiltonian level This subspace is spanned by

5 ; Then, the gauge transformations of the above wave function

f A3, %0 (X1, X) T (X)X (X)[0), (220 fields are
X1, X, 1) = g(X1, 1) (X1, %2,0) g 1(Xp,1),

where|0) is the subspace of the Fock space containing zero (X%, 1) =00, DY 0%, 0 (2, 0)
electrons and positrons, but an arbitrary number of ultrasoft S(%,X,t)— S(x, X, 1). (2.23
photons.

Then the dynamics of the wave function field is describedye finally obtain
by the Lagrangian

®(X1,%p,1)=P S(x,X,t). (2.22

p°, P P
LpNRQED—f d3x d3X dt S'(x,X, t)[mo + 25 7m
LDNRQED:f a3, 030" (X1, %5,1)
V2 Vx V4 _ —V(X,p,01,02)+ex-E(X,t)}
X I070 am " 4m e)(lé'iAo(t,X) .
~A(L,X)V, XS(X,X,t)—f d3XZ FF*, (2.249
_2|e T_V(levalloz)

which is explicitly gauge invariant. Moreover, the size of

3 each term is unique and can be evaluated as follows. Each
X @(Xq,Xy,t) d x — F Y (2.21)

where we have made precise that the remaining photon fields’As expected for a chargeless particle, the covariant derivatives
are ultrasoft by multipole expanding them about the center ofor P are the ordinary ones.
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relative momentunw, and inverse relative coordinae| !
have a size~-mea. Each US photon field, derivatives acting
on it, the time derivative, and the center-of-mass momentum
dx (in the rest frame, when entering in recoil corrections due
to the virtual emission of US photonen the wave function
field have a size~ma?. Formula(2.23 has already been
presented if10] (except for a numerical factor in the poten-
tial which was left arbitrary We shall use it to calculate the
spectrum aD(mea®) in the next section. wheng—E,, whereE, is the energy of the leading Hamil-
The gauge independence of the matching calculation iggnian
checked aD(ma*) in Appendix A. The pNRQED Lagrang-

FIG. 3. The thick line and wavy lines are the positronium and
the transverse ultrasoft photon propagators, respectively.

ian for the unequal mass case can be built with no further A V2 o«
difficulty. The result is displayed in Appendix B. ho=— 17~ X 3.2
lIl. BOUND STATE CALCULATION IN pNRQED The integral oveiX fixes the center-of-mass momentito

] _ zero. We write
In order to find the corrections to the bound state energy

of a state with principal quantum numbemve consider the A+ A, An+ A, A, 1
Green function(we will follow a procedure and notation 1(4.X)=c—E—7F ) “E. To—E %Eng_E-
> = q—(E,+dE,) a-E, aq-E, Ta-E,
similar to Ref.[11]) (3.3
— 0 iqx° + The contribution tadE,, coming from the correction to the
1(g,x) '_J dx’dX e H(T{e(0) e’ (x.X,0}) (3.1 potential and the kinetic energy read

v ,  ma? 3 1
En=(nlifovinl))=—g=1 ~ 3o t e

2a 8 . - 5 1oq 2 ., i -1\ 7a1-4, 1
T3and| 09y "+ 09__ °9 +__ Ak 20 T3 i@+
14 5|0651 3a' 32 (1 6|0) 531
3 +ﬁ(_§_2'092” I(2I+1)(I+1)n3CJ']' 349
SKE 1 IVl ~ ma* 3(1+1/2)—4n 3
n=" g (MIVAND =T e (33
where
( |+1 o .
- 231-1)+— (41—-1)|, j=I—-1,
21—1 T
o .
Cj1=19 —2-—, =1 (3.6)
- j=1+1.
e 2(31+4)+ (4|+5)) j

There is also a contribution from a virtual exchange of an ultrasoft photon corresponding to the diagram in Fig. 3, which
has already been evaluated in dimensional regularization for the hydrogenlikg Htbthere the calculation is identical but
using the reduced magsdNotice that theMS scheme has to be used in the calculation. SincdZE84) is gauge invariant, we
can use any gauge to calculate this contribution. Still the Coulomb gauge continues to be advantageous, since in gyis gauge
can only contribute to tadpoles which can be safely put to zero in dimensional regularization. This contribution reads

8 «a p 2 s 5
usp __ 2% Ld _ ok 2
6 E, 372 <n m‘m> (En Em)<log E.—E.] log 2+ 6
ma® (En)?> 5 < )2
=733 (@0['09 122| -3 +(1 di0)log nl ), (3.7
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where the last equation implicitly definég, ;). Once we add all these contributions the final result reads

ma* 4 11
_ sV K USE _ _
OEn, ;=6 Ent+ 6 E+677E, 3 [ n3(2l+1)+8n4
2a do| g, Zlog n+8 log R(n.l)— 14 log 2 o7 é 1, n-d
37 03 | 2logat7logn+8logRnl)—14log 2= 75=7| 2, 1+ 5~
a1 oo 7 1 14800 [, S 82
3r m |P9RMDY ey T3 e [T 7| T g2l

(3.9

(1= 0i0) 01 c
[(21+1)(1+1)nd “H! [

where IogR(n,I)=Iog(2<En,,>/ma2) is called the Bethe loga- QED to NRQED at two loops. The relativistic correction to
rithm. For theO(mea?®) contribution we find agreement with the kinetic energyO(1/m°), in NRQED should be kept.
Ref. [19] for the spin-independent piece and for thgdy,  TermsO(1/m*) in the NRQED Lagrangian would now con-
piece, while for the (* 8,0) 55, piece we find agreement tribute to the potential but they do so only at the tree level.
with Ref. [3] (this last piece could also be obtained from Hence their Wilson coefficients are only necessary at the tree

results of Ref[19]). level. Those for the bilinear terms may be obtained @i
We can also easily obtain the full decay width at lowestwhereas those for the four-fermion operators froai].
order. It reads Terms O(1/m®) also contribute at the tree level and may
contribute at one loop. In either case the Wilson coefficients

ma® 16
Th=srs dl-8)+ 2 —a

m<n

p 2 are only needed at the tree level which are kngqa4]. In
noim)| (Ea=Em).  addition O(1/m?) terms in the NRQED Lagrangian would
(3.9 now contribute to the potential at one loop a¢l/m) terms
at two loops. It is also easy to see by inspecting the next
order terms of the multipole expansion in the pNRQED La-
IV. DISCUSSION AND CONCLUSIONS grangian that, due to angular momentum conservation, no

We have seen that pNRQED correctly reproduces the pogontribution of US photons arises @(ma®). There would
itronium spectrum a©(ma®). This is a nontrivial check of ©Only be a new qualitative feature, namely, that time deriva-
the ideas behind this EFT since at this order all regions oflves multiplying potential terms would arisgor instance,
momenta(hard, soft, and ultrasofcontribute to the energy. from the expansion of the energy in the one-transverse-

We would like to emphasize that the procedure we proPPhoton exchange at the tree levélhis time derivatives can
pose for higher order corrections to the positronigamd D€ disposed of by using the equations of motion in pNRQED
other QED bound statgss totally systematic. It uses two (nOw with potential terms includedas has been done in
EFTs, namely, NRQED and pNRQED. Both the matchingAPPendix A, according to the philosophy of R¢L6] (see
from QED to NRQED and from NRQED to pNRQED can @lso[17]). This calculation would produce an independent
be done order by order inVand a, and static propagators check of the existing results obtained very recently in Ref.
for the fermions can be used. This together with the use of22l. )
dimensional regularization simplifies a lot the calculations. It is important to be able to calculate systematically
The actual bound state calculation is done at the level ofigher orders in QED as a test of the standard model in a
PNRQED for the wave function field and is very similar to a S€ctor where QCD does not play any relevant role. Any sig-
standard quantum mechanical calculation, the only differna@l of new physics here should be much clearer than in the
ence being that the wave function field couples to US phohadronic sector as, for instance, in orthopositronium decay
tons in a field theoretical fashion. where there seem to be some difficulties in explaining the

We believe that the clarity and simplicity of this formal- data(see[23] and references thergif _ .
ism will allow one to carry out higher order bound state Finally, we would Ilkg to stress that the idea of separating
calculations in QED very efficiently. In order to illustrate the calculation of the binding enerdypr any other observ-
this point let us pose ourselves the calculation of the positro@P!® of a nonrelativistic bound state system in three stages,
nium spectrum aD(me®) and see the extra calculations Namely, (i) integrating out the hard scali) integrating out
required in order to obtain the pNRQED Lagrangian at thisthe soft scale, andiii) calculating the bound state energy
order. Clearly all contributions that we obtain @(ma®)
which are multiplied by a Wilson coefficient will give a con-
tribution at O(ma®) by just calculating the Wilson coeffi-  0nly one experimeni24] seems to be compatible with theoreti-
cient to next order ina. This requires the matching from cal predictions.
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p Ei, p’

>

x~

\.O

E
____X_..__-

FIG. 4. The nonzero relevant diagrams for the matching at one > >
loop in the Feynman gauge settiri§yto zero and with no
insertions.

FIG. 5. Correction to thé\, propagator due to energy insertions
in the Feynman gauge.

when only ultrasoft degrees of freedom are present, is neither . 3 .. . .
confined to positronium nor to the QED realm. Indeed, wedlams of Fig. 40(ma)], (ii) the same diagrams with a

have already shown in Refl1] that it can be applied to p*/2m ir_lsertion in _either fermionic Iin@_O(mc_y“)], (iii)_the
hydrogenlike atoms, and it should be easy to work outSame diagrams with external energy insertions arising from

PNRQED for muonium, dimuonium, and other two-body the expansion of the propagators about zero external energy

QED bound states. In particular, pionium, a QED bound[o(m“4)]’ and(iv)4two-|oop diagrams involving, propa-
state, which, however, decays strongly, has received consi@ators only O(ma”)].

erable attention lately25]. Its decay width turns out to be Itis easy to see th"’}t di?‘gr?‘rﬁ?‘ cancel each other. Dia-
proportional to the pion scattering length, which is an essengrams(") and (i) vanish individually, essentially because

tial input to fix the parameters of the chiral Lagrangj2s). t_heyhhave lan gddb number of static rl)r_opagato_rrsﬁ Diagrams
In order to extract the scattering length neatly from the ex/lV) have already been seen to cancel in R28]. Then we

perimental data a good control on the electromagnetic cord® left W't,h the se}me.dlagrams we he.ld n the C;’”'Omb
rections is necessary. pNRQED for pionium can definitelyd2ugelall diagrams in Fig. 1, exceyit) which is O(ma”)],
help in that goal. Beyond QED, heavy quarkonium system&Ut OW they must be calculated in the Feynman gauge.
also form nonrelativistic bound states. We have already pro- " fact all the diagrams give the same result except Figs.
posed that potentiall NRQCOPNRQCD, an EFT for 1aand le. The latter now reads

NRQCD analogous to pPNRQED for NRQED, should be use- B ra (pP—p'2)2

ful to study these system{40]. The techniques presented V{&(Feynman= V.2 Coulomh — — B

here may also help in the understanding of nucleon-nucleon m k
bound states from the heavy baryon chiral Lagrangian, which

have also received quite some attention during the last yeal

(A1)

Bigure 1a now receives a contribution due to the expansion

[27]. of the external energies about zero in thg propagator,
which we depicted in Fig. 5. It reads
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under contract EMRX-CT96-0008. wherek”=E;—E; . HereE; andE; give rise to time deriva

tives in the pNRQED Lagrangian:

APPENDIX A:  O(ma®*) MATCHING IN THE FEYNMAN

GAUGE LM% Feynmani= — f A3, 0302 ¢ (1, %0 ]

In this appendix we check that the pNRQED Lagrangian
is gauge independent &(ma?) once it is written in the
standard form. By the standard form we understand that all
time derivatives in higher order terms are disposed of by the
use of equations of motion or, alternatively, by local field
redefinitions[14,16 (see alsd17]). In order to do so, the
matching calculation is redone in the Feynman gauge. =J d3x, A3, d0[ T (1, x1)]

The main difference between the Coulomb gauge and the
Feynman gauge, as far as the matching of the four-point
Green function is concerned, is that, in the former, loop dia- Xf dk
grams involvingA, only can be set to zero in NRQED be- (2m)3 €
cause there is no scale for integration over the energy,
whereas in the latter they must be kept because the poles of (A3)
the A, propagator now relate energy and momentum.

The counting in Sec. Il implies now that the following We can get rid of these derivatives by using the equations of
extra diagrams must be consideredi) the one-loop dia- motion. Notice, however, that now potential terms enter in

ik-x

dk 1,
XJ (2—77)39 FXcXc(t-XZ)

ik-x

1 T
P dol XeXc(t,X2) ].
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the equations of motion. Their explicit inclusion can be - ma (p?—p'?)?
avoided in this case by using the continuity equation in the Viree FEynman= + v (AB)

last equality of Eq(A3):

ap . N G

E+V~j=0, (A4)  which just cancels the extra contribution in Eé\1). We
have then proved that the pNRQED Lagrangian written in

wherep= ¢y and the standard forndi.e., with no time derivativeésat O(ma*)

is exactly the same in the Coulomb and Feynman gauges.

Notice that it has been crucial to write the time derivatives in

] [
i= = 5= L'Vy=(Vhyl. (AS) & symmetric fashion in order to use the continuity equation.
The naive use of the on-shell condition
Equation(A2) can now be written as k°=p?/2m—p’?/2m in Eq. (A2) leads to incorrect results.

APPENDIX B: pNRQED LAGRANGIAN FOR THE UNEQUAL MASS CASE

Here we display the Lagrangian relevant for the calculation of the ma®$értax®) for the unequal mass caéege assume
m,,m,>p>E). The charge of each particle has opposite sign:

p2 p4 p4 P2
— 3vA3 t H
LpNRQED_f d Xd thS (X,X,t)(“?o_ﬂ_lz'f' 8mi+ Smg_ oM V(X,p,01,02)+eX-E(X,t)]S(X,X,t)
d3 1 FE E~®Y B1
- X Z nv , ( )

where M=m;+m,, u,=mim,/(m;+m,), x and X, and p and P are the relative and center-of-mass coordinate and
momentum, respectively. The potential now reads

53 (x)

m;m;

o o 1

Ve ———
Ix| 2mym, |x|

+ —2c2

(2) a2 | (1) a2
Cp m1+ Cp'mj;
( +dg+3d,

2m;m,

, 1
P+ 2 X (x-p)p

167ad i+ M3 +a2 7C(2| 2 7a? 1 +5<3)(X) 5 4, o
T Tmm, |3 3 P9 wamm, P mym, T T3 A
2 2 2
C(CF 1 CYCS 1 Szml‘l‘SlmZ aCF 1 R
——+—=L-S+t—+—>L- o
m;m, [x[* LS 2mym, |x[3 ( m;m, mym, [P S1A(%), (B2)
where
(h_14 a4l | miz s
TR 0w) (83
and nowdg andd, read(see[10])
o= o? 2(| m§+1 o m§+ y
S mi—-m; M 108 273/~ Ma\l0g 2+ 3] (B4)
o? m3

The Lagrangian(B2) must be corrected if there are charged particles of masses =3,4..., similar or smaller than
m:=maxXm, ,my}. Each particle of mass; such thatm=m;> w1, gives an extra contribution m/,z multiplying to d, in Eq.
(B2). Each particle of masg,a=m;> u,a? gives extra nontrivial contributions to the potentiab).
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