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Worldline approach to forward and fixed angle fermion-fermion scattering
in Yang-Mills theories at high energies

A. I. Karanikas and C. N. Ktorides
University of Athens, Department of Physics, Nuclear and Particle Physics Section, Panepistimiopolis, GR-15771 Athens, Gr
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Worldline techniques are employed to study the general behavior of the fermion-fermion collision amplitude
at very high energies in a non-Abelian gauge field theory for the forward and fixed angle scattering cases. A
central objective of this work is to demonstrate the simplicity by which the worldline methodology isolates that
sector of the full theory which carries the soft physics, relevant to each process. Anomalous dimensions
pertaining to a given soft sector are identified and subsequently used to facilitate the renormalization group
running of the respective four point functions. Gluon Reggeization is achieved for forward, while Sudakov
behavior is established for fixed angle scattering.@S0556-2821~98!03523-1#

PACS number~s!: 11.80.Fv, 11.10.Jj, 12.38.Cy
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I. INTRODUCTION

The theoretical confrontation of collision experiments
high energies calls for methodologies that have an esse
dependence on the kinematics of the process. Fixing
ideas on investigations addressing themselves to hadr
structure—even though references to QED, whenever
evant, will also be made in this work—one of the key issu
involved concerns the interplay between the~invariant! cen-
ter of mass energyAs, on the one hand, and the~invariant!
momentum transferA2t, on the other. Asymptotic regime
corresponding to the cases~a! utu large 2t/2pq, p proton
andq photon four-momentum, fixed~Bjorken limit! and~b! s
large -t fixed ~Regge limit! have come under extensive th
oretical scrutiny, especially in connection with deep inelas
scattering~DIS! processes.

Given that momentum transfer defines the resolution
which the short distance structure of a hadron~nucleon! is
being probed, the Bjorken limit has naturally taken histori
precedence in both the experimental and the theoretical fr
More recently, the Regge kinematical regime has been
ceiving wide attention in view of the ongoing experiments
the DESYep collider HERA. When the emphasis on asym
totics shifts tos, it is the hadronic profile imprinted onto th
plane transverse to the direction of the collision that for
the basis of theoretical interest. In a perturbative cont
which one readily adopts by taking2t@LQCD

2 , the emerg-
ing picture is that of a high density distribution of parto
across the surface perpendicular to the motion, each carr
a small fractionx(!1) of the hadron momentum. In such
0556-2821/98/59~1!/016003~14!/$15.00 59 0160
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context the dynamics pertaining to the process is studie
the two-dimensional transverse plane where, once again,
mentum transfer facilitates the probing of the hadron. T
situation just described fits exactly into an eikonal mode
description wherein the no impulse approximation forces
momentum of the exchanged quanta to have~appreciably!
nonvanishing components only in the transverse directio

The most systematic quantitative considerations, referr
to the qualitative account given above in connection with
s-t interplay, have been made, within the framework of p
turbation theory, by Cheng and Wu@1# for both Abelian and
non-Abelian gauge systems with spin-1/2 matter fields. S
cial emphasis, in the work of these authors, was placed
the issue of unitarity which calls for separate attention to
s and thet channel, respectively. The so called Cheng-W
towers, in QED, which stretch along thet ~vertical! direction
present, upon cutting, a fragmented profile of the elect
~positron!, see Fig. 1~a!. In non-Abelian theories, on the
other hand, Cheng and Wu discover Reggeization of
gluon exchange among the colliding particles. The cor
sponding dominant towers that unfold along thet channel are
formed by the exchange of gluons between Reggeons,
Fig. 1~b!.

In addition to the Bjorken and Regge limits a third situ
tion which presents interest, all of its own, is defined by t
specifications, utu→` at fixed ratios/t. We shall hence-
forth refer to it as fixed angle kinematical regime, implyin
that the angle is fairly wide and that the collision energy
very large. With respect to DIS we expect this case to
relevant in semi-inclusive processes, when the observed
n

-
n
d
le
ed
FIG. 1. ~a! A Cheng-Wu tower entering the
~forward! fermion-fermion scattering process i
QED. The unitarity cut~dashed line! reveals a
fragmented profile of an electron~positron!. ~b!
Depiction of a forward, high-energy fermion
fermion scattering process in a non-Abelia
gauge field theory. Gluons linking the scattere
particles Reggeize while the fragmented profi
of the latter is presented by gluons exchang
between Reggeons.
©1998 The American Physical Society03-1
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ticle in the final state emerges at an angle with respect to
~virtual! photon-nucleon direction.

Having said the above let us define the bounds of
present work by specifying that what we intend to pursue
the problem of the non-Abelian scattering among fundam
tal spin-1/2 fields, cf. isolated quarks, in the Regge and fi
angle kinematical regimes. Our main objective is to sh
how the worldline casting of field systems, which we ha
been systematically pursuing in recent years@2–6#, leads to
efficient and straightforward methods of calculation, cons
erably simpler than corresponding procedures develo
within the Feynman diagrammatic description of QCD. W
place particular significance on the issue of factorization
tween soft and hard physics entering a given process o
terest which, next to confinement, is the most important
pect of QCD applications—certainly the one that lends its
to present day capabilities in coping with the theory.

It becomes obvious that, in this work, we shall neith
venture into the domain of~exclusive! hadron-hadron scat
tering, where phenomenologically based factorization iss
@7–10# involving hadronic wave functions@11,12# become
essential, nor into DIS matters where structure functions
evolution equations@13,14# assume primary role. Clearly
such undertakings pose ultimate goals of pursuit and se
rections for future work. Our main concern, presently, is
identification ofglobal behaviors—as opposed to investig
tions of structure—underlying each of the amplitudes we
interested in, i.e., what one naturally associates with the
physics.

The basic advantage of the worldline casting of a theo
such as QCD, is the spacetime setting that underlines
scheme as a whole@15–17,2,3#. This facilitates consider-
ations which, being much closer to intuitive, geometrical p
tures, as opposed to what one can associate with Feyn
diagrams, lead to efficient computational procedures@16–
18,3–6#. Considerations of similar nature have already be
evidenced in the work of several authors in connection w
the study of Wilson loops@19–23# which, after all, corre-
spond to ~Euclidean! ‘‘worldline’’ contours of infinitely
heavy matter fields. The difference, at a foundational leve
that in our case Wilson loops or lines enter as natural ing
dients of the field theoretical description of the systemper
se, see, e.g.,@4#, and not as part of an operator-based form
ism, see, e.g.,@24,25#. A practical consequence of this occu
rence is our ability to deal with Wilson line operators
finite length. As shown in Ref.@6#, manipulations withopen
Wilson lines~of finite extent! in worldline formalism when
applied to forward QED processes are naturally associ
with off mass shell eikonals. We intend to capitalize on t
fact in the present paper using it to achieve infrared regu
ized expressions by going off mass shell.

Renormalization issues will also play a central role in o
subsequent analysis. As already alluded to above, our m
preoccupation is to isolate a sector of the full Yang-Mi
field system wherein the active degrees of freedom are
soft ones. Even within such a subsector, the disparity
tween its upper momentum cutoff and the infrared one1 gives
rise to anomalous dimensions, having appropriate interpr
tions. Our first illustration of the situation in hand will b
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presented in connection with the forward amplitude, in t
s→`, t fixed kinematical region. An immediate applicatio
of the resulting structure will be the establishment, in t
leading log approximation~LLA !, of the Reggeization of
non-Abelian gauge fields exchanged among the colliding
mions. This will be readily accomplished via a renormaliz
tion group running within the soft subtheory, which emplo
the abovementioned anomalous dimensions@26#.

A more demanding task is posed by the fixed angle s
tering process. The bulk of our efforts in this case will fa
upon factorization issues which become more compelling
comparison to the previous~Regge! one, due to the presenc
of a hard momentum scale. The idea is to first identify t
relevant anomalous dimensions in the, factorized, soft se
and then proceed to derive the expression for the whole
plitude, in the LLA, exploiting its invariance with respect t
the scale which separates soft from hard components. A
turns out, the end result of this analysis is the emergenc
a Sudakov@27,28# suppression factor which dampens t
four-point process.

The particulars of our worldline casting of field system
have been extensively discussed in several papers@2–6#, so
the interested reader should refer to these sources, espe
Ref. @3#. Suffice it to say that such a casting amoun
to a reformulation *Dc̄(x)Dc(x)eS[ c̄(x),c(x),Am(x)]

•••

→*Dx(t)Dp(t)eS$x(t),p(t),Am[x(t)] %
•••, taking us from a

functional to a path integral description of the system. N
that the above transcription pertains to the fermionic sec
of the gauge field theory which registers via quadratic ter
in the action. Accordingly, nothing is lost as one carries o
the Gaussian-Grassmannian integrations over the co
sponding fields. Functional integration with respect to t
gauge fields remains to be carried out and it is within t
context that the dynamics operating in the system reve
itself.

The organization of our paper is straightforward. In S
II we deal with Regge limit behavior, while in Sec. III w
study the fixed angle kinematical regime for~isolated!
fermion-fermion scattering in a non-Abelian gauge field s
tem.~The extraction of two expressions entering the soft p
of the fixed angle amplitude is traced in an appendix.! For
the convenience of the reader each section is divided
subsections, addressing respective issues in a self-conta
manner. A final, brief, section is devoted to conclusions a
outlook.

II. NON-ABELIAN SCATTERING AMPLITUDE
AT REGGE ASYMPTOTICS

In this section we shall consider the scattering of tw
spin-1/2 particles belonging to the fundamental represe

1It is important to distinguish between what one terms ‘‘soft’’ an
‘‘infrared’’: The first characterization pertains toobservablede-
grees of freedom while the second refers to unobservable o
which presumably reside in the ‘‘vacuum’’ state.
3-2
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tion of a given non-Abelian gauge, SU(N), group in the limit
s→`, utu(@LQCD

2 ) fixed. As already stated, we shall em
ploy a worldline mode of description for the process in t
context of which the eikonal approximation acquires a sha
geometrically based, interpretation. Our efforts will addre
the amplitude directly. Special emphasis will be placed
our ability to control IR divergencies by going off-she
whereupon one deals with open Wilson line operators.2 A
renormalization group running which leads to glu
Reggeization will be carried out, while some specific
marks pertinent to QED will be made in the end.

A. Four-point function in worldline formalism

Working in Euclidean space we introduce the four-po
function

d4

dh̄ i
f~x1!dh̄ j

f~x2!dh i 8
f

~y1!dh j 8
f

~y2!
ln Z~ h̄,h!u h̄5h50

5M~x1 ,x2 ;y1 ,y2! j j 8
i i 8 2M~x1 ,x2 ;y2 ,y1! j i 8

i j 8 , ~1!

whereZ(h̄,h) is the partition function for the non-Abelia
gauge field theory with spin-1/2 matter fields whose sour
areh̄, h, while f is a flavor andi , j . . . , aregroup represen-
tation indices. The two connected four-point amplitudes
the right-hand side are related via a particle exchange in
final state. The second of the two terms, however, gives l
contribution to the forward direction scattering proce
which presently interests us, so its presence will be igno
for the rest of this section.

The expression for the amplitude in worldline formalis
is

M j j 8
i i 8 5 (

Cx1 ,x2

I
(

Cx2 ,y2

II
I @ ẋI #I @ ẋII #

3K P expF igE
0

T1
dt ẋI~t!A@xI~t!#G

i i 8

3P expF igE
0

T2
dt ẋII ~t!A@xII ~t!#G

j j 8
L

A

conn

, ~2!

where

(
Cx,y

I
I @ ẋ#[E

0

`

dTE
x~T!5y

x~0!5x Dx~t!E Dp~t!

3P expF2E
0

T

dt@ ip~t!g1mf #G
3expF i E

0

T

dt p~t!ẋ~t!G . ~3!

2By contrast, the on mass-shell alternative, which calls for
explicit gluon mass as IR regulator, corresponds to the employm
of Wilson loop operators.
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Notice that the spin-1/2 sector of the theory enters
expressions through one-dimensional geometrical conto
~Euclidean ‘‘worldlines’’!, while all the dynamics is con-
tained in the expectation valueŝ •••&A

conn5^•••&A

2^•••&A^•••&A of Wilson line operators.3

The spacetime setting of the worldline approach affo
us to designate pointsz1 andz2 , on the respective contour
xI(t) and xII (t), of closest approach. SettingxI(s1)
[z1 , xII (s2)[z2 and using the identity
*0

T(ds/T)*d4zd@x(s)2z#51 we write

M j j 8
i i 8 5 (

Cx1 ,y1

I
(

Cx2 ,y2

II
I @ ẋI #I @ ẋII #E

0

T1ds1

T1
E

0

T2ds2

T2

3E d4z1d@xI~s1!2z1#E d4z2d@xII ~s2!2z2#

3E~CI ,CII ;z1 ,z2! j j 8
i i 8 , ~4!

where4

E~CI ,CII ;z1 ,z2! j j 8
i i 8

5K P expF igE
0

s1
dt ẋI~t!AS z12E

t

s1
ẋI D

1 igE
s1

T1
dt ẋIAS z11E

s1

T1
ẋI D G

i i 8

P expF igE
0

s2
dt ẋII

3AS z22E
t

s2
ẋII D 1 igE

s2

T2
dt ẋII

3AS z21E
s2

T2
ẋII D G

j j 8
L

A

conn

. ~5!

The above battery of expressions contains the basic
malism of the worldline approach to non-Abelian gauge s
tems with spin-1/2 matter fields pertaining to the four-po
process. Our adjustments, from hereon, will refer to the p
ticular situations, i.e., Regge and fixed angle kinematics
intend to study in this and the next section, respectively.

B. Eikonal approximation in the worldline formalism

Our main applications of the worldline scheme have a
dressed themselves to the issue of isolating a subsector
given microscopic theory which can be characterized
‘‘soft.’’ By the latter term we mean a restriction to the stud
of the physics which is active in the field theory below

n
nt

3We denote byA the gauge field expanded in the Lie algebr
Also, our compressed notation implies that an expectation valu
the gauge field sector includes gauge fixing terms, ghost integra
and, in the generic case, contribution from the Dirac determina

4Notice the notational shortcut:*s
Tdt ẋ(t)→*s

Tẋ inside the argu-
ments of theA’s.
3-3
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given scaleL̃. Clearly, the full microscopic theory contain
degrees of freedom associated with higher frequencies.
strategy, however, is to incorporate them into the definit

of the physical quantities entering the theory at scaleL̃ ~bare
values!. For the purposes of this section the aforemention
scale could correspond either to physical mass of the ma
field quanta5 ~on-mass-shell situation! or to an off-shell mass
value.

The beauty of the worldline casting of the field system
that it effects the isolation of the ‘‘soft’’ subsector in a mo
efficient and straightforward manner: One instructs the p
integral to take into consideration only those paths that
straight lines almost everywhere~allowing, therefore, for the
presence of cusps! and sets the Dirac determinant to unity.
physical terms the above specifications imply that ma
fields have been dressed to the point that the live, in
considered subsector of the full theory, gauge field
changes can neither derail them from their propagation p
nor create virtual pairs from the vacuum. Any derailme
occurs on a sudden impulse basis and corresponds to
presence of cusps on the propagation contour.

Now, the ‘‘soft’’ subsector has its own UV and IR do
mains. The latter presumably coincides with that of the f
theory, while the former provides anomalous dimensio
which induce renormalization group running of physic
quantities. Renormalization factors in the subtheory are
clusively associated with the~almost everywhere! straight
line configurations and depend solely on the number of cu
that a given contour, relevant to the situation being stud
has. In particular, a~single! straight line of propagation from
an initial to a final space-time point signifies negligible m
mentum transfer to the matter particle. In such a case a w
function renormalization factor is all that is found to be a
sociated with the contour. A cusp, on the other hand, imp
a transfer of momentum to the propagating matter part
which occurs on a sudden impulse basis. One is then fa
with the task to renormalize the vertex that forms at
derailment point.

The above general comments, offered as a way to pro
a first feeling concerning renormalization aspects of the s
theory which has been isolated by our aforementioned st
lations, will receive quantitative treatment throughout o
analysis. For the moment, let us consider the case of a f
point process involving two straight line pathsLI and LII

characterized by four-velocitiesu1(5 ẋI) and u2(5 ẋII ), re-
spectively. Let the closest point of approach beuzu(5uz1
2z2u),s, where s represents the~finite! length of the
worldline paths and is of the order of the inverse off-ma
shell momentum scale. The exchanged gauge field quant
assumed to be too soft to derail the two matter partic
propagating alongLI andLII , in any appreciable way. Thi
situation is precisely what one encounters when study

5We restrict ourselves to a single physical mass parametem.
Adjustments pertaining to different masses could be made at
expense of burdening our analysis with extra formalism that wo
detract from our main objectives.
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high-energy forward scattering in the eikonal approximat
and is depicted in Fig. 2~a!. We have already considered th
applicability of this scheme to QED as well as a linear v
sion of quantum gravity@6#. As already stated our concern
in this paper, pertains to non-Abelian gauge systems~QCD!.

In the eikonal frame of description, as specified abo
Eq. ~5! reads~we setuzu5z for economy!

E~LI ,LII ;z! j j 8
i i 8 5K P expF igE

2s

1s

dt u1A~tu1!G
i i 8

3P expF igE
2s

1s

dt u2A~z1tu2!G
j j 8
L

A

conn

.

~6!

The above expression furnishes, in the worldline scheme,
dynamical factor which enters the amplitude, cf. Eq.~4!, and
will serve as the central piece of attention in our subsequ
analysis.

C. Off mass shell IR regularization and renormalization issues

It is clear that the quantity given by Eq.~6! is UV safe6 as
long as 1/z,`, whereas it is protected from IR singularitie
if s,`. The latter specification corresponds to an off ma
shell description of the matter particle as the finite length
its propagation contour cuts off all gauge field modes w
momentum less than 1/s which participate in its full, on
mass shell description.

We shall proceed to investigate the behavior of the

namical factor Ej j 8
i i 8 by controlling the IR divergencies

through line contours of finite length and, following Ko
rchemsky@26#, consider UV implications asz→0. The rel-
evant singularity is designated as ‘‘cross singularity’’ since
arises at a point where the two worldlines cross each ot
Employing dimensional regularization for controlling th
cross UV divergence, a mass scalem is introduced which,
for finite znow, implicates a renormalization group runnin
up to the scale 1/z. Accordingly, our primary task is to de
termine the anomalous dimensions which will enter t
renormalization group equation.

he
d 6We are referring strictly to exchangesbetweenthe two lines
~connected four-point function!.

FIG. 2. ~a! Worldline depiction of forward elastic scatterin
between spin-1/2 matter particles. Closest distance of approach~im-
pact parameter! is z. ~b! Double cusped configuration which mixe
with the four-point function associated with the forward scatter
process, depicted in~a!, under renormalization group running.
3-4
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Given the presence of path ordered exponentials, ente
on account of the non-Abelian setting, our only option is
proceed perturbatively. We write

Ej j 8
i i 8 5~ ig !2t i i 8

a t j j 8
a E

2s

1s

dtE
2s

1s

dt8

3u1u2D~ uu1t2u2t8u!1O~g4!, ~7!

where, employing the Feynman gauge, one has

D~ uxu!5m42DE dDk

~2p!D
e2 ik•x

1

k2
5

m42D

4pD/2
GS D

2
21D 1

uxuD22
.

~8!

We easily determine that

E
2s

1s

dtE
2s

1s

dt8u1u2D~ uu1t2u2t8u!

5
1

4p2S m2

l̃2
p D e

1

2e
f 422e~w!, ~9!

wherew[u1u2 , l̃[1/s, e542D(.0), and

f 422e54wFApGS 1

2
2e D ~12w!e21/2

2
1

2
~11w!eFS 1,12e;

3

2
2e;

12w

2 D
2

1

2
~12w!eFS 1,12e;

3

2
2e;

11w

2 D G . ~10!

Settingw5cosu we obtain, in the limite→0,

f 4~u!52p cotu ~11!

and in Minkowski space (u→2 ig)

f 4~g!52p i cothg. ~12!

Subtracting the pole term in Eq.~7!, using the modified
minimal subtraction (MS̄) scheme, we write

~E1! j j 8
i i 8 5~ ig !2t i i 8

a t j j 8
a 1

4p2F lnS m2

l̃2 D 1h~g!G ip cothg,

~13!

where

h~g![
1

ip cothg
lim
e→0

1

2e
@ f 422e~g!2 f 4~g!#. ~14!

In the limit g;s/m2→`, wherem stands for the single
according to our agreement, fermion mass scale one ob

h~g!5 ln~s/m2!. ~15!
01600
ng
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It is important to realize thath(g) has entered our analysi
on account of the off mass shell procedure we are curre
pursuing.

Taking into consideration the fact that thet matrices are in
the fundamental representation we finally get

~E1! j j 8
i i 8 5c11d i i 8d j j 81c12d i j 8d j i 8 , ~16!

where

c115
as

2p
ln~M2/l̃2!

1

N
ip cothg1O~as

2! ~17!

and

c1252
as

2p
ln~M2/l̃2!ip cothg1O~as

2!

~18!

with M2[m2eh(g).

D. Reggeization of exchanged gluons

The UV structure that has emerged from our consid
ations in the previous subsection has produced, toO(as

2),
anomalous dimensions of the form

Gcross5
as

p S 2
ip

N
cothg,ip cothg D . ~19!

As Brandt et al. @20# have already pointed out, albe
within the context of a Wilson loop analysis~see next sub-
section!, under renormalization group running quanti

(E1) j j 8
i i 8 mixes with

~E2! j j 8
i i 8 5K P expF igE

2`

0

dt u1A~tu1!

1 igE
0

1`

dt u2A~tu2!G
i j 8

3P expF igE
2`

0

dtu2A~tu2!

1 igE
0

1`

dtu1A~tu1!G
j i 8
L

A

2d i j 8d j i 8 . ~20!

Notice that the worldline configuration entering the abo
expression consists of two independent cusped lines@see Fig.
2~b!#. The two cusps face each other and constitute sou
of bremsstrahlung emission. We shall have more comme
to make on this matter in the next subsection. For now le
turn our attention to renormalization issues associated w
this quantity which are, this time, indigenous on account
the momentum transfer that accompanies each cusp
which can be unboundedly large.

For computational convenience we choose to simulate
mass shell regularization methodology for confronting the
divergences, introducing for this purpose a~small! massl
3-5
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;l̃;1/s for the gauge field quanta. This simplifies the co
putation, which now involves four Wilson lines, as we a
able to assign unit magnitude to each four-velocity. Con
tency with our off mass shell IR regularizationcan, on the
other hand, be achieved by employing the energy-depen
renormalization scaleM2[m2eh(g) identified in the previous
subsection.

We readily determine, after making the necessary re
justment in order to attain a result compatible with the M̄
subtraction scheme,

~E2! j j 8
i i 8 52~ ig !2cFd i j 8d j i 8F E

0

`

dtE
0

`

dt8D~ uut2ut8u;M !

1E
0

`

dtE
0

`

dt8D~ uu1t1u2t8u;M !u1u2G
12~ ig !2t i j 8

a t j i 8
a F E

0

`

dtE
0

`

dt8D~ uut1ut8u;M !

1E
0

`

dtE
0

`

dt8D~ uu1t2u2t8u;M !u1u2G1O~g4!,

~21!

whereu stands, where it appears, generically foru1 andu2
and

D~ uxu;M !5M42DE dDk

~2p!D
e2 ik•x

1

k21l2
. ~22!

Once more we emphasize that the seemingly on mass
regularization implied by the above formula is adjusted
th

o-

-
os
p

01600
-

-

nt

d-

ell

the off mass shell strategy, that we have been adhering
via the use of the energy-dependent massM as our renormal-
ization point.

In the limit of asymptotically high energies, we obtain,
Minkowski space,

~E2! j j 8
i i 8 5d i i 8d j j 8c211d i j 8d j i 8c22, ~23!

where

c2152
as

2p
ln~M2/l2!@g cothg1 ip cothg#1O~as

2!

~24!

and

c2252
as

2p
ln~M2/l2!FN~cothg21!2

ip

N
cothgG1O~as

2!.

~25!

From the above relations we read the anomalous dim
sions associated with the ‘‘pair cusp’’ configuration as fo
lows:

Gpair cusp5
as

p S 2g cothg111 ip cothg,

N~cothg21!2
ip

N
cothg D . ~26!

Combining the above result with that of Eq.~19! we ob-
tain the following 232 anomalous dimension matrix
~Gab!5
as

p S 2
ip

N
cothg ip cothg

2g cothg111 ip cothg N~cothg21!2
ip

N
cothg

D ~27!
ix
which governs the running of the quantitiesE1 andE2 under
the renormalization group equation. The generic form of
latter is

S M
]

]M
1b~g!

]

]gDEa5Gab~g,g!Eb . ~28!

At this point we have established full contact with K
rchemsky’s operator-based analysis. Following Ref.@26#, we
introduce amplitudesT6 which enter expressions for the sin
glet and octet components of the invariant amplitude wh
LLA form is given, according to the renormalization grou
equation~28!, by
e

e

T65
t

G6
E d2ze2 izW•qW expF2G6E

l

1/z̄dt

t

as~t!

p G , ~29!

wherez̄25z2eh(g) andG6 are the eigenvalues of the matr
Gab whose asymtotic expressions readG15N ln(s/M2), G2

5p2@(N221)/N3#@1/ln(s/M2)#.
Given that

E
l

1/z̄dt

t

as

p
5

2

b0
lnF ln~1/z̄LQCD

2 !

ln~l2/LQCD
2 !

G
5

2

b0
lnF11

bo

4p
asln

1

z2l̂2G , ~30!
3-6
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wherel̂25l2(m2/s), we obtain

T652as expF2
as

2p
G6ln

~2t !

l̂2 G
3GS 11

as

2p
G6D Y GS 12

as

2p
G6D . ~31!

The above result contributes to the octet part of the f
ward amplitude through an expression which explicitly e
hibits the Reggeization of the exchanged gluons:

TLL;S s

M2D b

, ~32!

where LL stands for leading logarithm and

b52
as

2p
N ln

2t

l̂2
52

as

2pF ln
2t

l2
1 ln

s

m2G , ~33!

implying the more suggestive form

TLL;S s

m2D a~ t !

e2~as/2p!N ln2~s/m2!. ~34!

One reads, from the above expression, the Regge trajec
asa(t)52(as/2p)N ln(2t/m2).

A notable difference is recorded with respect to glu
Reggeization results obtained by other, nonworldline, me
odologies, namely, the appearance of the exponential fa
e2(as /2p)N ln2(s/m2). This is directly attributable to our use o
an off mass shell IR regularization strategy, as oppose
the on mass shell practice employed in other works. Co
paring, e.g., with Ref.@29#, where the anomalous dimensio
structure for quark scattering was first investigated, one
serves full agreement with our results. In particular, mod
a reverse designation of the1 and 2 components, the ei
genvalues of the anomalous dimension matrix coincide.

Our final expression for the amplitude, with its dampi
factor, presents an interest of its own in connection w
unitarity requirements. The general guidelines for effect
unitarization in the amplitudes for high-energy processes
the conventional framework of Feynman diagrams, ha
been elegantly discussed by Cheng and Wu~Ref. @1#, last
chapter!. On a more concrete basis, systematic attempt
deal with unitarization of the quark-quark scattering amp
tude have been pursued by Lipatov@29–31# who has con-
fronted the unitarity issue, within the context of multi-Reg
kinematics, in terms of an eikonal-based expression for thS
matrix in the impact parameter space.

Even though we shall not enter unitarization issues in
present paper, it is worth making some comparisons w
more recent studies@32–34# which employ similar methods
with ours to arrive at a description of high-energy scatter
in QCD in terms of an effective two-dimensional fie
theory. Focusing on unitarity and gauge invariance,
above authors have recognized the importance of facilita
the derivation of such effective actions by employing W
01600
-
-

ry

-
tor

to
-

b-
o

h
g
in
e

to
-

e
h

g

e
g

son, straight-line contour integrals. In our approach,
course, Wilson line operators are an integral part of the v
formulation of the field system and carry, in fact, its dyna
ics. The main difference is that whereas we rely on Wils
lines of finite extent, in the work of Refs.@32–34# lines of
infinite extent, equivalently Wilson loops, are employed. T
resulting off mass shell treatment of IR divergences in o
case offers a different perspective in that it differentia
what is ‘‘soft,’’ but observable, and what is ‘‘infrared’’ and
attributable to unobservable, with respect to the scatte
dynamics, modes~wavelengths>1/s). The latter contribute
exclusively to the nonperturbative dynamics of QCD and
surmise that their exclusion from our considerations is p
cisely the reason for the emergence of the damping facto
Eq. ~34!. It is certainly of great interest to identify the con
nection between the conventional multiproduction, in thes
channel, approach to unitarity and the damping factor wh
makes its appearance in our work.

E. Miscellaneous remarks

A number of observations and/or remarks stemming fr
our worldline approach to non-Abelian scattering in t
Regge limit and which might be of some interest will b
presented in this subsection. To begin, we wish to cons
possible connections with past work centered around Wil
loops@20,21#. To this end, let us focus on the on-mass sh
case where the matter particle worldlines extend to infin
In a Euclidean space-time background two such lines join
infinity, thereby forming closed paths. The correspond
closed loop configurations for the ‘‘crossed’’ and ‘‘pai
cusp’’ cases are depicted, respectively, in Figs. 3~a!,3~b!. It
follows that there is a direct correspondence between stu
performed in relation to Wilson loops and dynamical cons
erations taking place within the worldline approach. T
fact, on the other hand, that in our case Wilson loops/lin
enter the formulation of the field system directly and not
formally introduced objects, underlines their role as fund
mental ingredients of the field theoretical description per
One immediate aftermath of this occurrence has already b
witnessed in the present work, namely, the ability to utili
off-mass shell properties.

A second point of interest concerns the relevance of
paired-cusp configuration which entered the renormaliza
group study of the forward amplitude. Cusps on Wils
loops are associated with bremsstrahlung radiation@19#. In a
diagrammatic context, on the other hand, such a situa
would reveal itself if we were to make a ‘‘horizontal’
unitarity-type cut across thet channel. It is of interest to note
that thes-t interplay, which is quintessential to unitarity en
forcement at high energies@1#, seems to be in a one-to-on

FIG. 3. ~a! Wilson loop version of Fig. 2~a!, corresponding to an
on mass shell situation.~b! Wilson loop version of Fig. 2~b!, cor-
responding to an on mass shell situation.
3-7
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correspondence with the operator mixing induced by
renormalization group. We feel that this is an issue that m
its further study.

Turning our attention to QED, let us observe that the Ab
lian nature of the theory allows us to treat the expectat
value of the ordinary Wilson exponential as the exponen
of the correlator. This leads us directly to the eikonal fo
for the dynamical factor7 E, which, for off mass shell IR
regularization, reads

E;12eix0, ix052
a

p
~ ip cothg!ln

1

z2l̂2
, ~35!

wherel̂2[l̃2e2h(g).
For the amplitude one obtains

A;E d2zeiqW •zWeix0

54p ia
cothg

t S 2
t

l̂2D 2 ia cothg
G~11 ia cothg!

G~12 ia cothg!

~36!

whose asymptotic form, ass/m2→`, reads

A;4p ia
1

t S 2
t

l̂2D 2 ia
G~11 ia!

G~12 ia!S s

m2D 2 ia

. ~37!

One last reference to QED, which pertains to a ‘‘visua
suggestion facilitated through its worldine casting, is the f
lowing. Suppose that in a basically forward process one a
allows for the observations of ‘‘soft’’ photons, i.e., photo
which do not exceed a given energy scaleL̃. An s-channel
study for this process can be suggested, in a space-time
ting, by extracting a ‘‘region’’ of radiusT;1/L̂ centered
around the point of closest approach, see Fig. 4~a!. Upon
cutting, in the Feynman diagrammatic context, along tht
direction we obtain the cross sectional profile of an inclus
process involving ‘‘soft’’ photon emission, as per our r

7Aside from the obvious fact that no group indices are involv
here, there is no need for putting a subscript onE as exponentiation
is now automatically obtained and a renormalization group runn
is no longer required.

FIG. 4. ~a! Worldline depiction of a~near! forward process
which excludes photon exchange within a region of sizeT around
the point of closest approach.~b! Feynman diagrammatic represe
tation of the situation depicted in~a!.
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quirement, see Fig. 4~b!. The difference brought about in Eq
~35! corresponds to a modification of the eikonal function
the formx0→x̃0 which, we speculate, that for large enoug
T is consistent with the presence of a diffraction pattern
the forward direction. In view of experimental observatio
@35# which report a notable excess of soft photons in
forward direction, our aforementioned speculation might
worthwhile to consider further.

III. HIGH-ENERGY, NON-ABELIAN SCATTERING
AT FIXED ANGLES

Our considerations in this section will be extended to
case where the four-velocities entering each of the f
branches in Eq.~5! are different from one another. In pa
ticular, we set ẋI5u1 in @0,s1#, ẋI5u18 in @s1 ,T1#, ẋII

5u2 in @0,s2#, and ẋII 5u28 in @s2 ,T2#, see Fig. 5~a!. For
simplicity, we shall work with disconnected correlation fun

tions which we denote by (W1) j j 8
i i 8 , where the subscript 1

pertains to the crossed configuration.~Later we shall use 2 as
the subscript for a pair-cusped configuration which mixes
under renormalization group running.!

Non-Abelian group complications force us to define t
following invariant quantities, see, e.g., Ref.@26#:

W1
~a![^tr PI tr PII &A5d i i 8d j j 8~W1! j j 8

i i 8 ~38!

and

W1
~b![^tr PI PII &A5d i j 8d j i 8~W1! j j 8

i i 8 , ~39!

wherePI denotes the line configuration parametrized byẋI

andPII the one parametrized byẋII .
It follows that

~W1! j j 8
i i 8 5

NW1
~a!2W1

~b!

N~N221!
d i i 8d j j 81

NW1
~b!2W1

~a!

N~N221!
d i j 8d j i 8 .

~40!

A final introductory note pertains to our kinematical p
rametrization. We make the following choice@36# for the
particle momenta on each of the four branches~consistent, of
course, with an overall four-momentum conservation!:

p15~AQ21M2,0,0,Q!, p25~AQ21M2,0,0,2Q!,
~41!

g

FIG. 5. ~a! Worldline depiction of fermion-fermion scattering a
fixed angle, in the sudden impulse approximation.~b! Worldline
depiction of the, double-cusped, contour associated with the op
tor that mixes with the fixed angle scattering one, under renorm
ization group running.
3-8
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p185~AQ21M2,0,Q sinu,Q cosu!,

p285~AQ21M2,0,2Q sinu,2Q cosu!

which, in turn, parametrizes thes and t variables as follows

s5~p11p2!254~Q21M2! ~42!

and

t5~p12p18!2522Q2~12 cosu!. ~43!

The limit s,t→` with s/t fixed will be taken in the sens
Q→`, u fixed.

A. Hard-soft factorization in the subtheory

Unlike the forward scattering case we now have to fac
situation where a sizeable momentum transfer is involved
the considered process which, according to our paramet
tion, is of orderQ. The latter sets the scale beyond which
corresponding degree of freedom explicitly enters our an
sis, hence it is wise to ‘‘dress’’ our quantities at least do
to that scale. Within the remaining ‘‘live’’ sector of th
theory we introduce an intermediate scaleL which separates
soft from hard gluons and whose arbitrariness will natura
induce a renormalization group running in the subtheo
Moreover, we shall place the matter particles on-shell, i
we shall employ worldlines of infinite extent, thereby reg
lating the IR divergencies through a small gluon massl.

As L stands betweenQ and l, which one calls ‘‘soft’’
and ‘‘hard’’ is relative. For example, if one were to play wi
L, say lower it, then gluons that were originally debited
the soft transfer to the hard group. The opposite happen
course, when the value ofL is raised. The factorized relatio
for the invariant quantitiesW1

(a,b) reads

W1
~a,b!5~W1

~a,b!!soft~W1
~a,b!!hard1OS 1

L2D . ~44!

The arbitrariness of the dividing scale calls for a renorm
ization group running which will lead to our final expressio
for W1

(a,b) and, by extension, for the amplitude. The mann
in which this strategy will be effected is the subject of co
cern in the present subsection.

Let us start by recalling our discussion in Sec. II B a
cording to which, given the~cusped! line configurations for
each of the two colliding particles, soft gluons correspond
what is emitted or absorbed by the straight line segments~no
impulse approximation!. In this soft sector of the full theory
one determines anomalous dimensions associated wit
01600
a
in
a-

-

y
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-
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l-

r
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its

own high-energy domain.8 For a givenL, one can induce a
renormalization group running of (W1)soft from l to L.

With the above observation in place, our next remark
that (W1

(a,b))soft exhibits a dependence onQ through the
angleu formed at a given cusp, e.g., cosu5u1u18 . We thereby
write

d

d ln Q2
ln W1

~a,b!5
d

d ln Q2
ln ~W1

~a,b!!soft

1
d

d ln Q2
ln ~W1

~a,b!!hard. ~45!

Now, the renormalization group equation for the quant
W1

(a,b) as a whole, which runs in the interval@l,L(<Q)#,
reads

S m
]

]m
1b~g!

]

]gD d

ln Q2
ln W1

~a,b!50 ~46!

and expresses independence from the scale that separate
from hard physics within the considered subtheory.~We
have usedm to representL in order to underline the fact tha
we are letting the latter scale to run.!

Factorization, then, gives

S m
]

]m
1b

]

]gD d

d ln Q2
ln ~W1

~a,b!!hard

52S m
]

]m
1b

]

]gD d

d ln Q2
ln ~W1

~a,b!!soft. ~47!

But, provided we find the anomalous dimensions associa
with the soft factor, the expression on the right enters
renormalization group equation discussed above along wi
term of the form:2 anomalous dimensions of (W1

(a,b))soft.
Therefore,W1

(a,b) can be determined via a two-step proc
dure which first addresses itself to its soft and second to
hard component. In the next subsection we shall carry
perturbative calculations pertaining to the soft part wh
will lead to the determination, to orderas , of the anomalous
dimension matrix.

B. Perturbative calculations in the soft sector

We begin our considerations surrounding the soft par
the amplitude by displaying its perturbative expression,
O(g2), which reads

8This is not a novel idea. For example, in the Bloch-Nordsie
approximation@37#, which describes the soft limit of QED, on
discovers anomalous dimensions@38# which lead to the proper form
of the full fermion propagator in the IR. The point is that, from th
perspective of the IR cutoffl, the upper momentum scaleQ ap-
pears as infinite.
3-9
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@~W1!soft# j j 8
i i 8 5d i i 8d j j 81~ ig !2cFd i i 8d j j 8H 2E

0

`

dtE
0

`

dt8D~ utu12t8u1u!1E
0

`

dtE
0

`

dt8u1u18D~ utu11t8u18u!

1E
0

`

dtE
0

`

dt8u2u28D~ utu21t8u28u!J 1~ ig !2t i i 8
a t j j 8

a H E
0

`

dtE
0

`

dt8D~ utui2t8u2u!

1E
0

`

dtE
0

`

dt8D~ utu181t8u2u!1E
0

`

dtE
0

`

dt8u1u28D~ utu11t8u28u!

1E
0

`

dtE
0

`

dt8u18u28D~ utu182t8u28u!J 1O~g4! ~48!

with D(uxu) given by Eq.~22! ~we have suppressed them argument for simplicity!.
We determine

E
0

`

dtE
0

`

dt8D~ utu11t8u2u!5
1

~4p!D/2S m

l D 42D

2GS 22
D

2 D 1

A12w2
arctg

A12w2

w
, ~49!

wherew[u1u2 and

E
0

`

dtE
0

`

dt8D~ utu12t8u2u!5
1

~4p!D/2S m

l D 42D

2GS 22
D

2 D 1

A12w2Fp2arctg
A12w2

w G . ~50!

The above relations together with Eq.~9! give, upon transcription to Minkowski space,

@~W1!soft# j j 8
i i 8 5d i i 8d j j 82

g2

4p2S m2

l2
p D e

G~11e!

e
$cFd i i 8d j j 8~g118 cothg11821!1t i i 8

a t j j 8
a

@~ ip2g12! cothg121g128 cothg128#%

1O~g4!, ~51!
o
where cothgij5(1/m2)pipj and where we have taken int
account thatg125g1828 , g1285g182 , due to momentum
conservation.

For the corresponding invariant quantitiesW1
(a,b) we find

~W1
~a!!soft5N2F12

as

p
ln S m

l DA11G
2N

as

p
ln S m

l DA121O~as
2! ~52!

and

~W1
~b!!soft5NF12

as

p
ln S m

l DA11G
2N2

as

p
ln S m

l DA121O~as
2!, ~53!

where

A1152cF~g118 cothg11821!

2
1

N
@~ ip2g12! cothg121g128 cothg128# ~54!

and
01600
A125~ ip2g12! cothg121g128 cothg128 . ~55!

We now bring into play the quantity@(W2)soft# j j 8
i i 8 given

by

@~W2!soft# j j 8
i i 8 5K P expF igE

2`

0

dtu1A~tu1!

1 igE
0

`

dtu28A~tu28!G
i j 8

3P expF igE
2`

0

dtu2A~tu2!

1 igE
0

`

dtu18A~tu18!G
j i 8
L

A

~56!

which mixes with @(W1)soft# j j 8
i i 8 under the renormalization

group. The relevant configuration is depicted in Fig. 5~b!.
Similar considerations to those that led to Eq.~51! now

give ~in Minkowski space!
3-10
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@~W2!soft# j j 8
i i 8 5d i j 8d j i 82

g2

4p2S m2

l2
p D e

3
G~11e!

e
$cFd i j 8d j i 8~g128 cothg12821!

1t i j 8
a t j i 8

a
@~ ip2g12! cothg121g118 cothg118#%

1O~g4!. ~57!

The corresponding invariant quantities (W2
(a,b))soft turn out to

be

~W2
~a!!soft52N2

as

p
ln S m

l DA21

1NF12
as

p
ln S m

l DA22G1O~as
2! ~58!

and

~W2
~b!!soft52N

as

p
lnS m

l DA211N2F12
as

p
lnS m

l DA22G
1O~as

2!, ~59!

where

A215~ ip2g12! cothg121g118 cothg118 ~60!

and

A2252cF~g128 cothg12821!

2
1

N
@~ ip2g12! cothg121g118 cothg118#. ~61!

With the above results in place, we are ready to apply
renormalization group analysis for the fixed angle scatter
amplitute. The relevant presentation will be given in the n
subsection.

C. Renormalization group running and Sudakov behavior

Our perturbative results, toO(as), of the previous sub-
section lead to a LLA for (W1

(a,b))soft via the renormalization
group ~RG! equation

S m
]

]m
1b~g!

]

]gD W̃soft
~ i ! 52

as

p
ÃW̃soft

~ i ! , i 5a,b, ~62!

where

W̃soft
~ i ! [S W1

~ i !

W2
~ i !D

soft

~63!

and

Ã5S A11 A12

A21 A22
D . ~64!
01600
e
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The boundary conditions for solving the RG equation a
chosen so that no structure is seen at momentum scale
low the IR cutoffl:

W̃soft
~a! um5l5S N2

N D , W̃soft
~b! um5l5S N

N2D . ~65!

The solution has the general form

W̃soft
~ i ! ~m/l!5P expF2ÃE

l

mdt

t

as~t!

p GW̃soft
~ i ! ~1!. ~66!

In the asymptotic regime of interest we determine

g125cosh21S s

2m2
21D 5cosh21S 2Q2

m2
11D . ln S 2Q2

m2 D
~67!

and, in a similar fashion,

g118. ln S 2Q2

m2 D 1 ln ~sin2u!,

g128. ln S 2Q2

m2 D 1 ln ~ cos2u!. ~68!

Taking the above into account and following the proc
dure exhibited in the Appendix we arrive at the asympto
ass,utu→` at fixed ratio, results in

~W1
~a!!soft.N2expF22cF ln S 2Q2

m2 D E
l

mdt

t

as~t!

p G
34cF ln S 2Q2

m2 Df1~m/l,u! ~69!

and

~W1
~b!!soft.N expF22cF ln S 2Q2

m2 D E
l

mdt

t

as~t!

p G
34cF ln S 2Q2

m2 Df1~m/l,u!, ~70!

where the functionf1(m/l,u) is defined in the Appendix,
along with a functionf2(m/l,u) which does not appear in
the above expressions since its role is inconsequential to
considerations. Note that (1/N)(W1

(a))soft.(W1
(b))soft.

The resulting expression for the amplitude is

@~W1!soft# j j 8
i i 8 .Fd i i 8d j j 81

N

N221
d i j 8d j i 8GFsoftS Q2

m2 ,
m

l D ,

~71!

where
3-11
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FsoftS Q2

m2 ,
m

l D54cF ln S 2Q2

m2 DexpF22cF ln S 2Q2

m2 D
3E

l

mdt

t

as~t!

p Gf1~m/l,u!. ~72!

According, now, to the guidelines set by our discussion
Sec. III A we proceed to determine that

d

d ln Q2
ln ~W1

~ i !!soft522cF ln S 2Q2

m2 D E
l

mdt

t

as~t!

p
1

1

ln Q2

~73!

whereupon, with the aid of Eq.~47!, we deduce

d

d ln m

d

d ln Q2
ln ~W1

~ i !!hard5
2cF

p
as~m!, ~74!

or

d

d ln Q2
ln ~W1

~ i !!hard522cFE
m

uQudt

t

as~t!

p
1R@as~Q!#.

~75!

The above result when put together with Eq.~73! gives

d

d ln Q2
ln ~W1

~ i !!522cFE
l2

m2dt

2t

as~t!

p

22cFE
m2

Q2dt

2t

as~t!

p
1R@as~Q!#,

~76!

which leads to

W1
~ i !5L@as~Q2!#expF22cFE

m2

Q2dt

2t

as~t!

p
ln

Q2

t G .
~77!

But

2cFE
m2

Q2dt

2t

as~t!

p
ln

Q2

t

5
4cF

b0
F ln S Q2

L2D2 ln ln S Q2

L2D ln S Q2

L2D ln ln S l2

L2D
2 ln S Q2

L2D G , ~78!

which explicitly exhibits Sudakov behavior for theW1
( i )

through its leading term@36#.
Some comments are in order at this point. Beginning w

technical issues, let us first notice that, in the asympt
regime under consideration,W1

(a);W1
(b) . This means that

the Sudakov behavior of theW1
( i ) passes on to the full ex

pression for (W1) j j 8
i i 8 . Moreover, nothing changes if one go

to the corresponding quantity (E1) j j 8
i i 8 associated with the

connected four-point function since the two disjoint cusp
01600
n

h
ic

d

line configurations, which make the difference between
connected and disconnected expressions, will each pro
similarly suppressing Sudakov form factors. Finally, partic
exchange in the final states, which cannot bea priori ex-
cluded from consideration in the fixed angle case, sim
permutes thes with the t variable without affecting our re-
sults. Let us also note, on the technical front, that our fi
expressions contain nonleading terms whose assess
should provide interesting new information. From a physi
standpoint the message to be drawn from the Sudakov
havior that has been extracted for the fixed angle amplit
amounts to the standard realization that the larger the
mentum transfer between the colliding particles the sma
the probability for the process to remain exclusive.

IV. CONCLUDING REMARKS

The worldline casting of gauge theories with spin-1
matter fields has as its basic feature the space-time se
within which physical quantities are described. Both parti
propagation and dynamics, the latter in the form of Wils
lines, are embodied in space-time paths. Generically,
course, all possible contours enter the path integral. By
stricting ourselves to paths that are straight almost eve
where, we were able to achieve a sharp factorization o
soft, relevant to the process, sectorat the fundamental field
theoretical level.

For the case where no cusps, to break the straight c
tours, are present we are dealing with situations where th
impulse approximation holds throughout, equivalently t
‘‘soft’’ subsector represents the full field theory. Neverth
less,it is possible to determine anomalous dimensions g
erning processes in this domain, an occurrence which refl
the fact that from the viewpoint of the IR cutoffl the ‘‘up-
per roof’’ L of the soft subsector appears to be infinite. F
the four-point, forward scattering process considered in
paper the corresponding RG considerations led to gl
Reggeization.

For processes in which cusped configurations make t
entrance a non-negligible momentum transfer takes place
the basis of a sudden impulse approximation. This time
RG running acquires the standard interpretation of a fac
ization between soft and hard physics, within the isolat
with respect to the considered energy range, subtheory.
situation is analogous to the operator product expansion
separates Wilson coefficients~hard factors! from operator
expectation values~soft factors!. In the fixed angle scattering
regime that we considered in Sec. III, the end result was
emergence of Sudakov behavior for the amplitude.

We hope to have sufficiently illustrated the efficiency
which the factorization of soft physics can be attained with
the worldline casting of non-Abelian gauge theories. Mo
ever, once familiarization with computational methodolo
and procedure is acquired, one realizes that the world
handling of soft subsectors involves more or less sim
mathematical expressions, irrespective of the process
studies. Thus, along with the conceptual simplicity regard
the factorization strategy there are additional advantages
practical nature, to the proposed approach as well.
3-12
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Clearly, the results we have exhibited are valid toO(L).
In the OPE language this amounts to leading twist. Nonle
ing contributions are lurking in our expressions and we
tend to study their implications in future work. More inte
esting is the question concerning the relation between
factorization advocated in this paper and the standard fac
ization widely discussed in the literature with basic relian
on Feynman diagrammatic logic, especially in connect
with exclusive processes. We intend to report on this issu
a forthcoming paper.

APPENDIX

We trace the steps which take us from Eq.~66! to Eqs.
~69! and ~70!. We define

Ĉ~Ã![expF2ÃE
l

mdt

t

as~t!

p G , ~A1!

whereÃ stands for the 232 matrix given by Eq.~64!.
The following identity holds:

Ĉ~Ã!5
A12Ã

A12A2
Ĉ~A2!2

A22Ã

A12A2
Ĉ~A1!

5
1

A12A2
@A1Ĉ~A2!2A2Ĉ~A1!#

1Ã
1

A12A2
@Ĉ~A1!2Ĉ~A2!#, ~A2!

whereA6 are the eigenvalues ofÃ.
We write

Ĉ~Ã!115X1YA11, Ĉ~Ã!125YA12, ~A3!

where

X[
1

A12A2
@A1Ĉ~A2!2A2Ĉ~A1!#,

Y[
1

A12A2
@Ĉ~A1!2Ĉ~A2!#. ~A4!

It follows from Eq. ~66! in the text, that

~W1
~a!!soft5N2X1YN~NA111A12! ~A5!

and

~W1
~b!!soft5NX1YN~A111NA12!. ~A6!

Referring to Eqs.~54!, ~55!, ~60!, ~61! in the text and
taking into account the asymptotic conditions~67!, ~68! we
determine

A11.2cF ln S 2Q2

m2 D 12cF ln S sin2
u

2D
2

1

N
ln S cos2

u

2D2
ip

N
,

01600
d-
-

e
r-

e
n
in

A12. ip1 ln S cos2
u

2D , ~A7!

A21. ip1 ln S sin2
u

2D ,

A22.2cF ln S 2Q2

m2 D 12cF ln S cos2
u

2D
2

1

N
ln S sin2

u

2D2
ip

N
.

We thereby obtain

A6.2cF ln S 2Q2

m2 D 1S cF2
1

2ND ln S 1

4
sinu D2

ip

N

6
1

2
AN2 ln 2S 1

4
sinu D24p214ip sinS 1

4
sinu D .

~A8!

Substituting into the expressions forX andY we find

X5expF22cF ln S 2Q2

m2 D E
l

mdt

t

as~t!

p G
3H 2cF ln S 2Q2

m2 Df1~m/l,u!1f2~m/l,u!J ~A9!

and

Y5expF22cF ln S 2Q2

m2 D E
l

mdt

t

as~t!

p Gf1~m/l,u!,

~A10!

where

f1~m/l,u![
1

C12C2
FexpS 2C2E

l

mdt

t

as~t!

p D
2expS 2C1E

l

mdt

t

as~t!

p D G ~A11!

and

f2~m/l,u![
1

C12C2
FC1expS 2C2E

l

mdt

t

as~t!

p D
2C2expS 2C1E

l

mdt

t

as~t!

p D G . ~A12!

Substituting into the relations giving the (W1
( i ))soft and

keeping only theQ2-dependent part of the resulting expre
sions we finally arrive at Eqs.~69! and~70! given in the text.
3-13
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