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Worldline approach to forward and fixed angle fermion-fermion scattering
in Yang-Mills theories at high energies
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Worldline techniques are employed to study the general behavior of the fermion-fermion collision amplitude
at very high energies in a non-Abelian gauge field theory for the forward and fixed angle scattering cases. A
central objective of this work is to demonstrate the simplicity by which the worldline methodology isolates that
sector of the full theory which carries the soft physics, relevant to each process. Anomalous dimensions
pertaining to a given soft sector are identified and subsequently used to facilitate the renormalization group
running of the respective four point functions. Gluon Reggeization is achieved for forward, while Sudakov
behavior is established for fixed angle scatter{ig80556-282(98)03523-]

PACS numbses): 11.80.Fv, 11.10.Jj, 12.38.Cy

I. INTRODUCTION context the dynamics pertaining to the process is studied in
the two-dimensional transverse plane where, once again, mo-
The theoretical confrontation of collision experiments atmentum transfer facilitates the probing of the hadron. The
high energies calls for methodologies that have an essentigltuation just described fits exactly into an eikonal mode of
dependence on the kinematics of the process. Fixing oudescription wherein the no impulse approximation forces the
ideas on investigations addressing themselves to hadronjsomentum of the exchanged quanta to hgappreciably
structure—even though references to QED, whenever rehonvanishing components only in the transverse direction.
evant, will also be made in this work—one of the key issues The most systematic quantitative considerations, referring
involved concerns the interplay between tievariany cen-  to the qualitative account given above in connection with the
ter of mass energys, on the one hand, and thi@variand st interplay, have been made, within the framework of per-
momentum transfex/—t, on the other. Asymptotic regimes turbation theory, by Cheng and W] for both Abelian and
corresponding to the caséa) |t| large —t/2pg, p proton  non-Abelian gauge systems with spin-1/2 matter fields. Spe-
andq photon four-momentum, fixe@jorken limit) and(b) s cial emphasis, in the work of these authors, was placed on
large 1 fixed (Regge limi} have come under extensive the- the issue of unitarity which calls for separate attention to the
oretical scrutiny, especially in connection with deep inelastics and thet channel, respectively. The so called Cheng-Wu
scattering(DIS) processes. towers, in QED, which stretch along thévertica) direction
Given that momentum transfer defines the resolution byresent, upon cutting, a fragmented profile of the electron
which the short distance structure of a hadfoncleon is  (positron, see Fig. 1d). In non-Abelian theories, on the
being probed, the Bjorken limit has naturally taken historicalother hand, Cheng and Wu discover Reggeization of the
precedence in both the experimental and the theoretical frongluon exchange among the colliding particles. The corre-
More recently, the Regge kinematical regime has been responding dominant towers that unfold along tlehannel are
ceiving wide attention in view of the ongoing experiments atformed by the exchange of gluons between Reggeons, see
the DESYep collider HERA. When the emphasis on asymp- Fig. 1(b).
totics shifts tos, it is the hadronic profile imprinted onto the  In addition to the Bjorken and Regge limits a third situa-
plane transverse to the direction of the collision that formsion which presents interest, all of its own, is defined by the
the basis of theoretical interest. In a perturbative contextspecifications, |t|—« at fixed ratios/t. We shall hence-
which one readily adopts by takingt>AéCD, the emerg- forth refer to it as fixed angle kinematical regime, implying
ing picture is that of a high density distribution of partonsthat the angle is fairly wide and that the collision energy is
across the surface perpendicular to the motion, each carryingery large. With respect to DIS we expect this case to be
a small fractionx(<1) of the hadron momentum. In such a relevant in semi-inclusive processes, when the observed par-
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ticle in the final state emerges at an angle with respect to thpresented in connection with the forward amplitude, in the
(virtual) photon-nucleon direction. s—oo, t fixed kinematical region. An immediate application
Having said the above let us define the bounds of thef the resulting structure will be the establishment, in the
present work by specifying that what we intend to pursue ideading log approximationLLA), of the Reggeization of
the problem of the non-Abelian scattering among fundamennon-Abelian gauge fields exchanged among the colliding fer-
tal spin-1/2 fields, cf. isolated quarks, in the Regge and fixedanions. This will be readily accomplished via a renormaliza-
angle kinematical regimes. Our main objective is to showtion group running within the soft subtheory, which employs
how the worldline casting of field systems, which we havethe abovementioned anomalous dimensi&&.
been systematically pursuing in recent yefd@s6|, leads to A more demanding task is posed by the fixed angle scat-
efficient and straightforward methods of calculation, considtering process. The bulk of our efforts in this case will fall
erably simpler than corresponding procedures developedpon factorization issues which become more compelling, in
within the Feynman diagrammatic description of QCD. WeComparison to the previouRegge one, due to the presence
place particular significance on the issue of factorization beof a hard momentum scale. The idea is to first identify the
tween soft and hard physics entering a given process of inrglevant anomalous dimensions in the, factorized, soft sector
terest which, next to confinement, is the most important aszng then proceed to derive the expression for the whole am-
pect of QCD applications—certainly the one that lends itselfyjir e, in the LLA, exploiting its invariance with respect to
to present day capabilities in coping with the theory. 0 scale which separates soft from hard components. As it
It becomes obvious that, in this work, we shall r1e|therturns out, the end result of this analysis is the emergence of

venture into the domain ofexclusive hadron-hadron scat- a Sudakov[27,28 suppression factor which dampens the
tering, where phenomenologically based factorization issuefsour-point proc,ess

[7-10| involving hadronic wave functionfl1,13 become The particulars of our worldline casting of field systems
essential, nor into DIS matters where structure functions an P . . . 9 y
ave been extensively discussed in several pdjer6|, so

evolution equationg13,14 assume primary role. Clearly, he i 4 reader should ref h il
such undertakings pose ultimate goals of pursuit and set dfl'€ Interested reader should refer to these sources, especially

rections for future work. Our main concern, presently, is theRef- [3]. Suffice iF to say that SUChSQ castir:\g amounts
identification ofglobal behaviors—as opposed to investiga-to a reformulation [Dys(x) Dys(x)eS/0)-v0) A1 .

tions of structure—underlying each of the amplitudes we are— [ Dx(7) Dp(7)eSX(DPOAXDIIL. . - taking us from a
interested in, i.e., what one naturally associates with the softinctional to a path integral description of the system. Note
physics. that the above transcription pertains to the fermionic sector

The basic advantage of the worldline casting of a theorypf the gauge field theory which registers via quadratic terms
such as QCD, is the spacetime setting that underlines thi@ the action. Accordingly, nothing is lost as one carries out
scheme as a wholgl5-17,2,3. This facilitates consider- the Gaussian-Grassmannian integrations over the corre-
ations which, being much closer to intuitive, geometrical pic-sponding fields. Functional integration with respect to the
tures, as opposed to what one can associate with Feynmaauge fields remains to be carried out and it is within this
diagrams, lead to efficient computational procedUre8-  context that the dynamics operating in the system reveals
18,3-6. Considerations of similar nature have already beeritself.
evidenced in the work of several authors in connection with The organization of our paper is straightforward. In Sec.
the study of Wilson loop$19-23 which, after all, corre- Il we deal with Regge limit behavior, while in Sec. Il we
spond to (Euclidean “worldline” contours of infinitely  study the fixed angle kinematical regime fdisolated
heavy matter fields. The difference, at a foundational level, i§ermion-fermion scattering in a non-Abelian gauge field sys-
that in our case Wilson loops or lines enter as natural ingretem. (The extraction of two expressions entering the soft part
dients of the field theoretical description of the systpanr  of the fixed angle amplitude is traced in an appendBor
se see, e.gl4], and not as part of an operator-based formal-the convenience of the reader each section is divided into
ism, see, e.g[24,25. A practical consequence of this occur- subsections, addressing respective issues in a self-contained
rence is our ability to deal with Wilson line operators of manner. A final, brief, section is devoted to conclusions and
finite length. As shown in Ref.6], manipulations withopen  outlook.

Wilson lines(of finite extenj in worldline formalism when

applied to forward QED processes are naturally associated

with off mass shell eikonals. We intend to capitalize on this II. NON-ABELIAN SCATTERING AMPLITUDE
fact in the present paper using it to achieve infrared regular- AT REGGE ASYMPTOTICS

ized expressions by going off mass shell. . ) ) )

Renormalization issues will also play a central role in our !N this section we shall consider the scattering of two
subsequent analysis. As already alluded to above, our mafRin-1/2 particles belonging to the fundamental representa-
preoccupation is to isolate a sector of the full Yang-Mills
field system wherein the active degrees of freedom are the
soft ones. Even within such a subsector, the disparity be-1t is important to distinguish between what one terms “soft” and
tween its upper momentum cutoff and the infrared'ajiées  “infrared”: The first characterization pertains tobservablede-
rise to anomalous dimensions, having appropriate interpretayees of freedom while the second refers to unobservable ones
tions. Our first illustration of the situation in hand will be which presumably reside in the “vacuum” state.
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tion of a given non-Abelian gauge, SNY, group in the limit Notice that the spin-1/2 sector of the theory enters our
S—00, |t|(>A oco) fixed. As already stated, we shall em- expressmns through one-dimensional geometrical contours
ploy a worldline mode of description for the process in the(Euclidean “worldlines”), while all the dynamics is con-
context of which the eikonal approximation acquires a sharptained in the expectation values---)R>"=(---)a
geometrically based, interpretation. Our efforts will address—(- - -)a{- - -)a of Wilson line operators.

the amplitude directly. Special emphasis will be placed on The spacetime setting of the worldline approach affords
our ability to control IR divergencies by going off-shell us to designate pointg, andz,, on the respective contours
whereupon one deals with open Wilson line operatofs. x'(7) and x'"(7), of closest approach. Setting'(s,)
renormalization group running which leads to gluon=z;, x''(s,)=2, and using the identity
Reggeization will be carried out, while some specific re-[§(ds/T)[d*zé[x(s)—z]=1 we write

marks pertinent to QED will be made in the end.

1ds; Tzd52
A. Four-point function in worldline formalism M}Ij/: IE < |[X ]l[xll]f f
C
Working in Euclidean space we introduce the four-point a1 e
function
) x [ diziotii(sy -2, [ diz,ax (s~ 2]
(777l|n7,o XECICII 4
57 (x1) 877)(x2) 87/, (y1) 87, o) (€'.Czz)j) @
= M(X1.X03¥1.Y2) s = M(Xy Xo3¥o.y0) (1) wheré

whereZ (7, 7) is the partition function for the non-Abelian E(Cc',.Cc';z, Zz)
gauge field theory with spin-1/2 matter fields whose sources

aren, n, whilefis a flavor and,j ..., aregroup represen- s S1.,

tation indices. The two connected four-point amplitudes on :< P eXF{'QJO d7x (T)A(Zl_J X )

the right-hand side are related via a particle exchange in the T

final state. The second of the two terms, however, gives little T, T,. s .

contribution to the forward direction scattering process, +igf drx'A zl+f x') P ex;{ig fo drx!t
s 51 i/

which presently interests us, so its presence will be ignored
for the rest of this section.

T
The expression for the amplitude in worldline formalism XAl z,— J'SZ)'(H +igJ zdrk"
is T S2
T,. conn
Z Z X IX"] XA zz+f X”) > : ()
S .
X1 X3 Xz Y2 2 il oa
T The above battery of expressions contains the basic for-
| |
><< P exp{lg fo drx (n)AIX(7)] . malism of the worldline approach to non-Abelian gauge sys-
! tems with spin-1/2 matter fields pertaining to the four-point
(T2, | conn process. Our adjustments, from hereon, will refer to the par-
X Pex 'gjo drx (1)AIXT(7)] . (2 ticular situations, i.e., Regge and fixed angle kinematics we
il a intend to study in this and the next section, respectively.
where

B. Eikonal approximation in the worldline formalism

2 I[x]= f de x( T)J’ Dp(7) Our main applications of the worldline scheme have ad-
x(T dressed themselves to the issue of isolating a subsector of a

. given microscopic theory which can be characterized as

« P _ : I “soft.” By the latter term we mean a restriction to the study

ex;{ Jo drlip()y mf]} of the physics which is active in the field theory below a

Xex;{ijonTp(T))'((T) . 3)

SWe denote byA the gauge field expanded in the Lie algebra.
Also, our compressed notation implies that an expectation value in
the gauge field sector includes gauge fixing terms, ghost integration

2By contrast, the on mass-shell alternative, which calls for ar@nd, in the generic case, contribution from the Dirac determinant.
explicit gluon mass as IR regulator, corresponds to the employment“Notice the notational shortcuf:ld7x(7)— [ Ix inside the argu-
of Wilson loop operators. ments of theA’s.
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given scaleA. Clearly, the full microscopic theory contains \,uQ\ 1 s u
degrees of freedom associated with higher frequencies. Our/
strategy, however, is to incorporate them into the definition \\

of the physical quantities entering the theory at scalbare (a) (b)

values. For the purposes of this section the aforementioned . o ) )

scale could correspond either to physical mass of the matter FIG. 2. (8@ Worldline depiction of forward elastic scattering

field quanta (on-mass-shell situatioror to an off-shell mass between spin-1/2 matter particles. Closest distance of appfoach

value pact parametgris z. (b) Double cusped configuration which mixes
Th. beautv of th Idli i f the field t ._with the four-point function associated with the forward scattering

that iteeffii?sytr?e isc?I;\tlic())rn oI? tehga}?sg]fg’(;ubfeclteor iiy; ?nnc:sjts process, depicted if@), under renormalization group running.

efficient and straightforward manner: One instructs the path . . . .
integral to take into consideration only those paths that ar&igh-energy forward scattering in the eikonal approximation

straight lines almost everywhefallowing, therefore, for the 2and is depicted in Fig.(@). We have already considered the
presence of cuspand sets the Dirac determinant to unity. In @Pplicability of this scheme to QED as well as a linear ver-
physical terms the above specifications imply that mattefion Of quantum gravity6]. As already stated our concern,
fields have been dressed to the point that the live, in thd this paper, pertains to non-Abelian gauge SysteQGD).
considered subsector of the full theory, gauge field ex- In the eikonal frame of description, as specified above,
changes can neither derail them from their propagation patHgd- (5) reads(we set|z|=z for economy
nor create virtual pairs from the vacuum. Any derailment ‘o
occurs on a sudden impulse basis and corresponds to thg(L',L”;z)}ij’,=< Pexp{igf d7u,A(7uy)
presence of cusps on the propagation contour. i

Now, the “soft” subsector has its own UV and IR do- . conn
mains. The latter presumably coincides with that of the full <P eXr{igJ' (rdruzA(z+ ) > .
theory, while the former provides anomalous dimensions
which induce renormalization group running of physical A
guantities. Renormalization factors in the subtheory are ex- (6)
clusively associated with théalmost everywhepestraight

line configurations and depend solely on the number of CUSPS, . _bove expression furnishes. in the worldline scheme. the
that a given contour, relevant to the situation being studied V€ EXpression furmisnes, | w ine s '

has. In particular, ésingle straight line of propagation from d)_/namlcal factor which en_ters the ampl_ltudg, cf. By, and
an initial to a final space-time point signifies negligible mo- will serve as the central piece of attention in our subsequent

mentum transfer to the matter particle. In such a case a Wa\;aenalysw.
function renormalization factor is all that is found to be as-
sociated with the contour. A cusp, on the other hand, implieg: off mass shell IR regularization and renormalization issues
a transfer of momentum to the propagating matter particle ) o )
which occurs on a sudden impulse basis. One is then faced 't is clear that the quantity given by E¢f) is UV safé as
with the task to renormalize the vertex that forms at thelONg @s 1<, whereas it is protected from IR singularities
derailment point. if o<e. The latter specification corresponds to an off mass
The above general comments, offered as a way to provid_‘éhe” descnpuon of the matter particle as thfa finite Iength_of
a first feeling concerning renormalization aspects of the sublS Propagation contour cuts off all gauge field modes with
theory which has been isolated by our aforementioned stipulomentum less than &/which participate in its full, on
lations, will receive quantitative treatment throughout ourmass shell description. . _
analysis. For the moment, let us consider the case of a four- We shall proceed to investigate the behavior of the dy-
point process involving two straight line paths$ andL"  namical factor E;'J by controlling the IR divergencies
characterized by four-velocitias,(=x') andu,(=x"), re-  through line contours of finite length and, following Ko-
spectively. Let the closest point of approach |af(=|z, = rchemsky[26], consider UV implications ag—0. The rel-
—2,|)<o, where o represents thdfinite) length of the evantsingularity is designated as “cross singularity” since it
worldline paths and is of the order of the inverse off-mass-arises at a point where the two worldlines cross each other.
shell momentum scale. The exchanged gauge field quanta arenploying dimensional regularization for controlling this
assumed to be too soft to derail the two matter particlesgross UV divergence, a mass scaleis introduced which,
propagating along.' andL", in any appreciable way. This for finite znow, implicates a renormalization group running
situation is precisely what one encounters when studyingip to the scale ¥/ Accordingly, our primary task is to de-
termine the anomalous dimensions which will enter the
renormalization group equation.

i’

-0

SWe restrict ourselves to a single physical mass paranmeter
Adjustments pertaining to different masses could be made at the
expense of burdening our analysis with extra formalism that would ®We are referring strictly to exchangdmetweenthe two lines
detract from our main objectives. (connected four-point function
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Given the presence of path ordered exponentials, enterinig is important to realize thah(y) has entered our analysis
on account of the non-Abelian setting, our only option is toon account of the off mass shell procedure we are currently

proceed perturbatively. We write pursuing.
Taking into consideration the fact that theatrices are in
;ij’,:(ig)zt“ ,t“ j de d7’ the fundamental representation we finally get
E)) =c1i8i 8+ Crabiy v 16
><u1u2D(|ulr—u27’|)+O(g4), (7) ( 1)1 11%i ' Yjj 12 ji’ ( )
] where
where, employing the Feynman gauge, one has
@s 2/ 2 1. 2
de i« 1 M4*D D 1 C11= Zln(M N )NMTCOthy-i- O(as) (17)
D(|x])= 4‘Df g K X—= F(—— —_—.
| | m (27T)D k2 4’7TD/2 2 |X|D72 and
8
We easily determine that Cop=— ﬁln(MZ/)\z)i 7 cothy+ O( ag)
+o +o (18)
f d’TJ' dT,U1U2D(|UlT_U27',|)
e -7 with M2= p2e"™),
1 [ u? ¢ o
=——| =5 m| 5=fs-2W), (9) D. Reggeization of exchanged gluons
472\ \? .
The UV structure that has emerged from our consider-
wherew=u,u,, X\=1/s, e=4—D(>0), and ations in the_prewc_)us subsection has produced)fes),
anomalous dimensions of the form
1 .
— - _ e—1/2 o |7
Fa-ze 4W[ ﬁr( 2 6) (1w 1—‘cross:?s( - WCOthyli WCOth'}’) . (19
1 3 1-w . .
—Z(1+W)F|11-€=—€— As Brandt et al. [20] have already pointed out, albeit
2 2 2 within the context of a Wilson loop analysisee next sub-
1 3 1+w section), under renormalization group running quantity
—5(1- W)EF(l Ie5-e—— ) (10 (El);'j’, mixes with
Settingw = cosé we obtain, in the limite—0, (EZ);ij/’:< PeXF{'QJ d7uA(ru;)
f4(6)=2m coto (11
and in Minkowski space {— —ivy) +igfo d7UzA(TUZ) "
f4(y)=2mi cothy. (12

xPexr{ng’ d7ru,A(7TUs,)
Subtracting the pole term in E@7), using the modified

minimal subtraction (Mp scheme, we write

+ o0
+igf0 druiA(7Tuq)

> _5”'/5“!. (20)

1 u? il A
"n__ 2

(El)”,—(lg) t“,t 4772[In _XZ

+h(y)|imcothy,

Notice that the worldline configuration entering the above
(13 expression consists of two independent cusped [ises Fig.

2(b)]. The two cusps face each other and constitute sources
where of bremsstrahlung emission. We shall have more comments
to make on this matter in the next subsection. For now let us

1 [f4 (V) —Ta(P)]. (14) tu_rn our a_ttentio_n to renormqlizatipn .issues associated with

IWCOIh?’ this quantity which are, this time, indigenous on account of
the momentum transfer that accompanies each cusp and

In the limit y~s/m?—o, wherem stands for the single, which can be unboundedly large.

according to our agreement, fermion mass scale one obtains For computational convenience we choose to simulate on

mass shell regularization methodology for confronting the IR

h(y)=In(s/m?). (15 divergences, introducing for this purposgsmal) mass\

h(y)=
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~X~1/o for the gauge field quanta. This simplifies the com-the off mass shell strategy, that we have been adhering to,
putation, which now involves four Wilson lines, as we are Via the use of the energy-dependent nidsas our renormal-
able to assign unit magnitude to each four-velocity. Consislzation point.
tency with our off mass shell IR regularizati@an, on the In the limit of asymptotically high energies, we obtain, in
other hand, be achieved by employing the energy-dependehtinkowski space,
renormalization scalM?= u?e"(") identified in the previous
subsection. (Ez);lj = 5“ ' 5“ 1Co1+ 5” ' 5“ 1Co0, (23)

We readily determine, after making the necessary read-
justment in order to attain a result compatible with the MSwhere
subtraction scheme,

o
v o e , c21=—ﬁm(MZn\z)[ycothyHwcothy]+0(a§)
(Ez)“y:2(|g) CF5ij'5ji' 0 dr 0 dr D(|UT_UT |,M)

(24)
+f drf d7r’'D(Juyr+ Uy’ |;M)usU, and
0 0
T e — 2 In(M2N?)| N(cothy—1)— ™ coth }+O(a2)
+2(ig)2tﬁ,t;,[f drf dr’'D(Jur+ur’|;M) 22 2 Y N Y s)
0 0 (29
+ fdefwdT'DﬂUﬂ— U7’ [;M)usu, [+ O(g%), From the above relations we read the anomalous dimen-
0 0 sions associated with the “pair cusp” configuration as fol-
1) lows:
whereu stands, where it appears, generically figrandu @ .
and PP g y & 2 T pair cusg= —S( —ycothy+1+i cothy,
a
D(|x|;M) M“’Df LS (22) N(cothy—1) i7Tcoth (26)
X[iM)= e . y—1)— — v].
(2m)® k2+\2 N

Once more we emphasize that the seemingly on mass shell Combining the above result with that of E.9) we ob-
regularization implied by the above formula is adjusted totain the following 2<x2 anomalous dimension matrix

i .
“N cothy i 7 cothy

ag
(Pap)=— i @7
—ycothy+1+imcothy N(cothy—l)—ﬁcothy

which governs the running of the quantities andE, under t . edr ag(7)
the renormalization group equation. The generic form of the Ti:l“_f d’ze "*9ex _th ——, (29
latter is = A

wherez?=2z%e" andT .. are the eigenvalues of the matrix

d d I',, whose asymtotic expressions reig =N In(sM?), T'_
M-y TA9) 79 Ea=Tan(7,9)Ep. (28) =[N~ 1)/N*[L/InEM?)].
Given that

At this point we have established full contact with Ko- vedr oy 2| In(1izA%cp)
rchemsky’s operator-based analysis. Following [R&6], we f T M
) ; . . . x T 7™ Bo |[In(NYAScp)
introduce amplitude$ .. which enter expressions for the sin- Q
glet and octet components of the invariant amplitude whose 5 1
LLA form is given, according to the renormalization group =—|In| 1+ ﬁasln—A 7 (30)
equation(28), by Bo 4 > 22)\2
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whereX?=\2(m?/s), we obtain .>< ><\
] t ]
AN L ‘o L

ds (—1)
- ) @ ()
T. ZQSGX% 271_l—‘a_,ln 52 1

FIG. 3. (a) Wilson loop version of Fig. @), corresponding to an

a a on mass shell situatiorib) Wilson loop version of Fig. @), cor-
1+2—5r+)/r(1—ﬁr:). (31) g

xT responding to an on mass shell situation.

The above result contributes to the octet part of the forson, straight-line contour integrals. In our approach, of
ward amplitude through an expression which explicitly ex-course, Wilson line operators are an integral part of the very
hibits the Reggeization of the exchanged gluons: formulation of the field system and carry, in fact, its dynam-
8 ics. The main difference is that whereas we rely on Wilson

lines of finite extent, in the work of Refd.32—34 lines of
' (32) infinite extent, equivalently Wilson loops, are employed. The
resulting off mass shell treatment of IR divergences in our
where LL stands for leading logarithm and case offers a different perspective in that it differentiates
what is “soft,” but observable, and what is “infrared” and
s attributable to unobservable, with respect to the scattering
In— +In—|, (33  dynamics, modeévavelengths=1/a). The latter contribute

A m exclusively to the nonperturbative dynamics of QCD and we
surmise that their exclusion from our considerations is pre-
cisely the reason for the emergence of the damping factor in

s \e® Eq. (34). It is certainly of great interest to identify the con-
_) e~ (ag2mN In*(s/m?)_ (34) nection between the conventional multiproduction, in ¢he
m? channel, approach to unitarity and the damping factor which

_ ] makes its appearance in our work.
One reads, from the above expression, the Regge trajectory

as a(t) = — (ag2m)N In(—t/m?).

A notable difference is recorded with respect to gluon E. Miscellaneous remarks
Reggeization results obtained by other, nonworldline, meth- A number of observations and/or remarks stemming from
odologies, namely, the appearance of the exponential fact@gjur worldline approach to non-Abelian scattering in the
e~ (as’2mMN %M This is directly attributable to our use of Regge limit and which might be of some interest will be
an off mass shell IR regularization strategy, as opposed tpresented in this subsection. To begin, we wish to consider
the on mass shell practice employed in other works. Compossible connections with past work centered around Wilson
paring, e.g., with Refl29], where the anomalous dimension loops[20,21. To this end, let us focus on the on-mass shell
structure for quark scattering was first investigated, one obease where the matter particle worldlines extend to infinity.
serves full agreement with our results. In particular, moduldn a Euclidean space-time background two such lines join at
a reverse designation of the and — components, the ei- infinity, thereby forming closed paths. The corresponding
genvalues of the anomalous dimension matrix coincide. closed loop configurations for the “crossed” and “pair-

Our final expression for the amplitude, with its damping cusp” cases are depicted, respectively, in Figs),3(b). It
factor, presents an interest of its own in connection withfollows that there is a direct correspondence between studies
unitarity requirements. The general guidelines for effectingoerformed in relation to Wilson loops and dynamical consid-
unitarization in the amplitudes for high-energy processes, irerations taking place within the worldline approach. The
the conventional framework of Feynman diagrams, havdact, on the other hand, that in our case Wilson loops/lines
been elegantly discussed by Cheng and (Ref. [1], last enter the formulation of the field system directly and not as
chapte). On a more concrete basis, systematic attempts téormally introduced objects, underlines their role as funda-
deal with unitarization of the quark-quark scattering ampli-mental ingredients of the field theoretical description per se.
tude have been pursued by Lipatf®9—31 who has con- One immediate aftermath of this occurrence has already been
fronted the unitarity issue, within the context of multi-Reggewitnessed in the present work, namely, the ability to utilize
kinematics, in terms of an eikonal-based expression fo6the off-mass shell properties.
matrix in the impact parameter space. A second point of interest concerns the relevance of the

Even though we shall not enter unitarization issues in thgaired-cusp configuration which entered the renormalization
present paper, it is worth making some comparisons witlgroup study of the forward amplitude. Cusps on Wilson
more recent studigls82—34 which employ similar methods loops are associated with bremsstrahlung radigdti@h In a
with ours to arrive at a description of high-energy scatteringdiagrammatic context, on the other hand, such a situation
in QCD in terms of an effective two-dimensional field would reveal itself if we were to make a “horizontal”
theory. Focusing on unitarity and gauge invariance, theunitarity-type cut across thiechannel. It is of interest to note
above authors have recognized the importance of facilitatinghat thes-t interplay, which is quintessential to unitarity en-
the derivation of such effective actions by employing Wil- forcement at high energid4], seems to be in a one-to-one

S

e

Ag as

B NI ="

implying the more suggestive form

TLLN
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3+ ul
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: \/\/ \.u;g\ U2
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M\ (@) (b)

L
(b)

) o FIG. 5. (a) Worldline depiction of fermion-fermion scattering at
FIG. 4. () Worldline depiction of a(neaj forward process fixed angle, in the sudden impulse approximatiém. Worldline
which excludes photon exchange within a region of Sizaround  depiction of the, double-cusped, contour associated with the opera-

the point of closest approacth) Feynman diagrammatic represen- tor that mixes with the fixed angle scattering one, under renormal-
tation of the situation depicted m ization group running_

correspondence with the operator mixing induced by theyuirement, see Fig.(4). The difference brought about in Eg.
renormalization group. We feel that this is an issue that mer¢35) corresponds to a modification of the eikonal function of

its further study. the form yo— xo Which, we speculate, that for large enough
Turning our attention to QED, let us observe that the Aberjs - onsistent with the presence of a diffraction pattern in

lian nature of the theory allows us to treat the expectationne forward direction. In view of experimental observations
value of the ordinary Wilson exponential as the exponentia 35] which report a notable excess of soft photons in the

of the correlator. This (I;eads us directly to the eikonal formg,yarq direction, our aforementioned speculation might be
for the dynamical factorE, which, for off mass shell IR worthwhile to consider further.

regularization, reads

Ill. HIGH-ENERGY, NON-ABELIAN SCATTERING

) o 1
E~1-eX0, iyo=—_(im Cothy)lnw, (35) AT FIXED ANGLES
z
Our considerations in this section will be extended to the
wheren2=X2e"h»_ case where the four-velocities entering each of the four

branches in Eq(5) are different from one another. In par-

For the amplitude one obtains : . ) . i )
ticular, we setx'=u, in [0s,], xX'=uj in [s;,T,], x"

Awf 4279 Zai X0 =U, in [05,], and>'<”=u§. in [s,,T,], see Fig. &). For
simplicity, we shall work with disconnected correlation func-
—ia . i i i’ ;
 cothy £\ cothyr(1+lacoth7) t|0ns.wh|ch we denote by\/.(ll)“,: where the subscript 1
=47ia - (1= 2 cothv) pertains to the crossed configuratigbater we shall use 2 as
t A (1=-lacothy) the subscript for a pair-cusped configuration which mixes in,
under renormalization group running.
(36) : A ,
Non-Abelian group complications force us to define the
whose asymptotic form, agm?— o, reads following invariant quantities, see, e.g., RE26]:
) 1 t _iar(1+ia) S “ia W(la)E<tI‘ P|tl’P”)A:éii/&”,(Wl)}ijl, (38)
A~Armia—-| — = — = (37
t N2 Nl-ia)\m and

One last reference to QED, which pertains to a “visual”
suggestion facilitated through its worldine casting, is the fol-

lowing. Suppose that in a basically forward process one also . . . o
allows for the observations of “soft” photons, i.e., photons whereP, denotes the line configuration parametrizedxby

~ I y l
which do not exceed a given energy scale An s-channel an(IjtF;””the otﬂetparametnzed by
study for this process can be suggested, in a space-time set- oflows tha

WE=(tr PPy ) o= i1 8 (W), (39)

ting, by extracting a “region” of radiusT~1/A centered ONWY WD) NWD) — @)

around the point of closest approach, see Fig).4Upon (Wl)}'j,:% i 0j % i Ojir -
cutting, in the Feynman diagrammatic context, along tthe N(N°—1) N(N“—1)

direction we obtain the cross sectional profile of an inclusive (40)

process involving “soft” photon emission, as per our re- A final introductory note pertains to our kinematical pa-

rametrization. We make the following choi¢&6] for the
particle momenta on each of the four branctemsistent, of
Aside from the obvious fact that no group indices are involvedcourse, with an overall four-momentum conservation
here, there is no need for putting a subscripEoes exponentiation

is now automatically obtained and a renormalization group running  p;=(VQ%+M?2,0,0Q), p,=(V/Q%?+M?2,0,0-Q),
is no longer required. (41

016003-8
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p;=(VQ*+M?0Qsing,Q cosé), own high-energy domaifiFor a givenA, one can induce a
renormalization group running of{;) s, from A to A.

With the above observation in place, our next remark is

p>=(VQ?+M?,0,—Qsind,— Q cosh) that (WD) exhibits a dependence o@ through the
angled formed at a given cusp, e.g., césu,u; . We thereby
write

which, in turn, parametrizes theeandt variables as follows

d d
2 (1a’b): D) In (W(la’b))soft
s=(p1+p2)°=4(Q%*+M?) (42) dinQ dinQ
and t g MW (49
— 2 _ 2
t=(p1—p1)°=—2Q%(1- cosh). (43 Now, the renormalization group equation for the quantity
WD) as a whole, which runs in the intervl,A(<Q)],
reads
The limit s,t—o with s/t fixed will be taken in the sense
Q—oo, 6 fixed. ) g
—+B(9) -~ In W' =0 46
(“au mg)ag) ngz " (49

A. Hard-soft factorization in the subtheory

Unlike the forward scattering case we now have to face a
situation where a sizeable momentum transfer is involved iand expresses independence from the scale that separates soft
the considered process which, according to our parametriz&tom hard physics within the considered subtheofye
tion, is of orderQ. The latter sets the scale beyond which nohave usedk to represent\ in order to underline the fact that
corresponding degree of freedom explicitly enters our analyWe are letting the latter scale to run.
sis, hence it is wise to “dress” our quantities at least down Factorization, then, gives
to that scale. Within the remaining “live” sector of the
theory we introduce an intermediate scalevhich separates
soft from hard gluons and whose arbitrariness will naturally
induce a renormalization group running in the subtheory.
Moreover, we shall place the matter particles on-shell, i.e., d
we shall employ worldlines of infinite extent, thereby regu- @”LB@ dinQ?
lating the IR divergencies through a small gluon mass

As A stands betwee® and \, which one calls “soft”  But, provided we find the anomalous dimensions associated
and “hard” is relative. For example, if one were to play with with the soft factor, the expression on the right enters the
A, say lower it, then gluons that were originally debited torenormalization group equation discussed above along with a
the soft transfer to the hard group. The opposite happens, ®rm of the form:— anomalous dimensions ofA(*™) 4.
course, when the value of is raised. The factorized relation Therefore, W*" can be determined via a two-step proce-
for the invariant quantitiesV{*® reads dure which first addresses itself to its soft and second to its
hard component. In the next subsection we shall carry out
perturbative calculations pertaining to the soft part which
will lead to the determination, to ordeyr;, of the anomalous
dimension matrix.

b
In (W) hard

ﬁw@)dez

7 In (W) g1 (47)

1

W(la’b) = (MaYb))soﬁ(W(laYb))hard"' @ A2

) . (49

B. Perturbative calculations in the soft sector

The arbitrariness of the dividing scale calls for a renormal- We begin our considerations surrounding the soft part of
ization group running which will lead to our final expression the amplitude by displaying its perturbative expression, to
for W) and, by extension, for the amplitude. The manner©(g?), which reads

in which this strategy will be effected is the subject of con-

cern in the present subsection.

Let us start by recalling our discussion in Sec. IIB ac- 8rhjs is not a novel idea. For example, in the Bloch-Nordsieck
cording to which, given theécusped line configurations for  approximation[37], which describes the soft limit of QED, one
each of the two colliding particles, soft gluons correspond tajiscovers anomalous dimensidi8] which lead to the proper form
what is emitted or absorbed by the straight line segm@mts  of the full fermion propagator in the IR. The point is that, from the
impulse approximation In this soft sector of the full theory perspective of the IR cutofk, the upper momentum scaf@ ap-
one determines anomalous dimensions associated with itears as infinite.

016003-9
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[(Wl)soﬂ];ij,,=5”r5“-r+(ig)20,:5”15”,[ZJ:dTJ’:dT’DﬂTul—T’U1|)+f:dTJ’:dT’uluiD(hul-l-T’Ui|)
f dTJ dr'uusD (| U+ 7' uj|) ] |g)2t”,tJJ {J':drf:dr’D(|rui—r’u2|)
+f:dTJ:dT/D(|TUi+ T’u2|)+fowdrfowdr’uluéD(|Tul+ 7'uy|)

+f drf d7'ujusD(|Tui—7'udl) | +O(gh (48)
0 0

with D(|x|) given by Eq.(22) (we have suppressed theargument for simplicity.
We determine

© 1 [(u\4P D\ 1 Vi—w?
d f d7'D(|7u;+7'u :—<—) 21“(2——) arct , 49
fo T o T (l'T 1T 7T 2|) (477)D/2 N 2 1—W2 g W ( )
wherew=u,u, and
© (e 1 [(u\*P D\ 1 | J1—w?2
d j d7'D(|ru;—7'u =—(—) 2I‘(2——>— —arct . 50
fo ), 97 (|7us=7"ua)) (4m)P2\ X 2 1_W2_7T 9w (50

The above relations together with B§) give, upon transcription to Minkowski space,

2 2
. g [ m F(l :
[(W)sorlij = i 85 — 472\ 2 {CF5H'5“ (71r cothy1y — 1) +t7,t5, [(i = y10) cothyso+ y1o cothysp ]}
+0(g%), (51)
|
where cothy; = @m?)p; p; and where we have taken into Ajo= (i 7— y1,) cothy o+ v1 COthy; . (55
account thaty{,=1y112/, Y12=7Y1/2, due to momentum
conservation.
For the corresponding invariant quantitég®® we find We now bring into play the quantitﬁ/(Wz)Soﬁ]}ij’, given
by
(Wl ) sof=N? 1__ In( )An}
N Lagrowd 62 (W = Porpia | dmuacruy
and

+igf0 drusA(7uy)

64 M ij’
(\Aﬁf’))sofN[l— —n (X)All} 0
XP ex;{ ig f d7ru,A(7uUy)

o
N2 (% AptO(ad), (53 )
—I—igj dru;A(7uy) (56)
where 0 il A
A11=2C¢(y1r cothyyp —1)
1 . which mixes with[(Wl)soﬂ]ijijl, under the renormalization
— N L0 7= 719 cothysot iz cothysa ] (54 group. The relevant configuration is depicted in Figh)5
Similar considerations to those that led to E§1) now
and give (in Minkowski space
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€

2 2

g” [ m

[(Wz)soft];; |] ]' m;

I'(1+e)
X

{Cedijr Gjir (y12 cothys» —1)

‘Hia} ,tﬁ [(i7— 19 cothyyp+ y1pr cothyyy ]}
+0(g"). (57
The corresponding invariant quantitied/¢) .« turn out to
be
as (u
(W(Za))soft: - Nz;s In (X) Ay

+N

+0(a?) (59

a e
1—f|n(X)A22

and
(W) o= — N—In( Ayt N2 1— —|n< )Azz}
+0(a?), (59)
where
A= (im— y12) cothyso+ y11 cothyyy (60)
and
A2=2Cg(y12 COthy 1 —1)
1
- N[(I m— y1p) COthy o+ y1p cothy /] (61

With the above results in place, we are ready to apply the
renormalization group analysis for the fixed angle scattering

PHYSICAL REVIEW 39 016003

The boundary conditions for solving the RG equation are
chosen so that no structure is seen at momentum scales be-
low the IR cutoffi:

W) N® /(D) N
Wsoﬂl,u:)\: N/ Wsohl,u:)\: N2/ (65)
The solution has the general form
~ d
VV(s'o)fr(M/)\)=Pexr{ A : TT DI Gn1). (66)

In the asymptotic regime of interest we determine

Q2
In( 2 )
(67)

2m m

s 2Q2
V1= cosh‘1<—2— 1) =cosh‘1<%+1

and, in a similar fashion,

2Q?
’yllr = In _2
m

2Q?
’)/12/ = In _2
m

Taking the above into account and following the proce-
dure exhibited in the Appendix we arrive at the asymptotic,
ass,|t|—« at fixed ratio, results in

+ In(sirfe),

+ In( cos?6). (68)

amplitute. The relevant presentation will be given in the next

subsection.

C. Renormalization group running and Sudakov behavior

Our perturbative results, t&(as), of the previous sub-

section lead to a LLA for W{*?)) via the renormalization
group (RG) equation

J 0\~ . Qo — .
(M@JFB(Q)@)W(SQ&:_;SAW(SQW i=a,b, (62
where
wy)
vvg'gﬁ—( ) (63)
(i)
W2 soft
and
~ (A AlZ)
(64)
(AZl A22

a 2Q%\ (rdT ag(7)
(W(l ))soft: N2exr{ —2cgIn (F) :77 aﬂ_T
2Q?
X4ceIn (W) d1(u/\,0) (69
and
2Q?\ (#d7 ag(7)
(WD) o= Nexp[ 20pln< > ) :Tfa;
2Q?
X4cgIn (F) d1(u/N,0), (70)

where the functiong,(u/\,6) is defined in the Appendix,
along with a functiong,(u/\, 68) which does not appear in
the above expressions since its role is inconsequential to our
considerations. Note that () (W) ¢or= (W) gt

The resulting expression for the amplitude is

Q? g)
m2'\)’

(71)

[(Wl)soft]}ij,r:

F soft

N
8181+ ——— 81 S
N2—1

where
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Q2 2Q? 2Q? line configurations, which make the difference between the
Fsoft(m7 )\) 4ceIn (Ez_) EXF{ 2ceIn (W_) connected and disconnected expressions, will each provide
similarly suppressing Sudakov form factors. Finally, particle
exchange in the final states, which cannotaeriori ex-
$1(uIN,0). (72 cluded from consideration in the fixed angle case, simply
permutes thes with the t variable without affecting our re-
According, now, to the guidelines set by our discussion ipsults. Lgt us also note, on the. technical front, that our final
Sec. Il A we proceed to determine that expressions contain nonleading terms whose assessment
should provide interesting new information. From a physical

//-dT as( 7)

N T

2Q?\ (rdT ag(T) 1 standpoint the message to be drawn from the Sudakov be-
(Wll))soft_ 2ceIn ) f - o2 havior that has been extracted for the fixed angle amplitude
dinQ?® vromo InQ he standard realization that the | h
(73 amounts to the standard realization that the larger the mo-
mentum transfer between the colliding particles the smaller
whereupon, with the aid of Eq47), we deduce the probability for the process to remain exclusive.
d 0 W) 74
ding dinQ? N (W1")harg= as(M) (74) IV. CONCLUDING REMARKS
The worldline casting of gauge theories with spin-1/2
or matter fields has as its basic feature the space-time setting
Qldr a (T) within wh_ich physical qu_antities are de_scribed. Both particle
In(W(li))hard: _2CFJ @s +R[ag(Q)]. propagation and dynamics, the latter in the form of Wilson
dInQ? © K3 lines, are embodied in space-time paths. Generically, of

(75  course, all possible contours enter the path integral. By re-
stricting ourselves to paths that are straight almost every-
where, we were able to achieve a sharp factorization of a

2d7 ag(7) soft, relevant to the process, sectdrthe fundamental field
(i) — M S .
> In(W;}’)= ZCFI — theoretical level

The above result when put together with E@3) gives

din \e2r For the case where no cusps, to break the straight con-
o2dr a ( 7 tours, are present we are dealing with situations where the no

— CFf e +R[ay(Q)], impulse approximation holds throug_hout, equivalently the

© “soft” subsector represents the full field theory. Neverthe-

(76) less, it is possible to determine anomalous dimensions gov-
erning processes in this domain, an occurrence which reflects
the fact that from the viewpoint of the IR cutaff the “up-

2 per roof” A of the soft subsector appears to be infinite. For

} the four-point, forward scattering process considered in this

77 paper _the_ corresponding RG considerations led to gluon
Reggeization.

which leads to

. 2d
W&I)Zﬁ[aS(Qz)]eXF{_ZCFJQZ 2_: a’s(T)
M

w T

But For processes in which cusped configurations make their
5 entrance a non-negligible momentum transfer takes place on

5 J’de_T ag(7) Q7 the basis of a sudden impulse approximation. This time the
F 227w T RG running acquires the standard interpretation of a factor-
ization between soft and hard physics, within the isolated,

4ce Q? Q? Q A2 with respect to the considered energy range, subtheory. This

=By | (AZ) In In (AZ) In (AZ) In In (A_) situation is analogous to the operator product expansion that

separates Wilson coefficienthard factors from operator

Q? expectation valuegsoft factors. In the fixed angle scattering
In (P) ' (78) regime that we considered in Sec. lll, the end result was the
A emergence of Sudakov behavior for the amplitude.
which explicitly exhibits Sudakov behavior for th\A/(l') We hope to have sufficiently illustrated the efficiency by
through its leading terri36]. which the factorization of soft physics can be attained within

Some comments are in order at this point. Beginning withthe worldline casting of non-Abelian gauge theories. Mor-
technical issues, let us first notice that, in the asymptoti@ver, once familiarization with computational methodology
regime under consideratio®WV{®~W.") . This means that and procedure is acquired, one realizes that the worldline

the Sudakov behawor of thW(') passes on to the full ex- handling of soft subsectors involves more or less similar

ression forW) . Moreover, nothm chanaes if one qoes mathematical expressions, irrespective of the process one
P 1 9 9 9 studies. Thus, along with the conceptual simplicity regarding

to the corresponding quantltyEg) i associated with the the factorization strategy there are additional advantages, of
connected four-point function smce the two disjoint cuspedpractical nature, to the proposed approach as well.
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Clearly, the results we have exhibited are validapA).

In the OPE language this amounts to leading twist. Nonlead-
ing contributions are lurking in our expressions and we in-
tend to study their implications in future work. More inter-
esting is the question concerning the relation between the
factorization advocated in this paper and the standard factor-

PHYSICAL REVIEW 39 016003

0

Ap=im+ In 0032§>, (A7)
. .0
Ay=im+ In S|n2§),

ization widely discussed in the literature with basic reliance

on Feynman diagrammatic logic, especially in connection
with exclusive processes. We intend to report on this issue in

a forthcoming paper.

APPENDIX

We trace the steps which take us from E66) to Egs.
(69) and (70). We define

B(R)= i vwdT ag(T) AL
(A)=expg — T | (A1)
whereA stands for the X 2 matrix given by Eq(64).
The following identity holds:
EA ——A+_A6A A- _ACA
( )—A+_A7 (A-)— A —A_ (Ay)
I A, C(A_)-A_C(A
— 5 A [ACA)-A LA
A ! C(A;)-C(A A2
+A+——A_[(+)_(‘)]' (A2)
whereA. are the eigenvalues .
We write
C(A)1=X+YA;, C(A)p=YAp,, (A3)
where
XEH[A+C(A—)—A—C(A+)],
YEA+_—A_[C(A+)—C(A—)]- (A4)
It follows from Eq. (66) in the text, that
(WE) o= N?X+ Y N(NAqs + Agp) (A5)
and
(W) sor= NX+ Y N(A 1+ NA). (AB)

Referring to Eqgs.(54), (55), (60), (61) in the text and
taking into account the asymptotic conditiof@), (68) we
determine

2Q? 0
A11=2cg In(g2 +2¢¢ In sinz—)
m 2

1 | 20 i

_N n{ cos E —W,

2 2
A2222C|: In (%
m

1I 0 i
—N n| sin E —W.

6
+2¢¢ In ( coszz)

We thereby obtain

Q2

1 | 1 . i
| Ce o) N ZSiN0) —

1\/’\'2'1' 4m+ dimsin| 2sin
*3 n 4sm0 7+ 417 Sin Zsm .

(A8)

Ar=2cg In

Substituting into the expressions frandY we find
2 2
X=ex;{ Zcpln( Q )

m?

2Q?

vd7 ag(T)

AN T T

and
F{ (2Q2> F—dTa’s(T)
Y=expg —2cgIn| — (1IN, 0),
m N T
(A10)
where
#dT ay(T)
BauI, a)—C - exp( rdred )
—exp( f vdr a T)) (A11)
and
1 wd7 ag(T)
¢2(M/)\,9)EC+TC+ex;{ c. JT)
F{ MdT aS(T)H
—C_ex . (A12)

Substituting into the relations giving the/\&(f))soﬁ and
keeping only theQ?-dependent part of the resulting expres-
sions we finally arrive at Eq$69) and(70) given in the text.
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