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In this paper(the second in the serigswve study the properties of the tree-level binary amplitudes of the
infinite-component effective field theory of strong interactions obeying the requirements of quark-hadron
duality and maximal analyticity. In contrast with the previous paper, here we derive the results following from
less restrictive — Regge-like — boundedness conditions. We develop the technique of Cauchy’s forms in two
variables and show the stringlike structure of the theory. Next, we derive the full set of bootstrap constraints for
the resonance parameters in thg ) system. A numerical test show®) these constraints are consistent with
data on well-established vector resonances, (@nhdwo light broad resonances - and xk — are needed to
saturate the sum rules following from chiral symmetry and analyticity. This latter term is understood — in the
customary field-theoretical sense — as meromorphy and polynomial boundedness of the tree-level amplitudes.
As a by-product, we obtain expressions for the parameters of chiral expansions and give corresponding
estimates[S0556-282(98)10421-4

PACS numbses): 11.55.Bq, 11.30.Rd, 14.40.Ev

[. INTRODUCTION the essence of the actual physical problem which general
solution this paper is devoted to. Besides, we explain also the
In a previous paper by one of {i§], it was shown that the constructive formulation of the maximal analyticity principle
requirements of meromorphy and polynomial boundedneswhich plays a key role in our approach. Section Il is the
applied to the most general form of tree-level amplitude of acentral one: here we give the general outline of the math-
given binary process give rise to a certain infinite system ofmatical tool specially constructed to work with meromor-
constraints for coupling constants and particle masses. Alsphic functions of two(and mor¢ variables with fiberwise
it was pointed out that those constraints realize the so-callegiven asymptotics. If1] it is shown that our approach gives
bootstrap conditions which — in turn — mirror the dual rise to certain duality properties, therefore, in Sec. IV we
properties of hadronic amplitudes. consider the widely known example of the dystring) am-
Some of the bootstrap conditions for the,K) scattering plitude constructed from a singl® function. This analysis
amplitude derived in Ref[1] can be checked numerically allows us to point out some particular suggestions implicitly
because the modern experimental data provide the necess&gntained in conventional dual hadron amplitudes. In Sec. V
values for the masses and coupling constants. Since the cowe apply the developed technique to derive the set of boot-
ditions in question take a form of rapidly converging sumstrap constraints for the parameters ofK) amplitude, this
rules (SR), one can select for a numerical check those SFset basing on weaker suggestiofgompared to those ac-
which can be saturategvith sufficient accuracyby the con-  cepted in[1]) about the asymptotics of inelastic channel. In
tributions of a few of the lightest resonances. contrast with[1], we show here the explicit form of gener-
After checking several SRs, we have recognized the presiting functions allowing us to write dowfin Sec. V) sev-
ence of systematical discrepancies between their left- ang@ral rapidly converging bootstrap conditiorisum ruleg
right-hand sideSRHS); these discrepancies can hardly bewhich can be easily checked with the help of known data on
explained by an incompleteness of the modern database. Tis@ectrum parameters. After the checking of the SR validity,
point is that — roughly speaking — our analysis has showrin Sec. VII we derive explicit expressions for low-energy
that the relative magnitude of the two most significant con{arameters and compute the corresponding numerical values.
tributions (those ofp- and K*-mesons following from the ~ Besides, we show that our SR require the existence of light
SR derived if 1] were inconsistent with the well-established scalar resonances with isospihs 0,1/2 and estimate their
values of the corresponding masses and coupling constantarameters. At last, Sec. VIl is devoted to the discussion of
This observation shows that the system of postulates adhe results obtained. The Appendix contains the necessary
cepted in[1] is inconsistent with the physical reality and, formulas and relations.
hence, it must be reconsidered. This is done in a given paper.
It is shown that replacement of the decreasing asymptotics
requirement for the inelastic channel amplitude by the Regge
conditions results in a new system of bootstrap constraints First of all, we would like to recall the essence of the
which is quite reasonable from the phenomenological poinproblem which stimulated us to begin a systematic study of
of view. the properties of tree-level amplitudes in a framework of
The paper is organized as follows. In Sec. Il we explaineffective field theory approach. This is the widely discussed
problem of low-energy coefficienteLEC’s) appearing in
chiral expansiond2-4] (the excellent discussion can be
*Electronic address: vww@av2467.spb.edu found in [5]). Those coefficients cannot be fixed with the

II. PRELIMINARY NOTES
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help of the symmetry constraints, since they are nothing, buseparate degree of freedom, the analytical structure of the
coupling constants corresponding to various invariant interlowest-order amplitudes becomes simple, the photon-photon
action Lagrangians. The number of LEC’s very rapidly in- scattering appearing as one of the higher-order processes.
creases with the expansion order. This very circumstance An extremely interesting analysis of the similar effect in a
creates a problem because it reduces to zero the predictifmmework of “toy-theory” — the quark-level linear
power of chiral perturbation theoChPT) in higher orders. o-model — has been implemented in the recent p&per
That is why it would be very interesting to find a way allow- The authors show that the double counting problappear-
ing one to fix the LEC's or, at least, to restrict their values.ing due to dynamically generated additional sgalen be
Clearly, to solve this problem, we have to take account okolved using the compositeness conditieee Chapter 10 in
certain new principles. It would be best if we take advantag¢5]), the result providing a natural self-consistent field-
of the principles which are no less general than those used diseoretic interpretation in terms eftherelementary particle
the basis for the effective theory. or the bound state.
Following [1], we study here the possibility to attract for ~ Now, let us come back to the tree-level amplituydg To
this purpose the suitably formulated old good principle offix its singular structure, we can rely on the hypothesis of
maximal analyticity along with the polynomial boundednessquark-hadron duality which says that the full set of colorless
requirement for tree-level amplitudéirst suggested inf6]; quark-gluon states is equal to the full set of hadronic states.
see alsqd7]). Some argument&@s well as the corresponding This can be also formulated as follows: the functional inte-
list of referencepin favor of the latter requirement are given gral for Smatrix in QCD can be identically rewritten in
in [1]. Thus, we need to explain here in more detail both theerms of hadronic fields. Leaning upon this statement, one
motivation and the exact formulation of the maximal analy-concludes that the singular structure of tree-level amplitude
ticity principle. The best way to do this is to consider the (1) is completely determined by the contributions of relevant
simple example: the low-energy elastic scattering of twoone-particle hadronic states. In other words, the quark-
identical pseudoscalar particles with the massm,, where  hadron duality together with the maximal analyticity prin-
m, stands for the mass of the lightest allowed resonance. Iniple require of the tree-level amplitude of a given binary
this case, the low-energy effective tree-level amplitude takeprocess to be a meromorphic function of thidependent
a form Mandelstam variables, the only allowed singularities being
just simple poles and the ambiguity poirftee Sec. Il be-
o low).
A(S,WZUZK ajjs U’ 1) The above reasoning allows us to avoid the refereeing to
o the largeN, limit of QCD (cf. with [9]). Moreover, it allows
Here summation in,j k is infinite by the very meaning of ©One to reduce the very difficuffrom the purely phenomeno-
the term “effective,” a;;, is completely symmetric in its |0gical point of view problem of LEC's to the problem of
indices and the problem of LEC's is precisely thatagf; . spectrum parameters — on-shell triple couplings and masses
To the first glance, these constants seem to be free parar{rﬁee[l])-
eters of our effective theory. However, this — widely be-
lieved — point of view is not quite correct. Below, we dem- . CAUCHY’S FORM IN THE CASE
onstrate that certain limitations on the valuesagf follow OF TWO VARIABLES

directly from the natural requirements of analyticity. The main tool used ifi1] to carry out the analytic con-

SrT|1-|aet:§< |;thlzo|c;ertr|]r;enr]1(talto :ﬁgari;;fnglf ;r:]zlbgi;f prrllr;glp IIZ S I?ftinuation, connecting the direct- and cross-channel tree-level
Y Y yuctty p pie. amplitudes, is based on the Mittag-Leffler theorem in its con-

says, that the only singularities of a given process amp”tUdgtructive form provided by the Cauchy method. This method
are those required by the unitarity relation. In the framework ‘

£ field th h thi lation i i allows one to write down a general expressigvhich we
of e d.t eory approac ’.t Is relation IS realized perturba-ca" below as Cauchy’s forjrfor the polynomially bounded
tively via the loop expansion scheme. This scheme automatlr-neromOrphiC functiorf(z) of one complex variable, with
cally generates athecessangingularities required by unitar- iven polesp, (n=1 ), corresponding princi ie arts
ity. Besides, it might develop also theanecessargingular 9 P Pn v >SP g principle p

structures if the corresponding terms are contained in thg”(z) and the degredl of bounding polynomial. This ex-

: ression reads
tree-level amplitudes. P

Thus we conclude that, to avoid a contradiction with the N o
maximal analyticity principle, one has to take the tree-level f(z)=> —fM0)2"+ > [9,(2-hN(2)]. (2
amplitudes as regular as possible. n=o n! p=1 " P

Clearly, the singular structure of tree-level amplitudes is a
matter of model. The effective amplitude of the elasticHere
photon-photon scattering provides an example when this N (n)
structure is very complicated. However, it is well known that hN(z)=S gp (0)
this feature is uniquely connected with the existence of an p o n!
electron which — together with a photon — has to be taken
into account when constructing the full system of states irare the so-called correcting polynomials needed to ensure the
QED. If the electron field is included in the Lagrangian as aconvergence of the infinite sum of pole contributions. It is

Zﬂ
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t only simple poles in each variable; they have no poles in
both variables simultaneously; they have no fixee., inde-
13 pendent ofx) poles inv; only moving poles of the form
o o o--O & & V_X:Qi' V+X:_QI (3)
3 efe e o3 with
"+ + o+ 5 0<Qi<Qiiq (I:1,2,)
1 T are allowed; in the variablg, they have both moving poles
5 + of the form (3) and fixed poles at the points

x=M? (i=12,..)),

where

FIG. 1. Stringlike amplitud€10): locations of ambiguity points.
O — first series,+ — second seriesp — superposition of two
series(so-called “Odorico zeros).

0<MZ<M?, ..

Nevertheless, it should be noted that the analysis of more
involved cases creates no difficulties.

To construct the generalized Cauchy formiir(at fixed
X), we need to know asymptotics tfv,x) at largev. Since
it might depend orx, we have to consider the ratio

implied that f(0) is regular, otherwise, the corresponding
principal partgy(z) should be added to the right-hand side of
Eq. (2).

A rigorous proof of the form(2) can be found in text-
books on complex analysisee, e.9[10,11]). However, in
our work we use the generalized version of E).allowing
one to consider meromorphic functions of two complex vari-
ables ,x). As far as we know, such a form could hardly be . )
found in the literature. Therefore, it makes sense to give her@t large v. In the most interesting for us case, when the
a sketch of the proof of the generalized version of E).  Regge asymptotic condition is imposéske[1])
most suitable for our needs. Later on, we imply that the D(x)=a+ Bx
reader is familiar with the case of one complex variable. '

First of all, we would like to remind the reader, that every | et ys introduce the step function
meromorphic function of twgand morg complex variables
f(z1,2z,) has two different kinds of singularities: poles and N,=E[D(x)]+1,

the ambiguity points. The last term can be best explained by ) )
the following example. Consider whereE[y] stands for the maximal integer less or equaj.to

This allows one to draw on the conventional definition of
Z; polynomial boundednes&ee, e.g[10,11)). Indeed, let us
f(z1,22)= 2z consider reak from a small interva[a,b] such that

f(v,x)
D)

This is a meromorphic function, its polar set being the hy- Na=Nx=Np=N.
perplane £;,0) except the point (0,0) which is precisely the
ambiguity point. The value of(z,,z,) at this point depends
of the path chosen to reach it. For example,

We say that the meromorphic functidiiv,x) is polynomi-
ally bounded inv in the band
lim  lim f(z3,2,)=0, Bi{lv|<e.xe[a,b]},

—0 —0 . . _ . C s
KR if there is a finite integeN and infinite system of smooth

while contours C, (circles with the radii R,1;>R,, p
=1,2,...) in thecomplexw plane such that
lim lim f(zy,z,) =00.

z7—0 z,—0 f(le)‘ p—o
. . . . max o1 | =Mp 0. (4)
A less trivial example is provided by Fig. 1 where we show xelabl; veCyl ¥ ‘
the geography of the ambiguity points corresponding to the
stringlike amplitude(10) considered in Sec. IV below. The minimal N providing the correctness of the uniforgim

In order to avoid unnecessary complications which havex) estimate(4) we call as the degree of bounding polynomial
nothing to do with the field-theoretical problems consideredn B,. This definition is equally applied for both increasing
in our paper, belowexcept Sec. Y, we concentrate solely and decreasing asymptotids,taking thenegativevalues in
on a consideration of the narrow class of meromorphic functhe latter case. The vallé< —1 corresponds to the super-
tions f(v,x) satisfying the following conditions: They have convergent asymptotic behavior.
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It is important to stress that we consider the rajjito be F(X)
independent ok. With the above definition in hand, we can S,= - (7
immediately write down the generalized Cauchy form for the m Pr(X)
meromorphic functiorf(»,x), polynomially boundedwith ) - )
the degreeN) in the bandB, . It looks as follows with n=N+1,... N converges and, hence, it can be
summed independently. It is easy to show that
N (k)
f(v,x)= > imyk 1 " (v,X) -
So Kb gk s.nerT =0 (n=N+1,...N). (8
. 14
v_0
rm(x) (N) -
+mz:1 ( V= Pm(X) A (V'X))' ® This, in turn, means that each unnecessarily high degree of
taken into account in the correcting polynomihlﬁ‘)(v,x) is
where effectively cancelled by the corresponding item appearing
N ‘ simultaneously in the first — regular in— term of Eq.(5).
hN(p,x) = — Mm(X) ( v ) Thus, we conclude that the Cauchy fo(B) presents a well-
Pm(X)iE0 \ pm(X) defined rigid construction allowing no twofold interpretation.

(5) With the properly chosen functions(x) and p;(x),
The proof is based on a consideration of the followingone can secure the convergence of the séifegven forn

contour integral in the complex-plane: <N. However, this does not mean that the equal8y is
also valid forn<N+ 1. The minimality of the declared de-
VARES {63 greeN of a bounding polynomial corresponds to the neces-
(v, X,N)= o c, N (z—v) dz sary presence af" either in the regular term in E5) or in

correcting polynomials or in both terms simultaneously. In
&ther words, thectual presence oM in Eq. (5) mirrors the
asymptotic behavior of the type

f(v,x)~|v|P™ 9

Exactly as in the case of one variable, it can be shown that
every fixedxe[a,b]

51 dME0x)
f(v.x) :Z Kk v with N<SD(x)<N+1 .
There is an important exception to the above formulated
P Fm(X) N) rule, this exception being connected solely with our special
21 () —h(v,x) | + 152, x,N). choice of the system of contou@, which we took symmet-
B m ric with respect to the origin of the complexplane. This
(6) choice results in a particular method of summation in Eg.
(5): each item of the sum over poles contains the contribu-
Taking the limitp—co and using the conditiofd), one de-  tjons of all the poles with the same value|pf|. In the case
rives from Eq.(6) the desired fornt5) expressing the func- \whenf(»,x) is odd (even in v, the correcting polynomials
tion f(»,x) of one complex ¢) and one realx) variable in  are also oddeven. The same is true with respect to the

the bandB, as an expansion in its poles in regular term. Thus, in this particular case, the correcting
~ From the given above sketch, one can derive the followpolynomials of the degred ensure the convergence of the
ing conclusions. partial fraction expansio(b) for the asymptotic low9) with

(1) Each item of the infinite sum in E(ﬂS) combines the D<N+2, the presence OfVN Corresponding to the
contributions from all the poles confined betweggn_, and asymptotic behaviof9) with N<D<N+2.
Cp, i.e., from those with (6) If the uniform inx estimate(4) is valid for xe[a,b]
with N;#N,, one can use the Cauchy for(B) with N
=maxXN,,Np} to present the functiof(v,x) in the bandB,,.

The usefulness of the technique developed in this section
'i§ explained by the fact that meromorphic functions with
fiberwise given Regge asymptotics appear naturally in the
framework of effective hadron field theory. This very tech-
nigue (first suggested ifl]) is used throughout the remain-
ing part of our paper.

Rin-1=<|Pm(X)| <Rp.

Otherwise, the convergence of the summation procedure
not guaranteed.

(2) At any xe[a,b], the partial fraction expansio(b)
converges uniformly everywhere in the complexlane ex-
cept the small open vicinities of poles.

(3) At any fixed v, the form (5) in the bandB, can be
equally treated as the uniformlyn x) convergent series of

(analytig functions ofx. This property makes the expansion IV. STRING AMPLITUDES AND BACKGROUND

(5) a useful tool to carry out the analytic continuationxin INTERACTIONS

(4) The form (5) certainly remains valid if the minimal  The results of the previous section allow us to argue that
degreeN is changed for any intege>N. In this case, (a) every polynomially bounded meromorphic function
however, each of the series f(v,x) can be presented in a form of the convergent series
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over its poles inv at those values aof which correspond to *
the decreasing asymptotic behavioriinwe mean the con- HEO On(s,0)
tour asymptotics and(b) on the contrary, at thosewhich

correspond to a constant or increasing asymptoties iilone  diverges at every point of the complexplane. Thus we
of such functions admit a representation constructed solel¥gnclude that, in complete accordance with the staterBent
of the pole contributions: the appearance of “background” gpove, the dual amplitudd0) att=0 along with the singu-
terms(polynomials inv with coefficients depending ax) is  |ar part(the sum of pole contributionsontains also certain
inevitable in this case. regular terms. It is not difficult to write down the correspond-

In the light of these statements, it is extremely instructivejng convergent expansion. Bearing in mind t#g0,0)=0,
to analyze the structure of the famous Veneziano aid@lz  \ve have(see Sec. Ik

based orB-functions which are widely believed to be con-

structed solely from resonancéer the review, se¢l3]). By rn(0) ra(0)

way of illustration, we consider the simplest duar, the A(s,0)= Z s—(n+1/2 (n+12)]" (14
same, stringamplitude without tachyon: n=0

o

A _ _ Coa It can be easily shown that the serigisl) converges uni-
A =[1=ay(s)— ay(D]B{1-ay(s); 1 al(t)}'lo) formly and absolutely everywhere in the compkeyplane
except small open vicinities of poles. This follows from the

It is implied that kinematical variables are chosen such tha@Psolute convergence of the series

1 SO0 &
ay(X)= 5 +x. 2 (n+ 1/2)2_n20 o

Figure 1 shows the disposition of ambiguity points of the latter, in turn, can be shown with the help of Gauss's test

A(s,t); note, that it reflects the space fibering structure cor-

responding to the asymptotic behavior. 14 é+o(i)
Since the pomeron contribution is not an issue here, one n n2/’

can consideA(s,t) as the amplitude of the process =

—a~ 7. Let us study the structure &f(s,t) att=0. Inthis  because in our cask= —3/2<—1.

case the actudradia) asymptotic behavior for ag# 0 fol- The similar analysis foA(s, — 1) shows that the series of

lows the Regge lowA(s,0) ~ s¥?which is also true with  principal parts

respect to behavior on the system of circlés with R,

=n. Hence, according to the results of Sec. lll, the mean- ra(—1)

ingful partial fraction expansion fok(s,0) cannot be written A(s,—1)= nZO s—(nt12)’ (15

without introducing background terms of zeroth orderin -

Let us check this point. For this we need to know the prin-ynhere

cipal partsg,(s,0) at the poles:

an+1
a‘n

©

(2n—1)N

pn=n+§, n=0,1,.... (11 n! 2n+!
converges by itself(also uniformly and absolutelyand,
hence, there is no necessity to take account of any
background terms associated with the correcting polynomi-
als. This is precisely the result which one would expect

I'(—s) in accordance with the known asymptotic behavior

, , _ A(s,—1)~s Y2 It provides an illustration to the statement

and using the well-known formulas fr function, we obtain 5

To fill a gap betweent=0 andt=—1 in the above rea-

Rewriting Eq.(10) in the form

A(s,0) = \/;w

0.(5.0)= rn(0) (12) soning, we need to account for the explicit dependence of
T s—(n+1/2)° ro(t) andA(0;t) of the variablet. In the case under consid-
eration, this can be easily done because we can take advan-
where tage of the relation
(2n+1)!! F(2T(a+1l) <« (-1)"
0)=——. 13 — = = _
rn(0) T (13 F(z+a) HZO a@-1)

From Egs.(12) and (13), it follows immediately that the

1
formal sum of principal part§‘nothing else, but polesy x(a=2)...(a=n)

z+n’
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which is valid fora>0. Transforming the left-hand side

I'(zl'(a+1) (z+a) I'(z)['(a+2)
I'(zta) (a+1) I'(z+ta+1)
and taking
1 1
a——z—t, z=5-5,
one obtains
S [ In®) | ra(®
b=2, (s Pn ' Pn +u”(t))' (19

Herep, are defined in Eq(11),

1 3 ( 1)
(=g 5+t 5+t (k5]
and
Up(t)=—2t,
t (1/2+t)(3/2+1) .. .[(n—1/2)+1]
U= (n+12) ’
(n=1,2,...).

The expressiolil6) applies for

7

t<+1
5

To put it into Cauchy’s form, we note that the series

s}

>

n=0

up(t) (18

PHYSICAL REVIEW D 59 016002

from a4(t)=0 to a,(t)<0. It can be easily shown that &t
< —1/2 the serie$20) converges, the summation giving the
result[cf. with Eq. (8)]
- 1
E .

Thus, in complete accordance with the general scheme
discussed above(see Sec. I, we conclude that at
t<—1/2, the amplitudé10) admits a representation

n(t)

- _T(12r(1/2-1)
O) TR AT
Z (®) I'(—t) (

0

A(st=2

(21)

constructed solely from the resonance contributiong;=at
—1 this form coincides with(15). The expression(2l) is
often used in the literature to show the physical content of
the string amplitud€10).

The important conclusion to be drawn from the above
analysis is that the conventional ddatring) models of had-
rons are based on three rather different general postulates, to
say nothing about suggestions of a particular nature. First,
they take advantage of the crossing symmetry requirement.
Second, they are rested on certain analyticity conditions,
namely, those of meromorphy and polynomial boundedness.
Third, they imply — though in a highly latent form — a
particular suggestion about tlienique connection between
the direct channel spectrum parameters and the pointlike
(backgroundl interactions, this connection explicitly reveal-
ing only in the band of the momentum transfeorrespond-
ing to ¢,(0)=0.

The two first postulates are quite general, whereas the
third one is nothing, but an artifact of the ansatz base®on
functions. Thus it looks reasonable to consider a theory
which is free of any particular suggestions about the struc-
ture of pointlike vertices. This is precisely the way which we
follow here.

under the conditioril7) converges by itself and, hence, can V. BOOTSTRAP EQUATIONS FOR THE PARAMETERS

be summed independently. The resulting expression for the

amplitudeA(s,t) reads

r(1/2r (1/2 t)

T(— é(

A(st)=

n(t) rn(t)>

S—Pn Pn
(19

This is precisely the desired Cauchy’s form valid for ¢z

t<+1/2. Itis easy to check that &+ 0, the expressiofil9)
coincides with Eq(15). In contrast with Eq(18), the series
of correcting polynomials

20
2 . (20)

nZO hO(t)=

diverges at>—1/2 and could not be summed separately.

Now we can trace in more detail what happens with Eq.vs=

(19 whent crosses the boundary valtie — 1/2 correspond-
ing to the change of the asymptotic regimés,t) ~ st

OF (#,K) RESONANCES

Let us now turn to a consideration ofr(K) processes.
Unlike [1], here we are interested mostly in derivation of the
complete set of bootstrap constraints. For this we use the
Cauchy forms in the band3;, B; andB, corresponding to
three cross-conjugated channels. In contrast With we
write those forms in terms of independent pairs of kinemati-
variables {v,,x} (x=s,t,u) and impose more
realistic — Regge — asymptotic requirements. Since the
logical scheme, compared to that described1ih) remains
unchanged, we omit unnecessary comments. The summary
of relevant formulas and notations, along with detailed ex-
planation of the meaning of summation symbols appearing
below, is given in the AppendiXsee also[1]). Figure 2
shows the geography of banBs and domain®, .

Let us begin our analysis from the baBd. In this case
(u—t) is considered as a complex variable, while—

as a small real parametgs|~0). So, the Cauchy forrnb)

for the combination A+2B)g_with the principal parts de-
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In the latter case, no unspecified functionsaippear in the
Cauchy form because — according to E43) — the degree
of the relevant bounding polynomial is negativied= —1).
From Egs.(22) and(23), one derives

A)g =2 +2 > GyP >+2s
( )Bs_3as(s) ) (0L ] AF
« 1 1 1
ve+(s+26) 3 s+26
4 S+2s) 1
FIG. 2. Disposition of the bandB, and intersection domains - §(|:1) 17 72F Js+20
D, (x=s,t,u).
3+s
fined according to Eq¥A6) and (A7) [under the condition _2(2;4,2) GaPy| 1 2P
(A3) fixing the bounding polynomial degréé=0] reads
1 1 1
X vs—(s+20)_§ s+26)’ (24
3 +2s
(A+2B)g =ay(s)+2 >, GoP;| ———
S (1=0) 4F
and
y 1 1
vt (s+26) s+20 5 1 2 S G, S+2s| 1
( )Bs_gaS(s)—§(|=o) 0rJ T s+26
+2s
+4 2 G,P; E_ S +2s 1 2 1
=l 4F +2 > G,P; -
= 4F |\ ve+(s+26) 3 s+26
1 1 3+s 1
— +2 GyoPyl 1—
x vet(s+26) s+26 <|:21/2> w2 J( 20 [\ vs—(s+26)
+1 ! 25
2+s 3 s+26) 29

+2 > GupPyl1- S
(|:21/2) 1/2 J( 20

The similar consideration in the bar8, results in the

1 1
X(vs—(s+ 20) " s+20)" (220 expressions
Here a stands for unknown function of. Note that(as t
shown in[1]) the unphysical poles ategative s=—26 are (A)g,=ag(t)—2 > GypPyl 1+ >®
spurious because we construct Cauchy’s forms which are (1=12
valid in the bands corresponding to the momentum transfer 1 1
close to zero. x( — + ) (26)
The analogous form forA—B)g_reads n=(1+26) i+ (1+20) 1420
A—B)a =2 E G.P 3 +2s 1 t
( e~ (o) 0\ 4F vt (s+206) (B)B‘:_z(lg'm GUZPJ(1+5
3 +2s 1 1 1
-2> G,P
&y N 4R Juet(s+20) X(Vt—(t+20) T tr20)) @
S+s 1
_4 Z Gl/ZPJ(l_ .
(1=112 2% Jvs—(s+20) Hereay(t) is another unknown function df

(23 At last, in B, one has
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1 S +2u where ¢, (u) is the third unknown function.
(A)Bu=§au(u)—2 > GoPy T The system of relation§24)—(29) exhausts constructive
(=0 potentialities of our postulates. The further progress can be
1 1 1 only based on the analysis of this system.

First, we need to specify the form of three unknown func-

X _—
vy+(u+260) 3u+20 , .
tions ag(t), ag(s) and a,(u) in terms of the resonance

4 >+2u) 1 spectrum parameters. Precisely adif, this can be done
N §(|:1) G1P; A4E |u+26 through a comparispn of th(_e pairs of relevant for_ms in the
domains of mutual intersection of the corresponding bands.
2 +u Thus we have to analyze the following conditionX (
+2 GipPj| 1= —— :
(|:21/2) 2 J( 20 =A,B):
! t 1 28 X(M/g)=X(M/ MeD¢=B;NB 30
X Vu+(u+20)+§u+20 ’ ( ) ( Bt)_ ( Bu)’ € Us= Dby us ( )
1 2 S+2u) 1
=__ Z - = X(M/g )=X(M/g), MeD=B,NBg, (31
(B)s, =~ 33 2 GoP| —3= |ii5g . : =BuNBs
2 GlpJ(E’LZ“ X(M/g)=X(M/g), MeD,=B,NB;. (32
(I=1) 4F
v 1 +E 1 23 G The analysis is simple though tedious. Therefore, we give
v,—(u+260) 3u+26 a5 Y2 here only general outline and show the final results.
To present our results in a compact form, we introduce
«p.l1- S+u 1 _E (29) three auxiliary functions depending on two real variabtes
J 20 |\ v,+(u+26) 3u+26) andv. They are the following
def Pyl (v+x—M?)/4F] P[(v+x—M?)/4F]
(X, v)=— G - G
() <|§0> ° x—M? <|§1> ! x—M?2
S Pi[1+ (v+x—260)/4D]—Py(1+x/20) Py(1+x/2D) 33
= R v—(x+26) x+20 | 33
def Pi[(2+2X)/4F]—P;[(v+x—M?2)/AF] 2 P,[(2+2X)/4F]
Vax,v)=3 (20) GO( v—(X+20) +§ X+26
. s P.[(3+2X)/4F ]+ Py (v+x—M?)/4F] 4 Py[(3+2x)/4F]
=T v—(x+26) '3 X+26
Pil1+ (v+x—=260)/4P] 2 Pj[1—(3+x)/20]
- 2 Gy > t2 ' (34)
(1=112) Xx—M 3 X+26
def P,[(2+2x)/4F] 3 42X 1 2 1
\PZ(X’”)_Z(EO) G20 _6(.21) P\ 2 Vv xr20) 3x+26
33 ¢ 2PJ[1—(E+X)/2<I>]—PJ[l—(v+x—20)/4<I>]
S Y2 v—(X+260)
2 Pj[1-(2+x)2®] Py1—(v+x—20)/4D
.2 i X<+20> ], Pl : ) ])_ 5
Xx—M
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Each of the above constructions presents well-defined ext provides the desired explicit formulas expressing the func-

pression near the poinxE0O,y=20). This is not an as-
sumption: the expressiori83)—(35) appear naturally during
the analysis of consistency requiremef@8)—(32), and their

convergency follows directly from our asymptotic condi-

tions.
Let us start the consideration from the dom&ig. The
first of the conditiong30), namely,

B/g,=Blg,
gives
a,(uU)=vyu,—v,) (U~0, v,~—20) . (36
The second independent conditi80)
(A+B)/g =(A+B)/g,
results in the equality
ay(t)=d(t,v) (t~0, v,~20). (37)

No other conclusions can be drawn from the conditi8@)
and the expression26)—(29).

Similarly, the analysis of the conditiof31) results in the
following expressions for(s) and ¢ (u) in D,

as(s)=Vy(s,—vs) (s~0, vs~—20), (38)
ay(W)=%(u,vy) (U~0, v,~20). (39)

At last, from Eq.(32) it follows that inD,
a()=®(t,—») (t~0, v~—20), (40)
ag(s)=W¥y(s,v5) (s~0, vs~20). (41)

The relations(36)—(41) are the only restrictions following
from the compatibility condition§30)—(32) for the ampli-
tudesA and B defined by the form$24)—(25) in Bg, Egs.
(26)—(27) in B, and Eqs(28)—(29) in B,,.

tions ag(t), ag(s) and a,(u) in terms of the resonance
spectrum parameters: triple couplings, and masses
M?, 2, m?.

The second group consists of infinite set of self-
consistency conditions. It reads

MTPY (X, )

_a“pqrz(x,y)/
ax<ovP [o  axkovP /o

(9k+ p+1\1, X,
9T Waxw) -0, 43)

axkavPtl /g

(9k+ p+1(I)(X, V)

axkavP*l /g

Q={x=0, v=20}, k,p=0,1.2....

These conditions follow directly from the noted above inde-
pendence ofb(x,v), ¥i(x,v) andW¥,(x,») of the second
argument and from the equivalence of E¢38) and (41).
Later on we call this property agparameterization invari-
ance(RP-invariancg The expressiong3)—(35) provide the
explicit forms of thegenerating functiondor the system
(43).

RP-invariance imposes very strong constraints on the val-
ues of spectrum parameters. Those constraints mirror the
general properties of analyticity and crossing symmetry. In
the literature, they are commonly called lzsotstrap

VI. ANALYSIS OF THE BOOTSTRAP CONSTRAINTS

It would be best if we could show the closed solution of
the system43). Unfortunately, we cannot. This is not only
connected with our inability to solve this infinite system, but
also with the obvious necessity to get a deeper understanding
of the form of each individual equation. Therefore, below we
concentrate mostly on the detailed semiphenomenological
analysis of few “lowest” equations corresponding kop
<1 in Eq.(43).

To proceed further, it is convenient to separate the restric- However, before starting this analysis, we would like to
tions (36)—(41) into two independent groups. Noting, that point out one important feature of the systé48). Using the

each of the functionag(t), ag(s), anda,(u) depends only

expressiong33)—(35) for the generating function®, ¥,

on one variable, we conclude that the dependence ofandW¥,, one can easily show that the scalar parti¢lesth

D(X,vy), ¥1(X,vy) andW¥,(x,v,) on v, is purely fictitious.
In other words, to compute the left-hand sides of E§6)—
(41), one can assign tes, v;, v, any arbitrary values from
the validity domainv,~ 20 of the forms(33)—(35).

The above note allows one to rewrite E36)—(41) in
the form of two independent systems. The first one reads

ag(t)=>(t,20),
ay(s)=Y4(s,20), (42

a,(u)="4(u,20).

with | =0 andl =1/2) do not contribute to this system at all.
Thus, no limitations on their couplings and masses follow
from Eg. (43). This feature is uniquely connected with the
local character of our consideration. We do not use any as-
sumptions about the asymptotic behavior of the amplitude
outside the narrow band corresponding to the momentum
transfer close to zero. Compared[th, we use here much
weaker(Regge asymptotic restrictions which do not require
the decreasing behavior of the amplitudes of nonexotic chan-
nels. This very reason explains the difference between the
corresponding systems of bootstrap constraints.

The above note clearly shows that — as for now — it
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would be premature to seek the general solution of the sys- TABLE |. Separate contributions df=3 mesons to SR45)
tem (43); additional information concerning the asymptotic and LEC's.
behavior at larger values of the momentum transfer should
be first taken into account. Meson  «  Kg K* K* K* Ki Kj Kj

Let us now turn to a consideration of the lowest orderMass 1.0 143 089 141 168 143 178 205
bootstrap constraint&!3). Those constraints look too bulky
to be shown here explicitly. Therefore, below we show their

RHS45 - - 240 054 131 260 0.60 0.28

form in SU®3) chiral limit m?*=w?=0. The only exception 210 133 ngo iéé %fi %)77‘:’3 271187 ?’,8677 gg
will be made for the relation 1 B D : X \ ' ' '

b, 12 055 -103 -0.22 -0.36 1.25 250 2.30

W,(0,20) =W ,(0,20) (44) by 36 018 108 003 007 017 003 0.01

ayo 54 065 1142 0.12 0.34 0.60 0.15 0.05

from the first group of the Eqe43). With the help of Egs. 5, _11 -055 352 0.06 008 1.83 1.29 057

(35 and(34), it can be written in the form a0 ~412 -147 -27.7 -1.87 -9.74 691 —6.40 3.00

G, E)
(21) ngs,... MZ23, PJ(‘“:

_ G
=12 3=12,... M=

3 3 )
Pilze| =PsD=1, Pyl 1-5z]=Py(=D=(=1),

: (49)

1P12
J 20

which is quite suitable for the numerical testitimesons
with =1, J=2k do not contribute because of the isospin
and Bose symmetry requirements

By construction(see Sec. I, we have to carry out the

and we can rewrite Eq45) as follows

G
(34525 + > > —;
(I=1)J=13,... M M2>2 GeV

summation in Eq(45) in order of increasing mass. Thus the 2Gyp,
contributions of the lightest mesons andK*) can be sepa- =(29.52.5+ >, n / , (49
rated without breaking the convergence of the remaining se- (1=123=13.... M M?>2 Gev
ries (such a trick with respect to theowest spin &1
contributions would be a mistakeThis gives where the sum in the right-hand side does not contain con-
tributions of mesons with even spins at all. Ttapproxi-
G, 2Gy+ mate equivalence of the sums in E{8) follows directly
st E (46)  from SU3) symmetry.
MLF, Micx Picx The above analysis shows that the relative magnitude of
two most significant contributions — those gf- and

where ellipses stand for the contribution due to heaviér (
=1.4 GeV) mesons. Using the experimental ddtd] and
the expressions fofF and® (see Appendixalong with the

K*-mesons — appearing in the lowest-order bootstrap con-
dition (44) (based on the Regge asymptotic requirements

SU. estimate forG proves to be quite consistent with the well-established ex-
3 P perimental data. This conclusion remains also true with re-
G 2Gus spect to the constraints of higher orders. In particular, the
i Sl (47  corresponding relation of the next — compared to Eq.
Fp  Dys (45) — order follows from the second group of bootstrap
o 5 constraints(43) at k=1, p=0. In the limit m?=u2=0, it
one obtaingin GeV ) reads
(32+£2)+---=(24x1.2+---.
The agreement does not look satisfactory. The reason be- D &[J(\Hl)—l]: D G_llz[l_(_l)J]
comes clear when we take account of the contributions due =EVE 1532 M8
to other relatively light mesons listed if14] (with
M=<2 GeV). In this case we obtain the relatidsee x[I(I+1)—-1], (49
Table )

the correctness of the relationship among the contributions of
(34.5+2.5)+ - =(29.5+2.5+ - -, mesons withl =1/2 andl=1 being obvious. However the
numerical test of the SR49) is of less interest compared to
which looks much more impressive. It is easy to understandhat of Eq.(45), since in this case the contributions of me-
that the contributions of heavy mesord £2 GeV) cannot sons withJ=2 prove to be relatively more important.

destroy the agreement. Indeed, for those mesans @1? Among the constraint&3), there are also sum rules con-
and, hence, we can use the limit=0 when computing the taining the contributions of isoscalar mesons with
corresponding terms. In this case =24, .... Forexample, the relation
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G G 2G
_IZOM_ZJ(J+1)+21M_1J(J+1):|E 1/2{[1_(_1)J]+(_1)JJ(J+1)} (50)

S M4

can be derived either from the first group of E43) at k > . > .
+p=1 or from the third one ak+p=0. A(v,t)=_2 ajv'tl, B(v,t)=_2 bj;»'t!, (53
Unfortunately, as in the case of E@9), the existing data hi=0 hi=0

on wK resonances are not sufficient for the reliable numeri-With the low-enerav coefficienta.. andb. completely de-
cal analysis of Eq(50). ay ij i pletely

. . termined by the parameteiG,, M, o appearing in the
The system of bootstrap constrairits3) is based on the . : .
Regge asymptotic requirements. It differs from the analogggt;];?d S:gezr?i];gq“l) and(52). Clearly, owing to the
gous system following from the much stronger asymptotic y y prop

conditions considered ifl]. This difference, in turn, corre- a =B =0 (i k=01 54
sponds to different forms of the functia(t) appearing in ey M2k U, e ®4
the expressiori26) for the amplitude of elastierK scatter- Here it is pertinent to point out the important structure

ing. To compute chiral coefficients, we have to make agifference between the systef#3) of bootstrap constraints
choice between two possibilities. The phenomenologicahnd the sum rules derived below from the chiral symmetry
analysis provides arguments in favor of the Regge-like bOOtrequirements. As follows from Eqg¢51) and (52), the ex-

Strap. TherEfore, when CalCUIating LEC'’s in the next SeCtionpncit expressions foaij and b” — a|0ng with other terms
we use the expressiai@7) instead of that given ifil]. — contain the contributions due to scalar mesons. Therefore,
the corresponding chiral sum rulesee, e.g., Eq56) below]
VIl. LOW-ENERGY COEFFICIENTS, CHIRAL DUALITY, also contain those contributions. In contréste Sec. Vi
AND LIGHT SCALARS scalar mesons do not contribute to the systdB) of boot-

. ) strap constraints at all. Thus, one can combine both kinds of
Now we have all necessary ingredients to express thgqngitions to extract the information about the scalar sector.
low-energy coefficients of the elastic scattering amplitudesrys very feature makes it especially interesting to study the
A(v,t) and B(v,t) in terms of the spectrum parameters gy cture of chiral coefficients.
Gy, M? m? andu?. For this we need the expressid@$) Let us first consider the coefficiefit,,. From Eq.(52),
and(27) along with the bootstrap requiremeti8y¥) and(43) one obtains
allowing one to fix the form oBy(t). To simplify the form
of A(w,t), it is appropriate to choose the parameterization Gy
v=20—1 in Eq. (37), this choice being permissible, since b= >, —
we are only interested in the valuestaoflose to zero. (=12 6
The resulting Cauchy forms fok(»;,t) andB(v,,t)

(59

Chiral SU2)xSU(2) symmetry tells us that ai =0 the left-
PL(S/4F) P(S/4F) hand side of Eq(55) is equal to 1/(4%). Thus, we obtain
Avt)=— > Gy———=t >, G——n
(i=0) t—M (=1) t—M 1 > G (56
412 (15t M?2—m?’
+2> Gl,z{ P, (1+t/2D)
=172 where both sides should be computedudt=0. However,
1 1 the pion mass is very small and to get an estimate one can
( ) take the physical values of the parameters in the RHS of the
relation (56). This gives(in units of GeV ?):

v+(t+20) v—(t+20)

+PJ(1—E/2<I))— PJ(1+t/2(IJ)}

STt (51 33.0=(20£2.0+ - - -. (57)

The difference between the two sides in E&j) is too large

to be explained by the corrections connected with the pion
mass. The second line of Table | shows that it also cannot be
attributed to slow convergence of SB6).

The natural solution to this problem is provided by sug-
gestion on the existence of a relatively light resonatare
perhaps, two ongswith 1 =1/2. It must be a scalar, because
converge uniformly near the poimt=0, t=0. This feature otherwise the correct balance in $8) would be disturbed.
allows one to rewrite them in the form of convergent powerThis resonance is known asmeson. It appears in various
series theoretical schemes as well as in results of the analysis of

B(r,t)=—2>, G P(1+t
Vl - e 1) 1/27) Z(D

X (52

1 1
P E(1120) v (t+20)
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experimental dataK-matrix, Padeapproximants, etc; see 0
[15,14] and previous review issues by Particle Data Gjoup &= 5P
The current status of-meson is even less clear than that of

o-meson. It should be noted, however, that — after a Iongl’he corresponding numerical values can be obtained with

hiatus — interest in both particles has quickened in the pa ;
few years. Many author&ee[16—23) have reanalyzed the SEEZ Po?llgvﬁgg atd14] and the estimatess), (59). They are

problem of light scalars from rather different viewpoif®-
tential models, unitarized resonance models, K-matrix analy- _ 4
sis, chiral symmetry, etc.and concluded that light broady b1,=(535+510) Gev'?,
scalar mesons do exist, though their paramdta@sses and

coupling constanjsstill cannot be fixed with sufficient accu-

racy. Further theoretical and experimental efforts are needed
to clarify the situation in scalar sector.

bi,=(—97+11) GeV ¢ by=(13.5+2) GeV °.
(62

. Numerical values of the individual contributions to $60)
Since the SR56) follows from rather general postulates, are shown in Table I. It is clear that in all three cases the

we can use it to estimate themeson parameters. Based on C A .
) . : . most significant contribution follows from the lightest vector
the assumption that there is only one light scalar with the

. i ) i
massM<1.4 GeV, one obtains from Eq&6) and(57), the resonance (892), the influence ok-meson appearing

X ; mainly in the values of error bars. Heavy mes@h®se with
following (rough estimate

M>2 GeV) play negligible role because the sum rules un-

der consideration possess extremely rapid convergence. The
< ~10 GeV 2. (58) above statements certainly remain true with respect to higher

(M2—m?)? order coefficients;; . Moreover, the values df;; atj+#0 —

in contrast to those obj, — only weakly depend on the

Using this estimate and the expressi@i0) for G{%), one  assumption59).

concludes thak-meson withM ,=1 GeV would have the Thus, we conclude that chiral vector meson dominance
width I'_~220 MeV, whileM,=1.4 GeV would corre- (VMD) hypothesis works satisfactorywith accuracy
spond tol'_x~1 GeV. In what follows, we assume that ~ ~25%) for all the coefficients except,, in which case the

scalar meson contribution represents more than 30% of the

M,~1 GeV. (590  total value. However, it should be remembered that the va-

lidity of this statement strongly depends on the suggestion
This value should not be taken too seriously: it provides only59); our conclusion would be quite different, if we take
indicative numbers. Light scalar mesons — if they exist —M , =800 MeV.
are broad; in such a case the very meaning of the term Let us consider now the coefficierds . From the struc-
“width” loses its definiteness. We imply the meaning sug- ture of Eq.(51), it follows that ati#0, the value ofa;; is

gested by the relation#\8)—(A10). completely determined by the contributions of mesons with
The relationg58)—(59) allow one to estimate the magni- |=1/2. In particular,

tudes of thex-meson contributions to numerical values of
ghneescogfc;cr::]eEts(asijz)aggebgéril\_/itsus consider first the latter . :l 2 % X :E E G&‘}%( —3+77(1)£>

' a 002, 30 TN 4, T o)

5 i 9
by=— 2 —=(1-m3"8),
= ’ The corresponding numerical values
Gl/3 ay=(17.2-2.5 GeV 4, a,=(32.0+6.8) GeV b,

= e (D (2) g2
blz_(|=l/2) 04 4 (US| §+ (UN g y (64)
(60 are caused mainly by the contributionkof (892) (see Table
I), the latter conclusion being strongly connected with the
1 G assumption(59).
07 g &~ T4 A consideration of Table | allows one to understand the
=12 @ reason for applicability of VMD hypothesis in the cases con-
sidered above. Because of extremely rapid convergence of
SR (60) and (63), the most significant contribution is pro-
vided by the lightest resonance. Since the assumed value of
M., is larger thanM ¢+, the influence of thec-meson hap-
pens to be weaker than that kif (892).

where

1+

K —
T3 K K)2 (3=K)!

(k<d), =0 (k>J),

(61) The matters are much more complicated with respect to
the coefficientsay;. Let us compute the lowest one. From
and Eqg. (51, we have
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Go s G, s of crossing-symmetry. The same is true with respect to the
ag0= E —P J(E) - 2 —P J<E) system of bootstrap constraints which appears as necessary
=0 M =1 M and sufficient condition providing feasibility of analytic con-
Gyl s o tinuation between the direct- and cross-channel domains.
+2 2 — PJ(l— —) - } (65) This conclusion eliminates apparent contradiction between
e 2 20/ 6 the conventional quantum field theof@FT) approach and
Chiral SU2)xSU(2) symmetry tells us that gt =0 that pased on the idga of dual@ Ref: [24] this proplem i's
considered from a different point of vigwDual amplitude is
ago=0. (66)  constructed from the infinite series of direct channel poles,

the cross channel ones appearing just as a result of summa-
The latter condition allows one to get an idea on the magnition of this series and its subsequent analytic continuation to
tude of total scalar-isoscalar meson contribution. U$il,  the cross-channel domain. In contrast, the Born approxima-
we compute the contributions of resonances withl/2 —  tion in QFT contains both types of poles simultaneously
the numbers are shown in Table I. The influenc&eheson  (plus smooth — background — terms corresponding to
is estimated just as above; it happens to be relatively lesgointlike interactions This very feature is commonly con-
important than in SR56). Next we compute the contribu- sidered as drastic difference between two approaches.
tions of isovectorsp(770) (~3.0) andp3(1690) (~2.6) Our results show that there is a logical gap in the above
and spin-2 isoscalaf,(1270) (~7.3). Summing all the reasoning. Indeed, the dual amplitude contains an infinite
numbergwith the most pessimistic values of error baane  number of poles corresponding to the states with arbitrarily
obtains from Eqs(65) and(66), the following sum rule high values of spin and mass. Therefore, it is natural to com-
pare it with QFT which also contains the infinite spectrum of
bound states. Next, as it follows from our analysis in Sec. IV,
every dual amplitude along with infinite set of poles contains
also specific background terms which manifest themselves
This relation clearly demonstrates that chiral VMD does notexplicitly in the corresponding area of the momentum trans-
apply to the coefficienay: in this case the contribution due fer. Thus the QFT in question can also contain pointlike
to scalar mesons happens to be larger than that of vector on§eraction terms. At last, the QFT amplitude — as well as
[cf. the numbers in Table | with the RHS of E(7)]. An  the dual one — should be written in the correct analytic
idea of the required structure of scalar sector can be gaind@'m. the latter one depending on the domain under consid-

from the estimate off,(1300) contribution. Taking(see €ration In particular, in the direct-channel domain this form
[14]) M;=1.25 GeV, I',,=0.37 GeV and '(x=0.03 cannot contain any poles in momentum transfer, the contri-

0
Gy

DN ~53.5+7.5. (67)

GeV, one obtains the number bution of t-channel exchange graphs looking here like the
background interaction with infinite number of derivatives.
GBO)(fo) With this understanding in mind, one can write down the

—— =32, most general QFT expression for tree-level amplitaiich

Mfo is nothing, but the amplitude of the effective QFif the

form dictated by the analyticity requirements, and then carry
which is negligibly small compared to that required by Eq.out the analytic continuation to the cross-channel domain.
(67). This estimate shows that SB7) requires the existence The conditions guaranteeing that the resulting expression
of light scalar-isoscalar resonance strongly coupled to botiyill contain no other singularities, but simple poles and am-
7a- and KK-channels. In principle, the mentioned above biguity points, and possess the desired asymptotic behavior,
o-meson would be a good candidate for this role. If we takeare precisely those expressed by the system of bootstrap con-
this hypothesiqalong with the parameters, taken from the straints.
quoted above papef46-23), the computation of the coef- Thus we conclude that the effective field theory of strong
ficientsa; could be easily done. However, it should be keptinteractions, based on the idea of quark-hadron duality, nec-
in mind that the same resonance appears also in processesesarily results in the string form of tree-level amplitude pro-
7w andKK scattering. Therefore, from the purely theoreti- Vided that certain analyticity requiremeritaeromorphy and
cal point of view, it is much more interesting to carry out Polynomial boundednesare imposed. This conclusion pro-
simultaneous analysis of joint system of sum rules in order t/ides @ solution to the problem of string organization of field

get self-consistent results. This analysis is in progress nowtheories[24].
Further, though the mere appearance of bootstrap con-

straints does not depend of the values of bounding polyno-
mial degrees, their particular form does depend of those val-
The method of Cauchy’s forms described in Sec. Il al-ues. It is remarkable that numerical test based solely on low-
lowed us to avoid model dependence of results. Our concluenergy data provides clear arguments in favor of the degrees
sion concerning the dual properties of tree-level amplitude ircorresponding to experimentally known values of intercepts.
effective field theory with infinite number of field species This means that the formulas for low-energy coefficients
follows directly from certain analyticity requiremertsero-  (Sec. VII), obtained as a by-product of our study of effective
morphy and polynomial boundedngsand the requirement hadron theory with maximal analyticity, may be thought of

VIll. CONCLUDING REMARKS
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as model independent results based on well-established gepling constants. The latter values should be taken from the
eral principles. However, it should be kept in mind that, tounderlying fundamental theoryQCD, string...). Given
use those formulas in ChPT computations, one needs to efiem one can compute all other characteristics of low-energy
pand them in powers of quark masses. This is necessary jugdron reactions in a framework of the approach based on
to avoid contradiction with chiral power counting rules.  €ffective field theory accounting for few general principles
Our main conclusion concerning the structure of LEC's is(Symmetry and analyticity In contrast, the authors of QCD-
the following. The idea of chiral dualitj,4,25,28 (for the ~ Inspired models consider LEC’s on the same ground as spec-
review see[27,2§) is certainly true. It mirrors the require- trum parameters. Particular assumpti¢ingvoidable in this
ments of general principles of quark-hadron duality and ana@PProach concerning the hadronization regime in QCD in-
lyticity. Thus it is no less general than ChPT itself. However, troduce strong model dependence in the results. This feature
this idea needs more accurate formulation. Indeed, a conflong with scarcity of modern databafgpecially stressed
parison of the well-defined forrt51) with the formally writ- ~ With respect to {,K) processes if32]] hampers the under-
ten expressiorfA6) shows considerable difference in their Standing of relative importance of different mechanisms.
structure. In contrast with EGA6), the expressiof61) does ~ That is why we prefer to use the conventional apprdash
not contain any unknown polynomials lik€a(s,t,u). In- 4],_ SL_JppIemente_d with requirements imposed by the general
stead, it contains the contributidsee the second itente- ~ Principle of maximal analyticity. o
pending on the parameters of isovector resonances; such a !t should be noted that the latter principle plays no role
term could not appear in the “naive” foriA6) in principle. (or, petter, it is ana] in conyenﬂonal renormallzaple f|eld'
On the other hand, the well-defined for2) does not con- theories: there is no necessity to postulate anything which
tain any contribution from isovectors, while the formal ex- ¢&n be computed. The necessity of considering maximal ana-
pression(A7) does contain ifalong with unknown polyno-  Iticity as an independent condition appears only if the num-
mial Eg(s,t,u) which is absent in Eq52)]. This means that ber of field ;pgc!esor, the number of derlvatlvléas a}IIowed
one should exercise caution when formulating the idea of0 Pecome infinite. As shown recently [83], in this very
chiral duality. In this respect, the situation resembles thaf@Se, one can expect considerable simplification of a theory
with formulation of VMD hypothesi$25,26,29 — the latter ~ Néar the phase transition point. Therefore, it Wpuld be inter-
happened to be well defined only under the condition if cer€Sting to find an algebraic structure corresponding to the con-
tain limitations are imposed on high-energy asymptotics ofsidered above infinite system of bootstrap constraints. It is
the vector meson contribution. In fact, our polynomial MOre or less clear that it might be one of the algebras of
boundedness requirement is nothing, but a generalized vefational functions. This suggestion correlatésough indi--
sion of those limitations applied to the full tree-level ampli- Fectly) with the structure of our sum rules which admit exis-

tude. tence of infinite-dimensional multiplets.
In contrast to chiral duality, the status of chiral VMD
hypothesis is much less reliable. From recent data analysis ACKNOWLEDGMENTS

and from our SR(65), it follows that the existence dfght . .
broad scalar resonance looks necessary to explain the Iovgl-n (Ijtl'\j gplsec?ascljjrrc()ant?otrhtigki rﬁbfr;]gtrigg?)\g gé\gn\{onugig?ggé
energy experimental data. In some casige a,; — see Sec. Y P

P . d J. Gasser for his interest in this work and friendly sup-
VII) the contribution of this scalar meson may happen to b&" ; ;
significant even compared f@lso allowed that of lightest port. This work was supported in part by RFESrant 98-

vector mesons. Modern understanding of the scalar sectc\gl)v%'r}folfe’z ?Srebghae'??VSESI\ISAUS(G;%;G&;}S%’Q;'l égsgl);PT‘bSeoros
still looks unsatisfactory. In particular, it is well known that , 9 PP y

the final state interaction imra system is very strong near Students”(Grant s97-2391

600—800 MeV, where the unitarity restrictions play essential

role. The same is true with respect to th& system just APPENDIX

below 1 GeV. In both cases the modern interpretation of the Here we give a summary of formulas and relations which
structure of P-waves looks quite reIiabIe,. in contrast to tharare necessary for the analysis of,K) processes.

of S-waves. Our results show that the existencégbit sca- Three different channels of the reaction under consider-
lars looks necessary to explain the data on the resonancg - are the following:

spectrum. This conclusion remains valid irrelevantly to the

magnitude of unitarity corrections, which we do not consider a(Ky) + K o(p1)— mp(Ka) + K 5(P2),

here since they are connected with loop contributions. Nev-

ertheless, as mentioned above, it coincides well with the re-

cent result§16—23, based on the analysis of experimental (k) F 7(ka) = Ko(Pp1) + K(p2),
data on S-waves. - -
Here it is a point to stress the difference between our ma(Ky) +Kg(p2) — my(Ka) +Ky(pr)-

approach and that used by those authors who study various

QCD_inspired modelgfor the review, Se¢30,3]]) to com- Here a,b=1,2,3 anda,,[:’=l,2 stand for iSOtOpiC indices.
pute chiral LEC’s. Our results show that LEC's can beThe amplitude can be written as follows:

treated as “secondary” quantities completely fixed by the ba_ b of )

values of “primary” ones: hadron masses and on-shell cou- M o= 620, A(S,L,U) tiepad o) gaB(s,t,U), (A1)
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where Tr (@,0p) =26,,, and
s=(ki+pp)?  t=(ki—kp)? u=(k;—py)?,

s+t+u=2(m?+u?)=20.

PHYSICAL REVIEW D 59 016002

(A-2B)/g ~vi", [N=0],

(A+B)lg, ~vi¥?Y,  [N=-1].

(A5)

Here u (m) is the pion(kaon mass. Because of require- Here we also show in braces the degrees of bounding poly-

ments of Bose symmetry

A(s,t,u)=A(u,t,s), B(s,t,u)=—B(u,t,s). (A2)

We use also three different pairs of independent kinematical

variables{v, ,x} (x=s,t,u):

ve=Uu—t, »=s—u, yp,=t—s.

Each set{v,,x} forms a natural coordinate system in the
three-dimensional ban8, corresponding to small realand
arbitrary complexwv,, the section ofB, by Mandelstam
plane(real s,t,u resulting in a two-dimensional strig, par-

allel to the sidex=0 of the Mandelstam trianglsee Fig. 1

The Regge theory prescriptions for the asymptotic behav-A(s,t,u)=— 2 Gy
ior of the amplitudesA andB in the band$B,,B,,B, can be

summarized as follows:
Bs{|Vs|H°°; SNO}:

ayy)s)

(A+2B)/g ~ v, [N=0],
(A=B)/g ~v23¥  [N=-1],
(A3)
Be{|vi| —; t~0}:
Alg ™", [N=0],
Blg~vi", [N=-1], (Ad)

Bu{|Vu|_>°°; u~0}:

nomials needed to construct the corresponding Cauchy
forms. Those degrees are uniquely determined by the known
intercepts of the leading Regge trajectories with the isokpin

a0(0)=1, (11(0)%0,5, (11/2(0)%0,3, a3,2(0)<0.

For the sake of the reader’'s convenience, below we give
also theformal (i.e., constructed in accordance with “naive”
Feynman rulestree-level expressions for the effective am-
plitudes A and B appearing in Eq(Al). They can be ob-
tained with the methods developed[@4—-3§ (it is implied
that there are no boson resonances Wwitl).

Pl (s—u)/4F]
t—M?2 =12

1

1+ b
s—M2 u—M?

XPJ ﬁ

J[(s u)/4aF]
_ G
—M?2 |21/2 12

261

B(s,t,u)=—

1

XP, -
s—M?2 u—M?

1+

+Eg(s,t,u).

20
(A7)

HereP;(x) is the ordinary Legendre polynomidt, andEg
stand for theformal power series irs,t,u obeying the Bose
symmetry conditiongA2), and

F=F(M?,m?

2) =3 M= 4n) (M7 47

1
O=P(M?2,m? “2)=M| YMA+mi+ p4—2M2m2— 2M2u2—2m?u?|.

The explicit formulas expressing the consta@tdn terms of
the resonance parametérsassM, spinJ and partial decay
widthsT" ., 'k andT" k) look as follows:

1T, T
[G1(3,M3)|=87MA(23+1) \[5 = K (M=2m),
|p7T| |pK|

(A9)
[1T_. T
1Go(3,M?)|=87M2(23+1) 3|p”7|’|pKT (M=2m), Gy(J,M?)=87M : (M=m-+ u)
T Kl
(A8) (A10)
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As in Ref.[1], we use the notation S+S

S 1727 2d

ve—(5120) &L ve—(5+26)

D,=B,NB,, D=B,NB;, D,=B,NB,

for the mutual domains of various pairs of the baBjsand
P B} whereM2<M?, ,,
6=M?-co, 32=M?-20 e
Ji
for two special combinations of massésereM stands for R(M?, s)= > G1(J,M?) pJ( 1— l S) 7
the resonance mass i=o 20;

Each symbolz,_, in the text implies summation over _
all admissible resonance®, (i=1,2,...) with the indi- and the constant§,,, 3;, 6;, ®; are defined above. As ex-
cated p=0,1/2,1) isospin value; according to Sec. thjs  plained in[1], we imply that at every fixed value cbﬂiz, the
summation should be carried out in order of increasingspectrum of allowed spin values is restricted by certain num-

mass For example, ber J"?.
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