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Effective theories with maximal analyticity
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In this paper~the second in the series!, we study the properties of the tree-level binary amplitudes of the
infinite-component effective field theory of strong interactions obeying the requirements of quark-hadron
duality and maximal analyticity. In contrast with the previous paper, here we derive the results following from
less restrictive — Regge-like — boundedness conditions. We develop the technique of Cauchy’s forms in two
variables and show the stringlike structure of the theory. Next, we derive the full set of bootstrap constraints for
the resonance parameters in the (p,K) system. A numerical test shows~1! these constraints are consistent with
data on well-established vector resonances, and~2! two light broad resonances —s andk — are needed to
saturate the sum rules following from chiral symmetry and analyticity. This latter term is understood — in the
customary field-theoretical sense — as meromorphy and polynomial boundedness of the tree-level amplitudes.
As a by-product, we obtain expressions for the parameters of chiral expansions and give corresponding
estimates.@S0556-2821~98!10421-6#

PACS number~s!: 11.55.Bq, 11.30.Rd, 14.40.Ev
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I. INTRODUCTION

In a previous paper by one of us@1#, it was shown that the
requirements of meromorphy and polynomial boundedn
applied to the most general form of tree-level amplitude o
given binary process give rise to a certain infinite system
constraints for coupling constants and particle masses. A
it was pointed out that those constraints realize the so-ca
bootstrap conditions which — in turn — mirror the du
properties of hadronic amplitudes.

Some of the bootstrap conditions for the (p,K) scattering
amplitude derived in Ref.@1# can be checked numericall
because the modern experimental data provide the nece
values for the masses and coupling constants. Since the
ditions in question take a form of rapidly converging su
rules ~SR!, one can select for a numerical check those
which can be saturated~with sufficient accuracy! by the con-
tributions of a few of the lightest resonances.

After checking several SRs, we have recognized the p
ence of systematical discrepancies between their left-
right-hand sides~RHS!; these discrepancies can hardly
explained by an incompleteness of the modern database.
point is that — roughly speaking — our analysis has sho
that the relative magnitude of the two most significant co
tributions ~those ofr- and K* -mesons! following from the
SR derived in@1# were inconsistent with the well-establishe
values of the corresponding masses and coupling consta

This observation shows that the system of postulates
cepted in@1# is inconsistent with the physical reality an
hence, it must be reconsidered. This is done in a given pa
It is shown that replacement of the decreasing asympto
requirement for the inelastic channel amplitude by the Re
conditions results in a new system of bootstrap constra
which is quite reasonable from the phenomenological po
of view.

The paper is organized as follows. In Sec. II we expl

*Electronic address: vvv@av2467.spb.edu
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the essence of the actual physical problem which gen
solution this paper is devoted to. Besides, we explain also
constructive formulation of the maximal analyticity princip
which plays a key role in our approach. Section III is t
central one: here we give the general outline of the ma
ematical tool specially constructed to work with meromo
phic functions of two~and more! variables with fiberwise
given asymptotics. In@1# it is shown that our approach give
rise to certain duality properties, therefore, in Sec. IV w
consider the widely known example of the dual~string! am-
plitude constructed from a singleB function. This analysis
allows us to point out some particular suggestions implic
contained in conventional dual hadron amplitudes. In Sec
we apply the developed technique to derive the set of bo
strap constraints for the parameters of (p,K) amplitude, this
set basing on weaker suggestions~compared to those ac
cepted in@1#! about the asymptotics of inelastic channel.
contrast with@1#, we show here the explicit form of gene
ating functions allowing us to write down~in Sec. VI! sev-
eral rapidly converging bootstrap conditions~sum rules!
which can be easily checked with the help of known data
spectrum parameters. After the checking of the SR valid
in Sec. VII we derive explicit expressions for low-energ
parameters and compute the corresponding numerical va
Besides, we show that our SR require the existence of l
scalar resonances with isospinsI 50,1/2 and estimate thei
parameters. At last, Sec. VIII is devoted to the discussion
the results obtained. The Appendix contains the neces
formulas and relations.

II. PRELIMINARY NOTES

First of all, we would like to recall the essence of th
problem which stimulated us to begin a systematic study
the properties of tree-level amplitudes in a framework
effective field theory approach. This is the widely discuss
problem of low-energy coefficients~LEC’s! appearing in
chiral expansions@2–4# ~the excellent discussion can b
found in @5#!. Those coefficients cannot be fixed with th
©1998 The American Physical Society02-1
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ALEXANDER V. VERESHAGIN AND VLADIMIR V. VERESHAGIN PHYSICAL REVIEW D 59 016002
help of the symmetry constraints, since they are nothing,
coupling constants corresponding to various invariant in
action Lagrangians. The number of LEC’s very rapidly i
creases with the expansion order. This very circumsta
creates a problem because it reduces to zero the predi
power of chiral perturbation theory~ChPT! in higher orders.
That is why it would be very interesting to find a way allow
ing one to fix the LEC’s or, at least, to restrict their value

Clearly, to solve this problem, we have to take accoun
certain new principles. It would be best if we take advanta
of the principles which are no less general than those use
the basis for the effective theory.

Following @1#, we study here the possibility to attract fo
this purpose the suitably formulated old good principle
maximal analyticity along with the polynomial boundedne
requirement for tree-level amplitude~first suggested in@6#;
see also@7#!. Some arguments~as well as the correspondin
list of references! in favor of the latter requirement are give
in @1#. Thus, we need to explain here in more detail both
motivation and the exact formulation of the maximal ana
ticity principle. The best way to do this is to consider t
simple example: the low-energy elastic scattering of t
identical pseudoscalar particles with the massm!m1 , where
m1 stands for the mass of the lightest allowed resonance
this case, the low-energy effective tree-level amplitude ta
a form

A~s,t,u!5(
i , j ,k

ai jksi t juk. ~1!

Here summation ini , j ,k is infinite by the very meaning o
the term ‘‘effective,’’ ai jk is completely symmetric in its
indices and the problem of LEC’s is precisely that ofai jk .
To the first glance, these constants seem to be free pa
eters of our effective theory. However, this — widely b
lieved — point of view is not quite correct. Below, we dem
onstrate that certain limitations on the values ofai jk follow
directly from the natural requirements of analyticity.

Here it is pertinent to recall one of the basic principles
S-matrix theory, namely, the maximal analyticity principle.
says, that the only singularities of a given process amplit
are those required by the unitarity relation. In the framew
of field theory approach, this relation is realized perturb
tively via the loop expansion scheme. This scheme autom
cally generates allnecessarysingularities required by unitar
ity. Besides, it might develop also theunnecessarysingular
structures if the corresponding terms are contained in
tree-level amplitudes.

Thus we conclude that, to avoid a contradiction with t
maximal analyticity principle, one has to take the tree-le
amplitudes as regular as possible.

Clearly, the singular structure of tree-level amplitudes i
matter of model. The effective amplitude of the elas
photon-photon scattering provides an example when
structure is very complicated. However, it is well known th
this feature is uniquely connected with the existence of
electron which — together with a photon — has to be tak
into account when constructing the full system of states
QED. If the electron field is included in the Lagrangian a
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separate degree of freedom, the analytical structure of
lowest-order amplitudes becomes simple, the photon-pho
scattering appearing as one of the higher-order processe

An extremely interesting analysis of the similar effect in
framework of ‘‘toy-theory’’ — the quark-level linear
s-model — has been implemented in the recent paper@8#.
The authors show that the double counting problem~appear-
ing due to dynamically generated additional scale! can be
solved using the compositeness condition~see Chapter 10 in
@5#!, the result providing a natural self-consistent fiel
theoretic interpretation in terms ofeitherelementary particle
or the bound state.

Now, let us come back to the tree-level amplitude~1!. To
fix its singular structure, we can rely on the hypothesis
quark-hadron duality which says that the full set of colorle
quark-gluon states is equal to the full set of hadronic sta
This can be also formulated as follows: the functional in
gral for S-matrix in QCD can be identically rewritten in
terms of hadronic fields. Leaning upon this statement,
concludes that the singular structure of tree-level amplitu
~1! is completely determined by the contributions of releva
one-particle hadronic states. In other words, the qua
hadron duality together with the maximal analyticity pri
ciple require of the tree-level amplitude of a given bina
process to be a meromorphic function of three~dependent!
Mandelstam variables, the only allowed singularities be
just simple poles and the ambiguity points~see Sec. III be-
low!.

The above reasoning allows us to avoid the refereeing
the large-Nc limit of QCD ~cf. with @9#!. Moreover, it allows
one to reduce the very difficult~from the purely phenomeno
logical point of view! problem of LEC’s to the problem o
spectrum parameters — on-shell triple couplings and ma
~see@1#!.

III. CAUCHY’S FORM IN THE CASE
OF TWO VARIABLES

The main tool used in@1# to carry out the analytic con
tinuation, connecting the direct- and cross-channel tree-le
amplitudes, is based on the Mittag-Leffler theorem in its co
structive form provided by the Cauchy method. This meth
allows one to write down a general expression~which we
call below as Cauchy’s form! for the polynomially bounded
meromorphic functionf (z) of one complex variablez, with
given polespn (n51, . . . ), corresponding principle part
gn(z) and the degreeN of bounding polynomial. This ex-
pression reads

f ~z!5 (
n50

N
1

n!
f ~n!~0!zn1 (

p51

`

@gp~z!2hp
~N!~z!#. ~2!

Here

hp
~N!~z![ (

n50

N gp
~n!~0!

n!
zn

are the so-called correcting polynomials needed to ensure
convergence of the infinite sum of pole contributions. It
2-2
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EFFECTIVE THEORIES WITH MAXIMAL ANALYTICITY PHYSICAL REVIEW D 59 016002
implied that f (0) is regular, otherwise, the correspondi
principal partg0(z) should be added to the right-hand side
Eq. ~2!.

A rigorous proof of the form~2! can be found in text-
books on complex analysis~see, e.g.@10,11#!. However, in
our work we use the generalized version of Eq.~2! allowing
one to consider meromorphic functions of two complex va
ables (n,x). As far as we know, such a form could hardly b
found in the literature. Therefore, it makes sense to give h
a sketch of the proof of the generalized version of Eq.~2!
most suitable for our needs. Later on, we imply that
reader is familiar with the case of one complex variable.

First of all, we would like to remind the reader, that eve
meromorphic function of two~and more! complex variables
f (z1 ,z2) has two different kinds of singularities: poles an
the ambiguity points. The last term can be best explained
the following example. Consider

f ~z1 ,z2!5
z1

z2
.

This is a meromorphic function, its polar set being the h
perplane (z1 ,0) except the point (0,0) which is precisely th
ambiguity point. The value off (z1 ,z2) at this point depends
of the path chosen to reach it. For example,

lim
z2→0

lim
z1→0

f ~z1 ,z2!50,

while

lim
z1→0

lim
z2→0

f ~z1 ,z2!5`.

A less trivial example is provided by Fig. 1 where we sho
the geography of the ambiguity points corresponding to
stringlike amplitude~10! considered in Sec. IV below.

In order to avoid unnecessary complications which ha
nothing to do with the field-theoretical problems conside
in our paper, below~except Sec. IV!, we concentrate solely
on a consideration of the narrow class of meromorphic fu
tions f (n,x) satisfying the following conditions: They hav

FIG. 1. Stringlike amplitude~10!: locations of ambiguity points.
s — first series,1 — second series,% — superposition of two
series~so-called ‘‘Odorico zeros’’!.
01600
f

-

re

e

y

-

e

e
d

-

only simple poles in each variable; they have no poles
both variables simultaneously; they have no fixed~i.e., inde-
pendent ofx) poles inn; only moving poles of the form

n2x5Qi , n1x52Qi ~3!

with

0,Qi,Qi 11 ~ i 51,2, . . .!

are allowed; in the variablex, they have both moving pole
of the form ~3! and fixed poles at the points

x5Mi
2 ~ i 51,2, . . .!,

where

0,Mi
2,Mi 11

2 .

Nevertheless, it should be noted that the analysis of m
involved cases creates no difficulties.

To construct the generalized Cauchy form inn ~at fixed
x), we need to know asymptotics off (n,x) at largen. Since
it might depend onx, we have to consider the ratio

f ~n,x!

nD~x!

at large n. In the most interesting for us case, when t
Regge asymptotic condition is imposed~see@1#!

D~x!5a1bx.

Let us introduce the step function

Nx[E@D~x!#11,

whereE@y# stands for the maximal integer less or equal toy.
This allows one to draw on the conventional definition
polynomial boundedness~see, e.g.@10,11#!. Indeed, let us
consider realx from a small interval@a,b# such that

Na5Nx5Nb[N.

We say that the meromorphic functionf (n,x) is polynomi-
ally bounded inn in the band

Bx$unu,`,xP@a,b#%,

if there is a finite integerN and infinite system of smooth
contours Cp ~circles with the radii Rp11.Rp , p
51,2, . . . ) in thecomplex-n plane such that

max
xP[a,b]; nPCp

U f ~n,x!

nN11 U[M p ——→
p→`

0. ~4!

The minimal Nproviding the correctness of the uniform~in
x) estimate~4! we call as the degree of bounding polynom
in Bx . This definition is equally applied for both increasin
and decreasing asymptotics,N taking thenegativevalues in
the latter case. The valueN<21 corresponds to the supe
convergent asymptotic behavior.
2-3
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ALEXANDER V. VERESHAGIN AND VLADIMIR V. VERESHAGIN PHYSICAL REVIEW D 59 016002
It is important to stress that we consider the radiiRp to be
independent ofx. With the above definition in hand, we ca
immediately write down the generalized Cauchy form for t
meromorphic functionf (n,x), polynomially bounded~with
the degreeN) in the bandBx . It looks as follows

f ~n,x!5 (
k50

N
1

k!

]~k! f ~0,x!

]nk
nk

1 (
m51

S r m~x!

n2pm~x!
2hm

~N!~n,x! D , ~5!

where

hm
~N!~n,x!52

r m~x!

pm~x!(k50

N S n

pm~x! D
k

.

The proof is based on a consideration of the followi
contour integral in the complex-n plane:

I p~n,x,N!5
1

2p i ECp

nN11

zN11

f ~z,x!

~z2n!
dz.

Exactly as in the case of one variable, it can be shown tha
every fixedxP@a,b#

f ~n,x!5 (
k50

N
1

k!

]~k! f ~0,x!

]nk
nk

1 (
m51

p S r m~x!

n2pm~x!
2hm

~N!~n,x! D1I p~n,x,N!.

~6!

Taking the limit p→` and using the condition~4!, one de-
rives from Eq.~6! the desired form~5! expressing the func
tion f (n,x) of one complex (n) and one real~x! variable in
the bandBx as an expansion in its poles inn.

From the given above sketch, one can derive the follo
ing conclusions.

~1! Each item of the infinite sum in Eq.~5! combines the
contributions from all the poles confined betweenCm21 and
Cm , i.e., from those with

Rm21,upm~x!u,Rm .

Otherwise, the convergence of the summation procedur
not guaranteed.

~2! At any xP@a,b#, the partial fraction expansion~5!
converges uniformly everywhere in the complex-n plane ex-
cept the small open vicinities of poles.

~3! At any fixed n, the form ~5! in the bandBx can be
equally treated as the uniformly~in x) convergent series o
~analytic! functions ofx. This property makes the expansio
~5! a useful tool to carry out the analytic continuation inx.

~4! The form ~5! certainly remains valid if the minima
degreeN is changed for any integerÑ.N. In this case,
however, each of the series
01600
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r m~x!

pm
n ~x!

~7!

with n5N11, . . . ,Ñ converges and, hence, it can b
summed independently. It is easy to show that

Sn1
1

n!

]nf ~n,x!

]nn U
n50

50 ~n5N11, . . . ,Ñ!. ~8!

This, in turn, means that each unnecessarily high degreen

taken into account in the correcting polynomialshm
(Ñ)(n,x) is

effectively cancelled by the corresponding item appear
simultaneously in the first — regular inn — term of Eq.~5!.
Thus, we conclude that the Cauchy form~5! presents a well-
defined rigid construction allowing no twofold interpretatio

~5! With the properly chosen functionsr i(x) and pi(x),
one can secure the convergence of the series~7! even forn
,N. However, this does not mean that the equality~8! is
also valid forn,N11. The minimality of the declared de
greeN of a bounding polynomial corresponds to the nec
sary presence ofnN either in the regular term in Eq.~5! or in
correcting polynomials or in both terms simultaneously.
other words, theactualpresence ofnN in Eq. ~5! mirrors the
asymptotic behavior of the type

f ~n,x!;unuD~x! ~9!

with N<D(x),N11 .
There is an important exception to the above formula

rule, this exception being connected solely with our spec
choice of the system of contoursCp which we took symmet-
ric with respect to the origin of the complex-n plane. This
choice results in a particular method of summation in E
~5!: each item of the sum over poles contains the contri
tions of all the poles with the same value ofupi u. In the case
when f (n,x) is odd ~even! in n, the correcting polynomials
are also odd~even!. The same is true with respect to th
regular term. Thus, in this particular case, the correct
polynomials of the degreeN ensure the convergence of th
partial fraction expansion~5! for the asymptotic low~9! with
D,N12, the presence ofnN corresponding to the
asymptotic behavior~9! with N<D,N12.

~6! If the uniform in x estimate~4! is valid for xP@a,b#
with NaÞNb , one can use the Cauchy form~5! with N
5max$Na ,Nb% to present the functionf (n,x) in the bandBx .

The usefulness of the technique developed in this sec
is explained by the fact that meromorphic functions w
fiberwise given Regge asymptotics appear naturally in
framework of effective hadron field theory. This very tec
nique ~first suggested in@1#! is used throughout the remain
ing part of our paper.

IV. STRING AMPLITUDES AND BACKGROUND
INTERACTIONS

The results of the previous section allow us to argue t
~a! every polynomially bounded meromorphic functio
f (n,x) can be presented in a form of the convergent se
2-4
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EFFECTIVE THEORIES WITH MAXIMAL ANALYTICITY PHYSICAL REVIEW D 59 016002
over its poles inn at those values ofx which correspond to
the decreasing asymptotic behavior inn ~we mean the con-
tour asymptotics!, and~b! on the contrary, at thosex which
correspond to a constant or increasing asymptotics inn, none
of such functions admit a representation constructed so
of the pole contributions: the appearance of ‘‘backgroun
terms~polynomials inn with coefficients depending onx) is
inevitable in this case.

In the light of these statements, it is extremely instruct
to analyze the structure of the famous Veneziano ansatz@12#
based onB-functions which are widely believed to be co
structed solely from resonances~for the review, see@13#!. By
way of illustration, we consider the simplest dual~or, the
same, string! amplitude without tachyon:

A~s,t !5@12a1~s!2a1~ t !#B$12a1~s!; 12a1~ t !%.
~10!

It is implied that kinematical variables are chosen such t

a1~x!5
1

2
1x.

Figure 1 shows the disposition of ambiguity points
A(s,t); note, that it reflects the space fibering structure c
responding to the asymptotic behavior.

Since the pomeron contribution is not an issue here,
can considerA(s,t) as the amplitude of the processp2p1

→p2p1. Let us study the structure ofA(s,t) at t50. In this
case the actual~radial! asymptotic behavior for argsÞ0 fol-
lows the Regge lowA(s,0) ; s1/2 which is also true with
respect to behavior on the system of circlesCn with Rn
5n. Hence, according to the results of Sec. III, the me
ingful partial fraction expansion forA(s,0) cannot be written
without introducing background terms of zeroth order inn.
Let us check this point. For this we need to know the pr
cipal partsgn(s,0) at the poles:

pn5n1
1

2
, n50,1, . . . . ~11!

Rewriting Eq.~10! in the form

A~s,0!5Ap
G~1/22s!

G~2s!

and using the well-known formulas forG function, we obtain

gn~s,0!5
r n~0!

s2~n11/2!
, ~12!

where

r n~0!5
~2n11!!!

n! 2n11
. ~13!

From Eqs.~12! and ~13!, it follows immediately that the
formal sum of principal parts~‘‘nothing else, but poles’’!
01600
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(
n50

`

gn~s,0!

diverges at every point of the complex-s plane. Thus we
conclude that, in complete accordance with the statemeB
above, the dual amplitude~10! at t50 along with the singu-
lar part ~the sum of pole contributions! contains also certain
regular terms. It is not difficult to write down the correspon
ing convergent expansion. Bearing in mind thatA(0,0)50,
we have~see Sec. III!:

A~s,0!5 (
n50

` S r n~0!

s2~n11/2!
2

r n~0!

~n11/2! D . ~14!

It can be easily shown that the series~14! converges uni-
formly and absolutely everywhere in the complex-s plane
except small open vicinities of poles. This follows from th
absolute convergence of the series

(
n50

`
r n~0!

~n11/2!2
[ (

n50

`

an;

the latter, in turn, can be shown with the help of Gauss’s

Uan11

an
U511

A

n
1OS 1

n2D ,

because in our caseA523/2,21.
The similar analysis forA(s,21) shows that the series o

principal parts

A~s,21!5 (
n50

`
r n~21!

s2~n11/2!
, ~15!

where

r n~21!52
~2n21!!!

n! 2n11
,

converges by itself~also uniformly and absolutely! and,
hence, there is no necessity to take account of
background terms associated with the correcting polyno
als. This is precisely the result which one would expe
in accordance with the known asymptotic behav
A(s,21);s21/2. It provides an illustration to the stateme
A.

To fill a gap betweent50 andt521 in the above rea-
soning, we need to account for the explicit dependence
r n(t) andA(0,t) of the variablet. In the case under consid
eration, this can be easily done because we can take ad
tage of the relation

G~z!G~a11!

G~z1a!
5 (

n50

`
~21!n

n!
a~a21!

3~a22! . . . ~a2n!
1

z1n
,

2-5
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ALEXANDER V. VERESHAGIN AND VLADIMIR V. VERESHAGIN PHYSICAL REVIEW D 59 016002
which is valid fora.0. Transforming the left-hand side

G~z!G~a11!

G~z1a!
5

~z1a!

~a11!

G~z!G~a12!

G~z1a11!

and taking

a52
1

2
2t, z5

1

2
2s,

one obtains

A~s,t !5 (
n50

` S r n~ t !

s2pn
1

r n~ t !

pn
1un~ t ! D . ~16!

Herepn are defined in Eq.~11!,

r n~ t !5
1

n! S 1

2
1t D S 3

2
1t D . . . F S n1

1

2D1t G ,
and

u0~ t !522t,

un~ t !52
t

n!

~1/21t !~3/21t ! . . . @~n21/2!1t#

~n11/2!
,

~n51,2, . . .!.

The expression~16! applies for

t,1
1

2
. ~17!

To put it into Cauchy’s form, we note that the series

(
n50

`

un~ t ! ~18!

under the condition~17! converges by itself and, hence, ca
be summed independently. The resulting expression for
amplitudeA(s,t) reads

A~s,t !5
G~1/2!G~1/22t !

G~2t !
1 (

n50

` S r n~ t !

s2pn
1

r n~ t !

pn
D .

~19!

This is precisely the desired Cauchy’s form valid f
t,11/2. It is easy to check that att50, the expression~19!
coincides with Eq.~15!. In contrast with Eq.~18!, the series
of correcting polynomials

(
n50

`

hn
~0!~ t !5 (

n50

`
r n~ t !

pn
~20!

diverges att.21/2 and could not be summed separately
Now we can trace in more detail what happens with E

~19! whent crosses the boundary valuet521/2 correspond-
ing to the change of the asymptotic regimeA(s,t);sa1(t)
01600
e

.

from a1(t)>0 to a1(t),0. It can be easily shown that att
,21/2 the series~20! converges, the summation giving th
result @cf. with Eq. ~8!#

(
n50

`

hn
~0!~ t !52

G~1/2!G~1/22t !

G~2t ! S t,2
1

2D .

Thus, in complete accordance with the general sche
discussed above~see Sec. III!, we conclude that at
t,21/2, the amplitude~10! admits a representation

A~s,t !5 (
n50

`
r n~ t !

s2pn
~21!

constructed solely from the resonance contributions; att5
21 this form coincides with~15!. The expression~21! is
often used in the literature to show the physical content
the string amplitude~10!.

The important conclusion to be drawn from the abo
analysis is that the conventional dual~string! models of had-
rons are based on three rather different general postulate
say nothing about suggestions of a particular nature. F
they take advantage of the crossing symmetry requirem
Second, they are rested on certain analyticity conditio
namely, those of meromorphy and polynomial boundedn
Third, they imply — though in a highly latent form — a
particular suggestion about the~unique! connection between
the direct channel spectrum parameters and the poin
~background! interactions, this connection explicitly revea
ing only in the band of the momentum transfert correspond-
ing to a I(0)>0.

The two first postulates are quite general, whereas
third one is nothing, but an artifact of the ansatz based oB
functions. Thus it looks reasonable to consider a the
which is free of any particular suggestions about the str
ture of pointlike vertices. This is precisely the way which w
follow here.

V. BOOTSTRAP EQUATIONS FOR THE PARAMETERS
OF „p,K… RESONANCES

Let us now turn to a consideration of (p,K) processes.
Unlike @1#, here we are interested mostly in derivation of t
complete set of bootstrap constraints. For this we use
Cauchy forms in the bandsBs , Bt andBu corresponding to
three cross-conjugated channels. In contrast with@1#, we
write those forms in terms of independent pairs of kinema
cal variables $nx ,x% (x5s,t,u) and impose more
realistic — Regge — asymptotic requirements. Since
logical scheme, compared to that described in@1#, remains
unchanged, we omit unnecessary comments. The summ
of relevant formulas and notations, along with detailed e
planation of the meaning of summation symbols appear
below, is given in the Appendix~see also@1#!. Figure 2
shows the geography of bandsBx and domainsDx .

Let us begin our analysis from the bandBs . In this case
ns5(u2t) is considered as a complex variable, whiles —
as a small real parameter (usu;0). So, the Cauchy form~5!
for the combination (A12B)Bs

with the principal parts de-
2-6
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fined according to Eqs.~A6! and ~A7! @under the condition
~A3! fixing the bounding polynomial degreeN50] reads

~A12B!Bs
5as~s!12 (

~ I 50!
G0PJS S12s

4F D
3S 1

ns1~s12u!
2

1

s12u D
14 (

~ I 51!
G1PJS S12s

4F D
3S 1

ns1~s12u!
2

1

s12u D
12 (

~ I 51/2!
G1/2PJS 12

S1s

2F D
3S 1

ns2~s12u!
1

1

s12u D . ~22!

Here as stands for unknown function ofs. Note that ~as
shown in@1#! the unphysical poles atnegative s522u are
spurious because we construct Cauchy’s forms which
valid in the bands corresponding to the momentum tran
close to zero.

The analogous form for (A2B)Bs
reads

~A2B!Bs
52 (

~ I 50!
G0PJS S12s

4F D 1

ns1~s12u!

22 (
~ I 51!

G1PJS S12s

4F D 1

ns1~s12u!

24 (
~ I 51/2!

G1/2PJS 12
S1s

2F D 1

ns2~s12u!
.

~23!

FIG. 2. Disposition of the bandsBx and intersection domain
Dx (x5s,t,u).
01600
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In the latter case, no unspecified functions ofs appear in the
Cauchy form because — according to Eq.~A3! — the degree
of the relevant bounding polynomial is negative (N521).
From Eqs.~22! and ~23!, one derives

~A!Bs
5

1

3
as~s!12 (

~ I 50!
G0PJS S12s

4F D
3S 1

ns1~s12u!
2

1

3

1

s12u D
2

4

3 (
~ I 51!

G1PJS S12s

4F D 1

s12u

22 (
~ I 51/2!

G1/2PJS 12
S1s

2F D
3S 1

ns2~s12u!
2

1

3

1

s12u D , ~24!

and

~B!Bs
5

1

3
as~s!2

2

3 (
~ I 50!

G0PJS S12s

4F D 1

s12u

12 (
~ I 51!

G1PJS S12s

4F D S 1

ns1~s12u!
2

2

3

1

s12u D
12 (

~ I 51/2!
G1/2PJS 12

S1s

2F D S 1

ns2~s12u!

1
1

3

1

s12u D . ~25!

The similar consideration in the bandBt results in the
expressions

~A!Bt
5a0~ t !22 (

~ I 51/2!
G1/2PJS 11

t

2F D
3S 1

n t2~ t12u!
2

1

n t1~ t12u!
1

2

t12u D , ~26!

~B!Bt
522 (

~ I 51/2!
G1/2PJS 11

t

2F D
3S 1

n t2~ t12u!
1

1

n t1~ t12u! D . ~27!

Herea0(t) is another unknown function oft.
At last, in Bu one has
2-7
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~A!Bu
5

1

3
au~u!22 (

~ I 50!
G0PJS S12u

4F D
3S 1

nu1~u12u!
2

1

3

1

u12u D
2

4

3 (
~ I 51!

G1PJS S12u

4F D 1

u12u

12 (
~ I 51/2!

G1/2PJS 12
S1u

2F D
3S 1

nu1~u12u!
1

1

3

1

u12u D , ~28!

~B!Bu
52

1

3
au~u!1

2

3 (
~ I 50!

G0PJS S12u

4F D 1

u12u

12 (
~ I 51!

G1PJS S12u

4F D
3S 1

nu2~u12u!
1

2

3

1

u12u D12 (
~ I 51/2!

G1/2

3PJS 12
S1u

2F D S 1

nu1~u12u!
2

1

3

1

u12u D , ~29!
01600
whereau(u) is the third unknown function.
The system of relations~24!–~29! exhausts constructive

potentialities of our postulates. The further progress can
only based on the analysis of this system.

First, we need to specify the form of three unknown fun
tions a0(t), as(s) and au(u) in terms of the resonanc
spectrum parameters. Precisely as in@1#, this can be done
through a comparison of the pairs of relevant forms in
domains of mutual intersection of the corresponding ban
Thus we have to analyze the following conditions (X
5A,B):

X~M /Bt
!5X~M /Bu

!, MPDs5BtùBu , ~30!

X~M /Bu
!5X~M /Bs

!, MPDt5BuùBs , ~31!

X~M /Bs
!5X~M /Bt

!, MPDu5BsùBt . ~32!

The analysis is simple though tedious. Therefore, we g
here only general outline and show the final results.

To present our results in a compact form, we introdu
three auxiliary functions depending on two real variablex
andn. They are the following
F~x,n!5
def

2 (
~ I 50!

G0

PJ@~n1x2M2!/4F#

x2M2
2 (

~ I 51!
G1

PJ@~n1x2M2!/4F#

x2M2

24 (
~ I 51/2!

G1/2S PJ@11~n1x22u!/4F#2PJ~11x/2F!

n2~x12u!
2

PJ~11x/2F!

x12u D , ~33!

C1~x,n!5
def

3F (
~ I 50!

G0S PJ@~S12x!/4F#2PJ@~n1x2M2!/4F#

n2~x12u!
1

2

3

PJ@~S12x!/4F#

x12u D
1 (

~ I 51!
G1S PJ@~S12x!/4F#1PJ@~n1x2M2!/4F#

n2~x12u!
1

4

3

PJ@~S12x!/4F#

x12u D
2 (

~ I 51/2!
G1/2S PJ@11~n1x22u!/4F#

x2M2
1

2

3

PJ@12~S1x!/2F#

x12u D G , ~34!

C2~x,n!5
def

2 (
~ I 50!

G0

PJ@~S12x!/4F#

x12u
26 (

~ I 51!
G1PJS S12x

4F D S 1

n1~x12u!
2

2

3

1

x12u D
23 (

I 51/2
G1/2S 2

PJ@12~S1x!/2F#2PJ@12~n1x22s!/4F#

n2~x12u!

1
2

3

PJ@12~S1x!/2F#

x12u
1

PJ@12~n1x22s!/4F#

x2M2 D . ~35!
2-8
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Each of the above constructions presents well-defined
pression near the point (x50,n52s). This is not an as-
sumption: the expressions~33!–~35! appear naturally during
the analysis of consistency requirements~30!–~32!, and their
convergency follows directly from our asymptotic cond
tions.

Let us start the consideration from the domainDs . The
first of the conditions~30!, namely,

B/Bt
5B/Bu

gives

au~u!5C2~u,2nu! ~u;0, nu;22s! . ~36!

The second independent condition~30!

~A1B!/Bt
5~A1B!/Bu

results in the equality

a0~ t !5F~ t,n t! ~ t;0, n t;2s!. ~37!

No other conclusions can be drawn from the condition~30!
and the expressions~26!–~29!.

Similarly, the analysis of the condition~31! results in the
following expressions foras(s) andau(u) in Dt

as~s!5C1~s,2ns! ~s;0, ns;22s!, ~38!

au~u!5C1~u,nu! ~u;0, nu;2s!. ~39!

At last, from Eq.~32! it follows that in Du

a0~ t !5F~ t,2n t! ~ t;0, n t;22s!, ~40!

as~s!5C2~s,ns! ~s;0, ns;2s!. ~41!

The relations~36!–~41! are the only restrictions following
from the compatibility conditions~30!–~32! for the ampli-
tudesA and B defined by the forms~24!–~25! in Bs , Eqs.
~26!–~27! in Bt and Eqs.~28!–~29! in Bu .

To proceed further, it is convenient to separate the res
tions ~36!–~41! into two independent groups. Noting, th
each of the functionsa0(t), as(s), andau(u) depends only
on one variable, we conclude that the dependence
F(x,nx), C1(x,nx) andC2(x,nx) on nx is purely fictitious.
In other words, to compute the left-hand sides of Eqs.~36!–
~41!, one can assign tons , n t , nu any arbitrary values from
the validity domainnx;2s of the forms~33!–~35!.

The above note allows one to rewrite Eqs.~36!–~41! in
the form of two independent systems. The first one read

a0~ t !5F~ t,2s!,

as~s!5C1~s,2s!, ~42!

au~u!5C1~u,2s!.
01600
x-
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It provides the desired explicit formulas expressing the fu
tions a0(t), as(s) and au(u) in terms of the resonanc
spectrum parameters: triple couplingsGI and masses
M2,m2,m2.

The second group consists of infinite set of se
consistency conditions. It reads

]k1pC1~x,n!

]xk]np Y
Q

5
]k1pC2~x,n!

]xk]np Y
Q

,

]k1p11C2~x,n!

]xk]np11 Y
Q

50, ~43!

]k1p11F~x,n!

]xk]np11 Y
Q

50,

Q[$x50, n52s%, k,p50,1,2. . . .

These conditions follow directly from the noted above ind
pendence ofF(x,n), C1(x,n) andC2(x,n) of the second
argument and from the equivalence of Eqs.~38! and ~41!.
Later on we call this property asreparameterization invari-
ance~RP-invariance!. The expressions~33!–~35! provide the
explicit forms of thegenerating functionsfor the system
~43!.

RP-invariance imposes very strong constraints on the
ues of spectrum parameters. Those constraints mirror
general properties of analyticity and crossing symmetry.
the literature, they are commonly called asbootstrap.

VI. ANALYSIS OF THE BOOTSTRAP CONSTRAINTS

It would be best if we could show the closed solution
the system~43!. Unfortunately, we cannot. This is not onl
connected with our inability to solve this infinite system, b
also with the obvious necessity to get a deeper understan
of the form of each individual equation. Therefore, below w
concentrate mostly on the detailed semiphenomenolog
analysis of few ‘‘lowest’’ equations corresponding tok,p
<1 in Eq. ~43!.

However, before starting this analysis, we would like
point out one important feature of the system~43!. Using the
expressions~33!–~35! for the generating functionsF,C1
andC2 , one can easily show that the scalar particles~both
with I 50 andI 51/2) do not contribute to this system at a
Thus, no limitations on their couplings and masses foll
from Eq. ~43!. This feature is uniquely connected with th
local character of our consideration. We do not use any
sumptions about the asymptotic behavior of the amplitu
outside the narrow band corresponding to the momen
transfer close to zero. Compared to@1#, we use here much
weaker~Regge! asymptotic restrictions which do not requir
the decreasing behavior of the amplitudes of nonexotic ch
nels. This very reason explains the difference between
corresponding systems of bootstrap constraints.

The above note clearly shows that — as for now —
2-9
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ALEXANDER V. VERESHAGIN AND VLADIMIR V. VERESHAGIN PHYSICAL REVIEW D 59 016002
would be premature to seek the general solution of the
tem ~43!; additional information concerning the asympto
behavior at larger values of the momentum transfer sho
be first taken into account.

Let us now turn to a consideration of the lowest ord
bootstrap constraints~43!. Those constraints look too bulk
to be shown here explicitly. Therefore, below we show th
form in SU~3! chiral limit m25m250. The only exception
will be made for the relation

C1~0,2s!5C2~0,2s! ~44!

from the first group of the Eqs.~43!. With the help of Eqs.
~35! and ~34!, it can be written in the form

(
~ I 51!

(
J51,3, . . .

G1

M2S
PJS S

4F D
5 (

~ I 51/2!
(

J51,2, . . .

G1/2

M2S
F12PJS 12

S

2F D G , ~45!

which is quite suitable for the numerical testing~mesons
with I 51, J52k do not contribute because of the isosp
and Bose symmetry requirements!.

By construction~see Sec. III!, we have to carry out the
summation in Eq.~45! in order of increasing mass. Thus th
contributions of the lightest mesons (r andK* ) can be sepa-
rated without breaking the convergence of the remaining
ries ~such a trick with respect to thelowest spin J51
contributions would be a mistake!. This gives

Gr

M r
2Fr

1•••5
2GK*

MK*
2 FK*

1•••, ~46!

where ellipses stand for the contribution due to heavierM
>1.4 GeV) mesons. Using the experimental data@14# and
the expressions forF andF ~see Appendix! along with the
SU3 estimate forGr

Gr

Fr
5

2GK*

FK*
, ~47!

one obtains~in GeV22)

~3262!1•••5~2461.2!1••• .

The agreement does not look satisfactory. The reason
comes clear when we take account of the contributions
to other relatively light mesons listed in@14# ~with
M<2 GeV). In this case we obtain the relation~see
Table I!

~34.562.5!1•••5~29.562.5!1•••,

which looks much more impressive. It is easy to underst
that the contributions of heavy mesons (M>2 GeV) cannot
destroy the agreement. Indeed, for those mesons 2s!M2

and, hence, we can use the limits50 when computing the
corresponding terms. In this case
01600
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PJS S

4F D5PJ~1!51, PJS 12
S

2F D5PJ~21!5~21!J,

and we can rewrite Eq.~45! as follows

~34.562.5!1 (
~ I 51!

(
J51,3, . . .

G1

M4Y
M2.2 GeV

5~29.562.5!1 (
~ I 51/2!

(
J51,3, . . .

2G1/2

M4 Y
M2.2 GeV

, ~48!

where the sum in the right-hand side does not contain c
tributions of mesons with even spins at all. The~approxi-
mate! equivalence of the sums in Eq.~48! follows directly
from SU~3! symmetry.

The above analysis shows that the relative magnitude
two most significant contributions — those ofr- and
K* -mesons — appearing in the lowest-order bootstrap c
dition ~44! ~based on the Regge asymptotic requiremen!,
proves to be quite consistent with the well-established
perimental data. This conclusion remains also true with
spect to the constraints of higher orders. In particular,
corresponding relation of the next — compared to E
~45! — order follows from the second group of bootstra
constraints~43! at k51, p50. In the limit m25m250, it
reads

(
I 51

G1

M6
@J~J11!21#5 (

I 51/2

G1/2

M6
@12~21!J#

3@J~J11!21#, ~49!

the correctness of the relationship among the contribution
mesons withI 51/2 andI 51 being obvious. However the
numerical test of the SR~49! is of less interest compared t
that of Eq.~45!, since in this case the contributions of m
sons withJ>2 prove to be relatively more important.

Among the constraints~43!, there are also sum rules con
taining the contributions of isoscalar mesons withJ
52,4, . . . . Forexample, the relation

TABLE I. Separate contributions ofI 5
1
2 mesons to SR~45!

and LEC’s.

Meson k K0* K* K* K* K2* K3* K4*
Mass 1.0 1.43 0.89 1.41 1.68 1.43 1.78 2.

RHS~45! – – 24.0 0.54 1.31 2.60 0.60 0.2
b10 10 2.36 12.1 0.42 1.75 2.18 0.87 0.4
b11 –13 –1.30 48.9 0.31 0.76 7.17 3.67 2.2
b12 12 0.55 –103 –0.22 –0.36 1.25 2.50 2.3
b30 3.6 0.18 10.8 0.03 0.07 0.17 0.03 0.0
a20 5.4 0.65 11.42 0.12 0.34 0.60 0.15 0.0
a21 –11 –0.55 35.2 0.06 0.08 1.83 1.29 0.5
a00 –4.12 –1.47 –27.7 –1.87 –9.74 6.91 –6.40 3.
2-10
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2(
I 50

G0

M4
J~J11!1(

I 51

G1

M4
J~J11!5 (

I 51/2

2G1/2

M4
$@12~21!J#1~21!JJ~J11!% ~50!
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can be derived either from the first group of Eq.~43! at k
1p51 or from the third one atk1p50.

Unfortunately, as in the case of Eq.~49!, the existing data
on pK resonances are not sufficient for the reliable num
cal analysis of Eq.~50!.

The system of bootstrap constraints~43! is based on the
Regge asymptotic requirements. It differs from the ana
gous system following from the much stronger asympto
conditions considered in@1#. This difference, in turn, corre
sponds to different forms of the functiona0(t) appearing in
the expression~26! for the amplitude of elasticpK scatter-
ing. To compute chiral coefficients, we have to make
choice between two possibilities. The phenomenolog
analysis provides arguments in favor of the Regge-like bo
strap. Therefore, when calculating LEC’s in the next secti
we use the expression~37! instead of that given in@1#.

VII. LOW-ENERGY COEFFICIENTS, CHIRAL DUALITY,
AND LIGHT SCALARS

Now we have all necessary ingredients to express
low-energy coefficients of the elastic scattering amplitud
A(n t ,t) and B(n t ,t) in terms of the spectrum paramete
GI , M2, m2, andm2. For this we need the expressions~26!
and~27! along with the bootstrap requirements~37! and~43!
allowing one to fix the form ofa0(t). To simplify the form
of A(n t ,t), it is appropriate to choose the parameterizat
n52s2t in Eq. ~37!, this choice being permissible, sinc
we are only interested in the values oft close to zero.

The resulting Cauchy forms forA(n t ,t) andB(n t ,t)

A~n,t !52 (
~ I 50!

G0

PJ~S/4F !

t2M2
1 (

~ I 51!
G1

PJ~S/4F !

t2M2

12 (
I 51/2

G1/2FPJ~11t/2F!

3S 1

n1~ t12u!
2

1

n2~ t12u! D
1

PJ~12S/2F!2PJ~11t/2F!

S1t G , ~51!

B~n,t !522 (
I 51/2

G1/2PJS 11
t

2F D
3F 1

n1~ t12u!
1

1

n2~ t12u!G ~52!

converge uniformly near the pointn t50, t50. This feature
allows one to rewrite them in the form of convergent pow
series
01600
i-

-
c

a
l

t-
,

e
s

n

r

A~n,t !5 (
i , j 50

`

ai j n
i t j , B~n,t !5 (

i , j 50

`

bi j n
i t j , ~53!

with the low-energy coefficientsai j and bi j completely de-
termined by the parametersGI , M , s appearing in the
right-hand sides of Eqs.~51! and~52!. Clearly, owing to the
symmetry properties

a2k11,j5b2k, j50 ~ j ,k50,1, . . .!. ~54!

Here it is pertinent to point out the important structu
difference between the system~43! of bootstrap constraints
and the sum rules derived below from the chiral symme
requirements. As follows from Eqs.~51! and ~52!, the ex-
plicit expressions forai j and bi j — along with other terms
— contain the contributions due to scalar mesons. Theref
the corresponding chiral sum rules@see, e.g., Eq.~56! below#
also contain those contributions. In contrast~see Sec. VI!,
scalar mesons do not contribute to the system~43! of boot-
strap constraints at all. Thus, one can combine both kind
conditions to extract the information about the scalar sec
This very feature makes it especially interesting to study
structure of chiral coefficients.

Let us first consider the coefficientb10. From Eq.~52!,
one obtains

b105 (
~ I 51/2!

G1/2

u2
. ~55!

Chiral SU~2!3SU~2! symmetry tells us that atm50 the left-
hand side of Eq.~55! is equal to 1/(4f p

2 ). Thus, we obtain

1

4 f p
2

5 (
~ I 51/2!

G1/2

M22m2
, ~56!

where both sides should be computed atm250. However,
the pion mass is very small and to get an estimate one
take the physical values of the parameters in the RHS of
relation ~56!. This gives~in units of GeV22):

33.05~2062.0!1•••. ~57!

The difference between the two sides in Eq.~57! is too large
to be explained by the corrections connected with the p
mass. The second line of Table I shows that it also canno
attributed to slow convergence of SR~56!.

The natural solution to this problem is provided by su
gestion on the existence of a relatively light resonance~or,
perhaps, two ones! with I 51/2. It must be a scalar, becaus
otherwise the correct balance in SR~48! would be disturbed.
This resonance is known ask-meson. It appears in variou
theoretical schemes as well as in results of the analysi
2-11
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experimental data~K-matrix, Pade´-approximants, etc; se
@15,14# and previous review issues by Particle Data Grou!.
The current status ofk-meson is even less clear than that
s-meson. It should be noted, however, that — after a lo
hiatus — interest in both particles has quickened in the p
few years. Many authors~see@16–23#! have reanalyzed the
problem of light scalars from rather different viewpoints~po-
tential models, unitarized resonance models, K-matrix an
sis, chiral symmetry, etc.! and concluded that light broa
scalar mesons do exist, though their parameters~masses and
coupling constants! still cannot be fixed with sufficient accu
racy. Further theoretical and experimental efforts are nee
to clarify the situation in scalar sector.

Since the SR~56! follows from rather general postulate
we can use it to estimate thek-meson parameters. Based o
the assumption that there is only one light scalar with
massM<1.4 GeV, one obtains from Eqs.~56! and~57!, the
following ~rough! estimate

Gk

~Mk
22m2!2

;10 GeV22. ~58!

Using this estimate and the expression~A10! for G1/2
(0) , one

concludes thatk-meson withMk51 GeV would have the
width GpK'220 MeV, while Mk51.4 GeV would corre-
spond toGpK'1 GeV. In what follows, we assume that

Mk'1 GeV. ~59!

This value should not be taken too seriously: it provides o
indicative numbers. Light scalar mesons — if they exist
are broad; in such a case the very meaning of the t
‘‘width’’ loses its definiteness. We imply the meaning su
gested by the relations~A8!–~A10!.

The relations~58!–~59! allow one to estimate the magn
tudes of thek-meson contributions to numerical values
the coefficientsai j and bi j . Let us consider first the latte
ones. From Eq.~52! one derives

b1152 (
~ I 51/2!

G1/2
~J!

u3
~12pJ

~1!j !,

b125 (
~ I 51/2!

G1/2
~J!

u4 S 3

4
2pJ

~1!j1pJ
~2!j2D ,

~60!

b305
1

4 (
~ I 51/2!

G1/2
~J!

u4
,

where

pJ
~k![

1

2k~k! !2

~J1k!!

~J2k!!
~k<J!, pJ

~k!50 ~k.J!,

~61!

and
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2F
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The corresponding numerical values can be obtained w
the help of data@14# and the estimates~58!, ~59!. They are
the following

b115~53.5610! GeV24,

b125~297611! GeV26, b305~13.562! GeV26.
~62!

Numerical values of the individual contributions to SR~60!
are shown in Table I. It is clear that in all three cases
most significant contribution follows from the lightest vect
resonance —K* (892), the influence ofk-meson appearing
mainly in the values of error bars. Heavy mesons~those with
M.2 GeV) play negligible role because the sum rules u
der consideration possess extremely rapid convergence.
above statements certainly remain true with respect to hig
order coefficientsbi j . Moreover, the values ofbi j at j Þ0 —
in contrast to those ofbj 0 — only weakly depend on the
assumption~59!.

Thus, we conclude that chiral vector meson dominan
~VMD ! hypothesis works satisfactory~with accuracy
;25%) for all the coefficients exceptb10, in which case the
scalar meson contribution represents more than 30% of
total value. However, it should be remembered that the
lidity of this statement strongly depends on the sugges
~59!; our conclusion would be quite different, if we tak
Mk5800 MeV.

Let us consider now the coefficientsai j . From the struc-
ture of Eq.~51!, it follows that at iÞ0, the value ofai j is
completely determined by the contributions of mesons w
I 51/2. In particular,

a205
1

2 (
I 51/2

G1/2
~J!

u3
, a215

1

4 (
I 51/2

G1/2
~J!

u4 S 231pJ
~1!

u

F D .

~63!

The corresponding numerical values

a205~17.262.5! GeV24, a215~32.066.8! GeV26,
~64!

are caused mainly by the contribution ofK* (892) ~see Table
I!, the latter conclusion being strongly connected with t
assumption~59!.

A consideration of Table I allows one to understand t
reason for applicability of VMD hypothesis in the cases co
sidered above. Because of extremely rapid convergenc
SR ~60! and ~63!, the most significant contribution is pro
vided by the lightest resonance. Since the assumed valu
Mk is larger thanMK* , the influence of thek-meson hap-
pens to be weaker than that ofK* (892).

The matters are much more complicated with respec
the coefficientsa0 j . Let us compute the lowest one. Fro
Eq. ~51!, we have
2-12
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a005(
I 50

G0

M2
PJS S

4F D2(
I 51

G1

M2
PJS S

4F D
12 (

I 51/2

G1/2

S FPJS 12
S

2F D2
s

u G . ~65!

Chiral SU~2!3SU~2! symmetry tells us that atm50

a0050. ~66!

The latter condition allows one to get an idea on the mag
tude of total scalar-isoscalar meson contribution. Using@14#,
we compute the contributions of resonances withI 51/2 —
the numbers are shown in Table I. The influence ofk-meson
is estimated just as above; it happens to be relatively
important than in SR~56!. Next we compute the contribu
tions of isovectorsr(770) (;3.0) andr3(1690) (;2.6)
and spin-2 isoscalarf 2(1270) (;7.3). Summing all the
numbers~with the most pessimistic values of error bars!, one
obtains from Eqs.~65! and ~66!, the following sum rule

(
I 5J50

G0
~0!

M2
'53.567.5. ~67!

This relation clearly demonstrates that chiral VMD does
apply to the coefficienta00: in this case the contribution du
to scalar mesons happens to be larger than that of vector
@cf. the numbers in Table I with the RHS of Eq.~67!#. An
idea of the required structure of scalar sector can be ga
from the estimate off 0(1300) contribution. Taking~see
@14#! M f51.25 GeV, Gpp50.37 GeV and GKK̄50.03
GeV, one obtains the number

G0
~0!~ f 0!

M f 0

2
'3.2,

which is negligibly small compared to that required by E
~67!. This estimate shows that SR~67! requires the existenc
of light scalar-isoscalar resonance strongly coupled to b
pp- and KK̄-channels. In principle, the mentioned abo
s-meson would be a good candidate for this role. If we ta
this hypothesis~along with the parameters, taken from th
quoted above papers@16–23#!, the computation of the coef
ficientsa0 j could be easily done. However, it should be ke
in mind that the same resonance appears also in process
pp andKK̄ scattering. Therefore, from the purely theore
cal point of view, it is much more interesting to carry o
simultaneous analysis of joint system of sum rules in orde
get self-consistent results. This analysis is in progress n

VIII. CONCLUDING REMARKS

The method of Cauchy’s forms described in Sec. III
lowed us to avoid model dependence of results. Our con
sion concerning the dual properties of tree-level amplitude
effective field theory with infinite number of field specie
follows directly from certain analyticity requirements~mero-
morphy and polynomial boundedness! and the requiremen
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of crossing-symmetry. The same is true with respect to
system of bootstrap constraints which appears as neces
and sufficient condition providing feasibility of analytic con
tinuation between the direct- and cross-channel doma
This conclusion eliminates apparent contradiction betw
the conventional quantum field theory~QFT! approach and
that based on the idea of duality~in Ref. @24# this problem is
considered from a different point of view!. Dual amplitude is
constructed from the infinite series of direct channel pol
the cross channel ones appearing just as a result of sum
tion of this series and its subsequent analytic continuation
the cross-channel domain. In contrast, the Born approxi
tion in QFT contains both types of poles simultaneou
~plus smooth — background — terms corresponding
pointlike interactions!. This very feature is commonly con
sidered as drastic difference between two approaches.

Our results show that there is a logical gap in the abo
reasoning. Indeed, the dual amplitude contains an infi
number of poles corresponding to the states with arbitra
high values of spin and mass. Therefore, it is natural to co
pare it with QFT which also contains the infinite spectrum
bound states. Next, as it follows from our analysis in Sec.
every dual amplitude along with infinite set of poles conta
also specific background terms which manifest themse
explicitly in the corresponding area of the momentum tra
fer. Thus the QFT in question can also contain pointli
interaction terms. At last, the QFT amplitude — as well
the dual one — should be written in the correct analy
form, the latter one depending on the domain under cons
eration. In particular, in the direct-channel domain this for
cannot contain any poles in momentum transfer, the con
bution of t-channel exchange graphs looking here like t
background interaction with infinite number of derivative
With this understanding in mind, one can write down t
most general QFT expression for tree-level amplitude~which
is nothing, but the amplitude of the effective QFT! in the
form dictated by the analyticity requirements, and then ca
out the analytic continuation to the cross-channel doma
The conditions guaranteeing that the resulting express
will contain no other singularities, but simple poles and a
biguity points, and possess the desired asymptotic beha
are precisely those expressed by the system of bootstrap
straints.

Thus we conclude that the effective field theory of stro
interactions, based on the idea of quark-hadron duality, n
essarily results in the string form of tree-level amplitude p
vided that certain analyticity requirements~meromorphy and
polynomial boundedness! are imposed. This conclusion pro
vides a solution to the problem of string organization of fie
theories@24#.

Further, though the mere appearance of bootstrap c
straints does not depend of the values of bounding poly
mial degrees, their particular form does depend of those
ues. It is remarkable that numerical test based solely on l
energy data provides clear arguments in favor of the deg
corresponding to experimentally known values of intercep
This means that the formulas for low-energy coefficie
~Sec. VII!, obtained as a by-product of our study of effecti
hadron theory with maximal analyticity, may be thought
2-13
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as model independent results based on well-established
eral principles. However, it should be kept in mind that,
use those formulas in ChPT computations, one needs to
pand them in powers of quark masses. This is necessary
to avoid contradiction with chiral power counting rules.

Our main conclusion concerning the structure of LEC’s
the following. The idea of chiral duality@3,4,25,26# ~for the
review see@27,28#! is certainly true. It mirrors the require
ments of general principles of quark-hadron duality and a
lyticity. Thus it is no less general than ChPT itself. Howev
this idea needs more accurate formulation. Indeed, a c
parison of the well-defined form~51! with the formally writ-
ten expression~A6! shows considerable difference in the
structure. In contrast with Eq.~A6!, the expression~51! does
not contain any unknown polynomials likeEA(s,t,u). In-
stead, it contains the contribution~see the second item! de-
pending on the parameters of isovector resonances; su
term could not appear in the ‘‘naive’’ form~A6! in principle.
On the other hand, the well-defined form~52! does not con-
tain any contribution from isovectors, while the formal e
pression~A7! does contain it@along with unknown polyno-
mial EB(s,t,u) which is absent in Eq.~52!#. This means that
one should exercise caution when formulating the idea
chiral duality. In this respect, the situation resembles t
with formulation of VMD hypothesis@25,26,29# — the latter
happened to be well defined only under the condition if c
tain limitations are imposed on high-energy asymptotics
the vector meson contribution. In fact, our polynom
boundedness requirement is nothing, but a generalized
sion of those limitations applied to the full tree-level amp
tude.

In contrast to chiral duality, the status of chiral VM
hypothesis is much less reliable. From recent data ana
and from our SR~65!, it follows that the existence oflight
broad scalar resonance looks necessary to explain the
energy experimental data. In some cases~like a0 j — see Sec.
VII ! the contribution of this scalar meson may happen to
significant even compared to~also allowed! that of lightest
vector mesons. Modern understanding of the scalar se
still looks unsatisfactory. In particular, it is well known th
the final state interaction inpp system is very strong nea
600–800 MeV, where the unitarity restrictions play essen
role. The same is true with respect to thepK system just
below 1 GeV. In both cases the modern interpretation of
structure of P-waves looks quite reliable, in contrast to t
of S-waves. Our results show that the existence oflight sca-
lars looks necessary to explain the data on the reson
spectrum. This conclusion remains valid irrelevantly to t
magnitude of unitarity corrections, which we do not consid
here since they are connected with loop contributions. N
ertheless, as mentioned above, it coincides well with the
cent results@16–23#, based on the analysis of experimen
data on S-waves.

Here it is a point to stress the difference between
approach and that used by those authors who study var
QCD-inspired models~for the review, see@30,31#! to com-
pute chiral LEC’s. Our results show that LEC’s can
treated as ‘‘secondary’’ quantities completely fixed by t
values of ‘‘primary’’ ones: hadron masses and on-shell c
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pling constants. The latter values should be taken from
underlying fundamental theory~QCD, string, . . . !. Given
them one can compute all other characteristics of low-ene
hadron reactions in a framework of the approach based
effective field theory accounting for few general principl
~symmetry and analyticity!. In contrast, the authors of QCD
inspired models consider LEC’s on the same ground as s
trum parameters. Particular assumptions~inavoidable in this
approach! concerning the hadronization regime in QCD i
troduce strong model dependence in the results. This fea
along with scarcity of modern database@specially stressed
with respect to (p,K) processes in@32## hampers the under
standing of relative importance of different mechanism
That is why we prefer to use the conventional approach@2–
4#, supplemented with requirements imposed by the gen
principle of maximal analyticity.

It should be noted that the latter principle plays no ro
~or, better, it is trivial! in conventional renormalizable field
theories: there is no necessity to postulate anything wh
can be computed. The necessity of considering maximal a
lyticity as an independent condition appears only if the nu
ber of field species~or, the number of derivatives! is allowed
to become infinite. As shown recently in@33#, in this very
case, one can expect considerable simplification of a the
near the phase transition point. Therefore, it would be in
esting to find an algebraic structure corresponding to the c
sidered above infinite system of bootstrap constraints. I
more or less clear that it might be one of the algebras
rational functions. This suggestion correlates~though indi-
rectly! with the structure of our sum rules which admit exi
tence of infinite-dimensional multiplets.
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APPENDIX

Here we give a summary of formulas and relations wh
are necessary for the analysis of (p,K) processes.

Three different channels of the reaction under consid
ation are the following:

pa~k1!1Ka~p1!→pb~k2!1Kb~p2!,

pa~k1!1pb~k2!→K ā~p1!1Kb~p2!,

pa~k1!1K b̄~p2!→pb~k2!1K ā~p1!.

Here a,b51,2,3 anda,b51,2 stand for isotopic indices
The amplitude can be written as follows:

Mba
ba 5da

bda
bA~s,t,u!1 i«bac~sc!baB~s,t,u!, ~A1!
2-14
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where Tr (sasb)52dab , and

s5~k11p1!2, t5~k12k2!2, u5~k12p2!2,

s1t1u52~m21m2![2s.

Here m (m) is the pion~kaon! mass. Because of require
ments of Bose symmetry

A~s,t,u!5A~u,t,s!, B~s,t,u!52B~u,t,s!. ~A2!

We use also three different pairs of independent kinemat
variables$nx ,x% (x5s,t,u):

ns5u2t, n t5s2u, nu5t2s.

Each set$nx ,x% forms a natural coordinate system in th
three-dimensional bandBx corresponding to small realx and
arbitrary complexnx , the section ofBx by Mandelstam
plane~real s,t,u! resulting in a two-dimensional stripSx par-
allel to the sidex50 of the Mandelstam triangle~see Fig. 1!.

The Regge theory prescriptions for the asymptotic beh
ior of the amplitudesA andB in the bandsBs ,Bt ,Bu can be
summarized as follows:

Bs$unsu→`; s;0%:

~A12B!/Bs
;ns

a1/2~s! , @N50#,

~A2B!/Bs
;ns

a3/2~s! , @N521#,
~A3!

Bt$un tu→`; t;0%:

A/Bt
;n t

a0~ t ! , @N50#,

B/Bt
;n t

a1~ t ! , @N521#, ~A4!

Bu$unuu→`; u;0%:
01600
al

v-

~A22B!/Bu
;nu

a1/2~u! , @N50#,

~A1B!/Bu
;nu

a3/2~u! , @N521#.
~A5!

Here we also show in braces the degrees of bounding p
nomials needed to construct the corresponding Cau
forms. Those degrees are uniquely determined by the kn
intercepts of the leading Regge trajectories with the isospiI:

a0~0!51, a1~0!'0,5, a1/2~0!'0,3, a3/2~0!,0.

For the sake of the reader’s convenience, below we g
also theformal ~i.e., constructed in accordance with ‘‘naive
Feynman rules! tree-level expressions for the effective am
plitudes A and B appearing in Eq.~A1!. They can be ob-
tained with the methods developed in@34–36# ~it is implied
that there are no boson resonances withI .1).

A~s,t,u!52(
I 50

G0

PJ@~s2u!/4F#

t2M2
2 (

I 51/2
G1/2

3PJS 11
t

2F D S 1

s2M2
1

1

u2M2D 1EA~s,t,u!.

~A6!

B~s,t,u!52(
I 51

G1

PJ@~s2u!/4F#

t2M2
2 (

I 51/2
G1/2

3PJS 11
t

2F D S 1

s2M2
2

1

u2M2D 1EB~s,t,u!.

~A7!

HerePJ(x) is the ordinary Legendre polynomial,EA andEB
stand for theformal power series ins,t,u obeying the Bose
symmetry conditions~A2!, and
F[F~M2,m2,m2!5
1

4
uA~M224m2!~M224m2!u,

F[F~M2,m2,m2!5
1

4M2
uAM41m41m422M2m222M2m222m2m2u.
The explicit formulas expressing the constantsGI in terms of
the resonance parameters~massM, spin J and partial decay
widths Gpp , GKK̄ andGpK) look as follows:

uG0~J,M2!u58pM2~2J11!A1

3

Gpp

upW pu

GKK̄

upW Ku
~M>2m!,

~A8!
uG1~J,M2!u58pM2~2J11!A1

2

Gpp

upW pu

GKK̄

upW Ku
~M>2m!,

~A9!

G1/2~J,M2!58pM2~2J11!
1

3

GpK

upW u
~M>m1m!.

~A10!
2-15
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As in Ref. @1#, we use the notation

Ds5BtùBu , Dt5BuùBs , Du5BsùBt

for the mutual domains of various pairs of the bandsBx and

u[M22s, S[M222s

for two special combinations of masses~hereM stands for
the resonance mass!.

Each symbol( (I 5p) in the text implies summation ove
all admissible resonancesRi ( i 51,2, . . . ) with the indi-
cated (p50,1/2,1) isospin value; according to Sec. III,this
summation should be carried out in order of increasi
mass. For example,
in,

s

01600
(
I 51/2

G1/2PJS 12
S1S

2F D 1

ns2~s12u!
5
def

(
i 51

`
Ri~Mi , s!

ns2~s12u i !

whereMi
2,Mi 11

2 ,

Ri~Mi
2 , s![ (

J50

Ji
max

G1/2~J,Mi
2!PJS 12

S i1s

2F i
D ,

and the constantsG1/2, S i , u i , F i are defined above. As ex
plained in@1#, we imply that at every fixed value ofMi

2 , the
spectrum of allowed spin values is restricted by certain nu
ber Ji

max.
ev.

. D
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