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Model for particle masses, flavor mixing, andCP violation, based on spontaneously broken
discrete chiral symmetry as the origin of families

Stephen L. Adler*
Institute for Advanced Study, Princeton, New Jersey 08540
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We construct extensions of the standard model based on the hypothesis that Higgs bosons also exhibit a
family structure and that the flavor weak eigenstates in the three families are distinguished by a discreteZ6

chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models
with three Higgs doublets and with six Higgs doublets comprising two weakly coupled sets of three. In a
leading approximation ofS3 cyclic permutation symmetry the three-Higgs-doublet model gives a ‘‘demo-
cratic’’ mass matrix of rank 1, while the six-Higgs-doublet model gives either a rank-1 mass matrix or, in the
case when it spontaneously violatesCP, a rank-2 mass matrix corresponding to nonzero second family masses.
In both models, the CKM matrix is exactly unity in the leading approximation. Allowing small explicit
violations of cyclic permutation symmetry generates small first family masses in the six-Higgs-doublet model,
and first and second family masses in the three-Higgs-doublet model, and gives a nontrivial CKM matrix in
which the mixings of the first and second family quarks are naturally larger than mixings involving the third
family. Complete numerical fits are given for both models, flavor-changing neutral current constraints are
discussed in detail, and the issues of unification of couplings and neutrino masses are addressed. On a technical
level, our analysis uses the theory of circulant and retrocirculant matrices, the relevant parts of which are
reviewed.@S0556-2821~98!01523-9#
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I. INTRODUCTION

It has long been recognized that the hierarchical structu
of the family mass spectra, with their large third fami
masses, and of the Cabibbo-Kobayashi-Maskawa~CKM!
mixing matrix, with its suppressed third family mixings, ma
have a common dynamical origin. In particular, several
thors@1# have stressed that the observed pattern seems
close to the ‘‘rank-1’’ limit, in which the mass matrices hav
the ‘‘democratic’’ form of a matrix with all matrix element
equal to unity, which has one eigenvalue 3 and two eig
values 0; when both up and down quark mass matrices h
this form, they are diagonalized by the same unitary tra
formation and the CKM matrix is unity. A generalization o
the democratic form, which is closely related to the mod
developed below, is the suggestion of Harrison and Scott@2#
that the Hermitian square of the mass matrix should have
form of a circulant matrix. Because the underlying dynam
cal basis for these choices has not been apparent, it ha
been possible to systematically extend them to renorma
able field theory models that incorporate, and relate, the
served mass and mixing hierarchies.

We present in this paper models for the quark mass
flavor mixing matrices, based on the underlying dynami
assumption that the three-flavor weak eigenstates are di
guished by different eigenvalues of a discrete chiralZ6 quan-
tum number. The idea that a discrete chiral quantum num
may underlie family structure was introduced originally
Harari and Seiberg@3#, and was developed recently by th
author @4# in a modified form that we follow here. Also o
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relevance is the remark of Weinberg@5# that an unbroken
discrete chiral quantum number suffices to enforce the m
lessness of fermionic states. Extending the general fra
work of this earlier work, we postulate that allcomplexfields
carry a discrete chiral family quantum number. Since
Higgs scalars in the standard model are complex, we in
duce one or two triplets of Higgs doublets that carryZ6

quantum numbers, and that are coupled to the fermions
Yukawa couplings constructed so that the Lagrangian is
actly Z6 invariant. Spontaneous symmetry breaking,
which the neutral members of the three or six Higgs doub
acquire vacuum expectations, then gives the fermion m
matrices that form the basis for our detailed analysis.

In addition to postulating that the Lagrangian has an ex
discrete chiral symmetry that is spontaneously broken,
also postulate that there is anS3 cyclic symmetry under cy-
clic permutation of the flavor eigenstates that is explicitly b
weakly broken by the Yukawa couplings and the Higgs se
couplings in the Lagrangian. This assumption permits
analysis of our models by developing them in a perturbat
expansion in powers of theS3 cyclic symmetry breaking,
leading, as we shall see, to qualitative features of the m
and mixing hierarchies that accord with observation. An
terplay of spontaneously broken symmetries with weakly
plicitly broken symmetries has played a useful role in p
ticle phenomenology in the past, most notably
understanding the consequences of chiral symmetry in qu
tum chromodynamics. Our analysis suggests that such
interplay, in the context of electroweak symmetry breakin
may also provide a basis for understanding features of
mass and mixing hierarchy.

This paper is organized as follows. In Sec. II we elabor
on the form of and motivation for our basic assumptions
©1998 The American Physical Society12-1
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STEPHEN L. ADLER PHYSICAL REVIEW D 59 015012
an exact discrete chiral symmetry and an approximateS3
cyclic permutation symmetry. In Sec. III we write down th
Lagrangians for two extensions of the standard model
incorporate these assumptions, the first based on a s
three-family set of Higgs doublets and the second based
including an additional weakly coupled three-family set
Higgs doublets. In Sec. IV we review the theory of circula
and retrocirculant matrices, in the framework of the 333
matrices that are needed for the subsequent analysis. In
V we discuss the extrema of the Higgs potentials in
three- and six-doublet models, in the limit of exactS3 cyclic
symmetry. We work out the spectra of physical Higgs p
ticles, and show that for a wide range of parameters,
six-doublet model leads to spontaneous violation ofCP. In a
related appendix, Appendix A, we give the formulas need
for numerical minimization of the Higgs potentials by th
conjugate gradient method. In Sec. VI we use the extre
determined in Sec. V to calculate the tree approximat
mass matrices. We show that in the limit of exact cyc
permutation symmetry, the mass matrices are retrocircula
corresponding to the rank-1 ‘‘democratic’’ form in the thre
doublet model and to a rank-2 generalization in the s
doublet model whenCP is spontaneously violated. Also, i
the limit of exact cyclic permutation symmetry, we chara
terize the Higgs decay modes, and show that the CKM m
trix is exactly unity and that strangeness-changing neu
currents exactly vanish. In Sec. VII we formulate a pertur
tive expansion around the zeroth order approximation of
act S3 cyclic permutation symmetry, and show that the m
ing matrix for the first and second families is zeroth order
the perturbation, whereas the mixings involving the th
family are first order in the perturbation. In Sec. VIII w
derive formulas for the contributions from Higgs exchan
to the KL2KS mass difference, which is the process mo
sensitive to strangeness-changing neutral current effect
Sec. IX we describe the procedure used for making ove
fits of our model, including small violations of cyclic permu
tation symmetry, to the data, give sample numerical resu
and draw some conclusions from these. In Sec. X we s
marize experimental signatures for our model, comment
its extension to neutrino masses and mixings, discuss
prospects for coupling constant unification, and give so
directions for future investigations.

II. BASIC ASSUMPTIONS: AN EXACT DISCRETE
CHIRAL SYMMETRY AND AN APPROXIMATE S3

CYCLIC SYMMETRY

In formulating our basic assumptions, we shall follow
procedure that has worked well in the past as a heuristic
in particle physics. This is to abstract symmetry or par
symmetry assumptions from specific simplified field theo
models, and then to discard the models, but to retain
symmetry assumptions deduced from them as the basis
phenomenological calculations. Examples where this
been a productive method in the past include~1! the CVC
~conserved vector current! and PCAC~partially conserved
axial vector current! symmetries of the strong interaction
the algebra of currents, and the calculational methods ba
01501
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on these, and~2! the approximate SU~3! flavor symmetry of
the strong interactions. These postulates, which had a so
whatad hoccharacter at the time when they were first intr
duced, helped pave the way for the formulation of the st
dard model, into which they were incorporated in a natu
way and thereby ultimately justified.

Our aim in this paper is to apply a similar method to t
problems of family structure and mass and mixing matric
which to date have been among the most vexing puzzle
the standard model. As a heuristic field theoretic model,
shall adopt a simplified composite model in which all mat
particles ~quarks, leptons, and Higgs fields — everythin
other than the gauge fields! are composites of a single fer
mion field x. As observed by Harari and Seiberg@3# and
Weinberg@5#, in a gauge theory forx the instanton determi-
nant that breaks global U~1! invariance leaves unbroken
discreteZ2K chiral subgroup, withK determined by the index
of the representation of the gauge group under whichx
transforms. Harari and Seiberg propose, moreover, that
naturally occurring discrete chiral subgroup provides
quantum number that distinguishes between the vari
families. Since it is now clear that there are exactly thr
light families, we shall assume henceforth in applying th
idea thatK53, so that we start from the assumption that t
fundamental Lagrangian, as augmented by the instan
induced potential, is invariant under the simultaneous tra
formations

xL→xLexp~2p i /6!, xR→xRexp~22p i /6! ~1a!

of the fundamental fermion fieldsx. The fields in the low
energy effective Lagrangian are in general nonlinear fu
tionals of the fundamental fields. Fermionic effective fiel
must be odd monomials in the fundamental fields, and so
come in three varietiescn with the discrete chiral transfor
mation law

cnL→cnLexp@~2n11!2p i /6#,

cnR→cnRexp@2~2n11!2p i /6#, n51,2,3,
~1b!

while complex bosonic effective fields must be even mon
mials in the fundamental fermion fields, and so can a
come in three varietiesfn with the discrete chiral transfor
mation law

fn→fn exp~2n2p i /6!, n51,2,3. ~1c!

Introducing the cube roots of unityv and v̄,

v5exp~2p i /3!52
1

2
1

A3

2
i ,

v̄5exp~22p i /3!52
1

2
2

A3

2
i , ~2a!

which obey the relations

v̄5v* 5v2, 11v1v̄50, ~2b!
2-2
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the transformation laws of Eqs.~1a!–~1c! take the form

xL→xLv1/2, xR→xRv̄1/2,

cnL→cnLvn1 1/2, cnR→cnRv̄n11/2, n51,2,3,
~3!

fn→fnvn, n51,2,3.

Gauge fields are real fields, and since the phase in
~1c! never takes the value21 for anyn, the gauge fields in
a Z6 model necessarily come in only one variety, transfor
ing with phase unity under discrete chiral transformatio
Thus the minimalZ6-invariant extension of the standar
model consists of a triplicated set of fermions and a trip
cated set of Higgs doublets, obeying the transformation la
of Eqs. ~1b! and ~1c!, respectively, together with the usu
gauge bosons, with the Lagrangian constructed to beZ6 in-
variant.

As we shall see in Sec. III below, the assumption of
unbroken discrete chiral symmetry still leaves many para
eters in the Lagrangian, and it is desirable to look for
further exact or approximate symmetry to impose. The na
ral candidate isS3 cyclic permutation symmetry, under s
multaneous cyclic permutation of then51,2,3 discrete chira
components of the fermion and Higgs boson fields. If
discrete chiral components were physically identical, o
would expect thisS3 cyclic symmetry to be exact. Howeve
in the composite picture from which we are abstracting
model, the discrete chiral components differ physically
the addition of fermion-antifermion pairs coupled as Lore
scalars, and so the internal wave functions of the disc
chiral components are different. Thus the best we might h
for is an approximate, weakly broken,S3 cyclic permutation
symmetry, and this will be assumed as the second ingred
of our model.

By abstracting our two fundamental assumptions from
schematic composite model, we gain some assurance
they are consistent with each other and at least physic
plausible. However, we do not attach great significance
the particular model from which they were inferred; it
entirely possible that the same assumptions can emerge
other dynamical frameworks. We shall henceforth avoid f
ther discussion of underlying models, and focus on explor
the consequences of our assumptions within the stan
framework of low energy renormalizable effective acti
phenomenology.

III. DISCRETE-CHIRAL-INVARIANT EXTENSIONS
OF THE STANDARD MODEL

We proceed now to write down discrete-chiral-invaria
extensions of the Lagrangian density for the standard mo
following the notation of the text of Mohapatra@6#. In the
following, each quark or lepton field is implicitly a colum
vector formed from the three discrete chiral compone
obeying the transformation laws of Eq.~3!, with the n51
index at the top of the column vector and then53 index at
the bottom. For the Higgs scalar fields, the discrete ch
01501
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subscriptn will be indicated explicitly. We shall be inter
ested in two models, the first containing a single discr
chiral triplet of Higgs doubletsf, the second containing two
discrete chiral triplets of Higgs doublets, denoted, resp
tively, by f andh. We shall write all formulas for the cas
of the six-Higgs-doublet model; the simpler three-doub
model is obtained by setting all fieldsh to zero.

The total Lagrangian densityL consists of kinetic terms
for the gauge, Higgs, and fermionic fields, together w
Yukawa couplings of the Higgs fields to the fermions and
Higgs self-interaction potential. Writing

L5Lgauge kinetic1LHiggs kinetic1Lfermion kinetic

1LYukawa1LHiggs potential, ~4a!

the gauge kinetic terms have the usual form

Lgauge kinetic52 1
4 WW mn•WW mn2 1

4 BmnBmn ,

WW mn5]mWW n2]nWW m1gWW m3WW n ,

Bmn5]mBn2]nBm , ~4b!

and so also do the fermion kinetic terms~with QL andcL ,
respectively, the left-handed quark and lepton doublets,
tW the weak isospin Pauli matrices that act on them!:

Lfermion kinetic

52Q̄LgmS ]m2
ig

2
tW•WW m2

ig8

6
BmDQL

2c̄LgmS ]m2
ig

2
tW•WW m1

ig8

6
BmDcL

2ēRgm~]m1 ig8Bm!eR2 n̄Rgm]mnR

2ūRgmS ]m2
2ig8

3
BmDuR2d̄RgmS ]m1

ig8

3
BmDdR .

~4c!

The Higgs kinetic energy is simply a sum over kinetic term
of the standard form for the discrete chiral components of
scalarsf andh ~each of which is, as usual, a weak isosp
doublet!:

LHiggs kinetic52 (
n51,2,3

U]mfn2
ig

2
tW•WW mfn2

ig8

2
BmfnU2

2 (
n51,2,3

U]mhn2
ig

2
tW•WW mhn2

ig8

2
BmhnU2

.

~4d!

It is only in the Yukawa couplings and the Higgs potent
that invariance under discrete chiral transformations play
nontrivial role. Lettingf̃n and h̃n denote theCP conjugates
of the Higgs fields,
2-3
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STEPHEN L. ADLER PHYSICAL REVIEW D 59 015012
f̃n5~CP!21fnCP5 i t2fn* ,
~5a!

h̃n5~CP!21hnCP5 i t2hn* ,

the Yukawa Lagrangian takes the form

LYukawa5Q̄LFddR1Q̄LFuuR

1c̄LFeeR1c̄LFnnR1adjoint, ~5b!

whereF f , f 5d,u,e,n is a 333 matrix acting on the dis-
crete chiral column vector structure, and where we have
lowed for the possibility of nonzero Dirac neutrino mass
by including a right-handed neutrino. The matricesF f must
be constructed so that Eq.~5b! is invariant under simulta-
neous discrete chiral transformations of the fermion a
Higgs fields. Referring to Eq.~3!, it is easy to see that thi
dictates the structure

F f5g f
f ~Pf1

f f11P f2
f f21P f3

f f3!

1gh
f ~P h1

f h11Ph2
f h21P h3

f h3!, f 5d,e,

F f5gf
f ~Pf1

f f̃21Pf2
f f̃11Pf3

f f̃3!

1gh
f ~Ph1

f h̃21Ph2
f h̃11Ph3

f h̃3!, f 5u,n, ~6a!

with the 333 matrices Pjn
f given, for all flavors f

5u,d,e,n and forj5f,h, by

Pj1
f 5S 0 11bj12

f 0

11bj21
f 0 0

0 0 11bj33
f
D ,

Pj2
f 5S 0 0 11bj13

f

0 11bj22
f 0

11bj31
f 0 0

D , ~6b!

Pj3
f 5S 11bj11

f 0 0

0 0 11bj23
f

0 11bj32
f 0

D .

To uniquely specify the Yukawa couplingsgj
f , we require

that the parametersbjmn
f sum to zero:

(
mn

bjmn
f 50. ~6c!

When there is exactS3 cyclic permutation symmetry theb ’s
all vanish, and thus the case of approximateS3 cyclic sym-
metry is parametrized byb ’s that are all small compared t
unity. In a CP-conserving theory all of the coupling con
stantsgf,h

f and all of theb ’s are real; whenCP conservation
is not imposed, these parameters can be complex.

We turn finally to the Higgs potential, which we separa
into four terms as follows:
01501
l-
s

d

LHiggs potential5Vf1Vh1V1~f,h!1V2~f,h!, ~7a!

with ~for j5f,h)

Vj5 (
n51

3

Vjn ,

Vjn5ljn~jn
†jn2vjn

2 !2

2m1jnjn
†jnjn11

† jn112m2jnujn
†jn11u2

2ajnRe exp~ icjn!jn
†jn11jn

†jn21 , ~7b!

where the coefficients in Eq.~7b! are real~by Hermiticity!
and where the parametercjn is zero~modulo p) when CP
conservation is imposed. For the potential terms that cou
the f and h Higgs fields, we have, in theCP-conserving
case,

V1~f,h!5 (
m,n51

3

~C1mnfm
† fmhn

†hn1C2mnRefm
† hmhn

†fn

1C3mnRefm
† fm11hn

†hn21

1C4mnRehm
† hm11fn

†fn21

1C5mnRefm
† hm11hn

†fn21

1C6mnRehm
† fm11fn

†hn21!,

V2~f,h!5(
n

gnRefn
†hn

1 (
m,n51

3

~C7mnRefm
† fm11fn

†hn21

1C8mnRefm
† fm11hn

†fn21

1C9mnRehm
† hm11fn

†hn21

1C10mnRehm
† hm11hn

†fn21

1C11mnRefm
† hm11fn

†hn21

1C12mnRehm
† fm11hn

†fn21!, ~7c!

with all constants real~again by Hermiticity!. The termsV1
are those invariant under independent rephasingsfn
→exp(iuf)fn andhn→exp(iuh)hn of the two Higgs discrete
chiral triplets, while the termsV2 are only invariant under
this phase transformation when restricted so thatuf5uh .
When CP is not conserved, an independent phase can
inserted inside each real part Re in the above expression
analogy with the construction of the final term of Eq.~7b!.
When there isS3 cyclic permutation symmetry, the constan
with a single discrete chiral subscriptn are independent o
that subscript, while the constants with a double subsc
mn obey the cyclic condition Clmn5Clm11n11 , l
51, . . . ,12.
2-4
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This rather complicated Higgs potential completes
specification of our model, the tree approximation to wh
will be analyzed in detail in the sections that follow.

IV. RETROCIRCULANT AND CIRCULANT MATRICES

Before proceeding further, we pause to review the the
of circulant and retrocirculant matrices in the 333 case rel-
evant for what follows. For a compact summary of gene
results see Marcus@7# and Hamburger and Grimshaw@7#,
and for a detailed exposition see Davis@8#. A matrix

Circ→~a,b,c![S a b c

c a b

b c a
D ~8a!

is called acirculant, while a matrix

Circ←~a,b,c![S a b c

b c a

c a b
D ~8b!

is called areverse circulantor retrocirculant. @Clearly, a
retrocirculant is always a symmetric matrix, and
Circ←(a,b,c)5Circ←(a,b,c)T, and Circ←(a,b,c)†

5Circ←(a,b,c)* .] Two properties of these matrices a
used in what follows. The first is that the Hermitian square
a retrocirculant is a circulant:

Circ←~a,b,c!Circ←~a,b,c!†

5Circ→~ uau21ubu21ucu2,ab* 1bc* 1ca* ,

ac* 1ba* 1cb* !,

Circ←~a,b,c!†Circ←~a,b,c!

5Circ→~ uau21ubu21ucu2,

a* b1b* c1c* a,

a* c1b* a1c* b). ~9!

The second is that any retrocirculant with arbitrary comp
a,b,c is diagonalized by transformation from the left an
right by unitary matricesUL , UR5UL* , which are indepen-
dent of the values ofa,b,c. Explicitly, setting

UL5
1

A3
S 1 v̄ v

1 v v̄

1 1 1
D ,

UR5
1

A3
S 1 v v̄

1 v̄ v

1 1 1
D ,

UR
†5

1

A3
S 1 1 1

v̄ v 1

v v̄ 1
D , ~10a!
01501
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a simple calculation shows that

ULCirc←~a,b,c!UR
†

5S a1v̄b1vc 0 0

0 a1vb1v̄c 0

0 0 a1b1c
D .

~10b!

An elementary corollary of these statements is that any H
mitian circulant matrixH→ is diagonalized by the unitary
transformationULH→UL

† using the unitary matrixUL of Eq.
~10b!.

The relevance of these results to what follows is that
the limit of S3 cyclic permutation symmetry, we shall fin
that the fermion mass matrices in both the three- and
doublet models are retrocirculants, and so are diagonal
by the universal bi-unitary transformation of Eq.~10b!. By
Eq. ~9!, the Hermitian squares of the fermion mass matric
in the approximation of cyclic permutation symmetry a
therefore circulants, as suggested by Harrison and Scott@2#.
We shall further find, in analyzing the Higgs sector in t
case of cyclic permutation symmetry, that the Higgs bos
mass matrices are also circulants, making it easy to dia
nalize them explicitly.

V. STRUCTURE OF THE HIGGS SECTOR

We turn now to an analysis of the properties of the d
crete chiral invariant Higgs potential of Eqs.~7a!–~7c!. We
shall assumeCP invariance and exactS3 cyclic permutation
symmetry; when needed, we can take into account small
viations from these assumptions by adding perturbation
the locations of the Higgs minima. We begin our discuss
with the three-Higgs-doublet model, in which only the di
crete chiral tripletf is present. Omitting the subscriptf on
the coefficients, we have

LHiggs potential

5l (
n51

3

~fn
†fn2v2!22m1(

n51

3

fn
†fnfn11

† fn11

2m2(
n51

3

ufn
†fn11u22a (

n51

3

Refn
†fn11fn

†fn21 .

~11a!

Necessary conditions for this potential to be bounded be
are evidently

l.0, l2m12m22a.0. ~11b!

Imposing the condition

m21a.0 ~12a!

ensures that the Higgs potential is minimized when the th
doublets all have the same form
2-5
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fn5S 0

Vn
D , ~12b!

for a suitable choice of SU~2! gauge, with the consequenc
that one electroweak gluon~the photon! remains massless
Imposing the additional condition

a.0 ~12c!

then forces the complex phases of the three expectationVn
to be equal~up to discrete chiral rephasings! at the minimum
of the potential; by a choice of U~1! gauge the overall com
mon phase can be rotated to zero, and so the potential o
~11a! is minimized at

V15V25V35V, ~13a!

with V given by

V25
lv2

l2m12m22a
. ~13b!

This minimum is not unique; because the potential of E
~11a! is invariant under the discrete chiral transformation
Eq. ~3!, equivalent minima are located at

Vn5vnV, n51,2,3, ~13c!

with v1,2,3 any three distinct cube roots of unity, which ca
always be obtained by permutation from the setv̄,v,1. De-
spite the appearance of complex phases in Eq.~13c!, there is
no breakdown ofCP invariance, because these phases
always be eliminated by the discrete chiral transformat
that returns to the minimum of Eq.~13a!.

We note that although the potential of Eq.~11a! is similar
in form to that studied by Bigi and Sanda@9#, they choose
a,0, in which case there are nontrivial relative phases~that
are not just discrete chiral rephasings! between the three ex
pectationsV1,2,3 at the potential minimum, andCP is spon-
taneously broken. This case is not useful for our mo
building because numerical analysis shows that it leads
mass matrix with one heavy family, and two other light
families ofequalmass. We shall make use of the possibil
@10# of CP violation in multi-Higgs-doublet systems only i
the context of the six-doublet model, to be discussed sho

To complete our discussion of the three-doublet mod
we must determine the Higgs masses. Expanding around
minimum of Eqs.~13a!, ~13b! to second order by substitutin

fn5S 1

A2
dn

V1
1

A2
en
D ~14a!

into Eq. ~11a!, we find
01501
q.

.
f

n
n

l
a

r

y.
l,
he

LHiggs potential5V01V2d1V2e ,

V2d5 (
m,n51

3
1

2
dm* Bmndn ,

V2e5 (
m,n51

3
1

2
@em* Amnen1em* Dmnen* 1emDmnen#.

~14b!

A simple calculation shows that the matricesA,B,D are all
circulants of the form

A5Circ→~aA,bA,bA!,

B5Circ→~aB,bB,bB!,

D5Circ→~aD,bD,bD!, ~15a!

with aA,B,D and bA,B,D given in terms of the Lagrangian
parameters by

aA5~2l2m12m2!2V222lv2,

bA52~m11m212a!V2,

aB52~l2m1!V222lv2,

bB52~m21a!V2,

aD5S l2
1

2
a DV2,

bD52
1

4
~2m112m21a!V2. ~15b!

Since these matrices are all diagonalized by transformat
based on the cube roots of unity, it is useful to introduce n
bases defined as follows:

S f1

f2

f3

D 5WS f~1!

f~2!

f~3!
D , S f~1!

f~2!

f~3!
D 5W21S f1

f2

f3

D ,

S d1

d2

d3

D 5WS d~1!

d~2!

d~3!
D , S d~1!

d~2!

d~3!
D 5W21S d1

d2

d3

D ,

S e1

e2

e3

D 5WS e~1!

e~2!

e~3!
D , S e~1!

e~2!

e~3!
D 5W21S e1

e2

e3

D ,

~16a!

with
2-6
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W5WT5
1

A3
S v v̄ 1

v̄ v 1

1 1 1
D ,

W215W†5W* 5
1

A3
S v̄ v 1

v v̄ 1

1 1 1
D ,

W†Circ→~a,b,c!W

5S a1vb1v̄c 0 0

0 a1v̄b1vc 0

0 0 a1b1c
D ,

WCirc→~a,b,c!W

5S 0 a1v̄b1vc 0

a1vb1v̄c 0 0

0 0 a1b1c
D .

~16b!

In terms of the new bases, Eq.~14a! becomes

f~n!5S 1

A2
d ~n!

1

A2
e~n! D , n51,2, ~16c!

and

f~3!5S 1

A2
d~3!

A3V1
1

A2
e~3!D . ~16d!

Substituting Eq.~16b! into both Eq.~14b! and the Higgs
kinetic energy, and using Eq.~13b!, we find, for the terms
quadratic indn ,

2 (
n51,2,3

1

2
u]mdnu21V2d

52 (
n51,2,3

1

2
u]md~n!u21~aB12bB!

1

2
ud~3!u2

1~aB2bB!
1

2
~ ud~1!u21ud~2!u2!

52 (
n51,2,3

1

2
u]md~n!u21

3

2
~m21a!V2~ ud~1!u21ud~2!u2!.

~17a!

From Eq.~17a! we see thatd (3) is a charged massless Gol
01501
stone boson~which is absorbed by the Higgs mechanism in
the longitudinal parts of the charged intermediate boso!,
while d (1,2) are two charged Higgs boson fields~each con-
taining a positive and a negative charge state!, with mass
squared 3(m21a)V2. Similarly, we find, for the terms qua
dratic in en ,

2 (
n51,2,3

1

2
u]menu21V2e

52 (
n51,2,3

1

2
u]me~n!u21~aA12bA!

1

2
ue~3!u2

1~aA2bA!
1

2
~ ue~1!u21ue~2!u2!

1~aD12bD!
1

2
@~e~3!!21~e~3!* !2#

1~aD2bD!~e~1!e~2!1e~1!* e~2!* !. ~17b!

Defining new linear combinationse (6) by

e~6 !5
1

A2
~e~1!6e~2!!, ~17c!

and splittinge (3),e (6) into real and imaginary parts,e (3,6)

5eR
(3,6)1 i e I

(3,6) , Eq. ~17b! takes the form

2 (
n51,2,3

1

2
u]menu21V2e

52
1

2
@~]meR

~3!!21~]me I
~3!!21~]meR

~1 !!21~]me I
~1 !!2

1~]meR
~2 !!21~]me I

~2 !!2#14lv2
1

2
~eR

~3!!2

1S 4l12m112m21
7

2
a DV2

1

2
@~eR

~1 !!21~e I
~2 !!2#

1
9

2
aV2

1

2
@~eR

~2 !!21~e I
~1 !!2#. ~17d!

We see thate I
(3) is a neutral massless Goldstone bos

~which is absorbed by the Higgs mechanism into the lon
tudinal part of the neutral intermediate boson!, while eR

(3) ,
both eR

(1) and e I
(2) , and botheR

(2) and e I
(1) are neutral

Higgs states, with respective squared masses 4lv2, (4l

12m112m21 7
2 a)V2, and 9

2 aV2. Thus, the 12 states con
tained in the original triplet of Higgs doublets are accoun
for as one neutral and two charged Goldstone modes,
charged Higgs bosons, and five neutral Higgs bosons. T
information is summarized in Table I, which also gives t
couplings of the Higgs bosons to fermions worked out
Sec. VI.

We turn next to the properties of the Higgs sector of t
six-doublet model. Although we shall focus here on analy
2-7
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results, we have also made numerical studies of the min
of the six-~and three-! doublet potentials, using the formula
and method given in Appendix A. Let us begin by assum
that the potentialsV1(f,h) andV2(f,h) of Eq. ~7c!, which
couple thef and h Higgs discrete chiral triplets, are ver
small. Then the minima of the Higgs potential are obtain
by examining the degenerate minima ofVf andVh , as an-
alyzed in the three-Higgs-doublet discussion above, and
lecting those for whichV11V2 is smallest. By a simulta-
neousZ6 rephasing off and h, we can always make th
minimizing values off have the form of Eqs.~12b! and
~13a!, with V and the coefficientsl, v, a, m1 , m2 in Eq.
~13b! now carrying the subscriptf to differentiate them
from the similar formulas that hold for the Higgs fieldh.
There are now two distinct possibilities, depending on
values of the coefficients inV1 and V2 . Suppose, for ex-
ample, that all of the coefficientsgn , Clmn in Eq. ~7c! are
negative; thenV11V2 is clearly minimized if the expecta
tions of hn are all relatively real to one another and to t
expectations offn , that is, if

hn5S 0

Ln
D , ~18a!

with

L15L25L35Vh , ~18b!

with Vh given by Eq.~13b! with subscriptsh on all quanti-
ties. Suppose, however, that the coefficients inV1 andV2 are
all positive; then the sumV11V2 will be made lower if we
pick one of the degenerate minima ofVh of the form of Eq.
~13c!, for example,

L15v̄Vh , L25vVh , L35Vh . ~18c!

More generally, the necessary condition for Eq.~18c! to be a
lower minimum than Eq.~18b!, in the limit of small coupling
of h to f, is thatV11V2 be smaller at Eq.~18c! than at Eq.
~18b!. Assuming exact cyclic permutation symmetry, whi
makes the following formulas independent of the value
the free indexm, we find

TABLE I. Higgs eigenmodes, masses, and fermion couplin
for the three-Higgs-doublet model in the cyclic symmetry limit.

Mode Charge Mass Fermion family
designation squared couplings

d (1) 61 3(m21a)V2 First
d (2) 61 3(m21a)V2 Second
eR

(3) 0 4lv2 Third

eR
(1) ,e I

(2) 0 (4l12m112m21
7
2 a)V2 First and second

eR
(2) ,e I

(1) 0 9
2 aV2 First and second
01501
a

g

d

e-

e

f

V1
Eq. ~18b!53Vf

2 Vh
2(

n
~C1mn1C2mn1C3mn1C4mn

1C5mn1C6mn!,
~19a!

V2
Eq. ~18b!53gmVfVh13(

n
@~C7mn1C8mn!Vf

3 Vh

1~C9mn1C10mn!Vh
3Vf

1~C11mn1C12mn!Vf
2 Vh

2],

and

V1
Eq. ~18c!53Vf

2 Vh
2C,

C[S (
n

FC1mn2
1

2
~C3mn1C4mn!G D 1C2mm

1C5m m111C6m m11

2
1

2
@C2m m111C2m m211C5mm1C5m m21

1C6mm1C6m m21#,

V2
Eq. ~18c!50. ~19b!

Thus, the necessary condition for Eq.~18c! to be the mini-
mum is that

V1
Eq. ~18c!,V1

Eq. ~18b!1V2
Eq. ~18b! . ~19c!

We shall henceforth assume that Eq.~19c! is satisfied; as
already noted, this is automatic in the case when all of
coefficients inV1 and V2 are positive, but the general con
dition is much less restrictive, requiring only that the coef
cients lie on one side of a hyperplane in the space ofV1,2
coefficients. When Eq.~19c! is satisfied,CP invariance is
spontaneously broken through theh Higgs expectations, and
we shall see in the next section that simultaneously, thh
expectations have the correct form to generate nonzero
ond family masses.

Let us next consider what happens whenV1 and V2 are
not infinitesimally small. Still maintaining cyclic permuta
tion invariance, let us first consider the case in whichV1 is
large, butV2 remains nearly zero. Then, from the formul
of Appendix A, we find that the derivatives of the potenti
vanish when one assumes Eq.~13a! for the f expectations
~with V of course replaced byVf) and Eq.~18c! for the h
expectations, for suitable minimizing values ofVf andVh .
In other words, we find the correct minimum by first subs
tuting Eqs.~13a! and~18c! into the Higgs potential, and the
minimizing the resulting simplified expression with respe
to Vf and Vh . Substituting Eqs.~13a! and ~18c! into Eq.
~7a! gives

1
3LHiggs potential5AfVf

4 22BfVf
2 1AhVh

422BhVh
2

1CVf
2 Vh

21const, ~20a!

s
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with C given in Eq. ~19b!, and with the remaining coeffi
cients given by

Aj5lj2m1j2m2j2aj , Bj5ljvj
2 , j5f,h.

~20b!

Minimizing Eq. ~20a! with respect toVf
2 ,Vh

2 gives a pair of
simultaneous linear equations, with the solution

Vf
2 5

AhBf2
1

2
CBh

AfAh2
1

4
C2

, Vh
25

AfBh2
1

2
CBf

AfAh2
1

4
C2

. ~20c!

In order for bothf and h to develop nonzero vacuum ex
pectation values we must haveVf

2 .0, Vh
2.0, which in the

case when the denominator in Eq.~20c! is positive requires
that C be restricted by

22Af
1/2Ah

1/2,C,2MinS Af

Bf
Bh ,

Ah

Bh
Bf ,Af

1/2Ah
1/2D .

~20d!

BecauseV1 is invariant under independent overall pha
rotations off andh, in the limit whenV2 is strictly zero the
minimum of Eqs.~13a! and~18c! is part of a one-paramete
U~1! family of equivalent minima, of the form

~V1 ,V2 ,V3!5~1,1,1!Vf ,

~L1 ,L2 ,L3!5~v̄,v,1!Vhexp~ iu!, ~21!

with the angleu arbitrary. WhenV2 is nonzero but very
small, the U~1! degeneracy with respect tou is broken, and
the minimum has the form of Eq.~21! with a definite value
of u determined by the Higgs Lagrangian parameters. A p
turbative analysis in powers ofV2 shows that to first order in
V2 the degeneracy inu is unbroken@because the final line o
Eq. ~19b! remains valid for generalu], but that at second
order in V2 a nontrivial condition onu is obtained and the
degeneracy is broken. Numerical minimization of the Hig
potential, using the method of Appendix A, shows that g
eral values ofu can be attained at the minimum for gene
Lagrangian parameters. AsV2 increases, there are relativ
phase and small magnitude corrections to the minima of
~21!; when the assumption of cyclic permutation symme
is relaxed, these magnitude corrections become more
nounced.

To conclude our discussion of the six-Higgs-doub
model, let us discuss the Higgs boson mass spectrum, as
ing both exact cyclic permutation symmetry and the we
coupling limit in which bothV1 andV2 are very small. We
parametrize the expansion offn and hn around the mini-
mum as
01501
r-

s
-

q.

o-

t
m-

k

fn5S 1

A2
dn

f

Vf1
1

A2
en

fD , ~22a!

hn5S 1

A2
dn

h

Vh1
1

A2
en

hD exp~ iu!~v̄,v,1!n , ~22b!

where we have used the notation (x,y,z)n to indicatex for
n51, y for n52, andz for n53. Because the overall phas
u and the discrete chiral phases (v̄,v,1)n drop out ofVh ,
for the non-Goldstone modes we get simply two copies
the nonzero mass modes found in Eqs.~17a!–~17d! in the
three-Higgs-doublet case, apart from adding subscripts or
perscriptsf,h to distinguish thef and h sectors, as sum
marized in Table II. In computing the Yukawa couplings
the hn Higgs modes, the phases in Eq.~22b! play a role.
Making transformations analogous to Eqs.~16a! in the three-
Higgs-doublet case, withj in the following formulas either
f or h, we have

S j1

j2

j3

D 5WS j~1!

j~2!

j~3!
D , S j~1!

j~2!

j~3!
D 5W21S j1

j2

j3

D ,

S d1
j

d2
j

d3
j
D 5WS dj

~1!

dj
~2!

dj
~3!
D , S dj

~1!

dj
~2!

dj
~3!
D 5W21S d1

j

d2
j

d3
j
D ,

S e1
j

e2
j

e3
j
D 5WS ej

~1!

ej
~2!

ej
~3!
D , S ej

~1!

ej
~2!

ej
~3!
D 5W21S e1

j

e2
j

e3
j
D . ~23!

In terms of the new bases, Eq.~22a! becomes

f~n!5S 1

A2
df

~n!

1

A2
ef

~n!D , n51,2, ~24a!

and

f~3!5S 1

A2
df

~3!

A3Vf1
1

A2
ef

~3!D , ~24b!
2-9
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TABLE II. Higgs eigenmodes, masses, and fermion couplings for the six-Higgs-doublet model i
cyclic symmetry limit, assuming weak coupling off to h.

Mode Charge Mass Fermion family
designation squared couplings

df
(1) 61 3(m2f1af)Vf

2 First

df
(2) 61 3(m2f1af)Vf

2 Second

efR
(3) 0 4lfvf

2 Third

efR
(1) ,efI

(2) 0 (4lf12m1f12m2f1
7
2 af)Vf

2 First and second

efR
(2) ,efI

(1) 0 9
2 afVf

2 First and second

dh
(1) 61 3(m2h1ah)Vh

2 Third

dh
(2) 61 3(m2h1ah)Vh

2 First

ehR
(3) 0 4lhvh

2 Second

ehR
(1) ,ehI

(2) 0 (4lh12m1h12m2h1
7
2 ah)Vh

2 First and third

ehR
(2) ,ehI

(1) 0 9
2 ahVh

2 First and third

dPG
(3) 61 ;uV2u/V2 Second and third

ePG
(3) 0 ;uV2u/V2 Second and third
ro
ly

pl
k

e

ne
in-

rall
ed
o
ional

ade
e-
gi-

ta-
to
zed.
s

to

to

ld-
and
art,
while taking into account the extra phases, Eq.~22b! be-
comes

h~3!5S 1

A2
dh

~1!

1

A2
eh

~1!D exp~ iu!, ~24c!

h~1!5S 1

A2
dh

~2!

1

A2
eh

~2!D exp~ iu!, ~24d!

and

h~2!5S 1

A2
dh

~3!

A3Vh1
1

A2
eh

~3!D exp~ iu!. ~24e!

The fact thatVh appears inh (2) rather than inh (3) is di-
rectly related, as we shall see in the next section, to the
of the h Higgs bosons in giving rise to second fami
masses.

For the Goldstone modes, the situation is more com
cated, because thef andh sectors interact even in the wea
01501
le

i-

coupling limit. If V2 were exactly zero, as noted above w
would have an extra U~1! symmetry, and we would get two
copies of the Goldstone modes as well. But for nonzeroV2
this U~1! degeneracy is broken, and we are left with just o
set of Goldstone modes, corresponding to the remaining
variance of the Higgs potential under simultaneous ove
rephasing off,h, while the three Goldstone modes relat
to the relative phaseu of f andh become massive pseud
Goldstone modes, with squared masses that are proport
to the magnitude ofV2 . The decomposition ofdf,h

(3) and
e If,h

(3) into Goldstone and pseudo Goldstone modes is m
unique by the facts that~i! these represent orthogonal d
grees of freedom, which are simply rotations from the ori
nal modesdf,h

(3) and e If,h
(3) , and ~ii ! the Goldstone modes

correspond precisely to a uniform infinitesimal phase ro
tion of f,h, which specifies the infinitesimal modes
which the pseudo Goldstone modes must be orthogonali
Since the expectations off,h may have unequal magnitude
Vf ,Vh , we see from Eqs.~24a!–~24d! that an overall in-
finitesimal phase rotation makes a contribution todh

(3) that is
Vh /Vf times as large as the corresponding contribution

df
(3) , and similarly makes a contribution toe Ih

(3) that is
Vh /Vf times as large as the corresponding contribution

e If
(3) . We thus find, denoting the Goldstone and pseudo Go

stone modes, respectively, by the subscripts G and PG,
as before using the subscript I to denote the imaginary p

dG
~3!5

Vfdf
~3!1Vhdh

~3!

~Vf
2 1Vh

2 !1/2
, dPG

~3! 5
Vhdf

~3!2Vfdh
~3!

~Vf
2 1Vh

2 !1/2
,

~25a!

2-10
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eG
~3!5

Vfe If
~3!1Vhe Ih

~3!

~Vf
2 1Vh

2 !1/2
, ePG

~3! 5
Vhe If

~3!2Vfe Ih
~3!

~Vf
2 1Vh

2 !1/2
.

The corresponding quadratic terms in the Lagrangian are

2
1

2
@ u]md G

~3!u21u]md PG
~3!u21~]meG

~3!!21~]mePG
~3!!2#

1
1

2
@M charged PG

2 udPG
~3!u21Mneutral PG

2 ~ePG
~3!!2#. ~25b!

The perturbative contribution to the pseudo Goldstone bo
masses, relative to the Higgs boson masses calculated a
will have the general magnitude~suppressing all subscripts!

MPG

MHiggs
;S uV2u

lV4D 1/2

. ~25c!

We have not attempted to calculate explicit perturbative f
mulas for the pseudo Goldstone boson masses, both bec
these will be rather complicated given the complexity ofV2
and because, as argued by Weinberg@11#, there are likely to
be significant nonperturbative corrections of ordergMW ,
with g the electroweak gauge coupling andMW the elec-
troweak boson mass.

VI. HIGGS COUPLINGS AND MASS AND CKM
MATRICES WHEN CYCLIC PERMUTATION SYMMETRY

IS EXACT

We proceed now to study the Yukawa couplings of t
Higgs fields, and the mass matrices generated by t
vacuum expectation values, when cyclic permutation sy
metry is exact. Thus, in this section we shall assume that
Higgs potentials have the cyclically symmetric form an
lyzed in detail in Sec. V, and we shall take the asymme
parametersbj lm

f of Eqs. ~6b!, ~6c! to vanish. As a conse
quence, the 333 matricesPjn

f of Eq. ~6b! are all retrocircu-
lants, and are independent of the labelsj, f :

Pj1
f 5Circ←~0,1,0!,

Pj2
f 5Circ←~0,0,1!,

Pj3
f 5Circ←~1,0,0!. ~26!

Substituting Eq.~23! for j1,2,3, with j5f,h, into the first
line of Eq. ~6a!, we get, forf 5d,e,

F f5gf
f ~Pf

f ~1!f~1!1Pf
f ~2!f~2!1Pf

f ~3!f~3!!

1g h
f ~P h

f ~1!h~1!1P h
f ~2!h~2!1P h

f ~3!h~3!!. ~27a!

Here we have defined

S P j
f ~1!

P j
f ~2!

P j
f ~3!
D 5WS P j1

f

P j2
f

P j3
f
D 5W21S P j2

f

P j1
f

P j3
f
D , ~27b!
01501
n
ve,

-
use

ir
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-
y

with W andW21 as given in Eq.~16b!. DefiningCP conju-
gates ofj (1,2,3) by

j̃ ~1,2,3!5 i t2j~1,2,3!* , ~28a!

theCP conjugate of the first group of equations in Eq.~23! is

S j̃1

j̃2

j̃3

D 5W21S j̃ ~1!

j̃ ~2!

j̃ ~3!

D ,S j̃ ~1!

j̃ ~2!

j̃ ~3!

D 5WS j̃1

j̃2

j̃3

D . ~28b!

Using this forf1,2,3, h1,2,3 in the second line of Eq.~6a!, we
get, for f 5u,n,

F f5g f
f ~P f

f ~1!f̃~1!1P f
f ~2!f̃~2!1P f

f ~3!f̃~3!!

1g h
f ~P h

f ~1!h̃~1!1P h
f ~2!h̃~2!1P h

f ~3!h̃~3!!. ~28c!

Substituting the retrocirculant forms of Eq.~26! into Eq.
~27b!, we can write the matricesP j

f (1,2,3) as retrocirculants:

P j
f ~1!5

1

A3
Circ←~1,v,v̄ !,

P j
f ~2!5

1

A3
Circ←~1,v̄,v!,

P j
f ~3!5

1

A3
Circ←~1,1,1!. ~29a!

Let us now use Eq.~10b!, which asserts thatP j
f (1,2,3) are all

diagonalized by the same bi-unitary transformation co
structed usingUL ,U R

† of Eq. ~10a!:

ULP j
f ~1!U R

†5A3diag~1,0,0![A3M ~1!,

ULP j
f ~2!U R

†5A3diag~0,1,0![A3M ~2!,

ULP j
f ~3!U R

†5A3diag~0,0,1![A3M ~3!. ~29b!

Clearly, the natural thing to do now is to rotate to new fe
mion bases using the same matricesUL ,UR , by introducing
primed bases defined by

QL5U L
†Q L8 , cL5U L

†c L8 ,

f R5U R
† f R8 , f 5d,u,e,n. ~30a!

Since the fermion kinetic energy of Eq.~4c! does not couple
left to right chiral components, it has the same form in ter
of the primed bases as in terms of the original ones. Sub
tuting Eqs.~27a!, ~28c!, and~29b! into the Yukawa Lagrang-
ian of Eq.~5b!, we get finally

LYukawa5Q̄L
8CddR81Q̄L

8CuuR81c̄L
8CeeR81c̄L

8CnnR8

1adjoint, ~30b!
2-11
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with the 333 matricesC f defined by

C f5(
l 51

3

A3~gf
f f~ l !1gh

f h~ l !!M ~ l !, f 5d,e,

C f5(
l 51

3

A3~gf
f f̃~ l !1gh

f h̃~ l !!M ~ l !, f 5u,n.

~30c!

On substituting Eqs.~24a!–~24d! into Eq. ~30c!, we can
read off both the mass matrices and the Yukawa coupling
the physical Higgs states. The mass matrices are obtaine
keeping only the vacuum expectations off ( l ),h ( l ), that is, by
setting

f~1,2!→0, f̃~1,2!→0,

f~3!→S 0

A3Vf
D , f̃~3!→S A3Vf

0
D , ~31a!

and

h~1,3!→0, h̃~1,3!→0,

h~2!→S 0

A3Vhexp~ iu!
D , h̃~2!→S A3Vhexp~2 iu!

0
D ,

~31b!

giving

Lmass5d̄L
8@3gh

dVhexp~ iu!M ~2!13gf
d VfM ~3!#dR8

1ūL8@3gh
uVhexp~2 iu!M ~2!13gf

u VfM ~3!#uR8

1ēL8@3gh
eVhexp~ iu!M ~2!13gf

e VfM ~3!#eR8

1 n̄L8@3gh
n Vhexp~2 iu!M ~2!13gf

n VfM ~3!#nR8

1adjoint. ~32a!

Identifying M (1,2,3), respectively, as the projectors on th
first, second, and third family states in the primed basis,
read off from Eq.~32a! the masses

Mt53gf
u Vf , Mc53gh

uVh , Mu50,

Mb53gf
d Vf , Ms53gh

dVh , Md50,

M t53gf
e Vf , Mm53gh

eVh , Me50,

M nt
53gf

n Vf , M nm
53gh

n Vh , M ne
50.

~32b!

We see that in the three-Higgs-doublet model, only the th
family gets masses, with the first two families remaini
massless. The same is true in theCP-conserving phase of th
six-Higgs-doublet model, in which theh expectations are
given by Eq.~18b! rather than Eq.~18c!; in this phase, the
projectorsM (2) in Eq. ~32a! are replaced by projectorsM (3),
01501
of
by

e

d

and theh expectations simply make additional contributio
to the third family masses. On the other hand, in the phas
the six-Higgs-doublet model that spontaneously violatesCP

as in Eqs.~18c! and~21!, the factorsv̄,v,1 in Eq.~18c! give
rise to the projectorM (2) for the second family states, whic
then receive masses. The hierarchy between the mass
the second and third family charged leptons is attributed
the six-Higgs-doublet model, to a systematic tendency of
h Higgs bosons to have smaller Yukawa couplings to
charged fermions than those of thef Higgs bosons.

To get a feeling for the magnitudes involved, we note th
the Higgs boson expectations generate mass terms for
gauge bosons given by

Lgauge mass5F2
g2

4
W1mW2m2

1

8
~gW3m2g8Bm!2Gv2,

~33a!

with

v252(
n51

3

~ u^fn&u21u^hn&u2!56~Vf
2 1Vh

2 !. ~33b!

Empirically, v.247 GeV; assuming, as we shall in the fi
below, thatVf and Vh are approximately equal, we the
find Vf.Vh.71 GeV. The Yukawa couplings needed
reproduce the observed charged fermion masses are
given in the six-Higgs-doublet model by

gf
u .0.81, gh

u.0.0061,

gf
d .0.020, gh

d.0.00094,

gf
e .0.0083, gh

e.0.0005. ~34a!

In the three-Higgs-doublet model,Vf is a factor ofA2 larger
than in the six-Higgs-doublet model, and thef Yukawa cou-
plings are correspondingly a factor ofA2 smaller than in Eq.
~34a!:

gf
u .0.57, gf

d .0.014, gf
e .0.0059. ~34b!

As we have seen, because the mass matrices in the c
cally symmetric limit are retrocirculants, we were able
diagonalize them with universal, flavor-independent matri
UL , UR . This has the important consequence that when
clic symmetry is assumed as a leading approximation,
corresponding approximation to the CKM mixing matrix
unity, a welcome feature since the observed CKM matrix
close to unity. A related welcome feature of the cyclic a
proximation is that there are no flavor-changing neutral c
rents, which again accords with the fact that these are
served to be highly suppressed. To obtain realistic non
values for the CKM matrix, we will have to go beyond th
cyclic approximation by including nonzero asymmetri
2-12
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bj lm
f as in Eq.~6b!, but we shall then also have to estima

the magnitude of the flavor-changing neutral current effe
produced by these asymmetries. This will be the agend
the next three sections.
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Before proceeding with this analysis, we note that t
leading cyclic approximation to the Yukawa couplings of t
physical Higgs bosons can be read off from Eqs.~30b!, ~30c!
together with Eqs.~24a!–~24d! and ~25a!. We see that
df
~1! , ef

~1! , dh
~2! , eh

~2! couple only to the first family,

df
~2! , ef

~2! , dh
~3! , eh

~3! couple only to the second family,

df
~3! , ef

~3! , dh
~1! , eh

~1! couple only to the third family, ~35a!
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which by Eq.~17c! imply that

efR,I
~6 ! couple only to the first and second families,

ehR,I
~6 ! couple only to the first and third families,

~35b!

and by Eq.~25a! imply that

dPG
~3! , ePG

~3! couple only to the second and third families
~35c!

The presence of 21 Higgs bosons in the six-Higgs-dou
model ~eight charged Higgs bosonsdf,h

(1,2) and ten neutral

Higgs bosonseRf,h
(3) , eRf,h

(6) , ande If,h
(6) , plus two charged

pseudo Goldstone Higgs bosonsdPG
(3) , and one neutra

pseudo Goldstone Higgs bosonePG
(3) ), together with the pat-

tern of predominant fermionic couplings given in Eq
~35a!–~35c! and summarized in Table II, is a distinguishin
feature of the model that should be testable in experimen
the next generation of accelerators.

VII. FIRST ORDER BREAKING OF CYCLIC
PERMUTATION SYMMETRY

We now set up a perturbative scheme to study the eff
of the breaking of cyclic permutation symmetry. In the thre
Higgs-doublet model, we will also allow CP noninvarian
of the Lagrangian, by allowing the phasesc in Eq. ~7b! to be
nonzero and by allowing the Yukawa couplings to be co
plex. In the six-Higgs-doublet model, we will imposeCP
invariance on the Lagrangian, but will work in the phase t
spontaneously breaksCP. Two types of first order small cor
rections will be introduced. The first are corrections to t
Higgs vacuum expectations, arising from a lack of cyc
symmetry in the Higgs potential. In the three-Higgs-doub
model, this results in replacing Eq.~13a! by

Vn5V~11dn!, n51,2,3, ~36a!

where thedn are small corrections that can be complex, a
where we impose the condition

(
n

dn50 ~36b!
et

.

at

ts
-

-

t

e

t

d

to avoid duplicating information contained in the overall fa
tor V and the overall phase that has been eliminated b
gauge transformation. In the six-Higgs-doublet model,
have analogous corrections to the first line in Eq.~21!:

Vn5Vf~11dn!, n51,2,3, (
n

dn50, ~37!

where thedn can again be complex when the potentia
V1 ,V2 that couplef to h are not neglected. In principle
there are also asymmetry corrections to the second line
Eq. ~21!, which gives theh expectations. But these are a
ways suppressed by a factorgh

f /gf
f , which according to Eq.

~34a! is at most of order 0.06, and so will be neglected
what follows; that is, we treatgh /gf here as if it were also a
first order small quantity. The second type of first order sm
corrections are the asymmetry parametersbfmn

f of Eqs.~6b!,
~6c!, which are complex in the three-Higgs-doublet mod
when explicitCP violation is permitted, but are real in th
six-Higgs-doublet model whenCP invariance is imposed on
the Lagrangian. Again, in principle there are analogo
asymmetry parametersbhmn

f for the h Yukawa couplings,
but the effect of these is again suppressed by a factorgh

f /gf
f

and so they will be neglected. This itemization of correctio
defines the model that we shall study in first order pertur
tion theory.

Since the zeroth order problem, which was analyzed
Sec. VI, is brought to diagonal form by the bi-unitary tran
formations of Eqs.~29b! and ~30a! based on the matrice
UL ,UR of Eq. ~10a!, we shall make this transformation at th
outset. In the primed fermion basis, the zeroth order m
matrix is still given by Eq.~32a!, but now there will be first
order corrections from thed ’s and b ’s introduced above.
Since we are regardinggh

f /gf
f as effectively a first order

correction, it is convenient to group it with the other fir
order terms. Starting again from Eqs.~23!, ~27a!, ~27b!, and
~28c!, we then find, for the extension of Eq.~32a! to include
all first order corrections,

Lmass5 (
f 5d,u,e,n

f̄ L
8gf

f Vf~3M ~3!1s f ! f R8 , ~38a!

with s f a 333 matrix with matrix elements given by
2-13
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s11
f 5

1

3
m11

f 1d3
f 1v̄d2

f 1vd1
f ,

s22
f 5

1

3
m 22

f 13R f1d 3
f 1vd 2

f 1v̄d 1
f ,

s33
f 50,

s lm
f 5

1

3
m lm

f , lÞm. ~38b!

The further quantities appearing in Eq.~38b! are defined as
follows. The quantitiesdn

f are given, in terms of thedn in-
troduced in Eqs.~36! and ~37!, by

d1
f 5d2 , d2

f 5d1 , d3
f 5d3 , f 5d,e,

d1
f 5d1* , d2

f 5d2* , d3
f 5d3* , f 5u,n.

~39a!

The quantitiesRf are defined by

Rf5
gh

f Vhexp~6 iu!

gf
f Vf

, ~39b!

with the 1 sign holding forf 5d,e and the2 sign holding
for f 5u,n. Finally, them lm

f ’s, when multiplied by the factor
of 1/3 in Eq.~38b!, are the asymmetriesbf lm

f reexpressed in
the primed fermion basis; suppressing the subscriptf on the
b ’s, they are given by

m11
f 5b11

f 1b23
f 1b32

f 1v̄~b12
f 1b21

f 1b33
f !

1v~b13
f 1b22

f 1b31
f !,

m22
f 5b11

f 1b23
f 1b32

f 1v~b12
f 1b21

f 1b33
f !

1v̄~b13
f 1b22

f 1b31
f !,

m12
f 5b11

f 1b22
f 1b33

f 1v~b12
f 1b23

f 1b31
f !

1v̄~b21
f 1b32

f 1b13
f !,

m21
f 5b11

f 1b22
f 1b33

f 1v̄~b12
f 1b23

f 1b31
f !

1v~b21
f 1b32

f 1b13
f !,

m13
f 5b11

f 1b12
f 1b13

f 1v̄~b21
f 1b22

f 1b23
f !

1v~b31
f 1b32

f 1b33
f !,

m23
f 5b11

f 1b12
f 1b13

f 1v~b21
f 1b22

f 1b23
f !

1v̄~b31
f 1b32

f 1b33
f !,

m31
f 5b11

f 1b21
f 1b31

f 1v̄~b12
f 1b22

f 1b32
f !

1v~b13
f 1b23

f 1b33
f !,
01501
m32
f 5b11

f 1b21
f 1b31

f 1v~b12
f 1b22

f 1b32
f !

1v̄~b13
f 1b23

f 1b33
f !. ~39c!

We remark that sinceCP invariance requires theb ’s to be
real, the condition forCP invariance, when expressed d
rectly in terms of them ’s, is m11

f* 5m22
f , m12

f* 5m21
f , m13

f*
5m23

f , andm31
f* 5m32

f .
Defining

M f8[3M ~3!1s f , ~40a!

we must now find the bi-unitary transformation matric
UL

f ,UR
f for which UL

f M f8UR
f † is diagonal, with the eigenval

ues ordered in absolute value, for each flavorf . The fermion
basis states that are mass eigenstates are then related
primed basis by

f L85UL
f †f L

mass,

f R85UR
f †f R

mass, f 5d,u,e,n, ~40b!

and the CKM matrixUCKM is given as usual by

UCKM5UL
u†UL

d . ~40c!

We shall now develop a perturbative procedure for cal
lating UL,R

f . The first observation to be made is that we a
dealing with a degenerate perturbation problem, since
zeroth order mass matrix 3M (3)53diag(0,0,1) has eigenval
ues 0 for the first two primed basis states. As a conseque
the 232 submatrix ofUL,R

f spanned by these states is zero
order in the perturbations f , with only the off-diagonal ele-
ments coupling to the third basis state of first order. Thus,
find a natural reason in our model why the CKM mixings
the first and second family states should be larger than
mixings of the first and second families with the third famil

We shall deal with the zeroth order 232 submatrix by
calculating it exactly. LetVL,R

f be the 232 matrices that
bring the 232 submatrix ofs f to diagonal form:

VL
f S s11

f s12
f

s21
f s22

f D VR
f †5S k1

f 0

0 k2
f D , ~41a!

with the magnitudes of the eigenvalues ordered asuk1
f u

<uk2
f u. The explicit construction ofVL,R

f is given in Appen-
dix B. It is then straightforward to show that to first order
small quantities,UL,R

f are given by

UL
f 5S VL

f
2

1

3
VL

f S s13
f

s23
f D

1

3S s13
f

s23
f D †

1
D , ~41b!
2-14



UR
f †5S VR

f † 1

3S s31
f*

s32
f* D

1 s f* † D , ~41c!
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2
3S 31

s32
f* D VR

f † 1

and

UL
f M f8UR

f †5S k1
f 0 0

0 k2
f 0

0 0 3
D . ~41d!

Defining

VCKM[VL
u†VL

d , ~42a!

the corresponding first order accurate expression for the CKM matrix is given by

UCKM5S VCKM 2
1

3
VCKMS s13

d

s23
d D 1

1

3S s13
u

s23
u D

1

3S s13
d

s23
d D †

2
1

3S s13
u

s23
u D †

VCKM 1
D . ~42b!
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Although Eq.~42b! is useful for analytic study of the CKM
matrix, in our numerical work we shall simply compute d
rectly from the definition of Eq.~40c!. We shall also, in the
numerical work, use slightly more accurate forms forUL,R

f in
which only the square of the ratio of second to third fam
masses (uk2

f u/3)2 is assumed to be small; the relevant form
las are given in Appendix C.

VIII. HIGGS BOSON EXCHANGE CONTRIBUTIONS
TO THE KL2KS MASS DIFFERENCE

As pointed out in Sec. VI, when cyclic symmetry is exa
Higgs boson exchange in our models does not prod
strangeness-changing neutral current effects. However,
we include cyclic asymmetries, such effects become poss
and we must be sure that their magnitude does not exc
known experimental limits. Since, in the context of exte
sions of the Higgs sector, the most stringent bound
strangeness-changing neutral current processes comes@13#
from the second order weakKL2KS mass difference, we
shall consider only this process, and shall calculate the c
tribution to its matrix element arising from Higgs boson e
change within the perturbative framework set up in Sec. V

We saw there that, because the zeroth order mass m
is degenerate in the subspace spanned by the first two f
lies, the mixing matrices within this subspace arezeroth or-
der rather than first order in the perturbation, and theref
strangeness-changing neutral current effects can alread
pear at zeroth order in perturbation theory. What we shal
in this section is to calculate this zeroth order contribution
theKL2KS mass difference, neglecting all terms of first a
higher order in the asymmetric perturbation. Our start
01501
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point is thus the Yukawa Lagrangian of Eqs.~30b!, ~30c! in
the primed basis, of which the term relevant to mixing of t
d ands quarks is

Q̄L
8(
l 51

3

A3~gf
d f~ l !1gh

dh~ l !!M ~ l !dR81adjoint. ~43a!

Substituting Eq.~40b! relating the primed to the mass eige
state bases and using the approximation of Eqs.~41b!, ~41c!
for UL,R

d ; also substituting Eqs.~24a!, ~24b! for thef ( l ) and
keeping only the neutral Higgs pieces, and finally also
glecting terms of first and higher order in the asymmet
perturbation, we get the effective Lagrangian

Lscnc[d̄L
mass

A3

A2
gf

d (
l 51

2

ef
~ l !VL

dM232
~ l ! VR

d†dR
mass1adjoint.

~43b!

In Eq. ~43b!, the subscript 232 on the projectors indicate
their restriction to the subspace spanned by the first
families, and the column vectord will be understood to have
been truncated from three to two components, correspon
to the first two families. Finally, reexpressingef

(1,2) in terms
of the modesef

(6) defined in Eq.~17c!, splitting these into
real and imaginary parts, and explicitly including the adjo
term @our g matrix conventions areg55g5

† , g05g0†,
(g0)251], we get
2-15
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Lscnc5d̄mass
A3

4
gf

d $@~efR
~1 !1efR

~2 !!1 i ~efI
~1 !1efI

~2 !!#VL
dM232

~1! VR
d†1@~efR

~1 !2efR
~2 !!1 i ~efI

~1 !2efI
~2 !!#VL

dM232
~2! VR

d†%

3~11g5!dmass1d̄ mass
A3

4
gf

d* $@~efR
~1 !1efR

~2 !!2 i ~efI
~1 !1efI

~2 !!#VR
dM232

~1! VL
d†

1@~efR
~1 !2efR

~2 !!2 i ~efI
~1 !2efI

~2 !!#VR
dM232

~2! VL
d†%~12g5!dmass. ~43c!

To facilitate the remaining calculation, it is convenient to rewrite Eq.~43c! in the form

Lscnc5d̄ massefR
~1 !~AR

~1 !1BR
~1 !g5!dmass1d̄ massefR

~2 !~AR
~2 !1BR

~2 !g5!dmass

1d̄ massefI
~1 !~AI

~1 !1BI
~1 !g5!dmass1d̄ massefI

~2 !~AI
~2 !1BI

~2 !g5!dmass. ~44a!

Using the fact that

M232
~1! 1M232

~2! 5S 1 0

0 1D[1, M232
~1! 2M232

~2! 5S 1 0

0 21D[r3 , ~44b!

we find that the 232 matricesAR,I
(6) , BR,I

(6) appearing in Eq.~44a! are given by

AR
~1 !5

A3

4
gf

d VL
dVR

d†1
A3

4
gf

d* VR
dVL

d† , BR
~1 !5

A3

4
gf

d VL
dVR

d†2
A3

4
gf

d* VR
dVL

d† ,

AR
~2 !5

A3

4
gf

d VL
dr3VR

d†1
A3

4
gf

d* VR
dr3VL

d† , BR
~2 !5

A3

4
gf

d VL
dr3VR

d†2
A3

4
gf

d* VR
dr3VL

d† , ~44c!

AI
~1 !5

A3

4
gf

d iVL
dVR

d†2
A3

4
gf

d* iVR
dVL

d† , BI
~1 !5

A3

4
gf

d iVL
dVR

d†1
A3

4
gf

d* iVR
dVL

d† ,

AI
~2 !5

A3

4
gf

d iVL
dr3VR

d†2
A3

4
gf

d* iVR
dr3VL

d† , BI
~2 !5

A3

4
gf

d iVL
dr3VR

d†1
A3

4
gf

d* iVR
dr3VL

d† .

~44d!
g

q

des

d

Letting d and s denote, respectively, the down and stran
quark eigenstates, the two component column vectordmass

has the structure

dmass5S d

sD , ~45a!

and so for any 232 matrix N, we have

d̄ massNdmass5d̄N11d1d̄N12s1 s̄N21d1 s̄N22s. ~45b!

Hence the strangeness-changing terms of Eq.~44a! involve
only the 12 and 21 matrix elements of the matrices in E
~44c!, and can be compactly written as

Lscnc
DS515 (

p56
(

F5R,I
@ d̄efF

~p!~AF12
~p! 1BF12

~p! g5!s

1 s̄efF
~p!~AF21

~p! 1BF21
~p! g5!d#. ~45c!
01501
e

.

So for the amplitudeT for the DS52 processs1s→d1d
we find, summing over the exchanges of Higgs eigenmo
efF

(p) with squared massesMF
2(p) , the formula~valid up to an

overall phase!

T5 (
p56

(
F5R,I

d̄~AF12
~p! 1BF12

~p! g5!s
1

MF
2~p!

3d̄~AF12
~p! 1BF12

~p! g5!s, ~46a!

while from Sec. V and Table II we find, for the square
masses,

MR
2~1 !5MI

2~2 !5~4lf12m1f12m2f1 7
2 af!Vf

2 ,

MR
2~2 !5MI

2~1 !5 9
2 afVf

2 , Vf
2 5

lfvf
2

lf2m1f2m2f2af
.

~46b!
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The Higgs boson exchange matrix element^KuTuK̄&Higgs for
the K̄→K transition, in the vacuum saturation approxim
tion, then is given by

u^KuTuK̄&Higgsu.Nu^Kud̄g5su0&u2uDHiggsu, ~47a!

with DHiggs given by

DHiggs5 (
p56

(
F5R,I

~BF12
~p! !2

MF
2~s!

, ~47b!

and withN58/3 a Wick contraction and color factor.
We wish now to compare the amplitude of Eq.~47a! with

the intermediate boson loop diagram contribution to
KL2KS mass difference calculated by Gaillard and Lee@14#,
which in the vacuum saturation approximation is in satisf
tory agreement with experiment. The Gaillard-Lee result

u^KuTuK̄&GLu.Nu^Kud̄gmg5su0&u2uDGLu, ~48a!

with uDGLu given by

uDGLu5
GF

2

4p2 Mc
2s12

2 , ~48b!

in terms of the Fermi constantGF , the charm quark mas
Mc , and the sine of the Cabibbo angles125sinuC . To com-
pare Eq.~47a! to Eq. ~48a!, we need the ratio of the pseudo
scalar current to the axial vector current kaon to vacu
matrix elements, which can be estimated by standard cur
algebra methods~see, e.g., Shuryak@15#! to be

u^Kud̄g5su0&u2

u^Kud̄gmg5su0&u2
.

^0uūuu0&2

MK
2 f K

4
.S MK

Ms
D 2

.11, ~49!

with MK and f K the kaon mass and decay constant and w
Ms the strange quark mass. Combining everything, we fi
that the condition for the Higgs boson exchange contribut
to the KL2KS mass difference not to exceed the Gaillar
Lee estimate is

uDHiggsu<
GF

2Mc
2Ms

2s12
2

4p2MK
2

.
2.6310214

GeV2
, ~50!

which will be used as the strangeness-changing neutral
rent constraint in the fits of the next section.

IX. NUMERICAL FITS OF THE THREE- AND
SIX-HIGGS-DOUBLET MODELS
TO THE EXPERIMENTAL DATA

In order to fit the models to the experimental data,
follow the standard procedure of minimizing a ‘‘cost fun
tion’’ C, constructed as follows:

C5Cmass1CCKM1Cscnc1Cparameter, ~51a!

with the pieces referring, respectively, to the constrai
placed by fitting the masses, fitting the CKM mixing angle
01501
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obeying the strangeness-changing neutral current boun
Eq. ~50!, and keeping the asymmetry parameters as sma
possible. Before giving further details, we describe the g
eral search method employed. We perform all fits using
minimization routinePOWELL of Presset al. @12#. As given
in @12#, this routine works well for the six-Higgs-double
model where the degeneracy between the first and sec
families is already broken, before inclusion of the asymme
parameters, by theh Higgs couplings. However, in the three
Higgs-doublet model, it is nota priori specified which states
become the first and which become the second families,
so eigenvalue crossings can occur in the course of the it
tion which result in discontinuous behavior of the cost fun
tion. This causes a problem with the bracketing rout
MNBRAK of @12#, which occasionally gets stuck in an indefi
nite loop. The fix is simply putting an iteration counter in
MNBRAK, to force an exit with a default bracketing~specifi-
cally, in terms of the quantities defined inMNBRAK, c5a,
f c5 f a) if convergence to a bracketing is not attained
Nmax passes through the loop. We found the same result
the three-Higgs-doublet model withNmax55 as with Nmax
530, indicating that a bracketing is attained very rapidly,
not at all. As an additional check, we verified that the ori
nal and the modified versions ofMNBRAK give identical re-
sults for the six-Higgs-doublet model, where level crossin
and associated discontinuous behavior do not occur.

Let us now turn to the construction of the various co
function terms in Eq.~51a!, working throughout in units
where 1 GeV5unity. For the mass cost function, we use
standard chi-squared function constructed from expected
ues of the masses and their estimated errors, including
electroweak mass parameterv of Eq. ~33b!. To prevent the
chi squared for certain very accurately known masses~such
as the electron mass! from dominating the fits, we truncat
these masses to a few significant figures and use enla
error estimates. In the six-Higgs-doublet model we also a
a term that favors fits withVf.Vh , since this degenerac
plays a role in the extension to neutrino mixings discusse
the next section; in practice, we find that this term has v
little effect on the fits, since nearly equal values ofVf and
Vh are favored even in its absence.~This term is omitted in
the three-Higgs-doublet model, where it is not relevan!
Adding these contributions, we have, for the mass cost fu
tion Cmass,

Cmass5S Mu20.005

0.003 D 2

1S Mc21.3

0.18 D 2

1S Mt2173.0

6.0 D 2

1S Md20.01

0.005 D 2

1S Ms20.2

0.06 D 2

1S Mb24.3

0.2 D 2

1S Me20.00051

0.0001 D 2

1S Mm20.1057

0.001 D 2

1S M t21.777

0.001 D 2

1S @6~Vf
2 1Vh

2 !#1/22247.0

3.0 D 2

1~Vf2Vh!2. ~51b!

For the strangeness-changing neutral current cost fu
2-17
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tion, we use a chi-squared function with expectation zero
standard deviation equal to the bound of Eq.~50!:

Cscnc5S uDHiggsu

2.6310214D 2

. ~51c!

To set up the CKM cost function, we make the stand
rephasings to put the CKM matrix in the form

UCKM5S 1 s12 s13e
2 id13

2s12 1 s23

2s13e
id13 2s23 1

D , ~52a!

to first order accuracy in small quantities, and then const
a chi-squared function from the expected values and e
mated errors fors12, s13, and s23. Although the CP-
violating angled13 has not been reliably determined expe
mentally, it appears likely that it is appreciable; so we a
include a chi-squared term requiringusind13u to be equal to
0.660.3, giving

CCKM5S s1220.221

0.002 D 2

1S s1320.0035

0.0009 D 2

1S s2320.041

0.003 D 2

1S usind13u20.6

0.3 D 2

. ~52b!

Altogether, then, there are 11 quantities to be fitted inCmass,
1 to be fitted inCscnc, and 4 to be fitted inCCKM , for a total
of 16.

Let us now count the numbers of parameters in the
models, and establish the cost functions for the parame
Despite its increased complexity in terms of particle conte
the six-Higgs-doublet model has the smaller number of
rameters, since it violatesCP only spontaneously and so a
Yukawa couplings appearing in the Lagrangian are real.
together, there are 37 parameters that enter into the itera
fit for the six-Higgs-doublet model. These are thef and h
expectationsVf andVh , the real parts of the Yukawa cou
plings gf,h

f , f 5u,d,e, the complex asymmetry paramete
d1,2 introduced in Eq.~37!, the angleu of Eqs. ~21! and
~39b!, and the real asymmetry parametersbfmn

f ,
f 5u,d,e, m1n,6 introduced in Eqs.~6b!, ~6c!. The pa-
rameterslf , m1f1m2f , andaf , which enter the calcula
tion only through their appearance in the Higgs bos
masses in the strangeness-changing neutral current cons
@see Eqs.~46!, ~47!#, were fixed at the respective values
0.3, and 0.3, and were not iterated. To construct the c
function for the iterated parameters, we note that no ad
tional constraint is needed for the expectationsVf,h or the
Yukawa couplingsgf,h

f because these are already adequa
controlled byCmassof Eq. ~51b!. For the remaining param
eters we use the cost function
01501
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Cparameter5 (
n51,2

U dn

sparameter
Ue

1 (
m,n m1n,6

f 5u,d,e

U bfmn
f

sparameter
Ue

1U u

6.28U
e

. ~53a!

In Eq. ~53a! the exponente and the widthsparameterare pa-
rameters of the fitting procedure, which effectively set up
model for how the small asymmetries are distributed. W
were able to get satisfactory fits for bothe51 ande52, but
convergence was much slower for the latter, suggesting
e51 is a model in closer correspondence to the experime
data, and we shall only present thee51 results in the dis-
cussion below. To initialize the six-Higgs-doublet minimiz
tion search, we started fromVh5Vf570.7, the values of
Eq. ~34a! for the Yukawa couplingsgf,h

f , zero for the asym-
metry parametersdn ,bfmn

f , and zero foru.
Because the three-Higgs-doublet model, to give aCP-

violating CKM matrix, must violateCP explicitly, its
Yukawa couplings and Yukawa asymmetries can ha
imaginary parts, and so there are 57 parameters that e
into the iterative fit. These are thef expectationVf , the
real parts of the Yukawa couplingsgf

f , f 5u,d,e, and the
imaginary part ofgf

d ~sincegf
u,e , which are not involved in

the strangeness-changing neutral current constraint, e
only through their absolute values, they can be rephase
be real!, the complex asymmetry parametersd1,2 introduced
in Eq. ~36a!, and the complex asymmetry parametersbfmn

f ,
f 5u,d,e, m1n,6, introduced in Eqs.~6b!, ~6c!. Again,
the parameterslf , m1f1m2f , and af , which enter the
calculation only through the strangeness-changing neu
current constraint, were fixed at the respective values 1,
and 0.3. To construct the cost function for the iterated
rameters, we note that again no additional constrain
needed for the expectationVf or the real parts of the
Yukawa couplingsgf

f , because these are adequately co
trolled by Cmassof Eq. ~51b!. For the remaining parameter
we use the cost function

Cparameter5 (
n51,2
F5R,I

U dnF

sparameter
Ue

1 (
m,n m1n,6

f 5u,d,e
F5R,I

U bfmnF
f

sparameter
Ue

1U gfI
d

0.028
Ue

. ~53b!

The width 0.028 governinggfI
d is chosen here as twice th

natural magnitude ofgf
d according to the estimate of Eq

~34b!, so as to boundgfI
d but not overly restrict it, much as

the width foru in the six-Higgs-doublet model is chosen
Eq. ~53a! as twice the maximum magnitudep of uuu. Again,
the exponente and the widthsparameterare parameters tha
model how the small asymmetries are distributed. For co
parison with the six-Higgs-doublet model fits, we shall aga
only presente51 results in the discussion that follows. T
initialize the three-Higgs-doublet minimization search, w
started fromVf5100, the values of Eq.~34b! for the real
2-18
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parts of the Yukawa couplingsgf
f , zero for the imaginary

part of gf
d , and zero for the complex asymmetry paramet

dn ,bfmn
f .

We begin by presenting results for the six-Higgs-doub
model. In any fitting procedure involving more paramete
than quantities to be fit, one has to worry about overfitti
and we deal with this in the following way. As we shall s
shortly, the most sensitive aspect of the fitting procedure
the six-Higgs-doublet model is getting the CKM paramet
correct, and so we take the cost function subcompon
CCKM as a measure of overfitting. Making a series of fi
using the cost function of Eq.~53a! with e51, as a function
of the width sparameter, we find that the value ofCCKM is a
monotonic decreasing function of the width. For very sm
values of the width~i.e., asymmetries restricted to have ve
small values! we find a value ofCCKM much larger than 4,
the number of fitted CKM matrix degrees of freedom; f
large values of the width we find values ofCCKM much less
than 4, indicating overfitting. We take as ‘‘good’’ fits one
resulting from widthssparameterthat yield aCCKM of order 4;
an example of such a fit, withsparameter50.03, is given in
Table III. This fit, which was attained after 229 iterations
achieve a 1 part in 106 change in the cost function in a
iteration ~we will use this same convergence criterio
throughout!, had Cmass50.13, CCKM54.65, Cscnc
5331024, andCparameter538.9, giving a total cost function
C543.7. The values of the parameters giving this fit are
follows:

Vf571.27, Vh571.27,

gf
u 50.811, gf

d 50.0201, gf
e 50.00831,

gh
u50.00715, gh

d50.00112, gh
e50.000371,

TABLE III. Six-Higgs-doublet model fit to experimental data

Quantity Target value Fitted value

v5@6(Vf
2 1Vh

2)#1/2 247.0 247.0
Vf2Vh 0.0 0.001
Mu 0.005 0.005
Mc 1.30 1.28
Mt 173.0 173.0
Md 0.010 0.011
Ms 0.200 0.219
Mb 4.30 4.29
Me 0.00051 0.00051
Mm 0.1057 0.1057
M t 1.777 1.777

uDHiggsu

2.6310214
0.0 0.016

s12 0.221 0.221
s13 0.0035 0.0041
s23 0.041 0.035
usind13u 0.60 0.44
01501
s
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d1R50.00269, d2R50.0340, d3R520.0367,

d1I50.00074, d2I50.0027, d3I520.0034,

u5150.8°,

@bf
u #5S 0.1612 0.0477 0.0268

0.0144 0.00024 20.0133

20.0442 20.0367 20.1562
D ,

@bf
d #5S 0.1660 0.1589 0.0189

0.0 0.0180 20.0190

20.1398 20.0189 20.1841
D ,

@bf
e #5S 0.1038 0.0 20.0517

0.0 20.00081 20.0375

20.0366 20.00011 0.0230
D .

~54!

We see that the largest value of theb asymmetry param-
eters is 0.184 in magnitude; so the first question we m
address is whether this large asymmetry is needed to re
duce the large mixings1250.221 between the first and se
ond families. To show that this is not the case, we exhibit
result of rerunning the fit, this time omitting thes13 ands23
terms from the cost function. The result, attained after 1
iterations, hasCmass50.04 ~that is, the fitted mass values a
right on their targets! and s1250.221, so that the Cabibb
mixing is also right on target, but the largest of theb asym-
metry parameters has a magnitude of 0.01, a factor of
smaller than in the fit of Eq.~54!. The values for the uncon
strained third family mixings obtained this way ares13
50.00021,s2350.00072, much smaller than in the fit of Eq
~54!. So we conclude that the largeb asymmetry values of
Eq. ~54! are needed to get correct fits to the third fam
mixings; the correct value ofs12 by itself is obtained withb
values much smaller in magnitude thans12, in agreement
with our observation in Sec. VII thats12 is of zeroth order in
the asymmetries.

As a second experiment, which gives further insight in
why the model requires large asymmetries to fit the th
family mixings, we rerun the fit, replacing the targets f
both s13 and s23 by their geometric mean.0.011, with a
standard deviation of 0.0015. We find now convergence
216 iterations, withCmass50.02~that is, again the fitted mas
values are right on their targets!, and values for the CKM
mixings of s1250.221, s1350.0117, ands2350.0101. For
the other components of the cost function we findCCKM
50.86, Cscnc50.931024, andCparameter53.5, for a total of
C54.4. As suggested by the small value ofCparameter, the
largest of theb asymmetry parameters now has a magnitu
of 0.028, a factor of 6.6 smaller than in the fit of Eq.~54!.
We conclude from this fit that what requires the large asy
metries in Eq.~54! is splitting s23 and s13 from a common
mean value.
2-19
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This conclusion can be understood from a simple anal
model, in which the corrections of Appendix C toUL

f and
UR

f † are neglected. Referring to Eq.~42a!, let us writeVCKM

to first order accuracy as

VCKM5S 1 v12

2v12* 1 D , ~55a!

so that the fitteds12 is given bys125uv12u. Then from the
approximation of Eq.~42b! for UCKM , together with theCP
invariance condition@see Eq.~38b! and the discussion fol
lowing Eq. ~39c!# s13

f 5s23
f* , we find that

s135us32d3u/3, s235us31d3u/3,

s3[s13
u 2s13

d , d3[v12s23
d . ~55b!

Thus, the spread ofs13 ands23 from their geometric mean is
governed byd3 , in which the quantitys23

d , which is a linear
combination of theb asymmetries, is suppressed in mag
tude by a factor ofuv12u5s1250.221. This is why largeb
asymmetries are needed to fit the experimental data, whe
much smaller asymmetries suffice when the observeds13 and
s23 are replaced in the fitting program by their geomet
mean. For example, in the fit of Eq.~54!, the magnitude of
d3 is 0.0445, which corresponds to a values23

d

50.0445/0.22150.20, similar in size to the maximumb
asymmetries found in the fits. Thus, the six-Higgs-doub
model interprets the large difference in magnitude betw
the observeds13 and s23 as indicating asymmetries in th
Yukawa couplings substantially larger than one might
ively infer from the magnitude ofs23. The possible rel-
evance of this observation to the extension of our mode
neutrino mixing will be discussed in Sec. X.

We next address issues of fine-tuning and naturalnes
the six-Higgs-doublet model. In the fit of Eq.~54!, the abso-
lute values of the matrix elements of the matricesUL

u,d and
UR

d† take the values

@ uUL
uu#5S 0.974 0.224 0.055

0.224 0.974 0.034

0.046 0.045 1.000
D , ~56a!

@ uUL
du#5S 1.000 0.00010 0.066

0.00010 1.000 0.067

0.066 0.067 1.000
D , ~56b!

@ uUR
d†u#5S 1.000 0.00010 0.033

0.00010 1.000 0.036

0.033 0.036 1.000
D . ~56c!

We see that the mixings12 of the first two families arises
nearly entirely fromUL

u , while the 232 submatrices ofUL
d

and UR
d† , which mix the first two families~and which are

equal to good accuracy!, are nearly the unit matrix, which i
what allows the strangeness-changing neutral current
straint to be satisfied. To estimate the amount of fine-tun
01501
ic
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t
n

-

to

in

n-
g

involved in this, we note thatuDHiggsu of Eq. ~47b! is qua-
dratic in the matrix elementuUL12

d u.uUR12
d† u. Hence, if the

entry for uDHiggsu/(2.6310214) in Table III were scaled up
from 0.016 to unity, corresponding to the strangene
changing neutral current constraint being just barely sa
fied, the off-diagonal matrix elementsuUL12

d u.uUR12
d† u in Eqs.

~56b!, ~56c! would be scaled up from 0.00010 t
0.00010/0.0161/2.0.00079. Taking as a ‘‘generic’’ off-
diagonal matrix element the average value.0.05 of the 13
and 23 matrix elements of Eqs.~56b!, ~56c!, we estimate
that fine-tuning in the mixing matrices, of order a factor
0.05/0.00079.63, is involved in satisfying the strangenes
changing neutral current constraint, for an assumed Hi
boson mass in the fit@see the second line in Eq.~46b!# of
MR

(2)5(4.530.3)1/2Vf.83 GeV. For a Higgs boson mas
of 330 GeV the fine-tuning would be correspondingly r
duced to a factor of roughly 16, and for a Higgs boson m
of 800 GeV the fine-tuning factor would be roughly 6.

Given that there is some fine-tuning involved in obeyi
the strangeness-changing neutral current constraint, one
ask whether it is natural or unnatural to the experimen
data. If the fine-tuning is not natural to the data being fit, o
would expect the fits to the masses and CKM parameter
improve, or the convergence to a fit to become faster, w
the cost function termCscnc is omitted from the total cos
function. Performing this experiment, we find that witho
Cscnc, a comparably good fit is obtained (Cmass50.64,
CCKM54.1) as with the cost function termCscnc included,
but 600 iterations, as opposed to 229, are required for c
parable convergence. In other words, the strangen
changing neutral current constraint appears to guide
search to a region of parameter space that gives a good
we interpret this as an indication that the fine-tuning
volved in satisfying this constraint is in fact natural to th
data.

One other place where there is fine-tuning in the fits is
the first family masses, since these are naturally zero onl
the absence of Yukawa coupling asymmetries. In princip
if the first family cost function terms are omitted fromCmass,
one might expect first family masses as large as 0.2~the
value of the maximum asymmetry parameters! times the cor-
responding third family masses, which would giveMu;35,
Md;0.9, Me;0.4. However, performing the experiment o
omitting first family mass constraints from the fit, we fin
first family massesMu.0.9, Md.0.23, Me.0.07; that is,
the first family masses are still smaller~or, in the case of
Md , equal to! the second family masses. We interpret this
an indication that small first family masses are in fact natu
to the remaining experimental data when first family mas
are excluded, in the framework of the six-Higgs-doub
model.

We conclude this section by giving some comparative
in the three-Higgs-doublet model. Using the same cost fu
tion parameters and convergence criterion as in the
Higgs-doublet case, we get the three-Higgs-doublet mode
shown in Table IV, which required 864 iterations. The ma
fit is generally good, except for the low valueMs50.037
~corresponding toCmass57.3), while the CKM parameters
2-20
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are close to their targets (CCKM50.5). When the
strangeness-changing neutral current constraint is omitte
this case, we find faster convergence~398 iterations! and a
better fit, withMs50.151~corresponding toCmass50.7) and
with the CKM parameters right on target (CCKM50.1). This
behavior contrasts sharply with what we saw in the s
Higgs-doublet model fits, and we interpret it as indicati
that the strangeness-changing neutral current constraint i
natural to the data as interpreted in the three-Higgs-dou
model.

X. EXPERIMENTAL ISSUES, NEUTRINO MIXING,
COUPLING CONSTANT UNIFICATION, AND

DIRECTIONS FOR FUTURE WORK

Of the two models that we have developed in the previ
sections, we find the six-Higgs-doublet model the more
teresting as a candidate for an extension of the stan
model into the energy region that will become accessible
the next decade. As compared with the three-Higgs-dou
model, the six-Higgs-doublet model has fewer paramet
gives better overall fits to the data, and gives some indica
that the strangeness-changing neutral current constrai
natural to the data. It also violatesCP spontaneously in an
interesting way that is correlated with the generation of s
ond family masses for theu,d,e families.

The prime experimental signature of the six-Higg
doublet model is the spectrum of Higgs states tabulate
Table II. If the potentialV2 that couples thef to h Higgs
overall phases is in fact small, then the lightest Higgs sta
should be the pseudo Goldstone bosons. However, bec
of the 1

2 power scaling law of Eq.~25c!, they need not be so
light as to conflict with current Higgs boson mass limits. F
example, if the Higgs boson massesMHiggs that enter into the
strangeness-changing neutral current constraint are of o

TABLE IV. Three-Higgs-doublet model fit to experimenta
data.

Quantity Target value Fitted value

v561/2Vf 247.0 247.0
Mu 0.005 0.005
Mc 1.30 1.28
Mt 173.0 173.0
Md 0.010 0.011
Ms 0.200 0.037
Mb 4.30 4.31
Me 0.00051 0.00051
Mm 0.1057 0.1057
M t 1.777 1.777

uDHiggsu

2.6310214
0.0 0.001

s12 0.221 0.221
s13 0.0035 0.0037
s23 0.041 0.039
usind13u 0.60 0.55
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330 GeV, andV2 /Vf,h;0.1, which is in the weak coupling
regime, then the pseudo Goldstone boson masses are
pected to be of order (0.1)1/2330 GeV .104 GeV, above
current Higgs boson mass limits.

Although we have included the possibility of a righ
handed neutrino, and of Dirac neutrino masses and mix
analogous to CKM mixing, in our Lagrangian, we have n
attempted a detailed study of the neutrino sector because
experimental picture there is still incomplete. However,
us briefly address the recent report by the Super-Kamioka
Collaboration@16# of evidence for atmospheric neutrino o
cillations, suggesting large mixing~of order unity! of second
and third family neutrinos. This is clearly a different patte
than is seen for the charged fermion mixings, where,
example, in the fit of Eq.~54! the m-t mixing matrix ele-
ments of UL

e are smaller than 0.01 in magnitude. Larg
nm-nt mixing can be accommodated in our model, nonet
less, by assuming that the Yukawa coupling ratiogh

f /gf
f ,

which we have taken to be small forf 5u,d,e, is close to
unity for f 5n. Together withVh /Vf.1, this implies that
Rn of Eq. ~39b! is close to unity in magnitude~although it
can have a nonzero phase!. Referring to Eqs.~38a!,~38b!, we
see that this implies that the neutrino mass matrix is n
nearly degenerate in the two-dimensional subspace span
the second and third families, and so small asymmetries
asymmetries nearly equal in magnitude, then imply nea
maximal mixing. To show this explicitly, let us apply th
analysis of Appendix B to the mass matrix

m5S Rn 1

3
s23

1

3
s32 1

D . ~57a!

Then forML5mm†, we have, from Eq.~B2b!,

ML5S uRnu21
1

9
us23u2

1

3
~Rns32* 1s23!

1

3
~s32R

n * 1s23* ! 11
1

9
us32u2

D , ~57b!

and so Eq.~B4b! gives, for the mixing angle,

Q5
1

2
tan21S 2

2

3
uRns32* 1s23u

uRnu2211
1

9
~ us23u22us32u2!

D .

~57c!

Thus there is maximal mixing whenever

2

3
uRns32* 1s23u@uRnu2211

1

9
~ us23u22us32u2!.

~57d!

If uRnu is close to unity, this inequality can be satisfied eith
~i! if s23 ands32 are both small or~ii ! if the magnitudes of
s23 and s32 are not small, but are approximately equal.
2-21
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Sec. IX we saw that to reproduce the observed CKM para
eterss23 and s13, we needed sizable asymmetries~of order
0.2!, which if also present in the neutrino sectorb ’s would
allow near maximal mixing of the second and third fam
neutrinos by case~ii ! even when the ratioRn is only approxi-
mately unity in magnitude. Thus largenm-nt mixing is easy
to achieve in the six-Higgs-doublet model. Less natura
near degeneracy of the masses ofne andnm , as appears to be
needed for both the Mikheyev-Smirnov-Wolfenstein~MSW!
and the vacuum oscillation interpretations of the solar n
trino data, since the first family masses are zero in our mo
in the absence of Yukawa asymmetries. Such a degene
would have to be the result of sizable asymmetries toge
with substantial fine-tuning in the neutrino mass matrix,
ther to raise thene mass to close to thenm mass in case~i! or
to lower thenm mass to close to zero in case~ii ! ~as, for
example, is done in the model of Bargeret al. @17#; see also
Baltz, Goldhaber, and Goldhaber@17#!. In either case, there
will almost certainly be large mixing ofne with nm ; so on
this ~very preliminary! interpretation, our model would favo
the large angle as opposed to the small angle MSW solut

Let us next address the issue of coupling constant u
cation in the six-Higgs-doublet model. Because we do
alter the fermion representation content of the stand
model, the usual running coupling analysis applies. As no
by Langacker@18#, the standard model with.7 ~by current
data @19#, 7.66! Higgs boson doublets gives one-loop co
pling constant unification with a unification energy of ord
531013 GeV. Even with only six Higgs doublets, the ma
nitude of two-loop radiative corrections@20# is sufficient to
make coupling constant unification a possibility. Of cour
because the unification energy is lower than in the custom
scenario, a mechanism is needed to suppress proton d
such as is present in the SU~15! family @21# of grand unifi-
cation models. Clearly, definitive statements here will d
pend on the nature of the high energy theory for which
six-Higgs-doublet model is a low energy effective theo
the point we wish to stress, though, is that the six-Hig
doublet model may be a candidate for coupling constant
fication without the assumption of low energy supersymm
try. Whether such a candidate is needed, of course,
depend on the outcome of supersymmetry searches ove
next decade.

There are a number of obvious directions for further wo
on the models we have developed in this paper. Entir
within the low energy effective action framework, one c
address the issue of one-loop radiative corrections to
mass and mixing matrix analysis given here. This will i
volve the parameters determining the Higgs boson mass
an integral way, and if the six-Higgs-doublet model is to
viable, the one-loop corrections should improve, rather t
make worse, the comparisons with experiment and the c
sistency tests discussed in Sec. IX. Another issue that ca
addressed within the low energy framework is the magnit
of electroweak baryogenesis in the six-Higgs-doublet mo
and cosmological implications of this model more genera
At a deeper level, there is the issue of finding a grand uni
model, composite model, or hybrid model comprising e
ments of both, which is a natural high energy physics sou
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for the low energy effective action physics described by
six-Higgs-doublet model. Such a high energy model mu
through its representation content and instanton physics,
tify the discrete chiral transformation rules assumed in E
~1a!–~1c!, and it is also the place where one must seek
planations for the ‘‘vertical’’ hierarchy of Yukawa couplin
strengths and the pattern of Yukawa coupling asymmetr
which is needed for our fits.

Added note.After this paper was posted to the Los Ala
mos e-print archive, two earlier papers that use families
Higgs scalars~although without the ingredient ofZ6 discrete
chiral symmetry analyzed here! were brought to my atten
tion. The paper of Derman and Jones@22# studies a two-
family, two-Higgs-doublet model with anS2 permutation
symmetry, and is probably the earliest paper to extend
idea of family symmetries to the Higgs sector; the paper
Derman@23# extends this to three families of fermions an
Higgs doublets with anS3 permutation symmetry.
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APPENDIX A: NUMERICAL MINIMIZATION
OF THE HIGGS POTENTIAL

Because the Higgs potential of Eqs.~7a!–~7c! is compli-
cated, even with the simplifying assumptions ofCP invari-
ance and cyclic permutation symmetry, we have supp
mented our analytic studies of the Higgs extrema w
numerical studies, performed by using the conjugate grad
method to minimize the Higgs potential. Since it is easy
analytically compute the first derivatives~the gradients! of
the Higgs potential, it is advantageous to use the conjug
gradient method in a form where both the function to
minimized and its derivatives are externally supplied; t
gives a faster routine and there is some built-in redunda
that serves as a check, since the same information is in e
furnished twice, once through the computation of the fun
tion and a second time through the independent computa
of its derivatives. We have used the minimization progra
FRPRMNof Presset al. @12#, with the following modification.
Presset al. base the convergence criterion in their progra
on computing the change in thefunction valueover one it-
eration, but this results in significant truncation error inacc
racies for the minimizing values of thearguments~the Higgs
fields! when the function is large in magnitude but very fl
at its minimum. Since the gradients are explicitly known, a
since at the minimum the gradients must all vanish, mu
2-22
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better accuracy for the minimizing Higgs fields is obtain
by making the convergence criterion depend on the m
mum gradient. With this modification toFRPRMN, one can
verify the vanishing of the gradients to double precision
curacy at the Higgs potential minimum.

To obtain the formulas for the gradients, as a function
general f,h, we substitutef→f1df,h→h1dh into
Eqs. ~7a!–~7c!, and retain the first order variations, whic
can be brought to the convenient form
r

01501
i-

-

f

dLHiggs potential5Re(
n51

3

~Cn
fdfn* 1Cn

hdhn* !. ~A1a!

We assume bothCP invariance and cyclic permutation sym
metry; using the latter we get formulas forC2,3

f,h by cyclic
permutation of the arguments ofC1

f,h . Changing notation
for the coefficients fromClmn to Cl ;mn , to avoid notational
ambiguities when explicit numerical values are assigned
m, we obtain the following explicit expressions forC1

f,h :
C 1
f54lf~f 1* f12v f

2 !f122~m1f1m2f!~f 2* f21f 3* f3!f12af~2f2f 1* f31f 3
2f 2* 1f 2

2f 3* !1gh1

1 (
m51

3

@2C1;1mh m* hmf11C2;1mh1hm* fm1C2;m1h1hm* fm1C3;1mf2hm* hm211C3;3mf3hm21* hm1C4;m1f3hm* hm11

1C4;m2f2hmhm11* 1C5;1mh2hm* fm211C5;m2h2hm11* fm1C6;m1h3hm* fm111C6;3mh3hm21* fm1C7;1mf2fm* hm21

1C7;3mf3fmhm21* 1C7;m1fm* fm11h31C8;1mf2hm* fm211C8;3mf3hmfm21* 1C8;m2fmfm11* h21C9;m1hm* hm11h3

1C10;m2hmhm11* h21C11;1mh2fm* hm211C11;m1fm* hm11h31C12;3mh3hmfm21* 1C12;m2hmfm11* h2#, ~A1b!

C1
h54lh~h1* h12vh

2 !h122~m1h1m2h!~h2* h21h3* h3!h12ah~2h2h1* h31h3
2h2* 1h2

2h3* !1gf11 (
m51

3

@2C1;m1fm* fmh1

1C2;m1f1fm* hm1C2;1mf1fm* hm1C3;m1h3fm* fm111C3;m2h2fmfm11* 1C4;1mh2fm* fm211C4;3mh3fmfm21*

1C5;m1f3fm* hm111C5;3mf3fm21* hm1C6;1mf2fm* hm211C6;m2f2fm11* hm1C7;m2fmfm11* f21C8;m1fm* fm11f3

1C9;1mh2fm* hm211C9;3mh3fmhm21* 1C9;m2hmhm11* f21C10;1mh2hm* fm211C10;3mh3hmfm21*

1C10;m1hm* hm11f31C11;3mf3fmhm21* 1C11;m2fmhm11* f21C12;1mf2hm* fm211C12;m1hm* fm11f3#. ~A1c!
it is
APPENDIX B: BI-UNITARY DIAGONALIZATION
OF A 232 MATRIX

We give here the method for constructing the matricesVL

andVR
† that obey Eq.~41a! of the text, suppressing the flavo

index f throughout. Letm by the 232 complex matrix de-
fined by

m5S s11 s12

s21 s22
D . ~B1!

We begin by forming the self-adjoint matricesML[mm†

andMR[m†m, which we write in the form

ML5S AL zL*

zL BL
D , MR5S AR zR*

zR BR
D , ~B2a!

with

AL5us11u21us12u2,

BL5us21u21us22u2,

zL5s11* s211s12* s22 ~B2b!
and

AR5us11u21us21u2,

BR5us12u21us22u2,

zR5s12* s111s22* s21. ~B2c!

The quantities just defined are not independent, since
easy to verify that

AL1BL5AR1BR ,

1

4
~AL2BL!21uzLu25

1

4
~AR2BR!21uzRu2,

uzLu2<ALBL , uzRu2<ARBR . ~B2d!

The desired bi-unitary matrices will be theVL for which
VLMLVL

† is diagonal, and theVR for which VRMRVR
† is di-

agonal, with eigenvalues ordered in magnitude.
Thus, defining the self-adjoint matrixM by
2-23
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M5S A z*

z B D , uzu2<AB, ~B3a!

it suffices to find the diagonalizing unitary transformationV
that yields

VMV†5S uk1u2 0

0 uk2u2D , uk1u<uk2u; ~B3b!

then all that we have to do is to apply this construction twi
first to ML and then toMR . Let us writeM in Pauli matrix
form as

M5
1

2
~A1B!1vW •tW , vW 5S zR ,zI ,

1

2
~A2B! D , ~B3c!

with zR,I the real and imaginary parts ofz. Representing the
diagonalizingV in Pauli matrix form as

V5exp~ iQnW •tW !5cosQ1 inW •tW sinQ, ~B4a!

and letting ẑ5(0,0,1) be the unit vector in the third ax
direction, a simple calculation shows that we satisfy E
~B3b! by taking

sin 2Q5
uẑ3vW u

uvW u
5

uzu

[ 1
4 ~A2B!21uzu2] 1/2

,

cos 2Q5
2 ẑ•vW

uvW u
5

2 1
2 ~A2B!

[ 1
4 ~A2B!21uzu2] 1/2

,

Q5
1

2
tan21S 22uzu

A2B D ,

n̂52
ẑ3vW

uẑ3vW u
5

~zI ,2zR,0!

uzu
, ~B4b!

and that thisV gives

VMV†5
1

2
~A1B!2uvW ut3 . ~B4c!

Thus we see that the squared eigenvalues are

uk1u25
1

2
~A1B!2uvW u, uk2u25 1

2 ~A1B!1uvW u,

~B5a!

which are correctly ordered; the smaller squared eigenv
is guaranteed to be non-negative by virtue of the fact that
product of the squared eigenvalues is
01501
,

.

e
e

1
4 ~A1B!22uvW u25AB2uzu2>0. ~B5b!

Whenuzu50, the above formulas are indeterminate; we th
get the correct eigenvalue ordering by taking sin2Q50 and
cos2Q561, with the 1 sign holding forA<B and the2
sign holding forA.B. Referring back to the identities of Eq
~B2d!, we see that they imply thatuvW Lu5uvW Ru, and thus the
eigenvalues are the same forML andMR , as expected. Sub
stituting the expression forn̂ in Eq. ~B4b! back into Eq.
~B4a!, we get the further useful expression

V5S cosQ 2
z*

uzu
sinQ

z

uzu
sinQ cosQ

D . ~B6!

APPENDIX C: IMPROVED FORMULAS FOR U L
f AND U R

f†

In our numerical work, we used an improved approxim
tion to U L

f andU R
f † obtained by adding to Eqs.~41b!, ~41c!

the respective correctionsDU L
f andDU R

f † , given by

DU L
f 5S 0 0 0

0 0 2 1
9 k 2

f h 32
f*

1
9 k 2

f* h 32
f V L21

f 1
9 k 2

f* h 32
f V L22

f 0
D

~C1a!

and

DU R
f †5S 0 0 1

9 V R12
f † k 2

f* h 23
f

0 0 1
9 V R22

f † k 2
f* h 23

f

0 2 1
9 k 2

f h 23
f* 0

D .

~C1b!

Here V L,R
f are the matrices defined in Eq.~41a! and com-

puted in Appendix B,k 2
f is the eigenvalue defined in Eq

~41a!, given explicitly by

k 2
f 5V L21

f ~s 11
f V R12

f † 1s 12
f V R22

f † !1V L22
f ~s 21

f V R12
f †

1s 22
f V R22

f † !, ~C2a!

and the quantitiesh 23
f , h 32

f are defined by

h 23
f 5V L21

f s 13
f 1V L22

f s 23
f ,

h 32
f 5s 31

f V R12
f † 1s 32

f V R22
f † . ~C2b!

These corrections make the formulas forU L
f andU R

f † accu-
rate to first order when (uk 2

f u/3)2, rather thanuk 2
f u/3, is re-

garded as a first order small quantity. They have only a sm
effect on the fits of Sec. IX~because for charged fermion
the second to third generation mass ratios are small!, but are
useful in performing accurate numerical checks th
U L

f M f8U R
f † is diagonal.
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