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We construct extensions of the standard model based on the hypothesis that Higgs bosons also exhibit a
family structure and that the flavor weak eigenstates in the three families are distinguished by a Ajscrete
chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models
with three Higgs doublets and with six Higgs doublets comprising two weakly coupled sets of three. In a
leading approximation oB; cyclic permutation symmetry the three-Higgs-doublet model gives a “demo-
cratic” mass matrix of rank 1, while the six-Higgs-doublet model gives either a rank-1 mass matrix or, in the
case when it spontaneously violatéB, a rank-2 mass matrix corresponding to nonzero second family masses.

In both models, the CKM matrix is exactly unity in the leading approximation. Allowing small explicit
violations of cyclic permutation symmetry generates small first family masses in the six-Higgs-doublet model,
and first and second family masses in the three-Higgs-doublet model, and gives a nontrivial CKM matrix in
which the mixings of the first and second family quarks are naturally larger than mixings involving the third
family. Complete numerical fits are given for both models, flavor-changing neutral current constraints are
discussed in detail, and the issues of unification of couplings and neutrino masses are addressed. On a technical
level, our analysis uses the theory of circulant and retrocirculant matrices, the relevant parts of which are
reviewed.[S0556-282(98)01523-9

PACS numbgs): 12.60.Fr, 11.30.Hv, 11.30.Rd

I. INTRODUCTION relevance is the remark of Weinbef§] that an unbroken
discrete chiral quantum number suffices to enforce the mass-
It has long been recognized that the hierarchical structurelessness of fermionic states. Extending the general frame-
of the family mass spectra, with their large third family work of this earlier work, we postulate that abmplexfields
masses, and of the Cabibbo-Kobayashi-Maska®&M)  carry a discrete chiral family quantum number. Since the
mixing matrix, with its suppressed third family mixings, may Higgs scalars in the standard model are complex, we intro-
have a common dynamical origin. In particular, several auduce one or two triplets of Higgs doublets that caity
thors[1] have stressed that the observed pattern seems to lp@antum numbers, and that are coupled to the fermions by
close to the “rank-1" limit, in which the mass matrices have Yukawa couplings constructed so that the Lagrangian is ex-
the “democratic” form of a matrix with all matrix elements actly Zg invariant. Spontaneous symmetry breaking, in
equal to unity, which has one eigenvalue 3 and two eigenwhich the neutral members of the three or six Higgs doublets
values 0; when both up and down quark mass matrices hawacquire vacuum expectations, then gives the fermion mass
this form, they are diagonalized by the same unitary transmatrices that form the basis for our detailed analysis.
formation and the CKM matrix is unity. A generalization of  In addition to postulating that the Lagrangian has an exact
the democratic form, which is closely related to the modeldiscrete chiral symmetry that is spontaneously broken, we
developed below, is the suggestion of Harrison and $2¢tt also postulate that there is & cyclic symmetry under cy-
that the Hermitian square of the mass matrix should have thelic permutation of the flavor eigenstates that is explicitly but
form of a circulant matrix. Because the underlying dynami-weakly broken by the Yukawa couplings and the Higgs self-
cal basis for these choices has not been apparent, it has neuplings in the Lagrangian. This assumption permits the
been possible to systematically extend them to renormalizanalysis of our models by developing them in a perturbation
able field theory models that incorporate, and relate, the obexpansion in powers of th&; cyclic symmetry breaking,
served mass and mixing hierarchies. leading, as we shall see, to qualitative features of the mass
We present in this paper models for the quark mass andnd mixing hierarchies that accord with observation. An in-
flavor mixing matrices, based on the underlying dynamicakerplay of spontaneously broken symmetries with weakly ex-
assumption that the three-flavor weak eigenstates are distiplicitly broken symmetries has played a useful role in par-
guished by different eigenvalues of a discrete ctifggjuan-  ticle phenomenology in the past, most notably in
tum number. The idea that a discrete chiral guantum numbainderstanding the consequences of chiral symmetry in quan-
may underlie family structure was introduced originally by tum chromodynamics. Our analysis suggests that such an
Harari and Seiber3], and was developed recently by the interplay, in the context of electroweak symmetry breaking,
author[4] in a modified form that we follow here. Also of may also provide a basis for understanding features of the
mass and mixing hierarchy.
This paper is organized as follows. In Sec. Il we elaborate
*Email adddress: adler@ias.edu on the form of and motivation for our basic assumptions of
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an exact discrete chiral symmetry and an approxin@&te on these, and?2) the approximate S(3) flavor symmetry of
cyclic permutation symmetry. In Sec. Il we write down the the strong interactions. These postulates, which had a some-
Lagrangians for two extensions of the standard model thaivhatad hoccharacter at the time when they were first intro-
incorporate these assumptions, the first based on a singtliced, helped pave the way for the formulation of the stan-
three-family set of Higgs doublets and the second based odiard model, into which they were incorporated in a natural
including an additional weakly coupled three-family set of way and thereby ultimately justified.

Higgs doublets. In Sec. IV we review the theory of circulant  Our aim in this paper is to apply a similar method to the
and retrocirculant matrices, in the framework of the& 3  problems of family structure and mass and mixing matrices,
matrices that are needed for the subsequent analysis. In Sehich to date have been among the most vexing puzzles of
V we discuss the extrema of the Higgs potentials in thethe standard model. As a heuristic field theoretic model, we
three- and six-doublet models, in the limit of ex&tcyclic ~ shall adopt a simplified composite model in which all matter
symmetry. We work out the spectra of physical Higgs par-particles (quarks, leptons, and Higgs fields — everything
ticles, and show that for a wide range of parameters, thether than the gauge fiel[dare composites of a single fer-
six-doublet model leads to spontaneous violatiol€Bf Ina  mion field y. As observed by Harari and Seibefg] and
related appendix, Appendix A, we give the formulas neededVeinberg[5], in a gauge theory fog the instanton determi-
for numerical minimization of the Higgs potentials by the nant that breaks global () invariance leaves unbroken a
conjugate gradient method. In Sec. VI we use the extremdiscreteZ, chiral subgroup, witkK determined by the index
determined in Sec. V to calculate the tree approximatiorof the representation of the gauge group under whjch
mass matrices. We show that in the limit of exact cyclictransforms. Harari and Seiberg propose, moreover, that this
permutation symmetry, the mass matrices are retrocirculantsaturally occurring discrete chiral subgroup provides the
corresponding to the rank-1 “democratic” form in the three- quantum number that distinguishes between the various
doublet model and to a rank-2 generalization in the sixfamilies. Since it is now clear that there are exactly three
doublet model wherCP is spontaneously violated. Also, in light families, we shall assume henceforth in applying this
the limit of exact cyclic permutation symmetry, we charac-idea thatk =3, so that we start from the assumption that the
terize the Higgs decay modes, and show that the CKM mafundamental Lagrangian, as augmented by the instanton-
trix is exactly unity and that strangeness-changing neutrahduced potential, is invariant under the simultaneous trans-
currents exactly vanish. In Sec. VII we formulate a perturbaformations

tive expansion around the zeroth order approximation of ex-

actS; cyclic permutation symmetry, and show that the mix- XL— XLEXP(2mi/6), xr— xr€XH(—27il6) (18

ing matrix for the first and second families is zeroth order in . _ ! .

the perturbation, whereas the mixings involving the thirgOf the fundamental fermion fieldg. The fields in the low

family are first order in the perturbation. In Sec. VIII we €nergy effective Lagrangian are in general nonlinear func-

derive formulas for the contributions from Higgs exchangetionals of the fundamental fields. Fermionic effective fields
to the K, — K mass difference, which is the process mostmust be odd monomials in the fundamental fields, and so can
LS ' pme in three varietieg, with the discrete chiral transfor-

sensitive to strangeness-changing neutral current effects. X
fnation law

Sec. IX we describe the procedure used for making overal

fI'[S. of our model, including sma!l violations of cycl!c permu- UL — o expl (20 +1)27i /6],

tation symmetry, to the data, give sample numerical results,

and_draw some Conclqsmns from these. In Sec. X we sum- nn— tnmeX — (2n+1)2mi/6], n=1,2,3,

marize experimental signatures for our model, comment on (1b)

its extension to neutrino masses and mixings, discuss the

prospects for coupling constant unification, and give somevhile complex bosonic effective fields must be even mono-

directions for future investigations. mials in the fundamental fermion fields, and so can also
come in three varietieg,, with the discrete chiral transfor-

Il. BASIC ASSUMPTIONS: AN EXACT DISCRETE mation law

CHIRAL SYMMETRY AND AN APPROXIMATE S, bo— b, eXH2n27i[6), n=1,2,3. (10
CYCLIC SYMMETRY

In formulating our basic assumptions, we shall follow a Intreducing the cube roots of unity and o,

procedure that has worked well in the past as a heuristic tool 1 3
in particle physics. This is to abstract symmetry or partial w=exp2mi/3)=— =+
symmetry assumptions from specific simplified field theory 2
models, and then to discard the models, but to retain the
symmetry assumptions deduced from them as the basis for
phenomenological calculations. Examples where this has
been a productive method in the past incl(dg the CVC
(conserved vector currenand PCAC (partially conserved which obey the relations

axial vector currentsymmetries of the strong interactions, - o

the algebra of currents, and the calculational methods based w=0*=0? 1l+twto=0, (2b)

2"

Zzexp(—Zwi/3)=—%—§i, (2a)
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the transformation laws of Eq§la—(1c) take the form subscriptn will be indicated explicitly. We shall be inter-
o ested in two models, the first containing a single discrete
xi—=xL0Y?  xr—xro?, chiral triplet of Higgs doubletg, the second containing two

discrete chiral triplets of Higgs doublets, denoted, respec-
— tively, by ¢ and ». We shall write all formulas for the case
+1/2 +1/2 —
UL L™ % dnr— ore” TS N=1,2.3, 3 of the six-Higgs-doublet model; the simpler three-doublet
) model is obtained by setting all fields to zero.
The total Lagrangian densitg consists of kinetic terms
for the gauge, Higgs, and fermionic fields, together with

Gauge fields are real fields, and since the phase in Ec?_('gkawa Tfo_UFt)"”QS{_Of thetHi%g? f{i‘/ldts to the fermions and the
iggs self-interaction potential. Writing

(10) never takes the value 1 for anyn, the gauge fields in

a Zg model necessarily come in only one variety, transform-
ing with phase unity under discrete chiral transformations.
Thus the minimalZg-invariant extension of the standard + Lyykawa' Lriggs potentiat (4a)
model consists of a triplicated set of fermions and a tripli-

cated set of Higgs doublets, obeying the transformation lawghe gauge kinetic terms have the usual form

of Egs. (1b) and (1c), respectively, together with the usual

gauge bosons, with the Lagrangian constructed t@$an- Lgauge kinetie — %VY/#,VT/W— iB,.B

variant.

As we shall see in Sec. Il below, the assumption of an
unbroken discrete chiral symmetry still leaves many param-
eters in the Lagrangian, and it is desirable to look for a
further exact or approximate symmetry to impose. The natu- Buv=7,8,—3,B,, (4b)
ral candidate isS; cyclic permutation symmetry, under si- i L i
multaneous cyclic permutation of the=1,2,3 discrete chiral 2nd SO also do the fermion kinetic terrwith Q. and 4, ,
components of the fermion and Higgs boson fields. If the[espectlvely, the left-handed quark and lepton doublets, and
discrete chiral components were physically identical, oner the weak isospin Pauli matrices that act on thiem
would expect thisS; cyclic symmetry to be exact. However,
in the composite picture from which we are abstracting ourLtermion kinetic
model, the discrete chiral components differ physically by

¢dn— Pp0", n=1,23.

L= Egauge kinetich ﬁHiggs kinetict £fermion kinetic

W,,=d,W,—3d,W,+gW, XW,,

the addition of fermion-antifermion pairs coupled as Lorentz _ = g — E*-VY/ B EB
scalars, and so the internal wave functions of the discrete QuYu| 9u 27 T g Pu Qu
chiral components are different. Thus the best we might hope . -,
for is an approximate, weakly broke8; cyclic permutation _JL')’ (a _ E%VY/ 4 EB )l//L
symmetry, and this will be assumed as the second ingredient o2 S
of our model. — ) —
By abstracting our two fundamental assumptions from a —erYu(d,+ig'B,)er— vrY,d, VR
schematic composite model, we gain some assurance that - ig’ . ig’
they are consistent with each other and at least physically _UR7M<(9M_ _BM>UR_dR7;L d,+ _BM)dR-
plausible. However, we do not attach great significance to 3 3
the particular model from which they were inferred; it is (40)

entirely possible that the same assumptions can emerge from
other dynamical frameworks. We shall henceforth avoid fur-The Higgs kinetic energy is simply a sum over kinetic terms
ther discussion of underlying models, and focus on exploringf the standard form for the discrete chiral components of the
the consequences of our assumptions within the standamtalars¢ and » (each of which is, as usual, a weak isospin
framework of low energy renormalizable effective actiondoublej:
phenomenology.

|g L. |g ’ 2
(9,u¢n_ ?T'W,u¢n_ TB,M¢n

-
lll. DISCRETE-CHIRAL-INVARIANT EXTENSIONS Higgs kinetic™ 2

OF THE STANDARD MODEL 5

ig- - ig’
We proceed now to write down discrete-chiral-invariant - 2 9y n— jf'Wﬂﬂn— TBp.nn
extensions of the Lagrangian density for the standard model, n=123
following the notation of the text of Mohapati&]. In the (4d

following, each quark or lepton field is implicitly a column

vector formed from the three discrete chiral components Itis only in the Yukawa couplings and the Higgs potential
obeying the transformation laws of E(B), with then=1  that invariance under discrete chiral transformations plays a

index at the top of the column vector and the 3 index at  nontrivial role. Lettingé, and 7, denote theCP conjugates
the bottom. For the Higgs scalar fields, the discrete chirabf the Higgs fields,
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$n=(CP) 1¢,CP=iT,¢} ,

. ) _ (59
7,=(CP)~ ﬂnCPZITzﬂ: ,
the Yukawa Lagrangian takes the form
Lyykawa= QP g+ QP upg
+ i Der+ iy ¥ vg+ adjoint, (5b)

where®’, f=d,u,e,v is a 3x3 matrix acting on the dis-

crete chiral column vector structure, and where we have al-
lowed for the possibility of nonzero Dirac neutrino masses

by including a right-handed neutrino. The matrice5 must
be constructed so that E¢b) is invariant under simulta-

neous discrete chiral transformations of the fermion an

Higgs fields. Referring to Eq:3), it is easy to see that this
dictates the structure

DI=g (Pl +P lhodot P liada)
+9;(P2,1771+Pf772772+|3fy,3773)1 f=d,e,
P'= g;(PI/)l:f’2+ Pf¢2?¢'51+ Pzpaa’a)
+gl (Pl o+ PLym+Plsme), f=uv, (68

with the 3X3 matrices Pfgn given, for all flavors f
=u,d,e,v and foré= ¢, n, by

0 1+p4, O

PlL=| 1+ Bia 0 0 :
0 0 1+ Blas
0 0 1+ Bis
Pl=| 0 1+BL O |, (6b
1+Bly O 0
1+Bh; O 0
Pl,=| 0O 0  1+Bixs

0 1+, O

To uniquely specify the Yukawa couplingﬁg, we require
that the parameter,sgmn sum to zero:

2 Bimn=0. (60)
mn

When there is exa@; cyclic permutation symmetry thg's
all vanish, and thus the case of approxim&jecyclic sym-
metry is parametrized bg’s that are all small compared to
unity. In a CP-conserving theory all of the coupling con-
stantsgfd)],, and all of theB’s are real; wherCP conservation
is not imposed, these parameters can be complex.

We turn finally to the Higgs potential, which we separatemn obey

into four terms as follows:

PHYSICAL REVIEW D 59 015012

EHiggs potential— V¢+V7;+Vl(¢u n)+Vai(d,m), (73

with (for é= ¢, 7)

3
Ve= nzl Vn:

Ven=Nen(Ehén—v2)?

- Ml§n§l§n§;+1§n+l_ M2§n| §;§n+1|2

— agRe exi ) ENEn s 18601, (7b)

where the coefficients in Eq7b) are real(by Hermiticity)

gnd where the parametel, is zero(modulo 77) when CP

conservation is imposed. For the potential terms that couple
the ¢ and n Higgs fields, we have, in th€P-conserving
case,

3
Vi(d,n)= m;:I (Clmn(ﬁ:nd’mnl 7t C2mnRe¢I177m77E¢n

+ C3mnRe¢;¢m+l77$ Tn-1
+ C4mnRe77;177m+ 1¢I1¢n7 1
+ CSmnRe(ﬁ;ﬂ?m+177$¢n—1

+ ComRent dms 108 70-1),
v2<¢,n)=§ yaRep! 7,

3

m,n=

) (CrmnReplbms 18701

+ ComRebidbms 17 Pn-1
+ComnRenh Im+ 160 7n—1
+ CromnR€7m T+ 1701
+ CrimnRed i Tms 10 n—1

+ CrannR€7mdbm17nbn-1), (70
with all constants realagain by Hermiticity. The termsV,

are those invariant under independent rephasings
—exp(6,) ¢, and n,—exp(6,) n, of the two Higgs discrete
chiral triplets, while the term¥/, are only invariant under
this phase transformation when restricted so that 6, .
When CP is not conserved, an independent phase can be
inserted inside each real part Re in the above expressions, in
analogy with the construction of the final term of HE@b).
When there i$S; cyclic permutation symmetry, the constants
with a single discrete chiral subscriptare independent of
that subscript, while the constants with a double subscript
the cyclic condition C;,n=Cim+1n+1, |
=1,...,12.
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This rather complicated Higgs potential completes thea simple calculation shows that
specification of our model, the tree approximation to which

will be analyzed in detail in the sections that follow. U, Circ_(a,b,c)Uf
IV. RETROCIRCULANT AND CIRCULANT MATRICES a+wb+wc 0 0
Before proceeding further, we pause to review the theory = 0 a+wb+wc 0
of circulant and retrocirculant matrices in thx3 case rel- 0 0 a+b+c
evant for what follows. For a compact summary of general
results see Marcuf7] and Hamburger and Grimshaw], (10b)
and for a detailed exposition see Daj@. A matrix

An elementary corollary of these statements is that any Her-

a b c mitian circulant matrixH_, is diagonalized by the unitary
Circ_(a,b,c)=| c a b 8a) ElrlaonbiformatloruLHHUL using the unitary matrixJ, of Eq.
b c a The relevance of these results to what follows is that in

the limit of S; cyclic permutation symmetry, we shall find

that the fermion mass matrices in both the three- and six-
C doublet models are retrocirculants, and so are diagonalized
a (8b) by the universal bi-unitary transformation of E{.0b. By

Eq. (9), the Hermitian squares of the fermion mass matrices
b in the approximation of cyclic permutation symmetry are
therefore circulants, as suggested by Harrison and $2btt
We shall further find, in analyzing the Higgs sector in the
case of cyclic permutation symmetry, that the Higgs boson

. B a _ /
Circ_(a,b,c)=Circ_(a,b,c)’, ~and  Circ (ab,c)" a5 matrices are also circulants, making it easy to diago-
=Circ_(a,b,c)*.] Two properties of these matrices are nalize them explicitly.

used in what follows. The first is that the Hermitian square of
a retrocirculant is a circulant:

Circ_(a,b,c)Circ_(a,b,c)’

is called acirculant, while a matrix

Circ_(a,b,c)=

o T 9
©Q O T

is called areverse circulantor retrocirculant [Clearly, a
retrocirculant is always a symmetric matrix, and so

V. STRUCTURE OF THE HIGGS SECTOR

We turn now to an analysis of the properties of the dis-

=Circ_ (|al?+]|b|?+]c|?,ab* + bc* +ca*, crete chiral invariant Higgs potential of Eq§a—(7¢c). We
. . . shall assum&P invariance and exa@; cyclic permutation
ac* +ba* +cb*), symmetry; when needed, we can take into account small de-

viations from these assumptions by adding perturbations to

Circ_(a,b,c)'Circ_(a,b,c) the locations of the Higgs minima. We begin our discussion

=Circ_(|a|2+ |b|2+|c|? with the three-Higgs-doublet model, in which only the dis-
- ' crete chiral triplet¢ is present. Omitting the subscrigt on
a*b+b*c+c*a, the coefficients, we have
a*c+b*a+c*b). 9 EHiggs potential

The second is that any retrocirculant with arbitrary complex 3 3
a,b,c is diagonalized by transformation from the left and =N (=02 =1, bbbl bt
right by unitary matrices), , Ug=U} , which are indepen- n=1 n=1

dent of the values ofi,b,c. Explicitly, setting 3 3
— _Mzz |¢E¢n+1|2_a2 Red)xd)n-%—lqsld’n—l-
1 1 w W n=1 n=1
UL:T 1 ; y (113
3
1 11 Necessary conditions for this potential to be bounded below
_ are evidently
1 w w
T P A>0, \—pq— pp—a>0. (11b
R™ w ’
V3 _ y
1 1 Imposing the condition
. 1 1 1 o+ a>0 (129
= | o 1
Uk \/5 @ ﬁ ' (109 ensures that the Higgs potential is minimized when the three
o o 1 doublets all have the same form
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0 ’CH' ']:VO+V25+V2 y
o= ( N ) , (12 iggs potential €
n
3
for a suitable choice of S@2) gauge, with the consequence Vo= Z §5§an5n,
that one electroweak gluotthe photon remains massless. mn=1
Imposing the additional condition 3
1
a>0 (129 VZE:m;:]. E[E:'nAmnEn_"e:qunE:+EmDmnEn]-

(14b
then forces the complex phases of the three expectafigns
to be equalup to discrete chiral rephasingat the minimum A simple calculation shows that the matricks,D are all
of the potential; by a choice of (1) gauge the overall com- circulants of the form
mon phase can be rotated to zero, and so the potential of Eq.

(119 is minimized at A=Circ_ (a”,b?,b"),
0,=0,=0,=0, (133 B=Circ_(aBbB b"),
with Q given by D=Circ_ (aP,bP,bP), (15a
Ap2 with a*BP and b»BP given in terms of the Lagrangian
Q= (13D  parameters by
N—p1—pp—a

A 2 2
at=(2N— p1— p2) 20— 200",
This minimum is not unique; because the potential of Eq. ( i p2) v
(119 is invariant under the discrete chiral transformation of A 2
Eq. (3), equivalent minima are located at b=~ (1t pat2a)007,

Qu=0,0, Nn=123, (139 aB=200 = 05200

B_ _ 2
with w, , 3 any three distinct cube roots of unity, which can b"=—(pot+ a)01%,

always be obtained by permutation from the setv,1. De-
spite the appearance of complex phases in(E8p), there is al= ( - Ea)ﬂz
no breakdown ofCP invariance, because these phases can 2 '
always be eliminated by the discrete chiral transformation
that returns to the minimum of E4133a. 5 1 )
We note that although the potential of 14 is similar b™=—7(2u1+2u+ @)Q% (15b)
in form to that studied by Bigi and Sand], they choose

<0, in which case there are nontrivial relative phaibat  gjnce these matrices are all diagonalized by transformations
are not just discrete chiral rephasingetween the three ex- paseq on the cube roots of unity, it is useful to introduce new
pectations(}, , 5 at the potential minimum, an@P is spon-  pases defined as follows:

taneously broken. This case is not useful for our model

building because numerical analysis shows that it leads to a é Paey Paey b
mass matrix with one heavy family, and two other lighter ! @ @ ) !
families of equalmass. We shall make use of the possibility b2 | =W| &7, &7 =W &2 |,
[10] of CP violation in multi-Higgs-doublet systems only in b3 »® o3 b3
the context of the six-doublet model, to be discussed shortly.
To complete our discussion of the three-doublet model, s P FYE) 5
: . . 1 1
we must determine the Higgs masses. Expanding around the 2 2
minimum of Egqs(133), (13b) to second order by substituting & | =w| &8, 0 =Wt 6|,
55 5 5% 53
1
E S € e JGN) €
bn= 1 (149 & | =w| €? , e? | =w1 e ,
O+ ——€np €3 6(3) 6(3) €3
2 (163
into Eqg. (119, we find with
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1
W=WT=T o 1],
3111

o o 1

1
wil=w=w*=—| v o 1],

V3

1 1 1
WT'Circ_,(a,b,c)W
a+wb+wc 0 0
= 0 a+wb+wc 0 ;
0 0 a+b+c
WCirc_ (a,b,c)W
0 a+wb+ wc 0
=| a+wb+wc 0 0
0 0 a+b+c
(16b
In terms of the new bases, E{.43 becomes
1
)
V2
M= , n=12, (160
M
\/5
and
1
—5®
V2
¢ (169

- 1
V30 + —®
2

Substituting Eq(16b) into both Eq.(14b) and the Higgs
kinetic energy, and using E@13b), we find, for the terms
quadratic ind,,

vl

2
A2 [0,,6n°+ V25

1 1
— (n)|2 B B\ | 5(3)|2
513,87+ (aP+2b°%)5 [ 5°)

>

n=1,2.3

+(aB— b8 (524 62P)

-y !

3
|f9u5(n)|2+ > (pat @) Q3(|8Y|2+162)2).
n=1232 2

(17a

PPR SEDAA LRERNERW\VO59 015012

stone bosortwhich is absorbed by the Higgs mechanism into
the longitudinal parts of the charged intermediate bogons
while 52 are two charged Higgs boson fiel@sach con-
taining a positive and a negative charge gtateth mass
squared 3f,+ a)Q?. Similarly, we find, for the terms qua-
dratic ine,,

st

0 3 2 |‘9,u€n|2+\/25

1 1
_ (n)|2 A AV (3)]2
2|r9#e |°+(a®+2b )2|e |

>

n=1,2,3

1
+(@=bNZ (| VP+] )7

+(aP+ 2bD)%[(e(3))z+ (e¥%)2]

+(aP—bP)(eMe@ + eL* D), (17b
Defining new linear combinations™) by
1
eF=— (V= e?), (179

2

and splittinge®),e(*) into real and imaginary partg®*)
=€) +iel*) | Eq.(17b) takes the form

v 1

S 3 2 |(9M6n|2+v25

1
== 5[0,k 2+ (0,612 + (9,657 ) 2+ (9,6l
()2 (—)2 21 @2
+(d,er )+ (9,6 )]+ 4N E(ER )
L2t cnzy (o2
AN 2p0+ 200+ 5 Q7S (er )T (6 )7]

+ gam%[@&*))%(ef“ﬁ]. (170
We see thate!®) is a neutral massless Goldstone boson
(which is absorbed by the Higgs mechanism into the longi-
tudinal part of the neutral intermediate bogowhile €5,
both € and €™, and bothel;) and &™) are neutral
Higgs states, with respective squared massks?4 (4n
+2u1+2u+ L a)Q?, andd aQ?. Thus, the 12 states con-
tained in the original triplet of Higgs doublets are accounted
for as one neutral and two charged Goldstone modes, four
charged Higgs bosons, and five neutral Higgs bosons. This
information is summarized in Table I, which also gives the
couplings of the Higgs bosons to fermions worked out in
Sec. VI.

We turn next to the properties of the Higgs sector of the

From Eq.(17a we see tha®® is a charged massless Gold- six-doublet model. Although we shall focus here on analytic

015012-7
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TABLE I. Higgs eigenmodes, masses, and fermion couplings

for the three-Higgs-doublet model in the cyclic symmetry limit. qu‘ (180 39(2#92”2 (Cimnt Comnt Camnt Camn
n

Mode  Charge Mass Fermion family +Csmn+ Comn)
designation squared couplings mn mn (193
s +1 3(uy+ a)? First \Ea- (18 _ 3 3
=3ymQ4Q,+ 3> [(Crmnt Camn Q30
5@ 1 3(uy+ @) Q? Second 2 ey RS mn T = AmnEEgm
e 0 A\v? Third ,
e el 0 (an+2u,+2u,+ L a)q? Firstand second +(Comnt Cromn) Q7,2
(=) () 9 2 i
€r € 0 5 a) First and second +(Cyynnt Clzmn)ﬂf/,ﬂf?],

and
results, we have also made numerical studies of the minima
of the six-(and threer doublet potentials, using the formulas Vi***=30302%C,
and method given in Appendix A. Let us begin by assuming
that the potentialy/,(¢, ) andV,(¢,n) of Eq. (7c), which
couple the¢ and » Higgs discrete chiral triplets, are very
small. Then the minima of the Higgs potential are obtained
by examining the degenerate minima\§ andV, , as an-
alyzed in the three-Higgs-doublet discussion above, and se-
lecting those for whichv;+V, is smallest. By a simulta-
neousZg rephasing of¢ and », we can always make the

C= +Comm

1
; [Clmn_ §(C3mn+ C4mn)

+Cosmmi1t Comme1

1
- E[CZm m+1+CZm m—1+C5mm+ C5m m-1

minimizing values of¢ have the form of Eqs(12b and
(133, with Q and the coefficienty, v, a, uq, o in Eq.

(13b now carrying the subscript to differentiate them

from the similar formulas that hold for the Higgs fielgl

+ Commt Comm-1]

VEq. (1809 _ 0.

2 (19b

There are now two distinct possibilities, depending on thel’hus, the necessary condition for E480) to be the mini-

values of the coefficients iV, and V,. Suppose, for ex-

ample, that all of the coefficientg,, C,n, in Eq. (7c) are

negative; theriV,;+V, is clearly minimized if the expecta-
tions of 5, are all relatively real to one another and to the

expectations otp,,, that is, if

(18a

with

Al:AZIASZQﬂ1 (18b)

with Q, given by Eq.(13b) with subscriptsy on all quanti-
ties. Suppose, however, that the coefficient¥jrandV, are
all positive; then the sunv,+V, will be made lower if we
pick one of the degenerate minima\éf, of the form of Eq.
(130, for example,

A=0Q,, Ay=0Q,, A;=0Q (180

'R

More generally, the necessary condition for EtBo) to be a
lower minimum than Eq(18b), in the limit of small coupling
of 7 to ¢, is thatV,;+V, be smaller at Eq(18¢) than at Eq.

(18h). Assuming exact cyclic permutation symmetry, which

mum is that

VS (180 < /Ea (180 1 \/Ea. (130, (199
We shall henceforth assume that E§90 is satisfied; as
already noted, this is automatic in the case when all of the
coefficients inV,; andV, are positive, but the general con-
dition is much less restrictive, requiring only that the coeffi-
cients lie on one side of a hyperplane in the spac® pf
coefficients. When Eq(199 is satisfied,CP invariance is
spontaneously broken through theHiggs expectations, and
we shall see in the next section that simultaneously,she
expectations have the correct form to generate nonzero sec-
ond family masses.

Let us next consider what happens whépandV, are
not infinitesimally small. Still maintaining cyclic permuta-
tion invariance, let us first consider the case in whiGhis
large, butV, remains nearly zero. Then, from the formulas
of Appendix A, we find that the derivatives of the potential
vanish when one assumes E@3a for the ¢ expectations
(with Q of course replaced b@ ;) and Eq.(189 for the 7
expectations, for suitable minimizing values(@f; and(} .
In other words, we find the correct minimum by first substi-
tuting Eqgs.(1339 and(18¢) into the Higgs potential, and then
minimizing the resulting simplified expression with respect
to Q4 and (), . Substituting Eqs(13a and (18¢) into Eq.
(7a) gives

%EHiggs potential— A¢>Q;15_ ZB([)Qga"‘A,,Qf]— 28,7937

makes the following formulas independent of the value of

the free indexm, we find

+CQ50% +const, (203

015012-8
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with C given in Eq.(19b), and with the remaining coeffi-
cients given by

A= N pag— pog— @e, Be=hi, E= .
(20b

Minimizing Eq. (208 with respect td3,Q? gives a pair of
simultaneous linear equations, with the solution

A,B

2_
’ Q‘”—

1 1
A,By—5CB, »~5CBy

Q3 (200)

AgA,— 7 C° AgA,— 7 C

In order for both¢ and » to develop nonzero vacuum ex-
pectation values we must haf¥,>0, 2>0, which in the
case when the denominator in EG0¢ is positive requires
that C be restricted by

A
Y 1/251/2
='B, AL2AL2).

A

o pll2p1/2 : ¢
2A¢ An <C<2Min _B¢B”’ B,
(200

BecauseV, is invariant under independent overall phase

PPR SEDAA LRERNERW\VO59 015012

1
_5z>
V2
bn= 1 , (226)
Qu+—e?
[ \/E n
1
— 87
V2 _
M= 1 expi6)(w,w,1),, (22b
Q,+ —€/

V2

where we have used the notatiox ¥, z),, to indicatex for
n=1,y for n=2, andz for n=3. Because the overall phase

6 and the discrete chiral phases,,1), drop out ofV,,

for the non-Goldstone modes we get simply two copies of
the nonzero mass modes found in E¢s/a—(17d) in the
three-Higgs-doublet case, apart from adding subscripts or su-
perscriptse,  to distinguish thep and » sectors, as sum-
marized in Table Il. In computing the Yukawa couplings of
the », Higgs modes, the phases in E@2b) play a role.
Making transformations analogous to E¢E59 in the three-
Higgs-doublet case, with in the following formulas either

¢ or 5, we have

rotations of¢p and %, in the limit whenV, is strictly zero the 31 gy gy 31

minimum of Egs.(138 and (180 is part of a one-parameter El=wl ?|, | £2]=w1f¢&],

U(1) family of equivalent minima, of the form £ £ £ £
(Ql,Qz,Qg):(l,l,l)Q(ﬁ, 5% 5(51) 5(51) 5%

_ _ s |=w| 2|, | &]|=w1| ],

(Al,AZ,A3)=(w,w,1)Q,/eX[il0), (21) 5§ 5(§3) 5(§3) 5%

with the angle# arbitrary. WhenV, is nonzero but very e PN e r;

small, the U1) degeneracy with respect ®wis broken, and ! ¢ ¢ 1

the minimum has the form of Eq21) with a definite value & | =W €(§2) , E(§2) =Wl € (23

of # determined by the Higgs Lagrangian parameters. A per- et ) €3 ek

turbative analysis in powers &, shows that to first order in 3 ¢ ¢ 3

V, the degener_acy ia ?s unbroker{because the final line of | terms of the new bases, E@29 becomes

Eqg. (19b remains valid for genera#], but that at second

order inV, a nontrivial condition ond is obtained and the 1

degeneracy is broken. Numerical minimization of the Higgs _55;)

potential, using the method of Appendix A, shows that gen- \/E

eral values off can be attained at the minimum for generic M= 1 , n=12, (243

Lagrangian parameters. A%, increases, there are relative —m

phase and small magnitude corrections to the minima of Eq. \/E ¢

(21); when the assumption of cyclic permutation symmetry

is relaxed, these magnitude corrections become more prend

nounced.

To conclude our discussion of the six-Higgs-doublet 1

model, let us discuss the Higgs boson mass spectrum, assum- —5(;)

ing both exact cyclic permutation symmetry and the weak (3)_ \/E

coupling limit in which bothV,; andV, are very small. We = ' (24b

parametrize the expansion ¢f, and 7, around the mini-
mum as

015012-9
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TABLE II. Higgs eigenmodes, masses, and fermion couplings for the six-Higgs-doublet model in the
cyclic symmetry limit, assuming weak coupling ¢fto 7.

Mode Charge Mass Fermion family
designation squared couplings
5P +1 3(pogt ag)Qf First

5P +1 3(pagt a0l Second

€5 0 A\ 45 Third
E(q;?),eg;l) 0 (AN g+ 214+ 2ppy+ %O%)Qi First and second
R el 0 3 a,0f First and second
s +1 3(uayta,)Q? Third

5 +1 3(uoyta,)Q? First

€3 0 4\ 2 Second

R e 0 (4N, + 20+ 20+ 5 a,)0? First and third
6(7,?{) ’E(r;lr) 0 3 %Qi First and third
53 +1 ~|V,|10? Second and third
eS) 0 ~|V,|10? Second and third

while taking into account the extra phases, E2Rb) be-  coupling limit. If V, were exactly zero, as noted above we

comes would have an extra (1) symmetry, and we would get two
copies of the Goldstone modes as well. But for non2é50
iéﬂ) this U(1) degeneracy is broken, and we are left with just one
\/5 7 set_of Goldstone modes, cor(esponding to the remaining in-
73 = expli ), (249  Variance of the Higgs potential under simultaneous overall
1 1 rephasing of¢, , while the three Goldstone modes related
ﬁfn to the relative phasé of ¢ and » become massive pseudo

Goldstone modes, with squared masses that are proportional
to the magnitude oV,. The decomposition o), and

ign@ e,('j?’,] into Goldstone and pseudo Goldstone modé]s is made
w \/E ) unique by the facts thati) these represent orthogonal de-
77 1 exp(if), (240 grees of freedom, which are simply rotations from the origi-
@ nal modess?) and €3, , and (i) the Goldstone modes
\/5 7 correspond precisely to a uniform infinitesimal phase rota-
tion of ¢,n, which specifies the infinitesimal modes to
and which the pseudo Goldstone modes must be orthogonalized.
1 Since the expectations ¢f, » may have unequal magnitudes
Zs® Q,.,Q,, we see from Eqs(243—(240) that an overall in-
2 7 finitesimal phase rotation makes a Contributiorﬁfﬁ that is
7%= exp(if). (249  Q,/Q,4 times as large as the corresponding contribution to
\/§Q77+_6<n3) 8%, and similarly makes a contribution te{>) that is
\/E Q,/Q,4 times as large as the corresponding contribution to

(3) i i -
The fact that(), appears inn® rather than inp® is di- €i4 - We thus find, denoting the Goldstone and pseudo Gold

rectly related, as we shall see in the next section, to the roIStone modes, respectively, by the subscripts G and PG, and
y ! T . ' TO%s before using the subscript | to denote the imaginary part,
of the » Higgs bosons in giving rise to second family

masses. Q.31 5 Q.- . 3
For the Goldstone modes, the situation is more compli- ygk% P%:”‘;—fl/:
cated, because thg and 7 sectors interact even in the weak (Q%+Q7%) (Q%+Q7)

(259
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Qveﬁ)_g(be(s) with W andW 1! as given in Eq(16b). Defining CP conju-

7 gates of£(123) py

(3) (3)
o oqiat e, g QaeymQyery
2 2 '
(Q5+0%)1?

(
G = » €pG
(Q5+02%)1
2(1,23) =j 7.25(1,2,3)* , (283
The corresponding quadratic terms in the Lagrangian are

1 the CP conjugate of the first group of equations in E23) is
- §[|¢9“5<G3)|2+|5M5§,3g|2+(a#e§>)2+(aﬂeg{g 2]

& N\ [Ew &
1 Ll =W E2| | | =w| & |. (280
+ E[Mgharged PJsé(PsG) 2+ Mﬁeutral Pé fl(:’?g 2]' (25b) 23 2(3) 2(3) 23

The perturbative contribution to the pseudo Goldstone bosoQysing this fore; » 3, 71 2 5in the second line of Eq6a), we
masses, relative to the Higgs boson masses calculated abowgyt, forf=u,»,

will have the general magnitudsuppressing all subscripts
Mpg IV, | 12 q>f=g[ﬁ(pgl>¢<1>+sz>¢<z>+P$3>¢<3))
N(m“ (250

Miges +95,(P R D+ PP P FY). (280
We have not attempted to calculate explicit perturbative for- Substituting the retrocirculant forms of E@6) into Eq.
mulas for the pseudo Goldstone boson masses, both becaugdh), we can write the matriceB {*% as retrocirculants:
these will be rather complicated given the complexityvgf
and because, as argued by Weinbdrg), there are likely to f1) ) —
be significant nonperturbative corrections of oragl,y, P :Tc'r%(li“’*“’)*
with g the electroweak gauge coupling ail, the elec- 3
troweak boson mass. 1
P E(Z)Z—CirCH(l,w,a)),
VI. HIGGS COUPLINGS AND MASS AND CKM \/§
MATRICES WHEN CYCLIC PERMUTATION SYMMETRY
IS EXACT 1

Pl®=—Ccirc_(1,1,2. 29
We proceed now to study the Yukawa couplings of the ¢ \/5 (113 (299

Higgs fields, and the mass matrices generated by their

vacuum expectation values, when cyclic permutation symt et us now use Eq10b), which asserts tha® f§(1,2,3) are all

metry is exact. Thus, in this section we shall assume that théiagonalized by the same bi-unitary transformation con-
Higgs potentials have the cyclically symmetric form ana-strycted usingJ, ,U ; of Eq. (10a:

lyzed in detail in Sec. V, and we shall take the asymmetry

parameters(%fam of Egs. (6b), (60) to vanish. As a conse- ULPg(l)U L= J3diag1,0,00=3M®,

guence, the &3 matricesPEn of Eq. (6b) are all retrocircu-

lants, and are independent of the lab&lf: U.P {?U k= 3diag0,1,0=3M?,

f _ A~
P, =Circ_(0,1,0), U P®U t=3diag0,0,)=y3M?.  (29b
PZ&2:CWC<_(0,0,1), Clearly, the natural thing to do now is to rotate to new fer-
mion bases using the same matritgs,Ug, by introducing

PégICiFCH(l,O,O)- (26)  primed bases defined by

Substituting Eq(23) for &; ,3, with é=¢, 7, into the first Q=U/Q!, w=Uly/,

line of Eq. (6a), we get, forf=d,e, .

BT =gy (PY W+ P22 4 I3 ) | 'fR U Rf. R, f=d,u,ev. (309
Since the fermion kinetic energy of E@lc) does not couple
left to right chiral components, it has the same form in terms
of the primed bases as in terms of the original ones. Substi-
tuting Egs.(273), (280, and(29b) into the Yukawa Lagrang-
ian of Eq.(5b), we get finally

+g ;( ) ;(1)77(1)+ P ;(2)77(2)4_ P 1‘7}(3) 7). (274

Here we have defined

Py P P
P{? | =w| Py |=w1PL|, (@m Lyukana= QW dpt+ Q Whup+ g Woek -+ W v,
f f ..
pi® P Pes +adjoint, (30b

015012-11
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with the 3x 3 matrices¥ defined by

3
wi= VB(geV+gl MDY, f=de,
=1

3
W'=2 V3(g5d"+aln MY, f=u.
I=1
(300
On substituting Egs(24a9—(24d) into Eq. (30¢), we can

PHYSICAL REVIEW D 59 015012

and the» expectations simply make additional contributions

to the third family masses. On the other hand, in the phase of
the six-Higgs-doublet model that spontaneously viol&@€s

as in Eqs(18¢ and(21), the factorsw,w,1 in EqQ.(18¢) give

rise to the projectoM () for the second family states, which
then receive masses. The hierarchy between the masses of
the second and third family charged leptons is attributed, in
the six-Higgs-doublet model, to a systematic tendency of the
n Higgs bosons to have smaller Yukawa couplings to the
charged fermions than those of tiheHiggs bosons.

read off both the mass matrices and the Yukawa couplings of T0 get a feeling for the magnitudes involved, we note that
the physical Higgs states. The mass matrices are obtained B¢ Higgs boson expectations generate mass terms for the

keeping only the vacuum expectationsgst), »(", that is, by
setting

#1120, H12_0,

~ 3Q
o &) w5 s

ﬁ%)’
and
7,(1,3>_>0, %(1,3)_)01
7'?— 0 N ﬁﬂnexq_lﬁ) ,
\/§Q,7exr(i6) 0
(31b
giving
Limass d, [3990 ,exp(i )M @ + 3950 ;M ]dp
+u/[3g4Q ,exp —i )M @+ 39450 ,M ) uf,
+e/[395Q .exp(i )M @ + 3950 ;M P]ef,
+7ﬁ[393,9 X —10)M P +3g50 M@
+ adjoint. (323

Identifying M(23) respectively, as the projectors on the

gauge bosons given by

92 1 l 2.2
Egaugemas? _ZW+,U,W*[L_§(9W3/L_9 B/,L) v,

(339

with

3
v2=2n§1<|<¢>n>|2+|<nn>|2>=6<93+937>. (33

Empirically, v=247 GeV; assuming, as we shall in the fits
below, that(), and (), are approximately equal, we then
find Q,=Q,=71 GeV. The Yukawa couplings needed to
reproduce the observed charged fermion masses are then
given in the six-Higgs-doublet model by

g4=0.81, g“=0.0061,

d__ d__

94=0.020, g%=0.00094,
5=0.0083, g°=0.0005. (343

In the three-Higgs-doublet modé),, is a factor of\/2 larger
than in the six-Higgs-doublet model, and #e¥ukawa cou-

first, second, and third family states in the primed basis, W&lings are correspondingly a factor g2 smaller than in Eq.

read off from Eq.(329 the masses
M=3g,Q04, M=3g;Q,, M,=0,
Mp=39%Q,, M=3g5Q,, My=0,

M,=3g50,, M,=3g%Q,, M.=0,

7

MVT=39;9¢, MVM=39”Q M, =0.

[/

(32b

(34a:
94=0.57, g4=0.014, g5=0.0059.  (34b

As we have seen, because the mass matrices in the cycli-
cally symmetric limit are retrocirculants, we were able to
diagonalize them with universal, flavor-independent matrices
U_, Ug. This has the important consequence that when cy-
clic symmetry is assumed as a leading approximation, the
corresponding approximation to the CKM mixing matrix is
unity, a welcome feature since the observed CKM matrix is

We see that in the three-Higgs-doublet model, only the thirctlose to unity. A related welcome feature of the cyclic ap-
family gets masses, with the first two families remainingproximation is that there are no flavor-changing neutral cur-

massless. The same is true in BB-conserving phase of the
six-Higgs-doublet model, in which the expectations are
given by Eq.(18b) rather than Eq(180); in this phase, the
projectorsM @) in Eq. (324 are replaced by projectoid (%),

rents, which again accords with the fact that these are ob-
served to be highly suppressed. To obtain realistic nonunit
values for the CKM matrix, we will have to go beyond the
cyclic approximation by including nonzero asymmetries
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,82““ as in Eq.(6h), but we shall then also have to estimate Before proceeding with this analysis, we note that the
the magnitude of the flavor-changing neutral current effectdeading cyclic approximation to the Yukawa couplings of the
produced by these asymmetries. This will be the agenda gfhysical Higgs bosons can be read off from E§8b), (300

the next three sections. together with Eqs(24a—(24d) and (253. We see that

8P, €, 82, €2 couple only to the first family,

8P, €, 8P, €Y couple only to the second family,

8P, €Y, &7, € coupleonly tothe third family, (353
|
which by Eq.(179 imply that to avoid duplicating information contained in the overall fac-
(%) _ N tor 0 and the overall phase that has been eliminated by a
€4r)1 couple only to the first and second families, gauge transformation. In the six-Higgs-doublet model, we

have analogous corrections to the first line in E2{):
f(ﬁa)J couple only to the first and third families,
(35b
Q,=0,(1+6,), n=123,> 6,=0, (37
and by Eq.(2539 imply that n
55%, €n  couple only to the second and third families. where thes, can again be complex when the potentials
(350  V,,V, that couple¢ to » are not neglected. In principle,
) i o there are also asymmetry corrections to the second line of
The presence of 21 Higgs bosons in the six-Higgs-doublegq (21 \which gives thes expectations. But these are al-

model (eight charged Higgs bosons;2 and ten neutral ways suppressed by a facij/g!, . which according to E
Higgs bosonsel) . €&, ,. ande(;), . plus two charged (343 is at most of order 0.06, and so will be neglected in
pseudo Goldstone Higgs boso 3%, and one neutral What follows; that is, we trea, /g4 here as if it were also a
pseudo Goldstone Higgs bosefl), together with the pat- first order small quantity. The second typfe of first order small
tern of predominant fermionic couplings given in Egs. COrrections are the asymmetry paramefgys, , of Egs.(6b),
(35a—(35¢) and summarized in Table II, is a distinguishing (60, which are complex in the three-Higgs-doublet model

feature of the model that should be testable in experiments dfhen explicitCP violation is permitted, but are real in the

the next generation of accelerators. six-Higgs-doublet model whe@P invariance is imposed on
the Lagrangian. Again, in principle there are analogous
f .
VIl. FIRST ORDER BREAKING OF CYCLIC asymmetry parameter,Sj,lmn fgr the » Yukawa couphngf;s,
PERMUTATION SYMMETRY but the effect of these is again suppressed by a fzgf,;tg¢

and so they will be neglected. This itemization of corrections

We now set up a perturbative scheme to study the effectgefines the model that we shall study in first order perturba-
of the breaking of cyclic permutation symmetry. In the three-tion theory.
Higgs-doublet model, we will also allow CP noninvariance  Since the zeroth order problem, which was analyzed in
of the Lagrangian, by allowing the phasgsn Eq.(7b) to be  Sec. VI, is brought to diagonal form by the bi-unitary trans-
nonzero and by allowing the Yukawa couplings to be com-<ormations of Eqgs.(29b) and (308 based on the matrices
plex. In the six-Higgs-doublet model, we will imposeP U, Uy of Eq.(10a), we shall make this transformation at the
invariance on the Lagrangian, but will work in the phase thaloutset. In the primed fermion basis, the zeroth order mass
spontaneously breal@P. Two types of first order small cor- matrix is still given by Eq(32a), but now there will be first
rections will be introduced. The first are corrections to theorder corrections from thé's and g’s introduced above.
Higgs vacuum expectations, arising from a lack of cyclicsince we are regarding’,/gl, as effectively a first order
symmetry in the Higgs potential. In the three-Higgs-doubletcorrection, it is convenient to group it with the other first
model, this results in replacing E(L3a by order terms. Starting again from Edq&3), (273, (27b), and
(280, we then find, for the extension of E(B24a to include

Q,=0(1+38,), n=123, (363 4l first order corrections,
where thed,, are small corrections that can be complex, and
where we impose the condition Lonase 2 f_L/gsz¢(3M(3)+Uf)f§z, (383
f=d,u,e,v
8,=0 36b)
; " (36h) with o a 3x 3 matrix with matrix elements given by
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f 1 f f o of f
0'11=§,u,11+ 03t wdy+ wdy,

1 f+3R"+ 68+ wsl+ws!
0'22—3#22 3TWOLTWOo,,

f_
035=0,

ol L | #m (38b
Im 3/~LIm’ .

The further quantities appearing in E@8b) are defined as
follows. The quantities&rf1 are given, in terms of thé, in-
troduced in Eqs(36) and(37), by

=6, =6, 64=68;, f=d,e,

st=06%, sh=65, St=65, f=u,n.

The quantitieR" are defined by

95,0 ,exp(=i6)

Rf
952y

: (39b

with the + sign holding forf=d,e and the— sign holding
for f=u,v. Finally, theu,,’s, when multiplied by the factor
of 1/3 in EqQ.(38b), are the asymmetrieﬁfd,,m reexpressed in
the primed fermion basis; suppressing the subsefipt the
B’s, they are given by

f f f f o, of f f
H11= Bt Bost Bt o(B1ot Bort Baa)
f f f
+ (B3t Bt Bay),
f_ of f f f f f
Moo= Bt Bost Bt o(B1ot Bort Baa)

+w(Bls+ Bh+ BLy),

f f f f f f f
H12= P11+ Bt BasT w(Biot Bast L)
— f f f
+ o(By+ Bzt Bia)s
f_ of f £, of f f
M21= Bt Boot Bast o(B1ot Bast Bay)
f f f
+ (Bt Bzt Bia)s
£ of f £, of f f
M= Brt Bt Bist o(Bort Bt Boa)
f f f
+ o(B311 Bzt Baz)s
f_ of f f f f f
Ma3= P11+ Biot BisT w(Bort Baot B23)
— f f f
+ (B3 1 Bzt Baz)s
f_ of f f o, of f f
M31= Bt Bort Bart o( Bt Bt Bso)

+w(Bls+ Bhs+ By,

PHYSICAL REVIEW D 59 015012

f f f f f f f
M32= P11+ Bort Bart o(B1ot Baot Bz

+o( B3+ Bia+ BLy). (390

We remark that sinc€P invariance requires thg’s to be
real, the condition forCP invariance, when expressed di-
rectly in terms of thew's, is ui% =ub,, uib=pub,, ul}
_ f dut* = uf

Moz, anQpz = fa3p.

Defining

M;=3M®+ ', (409

we must now find the bi-unitary transformation matrices
U{ UL for which UfM{UL is diagonal, with the eigenval-

ues ordered in absolute value, for each flafzof he fermion

basis states that are mass eigenstates are then related to the
primed basis by

fl,_: UfLTf rllﬁass,

fr=ULfmass  f=d ue,v, (40b)
and the CKM matrixUcxy is given as usual by
Uckm=U{Tud. (400

We shall now develop a perturbative procedure for calcu-
lating U[,R. The first observation to be made is that we are
dealing with a degenerate perturbation problem, since the
zeroth order mass matrix\8® = 3diag(0,0,1) has eigenval-
ues 0 for the first two primed basis states. As a consequence,
the 2x 2 submatrix ofoLR spanned by these states is zeroth
order in the perturbation’, with only the off-diagonal ele-
ments coupling to the third basis state of first order. Thus, we
find a natural reason in our model why the CKM mixings of
the first and second family states should be larger than the
mixings of the first and second families with the third family.

We shall deal with the zeroth order<2 submatrix by
calculating it exactly. Let\/[lR be the 2x2 matrices that
bring the 2<2 submatrix ofs' to diagonal form:

f f f
011 012 ky O
VfL( f f )VfRT:( 0 f)’ (41a

021 022 K2

with the magnitudes of the eigenvalues ordered|ay
<|«}|. The explicit construction of/f,_'R is given in Appen-
dix B. It is then straightforward to show that to first order in
small quantitiesJ{ g are given by

f
1 013
A —ZVf
§ ) 3V 0'23)
uf= - , (41b)
1(“13) 1
f
3 023
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f
Vi 1 o351
R fx
ft Slog
103
_ - ft 1
3ots)
and
Kfl 0
ulMiuli=( o «5 0]. (410
0 0 3
Defining
Vom=V{"VE, (423
the corresponding first order accurate expression for the CKM matrix is given by
1 0(113 1[ 01
Vekm —§VCKM d |3l u
023 023 42b)
U =
CKM 1o\ T 1/ oY, TV . (
3 023 3\ 023 e

Although Eq.(42b) is useful for analytic study of the CKM point is thus the Yukawa Lagrangian of Eq30b), (30¢) in
matrix, in our numerical work we shall simply compute di- the primed basis, of which the term relevant to mixing of the
rectly from the definition of Eq(400. We shall also, in the d ands quarks is

numerical work, use slightly more accurate formslfr[(R in

which only the square of the ratio of second to third family

masses|(5|/3)? is assumed to be small; the relevant formu- 3 , o
las are given in Appendix C. Q 21 V3(g%¢™M+g%7")MVdi+ adjoint.  (43a

VIIl. HIGGS BOSON EXCHANGE CONTRIBUTIONS
TO THE K_—Kg MASS DIFFERENCE Substituting Eq(40b) relating the primed to the mass eigen-

As pointed out in Sec. VI, when cyclic symmetry is exact, statedbases and using the approximation of E41‘st>),(|§4lc)
Higgs boson exchange in our models does not product®’ UL r: also substituting Eq424a, (24b) for the ¢ and
strangeness-changing neutral current effects. However, on&&€Ping only the neutral Higgs pieces, and finally also ne-
we include cyclic asymmetries, such effects become possibi@lecting terms of first and higher order in the asymmetric
and we must be sure that their magnitude does not excedR@rturbation, we get the effective Lagrangian
known experimental limits. Since, in the context of exten-
sions of the Higgs sector, the most stringent bound on
strangeness-changing neutral current processes cfifgs 3 2
from the second order weak, —Kg mass difference, we ~ Lsencd" = 95> €4 VIMYVATdE®S+ adjoint.
shall consider only this process, and shall calculate the con- \/5 =1
tribution to its matrix element arising from Higgs boson ex- (430
change within the perturbative framework set up in Sec. VII. ) ) o

We saw there that, because the zeroth order mass matri@ Ed- (43D), the subscript X2 on the projectors indicates
is degenerate in the subspace spanned by the first two fanjf€il restriction to the subspace spanned by the first two
lies, the mixing matrices within this subspace aegoth or- families, and the column vectarwill be understood to have _
der rather than first order in the perturbation, and therefor?®€n tfruncated from three to two compongnts,chrrespondlng
strangeness-changing neutral current effects can already a§-the first two families. Finally, reexpressig-> in terms
pear at zeroth order in perturbation theory. What we shall d®f the modese';”) defined in Eq.(170), splitting these into
in this section is to calculate this zeroth order contribution toreal and imaginary parts, and explicitly including the adjoint
theK, —Kg mass difference, neglecting all terms of first andterm [our y matrix conventions areys=vyi, y°=4°T,
higher order in the asymmetric perturbation. Our starting(y°)2=1], we get
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L= dMS— 9¢{[(6(+)+€¢R)+|(6¢| )+E¢ ))]VdM(zlx)zvdT‘l‘[(E((ﬁE)_ €¢R)+|(€(¢J|r)_ €41 ) IVEME,VET

V3

X(1+ Ys)dmass‘kamassjg?p*{[(EH)"' €4R ))—i (€¢| '+ €l €41 ) IVRMSD, VT
+[(eyr — eyr) — (€l — el NIVRMEVE H(1 = 5)d ™3 (43¢
To facilitate the remaining calculation, it is convenient to rewrite @8¢) in the form
Loone=d ™SEGR (AR +BR ) y5)d™ S d M (AL + Bl yg)d ™
+dmasEUH (AT 4+ B yg)dmass d Mask D(A[T) + Bl ) yg)dMaSS (449

Using the fact that
10 1 0
B E N VC N VE N A P (aan

we find that the X 2 matrlcesARI , B(Rﬁ) appearing in Eq(44a are given by

V3 V3 V3 3
A("’) 9¢V VdT+ _gd) VdT, B(R-F):Tgivﬁvgr_ Tg?ﬁ*VngTu
,_\3 V3 3 3
AR = aVipaVR + 05 VReaVL . BRI = 04VipaVR — 05" VaeaVL (449
V3 3 4. V3 . 3 4.
A= 9GIVIVR - 7O IVRVE Bl =g VIVR' gyt ivRVE

A= 9VEpaVR = -0 IVResVLT L Bl = giiVEpsVR + g3 iVRpaVL

(440

Letting d and s denote, respectively, the down and strangeSo for the amplitudel’ for the AS=2 process+s—d-+d

quark eigenstates, the two component column vedf®*  we find, summing over the exchanges of Higgs eigenmodes

has the structure € with squared massed 2", the formula(valid up to an
overall phasg

1
T= (A 12+ BF12?’5)S 20
p== F=R/I Mg

maSS_(d
dmass S), (459

and so for any X2 matrix N, we have
< d(AF+ Blys)s, (463

d MasN @M= N ;;d + dN;,5+ SNo;d +SN,,s.  (45b)
while from Sec. V and Table Il we find, for the squared

Hence the strangeness-changing terms of (B4a involve =~ Masses,
only the 12 and 21 matrix elements of the matrices in Eq.

440, and can be compactly written as _

L?csncl E E [df(p)(A 2+ BF1275)S 2
o )\¢U
MR( ):M2(+ g ad)QZ ’ Q(Z;b X
_ 6 Migp™ M2¢— %
+sef (AR +BE)ys)d]. (450 (46b)
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The Higgs boson exchange matrix eleméntT|K>Higgs for  Obeying the strangeness-changing neutral current bound of

the K—K transition, in the vacuum saturation approxima- Eq. (50), and keeping the asymmetry parameters as small as
tion, then is given b,y possible. Before giving further details, we describe the gen-

eral search method employed. We perform all fits using the
N~ . 2Ip . minimization routinePOWELL of Presset al. [12]. As given
[(KITIK Yiged =NI(K|dy5sI0) " Driggd (478 in [12], this routine works well for the six-Higgs-doublet
with Dyy4gs given by model where the degeneracy between the first and second
families is already broken, before inclusion of the asymmetry
(B(Fpl)z)2 parameters, by the Higgs couplings. However, in the three-
; (47b  Higgs-doublet model, it is na priori specified which states
become the first and which become the second families, and
and withN=8/3 a Wick contraction and color factor. so eigenvalue crossings can occur in the course of the itera-
We wish now to compare the amplitude of £478 with tion which result in discontinuous behavior of the cost func-

the intermediate boson loop diagram contribution to theion- This causes a problem with the bracketing routine
K, —Kg mass difference calculated by Gaillard and [84], ~ MNBRAK of [12], which occasionally gets stuck in an indefi-

which in the vacuum saturation approximation is in satisfac M€ 100p. The fix is simply putting an iteration counter into

tory agreement with experiment. The Gaillard-Lee result is MNBRAK, 10 force an exit W't.h. a defa_lult b_racketw(gpemfl-
cally, in terms of the quantities defined iINBRAK, c=a,

D Higgs— 2 2

— 2
p== F=RI M2

KITIK) o | =NI{(K[d- s|0Y|2Dgl, 48 fc=fa) if convergence to a bracketing is not attained in
(KITIK)el K] Tu¥s O)FIPed (483 Nhax Passes through the loop. We found the same results in
with |Dg,| given by the three-Higgs-doublet model witR,,,=5 as with Ny«

=30, indicating that a bracketing is attained very rapidly, or
F o5 not at all. As an additional check, we verified that the origi-
|Del= mMcslzi (48D nal and the modified versions ofNBRAK give identical re-
sults for the six-Higgs-doublet model, where level crossings
in terms of the Fermi constar@., the charm quark mass and associated discontinuous behavior do not occur.
M., and the sine of the Cabibbo anglg=sing-. To com- Let us now turn to the construction of the various cost
pare Eq.473a to Eq.(48a, we need the ratio of the pseudo- function terms in Eq.(51a, working throughout in units
scalar current to the axial vector current kaon to vacuunwhere 1 GeV=unity. For the mass cost function, we use a
matrix elements, which can be estimated by standard currestandard chi-squared function constructed from expected val-
algebra methodésee, e.g., Shuryald5]) to be ues of the masses and their estimated errors, including the
o o electroweak mass parameternf Eq. (33b). To prevent the
|(K|dyss|0)|2  (Oluul0)? [M\? chi squared for certain very accurately known magsesh
= 5= = —) =11, (49  as the electron masfrom dominating the fits, we truncate
[(K|dy,¥ss/0)| Mk fk Ms th Lnifi ;
ese masses to a few significant figures and use enlarged

with M andf, the kaon mass and decay constant and witrerror estimates. In the six-Higgs-doublet model we also add

M, the strange quark mass. Combining everything, we findf term that favors fits witlf ,={2,,, since this degeneracy

that the condition for the Higgs boson exchange contributiod[)r:ayS atrole Itr'l th.e_ extenstl_on to nefyt(rjlntﬁ Tlt);:ngts d|schussed In
to the K| —Kg mass difference not to exceed the Gaillard- . € next section; In practice, we hind that this term has very
Lee estimate is little effect on the fits, since nearly equal values(df, and

), are favored even in its absen¢&his term is omitted in
the three-Higgs-doublet model, where it is not relevant.

2

GZM2M2s2, 2.6x10° 14

|DHiggJ$ > , (50) Adding these contributions, we have, for the mass cost func-
4m2My GeV? tion Cpass
which will be used as the strangeness-changing neutral cur- M,—0.0052 (M,—1.3\2 [M,—173.02
rent constraint in the fits of the next section. Crnass™ 0.003 0.18 6.0
IX. NUMERICAL FITS OF THE THREE- AND . [Mq—001 ? [Mg=02\? (M,—4.3)?
SIX-HIGGS-DOUBLET MODELS 0.005 0.06 0.2
TO THE EXPERIMENTAL DATA 2 2
M—0.0005 M,—0.105
In order to fit the models to the experimental data, we 0.0001 0.001
follow the standard procedure of minimizing a “cost func-
tion” C, constructed as follows: (MT— 1_777)2 ([6(Q$+Qf7)]1’2— 247.0)2
0.001 3.0
C= Cmass+ CCKM + Cscnc+ Cparameter (515‘)
+(Q4—Q,)% (51b)

with the pieces referring, respectively, to the constraints
placed by fitting the masses, fitting the CKM mixing angles, For the strangeness-changing neutral current cost func-
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tion, we use a chi-squared function with expectation zero and 5y €
standard deviation equal to the bound of ED): Cparamete™ 2 —
n=1,2 | O parameter
f € €
2 :8¢mn ‘
|DHiggJ + + . (53@
senc 2 610 14 (510 myfn=nL11,+drje<6 O’parametgr 62&

In Eq. (533 the exponenk and the widtho ,aameredre pa-
To set up the CKM cost function, we make the standardameters of the fitting procedure, which effectively set up a
rephasings to put the CKM matrix in the form model for how the small asymmetries are distributed. We
were able to get satisfactory fits for botk=1 ande=2, but
convergence was much slower for the latter, suggesting that

1 Sz S 0B e=1 is a model in closer correspondence to the experimental
U k= — S, 1 So3 . (529 data, and we shall only present tee1 results in the dis-
e iy 1 cussion below. To initialize the six-Higgs-doublet minimiza-
S12€ S23 tion search, we started frof, = ,=70.7, the values of

Eq. (343 for the Yukawa couplingg, ,,, zero for the asym-

to first order accuracy in small quantities, and then construdhetry parameters,, , Y, and zero fore.
a chi-squared function from the expected values and esti- Because the three-Higgs-doublet model, to giv€R:
mated errors fors;,, S;3, and S,;. Although the CP-  Violating CKM matrix, must violate CP explicitly, its
violating angles;; has not been reliably determined experi- Yukawa couplings and Yukawa asymmetries can have
mentally, it appears likely that it is appreciable; so we alsdmaginary parts, and so there are 57 parameters that enter
include a Chi-squared term requirimgn 513| to be equa| to into the iterative fit. These are thﬁ expectationQd,, the
0.6+0.3, giving real parts of the Yukawa couplinqﬁd), f=u,d,e, and the
imaginary part ofgg (sinceg‘(};e, which are not involved in
) ) the strangeness-changing neutral current constraint, enter
c :(312_ 0-221) (513_0-0037 only through their absolute values, they can be rephased to
CKM 0.002 0.0009 be rea), the complex asymmetry paramete¥s, introduced
2 . 2 in Eq. (363, and the complex asymmetry parametgts, .,
(323_0'041) +(|sm513|—0.6) . (52p  f=u,d,e, m+n<6, introduced in Eqs(6b), (60). Ag%ain,
0.003 03 the parameters.,, wi4+ o4, and a,, which enter the
calculation only through the strangeness-changing neutral
current constraint, were fixed at the respective values 1, 0.3,
and 0.3. To construct the cost function for the iterated pa-
rameters, we note that again no additional constraint is
needed for the expectatiofl, or the real parts of the

ukawa couplingsg;, because these are adequately con-

models, and establish the cost functions for the parameter?. lied by C f Eq. (510, For th - i
Despite its increased complexity in terms of particle contentv(,‘; Ese %efgagg? fun%tion - For the remaining parameters

the six-Higgs-doublet model has the smaller number of pa-
rameters, since it violateSP only spontaneously and so all Sur Je
O parametelr
f
:8¢mnF

Altogether, then, there are 11 quantities to be fitte€ ins
1 to be fitted inCg;,, and 4 to be fitted itCxy,, for a total
of 16.
Let us now count the numbers of parameters in the tw

Yukawa couplings appearing in the Lagrangian are real. Al- Cparameter >
together, there are 37 parameters that enter into the iterative Eiki
fit for the six-Higgs-doublet model. These are tfieand #

expectationg) , and(}, , the real parts of the Yukawa cou- n
plings gﬁm, f=u,d,e, the complex asymmetry parameters m.n min<6
51, introduced in Eq.(37), the angled of Egs. (21) and frude
(39h, and the real asymmetry parameterﬁfi,mn, '
f=u,d,e, m+n<6 introduced in Eqs(6b), (6c). The pa- The width 0.028 governingil is chosen here as twice the
rametersk ,, w14+ uz,4, andea,, which enter the calcula- natural magnitude og&i according to the estimate of Eq.
tion only through their appearance in the Higgs boson(34b), so as to boung,, but not overly restrict it, much as
masses in the strangeness-changing neutral current constraihg width for 6 in the six-Higgs-doublet model is chosen in
[see Eqs(46), (47)], were fixed at the respective values 1, Eq. (533 as twice the maximum magnitudeof | 4|. Again,

0.3, and 0.3, and were not iterated. To construct the coghe exponent and the Widthopaameter@re parameters that
function for the iterated parameters, we note that no addimodel how the small asymmetries are distributed. For com-
tional constraint is needed for the expectatiéhg , or the  parison with the six-Higgs-doublet model fits, we shall again
Yukawa couplinggfm because these are already adequatelynly presente=1 results in the discussion that follows. To
controlled byC,,.ss0f EqQ. (51b). For the remaining param- initialize the three-Higgs-doublet minimization search, we
eters we use the cost function started from() ,=100, the values of Eq.34b) for the real

2
|
€

+

€

g?ﬁl
0.02§ -

(53b

o'parametér
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TABLE lll. Six-Higgs-doublet model fit to experimental data 51r=0.00269, 8,,=0.0340, &3z=—0.0367,
Quantity Target value Fitted value 5,,=0.00074, 8,=0.0027, S4=—0.0034,

v=[6(Q5+0%)]"2 247.0 247.0

Q,-Q, 0.0 0.001 6=150.8°,

M, 0.005 0.005

M, 1.30 1.28

M, 173.0 173.0 0.1612  0.0477  0.026

M 0.010 0.011 [fY]=| 0.0144 0.00024 —0.0133|,

M, 0.200 0.219 ¢

M, 4.30 4.29 —0.0442 —0.0367 —0.156

M, 0.00051 0.00051

MM 0.1057 0.1057 0.1660 0.1589 0.018

M, 1.777 1.777 [85]= 0.0 0.0180 —0.0190],

IDriiggs 0.0 0.016 —0.1398 —0.0189 —0.184

2.6x10° 4

S 0.221 0.221 0.1038 00 —0.051

Si3 0.0035 0.0041 [85]= 0.0 —0.00081 —0.0375] .

523 0.041 0.035 ~0.0366 —0.00011 0.0230

|sind4 0.60 0.44 (54

o ] ] We see that the largest value of tBeasymmetry param-
parts of the Yukawa couplingg,, zero for the imaginary eters is 0.184 in magnitude; so the first question we must
part of g5, and zero for the complex asymmetry parametersyddress is whether this large asymmetry is needed to repro-
O ,ﬂ;mn. duce the large mixing,,=0.221 between the first and sec-

We begin by presenting results for the six-Higgs-doubletond families. To show that this is not the case, we exhibit the
model. In any fitting procedure involving more parametersresult of rerunning the fit, this time omitting tisg; and s,
than quantities to be fit, one has to worry about overfittingterms from the cost function. The result, attained after 137
and we deal with this in the following way. As we shall see iterations, ha<C,,.s=0.04 (that is, the fitted mass values are
shortly, the most sensitive aspect of the fitting procedure fofight on their targetsand s;,=0.221, so that the Cabibbo
the six-Higgs-doublet model is getting the CKM parametersmixing is also right on target, but the largest of fBeasym-
correct, and so we take the cost function subcomponenhetry parameters has a magnitude of 0.01, a factor of 18
Cckm a@s a measure of overfitting. Making a series of fitssmaller than in the fit of Eq’54). The values for the uncon-
using the cost function of Eq453a with e=1, as a function strained third family mixings obtained this way agg,
of the width oyarameter We find that the value o€cyky is @ =0.00021,5,3=0.00072, much smaller than in the fit of Eq.
monotonic decreasing function of the width. For very small(54). So we conclude that the largg asymmetry values of
values of the widtHi.e., asymmetries restricted to have very Eq. (54) are needed to get correct fits to the third family
small valuey we find a value ofCcky much larger than 4, mixings; the correct value of;, by itself is obtained with3
the number of fitted CKM matrix degrees of freedom; for values much smaller in magnitude thap,, in agreement
large values of the width we find values Gty much less  with our observation in Sec. VIl tha, is of zeroth order in
than 4, indicating overfitting. We take as “good” fits ones the asymmetries.
resulting from widthsoparametethat yield aCeyy of order 4; As a second experiment, which gives further insight into
an example of such a fit, withrparamete=0.03, is given in  why the model requires large asymmetries to fit the third
Table IlI. This fit, which was attained after 229 iterations to family mixings, we rerun the fit, replacing the targets for
achiewe a 1 part in 10 change in the cost function in an both s,; and s,3 by their geometric mean=0.011, with a
iteration (we will use this same convergence criterion standard deviation of 0.0015. We find now convergence in
throughout, had C5s50.13, Ccmu=4.65, Cgone 216 iterations, withC,,,s= 0.02(that is, again the fitted mass
=3x10"*, andCpuametem 38.9, giving a total cost function values are right on their targetsand values for the CKM
C=43.7. The values of the parameters giving this fit are asnixings of s;,=0.221, 5,5,=0.0117, ands,;=0.0101. For
follows: the other components of the cost function we fiGdyy

=0.86, Csen= 0.9 104, and Cparameter 3.5, for a total of
Oy=71.27, Q,=71.27, C=4.4. As suggested by the small value @frameter the
largest of theB asymmetry parameters now has a magnitude
of 0.028, a factor of 6.6 smaller than in the fit of E§4).
We conclude from this fit that what requires the large asym-

d metries in Eq.(54) is splitting s,3 and s;3 from a common
g,=0.00715, g7=0.00112, g¢5=0.000371, mean value.

9,=0.811, g$=0.0201, g5=0.00831,
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This conclusion can be understood from a simple analytignyolved in this, we note tha|'DHiggs| of Eq. (47b) is qua-

model, in which the corrections of Appendix C & and
UL are neglected. Referring to EGi2a), let us writeVexy
to first order accuracy as

so that the fitteds;, is given bys;,=|v15. Then from the
approximation of Eq(42b) for Ucky , together with theCP
invariance conditiorjsee Eq.(38h) and the discussion fol-
lowing Eq. (399] o!s= o5, we find that

1

V12
Vekm= v

1 (55a

*
12

S13=|S3—d3|/3, Sp=|s3+dy|/3,

ss=0l3— 03, d3=v10%;. (55b)
Thus, the spread ;3 ands,; from their geometric mean is
governed byd;, in which the quantityrgg, which is a linear
combination of the8 asymmetries, is suppressed in magni-

tude by a factor ofv,4=s;,=0.221. This is why large3

dratic in the matrix elementU{,,/=|U% .. Hence, if the

entry for |Dyqed/(2.6X 107 ) in Table Il were scaled up
from 0.016 to unity, corresponding to the strangeness-
changing neutral current constraint being just barely satis-
fied, the off-diagonal matrix elemenits?,,|=|U&!,| in Egs.
(56b), (560 would be scaled up from 0.00010 to
0.00010/0.018?=0.00079. Taking as a “generic” off-
diagonal matrix element the average vat€.05 of the 13
and 23 matrix elements of Eqg6b), (560, we estimate
that fine-tuning in the mixing matrices, of order a factor of
0.05/0.0007¢-63, is involved in satisfying the strangeness-
changing neutral current constraint, for an assumed Higgs
boson mass in the fltsee the second line in E¢46b)] of
M§ )= (4.5x0.3)%0 ,~83 GeV. For a Higgs boson mass
of 330 GeV the fine-tuning would be correspondingly re-
duced to a factor of roughly 16, and for a Higgs boson mass
of 800 GeV the fine-tuning factor would be roughly 6.

Given that there is some fine-tuning involved in obeying
the strangeness-changing neutral current constraint, one can

asymmetries are needed to fit the experimental data, whereggk whether it is natural or unnatural to the experimental

much smaller asymmetries suffice when the obsesygédnd

data. If the fine-tuning is not natural to the data being fit, one

Sp3 are replaced in the fitting program by their geometricyould expect the fits to the masses and CKM parameters to

mean. For example, in the fit of E4), the magnitude of
d; is 0.0445, which corresponds to a valued,
=0.0445/0.22%0.20, similar in size to the maximung

improve, or the convergence to a fit to become faster, when
the cost function ternCg.,. is omitted from the total cost
function. Performing this experiment, we find that without

asymmetries found in the fits. Thus, the six-Higgs-doubletC,.., a comparably good fit is obtainedCse= 0.64,

model interprets the large difference in magnitude betwee
the observeds;; and s,3 as indicating asymmetries in the

C-km=4.1) as with the cost function ter@.,. included,
but 600 iterations, as opposed to 229, are required for com-

Yukawa couplings substantially larger than one might naparable convergence. In other words, the strangeness-

ively infer from the magnitude ok,;. The possible rel-

changing neutral current constraint appears to guide the

evance of this observation to the extension of our model tgearch to a region of parameter space that gives a good fit;

neutrino mixing will be discussed in Sec. X.

We next address issues of fine-tuning and naturalness
the six-Higgs-doublet model. In the fit of E(p4), the abso-
lute values of the matrix elements of the matri¢#s® and
U4 take the values

0.974 0.224 0.05

[lu¥]]=| 0.224 0974 0.034, (563
0.046 0.045 1.00
1.000 0.00010 0.0

[lu¢]]=| 0.00010 1.000 0.06}, (56h)
0.066  0.067 1.00
1.000 0.00010 0.0

[ludf]=| 0.00020 1.000 0.036. (560
0.033 0.036 1.00

We see that the mixing,, of the first two families arises
nearly entirely fromU}', while the 2<2 submatrices oUE
and US", which mix the first two familiesand which are
equal to good accuragyare nearly the unit matrix, which is

we interpret this as an indication that the fine-tuning in-
Wolved in satisfying this constraint is in fact natural to the
data.

One other place where there is fine-tuning in the fits is in
the first family masses, since these are naturally zero only in
the absence of Yukawa coupling asymmetries. In principle,
if the first family cost function terms are omitted froBy,,ss
one might expect first family masses as large as (ch2
value of the maximum asymmetry parametdimes the cor-
responding third family masses, which would givig,~ 35,
Mg4~0.9, M.~0.4. However, performing the experiment of
omitting first family mass constraints from the fit, we find
first family massedv ,=0.9, M4=0.23, M=0.07; that is,
the first family masses are still smalléor, in the case of
My, equal t9 the second family masses. We interpret this as
an indication that small first family masses are in fact natural
to the remaining experimental data when first family masses
are excluded, in the framework of the six-Higgs-doublet
model.

We conclude this section by giving some comparative fits
in the three-Higgs-doublet model. Using the same cost func-
tion parameters and convergence criterion as in the six-
Higgs-doublet case, we get the three-Higgs-doublet model fit
shown in Table IV, which required 864 iterations. The mass

what allows the strangeness-changing neutral current corfit is generally good, except for the low valuéd,=0.037
straint to be satisfied. To estimate the amount of fine-tuningcorresponding taC,,s= 7.3), while the CKM parameters
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TABLE IV. Three-Higgs-doublet model fit to experimental 330 GeV, and\/zlvdmﬁo,l, which is in the weak coupling

data. regime, then the pseudo Goldstone boson masses are ex-
: _ pected to be of order (0.¥330 GeV =104 GeV, above
Quant|ty Target value Fitted value current H|ggs boson mass ||m|tS
v=6120, 247.0 2470 Although we have included the possibility of a right-

handed neutrino, and of Dirac neutrino masses and mixing

mu 2'285 2'(2)25 analogous to CKM mixing, in our Lagrangian, we have not

MC 173'0 173' 0 attempted a detailed study of the neutrino sector because the

M‘ 0'010 0'011 experimental picture there is still incomplete. However, let
d ' : us briefly address the recent report by the Super-Kamiokande

Ms 0.200 0.037 Collaboration[16] of evidence for atmospheric neutrino os-

My 4.30 4.31 cillations, suggesting large mixin@f order unity of second

Me 0.00051 0.00051 and third family neutrinos. This is clearly a different pattern

M, 0.1057 0.1057 than is seen for the charged fermion mixings, where, for

M, 17t 177 example, in the fit of Eq(54) the u-7 mixing matrix ele-
IDhiiggd 00 0.001 ments o_f!JE are smaller than 0.0l_in magnitude. Large

2 6x10 4 v,-v, mixing can be accommodated in our model, nofnethe—

S1, 0.221 0.221 Ies§, by assuming that the Yukawa couplmg' ragigg¢,

S1s 0.0035 0.0037 wh_lch we have taken to b_e small fér= u,d,_e,.ls qlose to

Sns 0041 0.039 urvuty for f=w. Together W|thQ,7/Q¢:1, t'hIS implies thgt

Isin 6,4 0.60 055 R” of Eq. (39b) is close to unity in magnitudéalthough it

can have a nonzero phasReferring to Eqs(383,(38b), we

see that this implies that the neutrino mass matrix is now

. nearly degenerate in the two-dimensional subspace spanning
are close to their targets Cexy=0.5). When the he second and third families, and so small asymmetries, or

strangeness-changing neutral current constraint is omitted istmmetries nearly equal in magnitude, then imply nearly
this case, we find faster convergen@98 iterationgand a  aximal mixing. To show this explicitly, let us apply the

better fit, withM¢=0.151(corresponding t& s 0.7) and analysis of Appendix B to the mass matrix
with the CKM parameters right on targe€ £y, =0.1). This

behavior contrasts sharply with what we saw in the six- , 1

Higgs-doublet model fits, and we interpret it as indicating R 372

that the strangeness-changing neutral current constraint is not m= ) (579
natural to the data as interpreted in the three-Higgs-doublet E 1

model. 3732

Then forM, =mm', we have, from Eq(B2b),
X. EXPERIMENTAL ISSUES, NEUTRINO MIXING,
COUPLING CONSTANT UNIFICATION, AND

1 1
v|2, 2 - v _*
DIRECTIONS FOR FUTURE WORK IR*+ 9|"23| (R'o3+ 029)

3
Of the two models that we have developed in the previous 1 vk L w 1 5
3(0aR"™ + 035 1+§|0'32|

sections, we find the six-Higgs-doublet model the more in-
teresting as a candidate for an extension of the standard
model into the energy region that will become accessible irand so Eq(B4b) gives, for the mixing angle,
the next decade. As compared with the three-Higgs-doublet
model, the six-Higgs-doublet model has fewer parameters,
gives better overall fits to the data, and gives some indication 1
that the strangeness-changing neutral current constraint i@=§tan 1
natural to the data. It also violat€®P spontaneously in an IR"2—1+ §(|023|2— |o30?)
interesting way that is correlated with the generation of sec-
ond family masses for the,d,e families.

The prime experimental signature of the six-Higgs-Thus there is maximal mixing whenever
doublet model is the spectrum of Higgs states tabulated in
Table Il. If the potentialV/, that couples thep to » Higgs 2 1
overall phases is in fact small, then the lightest Higgs states ~ 3/R0%t oo >|R"?- 1+ §(|023|2— |o3d?).
should be the pseudo Goldstone bosons. However, because (579
of the 3 power scaling law of Eq(250), they need not be so
light as to conflict with current Higgs boson mass limits. Forlf |R”| is close to unity, this inequality can be satisfied either
example, if the Higgs boson masdds;qqs that enter into the (i) if 0,3 and o3, are both small ofii) if the magnitudes of
strangeness-changing neutral current constraint are of ordern; and o3, are not small, but are approximately equal. In

2
- §|RV‘T§2+ o2

(579
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Sec. IX we saw that to reproduce the observed CKM paramfor the low energy effective action physics described by the
eterss,; ands;3, we needed sizable asymmetri@s order  six-Higgs-doublet model. Such a high energy model must,
0.2), which if also present in the neutrino seci®s would  through its representation content and instanton physics, jus-
allow near maximal mixing of the second and third family tify the discrete chiral transformation rules assumed in Egs.
neutrinos by caséi) even when the rati®, is only approxi-  (18—(1c), and it is also the place where one must seek ex-
mately unity in magnitude. Thus large,-v, mixing is easy planations for the “vertical” hierarchy of Yu_kawa couplmg
to achieve in the six-Higgs-doublet model. Less natural isstrengths and the pattern of Yukawa coupling asymmetries,
near degeneracy of the massesoandv,, , as appears to be which is needed for our fits.
needed for both the Mikheyev-Smirnov-WolfenstéSw) Added noteAfter this paper was posted to the Los Ala-
and the vacuum oscillation interpretations of the solar neumos e-print archive, two earlier papers that use families of
trino data, since the first family masses are zero in our moddtiggs scalargalthough without the ingredient afs discrete
in the absence of Yukawa asymmetries. Such a degenera€jfiral symmetry analyzed herevere brought to my atten-
would have to be the result of sizable asymmetries togethdfon. The paper of Derman and Jonk2?] studies a two-
with substantial fine-tuning in the neutrino mass matrix, ei-family, two-Higgs-doublet model with ais, permutation
ther to raise the’, mass to close to the, mass in casé) or ~ Symmetry, and is probably the earliest paper to extend the
to lower the», mass to close to zero in cai) (as, for idea of family symmetries to the Higgs sector; thg paper of
example, is done in the model of Barggral.[17]; see also D_erman[23] exter_1ds this to three families of fermions and
Baltz, Goldhaber, and Goldhabgt7]). In either case, there Higgs doublets with aiB; permutation symmetry.
will almost certainly be large mixing of, with v, ; so on
this (very preliminary interpretation, our model would favor
the large angle as opposed to the small angle MSW solution.

I__et us next gddress the issue of coupling constant unifi- ACKNOWLEDGMENTS
cation in the six-Higgs-doublet model. Because we do not
alter the fermion representation content of the standard This work was supported in part by the Department of
model, the usual running coupling analysis applies. As noteénergy under Grant DE-FG02-90ER40542. | wish to thank
by Langackef18], the standard model witk7 (by current  Henry Frisch, Harald Fritzsch, Chris Kolda, Burt Ovrut, Jon
data[19], 7.66 Higgs boson doublets gives one-loop cou- Rosner, Bill Scott, and Sam Treiman for stimulating conver-
pling constant unification with a unification energy of order sations or correspondence. | also wish to acknowledge the
5% 10" GeV. Even with only six Higgs doublets, the mag- hospitality of the Aspen Center for Physics, where the manu-
nitude of two-loop radiative correctiof20] is sufficient to  script was completed.
make coupling constant unification a possibility. Of course,
because the unification energy is lower than in the customary
scenario, a mechanism is needed to suppress proton decay,
such as is present in the §13) family [21] of grand unifi- APPENDIX A: NUMERICAL MINIMIZATION
cation models. Clearly, defl_muve statements here vy|II de- OF THE HIGGS POTENTIAL
pend on the nature of the high energy theory for which the
six-Higgs-doublet model is a low energy effective theory; Because the Higgs potential of Eq3a)—(7¢) is compli-
the point we wish to stress, though, is that the six-Higgs-cated, even with the simplifying assumptions@® invari-
doublet model may be a candidate for coupling constant uniance and cyclic permutation symmetry, we have supple-
fication without the assumption of low energy supersymmeimented our analytic studies of the Higgs extrema with
try. Whether such a candidate is needed, of course, wilhumerical studies, performed by using the conjugate gradient
depend on the outcome of supersymmetry searches over theethod to minimize the Higgs potential. Since it is easy to
next decade. analytically compute the first derivativéthe gradients of

There are a number of obvious directions for further workthe Higgs potential, it is advantageous to use the conjugate
on the models we have developed in this paper. Entirelygradient method in a form where both the function to be
within the low energy effective action framework, one canminimized and its derivatives are externally supplied; this
address the issue of one-loop radiative corrections to thgives a faster routine and there is some built-in redundancy
mass and mixing matrix analysis given here. This will in- that serves as a check, since the same information is in effect
volve the parameters determining the Higgs boson masses farnished twice, once through the computation of the func-
an integral way, and if the six-Higgs-doublet model is to betion and a second time through the independent computation
viable, the one-loop corrections should improve, rather thawf its derivatives. We have used the minimization program
make worse, the comparisons with experiment and the corrRPRMN of Presset al.[12], with the following modification.
sistency tests discussed in Sec. IX. Another issue that can B&resset al. base the convergence criterion in their program
addressed within the low energy framework is the magnituden computing the change in tianction valueover one it-
of electroweak baryogenesis in the six-Higgs-doublet modeération, but this results in significant truncation error inaccu-
and cosmological implications of this model more generally racies for the minimizing values of tlegumentgthe Higgs
At a deeper level, there is the issue of finding a grand unifiedields) when the function is large in magnitude but very flat
model, composite model, or hybrid model comprising ele-at its minimum. Since the gradients are explicitly known, and
ments of both, which is a natural high energy physics sourcsince at the minimum the gradients must all vanish, much
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better accuracy for the minimizing Higgs fields is obtained 3
by making the convergence criterion depend on the maxi- OLiggs potential™ ReE (C,‘{’5¢’,§+C,¥5n’,§). (Ala)
mum gradient. With this modification tBRPRMN one can n=1
verify the vanishing of the gradients to double precision acyve assume botfP invariance and cyclic permutation sym-
curacy at the Higgs potential minimum. metry; using the latter we get formulas f(i}g’,’s” by cyclic

To obtain the formulas for the gradients, as a function ofpermutation of the arguments @ff"/_ Changing notation
general ¢, 7, we substitutep— ¢+ ¢, n— 7+ 7 into  for the coefficients fronC,,, to C,..,,, to avoid notational
Egs. (7a—(7c), and retain the first order variations, which ambiguities when explicit numerical values are assigned for
can be brought to the convenient form m, we obtain the following explicit expressions f6¢"”:

CP=ANy(T 105 d1= 21yt t2y) (D5 ot % da)b1— g2t hst b33+ h5h5) +ym
3
+mE:l [2C1.1m7 mTm®P1T Co:1m 71 Tm@mT Co:m1 71 7m@mT Ca:1m@27m 7m—17 C3:3mP37m—1m+ Ca:m1 P37 Tm+1

+Cam2®2MmTmi 17 Cs:1m M2 7m®Pm—17 Cs:m272m+ 1Pm+ Co:m1 73 7m®Pm+1+ Co:3m737m—10mT C7:1m®P2Pm m-1
+C7.3m®P30m7m-—11 C7.m1PmPm+ 173+ Ca:1mP27m@Pm—11 Cg:3mP37mPm-1T Co:me®Pm®Pm+ 172+ Co:m1 7m Tm+173
+ Crome Mmm+ 172+ C11;1m72Pmm-1+ Crim P m+ 173+ C12;3m M3 Mm@ m- 1+ Crome Mm@ 17721, (Alb)
3
2 2 2

CI=4N (71 m1—v3) M= 2( 1,y F 12,) (75 Mo+ 13 m3) M= @, (2777 M3+ W375 + 9am3) + yda+ m§=:1 [2C1.m1dmdmm
+ C2;m1¢1¢:~|7/m+ C2;1m¢l¢:177m+ C3;ml 773¢§1¢’m+1+ C3;m2 772¢m¢:1+1+ C4;1m7/2¢:~|¢m71+ C4;3m7}3¢m¢>?§171
+ C5;m1¢3¢:17/m+1+ C5;3m¢3¢:;17177m+ C6;1m¢2¢*m77m71+ C6;m2¢2¢%+177m+ C7;m2¢m¢*m+ 1¢2+ C8;m1¢:1¢m+ 193
+Co.1m72®mm-11 Co:3mM30m7m—17+ Co:m2 7m7m+ 192+ C10:1m727mPm—1+ C10:3n73 ImPm-—1

+ Ciom 7m7m+193+ C11:3mP3Pm7m-17 C11m2®@mTm+ 192+ C12:1m@27mPm-1F C12m1 TmPm+ 1031 (Alc)

APPENDIX B: BI-UNITARY DIAGONALIZATION and
OF A 2x2 MATRIX

— 2 2
. . = +
We give here the method for constructing the matriégs Ar=oa "+ o2l

andVJ,; that obey Eq(41a of the text, suppressing the flavor
index f throughout. Letm by the 2<x2 complex matrix de-
fined by

Br=|012*+ 024,
Zp= 07,0111 05,021 (B2¢)
[ %11 012
m= ' (BD)  The guantities just defined are not independent, since it is

021 022 -
easy to verify that
We begin by forming the self-adjoint matricdd, =mm'

andMz=m"m, which we write in the form A +B_ =Ax+Bg,
AL 7 Ar Zx 1 1
M, = , Mg= , B2 - _ 2 2_ " _ 2 2
L (ZL B|_ R ZRr BR ( a) 4(AL BL) +|ZL| _4(AR BR) +|ZR| ’
with
|2, |2<AB_, |zrl*><AgrBg. (B2d)

AL=|o*+ ol

The desired bi-unitary matrices will be thé_ for which
, V.M V! is diagonal, and th&/ for which VMgV, is di-
. . agonal, with eigenvalues ordered in magnitude.
2, =01101F 01,02 (B2b) Thus, defining the self-adjoint matriM by

2

BL=|021*+ |0
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1 (A+B)%—|v|*=AB—|z?>=0. (B5h)

A 7 ) 3
M = <AB B
, Bl |z| , (B3a)

When|z| =0, the above formulas are indeterminate; we then
it suffices to find the diagonalizing unitary transformatién get the correct eigenvalue ordering by taking ér20 and
that yields cosP==1, with the + sign holding forA<B and the—

sign holding forA>B. Referring back to the identities of Eq.

(B2d), we see that they imply thdb, |=|vg|, and thus the

2
VMV = ( | 4] 0 ) PSSt (B3b) eigenvalues are the same M andMg, as expected. Sub-
0 |raf?) ! 2 stituting the expression fon in Eq. (B4b) back into Eq.
(B4a), we get the further useful expression
then all that we have to do is to apply this construction twice, il
first to M| and then toMg. Let us writeM in Pauli matrix cos® - HSIH(@
form as V= i _ (B6)
HSin@ cos®

1 L 1
M=5(A+B)+0-7, v= ( 2,5 (A= B)) (B30)
APPENDIX C: IMPROVED FORMULAS FOR U ,f_ AND U fRT

In our numerical work, we used an improved approxima-
with zg | the real and imaginary parts af Representing the tjon to U andU obtained by adding to Eq$41b), (410

diagonalizingV in Pauli matrix form as the respectlve correctionSU "andAU [T, given by
- s N 0 0 0
V=expi®n-7)=cos®+in-7sinO, (B4a) L
AU = 0 0 T oK 271 32
%K*ﬂ 2V|_21 %K*ﬂ 2V|_22 0

and lettingz=(0,0,1) be the unit vector in the third axis

direction, a simple calculation shows that we satisfy Eq. (€13
(B3b) by taking and
ol
Sin2®:|2|»|v|= - |Zz| | |2 o 0 0 1Vf12"2 7723
vl [3(A-B)2+|z} .
) AU g: 0 0 1V 22"2 7723
~2v  —3(A-B) 0 —5rym3s 0
cos 0 = = (C1b

bl L5 (A=B)*+[27]
Herer,_YR are the matrices defined in E¢1g and com-
0= ltan‘1< _2|Z|) puted in Appendix B, 5 is the eigenvalue defined in Eq.

2 A-B)/’ (413, given explicitly by
~ ZXv _(z1,-2R,0) (B4b) K 5=V {0(0 1V Rt 0 1V 1) +V (0 5V R
|zXv] 2] , +0 5V ), (C2a

and that thisv gives and the quantities; b5, 75, are defined by

1 -
VMVT=E(A+ B)—|v|7s. (B4c) 755=V [ 210 15+ V {20 b,

Thus we see that the squared eigenvalues are 75=0 5V Riat 0 5V Rao. (C2b
1 . . These corrections make the formulas &{ andU £ accu-
|K1|2=§(A+ B)—lv|, |xal®=3(A+B)+][v], rate to first order when|k }|/3)?, rather thar|« 5|/3, is re-
(B53) garded as a first order small quantity. They have only a small
effect on the fits of Sec. IXbecause for charged fermions
which are correctly ordered; the smaller squared eigenvaluée second to third generation mass ratios are $nialt are
is guaranteed to be non-negative by virtue of the fact that thgseful in performing accurate numerical checks that
product of the squared eigenvalues is UM /UL is diagonal.
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