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We calculate the mass spectra and string tensions ¢2)SBU(3), SU(4) and SU5) gauge theories in21
dimensions. We do so by simulating the corresponding lattice theories and then extrapolating dimensionless
mass ratios to the continuum limit. We find that such mass ratios are, to a first approximation, independent of
the number of colorsN., and that the remaining dependence can be accurately reproduced by a simple
O(1/N§) correction. This provides us with a prediction of these mass ratios for alN§UWheories in 2-1
dimensions and demonstrates that these theories are already “clodé=te for N.=2. We find that the
theory retains a non-zero confining string tensiomas-o and that the dimensionful coupliraf is propor-
tional to 1N, at largeN., when expressed in units of the dynamical length scale of the theory. During the
course of these calculations we study in detail the effects of including over-relaxation in the Monte Carlo
calculation, of using a mean-field improved coupling to extrapolate to the continuum limit, and the use of
space-time asymmetric lattice actions to resolve heavy glueball correlgB0&556-282(198)04423-3

PACS numbgs): 11.15.Ha, 11.10.Kk, 11.15.Pg, 12.39.Mk

[. INTRODUCTION Ultimately we would like to consider SW(.) gauge theo-
ries coupled to light quarkén the fundamental representa-
The non-perturbative physics of QCD continues to betion) in 3+1 dimensions. But this is beyond our current com-
largely impervious to analytic attack. Thus 't Hooft's pro- putational resources. So our first restriction is to disregard
posal to consider SUN;) gauge theoriegwith quarkg as the quarks and focus instead on the pure gauge theory. Since
perturbations in powers of M/ aroundN.=< [1] remains the non-perturbative physics of QCD is largely driven by the
of great interest. In many ways thé,= theory is much self-coupling of the gauge fields, this is certainly a physically
simpler than the physically interestimfdy= 3 theory, and the relevent problem. Moreover, one expects the pure gauge
fact that the phenomenology of the St)( quark-gluon theory to have leading corrections that @él/Ng) rather
theory appears to be strikingly similar to that @he non-  than theO(1/N.) that one expects with quarks. Thus the
baryonic sector 9fQCD [1,2] motivates the suggestion that onset of largeN, physics should be easier to spot.
the physically interesting SB3) theory might be largely un- Our second restriction is to consider the pure gauge
derstood if we could solve the much simpler $j(theory.  theory in 2+1 rather than in 31 dimensions. Although it is
Unfortunately an analytic solution of the latter still eludes us,less obvious that this leaves us with a physically relevant
even if much progress has been made in understanding agroblem, we shall argue in the next section that gauge theo-
pects of its structurg3-6]. ries in 3 and 4 dimensions are sufficiently similar that this is
This situation has motivated a number of computationalikely to be so. Moreover, it turns out that D=2+1 we
explorationg 7]. Almost all of these have used the fact that can calculate the continuum properties of gauge theories
the lattice SU¢) theory can be re-expressed as a singlewith such accuracy that there is little ambiguity in our final
plaguette theory5]. Although these calculations have pro- conclusions. This is not the casel3+1 where the pre-
duced interesting results, the approach suffers from a basliminary calculations of this kind8] are very inaccurate in
problem: it tells us nothing about the corrections to Me  comparison.
= limit and so cannot address the critical question of how Motivating our calculations are several questions of par-
close SU3) is, in fact, to SU). The twisted Eguchi-Kawai ticular interest. What we know about the laiyg-limit of
approach also suffers from the fact that the space-time volgauge theories essentially comes from considering Feynman
ume described by the theory is finite and relatedNto diagrams to all orders. Such considerations indicate that
In this paper we take a more direct approach to the probSU(N;) gauge theories possess a smddth- < limit if one
lem. We calculate the continuum properties of(SUSU@3),  varies the coupling so as to kegpN, fixed. Moreover, the
SU(4), . .. theories by simulating the corresponding lattice leading correction to this limit should B@(1/N?). It is ob-
theories. We then compare these properties and see how weibusly of interest to check these expectations in a fully non-
they can be described by simple corrections to a commoperturbative calculation. In addition, the phenomenology of
N.=¢° limit. This approach has the advantage that it will tell largeN. theories assumes that the theory remains confining
us just how close the physically interesting @UJtheory is  in that limit. It is important to check that this is really the
to the simpler SU¢) theory. It has, of course, a potential case. Finally we wish to see how large the corrections are at,
disadvantage: if the theories we consider are far from thesay, N.=3. Is it really the case that SB) is close to
N.=c limit, then we will have learned nothing about the SU()?
physics of that limit. Fortunately, as we shall see, this turns In addition we aim to calculate the detailed mass spec-
out not to be the case. trum of the SU¢) theory. We note that models and theoret-
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ical approaches are usually simpler in that limit. For ex-quence of UN,) theories. This we do in Appendix E. We
ample, the flux tube model of glueball®-11] would conclude with a brief discussion of our results.
naively appear to be identical fdt.>2. However, because  We have relegated to the Appendixes details of some self-
the model does not incorporate the effects of glueball decaysontained aspects of our calculations which should be of
it should really be tested against tNg— o spectrum since it general interest. Appendix A contains a detailed evaluation
is only in that limit that there are no decays. A second ex-of the effects of the over-relaxation in the Monte Carlo up-
ample is provided by the recent progress in calculating thelate. This is done by directly comparing the statistical errors
largeN. mass spectrum using light-front quantization tech-on the masses that one obtaing(tiealistically large calcu-
niques[12]. Thus our largeN. spectrum can serve as a use- lations that contain various ratios of over-relaxation to heat
ful testing ground for models and attempts at analytic solubath. We are not aware of any previous comparison of this
tions of the theory12,13. Of course in the process we shall kind. We find that over-relaxation brings a modest but
also calculate the spectra of the theories at fiNgend these  worthwhile improvement, particularly for the smaller values
too can be used as a testing ground for models and analytisf the lattice spacing. Appendix B contains some analyses
approaches. We remark that the most recent examples of thhelevant to our choice of operators. In particular we study
latter [14—14 are intriguingly successful. For example, in how sensitive our operator basis is to variations in the pa-
[15] the SU2) and SU3) 0" " glueball masses are within rameter governing the “blocking,” whether anything is
15% of our values and the O is even closer. If16] the  gained by the inclusion of operators incorporating “bary-
string tension is calculated for @l and is within 2% of the onic” vertices (for N.=3), and we give more details about
values in this paper. our variational calculations of the excited states. These are
We now briefly outline the contents of this paper. In theno doubt known to some experts, but we hope they will be of
next section we discuss some general properties oNgU( use to others in the field. In Appendix C we compare con-
theories in 21 dimensions. The aim is not only to set the tinuum extrapolations of the string tension in the bare and
framework for the subsequent calculations, but also to conmean-field improved couplings. We show that using the lat-
vince the reader that these theories are sufficiently similar tter considerably improves the accuracy of the final results.
their D=3+1 counterparts that what we learn in this paperThis is of some interest because we are not aware of any
about the former probably tells us something about the latteisuch previous comparison. Appendix D contains details of
We then move on to discuss the technical details of how wehe calculations we have performed with asymmetric lattices
carry out our calculations. This includes details of our operawhich have timelike lattice spacings that are much smaller
tors and of the variational principle that underlies our extracthan the spacelike spacings. The primary purpose of this cal-
tion of excited states from the matrix of correlation func- culation is to check that our procedure for estimating the
tions. We also discuss the problem of identifying themasses of the heavier states is in fact reliable. However, our
continuum spin of a particle on a lattice with only cubic methods for determining the ratio of the lattice spacings are
symmetry, and provide a simple criterion for doing so. In thelikely to be of more general interest and so we develop this
following section we present our calculations of the stringcalculation in some detail. This enables us to calculate the
tension. It is here that we aim to demonstrate that the theorU(2) spectrum of the theory close to its “Hamiltonian”
remains confining adl.— o, thus providing the crucial in- limit, and to compare it with the symmetric case as a test of
gredient for extracting the phenomenology of those theoriesuniversality. Finally, in Appendix E we summarize some
It turns out that the string tension is the physical quantity thaproperties of the () mass spectrum. This is to provide a
we calculate the most accurately. So it is in this section thatontrast to the SW.) spectra that are the subject of this
we shall test most precisely the expectation that there is paper.
smooth limit reached by keepirgfN, constant, and that the During the course of this work, we have published some
leading corrections to that limit ar@(l/Ng). The next sec- preliminary summaries of some of the topics in this paper, as
tion contains our calculations of the glueball spectrum.well as on related topics not covered herein. Our early results
(Since we have only gluons in our theories, all the physicabn the SW2) spectrum appeared ii7]. (See[18] for an
particles are color singlet composites of gluons i.e. glueinteresting comparison with the spectrum of the gauge Ising
balls) We shall briefly comment on the features of this spec-model) The preliminary SW2) string tension was discussed
trum, in particular upon how it compares to what we knowin [19]. That paper also contained a study of the width and
about theD=3+1 spectrum. It would of course be nice to vibrational properties of the corresponding flux tube, which
be able to spot some striking regularities in the mass speds not repeated here. Also not covered in this paper are the
trum of the SU¢) theory. However, one can only read sig- SU(2) and SU3) deconfining temperaturg20]. (See[21]
nificance into the details of the spectrum if one has somdor a more extensive discussiorBome preliminary results
framework that relates those details to the underlying dyon theN. dependence in21 dimensions have appeared in
namics. For such an analysis, within the context of a model8]. This paper also contains sorery preliminary calcula-
in which glueballs are composed of closed loops of chromotions for gauge theories in43l dimensions.
electric flux, we refer the reader [@0,11]. We shall find that
the glueball spect_ra are in fact very similgr to each other fpr Il. SOME FEATURES OF D=2+1 GAUGE THEORIES
all N.=2. To provide a contrast it is amusing to compare this
to the spectrum that one obtains in tiE=2+1 U(1) In the first part of this section we discuss some of the
theory—the theory that is farthest from &Jf in the se- fundamental dynamical properties of SU{) gauge theories
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in 2+1 dimensions. Since we are much more familiar with m,=c;A 4
the corresponding properties of the same theories+ii 3

dimensions, it will be illuminating to compare the two theo- \yhereA is as in Eq.(2). So in both 3 and 4 dimensions the
ries as we go along. _ value of the coupling determines the overall mass scale.
The second part of the section focuses on the conse- cConfinementBoth theories confine with a linear potential.
quences of the fact that D=2+1 parity and angular mo-  Thjs is not something that we can prove of course. However,
mentum do not commute. We show that this leads to somgttice simulations provide convincing evidence that this is
parity doubling in the spectrum, but that precisely what get§ngeed the case. Note that although e 2+1 Coulomb
doubled is sensitive to the ultraviolet and infrared cutoffspotential is already confining, this is a weak logarithmic con-

that we impose in our calculations. finement,Vc(r) ~g2In(r), which has nothing to do with the
nonperturbative linear potential(r)=otr, that one finds at
A.D=2+1~D=3+1"? larger.

Gauge theories in21 dimensions possess a dimension- [N addition to these theoretical similarities, we shall see
ful coupling: g2 has dimensions of mass and so provides dhat the calculated mass spectra also show some striking
scale even for the classical theory. By contrast,Din- 3 similarities. For example, the lightest glueball is the scalar
+1, g7 is dimensionless; the theory is classically scale-0" " With a similar massm: +~4./o, in both cases.
invariant. In addition the Coulomb interaction=2+1 is While the above comparisons provide some support for
xg2logr; so the theory is already confining at the “classi- the argument that what we learn ab@=2+1 gauge theo-
cal” level—albeit only logarithmically. Nonetheless, these €S might have something to teach us about the more inter-
apparently quite striking differences are misleading: fne €StingD =3+1 theories as well, it is important to emphasize
—2+1 theory shares with itd =3+ 1 counterpart its most that the theories do differ in important respects and are cer-
important dynamical properties, as we now remind thei@inly not the same. For example, there are no instantons in
reader. D=2+1 non-Abelian gauge theories. This would surely

Ultraviolet freedom.Both theories become free at short Matter a great deal if we were to include quarks. Another
distances. In 3 dimensions the coupling, has dimensions difference is the fact that the rotation group in two space
of mass so that the effective dimensionless expansion pararfllMensions is Abelian. This has some important conse-

eter on a scalé will be quences to which we now turn.
-0 B. Spin and parity doubling
g5()=Ig®— 0. (1) o . , .
In two space dimensions rotations commute: the group is
In 4 dimensions the coupling is dimensionless and runs in Abelian. So states of spiiido not come in multiplets in the
way we are all familar with: way that they do in 31 dimensions where the rotation
group is non-Abelian. We shall use,{) for the spatial co-
c -0 ordinates and for the angle of rotation. We can then define
ga(h)= A — 0. (2)  a parity transformatior, by (x,y)— (X,—Y). We note that

the angular momentum operatai, —yd,, flips sign under
In both cases the interactions vanishl as0, although they Pa'ity. That is to say, if some stafe) has angular momen-

do so much faster in the super-renormalizéble 2+ 1 case UM J, then the stated®|¢) will have angular momentum

than in the merely asymptotically fra@=3+1 case. R .
Infrared slavery The counterpart of the couplings becom-  1his last fact has an important consequence for the spec-

ing weak at short distances is that they become strong &fUm: Suppos¢j) is some state of angular momentgrand

large distances—“infrared slavery.” This is immediate if we €N€rgyE; . Consider the two linear combinations

let 17 in Egs.(1),(2). Thus in both 3 and 4 dimensions the i, =)=|)=P[j) 5)

interesting physics is nonperturbative. T - '
The coupling and the mass scale. 3 dimensions the

coupling has dimensions of mass and so explicitly sets th

mass scale for the theory

they are both non-null, they will form a pair of states that
ave opposite parity, since we easily see tiRdf,=
==*|j,=). Moreover, these two states will be degenerate,
m; =c;g? (3)  sinceP commutes with the HamiltoniaH, and so we have
the phenomenon of parity-doubling. Of course, so far the
wherem; is any dynamically generated mass in the theoryargument could be equally applied to the casdef3+ 1.
(for example, a glueball masdn 4 dimensions the coupling The crucial question is whether both combinations are in-
is dimensionless and so, naively, things appear quite differdeed non-null. Now as long gs#0 the stategj) and P|j)
ent. However, in fact here too the coupling sets the overalre orthogonal because they have eigenvalhgsrespec-
mass scale. It does so through the phenomenon of dimeiively with respect tal. In that case it immediately follows
sional transmutation: the classical scale invariance is anomdhat neither of the linear combinations in E§) can be null.
lous, the coupling runs and this introduces a mass scal€his argument clearly fails fgr=0 just as it fails for any in
through the rate at which it runs: 4 dimensions. Thus we conclude that {0 states come in
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degenerate pairs of opposite parity, while for {#e0 states We shall perform a few calculations on lattices with dif-

there is no reason to expect parity doubling. ferent spatial and temporal lattice spacings:and a;, re-
The above argument assumes the continuum rotatiogpectively. In that case we use an action

group. Our calculations, on the other hand, will be performed

upon a square spatial lattice whose explicit symmetries are L B i _ i
rotations underr/2. Does this make any difference? Indeed S= ES% 1 NCReTrU Ps +ﬁt%‘* 1 NCReTrU Py
it does. States of angular momentg are distinguished by (8)

the phases eXrij 6} that they acquire under a rotation @f _ _
We note that foj =2 in particular, these phases are identicalwhere the spatial and temporal plaquette matritgs, and
if we restrict ourselves to rotations @#f=n/2. Thus on a Uy, are multiplied by different couplings whose values are

square lattice there is no reason to expect parity-doubling foghpsen to reproduce the desired ratio of lattice spacings,
j=2, any more than foj=0. Of course as we reduce the 3_/a,. How this choice is made is described in detail in
lattice spacinga, we expect to increasingly recover con- Appendix D.

tinuum rotational invariance on physical length scales. The ' The main technicalities involve the Monte Carlo calcula-
extent to which we do will be reflected in the extent to whichtjon and the calculation of masses. We treat these in turn.
we recoverj =2 parity doubling in our mass spectrum.

The rotational invariance is not only broken by the square
lattice: it is also broken by the fact that our space-time is a
finite hypertorus. If the lattice is symmetric in the two spatial ~ The Monte Carlo calculation consists of a mixture of heat
directions(as it usually will bg, this once again leaves us bath and over-relaxation sweeps. We discuss these in turn.

with rotations of #/2. As the volume becomes large com-

A. Monte Carlo calculation

pared to the physical length scale of the theory, we expect to 1. Heat bath
recover full rotational invariance, and re-obtgin 2 parity- For SU2) we use the standard Kennedy-PendIefda]
doubling. heat bath algorithm. This is extended to higher groups using

We thus expect to find parity doubling g4 0 states in  the Cabibbo-Marinar[23] algorithm where effectively one
theD=2+1 theory. However, some of this parity doubling updates some of the $2) subgroups of the S(®) matrices.
may be lost to the extent that either the lattice spacing or the An important practical question here is how many of
periodic boundary conditions affect physical length scalesthese subgroups to update. Clearly the more subgroups one
Thus the restoration of parity doubling, in particular for updates the faster we will explore phase space. However, one
=2 states, will provide us with direct evidence for the sepa-does not want to carry this past the point of diminishing
ration of the physical length scale from both the ultravioletreturns. To determine an appropriate number of these sub-
and infrared cutoffs. groups we have chosen a criterion which involves monitor-
ing how efficiently the action of the SB;) fields is reduced
by cooling the field§24,25, when the cooling is applied
through different numbers of SB) subgroups. We recall
We work on a cubic lattice with periodic boundary con- that to cool an S(2) lattice link we simply replace the ma-
ditions. The lattice spacing is labellecand the length of the trix that is on that link by the matrix which minimizes the
lattice in the u-direction isL,, in lattice units. The field action. This matrix is easy to determifi24,25. A link ap-
variables are SU{.) matrices. They reside on the links of pears in 4 plaquettes and hence its contribution to the action
the lattice and are represented Wy or by U ,(n), using an ~ can be written as
obvious notation. The ordered product of the matrices around
a plaquette of the lattice is representedlyyor by U ,,(n). 55 =— ETr{U ) 9)
We use the standard plaquette action 2 !

lIl. METHODOLOGY

1 where the matri%, is the sum of the “staples” enclosing the
52,32 [1_ —ReTrUp] (6) link I. Each staple is an SB) matrix and hence. is pro-
p Nc portional to an S(2) matrix. Then it is easy to see that the
matrix that minimizessS; is given by
and this appears as a weighting facéor® in the Euclidean

path integral. In the continuum limit this becomes the usual U, 37 (10)

Yang-Mills action with :m'
N We note that this is just the choice of matrix that the heat
= 2? (7) bath algorithm makes if we sg@=c«~. Once we have applied
ag this procedure to every link of the lattice we have performed

a cooling sweep. And we can systematically reduce the ac-
Note the factor of that is there becaus# has dimensions tion by performing a sequence of such cooling sweeps. We
of mass; the dimensionless bare coupling, being a couplingan extend this to SW_.) fields by using the Cabibbo-
on the scaley, is justag®. Marinari algorithm and cooling within the chosen @YJsub-
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TABLE I. Average action per plaquette when a thermalized over-relaxation and heat bath sweeps decorrelates field con-

SU(5) field is cooled usingig SU(2) subgroups. figurations significantly, although not dramatically, faster
than a pure heat bath. There is an additional gain that arises
Cools ng=4 ng=>5 Nc=6 ng=38 from the fact that an over-relaxation step is faster than a heat
0 0.2010 0.2085 0.2072 0.2088 bath step, Whl(_:h in any case mv_olves the _calcul_atlon pf all
the staples(This gain is greater in 3 than in 4 dimensions
1 0.1272 0.1199 0.1067 0.0874 . .
since there are fewer staples to calculate in the former)case.
2 0.0813 0.0662 0.0494 0.0266 . . ; .
Thus in the calculations of this paper we shall typically
5 0.0596 0.0417 0.0254 0.0073 choose to make 4 or 5 over-relaxation sweeps for each heat
10 0.0516 0.0328 0.0168 0.0028 bath sweep
15 0.0483 0.0291 0.0132 0.0015 '
20 0.0463 0.0269 0.0111 0.0010

B. Calculating masses

) ) .. Our mass calculations are entirely conventional. The start-
groups. In this case the algorithm no longer exactly Mini-ing point is the observation that

mizes the action. Instead the rate at which it reduces the
action is a measure of how rapidly it moves through phase

space. So our procedure is to generate stptasibly ther- (¢"()¢(0))= ; |(vad ¢|n)|?exp{— Eqt}
malized SUWN,) fields, and then to cool these fields using

various numbers of S(2) subgroups. An example of this, for t—o

the case of S(b), is shown in Table I. We see that if we use — |(vad ¢|0)|%exp{ — Eot} (12

very few subgroups, the decrease in the action is very slow

[ﬁomparpe\d, for exampleﬁ to Wrt])at h]:appgns in thhe(BU. where|0) is the lightest state that couples to the operator
theory|. As we increase the number of subgroups the action,,q E, is its energy.(We use operators that are localized

dlecreasis more rapidly, m?f!catlrllg t?fat the algtorl'ghm EXWithin a single time-slice. So if we want the mass of the
plores phase space more €efliciently. 1t we Were 10 INCreasg,iast color singlet state with quantum numbére,C we

the number further, then clearly at some point we would find | - ith th
that it led to little further change in the rate of decrease in the!MPIY construct =0 operator with those gquantum num-

action. At this point we would certainly be into diminishing ers, calculate .its correlation function and then obtain the
returns. We thus try to choose the smallest number of sughass FEO.) using Eq.(lZ). If the quantum ngmbe_rs are
groups that will reduce the action reasonably fast. We theﬁ”v'al’ the lightest state might be the vacuum, in W_h'ch case
use these same subgroups in the Monte Carlo calculation. i€ use vacuum subtracted operators_. Of course '_t might b_e
practice we have used 3, 4 and 8 subgroups in the case HTat for some quantum numbers the lightest state is a mult-
SU(3), SU4) and SU5) respectively.(There is obviously glueball state. We sh_aII come back_to this possibility later on,
some ambiguity in the precise choike. but shall, for convenience, ignore it for now. _
On the latticet=na and so what we obtain, not surpris-
2 Over-relaxation ingly, is aE,,, the energy in lattice units. Note that if we are
. on a lattice with a finite periodic temporal extent, then the
In addition to heat-bath sweeps one can also use ovegypression in Eq(12) needs to have an additional term for
relaxation sweepf26-28. In SU2) this corresponds to re-  the propagation around the “back” of the torus. Such a term

placing our old link matrix,Uqq, by a new link matrix, il always be included in the numerical calculations of this

Unew, defined by paper, although we shall, for simplicity, persist in writing all
. . our expressions as though the temporal extent were infinite.
U =2—U* 2_ (11) We also note that the temporal extent of our lattide,
new-|y| Toldix | =al,, will always be chosen large enough for the partition

function, Z, to be accurately given by its vacuum contribu-

where the notation is as in E(). It is easy to see that this tion: Z=exp{—E,,.T}. Thus the energies we calculate will
change does not alter the action. Moreover, it can be exalways be with respect to the energy of the vacuum.
tended to SU;) using the Cabibbo-Marinari algorithm. In principle we can obtain from Eq12) any number of

An over-relaxation step involves a large change in theexcited states as well. In practice, however, fitting sums of
link matrix and so it is plausible that it will increase the rate exponentials to a function is a badly conditioned problem. So
at which we traverse our phase sp26-28. Indeed, in 4 one needs to develop a more sophisticated strategy, as de-
dimensions, there is evidence that this is so for large Wilsorscribed later on in this section.
loops[29]. However, what we are interested in is the calcu- Again in principle, one can use in E¢L2) any operator
lation of the low-lying mass spectrum and so what we wanwith the desired quantum numbers. However, a numerical
to know is how over-relaxation affects such a calculation. Incalculation has finite statistical errors, and because the func-
Appendix A we present a rather detailed study of this both irtion { ¢'(t) #(0)) is decreasing roughly exponentially it
SU(2) and in SUW3). (This is, we believe, the only study of will, at large enought, disappear into the statistical noise.
this kind for gauge theories in 3 or 4 dimensigrid/e find  Thus in practice we need to be able to extrggtfrom Eq.
that for physical quantities, such as masses, a suitable mix ¢12) at small values oft. This requires the coefficient
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|(vad ¢,|o>|2 to be large. That is to say, we need to usephysical length scale§a—. If in constructing our opera-
operators that are close to the wave-functional of the state itors we limit ourselves to rotations of/2, then any con-
guestion. tinuum spinJ that gives the same value of €ijp#/2} will
If we want to use good operators, we obviously needcouple to this operator. That is to say, the state that we label
some simple way to decide which operator is in fact betterby J=0 actually contains states with=0,4,8,12... and
We shall use a variational criterion. However, before comingsimilarly for the states we label hy=1 andJ=2 (which is
to that we say something more about the operators we actyj| we have with rotations ofr/2). A similar ambiguity oc-
ally use. This splits naturally into a discussion of glueballcyrs in 4 dimensions. It is usually assumed that in this tower
operators and those from which we extract the string tensiorys siates it is the state with the smallest valud diat has the
smallest mass. Thus, in our case, we shall claim to calculate
the lightest]=0, 1 and 2 states. We shall return to this point
We are interested in color singlet operators because, as wWeter.
shall see, our theories are confining. Now, the trace of an |t might be useful to indicate the operatdts. that we
ordered product of link matrices around any closed path ofctually use. Clearly we need only specify the cur@edhe
the lattice is a color singlet. So we can build our operatorgirst set consists of square and rectangular curves, in particu-
out of such loops. Moreover, under charge conjugation thgyr the 1x1, 2x2, 3x3 squares and theX2, 1x3, 2
trace will go to its complex conjugate: so the real parCis 3 rectangles. These curves are obviously symmetric under
=+ and the imaginary part §=—. FOrN.#2 we can also ity reflection. Taking into account that parity also conju-

;:_onstr\lj\?t C%IOIrI smtglet operr;tors co?talnlmggh bar;qonllct. ver-agates the matrix, it is easy to see from Efg) that we can
ices. Yve shall not use such operators In the caicuiations nly getJ* " andJ™ ~ states. Moreover, the square loops can

ngpepn?jﬁiré but include a discussion of their properties Ingive us onlyJ=0 while linear combinations of the rectan-

As a simple example, consider the set of spatial plaquettegUIar loops can give boti=0 an_de:Z. However, all the
- loops are symmetric under rotations#®fand so cannot give
U,y(x,t) and form the operator J=1. To obtainJ=1 andP=—C states we need other op-
erators; in particular we need curves that are not symmetric
H(t)=> ReTrUXy(i,t). (13)  underP. To describe such curves it is convenient to use an
X obvious shorthand notation in which the plaquette inxhe
plane would be written asyx'y". In this notation the curves
It is a color singlet. Moreover, it is translation invariant andwe use are a path ordered product of 2 plaquettes i.e.,
so hasp=0. (To obtain a non-zero momentum we would xyx'y'x'yxy, and the “twisted” version of this
include a factor of exfip-x.) It is C=+ because we take XYX'Y'y'x'yx; the path ordered product of thex2 loop
the real part of the trace. It is obviously invariant under par-2nd a plaguette i.exyyx'y'y"x"y"xy, and the twisted ver-
ity and so isP=-+. Finally it is obviously invariant under Sion of thisxyyx'y'y'y'x'yx; and finally the path ordered
the n/2 rotational symmetry of our lattice: so it hds=0.  Product of two 1x2 loops i.e.,xyyx'y'y"xxy'x'xy and
This operator will therefore project onto states that havehe twisted version of thiscyyx'y"y'y xxyx'x". From suit-
JPC=0** and 520' So from its correlation function we able linear combinations of rotations, parity inversions and

can, using Eq(12), extract the lightest 0% glueball mass. real or im_aginary parts OJ: these IOOES we can construct op-
Suppose we now consider the ordered product of link maS"ators WithJ=0,1,2,p=x, andC==. .
trices around an arbitrary closed curi@dhat starts and ends At this point we have described in some detall the sym-
o : - ) , metry properties that the operators need to have. However,
at the point &,t). Call it Uc(x,t). Then the linear combina- 51 the operators we have described so far are ultraviolet:
tion they are based on loops of sif¥a). Such operators will
have an approximately equal projection onto all states of the
¢>(t>=2 E e””nReTl{UR(g )CtU?;R(H o (14 specified quantum numbers. The number of excited states
x n " n increases rapidly aa—0. Thus the normalized projection
onto the ground state decreases rapidly. This means that as
will have J=j, C=+, andP==. Here the angles being a—0 we have to go to much largeiin Eq. (12) to see the
summed over ard,=nw/2. R(#) is a rotation operator, S0 ground state dominating the correlation function. But we
thatR(8)C is the contour obtained when we rot&leby an  cannot do so because of the statistical noise in our Monte
angle 6. Similarly PC is the parity transform oC. In the  Carlo calculation. This means that we rapidly lose the ability
second termJ is conjugated because the order around theo calculate ground states as we approach the continuum
curve is reversed under parity. If we replace ReTr by ImTr limit.
we getC= —. Symmetries of the curv€ will be reflected in An efficient remedy for this has been known for a long
the operator in Eq(14), being null for some values af . time [30—32. What one needs are operators that extend over
There is obviously an ambiguity in our assignmentlof physical length scales and are smooth on such scales. Only
We use the continuum notation because we are interested such an operator has a chance of looking like the ground
the continuum spectrum and we expect that the lattice wilktate wave-functional if, as one expects, the latter is smooth
recover continuum rotational invariance @&s-0, at least on on physical length scales. Guided by an intuition developed

1. Operators for glueballs
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in the context qua wave-functions, one would expect the For IargeR one thinks of this state as being Composed of the
first excited state to have a node. This could be approximate@iressed static quarks with a confining flux tube of lengiR
by a linear combination of large smooth operators. Higheioining them.
excited states would be characterized by more nodes, hence We note that the usual potential that enters phenomeno-
by more complicated linear combinations. While this argu-logical discussions of the string tensi¢84] is essentially
ment is by itself no more than plausible, it turns out that thisbased on the Schdinger equation and the relationship with
strategy works remarkably well. our definition is not a simple one; this is apparent if one
We use the iterative “blocking” or “fuzzing” algorithm  considers, for example, the case of QCD. Vacuum quark
that has been used extensivelyDn=3+1 spectrum calcu- fluctuations break the string; so the potential as defined in
lations [30,32. We shall not repeat the details here; for aEd- (15 will flatten off for largerR. The phenomenological
recent detailed accoufin the context of S(R) gauge fields ~Potential, on the other hand, continues to rise, although it
coupled to fundamental scalars B=2+1] see [33]. May acquire a modest imaginary part to incorporate the de-

Briefly, at the first “blocking” level one has the usual link cay of the confining flux tube. Effectively it incorporates
matrices:UllL(i,t)EUﬂ(i,t). At the second level we con- nformation about the time-scales associated with the differ-

B o . 5, - ) ent dynamical processes that contribute. The two definitions

struct a “blocked Tl'nk maTtrlx, e.g.Us(xt), by summing  gitter most dramatically in the largh. , narrow-width limit
the pathsxx, yxxy', andy'xxy and projecting back to the ot QcD (less so in the pure gauge theories of interest here,
“nearest” SU(N.) matrix. All the paths start from the point jess, for example, one considers the potential between ad-
(x,t) and end at the point& away in thex direction. But  joint sourcex
thesg blqcke(_j links are not just _Ionger; thgy are fafitethe To project onto thisqa state we define the gauge-
spatial directions as WeILI. One iterates this procedure: thenyariant operator
blocked IinNk {natricesu . are formed in exactly this way
from theU’, = (all this for spatialx only). Thus these op- —
erators joirl{ sites that areM2'a apart, and are correspond- ¢(t)—q(O)H Uia(R)
ingly fat as well. We can form path ordered products of these
blocked links: for example around a super-plaquete, Where we can suppose that the qgarks are sepr_:\rated along the
=xyx'y!, where now each step is of lengti2'a. The X-direction and the product of link matrices is along the
trace of this will be a color singlefAfter taking expectation shortest path joining them. The cqrrelatlon function of this
values, there may be small non-gauge invariant pieces th@perator, taken from=0 to t=T, will, for large enough,
depend on how we projected from the sum of paths back int§€ *exp{—Eni((R)T}. This correlation function involves two
SU(N,). See Appendix B for a brief discussigiClearly the ~ duark propagators, one fronx£R,t=0) to (x=R,t=T)
blocking algorithm is far from unique. In Appendix B we and the other fromx=0t=T) to (x=0t=0). In them,
compare a particular subset of such algorithms in order to~* limit (which is how one implements static quarks dy-
motivate the particular version we have used. namically the quark hops along the shortest available route:

Thus we can form large smooth operators on any sizethat is to say its propagator is equal to the product of links
scale we like. When we redueby a factor of 2, we need along the straight line joining its end-points. Thus the corre-
only iterate the blocking procedure one extra time. We formlation function is equa(up to some irrelevant factpto the
operators, using a sufficient range of blockings deter- €xpectation value of the Wilson loopV(R,T)). If we have
mined by preliminary test calculation®on all the paths de- linear confinement, as in Eq(15), then (W(R,T))
scribed earlier in this subsection. Thus we often hay80)  *exp{—Enin(R) Tfcexp{oRT}, the usual confining area decay
different operators for any gi\/en quantum numbers. O'fOf Wilson |OOpS. We can improve this calculation, jUSt as we
course we do not need to consider all of these; many arBave improved the glueball calculation, using the smeared
dominated by uninteresting ultraviolet excitations. How tolink matrices in Eq(16). The timelike link matrices will, of
choose the “best” is the question we shall return to, after acourse, not be smeared; they arise from the quark propagator
brief detour describing the slightly different problem of ex- calculation.

(16)

tracting the string tension. We shall use a modified version of the above that employs
Polyakov loops rather than Wilson loops. Construct a prod-
2. Operators for the string tension uct of link matrices that closes on itself through a spatial

. . i boundary, for example
We can calculate the string tension by calculating the en-

ergy of the lightest state composed of a statiand q a -
distanceR apart.(Any fundamental charges will do; we uge dp(X,t) = Trnﬂl Uy(x,y+ny,t), (17)

for quarks because they are so familidf.we have linear -

confinement, then this energl,in(R), provides our defini-  on aL x L spatial lattice. This non-contractible loop is what
tion of the string tensiong, as well as providing us with @ one gets if one stretches our operator in Bi) until the g

L

definition of the static quark “potential,Vqq4(R): and g meet and annihilate. It couples to the corresponding
state: a flux tube of length that encircles the torus. Such an

R—o0 operator has zero overlap onto any contractible loop. One

Emin(R)=Vqq(R) = oR. (15 can readily prove this using the symmetry of the action and
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measure under the transformation Uy(X,Yo,t) 3. Variational criterion and excited states

—2Z\Uy(X,Y0,1),Vt wherey, is an arbitrarily chosen value oy jattice action possesses the positivity properties that

of y andzy is a non-trivial element of the center. A contract- gjo\ our lattice correlation functions to be decomposed as

ible loop is obviously invariant under this symmetry while Eq. (12). Let us define an effective mass by

the Polyakov loop is not. This argument breaks down if the

symmetry is spontaneously broken, which occurs, for ex- ($T(1)$(0))

ample, in the high temperature deconfining phase. amg(t) = —In:<¢ (t—a)¢(0)>]'
If we sum overx to make ¢ translation invariant;ﬁ

=0) and form the correlation function, we obtain at latge Then it is easy to see from the fact that all the coefficients in

the massmp(L), of the lightest state containing a periodic Ed. (12) are positive that

flux loop of lengthal.:

(19

amerr(t)=amesr(t+a)Vvt. (20

too This is a very useful property; it tells us that,¢+(t) provides
(ph(1) pp(0)) o e Me(bit=gtwal=mlbals-}t (18)  an ypper bound for the massg, of the lightest state with
the quantum numbers of the operathr whatever the value
Here we have explicitly included the first correction term ©f t and whatever the actual operator used. Since the statis-

which is the translation to Polyakov loop36] of the usual tfical errors onamg((t) increase with, we can assume that

Luscher correctiofi37] for Wilson loops. This correction is @ny apparent increase of the effective mass within fact a

“universal,” but obviously one needs to test whether theStatistical fluctuation.

physical flux tube does indeed fall into this particular univer- Now we know from Eq(12) that

sality class.
As we have seen above, using Wilson loops produces a a (t)t::bam (21

heavy-quark potential. This contains a Coulomb term which Metf G-

is long ranges-g?logr, in D=2+ 1. This term will of course  \when ist large enough for this limit to have been effectively
be screened, but having to disentangle it from the lineafeached? Since we know that,(t) decreases with increas-

piece, at the intermediate valuesrofvhere the calculations ing t, we can estimateng by the value of the effective mass
are accurate, can decrease the accuracy of the estimate of

In D=3+1 the Coulomb term is<1/r and its presence amg=amgtg) (22
makes it difficult to identify ther/12r universal string cor-

rection. By contrast, in using as we do correlatorsﬁefo
sums ofspatial Polyakov loops, we have completely dis- Me(to) <Merf(t>10) (23)
pensed with any charges and have transformed the problem
into a standard mass calculation. Because there are ngithin errors.
charges, there is no longer a Coulomb contribution. This Obviously this criterion becomes convincing only if the
benefit has of course been achieved at a price: we no longefrors are small enough for the relation in E23) to repre-
have a calculation of the heavy quark potential, but only ofsent a significant constraint. In practice that will only be the
the string tension. case ifty is small, which will only happen if we have a

Just as for glueballs, the simplest operator is too ultravio*good” operator, i.e. one which mainly projects onto the
let to be useful asma—0. To remedy this we replace the lightest state. Thus it would be useful to have a simple prac-
product of elementary links in Eq17) with a product of tical criterion to decide, early on in a calculation, which op-
blocked link matrices, as defined earlier in this section. Aserator is the best. Such a criterion is immediately suggested
we shall see, there is always a blocking level for which thishy considering the normalized correlation function
smeared Polyakov loop is very close to the wave-functional
of the ground state of a flux tube that winds around the torus. )= (¢T(1)$(0)) (¢pTe ")

Two technical asides: when using link matrices at a (pT(0)p(0))  (pTH)
blocking levelNg, the sites are spaced a distancé 2ta
apart. A given product of blocked links, which starts at sayClearly if we were using a complete basis of operators, then
y=1, is not quite invariant under translations in the the best operator would be the one that maximiZgt): it
y-direction because the blocked links themselves are nowould be the wave-functional of the lightest state and we
completely invariant. One can remedy this by summingwould haveC(t) = exp—mgt}. If the basis is not complete,
products that start at=1,2, . . . ,2'871— 1, respectively, and this suggests a variational criterion: the “best” operaigr,
this does in fact improve the operator overlap slightly. Ais the one which maximize€(t). In practice we shall use
second point is that need not be divisible by the length of t=a. The reason is that one obtains an accurate value of
the blocked link. In that case we include links of a lower C(a) in even a small calculation, and so can determine early
blocking level, averaged with staples that include transversen which are the operators that one needs to calculate with.
links blocked to the level of interestln practice this extra The value of C(a) provides us with an estimate of
smearing with staples is of marginal utility in getting a good exp{—amg} and hencemg, which we know to be an upper
overlap) bound on the true mass. In practice we improve upon this

wheret, is the lowest value of for which

(24)
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estimate by calculating the correlation function of this bestwhere the constart; is chosen so thab; is normalized to
operator and getting our mass estimate using the first effeanity. There are of course many variations possible on the
tive mass that satisfies E3). above procedure.

Our general strategy for obtaining estimates of the ground We return now to the choice of our original basis Nf
state and excited state masses is an extension of the proagperators,¢;,I=1, ... N. What we do is to carry out a
dure we have just described. We start with some set of, saghort preliminary calculation with typically 5 blocking levels
N lattice operatorsg;, i=1, ... N, which we normalize so of perhaps 6—12 different operators. We calculate only the
that (¢;"#;)=1. (These are chosen from the operators dis-diagonal correlation functions. Comparing the values at
cussed earlier in this sectigriVe then find the normalized =a we identify the best operator and a few which are almost
linear combination of the¢; that maximizes C(a) as good. We also take a number which are significantly
=(¢"(a)¢(0)). Call this operatorb,. This is our best es- worse, since, after all, we want our basis to contain a reason-
timate for the ground state wave-functional within the spaceable overlap onto some excited states. The sort of basis that
{¢i}, and the associated value 6{a) provides us with a we were easily able to accommoddbe terms of memory
lower bound estimate for expam;} wherem, is the ground had ~ 15 operators. In those cases where we had more we
state mass. We can find higher excited states just as simplgplit the basis into two and worked with both bases sepa-
First we construct a basis of operatoes; , i=1,... N rately. Ideally of course one wants to work with a single
—1, that spans theN—1)-dimensional subspace of the basis. The smallest basis was for the string tension, but here
space{¢;} which is orthogonal to®,. We now find the we were only interested in the ground state because by using
linear combination of thesep/ that maximizes C(a) operators that are translation invariqnt _ajong the Polyakov
=<¢/T(a)¢’(0)). Call this operator®,. This is our best Ioop, we aqtomat!cally exclgde any S|gn|f|qant overlap onto
estimate for the wave-functional of the first excited state. Théhe interesting string excitations of the basic flux loop.

associated value df(a) provides us with an estimate for

3 . 4. Lattice and continuumJ
exp{—amy} wherem, is the mass of the excited state. We

can continue this procedure obtaining operatbgs®,, . . . Suppose we have an operatprobtained by multiplying
from which we can obtain the energies of higher excitedthe (blocked link matrices around some closed cu®@eThe
states. rotation of this curve by an angle gives the operatot,.

Because our basis is finite, the above mass estimates ne¥¢e can then form an operator of spin
not be very good. To improve upon them we calculate cor-
relations of  our approximat_e waye-functionals, d)(‘]):f doesp,, (27)
(d;T(t)®;(0)), and from these obtain effective masses for
as large a range afas our statistical errorsvhich grow with
t) will allow. For each correlation function we look for a
“plateau” in the effective masses and use the first mas
along that plateau. For the lightest state we are, in principle,
looking for a plateau that extends te-c. For the excited HL ()=, eI . (29)
states we expect, with our incomplete basis, to have some n
admixture of lighter eigenstates, and so the initial plateau i ) i i )
should be finite and will eventually drop to the masses of the'S We remarked earlieré, (J) is not just spind but will
lighter states. That is to say, for excited states the mass es§PViously contain all sping=4N,VN, since all these spins

mate can be lower than the mass of the state whose massREVide identical phases #=n/2. It is nonetheless cus-
being estimated. This undoubtedly means that there is @mary to label the lowest energy state by the lowest possible

larger systematic error on our estimate of the mass of afPin: in the expectati(_)n_that_higher spin states will naturally
excited state than on that of a ground state. We do not knO\Be more massive. This is quite unsatisfactory: for example it
how to estimate this erroffor either type of statebut the IS réally not at all obvious that d=3 glueball must be

in the usual way. This assumes we are in the continuum of
gourse. On our square lattice we only use rotationsf2f

reader should be aware of its existence. heavier than al=1 glueball[these are ambiguous sinde
We have not yet said how we calculate the. We use — 1 andJ=1 are degenerate parity transforms and 3

the following standard proceduf8s]. Define theNxN cor- ~ — (—1)=4]. Which one is heavier can be an important issue

relation matrixC(t) by in any given dynamical modéhs, for example, ifl11]).

In fact the situation is significantly better than thi€] in
the case where one uses smeared operators with large over-
Cij(t)=<¢iT(t)¢j(0)). (25 laps onto the ground state. We shall now show this.
We note that the smeared operators that we construct and,
which we then insert into Eq28), spread substantially in all

Let the eigenvectors of the matri€~*(0)C(a) be v'i spatial directions. We are here only interested in the fact that
=1,... N. Then this also involves an angular spread. We might imagine mod-
elling this qualitative feature using some function like
N N ~exp{— ¢?/a?}, with the value ofe determining the angular
d=c P a: 26 spread of the operator. This would be the amplitude to find
' '21 v kzl kP 9 |6) in ¢|vac). The amplitude would change te exp{—(6
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—60)%/ o} if we rotate ¢ through an anglé,. Of course, we
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IV. CONFINEMENT AND THE STRING TENSION

cannot use precisely this form because it does not reflect the

periodic nature of the angular variable. However, we can

modify it slightly so that it does,

d’:E e7(072ﬂ'n)2/a2, (29)
n

and in that case it possesses the Fourier expansion

m=+o

1
¢= 2a\w m;w

e a2m2/4eim6

(30
Suppose we now insert this in E®8) with, for example,
J=0. We obtain

m= -+
2 e a?m?i4
2« \/; m= —oo

XML +iM+(—1)M+(—i)™
N=+o
2 2 e74a2N2ei4N6’_

a\ T N=-=

We see, as expected, that we not only hdweO, but that

¢L(J=0)=

31)

states withJ=4N,VN also contribute. However, what is in-
teresting is their overlap, which isexp{—4a?N?. We see

In the previous section we described how to calculate the
mass,mp(L), of a flux tube that winds around oWrxL
spatial torus. Whether such a flux tube actually exists, that is
to say whether we have linear confinement, will be revealed
by how mp(L) varies withL. This is the first question we
address.

Having shown that we do have linear confinement, we
turn to the problem of extracting continuum values of the
string tension in units of the mass scale providedybyThis
turns out to be much less ambiguous than the corresponding
D=3+1 calculations where the scale is provided by, say,
Amom- Nonetheless, we shall see that using “improved”
couplings does indeed enable us to produce more accurate
extrapolations. An explicit demonstration of the extent of the
improvement is provided in Appendix C.

Having obtained the continuum values @¢é/g? for the
SU(2), SU@3), SU(4), SU(5) gauge thearies, we then test cer-
tain expectations concerning the lafyg-imit:

(i) is SU(») confining?

(ii) is theNg— o limit reached by varyingy?o« 1/N?

(iii ) is the leading correctio®(1/N2)?

We also get our first indication of how small we can make
N, and still be close to thél,=« limit.

A. Testing for linear confinement

When we are using Eq18) to extractmp(L), it is nott

from this that ifa is not small, then these higher spin con- that we know butn, wheret=an;: so what we actually
tributions are severely suppressed. This should be no suextract isamp(L). If we have linear confinement with a
prise: in the extreme limit where our operator is smearedtring tensions, then we should find

uniformly over all angles it is obvious that onll~=0 can
contribute.

We see from this argument that smeared operators will 6L

generically have the largest overlap onto the loWast The

o
amp(L)=a%0L— —+ --- (32)

argument relies on the operator being smooth over some ffor large enough.. Here we have also included the “univer-
nite angular region. This is true of our elementary smeare§@l” string correction. Its presence is also something we
operators, but is not necessarily true of linear combinationgvould like to test.

of these. Since our variational calculation produces such lin- Since the numerical calculations are fastest ifZ\that

ear combinations, we need to continue the argument a littlés Where we have performed our most detailed tests. In Figs.

further.

1 and 2 we show howamg(L) varies withL for 8=6.0 and

What Eq.(31) tells us is that states of larger than minimal 5=9.0, respectively. The first thing we note is that there is
J will have a suppressed coupling to an elementary smeareddeed an approximate linear dependencewb(L) on L,
operator. Thus while it is certainly possible that the lightestwith an apparent trend towards exact linearity at latge

state with “J=0" actually possesse3=4 and that it has a

Ideally we would like to see this rise continuelte=. This

large overlap onto the variationally selected linear combinaiS not possible to test in a numerical calculation, but what we
tion of elementary smeared operators, its overlap onto angan ask is whether the linear rise extends to physically large
individual smeared operator should be visibly suppressed. IMalues of the string lengtlaL, or not. Now a convenient
practice we have found this not to be the case in any of th@hysical length scale is given = 1/\/5 where we can get
channels: typically we can find a smeared operator for whicta®o from the asymptotic linear rise. Doing so we find that
the overlap is=80%. Thus we can confidently state that theour largest lengths correspond &t ~8¢5 andal~5&; at
lightest states witll=0,1,2 do indeed have those spins, for 3=6 andB=09 respectively. These, we claim, are large dis-
all values ofP,C. We have not attempted to perform a simi- tances. For example, they would correspond=t¢é fm and

lar check for the excited states in these channels.

2.5 fm respectively in the real world wheré,=1/\o

Clearly one should use the approximate rotational invari=0.5 fm.

ance on scaleg>a to construct operators that, to a good

We can see from Fig. 1 and Fig. 2 that the dependence of

approximation, have any value dfthat one desires. Such a the mass oi is not exactly linear; indeed in the latter figure

calculation is in progresg38].

we plot the raticamp(L)/L precisely in order to expose the
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FIG. 1. Mass of periodic flux loommy , against its length.., at
B=6. The straight line is to guide the eye.
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TABLE II. Coefficient of effective leading L/ correction in the
flux loop mass: as extracted from loops of lengtlandL’ using
Eq. (33).

B L,L’ Ceff
12 32,48 0.6620)
9 24,32 0.7226)
16,24 0.639)
12,16 0.477)
8,12 0.102)
6,8 0.0@2)
6 24,32 -1.72.9
16,24 1.2670)
12,16 0.8727)
8,12 0.418)
6,8 0.285)
amp(Lisy) amep(Ly)
Livg Li
Ceff= ! 1 1 : (33)
vy
I-i I-i+l

What are we looking for? At small higher order corrections
in 1/L will be important and s@.¢; will vary as we increase
L. If howeverc.;—c asL—x, then this tells us that the

deviations from linearity. We note that the approach is fromg,nctional form of the leading correction is indeefL. If
_below; ie., the_leadlng correction must have_a neggnve Si9Mhe value ofc is compatible withm/6=0.52, then we have
just as it does in Eq32). We have plotted a fit of this form g5 me evidence that the correction is of the universal form.

in Fig. 2 and we see that it appears to be compatible with they,\ mych evidence depends on the precision of the com-
observed variation. Can we test the correction term in Eqparison of course.

(32) more precisely? Suppose the lattice sikzesre ordered

In Table Il we list the values of.¢; for various ranges of

so thatlL;, ;>L;. Let uszparametrize the corresponding Ioop|_i ,Li+1. We also show a single value obtainedgat 12. In
masses byamp(L;)=a%0Li—Ce/Li and the same for comparing the distances at various valueggpfwe can use

amp(L;,1). Then we obtain

0.028 T T T T

0.026 Lo

0.024 3 ]

3
¥

0.022 b

1 1 i
0 8 16 24 32
L

0.018

FIG. 2. Mass of periodic flux loop of length, at 3=9, divided

the fact that IirgHO,E%=4/ag2 which tells us that, roughly,

ax1/B. SoL=32-48 atB=12 corresponds roughly th
=24-36 atB=9 and toL=16-24 atB=6. As expected we
see a strong variation af,;; at the small values df where

our calculations are most accurate. As the lengthof the

flux loop increases its mass also increases and so the relative
error onc.¢s increases quite rapidly. So while there is good
evidence that, for largdr, c.¢; grows to be at least as large
as the theoretical value af/6=0.52, there is only a little
direct evidence, from thg=9 values, that this is indeed the
asymptoticL — value. Taken as a whole, we read the re-
sults in Table Il as providing significant support for the ap-
plicability of the Luscher universal string correction to the
confining flux tube. We remark that in contrastle=3+1
studies using Wilson loops, the present analysis has the ad-
vantage of there being no confusion with a Coulomb term of
the same functional form as the Luscher term.

Since this is our first serious mass calculation in this pa-
per, it might be worth discussing the extraction of those
masses in a little more detail. By way of example we list in
Table Il the effective masses, as defined in Bd), for the

by L to expose the correction to the linear rise. Curve is fit using Eq8=9, 12, and 14.5 calculationgThe last corresponds to our

(32.

smallest lattice spacingWe show not only the masses ob-
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tained usingp=0 operators, but also those obtained usingone. We shall use lattices that are about as larde-ag4 at
operators with the lowest non-zero momentwap=2/L ,B_= 9.0 in SU?2). As we see from Table I, this should cer-
on anL X L spatial lattice. From the latter we obtain effective f@inly be large enough.

energies,aE(p), which we have translated into effective

masses using the continuum dispersion relatiof= E? B. Extrapolating to the continuum limit

—p? As L decreasesap=2m/L becomes larger and at  In Tables V, VI, and VIl we list the values of the string
some point it should become sensitive to the cutoff at whicttension that we shall use. These have been obtained from the
point this relation will break down. Comparing the two setscalculated flux loop masses using E§2). The lengths of

of masses in Table lll, we observe that they are compatiblethese loops are also shown in the tables.

within small errors, thus demonstrating the restoration of The flux loop masses have been obtained from the cross-
continuum Lorentz invariance. The dispersion relation doegorrelation matrix, as described earlier. The exceptions are
break down on thé =6 lattice, but at this poinp=2#/3a  all in SU(2): the 8=6.56 andL=16, 8=6.0 calculations
~2/a which is certainly an ultraviolet momentum. and those at such strong coupling=3.47, that the eigen-

It might seem remarkable how small we can makehile  value calculation becomes error-driven and breaks down. In
still retaining all the string-like properties of the flux tube, these cases we applied the simplified variational calculation
which after all will have a width of the order of 1/ay/o. In where one chooses, from the original basis of operators, the
fact, as we have argued elsewhgt8)], this is not surprising single smeared Polyakov loop that maximizas.¢(t=a).
if the fluctuations of the tube are not too rough, and theBy comparing how such a procedure differs from the full one
transverse volume is periodic. at neighboring values df and 8 we believe that any bias

We return to the masses. Our criterion is that we choos@éduced is within the statistical errors. Once we have chosen
m(tg) as our mass estimate if, within errorsn(ty) the “best” operator, we extractr from amgs(t=2a).
=m(t)Vt=ty. In most of the cases shown in Table Ill that There are a few cases where the naive application of our
is straightforward; the choice ofi(t=2a) seems appropri- ‘“effective mass plateau” criterion would lead us to use
ate. In some cases there is a downward drift in the value ofimy;(t=23a) (or largert). However, these are typically two
m(t) at largert, for example on thd. =48 lattice at3=12.  standard deviation effects that occur infrequently enough that

no such effect: indeed it shows a slight upward drift. Thisthem, it would make no material difference to the calcula-

suggests that this drift is a statistical fluctuation. Indeed thdions we now describe. _ _
large drop seen in going from(3a) to m(4a) cannot be We now wish to use these values to obtain the continuum

accommodated in any realistic decomposition of the Cor_string tension. Since the only explicit mass sc_ale is provided
relator that respects positivity. In the case of the32 by g%, we expect that/o should be some multiple of it. We
masses at the sangthere is a marginal hint than(2a) is ~ can obtain this ratio from our tabulated valuesagfo:

not asymptotic, but it is difficult to see why it should not be \/—
if t=2a is asymptotic a3=9 and atB=14.5(as it appears lim BaJo=2N Yo 34
to be. The fact that correlators can drif82] and indeed BHW’B Vo ¢g° (39

oscillate[39] outside their apparent errors introduces some

subjective bias into our analysis. But, as we have seen, it caumsing Eq.(7).

often be resolved either by performing simultanequs0 To perform the limit in Eq(34) we can add a correction
calculations or by considering other calculations at nearbyerm

values of 8 andL. This renders the problem a minor one in

practice, although it may well induce a systematic bias at the ,33\/52 Cot G (35)
level of the statistical errors. For this reason we do not take B

seriously the fact that the mean value<gf; at largerL tend ]

to be abover/6, albeit within statistical errors. and fit the unknown constants, = 2N¢+/o/g? andc, to the

We turn now to the S(8), SU4) and SU5) theories. In values ofBa+/o that we obtain from our tables. In practice
each case we have performed an explicit test of linear corigher order corrections will be important at smalland so
finement at one value g8 at least. These are listed in Table We Will need to systematically drop off the loweStpoints
IV. We see that in every case there is an approximately lineavntil we get a fit with an acceptabjg?. Although this is a
increase of the mass with the length of the loop. That is tovorkable approach, we recall, from tie=3+1 case, that
say, we have linear confinement. We also extract and list théhe lattice bare coupling provides a poor definition of a run-
values ofc. as defined in Eq(33). We see that we have hing coupling. The basic problems are similar i 2 and
some evidence for the validity of the string correction in Eq.3+1 dimensions and so we might expect that the higher
(32) for all our values ofN. order corrections to Eq35) will be much larger than if we

On the basis of this evidence we shall assume that wi/ere to use a physically motivated coupling. A very simple
have linear confinement at all other valuesso that we  such couplind40] is the mean field improved coupling
need calculatenp(L) for only one value ofL and can then 1
use Eq.(32) to extractazo._Of coursez_:lL has to be chos_en B =/3’<— Tr Up>. (36)
large enough for the leading correction to be the dominant N¢
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TABLE llI. Effective loop masses for various loop lengthsand from the lowest 2 momenta,
=27 Nnem/L, in SU2) at the values o3 shown.

B L Nmom am(a) am(2a) am(3a) am(4a) am(5a)
145 40 0 0.37Q) 0.3642) 0.3642) 0.3643) 0.3635)
1 0.3751) 0.3652) 0.3632) 0.3613) 0.3584)
12.0 48 0 0.688) 0.6685) 0.65Q9) 0.62816) 0.63236)
1 0.69@2) 0.6704) 0.6717) 0.67113) 0.67125)
32 0 0.4482) 0.4342) 0.4293) 0.4264) 0.4247)
1 0.4471) 0.4342) 0.4303) 0.4254) 0.4256)
9.0 32 0 0.846) 0.8285) 0.83210) 0.83721)
1 0.8462) 0.8234) 0.8217) 0.83217)
24 0 0.6172) 0.6054) 0.6016) 0.5909) 0.59317)
1 0.6221) 0.6092) 0.60Q5) 0.59910) 0.59117)
16 0 0.3892) 0.3812) 0.3784) 0.3785) 0.3797)
1 0.3982) 0.3832) 0.3784) 0.3705) 0.3649)
12 0 0.2742) 0.2692) 0.2683) 0.2713) 0.2724)
1 0.2913) 0.2746) 0.261(10) 0.26814)
8 0 0.1741) 0.1721) 0.1721) 0.1722) 0.1732)
1 0.2156) 0.18210) 0.16325)
6 0 0.1301) 0.1291) 0.1291) 0.1282) 0.1282)
1 0.09316)

To defineB, we need the values of the average plaquettesand indeed is nearly linear even downNg=2. Now, if our
((1/Nc)TrU,). These are provided in Tables VIII, IX, and X. SU(N.) gauge theories are to have a smobih— limit,

In Appendix C we compare extrapolationsgrandg, in the  then in that limit they will have some fixed physical mass
cases of S(2) and SU3), where we have calculations over a scale that we shall calk. If this limit is to be confining, we
wide range ofB values. We are able to demonstrate that themust have

mean field improved coupling does indeed provide a much

better expansion parameter. Thus we shall extrapolate to the

(o
continuum limit using 7—>const, N¢— 0. (40)
c . . .
ﬂla\/;: Cot El (37 From Eq.(39) and Eq.(40) we immediately infer that
[
in all cases. g% Nﬁ (41
The results of these extrapolations are listed in Table XI c
together with the confidence levels of the fits and the fitted _
range. Having obtained the continuum string tensions TABLE IV. Flux loop masses as a function of the loop length,
L, for SU3), SU4) and SU5). Also shown isc.¢s, the coefficient
0.335318), SU2) of the 1L correction in Eqs(32),(33).
E_ 0.553@20), SU(3), 39 N B L amep Ceff
> =
g 0.758140), SU4), 5 44 8 0.449(83)
0.965754), SU(5), 12 0.731471) 0.558)
16 1.011056) 0.7523
we turn now to an analysis of thel, dependence. 33 8 0.9978)
12 1.55125) 0.5326)
i 4 28 8 0.425745)
. li | N
C. Confinement at large 12 0.713966) 0.729)
In Fig. 3 we plot our calculated values Q(fz_r/g2 against 16 0.985766) 0.7023)
N.. We immediately observe that the variation approaches g 15 8 0.442827)
linear form for largem, 12 0.739146) 0.726)
\/— 16 1.010892 0.51(23)
VT %N, (39) 24 1.5636180) 0.9244)

g
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TABLE V. SU(2) string tensions as extracted from flux loop TABLE VII. SU(4) and SU5) string tensions as extracted from

masses of length using Eq.(32). flux loop masses of length using Eq.(32).

B L aJo B L aJo SU@4) SU(5)

145 40 00971®0) 60 16 025380 - ayo p L ayo
12.0 48 0.1178) 5.0 16  0.312@0) 51.0 32 0.1285@3 820 32  0.1271&7)
12.0 32 0.117%) 4.5 12 0.352730) 40.0 24 0.168040) 64.0 24 0.1664)
9.0 32 0.162¢4) 3.75 8 0.448739) 28.0 16 0.252®) 44.0 16 0.255d)
9.0 24 0.16165) 3.47 8 0.488056) 21.0 12 0.359R24) 33.0 12 0.36489)
6.56 24 0.229710) 3.0 6 0.58416)

6.0 32 0.252@33) 25 4 0.70911)

6.0 24 0.25626) 2083 4 0.85250) Jo 0.1198)

N =0.197510)— N (44)

We recall that the usual all-order diagrammatic analysis de- = ]

(41) embodies precisely that requirement and so provides _ghis tells us something inte_resting: we can describe the phys-
fully non-perturbative confirmation of those arguments.  i¢S of SUN.) gauge theories, all the way down to &),

To complete our demonstration that the theory is confinby that of the SU¢) theory supplemented by the leading
ing in the N.—w limt we need to show that correction with a modest coefficient. Of course, so far we

lim mG/\/; is finite and non-zero for the lightest glue- have only shown this fo_r the string tension: in the next sec-
Ne— tion we shall see that this is also the case for the mass spec-

ball masses. That this is in fact the case is something that w1,
shall Qemonstrate in the next section; for now we shall as- pgefore moving on from our result for the string tension, it
sume it to be so. o ) . is interesting to ask whether it is possible to quantify the

In ado_lltlon to predlctlng thag «1/N,, the L_Jsual dia- . potential error associated with keeping only the leading cor-
grammatic analysis also predicts that the leading correctiopaction in Eq.(44). There is no unique way to do this, of

2 . . . . * . 1
should beO(1/N;). To test this we fit our string tensions course, but a first step would be to include a higher order
with the functional form correction and see what difference it makes. When we do so
we obtain the following range of fits:

Jo B Cy 5
N, ot NE (42) T oaorgam G124 00119
g°N, NZ N:
In Fig. 4 we show how the goodness of fit varies with the
power a. From this we can infer that We observe that our result for lin _\/o/g?N, is robust
C
under the inclusion of the higher order correction. Our cal-
a=1.96-0.45. (43)  culations constrain the coefficient of this higher-order correc-

tion to be small, and the only significant effect from includ-

If we assume, in addition, that the power should be an intelng it is to double the error on the extrapolated value of the
ger, then only one value is allowed=2. Thus we conclude Strng tension. . o
that we have rather strong evidence that the leading correc- '_I'he_dlscussmn so far has concer'ned 'the contml_Jum limit,
tion is also in agreement with the usual diagrammatic expecwhich is of course what we are mainly interested in. How-
tations. ever, the largeN.. expectations will also apply to lattice cor-

Fitting our calculated values, we obtain
TABLE VIII. Average SU?2) plaquette values.

TABLE VI. SU(3) string tensions as extracted from flux loop

masses of length using Eq.(32). L Plaquette B L Plaquette

145 40 0.929803) 6.0 16 0.8247483)
B L ao B L ao 120 48 0914820 50 16  0.78685@0)
34.0 40  0.1037@6) 8175 6  0.559@1) 120 32 0914823 4.5 12 0.760845)
28.0 32 0.1275Q0) 7.5 6 059123 9.0 32 0.885448) 3.75 8  0.70698@8)
21.0 24 0.1747@®8) 7.5 4 0.63%3) 9.0 24 0.885438) 3.47 8 0.680058%9)
15.0 24 0.257(15) 7.0 4 0.6985) 6.56 24 0.84054@2) 3.0 6 0.62402®2)
15.0 16 0.255@.2) 6.5 4 0.78226) 6.0 32 0.82477@0) 25 4 0.5473720)
11.0 12 0.374@3) 6.0 4 0.83%41) 6.0 24 0.8247826) 2083 4 0.4710013)
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TABLE IX. Average SU3) plaquette values. TABLE XI. Continuum extrapolations of3,a\o— 2N;\o/g?
as in Eq.(37), with confidence level of best fit, and range Bf

B L Plaquette B L Plaquette fitted.

34.0 40 0.91968@) 8.175 6 0.62073@5) Group C c C.L (%) 5=
28.0 32 0.901902) 75 6 0.5781(QL9)

21.0 24 0.86767(b) 75 4 0.5780(8) SU2) 1.3417) -0.421(51) 60 3.0
15.0 24 0.81077®) 7.0 4 0.54118L1) SUER) 3.31812 -2.4322) 90 8.175
15.0 16 0.8107611) 6.5 4 0.5006QL3) SU(4) 6.06532 -7.741.10 90 21.0
11.0 12 0.733401.8) 6.0 4 0.4573619) SU(5) 9.65154) -21.42.7) 70 33.0

rections, and we can ask if they are fulfilled. What we wouldthat are heavy enough will decay into lighter glueballs and
expect is that th@(ag?) correction should also be a func- this may require more careful analysis.

tion of g?N, i.e., Clearly we want to obtain the ground state in ed€ly
channel, and in those cases where the ground state is light
ao b+ b.ageN N0 46 enough we can estimate one or two excited masses as well.
ag?N, ° 189" Ne, < (46) So the states whose masses we shall calculate are those of

the 0++ O++* 0++** 0 .0 ~* Q —** 07+ 0+7
In terms of our fit in Eq.(37) this implies that the lattice 2**+, 2%** 27+ 27** 2=~ 27 =% 2%~ ot—% q1++

correction,c,, should be given by 1-*%, 177, and 1I' ~ glueballs.
A We shall calculate the masses, as described earlier, for
C1=4Nch;, Ng—o. (47 SU(2), SUR), SU4) and SU5) gauge groups and, in each

) ] case, for a range @8 values sufficient to allow a continuum
We note that our calculated values @f, as listed in Table extrapolation. In practice this means for most, but not all, of
Xl, are entirely consistent with this being the leading large-the values of at which we calculated the string tension.

form c;=cN¢®, we find a good fit witha=4.2+0.6. we that we have indeed calculated the mass? That is to say,
do we have evidence for an effective mass plateau?
V. MASS SPECTRUM To address this question we analyze, by way of an ex-

ample, our Sb) calculation at the highest value gf We

. _Havmg seen that all our gauge theories are Imearly CONShow in Table Xl the effective masses we obtain there.
fining, we infer that the asymptotic states are color singlet

and so we can calculate the mass spectrum using the opera-
tors described earlier on in this paper.

We shall first indicate the quality of the lattice mass cal- .
culations. We then investigate the finite volume dependence 1l R
of these masses so as to establish control over this potential i
source of systematic error. We shall then carry out the ex- 3
trapolation to the continuum limit. Finally we turn to a study

of the dependence of the mass spectruniNgn We finish 0.8} .
with a discussion of some features of the calculated mass x
spectrum. = i
i
A. Calculating the masses 061 T

We shall focus on the lightest states because the correla-
tions mediated by heavier states decrease so rapidly twith -
that it becomes hard to know whether we have indeed iso- 04 ]
lated the asymptotic exponential decay. Moreover, glueballs '

TABLE X. Average SU4) and SU5) plaquette values.

0.2+ i
SU4) SU(5) -
B L Plaquette B L Plaguette
51.0 32 0.898791) 82.0 32 0.8992481) 0 o . ) . .
40.0 24 0.869609) 64.0 24  0.86951@) L 2 & 4 5
28.0 16 0.80933@) 44.0 16 0.80532®) ¢
21.0 12 0.7376248) 33.0 12 0.73164@7) FIG. 3. The value of\/E/g2 as a function ofN. . The line shows

the fit in Eq.(44).
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' ' ' ' ' If mes(@) andmgsi(2a) are sufficiently close, then one can
i T argue that it is not possible fang¢¢(3a) to be very much
- 8 lower. At the margins, this allows us to make choices about
S . what is, or is not, likely to be a statistical fluctuation. At this

K level there is some subjective element in the analysis, al-

’ though it should be evident from Table XllI that this will not
be an important problem in our calculation. To test this we
have performed continuum extrapolations usimg;;(3a)

3
&
[\ (4] =S or [=>) -J o0
T
1

i e i whenever a blind application of our criterion for identifying
- ‘ "‘\.\___// 1 mass plateaux so dictated. We found it makes no significant
00— 5 s 5% 3 difference although the fits are often worse. The reason for

o the latter fact is that we discount amige in mq¢¢(t) with t

simply because we know from positivity that the effective
masses must decrease monotonically withrom the statis-
tical point of view, this is a bias in the procedure which
undermines the statistical analysis.

It is apparent from Table XIl that as we go to heavier
: > states, the evidence for effective mass plateaux becomes less
est toN.=c) and so are the ones which are the most inter;jgnificant simply because the statistical errors will over-
esting. We note that it is when the valueaofs smallest that \,heim the signal at smaller values DfAs we go to smaller

the correlation functions drop most slowly and we can X3 and so largem, this becomes very much worse and we
tract effective masses to largerAt smaller 8, farther away Wi” often not havé a useful effective mass beydre2a. In
from the continuum limit, it will be harder to confirm that we ,oqe cases we simply assume that,(2a) provides a good

are seeing mass plateaux. mass estimate. This is reasonable. If at a high valug af

. From this table we ‘Ufer that a good esti_mate of the_ m_asf)articular operator gives us a mass plateau ftem2a, then
is provided byme((2a) in each case. That is to say, Within 5 3 |5rger lattice spacing, e.g/=2a, an operator that is

errl?rs _tge effective mass 'Si on a plateau tferZa;c T?I'qfek's one blocking level down, and hence half the size, should
self-evident in most cases. In some cases, e.g. for &0 ¢ o1 dive Us a mass plateau frdm2a’ — 4a.,

one sees a drop ime; of over one standard deviation when —\\ e the above argument is plausible, it cannot replace a

going fromt=2a to t=3a. However, that is to be expected, yirect demonstration. This can be provided by allowing the
just statistically, given the large number of correlation f“nc'spacelikeas, and timelike 3, , lattice spacings to differ. We

tions that we consider. Positivity can be useful in such caseshen choose, small enough that the correlation functions

fall slowly enough over severdtemporal lattice spacings

for us to obtain several accurate effective masses. This is an
old idea that was used precisely for this purpp4g in the
early days of glueball calculations. More recently it has been
used very successfulli42] as part of the action improve-
o+t 0.5413) 0.5335 0.5397) 0.52311) 0.53314) ment program. Since this is a somewhat different type of
0t**  0.8213) 0.7997) 0.79614) 0.79929) 0.79565) calculation to the one in this paper, we leave its discussion to
0****  1.0334) 1.00910) 1.02828) 1.01366) 1.1822) Appendix D. The reader will find there an explicit demon-

FIG. 4. Thex? per degree of freedom against the power,of
the leading largeN, correction when fitting/a/g®N,.

Since the highesB corresponds to the smallegtthese cal-
culations are the closest to the continuum lifaitd the clos-

TABLE XII. Effective masses for the states shown, on & 32
lattice at3=282 in SU5).

State am(a) am(2a) am(3a) am(4a) am(5a)

0~ 0.7933) 0.7797) 0.76510) 0.75030) 0.71(5) stration that even for a coarse spatial discretization, using
0-~* 1.0164) 1.0078) 0.96926) 1.05462) 1.091 effective masses at distances betwagand 2a. is an accu-
64 28 926) 462) q17) > € s

0~"* 1.2025) 1.19314) 1.144) 1.2018) rate way to estimate the masses.

-+ In summary, we have taken all the masses that we use in
0 1.2085) 1.15511) 1.14643) 1.0211) . 4
0+ 1.3266) 1.25614) 1.25659) 1.5926) the spectrum calculations of this paper fram«(t=2a).
2++*  11034) 1.0729) 1.07431) 1.0010) that are ambiguous makes no significant difference.
2-* 0.9063) 0.8797) 0.85314) 0.84743) o
o= tx 1.0944) 1.0769) 1.06932 1.0410) B. Finite volume effects
27" 1.0814) 1.05410 1.05128 1.1010) In a theory with a mass gam, and on a periodic spatial
277* 12715 1.22516) 1.21846) 1.1711 volume that isL lattice units across, the leading finite size
2%~ 1.0754) 1.0439) 1.04930) 1.1011) corrections to masses are typicaly(e ™Y where the
27*  1.2764) 1.23017) 1.21849 1.3617) constantc=0(1) will depend on the details of the theory
1+ 1.3444) 1.29414) 1.28448) 1.14198 being consideref3]. Of course this correction will only be
1= 1.3555) 1.30Q10) 1.32746) 1.3316) relevant oncal is significantly larger than the typical had-
1™~ 1.2553) 1.2129) 1.17634) 1.1910) ronic length scale¢. In that caseamL will be large, since
17~ 1.2865) 1.25514) 1.23%44) 1.1519) hadron Compton wavelengths are usualy¥¢, and so the

correction will be small: usually too small to be observed
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with the kind of accuracy we possess. This means that we 3 . . ' ' ' . ' '
cannot expect to obtain a reliable estimate of the coefficient
of this correction term. This correction is interesting because
it is proportional to a triple-glueball effective coupling. How-
ever, if what we are interested in is controlling finite-volume
corrections, then the known functional form of this correc-
tion has a very useful consequence. Essentially it tells us that
if we calculate a mass on volumed; andal, which are 9l
both significantly larger thar¢, and if we find that the 1 % i %
change in mass is small when we go framto L,, then we

can be confident that any mass shift in going frobmL, to
L=oc0 will be small compared to the observed change in the L5F i
mass[as long asa(L,—L;)~£]. This is important: if the e o & &
leading correction were power-like rather than exponential, & .

then this would not be true and controlling finite-volume
corrections would be appreciably more difficult.

So our strategy to control finite volume corrections is as s 8 s .
follows. We calculate masses on a range of lattice volumes.
We include volumes that satisfy the conditions of the previ- 050
ous paragraph. And once we observe very small changes on .
our larger volumes, we can be confident that the mass calcu- .
lated on the very largest volume is identical, within errors, to
the L= mass. O 4 % i2 16 20 24 28 32

In practice it would be wasteful to perform such an analy- L
sis at each value g8. Instead we choose a couple of values FIG. 5. How the lightest S(2) masses vary with the spatial
of B where we perform an extensive analysis, including VeNYyolume, L2, at B=9. States are the ‘0’ (O), the 2° *(A), the
large volumes in order to make sure there are no unpleasait + (), the 1**(x) and the I *(x). Also shown is twice the
surprises. This allows us to establish what volumes are larggass of the periodic flux loop®).
enough that any change in mass becomes invisible within the
typical statistical errors of our calculations. We then use scal

ing to infer how this translates to other valuesff though not T degeneracy. This is precisely what we observe

tha\:v:oggrfr?"nren; meiﬁ I(;ilscﬂggqonsté;] t%)('; Sll—|n;p'|?1/ bsgiaurfr?nei Fig. 5. Thus the observed degeneracy of thiesPates can
u u pu Ime. hraving IN€&rve as a criterion for the lack of finite volume effects.

how Ialzge;_he vplu_me has to be in, sa;gfumts Cﬁ\% we (iii ) We observe that the value &fat which the 2 be-
can take this criterion over to $8) etc. course there IS qing t9 show finite-volume corrections is roughly where the

some Qanger in doing this and so we perform at !east amo asymptotic glueball mass equals twice the flux loop mass:
est finite-volume check for each of our non-Abelian groups.

As a first step, we show in Fig. 5 how some of the lightest 2amp(L)=amy+ /| _.,. (48)
masses vary with the sizé, of the spatial volume, in the
case of SW2) and at a coupling 03=9.0. This, as we see
from Table V, corresponds to quite a small lattice spacing
Our spatial length varies froh=6 to L =32 which corre-
sponds to a variation from-1 to ~5 in units of 1a\o
(about 0.5-2.5 fm if we were in QOPa range of sizes that
satisfies the conditions laid out above. Note that since this i o= : !
SU(2), we have noC=— states; these shall appear in our ex-direction which has the best overlap onto #ageriodic

(less extensiveSU(3) study. So what we show in Fig. 5 are flux tube. Typically this overlap will b(,LQO:lOO%. Con-
the masses of the lightestd, 0~*+, 2*+, 2=+ 1** and sider now the operatd;;ll. This will also bep=0 and color
1~ glueballs. We also show twice the mass of the periodicsinglet, but it falls into the sector of contractible loops and so
flux loop, 2ame, for reasons that shall soon be apparent. €an couple to glueball states. If the transverse spatial size,
There are several observations we can make from Fig. by, were very large, then this operator would mainly couple

2.5 4

ame % =

lier, this undermines the argument for- 2degeneracy al-

The same is true for the'0 Since the latter is lighter, and
sincempT asL T, the scalar becomes volume-independent at
smaller volumes than the tensor.

This correspondence withn2 is easy to understand.

%uppose we denote by the p=0 smeared Polyakov loop in

and the calculations on which it is based. to a state that consists of two periodic flux loops whose
(i) As we decreasé we do indeed observe the onset of energy would be &p(L). We shall refer to such states as
substantial finite size effects. “torelons.” On our latticesL,=L,=L and asL becomes

(ii) The parity doubling that we see at large volumes issmall these flux loops will necessarily interact; thus the low-
badly broken by these finite-volume corrections. This is notest energy will deviate somewhat fronmg. We can form
unexpected: the toroidal boundary conditions break the ef0** and 2"* combinations|,lf+1 1] and 1,17 =1,1], re-
fective rotational symmetry from th@ynamically restored  spectively. Again, on large volumes these will mainly couple
continuous one down to rotations af2. As discussed ear- to states with two flux tubes and massiZL). On smaller
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volumes,aL<¢, the interaction between the flux tubes will ~ TABLE XIll. How the lightest SU2) glueball masses depend
split these states away from each other and from this masgh the spatial volume. Twice the mass of the periodic flux loop is
While we cannot predict the precise variation of these?!so shown.
masses with., one would expect them to decrease, at least
until aL<¢. Thus the fact that the 2" mass begins to de-
crease with decreasinh, just when Eq.(48) is satisfied,
would seem to simply reflect the fact that for smallethan  o** 0.992) 1.122) 1.212) 1.192) 1.202) 1.182)
this the 2" state which is composed of a pair of flux loops 2*+ 0.922) 1.172) 1.745 1.808) 1.9912) 1.8710)
becomes the lightest state in that sector. And the same for tre*  2.2013) 2.1715 2.1521) 1.81(14) 2.0116) 1.91(11)
0*+. 2xlp 0.6241) 0.901) 1.431) 2.002) 3.126) 4.1115
We have explicitly confirmed this scenario. For latgat
least one of our usual glueball operators has a large,

~90-100 %, overlap onto the lightest 0 or 2" * state. By  erators described earlier on in this section. The glueball
contrast the double flux loop operators have poor overlapsnasses have been obtained from the usual glueball operators
The value ofl. at which the lightest mass begins to decreaseyased on contractible loopf course, the torelon and glue-
asL decreases marks the point at which things reverse. Fgsg)| operators do mix and &t we would always find the

a very high overlap onto the lightest state and the usual opyeneral, find different effective mass plateux at small values
erators all become poor. of t.) Just as we saw in the case of @) it is clear that the

We remark that similar finite volume effects are observedynset of large finite size effects for the scalar and tensor
in D=3+1 gauge theorie§44], but becausemg/\o is  glueball masses is linked to the mass of the corresponding
slightly higher inD=2+1, the effects occur on somewhat torelon state. We are also now able to see what happens to
larger volumes, and so their interpretation is that much lesghe C= — states and we show the 0 which is the lightest
ambiguous. of these. Since oua is not small, we do not have accurate

(i) Naively we would expect the spatial size at which weyalues ofm,(t=2a) for the heavier stategAs usual our
begin to encounter large finite size effects to be related to thguoted masses are extractedtzt?a.) We can of course
size of the glueball. However, in the case of the'0and ook at m,(t=a) which has the disadvantage of having
2" glueballs, we have seen that the onset of finite sizeome excited state component, but which is accurately cal-
effects is simply determined by thénfinite volume mass  culated even for the heaviest states. Although we do not
and the string tension. Thus the fact that we can go to smalleshow the values here, we remark that they show no sign of
spatial volumes for the scalar than for the tensor, before engny finite size effects that violate our above criterion, either
countering large finite size effects, is not telling us that thefor the C=+ or for the C= — states. The same is true for
size of the scalar is less than that of the tensor. The samgur modest S(¥) and SU5) finite volume studies, which
holds true in the case of four dimensions. appear in Table XV.

(i) In addition to the above, there are finite size effects, This establishes the level of our control of finite volume
visible in the 0°,27,1% states, whose onset appears at mucheffects. There is one further important point. In the case of
smaller values of, and which does not appear to be linked the 2 * the torelon appears to exist as a bound state in the
to mixing with torelon states(There are no simple torelon mass spectrum for largér This makes it difficult to extract
states with these quantum numbgrs. a consistent picture of the excited 2 states. Since there is

(iii) We infer from Fig. 5 that ap=9 a spatial size of ng such difficulty for the excited 2* states, and since these
L =24 is large enough for the lightest glueballs to be free ofstates should be degenerate with the non-toreloti xci-
finite size effects within our statistical errors. Assuming scaltations, we do not try to overcome this difficulty. So the
ing andB=4/ag” this implies that at a general value 6fa  reader should not be surprised to find no masses being
safe size id. =248/9. One can do better by using the calcu-
lated value Of.a‘/.; to set the scale. Doing so, one can then TABLE XIV. How the lightest SU3) masses depend on the
extend the criterion to S@3) etc. )

. . . spatial volume.
In practice we are more cautious than this and have per-

SU(2),8=6
State L=6 L=8 L=12 L=16 L=24 L=32

formed an extensive finite volume analysisgat 6 as well. SU®3),8=15

This is for a larger va]ue 0{1 and we include larger lattices, g0 L=8 L=12 L=16 L=24

up to more than 8 in units of 4k/o. These masses are

shown in Table XIlI. We also have a more limited study, on0"* 0.994) 1.092) 1.152) 1.102)

L=32 andL =48 lattices, at3=12 wherea is smaller. 0; " 0.992) 1.494) 1.929) 2.004)

These masses will be displayed later, in Table XVII, whereo* ** 1.244) 1.594) 1.66(6) 1.655)

we display our ‘V=0" SU(2) mass values. All these results 0=~ 1.727) 1.655) 1.576) 1.574)

confirm our criterion for what constitutes a safe volume. 2++ 0.955) 1.696) 1.81(7) 1.86(11)
In Table XIV we show our S(B) study. The presentation 20" 0.952) 1.584) 2.0915)

here is slightly different to that in Table XIII in that we show o-+ 1.8710) 1.837) 1.798) 1.766)

estimates of the 0" and 2" * torelon masses using the op-
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TABLE XV. How the lightest SW4) and SU5) masses depend that are large and downwardi$iowever, so few values are
on the spatial volume. affected, and these are usually at the lowest valugd; dhat
we choose not to complicate the analysis by doing so. We

SU(4) 5=28 SU(5)5=44 also note that the volumes used here are always at least as
State L=12 L=16 L=12 L=16 large as the minimum necessary, as indicated by our earlier
ott 10&2) 10&2) 1.0q3) 1.032) finite volume studies.
0+ 1.536) 1.624) 1.646) 1.6503) We begin with a brief .techn.ical aside. Our calculations, at
0 1.608) 1.604) 1.527) 1.595) each value of3 andL, typically mvplved betwe_en 80000 and
o+ 1.8010) 1.764) 1.7411) 1.697) 200000 Mont_e Carlo sweeps with calculat|o_ns of glueball
o+ 1.8012) 1.795) 1.789) 1.606) correlators being made every 5 sweeps. Typically we would

have 3 or 5 over-relaxed sweeps for each heat bath sweep.
By comparing the values af\/o the reader can see that the

quoted for the excited 2" states later on. As an addendum SU(4) and SUS) g values are more or less equivalent. They
to this, we remark that this “difficulty” appears to disappear &€ also nearly equivalent to some of the(Stand SU2) g
for larger values oN,. We assume that this is a manifesta- Values. o
tion of the suppression of all mixings at larg . We make some comments now, starting with the(U
masses listed in Table XX. Here we focus on features that
) might affect the reliability of the calculations; we leave a
C. Lattice mass spectra discussion of the physics until later. We first note that the
In the previous two subsections we discussed our criteridightestJ=1 andJ=2 states display parity doubling within
first for minimizing the systematic error associated with theerrors, in contrast to the marked lack of doubling in the
extraction of masses on a given lattice, and second for corn=0 sector. This confirms that we have made our ultraviolet
trolling the finite volume corrections to such masses. Wecutoff small enough and our infrared cutoff large enough.
now use those criteria to extract our “infinite volume” lat- The same is true of th@=2 excited states. However, it is
tice mass spectra. less clear what is going on among the excited states in the
In Tables XVI, XVII, XVIII, XIX, and XX we list some J=1 sector; there appears to be a near-degeneracy between
of the masses that we have extracted in th623UsSU(3), the ground and excited states in some cases. And the ex-
SU(4) and SU5) calculations respectively. All are in lattice pected degeneracy between the't and the I ** appears
units. In addition, all these masses have been extracted froto be broken. This may indicate the presence 38 state
amgi(t=2a). There are a few exceptions to this. It some-which is nearly degenerate with tde=1 state, it may be that
times occurs, particularly at the smaller values@fthat some of these states are multiglueball scattering states, or
amgs(t=a)<amg¢(t=2a). On the other hand, we know there may be finite volume corrections. We are not well
from positivity thatam,(t) must decrease dsincreases. placed to distinguish among these possibilities in our present
Since the error at=a is smaller than at=2a, it is clear calculations. For example to investigate the last possibility,
that thet=a effective mass is the better mass estimate inwe need to do a finite volume study for a small valueaof
these cases, and that is the value we list. However, the errgvhere these very heavy masses can be accurately calculated.
quoted is the larger one which is associated wit2a. In  The only calculation of this kind is in S at =12 (see
principle when we come to extrapolating to the continuumTable XVII). We do not see any trend for the"1* and
limit we should use thé=2a effective masses in these cases1™ ** masses to converge as we increasttom L=32 to
since otherwise there is a systematic downward bias in the=48. So it does not seem to be a finite volume effect. If we
statistical analysis[That is, we correct some large upward compare differenB values, there appears to be no trend for
statistical fluctuations immy¢;(t=2a), but none of the ones this effect to decrease; so it would not seem to be a famite-

TABLE XVI. The lightest SU2) masses at lower values gf

State B=3.75 B=45 B=5 B=6 B=6 B=6
L=8 L=12 L=16 L=16 L=24 L=32
o+ 2.079) 1.64243) 1.47824) 1.19319) 1.191(18) 1.17023
o+t 2.7(3) 2.1219 2.11(11) 1.676) 1.606)
QF Tr* 2.6(4) 2.0712) 2.1013
0o~ 2.1033 2.41(35) 2.5929
2++ 2.2617) 1.808) 1.9411) 1.8711)
2+t 2.0014) 1.9412
2°7 2.20(15) 1.81(14) 1.7711) 1.91(9)
27t 2.2827) 2.2616)
1+t 2.4331) 2.3539) 2.6427)
1+ 2.97) 2.4(5) 3.07)
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TABLE XVII. The lightest SU2) masses at higher values gf

State B=9 B=9 B=12 B=12 B=145
L=24 L=32 L=32 L=48 L=40
o+ 0.764360) 0.755267) 0.557236) 0.562846) 0.456223)
o+t 1.08216) 1.08714) 0.807253) 0.804774) 0.653233)
of 1.27121) 1.34022) 0.9498) 0.98214) 0.79Q4)
0+ 1.62944) 1.604) 1.18718) 1.18818) 0.9658)
0 ** 1.959) 1.757) 1.30220) 1.35028) 1.17813)
2+ 1.25913) 1.24915) 0.9137) 0.92413) 0.755735)
AR 1.39622) 1.48427) 0.9719) 1.05511) 0.8447)
2= 1.27624) 1.28623) 0.9289) 0.91410) 0.762651)
27t 1.53232) 1.48031) 1.08913) 1.09418) 0.95810)
1*++ 1.81454) 1.826) 1.25817) 1.29520) 1.0429)
1H+= 2.0410) 1.94(8) 1.49324) 1.49131) 1.24Q15)
1+ 1.89254) 1.81(8) 1.356198) 1.31720) 1.09610)
1-+= 1.836) 1.736) 1.331(17) 1.32Q019 1.09212)
effect. This is a puzzle. As far as the"1 states are con- Although we have carefully chosen the volumes so that

cerned, we have even less to go on, because we ha@ nothe ground statd=0 andJ=2 masses are essentially infi-
= — in our SU?2) studies. These oddities need to be resolvedite volume, this is not necessarily the case for the2

but they afflict the very heaviest of the states we study and sexcited states. Indeed we observe in Table XVII that the
we shall not attempt to resolve the issue here. mass of the 2** is volume dependent and is only degen-

TABLE XVIII. The lightest SU3) masses.

State Bg=11 B=15 B=15 B=21 B=28 B=34
L=12 L=16 L=24 L=24 L=32 L=40
ot 1.62636) 1.12316) 1.09514) 0.756162) 0.551738) 0.448236)
[ 2.1914) 1.66(6) 1.65244) 1.12415) 0.8236) 0.673745)
(M 2.069) 2.0411) 1.41123) 1.0349) 0.851267)
0~ 2.30(15) 1.56853) 1.56938) 1.101(14) 0.813357) 0.668249)
0 % 2.0516) 2.00(10) 1.38521) 1.02510) 0.838649)
0 ~** 2.4441) 2.40:30) 1.59639) 1.19116) 0.996985)
0 * 2.3224) 1.62741) 1.20415) 0.963481)
0t 1.83573) 1.32217) 1.19414)
0~ 2.0923) 1.82659) 1.33015) 1.08810)
0t * 1.9911) 1.58231) 1.31516)
2+ 2.3121) 1.81(7) 1.8611) 1.21816) 0.912370) 0.735443)
2t 2.1514) 2.18115) 1.52027) 1.05710) 0.913479)
2+ 2.6429) 1.78682) 1.75859) 1.25718) 0.9378) 0.7526489)
27t 2.1016) 2.1915) 1.61843) 1.10910) 0.914265)
2~ 2.0515) 1.9514) 1.47523) 1.092886) 0.891363)
27 2.21(19) 2.3526) 1.70542) 1.25415) 1.045285)
27 2.0416) 1.8911) 1.53927) 1.11411) 0.886759)
2t 1.81354) 1.32§15) 1.08511)
1+ 1.73840) 1.29811) 1.051370)
1ttw 1.93361) 1.48119) 1.21210)
177 1.88151) 1.35012) 1.0828)
17t 1.90248) 1.35713) 1.0969)
1~ 1.78034) 1.26911) 1.0347)
17 1.87751) 1.37115) 1.0759)
1+ 1.78837) 1.29711) 1.0749)
1+-* 1.99656) 1.40416) 1.1037)
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TABLE XIX. The lightest SU4) masses. TABLE XX. The lightest SU5) masses.

State B=21 B=28 B=40 B=51 State B=33 pB=44 pB=64 B=82

L=12 L=16 L=24 L=32 L=12 L=16 L=24 L=32
(s 1.52536) 1.08314) 0.710952) 0.546640) ot+ 1.55047) 1.05415) 0.6955) 0.532548)
0t** 2.31(22) 1.61639) 1.08Q10) 0.821(6) 0t** 2.43) 1.65430) 1.05311) 0.7987)
ot Fx* 1.998) 1.36421) 1.0329) QF =¥ 2.0611) 1.34227) 1.00910)
0~ 2.1013) 1.59936) 1.03913) 0.804@46) (V 2.2924) 1.581(44) 1.04111) 0.76510)
o % 2.007) 1.301(18) 1.0108) o % 2.0511) 1.27820) 0.99718)
0™ ¥ 2.3917) 1.54424) 1.18610) 0~ ~** 2.2719) 1.55534) 1.192)
0~ 2.3516) 1.57527) 1.20Q10) o+ 2.3214) 1.47823 1.15511)
0~ ** 1.80(6) 1.32514) 0 ** 1.804) 1.34718)
0+~ 2.66(32) 1.76(6) 1.34Q14) 0"~ 2.5432) 1.7477) 1.25614)
0t~ * 1.856) 1.56422) 0t—* 1.81(5) 1.58033
2+ 2.0918) 1.764) 1.16814) 0.912256) 2+ 1.697) 1.085) 0.891469)
2+t 2.0910) 1.40817) 1.08510) 2+ ** 2.059) 1.393) 1.0729)
2-* 2.1519) 1.795) 1.20518) 0.893667) 2-7 1.606) 1.075) 0.878569)
2-** 1.9910) 1.42923) 1.09512) 27t 2.0614) 1.373) 1.0759)
27" 2.0912) 1.43023 1.067112) 27" 2.1411) 1.390125) 1.05410)
27 % 2.3918) 1.574) 1.24413) 27 2.5728) 1.55931) 1.22516)
2+~ 2.1710 1.39424) 1.0779) 2t~ 2.0812) 1.43021 1.0439)
2+t 2.5329) 1.594) 1.29613) 2+t 2.51(36) 1.55734) 1.23Q17)
1++ 2.6628) 1.72Q31) 1.30411) 1+ 2.3822) 1.71830) 1.29414)
1t+* 2.054) 1.45415) 1tt* 1.938) 1.42114)
1+ 2.6826) 1.673) 1.34Q13) 1-* 2.5723) 1.69731) 1.30410)
1-+* 1.763) 1.34410) 1-** 1.785) 1.331(15)
1 2.4813) 1.7003) 1.2519) 1 2.2910 1.65432) 1.2129)
1% 1.745) 1.32013) 1~ * 1.664) 1.272)
1+ 2.4218) 1.735) 1.26410) 1+ 2.41(16) 1.71(5) 1.25514)
1t * 1.794) 1.31316) 1+* 1.734) 1.292)

. . D. Continuum mass spectrum
erate with the 2** on the largest volume, and then only in P

those caseg3=9 and 12, where this is exceptionally large. A lattice spectrum is only interesting insofar as it can lead
Explicit calculations with the double Polyakov loop opera-Us to the spectrum of the corresponding continuum theory.
tors described in the previous subsection indicate that this i§0 obtain the continuum spectrum we need to extrapolate
an artifact of the presence of a corresponding scatteéong OUr lattice masses ta=0. The first step is to take ratios of
bound? state whose mass increases approximately linearl{'3SS€S SO that the scade,in which they are expressed can-
with L. So asL | the mass moves out of the range of masse&©!S- We choose to take ratios of the glueball masseg, ,

we probe. We remark that we have no clear evidence of J° @Vo since the string tension is our most accurately calcu-

: : : ated quantity.
correspondingl=0 state.(It would, in any case, not inter- . . )
fere with the lowest 0" excitations because these are so, 1€ Sécond step is motivated by the observafith] that

. i . ) . in pure lattice gauge theories the leading lattice correction to
light.) It is interesting that this problem appears to dlsappea(rjimensionless ratios of physical quantities, sucimas Vo
for the larger SWN) groups. A possibility is that, as ex- phy d ' 4 ’

. 2 _
pected, the mixing between the double flux loops and outz(;éag?\'/esno ;Sgtsfrir;aili['e]cgﬁtrj%hiln\ql\;eng(()r;]esctgca dependence
ordinary “local” glueballs is suppressed by powers oN1/ ’ '

To investigate this properly one needs to include both double mg(a) mg(a=0)
flux loops and our normal contractible loops within a single = +cao. (49
basis for our cross-correlation matrigs has been done in Vo(a) Vo(a=0)

[45] for precisely this purpogeWe have not been able to do

this here because of the very large storage costs this would ) ) _

have entailed. Since we cannot resolve the states unambig@ course, instead of using the correction teca’o we
ously, we shall not attempt a continuum extrapolation of thecould useca?mZ where amg is any calculated glueball
SU(2) 2*** . For larger groups it seems that this problem ismass. The difference is formallp(a*). The reason for
not there and so we shall attempt to obtain the correspondinghoosingo is simply that it is so accurately determined. An
continuum masses. alternative way of extrapolating such a mass ratia+o0 is
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T ' ' TABLE XXI. Glueball masses in units of the string tension: in
10F 7 the continuum limit.
9t . mg /o
e, ... State Su2) SU(3) SU(4) SU(5)
5 1 o++ 4.71843) 4.32941) 4.23650)  4.18455)
AL SASEE SR | ot+= 6.8310) 6.5209) 6.3813 6.2013)
........................... QF = 8.1515) 8.2317) 8.0522) 7.8522)
g § ................ (O 6.489) 6.27195) 6.0318)
mg 6 Ereee . __
w20 LI ST 0 * 8.1516) 7.86(20) 7.8725)
0~ —** 9.81(26) 9.21(30) 9.51(41)
d i 0o~ 9.9532) 9.3025) 9.31(28) 9.1929)
U s £ S Feoreirnirannanntd ot~ 10.5228) 10.3550) 9.4375)
4 1 2t 7.8214  7.1312  7.1513  7.1920)
2+t 8.51(20) 8.5918)
) 1 2=+ 7.8614  7.3§11)  6.8618  7.1816)
2= ** 8.8020) 87528  8.6724)
°r 1 27" 87517 82232  8.2421)
27 7% 10.3127) 9.91(41) 9.7945)
Ir ) 2+~ 8.3821) 8.3325) 8.0240)
| . | 2+t7* 10.5130) 10.6460) 9.9755)
% 0.05 0.1 015 0.2 1t 10.4234)  10.2224)  9.9136)  10.2650)
a0 1" 11.1342) 10.1927  10.8955  10.2834)
FIG. 6. The ratio of some SB3) masses ta /o, plotted against 1~ 9.8623) 9.50(35) 9.6540)
a%o to show how they vary witla: the 0 * (@), the 0" ~(O), the 17~ 10.4136) 9.70145) 9.9344)

2" (x) and the 2 (¢ ). Extrapolations to the continuum limit

are shown as straight lines. The reader will note that the mass of th&"2 is missing

. . from the SU2) and SU3) columns. This is because we
to use the fact thag® has dimensions of mass and that could find no acceptable fits. We believe this is related to
Ilmﬁ_m,8=2NC/agz. Thus, for small enough, mixing with torelons, as discussed previously. The mass of

the latter depends sensitively on the volume and so will not
provide a consistent set of masses at different valueg of
mg(a) mg(a=0) N ° 5o (since the volumes are not exactly the sanihis is no
\/;(a) - \/;(a=0) g% (50) Iong_er a problem with S(4) _ar_1d SU5) and we assume that
this is because any such mixing becomes suppressed at large
N.. A calculation including overlaps between torelon and
What we do in practice is to choose one of the above formglueball operators would resolve this question, but we have
and attempt to fit all the mass values of some state with it. Ihot carried this out. Why we cannot get an acceptable fit for
a good fit is not possible, we assume that this is because thhe SU2) 2~ ** is less clear. The reason might be that our
largest value of used is too large for th®(a?) correction  SU(2) calculations in the 2" channel had a smaller bagis
to be adequate. So we drop the mass corresponding to tlegerators than in the later calculations with larger groups.
largest value of and try again. We keep doing this until we This meant a very small basis for the excited states.
get a good fit. In addition to these spectra we have performed in Appen-
In Fig. 6 we show some examples drawn from theg®U dix D some calculations with a very asymmetric lattice ac-
calculation. Since the mass ratios are plotted agaifst 10N, &=a4/4. This may be thought of as being close to the

the continuum extrapolations, in E@L9), are simple straight Hamiltonian™ limit, and it is interesting, as a test of uni-
lines. The really striking feature of this plot is how little Versality, to confront this spectrum with the &) spectrum
variation with a there is. This will make for unambiguous that we have obtained in this section. This we do in Table

and very accurate continuum extrapolations. XXl and we observe good agreement within errors. For a

Our continuum extrapolations for our various theories argl€tailed discussion of our calculations with the asymmetric
displayed in Table XXI. They have been obtained by fitting!attice action we refer the reader to Appendix D.
the form in Eq.(50) to the masses listed in Tables Xvi,  We now have all our continuum spectra and can turn to
XVII, XVIII, XIX, and XX and the string tensions listed in their dependence oN,.
Tables V, VI, and VII. The quality of each fit, as given by
the confidence level, is given in Table XXII. We have also

E. N, dependence of the mass spectrum

performed extrapolations using E(9); these give essen- We can already see from Table XXI that the variation of
tially identical results, with any differences being much our mass ratios withN; is weak and that it appears to be-
smaller than our quoted errors. come weaker with increasiny; .

014512-22



SU(N) GAUGE THEORIES IN 2-1 DIMENSIONS

TABLE XXIIl. Confidence levels of the best fits in Table XXI;
in brackets those of the fits that provide the errors.

Best fit confidence leveo)

State Su2) SU(3) SU4) SU(5)
o+ 85(25) 70(20) 70(20) 60(20)
o+t 25(5) 80(25) 90(25) 10025
(O 15(3) 90(25) 40(10) 60(20)
0~ 95(25) 35(10) 15(3)
o % 90(25) 35(10) 23(5)
0 ** 65(20) 70(20) 70(20)
0+ 9025 45(15) 85(25) 35(10)
0t~ 85(25) 95(25) 13(2)
2++ 95(25) 40(10 25(6) 17(3)
o+ +* 90(25) 90(25)
2-* 60(20) 50(15) 15(3) 30(8)
2-** 12(3) 14(10) 65(20)
2" 80(25) 25(6) 85(25)
o+ 70(20) 40(10) 30(10)
2+~ 25(5) 45(10) 3(0.3
2t 80(25) 12(3) 40(10)
1*++ 60(20) 40(10 10025 22(4)
1+ 60(20) 60(15) 10(2) 100125
1 45(10) 10(2) 2(0.1
1*- 25(5) 12(3) 15(3)

To illustrate this we plot in Fig. 7 and Fig. 8 the quantity
mg/g>N., which is obtained from the ratios in Table XXI
and the string tensions in E8). We choose to plot against
1/N§ because the usual diagrammatic analysis predicts that
large enoughN\. we should expect

Mo o R (51)
9’N,  © NZ

whereR.,=lim

N %}mG/gZNC. So on our plot this will be a
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FIG. 7. Some of theC=+ glueball masses for 2, 3, 4, and 5
colors, in units ofg?N, and plotted against BZ: 0" (@),
0" **(X), 2*¥(x), 0°*(0), 17"(O). The best linear extrapo-
lations to theN.= limit are also shown.

masses o\, is really very weak indeed, all the way down to
§.=2. This indicates once again that the mass scale of the
SU(N,) theory isx<g®N., as expected from the diagram-
matic analysis.

In Table XXIV we list theN,—© limits and the slopes,
R, that result from fitting our continuum masses with Eq.
(51). We can, of course, perform a similar analysis using
mg/+/o instead. The results of the corresponding extrapola-

simple straight line. We observe that the dependence of oufons are presented in Table XXV.

TABLE XXIIl. Comparison between the continuum mass ratios,
mg/\/o, obtained with the asymmetric=0.25 SU2) action, and
our previousr =1 SU?2) results. Also shown is@/g2 for both
cases.

State SU(2y,=1.0 SU(2)r=0.25
0+ 4.71843) 4.6510)
ort¥ 6.8310) 6.8320)
OFtHx 8.1515) 8.3933)
(o 9.9532) 9.2338)
2+t 7.8214) 7.81(20)
o+t 8.8630)
2=+ 7.8614) 7.5420)
27 t* 8.9427)
1t 10.4234) 10.5124)
1=t 11.1342) 11.0330)
[10.3844)]
Jolg? 0.335318) 0.3375130

Is there anything we can add to our previous result, in Eq.
(43), on the power of the leading correction? The only mass
that is accurate enough to be potentially useful is
mo++/g2N,. However, as we see from Fig. 7, this varies
almost not at all withN; and so provides us with no useful
information on the power of this correctiofiThe stronger
variation in my++/\Jo simply reflects the variation of/c
which we have already studied.

For purposes of comparison, it would be interesting to
provide an example of a mass spectrum that is quite different
to the one we have calculated here and yet comes from a
theory with a dynamics that is not so dissimilar as to make
the comparison meaningless. A natural possibility is to con-
sider the W1) theory. Since the leading-order larfjg-argu-
ments are in fact for U{.), this theory belongs naturally to
the sequence of theories we have considered. And yet it is so
far from N.=o that we would not expect it to fit into the
pattern we have observed so far. As far as dynamics goes, it
is a lattice gauge theory which is linearly confining and free
at short distances. We discuss our results for t® thass
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' ' ' ' ' TABLE XXV. The large N, limit of the mass spectrum in units
of the string tension, with the slope of the linear fit when plotted
against 1I)§I§. Also the range of colors fitted and the confidence

oL | level of the fits.
................ {%§ State lm,__m/Jo  Slope N> CL (%)
............. o+ 4.06555) 2.5842) 2 80(25)
15_122IIIZZiZIIﬁ'.ﬁ%ﬁﬁIZZZ::%:::::::::::::::::é:: .............. 0*** 6.1813) 268100 2 7020
’ QF ¥ 7.9922) 0.79160 2 50(15)
_?mT o+ 9.0230) 3.52275 2 85(25)
R Lo Y I 2++ 6.8816) 350134 2 3010
2-* 6.8921) 3.13162 2 20(5)
1r . 27 *x 8.6238) 1.69165 3 90(25)
1+ 9.9925) 1.78203 2 80(25)
1" 10.0640) 3.58365 2 308)
0~ 5.91(25) 5.24300 3 5515)
05k i 0% 7.6337) 4.61(460 3 70120
0™ ~** 8.9665) 7.2(80) 3 3510
0*~ 9.47116) 9.7(12.4 3 4010
27" 7.8935) 7.6(44) 3 60(20)
277F 9.46(66) 7.677) 3 9525)
0 0025 005 0.075 o1 0125 2+~ 8.04(50) 3.2(60) 3 60(20)
1/N? 2+* 9.9791) 5.1(10.0 3 50(15)
T 9.3660) 4.470) 3 60(20)
FIG. 8. Some of theC=— glueball masses for 3, 4, and 5 ,+- 9.4375) 8.499) 3 50(15)

colors, in units ofg?N, and plotted against Nfé: 0" (@),
0™ "*(X), 277 (*), 177 (O). The best linear extrapolations to the
N.=o limit are also shown.

spectrum(listed in Table XXV)) and some peculiarities of
the theory, in Appendix E. Here we merely note that in the

TABLE XXIV. The large N limit of the mass spectrum in units
of g?N., with the slope of the linear fit when plotted againsnlgl.l
Also the range of colors fitted and the confidence level of the fits.

U(1) theory the 0 " is no longer the lightest state; the 0
is about half its mass. We also note that the mass ratio
Mo+ + /\Jo is much lower than in S(2) [or in SU(x) for that
matter]. So this spectrum is indeed quite different, and the
comparison enhances, by contrast, our claim tha{2pU
=SU().

The lack of any visibleN, dependence in our most accu-
rately calculated massng++/g°N, is quite striking and
provides strong evidence that there is a smooth nontrivial

State Iirrhcﬁwm/gch Slope N.= C.L (%)

o+ 0.80811) -0.07479) 2 90(25) TABLE XXVI. The U(1) mass spectrum in units of the string
oF+* 1.22725) -0.31(18) 2 6520) _tensio_n, at s_everal values Bf In the last row is the string tension
0+ +* 1.58142) -0.8428) 2 50(15) in lattice units.

0" 1.78760) -0.5051) 2 85(25) me V@, U()

2: 1.36533) -0.2528) 2 3510) State £=2.0 B=22 5=23

2 1.36936) -0.2027) 2 154)

27" 1.70470) -0.7488) 3 95(25) o++ 3.549) 3.2923 3.3617)

1+t 1.988) -0.9057) 2 80(25) 0~ 1.977) 1.525) 1.505)

1+ 1.998) -0.61(70) 2 3510 0+ 7.19) 8.1(4) 8.8(3)

0~ 1.16742) 0.2650) 3 65(20) 0t~ 8.54) 10.45)

(I 1.50872) -0.07187) 3 65(20) 2+t 5.2(7) 4.6430) 5.1227)

0™ ** 1.7713) 0.24161) 3 30(8) 2-F 4.811) 4.99) 5.4540)

0+~ 1.8723) 0.63245 3 4510) 27" 6.1(4) 7.03) 6.34)

27" 1.578) 0.40093 3 5515) 2+~ 7.0(5) 6.7(3) 6.7(6)

27 7% 1.8712) 0.23143 3 90(25) 1+t 9.6(6) 11.006)

2+~ 1.5910) -0.371117) 3 65(20) 1= 9.7(6) 11.66)

2t 1.9717) -0.28188 3 50(15) 1 7.8(8) 7.903) 8.7(3)

1 1.8513) -0.33149 3 5515) 17~ 8.25) 8.03) 8.6(3)

1t 1.8716) 0.37200 3 4510 aJo 0.225118) 0.173416) 0.150515)
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largeN, limit, with a physical mass scaleg?N.. Coupled diameter and this also flips the direction of the arrow. Note
with our previous analysis of the string tension, this also tellghat this means that a rotationally symmetric linear combina-
us that theN =< limit possesses linear confinemetfis we  tion of such circular loops cannot &= —. One needs a
see immediately from the behavior aig/\/o.) From the fluctuation away from a circle to allo@=0 andC=— and
intercepts and slopes listed in Tables XXIV and XXV and this raises the energy. Of course we have gradually incorpo-
from Eg. (44), we can obtain the mass spectrum for anyrated some dynamical assumptions as we moved through the
value of N.. In this very concrete sense we can say thafast few sentences. One needs to make the argument within a
SU(N,) theories are close to SW all the way down to specific model framework and that belongs elsewHére
SU(2). Thus the largeN,. analysis unifies our understanding 11].

of all SU(N,) theories in a compact and elegant fashion. (v) We observe that whatever splits ti@g=+ and C
= — states is weakly dependent dhy and survives théN,
F. Features of the mass Spectrum —oo limit. On the other hand, in S@Z), where we have no

. . C=—, the spectrum is clearly a smooth continuation of the
The purpose of this paper is to calculate the mass s,pe<1‘.\-|C>3C= + spectrum(since our simple mass fit encom-

trum. Extracting intere;ting phys.ics from the detailed fea- asses ZN,<5). This provides a constraint on dynamical
tures of that spectrum is something that belongs elsewher echanismg for th€ =+ splitting

Howteve_lt,hlt Woulﬁ Ee Eh.u;“Shdof us notl t? make a few com- (vi) There are some striking approximate degeneracies in
me(r_1) s‘i’h ese WII N r_|§> an ;nc?r:np ete. ted v d the spectrum. The typical pattern isng++«=mg--,
! ere IS clear evidence for the expected parity Ou'm0++** =my--+ and similarly for the]J=2 states. Again, if

. . EE t— or—% x4+ = -

bling in the cases of the’2", 2=, 2 177, and T icis not an accident, it does suggest some simplicity in the
In contrast, for theJ=0 states, where we do not expect dynamics

parity doubling, the splitting between the=+ andP=— To go further requires confronting specific models with

states is huge.
- ; . _ L the spectrum we have calculated here. That goes well beyond
+
(i) Our lightest glueball state is the'0, just as it is in the scope of this paper.

D=3+1 gauge theories. Moreover, its mass, in units/of
is not that different. If we take the $B) continuum extrapo-
lation in [25], which uses th® =3+ 1 lattice glueball mass VI. CONCLUSIONS

calculations in[32,49, and if we perform a corresponding | this paper we presented our calculations of the mass
SU(2) continuum extrapolation using th®=3+1 lattice  gpectra and string tensions in three dimensional 25U
calculations in47,50, then we find SU(3), SU4) and SU5) lattice gauge theories. From these
_ we obtained the corresponding continuum spectra. The accu-
E — 38112 SU2),D=3+1, (52) racy of these continuum results reflects the large range in the
Jo o 13.6511) SUB3),D=3+1. lattice spacinga, over which we performed our lattice cal-
culations. We can compare this range to that in the more
The fact that théd =3+ 1 mass ratio is smaller than the one familiar D=4 SU@3) gauge theory by using the calculated
in D=2+1 follows naturally{10,11 in flux tube models of values of the string tensiom2o-. Doing so we observe that
gluonic stateg9]. (It does so from the fact that the closed the (usefu) range of ourD=3 calculations would corre-
flux loop has more transverse dimensions in which to oscilspond to 5.58 8<6.55 for the case of S@), 5.50<pg
late; this increases the corresponding “Casimir energy,” and<6.50 for SU3), and 5.78<8<6.35 for both SW}) and
so decreases the mass of the loop, for a given loop lengthsu(5). This range, and the statistics of our calculations, is
We also note from Eq(52) that theD =3+ 1 N, dependence the primary reason why oud =3 calculations are so much
has the same sign as =2+ 1. more accurate than what is available in four dimensions. We
(iii) Just as irD =3+ 1 [25,32,49, the next heaviest state also gain something from the fact that our best operators are
in the C=+ sector is the 27 (ignoring excitations of the slightly better in three than in four dimensions.
0" " since these have not been calculated in 4 dimensions We noted some strong similarities, in tie=+ sector,

The scalar-tensor mass splitting is not dissimilar: e.qg. between the 21 and 3+1 dimensional spectra. This should
provide an interesting test for models of glueballs. Indeed
my++ [ 1.683) SUE3),D=2+1, 53 one of the main motivations for our calculations is to provide
mo++ | 1.417) SU3),D=3+1. (53 a detailed spectrum against which models and analytic ap-
proaches can test themselves.
(iv) Unlike the C=+ sector, theC=— sector is very At the more technical lattice level, we studied, during the

different from its D=3+1 counterpart. For example, we course of our calculations, the effectiveness of over-
have a light 0 ~, while there are no ligh€= — states in 4 relaxation, the use of asymmetric lattice actions, how good
dimensions. This may arise from the fact that in 3 spacere operators with baryonic vertices, the efficiency of our
dimensions there is an interplay betwe@rand J that does  “blocking” algorithm, and the extent to which the mean-

not exist in 2 space dimensions. Consider, for example, &ield—tadpole improvement of the coupling really represents
circular flux string. It will have an arrow on it, foN;=3. an improvement. In this last case we were aided by the
Under C the direction of the arrow flips. In 8but not 2 super-renormalizability of the theory; this allowed us to

space dimensions we can rotate the circlesbyaround a compare directly extrapolations using the improved and bare
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lattice couplings, in a way which is not at present possible inn D=4, orD = 3, non-Abelian gauge theories, a method that
four dimensions. appears to have some effectiveness, and which is now in
The primary purpose of our calculations was to study thecommon use, is to mix heat bath and over-relaxaf28)27]
large-N, limit of SU(N.) gauge theories in21 dimensions  sweeps during the updatéor reviews sed?28]). As far as
and to compare the results of our fully non-perturbative caltesting the efficiency of this method is concerned, what is
culations with the standard expectations obtained from allyyaijlaple are studies of the decorrelation of blocked Wilson
order perturbation thepry. We fOl_Jn_d that '_[here does appear 'i%ops in SW2) and SU3) [29] which show that there is a
be & smoottN.— < limit and that it is obtained, as expected, girqng reduction in fluctuations when most heat bath sweeps

. 2 - . . 2
by varying g=1/N.. The leading correction i©(1/Nc),  are replaced with over-relaxation. This has helped to moti-
again as expected. We found that confinement—the crucigj,ie the widespread use of overrelaxation.

ingredient for the usual phenomenology—does indeed sur- . ever, useful as these tests are, what one would like to

\stlveec:rhuen:ailrr]gﬁct “m:: éﬂgl;’vev?:tgtl)gi?vteh detg;[egl\?gn(rgﬁss see is how the statistical errors on the physical quantities of
p : Y, interest (glueball masses, string tension, ¢tare reduced

lciedonigstso ?U;{j:)t,ramctgr? sé)eensdeeg::arlitbtehde %'ﬁe.ruesr,lcihgeﬁvevggizwhen some fraction of the heat bath sweeps are replaced with

O(1N?) corrgction y SVer relaxation sweeps. B=3+1 such an exercise would
Thucs all D:2+.1 SUN,) gauge theories can be de- be prohibitively expensive for the small lattice spacings

scribed by the SU§) theoryi/vit% a?nodesD(l/Nz) correc-  Where the answer is interesting, and so, as far as we know,

‘ o :

tion. This provides a very elegant way to unify and under-"° study of this kind has been pyb!|shedD|¢2+1, sucha .

stand all these potentially quite different theories. Stl_de becomes possible and this is what we shall present in
There is a wealth of larghk. expectations that we have this appendix. Because tm:.2+ 1 ‘F?mdD:3+ 1 theories

have so much in common—in particular they both become

not explored. For example those involving decays, ) ;
—.GG, and, more generally, thh_-dependence of matrix free at short distances—we can hope that what we find has

elements involving various products of singlet operators, aS°™€ rer‘]Ievartl)cehto f%ur d|mer1IS|on§ as \;vell.. hms have b
well as their factorization properties. Neither have we at-, ©OUr heat bath and over-relaxation algorithms have been

tempted to expose the existence of Witten's master fgdgl ~ described in Sec. IIIA. We note that in both &) and
or to determine its properties. All these topics should be>U(3) the over-relaxation algorithm explores phase space at
readily accessible in three dimensional calculations of thé constant value of the total action. We shall characterize the

kind presented in this paper. The reason we have not adiPdate pattemn by the ratid,, of the number of over-

dressed them in this paper is not because we find them le&glaxation sweeps to the number of heat bath sweeps. Since

interesting than the questions we have addressed, but b€ Use a pipelined CPU, all our sweeps employ a variation

cause the S(2) and SU3) calculations were completed be- ©f @ checkerboard update. ,

fore we realized that we might have something interesting to Ogr _study of SU3) is the more extensive of the two and .

contribute concerning the lardé; limit. so this is where we shall begin. We have performed compari-
These calculations also need to be extended by the inclONS at three values @ atf=11 and 15 on 1216 lattices,

sion of matter fields in the fundamental representation. I/fnd at=21ona 24 lattice. If we use the calculated string

this case the leading corrections are expected to be |arget€nsion to set the scale of the lattice spacing, then these three

O(1/N,), and so it is an interesting open question whetheM@/ues of 8 correspond t3=5.7,5.9,6.15, respectively in
SU(2) or even SU3) will remain close to SU¢). Needless the p_=4 theory with which the reader is probaply more
to say, all the above questions need to be addressed in fof@miliar. The lattices a8=11 andp=21.0 are effectively of
dimensions, and what we can say there is that the first indilNfinite physical volume for the quantities we shall be con-

cations[8] are quite promising. sidering here. The lattice volume =15 is of an interme-
diate size, which mainly effects the nature of the™2glue-
ACKNOWLEDGMENTS ball. At 8=11 we performed calculations fd&®,=0 (pure

) ) heat bath and for R,=5. Each calculation involved 80000

This work has been supported by the fo!lowmg grantss\yeeps with the data split into 40 bins of 2000 sweeps each
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GR/K95338 and PPA/G/S/1997/00643. It has also been SURst each oR,=0,2,5,10,20, with the data divided into 20 bins

ported under PPARC grant GR/K55752. The hospitality ofq aach case. AB=21 we performed 20000 sweeps at each
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fully acknowledged. | have benefitted from many discus- Tﬁe q,uén,tit,ies, we use in our comparison are, first, the
sions, with many people, during the course of this Work. . 1cces of the lightest glueballs: theé Q0™ - 2+ and.
Particular thanks to Simon Dalley for asking questions which, 1o e available. the 2+ (which should be deg’enerate V\;ith
provided my o-rigingl motivation for extending the &) and the 2+ in large 'volumes and for small lattice spacing&/e
SU3) calculations into a study of SBL). also use the mass of the lightest flux loop that closes through
a periodic boundary. This provides us with our estimate of
the string tensiong, since the mass of this loop oL, up
to O(1/L) finite size corrections, wherk is the minimal
Although there is no systematic procedure known for redength of the loop(in lattice unitg. In addition to these
ducing the exponents associated with critical slowing dowrmasses we also calculate expectation values of the simplest

APPENDIX A: TESTING THE BENEFITS OF MONTE
CARLO OVER-RELAXATION
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TABLE XXVII. Errors on SU3) masses on a 126 lattice at TABLE XXVIII. Errors on SU(3) masses on a 226 lattice at
B=11; R, is the number of over-relaxed sweeps for every heat batiB=15. R, is the number of over-relaxed sweeps for every heat bath
sweep. sweep.

State R,=0 R,=5 State R,=0 R,=2 R,=5 R,=10 R,=20
Flux loop 0.0054 0.0050 Flux loop 0.0036 0.0053 0.0033 0.0044 0.0043
0.024 0.030 0.0085 0.0123 0.0078 0.0074 0.0094
o+t 0.0098 0.0097 o++ 0.0086 0.0132 0.0075 0.0139 0.0085
0.056 0.051 0.034 0.040 0.037 0.038 0.033
0~ 0.019 0.024 0~ 0.017 0.026 0.020 0.018 0.022
0.22 0.20 0.081 0.113 0.086 0.082 0.125
2+ 0.036 0.031 2+ 0.025 0.015 0.015 0.024 0.021
0.29 0.32 0.090 0.092 0.092 0.079 0.070

closed loops made out of our "blocked” links. At a "block- jngjvigual error ratios around the global average as though
ing” level of unity, Bj=1, we have the simple plaquette. hey were statistical fluctuations. This is intended to do no
More generally these "superplaquettes” consist of a squargnore than provide aindication of the significance of the
that is length 2% in lattice units. The simple plaquette is yajye of the average error ratio. The reader can manipulate
dominated by ultraviolet fluctuations and is of relatively little the humbers in the tables in other ways if he so prefers.
physical interest. At higher smearing levels, the expectation cgnsider first3=11.0 (Table XXVII) and the ratio of
value is dominated by fluctuations closer to physical lengtherrors in the run with over-relaxation to the errors in the pure
scales and how the accuracy of these is affected by ovefeat bath run. Taking the ratio of corresponding errors in the
relaxation is a more interesting question. _ two columns we obtain an overall average error ratio of
We compare the errors on these quantities in the differen{ 026). So in this case there is no improvement in incorpo-
runs characterized by different valuesif. The reference ating over-relaxation. AB=15.0(Table XXVIII) we obtain
run is the one witlR,=0, i.e., pure heat bat_h. If the,=0 average ratios 1.272), 0.967), 1.099), 1.0910) for R,
error is changed by a factor of, say,n the mixed run, then  _5 570 20, respectively. Again there is no sign of a signifi-
the latter is as good as a pure heat bath run whose length i$int improvement for any over-relaxation mix. The global
1/)/2 times that of the mixed run. This of course assumes thag oy ratio average, 1.15), confirms this.
our bins are large enough to be essentially independent. We \ye turn now to our calculation at the weakest coupling,
have performed a variety of checks to convince ourselve%:21_o(-rab|e XXIX). We obtain average ratios of 0.},
that this is the case for the results we present here. For €%.81(6), 0.887), 0.947) for R,=3,5,7,10, respectively. We
ample, for theg=15 pure heat bath run we checked that theyyserve a clear reduction in the errors of the runs with over-
bins could be made a factor of 10 smaller and still be negliyg|axation: the global error ratio average is 0.6. Al-
gibly correlated.(With a factor of 20 the independence be- o,gh we cannot be certain which mix is best, there is evi-
gan to break dowi.In order to keep our bin sizes suffi- gence that a ratio of around 5:1 to 7:1 is as good as any at
ciently large so that we could be confident of their mutualyis value ofg and that this leads to an error ratio of around
independence, the number of bins for each calculation coulg g4 1o this improvement we should add the fact that an
not be made very large. Hence there will be substantial flucgyar_relaxed sweep, for §8) in D=2+ 1, takes about 77%

tuations on our error estimates. For this reason the readef ihe time for a heat bath sweep. Thus the gain in using
should be cautious about drawing conclusions from any one

error ratio, and in practice we will average the error compari- tagLg xxIX. Errors on SU3) masses on a 34attice at3

sons over several quantities. ) =21.R, is the number of over-relaxed sweeps for every heat bath
In Tables XXVII, XXVIII, and XXIX we show the statis-  gweep.

tical errors for the flux loop and glueball masses at the three
different values of3. There are 2 rows of numbers for each state R,=0 R,=3 R,=5 R,=7 R,=10
mass. The second row contains the actual mass estimates:

The first row is the error on the effective mass extracted fronflux loop  0.0053

0.0044 0.0040 0.0038 0.0030

the same correlation function but from one time step earlier. 0.0089  0.0075  0.0070  0.0057  0.0069
This contains an admixtur@ypically only a few percentof 0" 0.0085 0.0072  0.0058 0.0056  0.0095
excited states(See Sec. IlIB for a discussion of effective 0.0170  0.0172 0.0138 0.0132  0.0142
masses.We display both because the individual error esti-0™~ 0.0123 0.0072 0.0090 0.0150  0.0103
mates contain quite large fluctuations which appear to be 0.030 0.035 0.035 0.030 0.034
largely independent and so can be averaged to obtain mog * 0.0148 0.0106 0.0103 0.0119 0.0120
reliable error ratio estimates. Because we are equally inter- 0.044 0.029 0.032 0.041 0.045
ested in all these physical quantities, it makes sense to con-+ 0.0094 0.0132 0.0103 0.0102  0.0094
struct a global average of these error ratios. We attach to this 0.043 0.044 0.026 0.044 0.054

average an “error” obtained by treating the variations of the
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TABLE XXX. Errors on SU?2) masses on a £24 lattice atp  smallR, the error is often reduced, whidé surprising) On
=9. R, is the number of over-relaxed sweeps for every heat batl'the other hand we observe that the errors on large super-
sweep. plaguettes are reduced and that, in contrast to what we saw
for masses, this effect is present at smaller couplings. This is

State Ro=0 Ro=5 Ro=9 Ro=49 similar to what has been found in 4 dimensi§28] for large
Flux loop 0.004 0.003 0.002 0.002 and blocked Wilson loops.
0.006 0.004 0.003 0.004 In conclusion, we have seen that for sufficiently small
ot 0.007 0.004 0.006 0.007 couplings—equivalent t® =4 values of3~6.15 for SU3)
0.015 0.014 0.009 0.009 and B~2.55 for SU2)—there is a substantial increase in
2+ 0.011 0.007 0.010 0.010 efficiency through mixing heat-bath and over-relaxation
0.019 0.019 0.017 0.021 sweeps. The CPU saving is about 40% for($Land about

75% for SU2). The difference is largely due to the fact that
SU(2) over-relaxation is a very simple and fast operation. In
over-relaxation is about 40% in the update time. AlthoughD=4 the operation of calculating “staples” is a little
the gain in the total time will be reduced by the inclusion of lengthier and so this effect will be somewhat weaker there.
measurementgypically tuned to be about half of the total

time), there is no doubt that this is a worthwhile gain. APPENDIX B: TESTING THE EFFICIENCY

We turn now to the case of SP) where our tests are OF THE OPERATORS
much more limited. The lightest masses here are of the flux ) ) i
loop and of the 0 and 2" glueballs. We performed com- N constructing a “good” basis of operators for our vari-

parisons at3=6.0 and8=9.0. Using the calculated string OUS Mass calculations, the use of spatial blocking is crucial.
tension to set the physical scale, these valueg aforre- The general motivation is that if one wants a good overlap
spond toB=2.4 and 2.55, respectively, in ti2=4 SU2) Onto the lightest physical states, then one needs to employ
theory. At 3=6.0 we see no sign of any benefit from over- (combinations of I.arge smooth operators. There are obvi-
relaxation, albeit in a calculation of limited statistics. Our OUSly many possible variants on the particular recipe we
calculations at 8=9.0 (Table XXX) are with R, have used in this papéwhich is the one that has been used

=0,5,9,49,24% and have much better statistics: 25ooosuccessfully in earlieD=3+1 mass calculations In the
sweeps, split into 25 bins, for each valueRyf. The lattice is first part Qf this appendix we will consider some variatio.n in_
12224 which is of small, but not very small, physical size: f[he blocking pr_ocedure and we shall see that our choice is
there are certainly some finite size effects involving the 2 ndeed an efficient one.

We see from Table XXX that there is a significant benefit to 1 1€ range of operators we have used has been limited not
using over-relaxation. We do not show our results Ry only in the type of blocking employed but also in the variety

—249 andR,= (all sweeps over-relaxgdwhich, while of ways we put the blocked loops together to form color

amusing for various reasons, are not really relevant to thi§inglet operators. In practice we limited ourselves to.simple
study. We obtain average error ratios of Gg)6 0.719), closed loops. However, once we go beyond3Uhere is a

0.8011) for R,=5,9,49 respectively. The global error ratio whple new class of operators that we can construct, and
average is 0.76). For SU2) over-relaxation is a simple yvhlch take advantage of the fact that one can tie together

operation and is much faster than the heat bath; a run wit dices .With a totally anti-symmetriq tensor. We refer to this,
R,=5 or 9 is about twice as fast as a run with only heat bat or obvious reasons, as a baryonic vertex. Such operators

sweeps. Thus the overall saving is a factor of 20.76 ave not been used in previous lattice glueball calculations
~4. This is a large reduction. Again, the inclusion of mea-2s far as we are aware. Our attention was drawn to them by
surements will reduce the gain soméwhat their possible role in splitting th€= *+ sectors, as pointed

We turn now to the smeared superplaquettes. The avera yt i [.11]' For this reason we have carried out a sma_\ll
error ratios, for the runs described above, are summarized i plculation to check whether they encode some interesting

new information. This is described in the second part of this

Table XXXI. W th isingly, the simpl ;
able e note that, not surprisingly, the simple ")

plaquette acquires a larger error if we include over-

relaxation. (These global averages mask the fact that for
1. Variations on the blocking procedure

TABLE XXXI. Ratio of errors with and without over- In our construction of “blocked” link matrices the most
relaxation, for “plaquettes” at blocking leve, . obvious parameter is the weighting of the direct path as com-

SU3) =21 SU(3) g= SU3) 5= SU(2) B=9 pared to the staple-like paths. The choice we made was to
B, U@3)A=21 SU(3)A=15 SU(3)E=11 SU(2)s= take an equal weighting for all the paths. So, for say the

1 1.2815) 1.0013) 1.29 1.0114) x-direction, we would takex+ yxxy'+y'xxy using the no-

2 0.925) 0.636) 0.88 1.025) tation in Sec. llIB 1. In this section we shall perform some
3 0.645) 0.634) 0.81 0.783) calculations using a variable weighting,. That is to say,

4 0.754) 0.694) 0.79 0.716) we use a blocking

5 1.0110

U¥=yU U +U, U000 +UIU LU, (BY)
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where we have suppressed some obvious arguments etc. TheTABLE XXXII. Effective masses at=a from the “best” op-
blocked link. UB . is then obtained by projectingB back  €rators in different blocking schemes, as described in Appendix B.
' X

X!
into the group. We then see which value gf is most effi-
cient in the sense of producing the best operators.

Before doing so we briefly comment on the projection

back into the group and the resulting gauge transformatiogux loop 0.62211) 0.61210) 0.60310) 0.6019) 0.6308)

min, {amg(t=a)}
State ¥4=0.25 4=050 74=1.0 y4=2.0 y4=4.0

properties of thaJB. We begin by noting that if we periorm o++ 0.97915) 0.96713) 0.96312) 0.96911) 1.00811)
a |OC_a| gauge transformation on the fields, thét? 2+ 1.534) 1.554) 1.563) 1.565 1.633)
HgnUBgi, whereg, is the gauge transformation at site 2~ " 1.7%4) 1.6%3) 1583 1583 1.633

0 * 2516) 2.134) 1.993) 2014 2.125)

and the paths making LJBB start at the site and end aghe
siten’. If the group is SU2), we obtainU® by dividing U®
by defUB}. Since the matricegy are unitary, we have

deg,=1 and so ddUU®} is gauge invariant. Thus, in the
case of S(2), UB has the gauge transformation properties of
a product of links frormto n’ and we can form color singlet
operators out of closed loops in the usual way. For I$U(

+2) the situation is differentty® is not proportional to an
SU(N,) matrix, and if we wantJ® to be in the group, we

negd to Bdefme it some other way. The method We use IS tgchemes, and in particular how efficient is our usual choice,
defineU™ as egual to the value of the SN) matrix U that vq=1. We shall confine ourselves to the lightest states in
maximizes TfUPUT}. It is easy to see that for SP) this  eachJPC channel. In that case our usual variational criterion,
reduces to the method we use there. It is also trivial_to sefs discussed in Sec. 11l B 3, provides us with a simple crite-
(using the cyclic property of the tracethat if U®  rion for comparing operators of the same quantum numbers:
—>gnUBg;,, then, just as in S(2), UB—>gnUBgl, and we oOne caICI_JIates the effectiye masstata and the “best’_’
can form color singlet closed loops in the usual way. How-OPerator is the one that gives the smallest value of this ef-
ever, in practice we maximize the trace by a simple iterativdeCtive mass. So what we have done here is to find the best
procedure which we stop before complete convergence iRP€rator in our basis for each type of blocking. The best
order to save computer time. This procedure requires, as if9'm Of blocking will then be the one that produces the mini-
starting point, some first guesid, for the blocked matrix, Mal value of the effective mass.
In practice we construdt/s from UB in such a way that it In Table XXXII we present the value'dmeff(tza) for

+ the best operator for each of the 5 kinds of blocking we
doe_s not tra_nsform ads—gnUsg,, under a gauge t_ransfor_— consider and for the variout © quantum numbers. We ob-
mationg. This means that when we stop the algorithm prior

> serve thatyye[1,2] seems to work best overall, although
to complete convergence, the resultid§ only transforms y4=0.5 is virtually just as good if we ignore the"lstates.

approximately asJ BﬂgnUBQ;r- In principle this does not Note that since the different calculations are performed on
matter; averaging over all field configurations in the Monteexactly the same sequence of field configurations, the errors
Carlo calculation will lead to a cancellation of the non-gaugewill be highly correlated.

invariant pieces in the correlation functions. However, again We have therefore seen that with respect to variations in
in practice, this means we generate extra noise and this withis particular parameter, our choice gf=1 is about as
increase our statistical errors—something to be avoided ifjood as any. Of course one can vary the algorithm in many
possible. other ways, for example by including other paths than just

We see from the discussion in the previous paragraph thahe direct path and the “staples.” A systematic study would
there is more to “blocking” than choosing a sum of paths pe useful.
and a relative weighting. One can ask if projecting back to
the group produces better operators than not doingaad 2. Operators with “baryonic” vertices
perhaps using some other form of normalizatidstudies in
D=3+1 of several alternative strategies in @J[30] and
SU(3) [32] suggested that this was more or less so. Some*. L .
tests then showed that approximating the maximization o olthn %nd finish at some point'. Let us denote by
the trace by one or two iterations did not significantly worsen U%U 'the cor.respondlng path ordered products'of
the operators or increase the errors. However, there has bigﬂOCked l"?k matrices along these three curves, running
no demonstration that this continues to be the case as wg°M N to n’. We can form singlet operators out of pairs of
increase the size of the group or that all this continues tdn€Se in the usual way, e.g.
hold inD=2+ 1. These are studies that still need to be car- =Trulu?", (B2)
ried out.

We return now to our study of how the operators varyBut in the case of S{B) we also can form a color singlet out
with the choice ofyy in Eq. (B1). Our calculations are in of all three of them:

1%+ 2.806) 2.327) 2195 2.204) 2.344)
1 3.0119) 2.438) 2278 2.306) 2.496)

SU(2) and are performed on a d@attice at3=7.5 in a run
consisting of 10000 sweeps. On these configurations we per-
formed separate mass calculations, using our usual basis of
operators, for the 5 different blocking schemes that uged
=0.25, 0.50, 1.0, 2.0, and 4.0.

What we want to know is how efficient are the different

We will consider the specific case of &). Suppose we
gave three curve€,,C,,C5 each of which starts at some
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TABLE XXXIII. Effective masses at=a obtained from bases basis that includes the best two blocking levels of this opera-
with and without the operator)y , which contains two “baryonic”  tor. We compare it with what we obtaijon the same set of

vertices. From a Télattice atg=15 in SUJ). field configurations if we do not include¢,. We observe
that there seems to be nothing new in these channels when
ameq(t=a) . we includegy , at least not as far as the ground state and the
State Withey Without ¢y first few excitations are concerned. There is a slight improve-
0++ 1.082) 1.082) ment in some of the overlaps, as indicated by a decrease in
0+ +* 1.675) 1.675) mess(t=4a), but one would expect that just from an increase
Ot ek 2'034) 2'05(3) in the size of the basis.
OF ek 2.26(6) 2'26(5) This, albeit minimal, study leads us to believe that the
o+ 1.7&2) 1'7&2) inclusion of operators incorporating baryonic vertices will
ot 2'1 5 2'1 6 not alter our conclusions in any significant way. However,
156) 156) such operators can be convenient in providing a simple
VAR 2.337) 2.347) :
' ' means for constructing=1 operators, and they may well be
2 ek 2.567) 2.61(7) : L o - -

L ' ' important in investigating some physics, e.g. @we = split-
1”* 2.606) 2.606) tings, lower order in M. corrections, etc., so a more de-
1 2.625) 2.635) tailed investigation would be useful.

17 2.7498) 2.799)
17 Hxx 2.9210) 3.027)
APPENDIX C: TESTING THE BENEFITS
OF MEAN-FIELD IMPROVEMENT
17,2 (3 . . '
¢v= € U; Ui U injric (B3) In this appendix we shall show that the mean-field—

tadpole improved inverse couplifgO]

where we have exposed the matrix indices and is the
usual totally anti-symmetric tensor. This extend§\to>3 in 1
the obvious way; we have?!, ... UNc paths joined by the B=BX <N—Tr(Up)> (CY
appropriateN.-componente tensor. ¢

Since the operators in EqB2) and Eq.(B3) have the i . )
same quantum numbers, they will have non-zero overlapBrovides a much better expansion parameter {fan our
and there is na priori reason to think that we have lost D=2+1 ca!culatlons. This both. complem.ents the available
anything by excluding the latter. However, it might be thatD =3+1 evidence[40] and provides us with a more accu-
they constitute more efficient operators for some states, anid@te way to determine lim o/g
if that is the case for one of the heavier states, where in  Qur strategy will be to compare directly various extrapo-
practice we cannot calculate correlators beyond smatl  |ations toa=0 using either 18 or 1/3, as expansion param-
might be that, in using them, we will expose a state that westers. We shall perform these comparisons using our calcu-
have not been able to see with operators of the type in Eqations in the S2) and SU3) theories, since these cover
(B2). large ranges 3. Having found which extrapolation works

In this appendix we will describe a small exploratory cal-pest, we shall take that information over to the (&Uand
culation designed to see if including such operators mighy(5) theories where the range of our calculations is much
make a serious difference to our calculations. We shall COMmore limited and where the use of a good expansion param-

sider an operatorpy, of the form in Eq.(B3) with eter pays significant dividends.

L N We have focussed upon the string tension because in

us=u,u,u, practice this is the quantity that we calculate most accurately
on the lattice. Since lim _B=2N./ag? we know that

2 a—0

u?=u,
. R H 2

Us=Ulu,U,, (B4) ;'Lnfa@_ fim 2Neyorlg?. €2

suppressing obvious arguments and indices. This is a rect-

angle with a central link crossing the rectangle. The pathdhe apprO?ch t(:hthte contlnuum limit wil |gvgl\;]e higher or-
ordering is out from the same vertex for all three curves. er corrections that are Inverse powersgolind hence van-
h as powers o&. We thus expect that the approach to the

Under C such an operator reverses all three arrows on thé&

curves, which for this particular operator is equivalent to acontlnuum limit will be under much better control than in 4

rotation of 7. So one can easily see that from this operatordimenSi_onS’, where the analogous quantity that one W(_)u'd be
(and the one we obtain by—y) we can obtain 0+, 2, calculating is ImAHO\/E/Amom and where the corrections
and 1"~ quantum numbers. would be inverse powers of lag This will allow us to make

We have performed a calculation on a®1Bttice at a much more explicit and direct comparison than is possible
B=15 with this operator. In Table XXXIII we list the effec- in D=3+1.
tive 0", 2** and 1"~ masses obtained at=a using a Since we expect
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L9 . . . T strong-coupling regime. In this region an expansion i@,1/
18k -1 4 such as in Eq(C3), should no longer be valid.
AL 1 ......... 1 The maximum range, more or less, over which we can
' II e perform linear fits with acceptablg?, turns out to bes
16 eE . =4.5 in the case of S@2) and3=15.0 for the case of S@3).
Pav/o | e i These fits are given by

Lap = 1 1.2011
al” ] Bayo=1.32412)+ %, su2),  (CH
1.2+ B and
1.1 1 1 ' 1 1 1

0 0.1 0.2 /s 0.3 0.4 0.5 3561)

8.
BaJo=3.27924+ ———— SU3). (C7)
FIG. 9. The values oBa./o plotted against 3 for SU(2). Also B
shown is the leading-order strong coupling prediction atoand  (Note that the errors on the intercept and slope are anti-
a leading-order continuum extrapolation at high correlated.

While such a linear extrapolation is a perfectly acceptable
ﬁ+2+ o (C3) procedure for extracting the continuum value of the string
B B tension, it must suffer from some systematic bias due to the

neglect of higher order terms. These, it is clear from the
for large B, it is useful to plot the values gfa\/o against figures, are certainly not negligible at intermediate values of
1/B; we do this in Fig. 9 for S(2) and in Fig. 10 for SW). . If we includeO(1/8?) terms in our fits, we naturally find

For large enouglB the first two terms in EQC3) will domi-  |arger acceptable ranges for the fig=3.0 for SU2) and
nate and so the values should fall on a straight line as w@=6.5 for SU?3). The fits are
approach the continuum limit. This we observe to be the

Bayo=co+

case. For orientation we also show in Fig. 9 and Fig. 10 the \/—_ 0.9538 1.1(1.3
strong coupling predictions for the string tension up to Bayo=1.33423)+ B + Bz SU2),
Oo(B): (C8)
and
a’o=—log g +0(B?) (C4)
4.1(1.7) 46.511.0
for SU(2) and Bayo=3.36750) + Gt SUd).
B (C9
a20=—|og(ﬁ)—1—2+o(32) (CH We observe that in both cases the inclusion of the extra

O(1/8?) term has increased the value of the continuum limit
in the case of S(B). [The extraO(B) term in the case of by an amount that, while small in absolute units, is uncom-
SU(3) arises because in that case a product of two plaquettdgrtably large when compared to the claimed errors, espe-
can be used just as well as a single plaquette in tiling th&ially so in the case of S@3). Moreover, in the case of §8)
minimal surface spanning the Wilson lodpVe see that our the coefficient of the 132 correction is so large that the
calculated values of the string tension extend well into thevalue of this correction is comparable to that of thes 1/

correction over much of our range. Under such circum-
' ' ' ' ' stances one cannot motivate the neglect of the next,
6 . O(1/8%), correction. However, it is clear, from the large
errors in Eq.(C9), that our SU3) data will not be able to
resolve these higher order terms with any useful accuracy.
5T . ! 1 ‘ Moreover, there is also the danger that ®¢L/3%) correc-
Par/o - } """"""" tion is being overly biased by the valuesa{o in the tran-
x sition region between weak and strong coupling, where the
IR very validity of an expansion in B/is breaking down. This
leaves us with an intrinsic systematic error on the(3U
3t ; . continuum limit that may well be larger than the quoted sta-
) ) g . , tistical error.
0 0.04 0.08 0.12 0.16 0.2 The lattice corrections in EqC3) are precisely what the
use of a better coupling should improve—Dby reducing their
FIG. 10. The values of3a\/o plotted against 3 for SU(3). coefficients. How well does that work here? If we use Eq.
Also shown is the strong coupling prediction@{) atlow 8 and  (C2) to defineg, , we can plots,a\/o against 18, as in Fig.
a leading-order continuum extrapolation at high 11 and Fig. 12. It is immediately apparent from a comparison
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1.5 T T T T T
2.5780) 0.73.
14 . BiaJo=3.32328)— ;( + ;2 L . SU3).
[y i I |
12 = e, (C13
A II T
ﬁlaﬁu— T .
1p P . We observe that the coefficients of the higher order terms are
ool T small: so there is no reason to worry about the next correc-
sk 1 | tion. A second and related observation is that the asymptotic
orl | values are little changed with the inclusion of t@éllﬁ,z)
) . . . . . correction—in contrast to what happened when we &ed
069 0.2 0.4 0.6 0.8 1 our expansion parameter. Indeed even the coefficients of the
1/B1 1/B8, terms are insensitive to the inclusion of a higher order

term. All this represents a substantial improvement in the
perturbative control of the continuum limit.

The fact that we can extrapolaga./o with fits involv-
with Fig. 9 and Fig. 10. that in terms of the “improved” ing just two parameters means that we do not need to per-

coupling the higher order lattice corrections are dramaticallyfOr™m calculations at more than four valuesin the case of
reduced. More quantitatively, if we perform fits as before butoWU(4) and SU5). This represents a substantial saving in
with B, replacing, we obtain the following results. In the COmputational effort. ,

case of SP) we obtain good fits with just the leading From f'ItS such as 'the above we can extract the continuum
O(1/8,) correction for the much larger rangg=3.0 while ~ MasS ratios ShOW_” n E_q38)'_W9 remark that it is both .
for SU(3) excellent fits are possible fg8=8.175 (and rea- because we are in 3 dimensions, where the bare coupling

sonable ones all the way down &= 6.0). Moreover, these decreases linearly with the scalerather than just logarith-
fits o ' mically, and because of the extent and accuracy of our lattice

calculations, that it is possible to perform reasonably accu-
rate extrapolations to the continuum limit even with the

FIG. 11. As in Fig. 9 but using the mean-field improved cou-
pling, B, , in place of 8.

Bia\Jo=1.3447)— @ SU?2), (c10  ‘bad” lattice bare coupling. This has enabled us to quantify,
B in a way that is not yet possible in 4 dimensions, how much
the mean-field improved coupling actually improves the ap-

4322) proach to the continuum limit of the lattice spaciryg,

2.
BiaVr=331812) - —;—, SU3),
|
(C1y
APPENDIX D: CALCULATIONS WITH AN ASYMMETRIC
display much smaller corrections to the leading asymptotic LATTICE ACTION

terms than was the case in Eq€6) and (C7). Since these In this appendix we present an &) calculation of the
fits are so good, there is no real reason to include higher P P

order corrections. However. if we do so. then we obtain 1aSS spectrum on lattices with timelike and spacelike lattice
' ' ' spacings related bg;=aJ /4. As discussed in Sec. VA the
primary purpose of this study is to check explicitly that our
0.359) 0.1815 su2) criteria for which effective masses adequately reflect the ac-
B g u2), tual masses are in fact accurate. A second reason is that this,
(c12  being a calculation with a different action to the one we have
used so far, will provide us with some test of universality.
. . : . . . . We shall first discuss some of the features that are peculiar to

BiaJo=1.3369) —

. such calculations. We then present our results.
a7 5l ';I | 1. Preliminaries
,1 To allow different spatial and temporal lattice spacings
I 1} we use the action in E¢8). What is the relation between our
251 T ] choice of 3¢, 8; and the lattice asymmetry? Suppose we are
1 aiming for a particular ratio
2_ 1 i 1 1 1 1 i ] at
0 005 01 015 02 025 03 035 04 =2 (DY)
1/Br s
FIG. 12. As in Fig. 10 but using the mean-field improved cou-
pling, B, , in place ofg. In the limit a5,a,—0 we have
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1 1 be able to compare the lattice side=acL, at different
[1_ N—ReTrUps] s 2N, couplings. For this we need to knoay to a reasonable ap-
¢ proximation; great accuracy is not needed because we usu-
1 1 ally include a margin of safety in our choice of the volume.
{1— N—ReTrU pt]—>a§at mTrF2 There is however at least one place where we do need
c accurate values for the lattice spacings. This is in our calcu-
1 1 lation of the string tension. Our usual procedure is to calcu-
BS— _Zf d2xdt=TrE2 late the massa;mp(L), of a flux loop of lengthL = a4l  that
g 2 winds around the spatial torus. This maagng(L), can be
(D2) written, using Eq(32), as

yvhereF. is the contmgum field strength sqgared_. Since the aimp(L)=a;XLa(L)
integration measure gives a facnﬁrat when discretized, we
see that the choice

T &
- L2
Bs=1B,  Bi= ,3 B= (D3) (D4)

a9’

=a;L =a;also—

aw
(=) "5z

Clearly we need to know=a,/ag very accurately if we are
to be able to calculate,\/o with the accuracy we are used
to. A similar situation arises if we calculate potentials using
ilson loops.

is what is needed, at least at ttlassicallevel, to achieve the
asymmetry/, defined in Eq(D1).

In practice there will be quantum corrections to thes
classical relations. Three related questions immediately arise.
(a) What do we need to know aboaj anda,? (b) In a given
simulation, how can we calculatg anda; directly?(c) Can
we easily “improve” upon the relations in EGD3)? There are two obvious methods that we can use to calcu-

Before considering each of these questions in turn, wéater=ai/as. The first involves calculating the energies of
need to remark that the classical relations in @) should ~ states with non-zero momenta. Suppose we have a particle of
remain a roughly reliable guide in the full theory. This ismass m. The allowed momenta are asﬁ
because our theory is super-renormalizable and this is in con=(27n,/L¢,27n,/Ls) and the corresponding energies that
trast to the situation in 4 dimensions. Nonetheless, we dee obtain from our correlators may be written @& (p).
expect significant corrections, as we saw when consideringor small momenta we expect the continuum dispersion re-
the 8 dependence ga./o. We saw therésee Appendix € lation, E2=p?+m?, to be accurately satisfieWWe have ex-
that the corrections to the classical relatis 2N./ag? are  plicitly seen that this is so on the symmetric lattices that we
guite large and can be drastically decreased by the use ofteve used in our main calculations in this pap&o we
mean-field improved coupling. expect to have

In the rest of this Appendix we shall assume that the
asymmetric lattice has been chosen so thg€ag. This
means that we shall systematically ignore &4a?) correc- ag
tions as compared to ones that &¥¢a?). (D5)

b. How do we calculate gag directly?

afE?(p)=af(p?+m?)=

2m\2
L—) (nZ+n2)+(am)?.
S

Therefore, from our calculated values@E(p) anda;m we
can obtain, using EqD5), a value fora,/as.

The first thing we need to establish is whether we actually OQur second method is even more direct. Normally we
need to knowas anda, any more accurately than we already calculate correlators in thedirection. We could instead cal-
know them through using E¢D3). culate our correlators in, say, thedirection. In that case our

If we just wanted to calculate some lattice mass ratiosspace would bey(t) in place of &,y). As long asa,L, is
m; /mg, then these could be obtained without knowing thelarge, as it will always be, this new spatial volume will also
lattice spacing at all: our usual procedure would give us eshe large and we can assume there are no finite volume ef-
timates ofa;m; and the lattice spacing then cancels in thefects. Thus we obtain the same mass in both calculations, up
ratio. However, if we want to extrapolate to the continuumto lattice spacing corrections. That is to say, we obtgin
limit, then the leading correction will b&(a2), assuming  from ourt-correlators an@é,m from ourx-correlators. Equat-
a;<ag as will be the case here, and so we need to kagw  ing the two we obtaira,/as.
for some massn in order to provide the correction term in ~ We can combine the above two methods by calculating
the analogue of Eq49). This can, however be finessed by glueball correlation functions in the-direction with non-
using Eq.(50) instead; although B?=a?g*/4N? 2+0(a%), zero momenta in either theor t directions. Comparing the
the correction has a small enough coeff|C|ent that it shoulenergies of such states gives us another direct estimate of
not significantly degrade the accuracy of our extrapolationsa;/as. If we include a range of momenta one can attempt to

Of course, we also need to control finite volume effects intune this ratio so that the dispersion relationspinand p,
an efficient way—that is to say, more efficient than doing acoincide. This allows us to fix the asymmetry without assum-
detailed finite volume study at each coupling. So we need ting the continuum dispersion relation.

a. How well do we need to knowgsaand a?
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In practice, we shall not use this last method, and we shall T
only consider the lowest two momenta in applying our first
method. While this reduces the precision with which we can
estimate the rati@, /ag, it suffices for our purposes.

Both of the above methods will suffer from lattice spacing
corrections. The continuum dispersion relation will only be 0.5 =
valid up to corrections of order{p)? and the eigenstates of
the transfer matrices defined on thg andy,t spatial tori s
will differ by order a2 corrections because the latter torus has 0.4} ® e 5 3 3 3 .
a lattice spacing, rather thanag in one of the two direc- aymes(t) .
tions. However, as long as we are consistent in the methoc * i
used to estimate,/as we can absorb this correction into the o5k ° e o 5 g 1 @ ¢
correction term used in taking the continuum limit.

Before turning to some explicit calculations of the above
kind it is worth pointing out that although the second method .
described above seems more direct, it is in practice more 02F
awkward to implement. The reason is that we need to pro-
duce blocked link matrices in order to have useful operators,
and this has to be carefully tailored in the case where one 01k i
spatial lattice spacing is very different from the other. And
this is in addition to the fact that using two different spatial
planes means producing two sets of blocked links. For thest .
reasons our calculations using the second method will be or 0 1 2 3 4 5 6 7 8 9 10 1 12
only a subset of our lattices. t

0.6 N

) ) FIG. 13. The effective masses obtained on 49B4lattice at3
c. Can we “improve” upon the estimate of% =8 in SU2), with a very small temporal lattice spacing;

We have seen in our previous calculations that we gef” 0-2%s . States are the'0"(®), the 077 (O), the 2°7(x), the
: : 2 277%(0) and the I (X).

much smaller corrections to the limita\/o— 2N.\/o/g? as
a—0, if we use a mean-field improved inverse couplifg,
in place of 3. One might hope that a similar approach with
an asymmetric lattice action would improve our control over
the value ofr. The straightforward implementation of this
idea in the context of the action in E@) would be to define
“improved” values ofr and 8 by

In addition to these calculations we also perform calcula-
tions on somewhat smaller lattices’6®, 1264, and 1696,
respectively. It is on these lattices that we calculate correla-
tors in botht and x directions. We shall only calculate the
mass of the periodic flux loopmp(L), on these lattices.

1 Smaller lattices are preferable for this purpose because
F|,3|=fﬂ<—TfUp > mp(L) will be smaller and so we will have more accurate

N¢ s values.(Obviously this is only important for the correlators
in the x-direction whereagmp will not be small)

1 1 /1 Our original motivation for performing such calculations
—B==B{ =—Tru, ). (D6) : . ,
r r\N, P was to have a finer resolution on the effective mass plot, so
as to see whether the typical heavier mass could really be
This is in the spirit of the approach suggested[4®] al-  extracted from its effective masses betweema to t=2a.

though there one effectively replaces N2)(TrU,) by Since we havea,~a¢/4, this question becomes, have the
unity. We shall calculate, below and explicitly check how €ffective masses in the regiorad<t<8a; already reached
much of an improvement one really obtains. their asymptotic plateau? So WIthQUt further ado we plot the
effective masses from the 296 lattice in Fig. 13. Note that
if we wished to obtain such a small lattice spacing in our
usual symmetric lattice calculation, we would have had to do
We perform calculations a8=4.0, 5.3, and 8.0. In all it on a 96 lattice at 3~30: a daunting prospect. We see
three cases we choose:= 0.25 in the action, as given in Eq. from Fig. 13 that there is reasonably good evidence in all
(8). The lattice sizes are 180, 1664 and 2496. If the cases that an effective mass extracted over the interwal 4
classical relations in EqD3) were valid, then the value of =<t=<8a, provides an unbiased estimate of the asymptotic
as would be exactly what we obtained at the correspondingnass. We infer from this that extracting masses from the
values of8 on symmetric lattices. The reader will note that ranget=a to t=2a on symmetric lattices in the neighbor-
our lattice sizes are somewhat larger than would be nece$ood of 3=8, where the heavier states are in the noise for
sary if this were the case; this is to give us some margin in>2a, is in fact justified. OurB=5.3 calculations also sup-
case the guantum corrections to these relations are signifport this way of calculating masséalthough with less pre-
cant. cision), thus reassuring us that the estimates we have used in

2. Calculation
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TABLE XXXIV. Masses with asymmetric S(2) action; r TABLE XXXV. Various estimates o#f, /ag as described in Ap-
=0.25 in Eq.(8). Also shown are the average timelike and space-pendix D. Also shown is,, the mean-field improved value of
like plaquettes.

B L r r p=0,1 p=0,2 am;/agm,

a;m with a,=0.25,
' ! > 80 24 025 0232 02491 0.2535)

State B=4.0 B=5.3 B=8.0

12260 1664 2496 16 0.25 0.232 0.249) 0.2414) 0.2358)

5.3 16 0.25 0.221 0.2325 0.2357)

Flux loop 0.4317) 0.3055) 0.1852) 12 0.25 0.221 0.23300 0.2384) 0.2416)
ot 0.4435) 0.3214) 0.20712) 4.0 12 0.25 0.209 0.2388) 0.2419)
o+t 0.631) 0.44812) 0.3023) 8 0.25 0.209 0.223) 0.2195) 0.24112)
QFFrx 0.772) 0.5827) 0.3697)
0+ 1.01(3) 0.683) 0.4279)
0 *+* 1.143) 0.733) 0.5275) tematic errors although larger statistical errors. The values
2++ 0.71710) 0.5328) 0.3444) thus obtained are listed in Table XXXV. We also show there
2t 0.8612) 0.6369) 0.3956) the values we get foe;mp/asmp; these have only been
2°7 0.75013) 0.5385) 0.3394) calculated for the smaller lattices. From these results we infer
27t 0.933) 0.6478) 0.4075) the following values of the asymmetry:
1+t 1.033) 0.755) 0.4714)
1t 1.31) 0.766) 0.5517)
1+ 1.124) 0.80(6) 0.4996) a 0.24%5), p=8.0,
17+ 1.225) 0.805) 0.47712) a—‘: 0.23716), B=5.3, (D7)
(TrUp /NG 0.640607)  0.7319%3)  0.824181) * | 0.23q10, B=40.
(TrU pt/NC> 0.914362) 0.935971) 0.95795%1)

this paper are indeed unbiased over the whole rangg of The deviation from the classical valua,/a;=r=0.25, is
relevant to our continuum extrapolations. not large. We also note that although the “improved” value,
Since these lattice actions are different from the symmets,, is shifted in the right direction, it overshoots so that it is
ric ones that we have used in the body of the paper—indeedho closer to the “true” value than is This is even more so
as we have already remarked, one may regard them as beiiffgone replaces the time-like plaquettes by unity in H36).
close to the Hamiltonian limit—it is interesting to extract a Thus it seems that the most naive mean-field “improve-
continuum mass spectrum from them, so testing universalitynent” is not an improvement here.
to some extent. Using in Eq.(D4) the values of,/a, in Eq. (D7) and the
In Table XXXIV we list the masses we have extracted atvalues ofa;mp in Table XXXIV, we obtain
our three value of3. They are all in units o&;. In addition
to the glueball masses we also list the mass of the flux loop
that winds around the spatial torus. As discussed above, we

need to know the value &, /a, in order to extract, o (or 0.0440856), p=8.0,

as\Jo). And we need to knova,\/o if we are to calculate aJo=4 0.06806102), B=5.3, (D8)
mg /o for comparison with our previous calculations. We 0.091921), B=4.0.

therefore turn to this next.

In order not to confuse different quantities, we shall con-
tinue to user for the parameter in the action, and we shall
chooser=0.25 here. Classically, but only classically, we The uncertainty ina;/as has roughly doubled the error on
know thatr =a,/as. The “true” value of a,/a is the one  a;\o; thus it is no longer the most accurately calculated
that we explicitly calculate using the methods described earguantity(as it was in case of the symmetric actioand if we
lier in this appendix: this we shall either labg}.,s0r sim-  were to calculate mass ratios from scratch, we might prefer
ply refer to asa;/as. Finally there isr, as defined by Eq. to use the scalar glueball mass as our basic scale. We now
(D6). extrapolate these valuémultiplied by 8) to the continuum

We calculatea; /a, by comparing the flux loop energy as limit, using a 18 correction just as in E(35). The fit has a
calculated from two moment@, andp,, and then using Eq. very good confidence level and gives us the continuum value
(D5). We do so using the lowest three momenta which weof 4a,\/a/a.g?. In the continuum limita,/a;=r=0.25 and
shall refer to ag;=0,1,2 for convenience. This we shall do so we finally obtain
on both our larger and smaller lattices at each valug.of
Note that the smallep, the more reliable will be the con-
tinuum energy-momentum dispersion relation. Since the
lowest momenta decrease as the lattice size increases, the E—O 337

. ) : > =0.3375130). (D9)
values obtained on the larger lattices will have smaller sys- g
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mass for the ground state 1, and if we do so we obtain the
This is certainly consistent with the value of 0.3353(18) invalue in square brackets in Table XXIII. It is amusing that
Eqg. (38) which was obtained with= 1, but the error is much this value fits better with parity doubling and with the values
larger. In large part this is just because the present calcul®btained for the higher groups.
tion is a much smaller one. But in some part it is due to our
uncertainty in the value of/as. Without this uncertainty
our error in Eq.(D9) would have been smaller by about a APPENDIX E: THE U (1) MASS SPECTRUM
factor of 1.5. We have performed other continuum extrapo-
lations as well. If we use the classical valag/as=r
=0.25 in our calculations, then we again obtain a good fit
this time with a continuum value of

In this appendix we calculate the mass spectrum in the
D=2+1 U(1) theory. U1) is as far as one can get from
'U(); so this should provide us with a useful contrast to the
SU(N.) mass spectra which we have calculated in this paper.
Jo Calculating the Y1) spectrum might seem pointless; the
— =0.328850). (D10)  continuum limit should be a theory of free, non-interacting
9 photons. While this would certainly provide a contrast to our

This is consistent with our previous values, as it should be>U(Nc) spectra, it would hardly be very illuminating.
because the corrections tocan be absorbed into the@/  Although the continuum limit is indeed trivial, in the
correction. Indeed we find that the coefficient of thg férm ~ S€Nse that there will be no bound state whose mass is finite in
is larger in the latter cases0.22(3) versus=0.128), when units of the mass scalg?, there is nonetheless interesting
we use the values in EqD7). We have performed other dynamics at finite values of the lattice spaciagThis arises
extrapolations as well: the errors vary but the values are cor{IoM the presence of magnetic monopoles in the thedry.
sistent with each other. It is worth remarking that the fitb® more precise, iD=3+1 these would be magnetic
leading to Eq(D9) has a much smaller correction than one Monopoles. Here they are pointlike instantons whose fields
finds in the symmetric case when usigindeed it is about &€ identical to the spatial fields of a static Dirac monopole.
the same size as one obtains using the improved coupliné"ence we shall follow the usual custom and refer to them as
B, . This suggests that lattice corrections are smaller on verj'@gnetic monopoles, even D=2+ %-) These monopoles
asymmetric lattices, and perhaps explains why we did not'éarly have an action that iscy /ag” wherecy, is a con-
gain anything from using the mean-field recipe. stant that depends on the particular lattice action being used.
We can now take the values afmg in Table XXXIv, ~ Thus & monopole has a weightingexp{—cy lag?} and
the values oo in Eq. (D8), form ratios, and extrapolate nence the average distance between monopoles witlpe
to the continuum limit using Eq(50). We obtain the con- ~2exP(cu/3ag°} (up to weakly varying factors that come
tinuum mass ratios shown in Table XXIIl. We also show from integrating small fluctuations around the monopples
there the symmetric lattice values that have been obtainedhis Provides a scale for the theory that is different frofn
elsewhere in this paper. We observe that they are consistehf!iS Scale is interesting because the monopoles change the
within errors. We note that if we extrapolate with @a2s) ~ Physics in a qualitative fashion. As is well knoj48] they
correction as in Eq(49), we obtain almost identical results. Produce a linear confining force between external static
This is also the case if we use string tensions calculate§harges. One could also expect them to produce a nontrivial
usinga, /as=0.25, except that the fits tend to be significantly Mass spectrum. At the very least, there will be a massive
worse—as one would expect if this involved an error that photcz)n. Of course, in the continuum limidly — < in units
was reallyO(1/8) rather thanO(1/8?). of 1/g- and so on the latter scale the monopoles disappear to
We observe in Table XXIII that the errors on the lighter ' =% S We approach the continuum limit.
masses are larger in the asymmetric case. This is no surprise Actually, the above description represents an over-
since our symmetric calculations arerymuch larger. What simplification. There is not just one new scale mtroducgd by
is striking is that for the heaviest masses, such as the, 1 the; monop'oles. There is also a scale asspmated .Wlth the
the asymmetric errors are actually smaller. This displays th&tfing tension|| ,=1/Jo, and a scale associated with the
power of such calculations for determining the masses ofCreening mass;= 1/ms-2Th§/339 scales mutually diverge in
heavier states. the continuum limitls~12 ~dy;” up to constants and powers
Two final asides on the spectrum. For reasons we do ndlf B. The origins of this peculiar situation lie in the fact that
entirely understand, we seem to have no problem in obtairthe monopoles are singular objects.
ing a set of excited 2" masses that continue well =0 For these reasons we will not try to calculate a “con-
and, indeed, are consistent with what one finds for highefinuum” mass spectrum. Rather we shall calculate the spec-
groups—see Table XXI. This is in contrast to the case of drum for lattice spacings that are small compared to the ob-
symmetric lattice action. We also note in Table XXXIV that vious dynamical length scale<1/\/o.
the mass of the 1% is larger than that of the 1"*. Our The results of our calculation are presented in Table
ordering of the states is determined by the effective mass afXVI. How do they compare to the SW(;) spectra listed in
t=a, which in this case seems to be unreliable. This is unTables XXI and XXV? An immediate difference with all of
doubtedly related to the peculiarities in the=1 sector that the SUN.) spectra is that the 0" is no longer the lightest
we have previously noted during our symmetric action cal-particle; the 0~ is about half the mass. We also note that
culations. Obviously it is hard to argue with using the lowerwhile the ratiomy+ + /\/Jo was increasing asl. decreased,
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the U(1) value is about as much below the St)(value as  0** mass ratio is close to its SM() value. We note also
the SuZ) ratio is above. Apal’t from these Striking differ- that we have approximate panty doub”ng fbt 0, thus con-
ences, the rest of the spectrum seems quite sin@eit  firming thata is indeed small enough for continuum rota-
within the large errors This is particularly so if we compare tional symmetry to have been restored on hadronic length
to the 0" * mass rather than tgo. For example, the 2" to  scales.

[1] G. 't Hooft, Nucl. Phys.B72, 461(1974. Forcrand, Nucl. Phys. BProc. Supp). 17, 567 (1990.

[2] E. Witten, Nucl. PhysB160, 57 (1979. [30] M. Teper, Phys. Lett. B183 345 (1987; 185 121 (1987%);

[3] S. Coleman, irPointlike Structures Inside and Outside Had- Nucl. Phys. B(Proc. Supp). 4, 41 (1988; B. Carpenter, C.
rons, edited by A. Zichichi(Plenum, New York, 1982 Michael, and M. Teper, Phys. Lett. B98 511(1987).

[4] A. Manohar, 1997 Les Houches Lectures, hep-ph/9802419. [31]1 M. Albeneseet al, Phys. Lett. B192 163 (1987; 197, 400

[5] T. Eguchi and H. Kawai, Phys. Rev. Let8, 1063(1982. (1987.

[6]S-J. Rey and J. Yee, hep-th/9803001; J. Maldacena, 32l C- Michael and M. Teper, Phys. Lett. 899 95 (1987; 206,
. ’ . : " 299(1988; Nucl. Phys.B305, 453(1988; B314, 347(1989.
- . Rev. Le80, 4859(1999; E. Witten, > ”
:zp:mggééigg Phys. Rev ' (1998; ten [33] O. Philipsen, M. Teper, and H. Wittig, Nucl. PhyB469, 445
P ' (1996; B528 379 (1999.

[7] i'RI'. Dasl’ar?ev'RMOd'LPtgfi’gézi(glgm); S. Chin and M. [34] D. Perkins, Introduction to High Energy PhysicéAddison-
ariiner, Fhys. kev. Letbs, (1987. Wesley, Reading, MA, 1972

[8] M. Teper, Phys. Lett. B97, 223(1997); Nucl. Phys. B(Proc. [35] B. Berg and A. Billoire, Nucl. PhysB221, 109 (1983; G.C.

Suppl) 53, 626 (1997. Fox, R. Gupta, O. Martin, and S. Ottibjd. B205, 188(1982;
[9] N. Isgur and J. Paton, Phys. Rev.3, 2910(1983. M. Liischer, and U. Wolffjbid. B339, 222 (1990; A.S. Kro-
[10] T. Moretto and M. Teper, hep-lat/9312035. nfeld, Nucl. Phys. B(Proc. Supp). 17, 313(1990.
[11] R. Johnson and M. Teper, Nucl. Phys(Broc. Supp).63, 197 [36] Ph. de Forcrand, G. Schierholz, H. Schneider, and M. Teper,
(1998; and(in preparatioh Phys. Lett.160B, 137 (1985.
[12] F. Antonuccio and S. Dalley, Nucl. PhyB461, 275(1996); B. [37] M. Luscher, K. Symanzik, and P. Weisz, Nucl. Phgd73
van de Sande and S. Dalley, Phys. Rev56) 7917 (1997); 365 (1980.
hep-th/9707180. [38] R. Johnson and M. Teper, hep-lat/9808012; éindorogress

[13] C. Csaki, H. Ooguri, Y. Oz, and J. Terning, hep-th/9806021;[39] S. Aoki et al., Nucl. Phys. B(Proc. Supp). 47, 354 (1996.
H. Ooguri, H. Robins, and J. Tannenhauser, hep-th/9806171[40] G. Parisi, inHigh Energy Physigsedited by Loyal Durand and
[14] C. Hamer, M. Sheppeard, Wei-hong Zheng, and D. Schutte, Lee E. Pondrom, AIP Conf. Proc. No. G&IP, New York,

Phys. Rev. D54, 2395 (1996; C. Hamer,ibid. 53, 7316 1981); P. Lepage and P. Mackenzie, Phys. Rev4® 2250
(1996. (1993; P. Lepage, 1996 Schladming lectures,
[15] Shuo-Hong Guo and Xiang-Qian Luo, hep-lat/9706017; Lian hep-lat/9607076.
Hu et al, Commun. Theor. Phy28, 327 (1997. [41] K. Ishikawa, G. Schierholz, and M. Teper, Z. Phys1€; 327
[16] D. Karabali and V.P. Nair, Nucl. Phy8464, 135(1996); Int. (1983.
J. Mod. Phys. A12, 1161(1997; D. Karabali, C. Kim, and  [42] C. Morningstar and M. Peardon, Phys. Rev. 38, 4043
V.P. Nair, Nucl. PhysB524, 661(1998; hep-th/9804132. (1997.
[17] M. Teper, Phys. Lett. B89 115(1992. [43] M. Luscher, lectures at Carge 1983 unpublishegt Commun.
[18] M. Caselle, M. Hasenbusch, and P. Provero, Nucl. Phys. B Math. Phys.104, 177 (1986; G. Munster, Nucl. PhysB249,
(Proc. Supp). 63, 616 (1998. 659 (1985.
[19] M. Teper, Phys. Lett. BB11, 223(1993. [44] C. Michael, J. Phys. G3, 1001(1987; C. Michael, G. Tickle,
[20] M. Teper, Phys. Lett. BB13 417 (1993; and (unpublished and M. Teper, Phys. Lett. B07, 313(1988.
[21] M. Billo, M. Caselle, A. D'Adda, and S. Panzeri, Int. J. Mod. [45] O. Philipsen, M. Teper, and H. Wittig, Nucl. PhyB528, 379
Phys. A12, 1783(1997. (1998.
[22] A. Kennedy and B. Pendleton, Phys. Letf6B, 393(1985. [46] K. Symanzik, Nucl. PhysB226, 187 (1983.
[23] N. Cabibbo and E. Marinari, Phys. Lett19B, 387 (1982. [47] M. Teper(unpublished
[24] J. Hoek, M. Teper, and J. Waterhouse, Phys. Leti8B 112 [48] A. Polyakov, Nucl. PhysB120, 429(1977); Gauge Fields and
(1986; Nucl. Phys.B288 589 (1987). Strings(Harwood, Academic, Chur, Switzerland, 1987
[25] M. Teper, Newton Institute, NATO-ASI School Lectures, [49] Ph. de Forcrand, G. Schierholz, H. Schneider, and M. Teper,
hep-lat/9711011, 1997. Phys. Lett.152B, 107 (1985; UKQCD Collaboration, G. Bali
[26] S. Adler, Phys. Rev. 23, 2901(1981); 37, 458(1988. et al, Phys. Lett. B309 378(1993; H. Chen, J. Sexton, A.
[27] M. Creutz, Phys. Rev. 86, 515 (1987; F. Brown and T. Vaccarino, and D. Weingarten, Nucl. Phys.(Broc. Supp).
Woch, Phys. Rev. Let68, 2394(1987). 34, 357 (1994.
[28] A. Kennedy, Nucl. Phys. BProc. Supp). 30, 96 (1993; U. [50] C. Michael and M. Teper, Nucl. PhyB305 453 (1988; C.
Wolff, ibid. 17, 93 (1990; S. Adler,ibid. 9, 437 (1989. Michael and S. Perantonis, J. Phys.18, 1725 (1992; S.
[29] K. Akemi et al., Nucl. Phys. B(Proc. Supp). 34, 789 (1994); Booth et al, Nucl. Phys.B394, 509 (1993.
30, 253(1993; Phys. Lett. B328 407(1994); R. Guptaet al, [51] E. Witten, inRecent Developments in Gauge Theqrasdited
Mod. Phys. Lett. A3, 1367 (1988; K. Decker and Ph. de by G. 't Hooft (Plenum, New York, 1980

014512-37



