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SU„N… gauge theories in 211 dimensions
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We calculate the mass spectra and string tensions of SU~2!, SU~3!, SU~4! and SU~5! gauge theories in 211
dimensions. We do so by simulating the corresponding lattice theories and then extrapolating dimensionless
mass ratios to the continuum limit. We find that such mass ratios are, to a first approximation, independent of
the number of colors,Nc , and that the remaining dependence can be accurately reproduced by a simple
O(1/Nc

2) correction. This provides us with a prediction of these mass ratios for all SU(Nc) theories in 211
dimensions and demonstrates that these theories are already ‘‘close’’ toNc5` for Nc>2. We find that the
theory retains a non-zero confining string tension asNc→` and that the dimensionful couplingg2 is propor-
tional to 1/Nc at largeNc , when expressed in units of the dynamical length scale of the theory. During the
course of these calculations we study in detail the effects of including over-relaxation in the Monte Carlo
calculation, of using a mean-field improved coupling to extrapolate to the continuum limit, and the use of
space-time asymmetric lattice actions to resolve heavy glueball correlators.@S0556-2821~98!04423-3#

PACS number~s!: 11.15.Ha, 11.10.Kk, 11.15.Pg, 12.39.Mk
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I. INTRODUCTION

The non-perturbative physics of QCD continues to
largely impervious to analytic attack. Thus ’t Hooft’s pro
posal to consider SU(Nc) gauge theories~with quarks! as
perturbations in powers of 1/Nc aroundNc5` @1# remains
of great interest. In many ways theNc5` theory is much
simpler than the physically interestingNc53 theory, and the
fact that the phenomenology of the SU(`) quark-gluon
theory appears to be strikingly similar to that of~the non-
baryonic sector of! QCD @1,2# motivates the suggestion tha
the physically interesting SU~3! theory might be largely un-
derstood if we could solve the much simpler SU(`) theory.
Unfortunately an analytic solution of the latter still eludes u
even if much progress has been made in understanding
pects of its structure@3–6#.

This situation has motivated a number of computatio
explorations@7#. Almost all of these have used the fact th
the lattice SU(̀ ) theory can be re-expressed as a sin
plaquette theory@5#. Although these calculations have pr
duced interesting results, the approach suffers from a b
problem: it tells us nothing about the corrections to theNc
5` limit and so cannot address the critical question of h
close SU~3! is, in fact, to SU(̀ ). The twisted Eguchi-Kawa
approach also suffers from the fact that the space-time
ume described by the theory is finite and related toNc .

In this paper we take a more direct approach to the pr
lem. We calculate the continuum properties of SU~2!, SU~3!,
SU~4!, . . . theories by simulating the corresponding latti
theories. We then compare these properties and see how
they can be described by simple corrections to a comm
Nc5` limit. This approach has the advantage that it will t
us just how close the physically interesting SU~3! theory is
to the simpler SU(̀ ) theory. It has, of course, a potenti
disadvantage: if the theories we consider are far from
Nc5` limit, then we will have learned nothing about th
physics of that limit. Fortunately, as we shall see, this tu
out not to be the case.
0556-2821/98/59~1!/014512~37!/$15.00 59 0145
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Ultimately we would like to consider SU(Nc) gauge theo-
ries coupled to light quarks~in the fundamental representa
tion! in 311 dimensions. But this is beyond our current com
putational resources. So our first restriction is to disreg
the quarks and focus instead on the pure gauge theory. S
the non-perturbative physics of QCD is largely driven by t
self-coupling of the gauge fields, this is certainly a physica
relevent problem. Moreover, one expects the pure ga
theory to have leading corrections that areO(1/Nc

2) rather
than theO(1/Nc) that one expects with quarks. Thus th
onset of large-Nc physics should be easier to spot.

Our second restriction is to consider the pure gau
theory in 211 rather than in 311 dimensions. Although it is
less obvious that this leaves us with a physically relev
problem, we shall argue in the next section that gauge th
ries in 3 and 4 dimensions are sufficiently similar that this
likely to be so. Moreover, it turns out that inD5211 we
can calculate the continuum properties of gauge theo
with such accuracy that there is little ambiguity in our fin
conclusions. This is not the case inD5311 where the pre-
liminary calculations of this kind@8# are very inaccurate in
comparison.

Motivating our calculations are several questions of p
ticular interest. What we know about the large-Nc limit of
gauge theories essentially comes from considering Feyn
diagrams to all orders. Such considerations indicate
SU(Nc) gauge theories possess a smoothNc→` limit if one
varies the coupling so as to keepg2Nc fixed. Moreover, the
leading correction to this limit should beO(1/Nc

2). It is ob-
viously of interest to check these expectations in a fully no
perturbative calculation. In addition, the phenomenology
large-Nc theories assumes that the theory remains confin
in that limit. It is important to check that this is really th
case. Finally we wish to see how large the corrections are
say, Nc53. Is it really the case that SU~3! is close to
SU(`)?

In addition we aim to calculate the detailed mass sp
trum of the SU(̀ ) theory. We note that models and theore
©1998 The American Physical Society12-1
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MICHAEL J. TEPER PHYSICAL REVIEW D 59 014512
ical approaches are usually simpler in that limit. For e
ample, the flux tube model of glueballs@9–11# would
naively appear to be identical forNc.2. However, because
the model does not incorporate the effects of glueball dec
it should really be tested against theNc→` spectrum since it
is only in that limit that there are no decays. A second
ample is provided by the recent progress in calculating
large-Nc mass spectrum using light-front quantization tec
niques@12#. Thus our large-Nc spectrum can serve as a us
ful testing ground for models and attempts at analytic so
tions of the theory@12,13#. Of course in the process we sha
also calculate the spectra of the theories at finiteNc and these
too can be used as a testing ground for models and ana
approaches. We remark that the most recent examples o
latter @14–16# are intriguingly successful. For example,
@15# the SU~2! and SU~3! 011 glueball masses are withi
15% of our values and the 022 is even closer. In@16# the
string tension is calculated for allNc and is within 2% of the
values in this paper.

We now briefly outline the contents of this paper. In t
next section we discuss some general properties of SU(Nc)
theories in 211 dimensions. The aim is not only to set th
framework for the subsequent calculations, but also to c
vince the reader that these theories are sufficiently simila
their D5311 counterparts that what we learn in this pap
about the former probably tells us something about the la
We then move on to discuss the technical details of how
carry out our calculations. This includes details of our ope
tors and of the variational principle that underlies our extr
tion of excited states from the matrix of correlation fun
tions. We also discuss the problem of identifying t
continuum spin of a particle on a lattice with only cub
symmetry, and provide a simple criterion for doing so. In t
following section we present our calculations of the stri
tension. It is here that we aim to demonstrate that the the
remains confining asNc→`, thus providing the crucial in-
gredient for extracting the phenomenology of those theor
It turns out that the string tension is the physical quantity t
we calculate the most accurately. So it is in this section t
we shall test most precisely the expectation that there
smooth limit reached by keepingg2Nc constant, and that the
leading corrections to that limit areO(1/Nc

2). The next sec-
tion contains our calculations of the glueball spectru
~Since we have only gluons in our theories, all the physi
particles are color singlet composites of gluons i.e. gl
balls.! We shall briefly comment on the features of this sp
trum, in particular upon how it compares to what we kno
about theD5311 spectrum. It would of course be nice
be able to spot some striking regularities in the mass sp
trum of the SU(̀ ) theory. However, one can only read si
nificance into the details of the spectrum if one has so
framework that relates those details to the underlying
namics. For such an analysis, within the context of a mo
in which glueballs are composed of closed loops of chrom
electric flux, we refer the reader to@10,11#. We shall find that
the glueball spectra are in fact very similar to each other
all Nc>2. To provide a contrast it is amusing to compare t
to the spectrum that one obtains in theD5211 U~1!
theory—the theory that is farthest from U(`) in the se-
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quence of U(Nc) theories. This we do in Appendix E. W
conclude with a brief discussion of our results.

We have relegated to the Appendixes details of some s
contained aspects of our calculations which should be
general interest. Appendix A contains a detailed evaluat
of the effects of the over-relaxation in the Monte Carlo u
date. This is done by directly comparing the statistical err
on the masses that one obtains in~realistically large! calcu-
lations that contain various ratios of over-relaxation to h
bath. We are not aware of any previous comparison of
kind. We find that over-relaxation brings a modest b
worthwhile improvement, particularly for the smaller valu
of the lattice spacing. Appendix B contains some analy
relevant to our choice of operators. In particular we stu
how sensitive our operator basis is to variations in the
rameter governing the ‘‘blocking,’’ whether anything
gained by the inclusion of operators incorporating ‘‘bar
onic’’ vertices ~for Nc>3), and we give more details abou
our variational calculations of the excited states. These
no doubt known to some experts, but we hope they will be
use to others in the field. In Appendix C we compare co
tinuum extrapolations of the string tension in the bare a
mean-field improved couplings. We show that using the
ter considerably improves the accuracy of the final resu
This is of some interest because we are not aware of
such previous comparison. Appendix D contains details
the calculations we have performed with asymmetric latti
which have timelike lattice spacings that are much sma
than the spacelike spacings. The primary purpose of this
culation is to check that our procedure for estimating
masses of the heavier states is in fact reliable. However,
methods for determining the ratio of the lattice spacings
likely to be of more general interest and so we develop t
calculation in some detail. This enables us to calculate
SU~2! spectrum of the theory close to its ‘‘Hamiltonian
limit, and to compare it with the symmetric case as a tes
universality. Finally, in Appendix E we summarize som
properties of the U~1! mass spectrum. This is to provide
contrast to the SU(Nc) spectra that are the subject of th
paper.

During the course of this work, we have published so
preliminary summaries of some of the topics in this paper
well as on related topics not covered herein. Our early res
on the SU~2! spectrum appeared in@17#. ~See @18# for an
interesting comparison with the spectrum of the gauge Is
model.! The preliminary SU~2! string tension was discusse
in @19#. That paper also contained a study of the width a
vibrational properties of the corresponding flux tube, whi
is not repeated here. Also not covered in this paper are
SU~2! and SU~3! deconfining temperatures@20#. ~See@21#
for a more extensive discussion.! Some preliminary results
on theNc dependence in 211 dimensions have appeared
@8#. This paper also contains somevery preliminary calcula-
tions for gauge theories in 311 dimensions.

II. SOME FEATURES OF D5211 GAUGE THEORIES

In the first part of this section we discuss some of t
fundamental dynamical properties of SU(Nc) gauge theories
2-2
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SU(N) GAUGE THEORIES IN 211 DIMENSIONS PHYSICAL REVIEW D 59 014512
in 211 dimensions. Since we are much more familiar w
the corresponding properties of the same theories in 311
dimensions, it will be illuminating to compare the two the
ries as we go along.

The second part of the section focuses on the con
quences of the fact that inD5211 parity and angular mo
mentum do not commute. We show that this leads to so
parity doubling in the spectrum, but that precisely what g
doubled is sensitive to the ultraviolet and infrared cuto
that we impose in our calculations.

A. D5211;D5311?

Gauge theories in 211 dimensions possess a dimensio
ful coupling: g2 has dimensions of mass and so provide
scale even for the classical theory. By contrast, inD53
11, g2 is dimensionless; the theory is classically sca
invariant. In addition the Coulomb interaction inD5211 is
}g2logr; so the theory is already confining at the ‘‘class
cal’’ level—albeit only logarithmically. Nonetheless, the
apparently quite striking differences are misleading: theD
5211 theory shares with itsD5311 counterpart its mos
important dynamical properties, as we now remind
reader.

Ultraviolet freedom.Both theories become free at sho
distances. In 3 dimensions the coupling,g2, has dimensions
of mass so that the effective dimensionless expansion pa
eter on a scalel will be

g3
2~ l ![ lg2→

l→0

0. ~1!

In 4 dimensions the coupling is dimensionless and runs
way we are all familar with:

g4
2~ l !.

c

ln~ lL!
→
l→0

0. ~2!

In both cases the interactions vanish asl→0, although they
do so much faster in the super-renormalizableD5211 case
than in the merely asymptotically freeD5311 case.

Infrared slavery.The counterpart of the couplings becom
ing weak at short distances is that they become stron
large distances—‘‘infrared slavery.’’ This is immediate if w
let l↑ in Eqs. ~1!,~2!. Thus in both 3 and 4 dimensions th
interesting physics is nonperturbative.

The coupling and the mass scale.In 3 dimensions the
coupling has dimensions of mass and so explicitly sets
mass scale for the theory

mi5cig
2 ~3!

wheremi is any dynamically generated mass in the the
~for example, a glueball mass!. In 4 dimensions the coupling
is dimensionless and so, naively, things appear quite dif
ent. However, in fact here too the coupling sets the ove
mass scale. It does so through the phenomenon of dim
sional transmutation: the classical scale invariance is ano
lous, the coupling runs and this introduces a mass s
through the rate at which it runs:
01451
e-

e
s

-
a

-

e

m-

a

at

e

y

r-
ll
n-
a-
le

mi5ciL ~4!

whereL is as in Eq.~2!. So in both 3 and 4 dimensions th
value of the coupling determines the overall mass scale.

Confinement.Both theories confine with a linear potentia
This is not something that we can prove of course. Howev
lattice simulations provide convincing evidence that this
indeed the case. Note that although theD5211 Coulomb
potential is already confining, this is a weak logarithmic co
finement,VC(r );g2ln(r), which has nothing to do with the
nonperturbative linear potential,V(r ).sr , that one finds at
large r.

In addition to these theoretical similarities, we shall s
that the calculated mass spectra also show some stri
similarities. For example, the lightest glueball is the sca
011 with a similar mass,m011;4As, in both cases.

While the above comparisons provide some support
the argument that what we learn aboutD5211 gauge theo-
ries might have something to teach us about the more in
estingD5311 theories as well, it is important to emphasi
that the theories do differ in important respects and are
tainly not the same. For example, there are no instanton
D5211 non-Abelian gauge theories. This would sure
matter a great deal if we were to include quarks. Anoth
difference is the fact that the rotation group in two spa
dimensions is Abelian. This has some important con
quences to which we now turn.

B. Spin and parity doubling

In two space dimensions rotations commute: the grou
Abelian. So states of spinJ do not come in multiplets in the
way that they do in 311 dimensions where the rotatio
group is non-Abelian. We shall use (x,y) for the spatial co-
ordinates andu for the angle of rotation. We can then defin
a parity transformation,P, by (x,y)→(x,2y). We note that
the angular momentum operator,x]y2y]x , flips sign under
parity. That is to say, if some stateuf& has angular momen
tum j, then the statePuf& will have angular momentum
2 j .

This last fact has an important consequence for the sp
trum. Supposeu j & is some state of angular momentumj and
energyEj . Consider the two linear combinations

u j ,6&5u j &6Pu j &. ~5!

If they are both non-null, they will form a pair of states th
have opposite parity, since we easily see thatPu j ,6&
56u j ,6&. Moreover, these two states will be degenera
sinceP commutes with the HamiltonianH, and so we have
the phenomenon of parity-doubling. Of course, so far
argument could be equally applied to the case ofD5311.
The crucial question is whether both combinations are
deed non-null. Now as long asj Þ0 the statesu j & and Pu j &
are orthogonal because they have eigenvalues6 j respec-
tively with respect toJ. In that case it immediately follows
that neither of the linear combinations in Eq.~5! can be null.
This argument clearly fails forj 50 just as it fails for anyj in
4 dimensions. Thus we conclude that thej Þ0 states come in
2-3
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MICHAEL J. TEPER PHYSICAL REVIEW D 59 014512
degenerate pairs of opposite parity, while for thej 50 states
there is no reason to expect parity doubling.

The above argument assumes the continuum rota
group. Our calculations, on the other hand, will be perform
upon a square spatial lattice whose explicit symmetries
rotations underp/2. Does this make any difference? Inde
it does. States of angular momenta6 j are distinguished by
the phases exp$6iju% that they acquire under a rotation ofu.
We note that forj 52 in particular, these phases are identic
if we restrict ourselves to rotations ofu5np/2. Thus on a
square lattice there is no reason to expect parity-doubling
j 52, any more than forj 50. Of course as we reduce th
lattice spacing,a, we expect to increasingly recover co
tinuum rotational invariance on physical length scales. T
extent to which we do will be reflected in the extent to whi
we recoverj 52 parity doubling in our mass spectrum.

The rotational invariance is not only broken by the squ
lattice: it is also broken by the fact that our space-time i
finite hypertorus. If the lattice is symmetric in the two spat
directions~as it usually will be!, this once again leaves u
with rotations ofp/2. As the volume becomes large com
pared to the physical length scale of the theory, we expec
recover full rotational invariance, and re-obtainj 52 parity-
doubling.

We thus expect to find parity doubling forj Þ0 states in
the D5211 theory. However, some of this parity doublin
may be lost to the extent that either the lattice spacing or
periodic boundary conditions affect physical length sca
Thus the restoration of parity doubling, in particular forj
52 states, will provide us with direct evidence for the sep
ration of the physical length scale from both the ultravio
and infrared cutoffs.

III. METHODOLOGY

We work on a cubic lattice with periodic boundary co
ditions. The lattice spacing is labelleda and the length of the
lattice in the m-direction is Lm in lattice units. The field
variables are SU(Nc) matrices. They reside on the links o
the lattice and are represented byUl or by Um(n), using an
obvious notation. The ordered product of the matrices aro
a plaquette of the lattice is represented byUp or by Umn(n).
We use the standard plaquette action

S5b(
p

H 12
1

Nc
ReTrUpJ ~6!

and this appears as a weighting factore2S in the Euclidean
path integral. In the continuum limit this becomes the us
Yang-Mills action with

b5
2Nc

ag2 . ~7!

Note the factor ofa that is there becauseg2 has dimensions
of mass; the dimensionless bare coupling, being a coup
on the scalea, is justag2.
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We shall perform a few calculations on lattices with d
ferent spatial and temporal lattice spacings:as and at , re-
spectively. In that case we use an action

S5bs(
ps

H 12
1

Nc
ReTrUpsJ 1b t(

pt
H 12

1

Nc
ReTrUptJ

~8!

where the spatial and temporal plaquette matrices,Ups
and

Upt
, are multiplied by different couplings whose values a

chosen to reproduce the desired ratio of lattice spacin
as /at . How this choice is made is described in detail
Appendix D.

The main technicalities involve the Monte Carlo calcu
tion and the calculation of masses. We treat these in tur

A. Monte Carlo calculation

The Monte Carlo calculation consists of a mixture of he
bath and over-relaxation sweeps. We discuss these in tu

1. Heat bath

For SU~2! we use the standard Kennedy-Pendleton@22#
heat bath algorithm. This is extended to higher groups us
the Cabibbo-Marinari@23# algorithm where effectively one
updates some of the SU~2! subgroups of the SU~N! matrices.

An important practical question here is how many
these subgroups to update. Clearly the more subgroups
updates the faster we will explore phase space. However,
does not want to carry this past the point of diminishi
returns. To determine an appropriate number of these s
groups we have chosen a criterion which involves monit
ing how efficiently the action of the SU(Nc) fields is reduced
by cooling the fields@24,25#, when the cooling is applied
through different numbers of SU~2! subgroups. We recal
that to cool an SU~2! lattice link we simply replace the ma
trix that is on that link by the matrix which minimizes th
action. This matrix is easy to determine@24,25#. A link ap-
pears in 4 plaquettes and hence its contribution to the ac
can be written as

dSl52
b

2
Tr$UlS% ~9!

where the matrixS is the sum of the ‘‘staples’’ enclosing th
link l. Each staple is an SU~2! matrix and henceS is pro-
portional to an SU~2! matrix. Then it is easy to see that th
matrix that minimizesdSl is given by

Ul5
S†

uSu
. ~10!

We note that this is just the choice of matrix that the h
bath algorithm makes if we setb5`. Once we have applied
this procedure to every link of the lattice we have perform
a cooling sweep. And we can systematically reduce the
tion by performing a sequence of such cooling sweeps.
can extend this to SU(Nc) fields by using the Cabibbo
Marinari algorithm and cooling within the chosen SU~2! sub-
2-4
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SU(N) GAUGE THEORIES IN 211 DIMENSIONS PHYSICAL REVIEW D 59 014512
groups. In this case the algorithm no longer exactly mi
mizes the action. Instead the rate at which it reduces
action is a measure of how rapidly it moves through ph
space. So our procedure is to generate some~plausibly! ther-
malized SU(Nc) fields, and then to cool these fields usin
various numbers of SU~2! subgroups. An example of this, fo
the case of SU~5!, is shown in Table I. We see that if we us
very few subgroups, the decrease in the action is very s
@compared, for example, to what happens in the SU~2!
theory#. As we increase the number of subgroups the ac
decreases more rapidly, indicating that the algorithm
plores phase space more efficiently. If we were to incre
the number further, then clearly at some point we would fi
that it led to little further change in the rate of decrease in
action. At this point we would certainly be into diminishin
returns. We thus try to choose the smallest number of s
groups that will reduce the action reasonably fast. We t
use these same subgroups in the Monte Carlo calculatio
practice we have used 3, 4 and 8 subgroups in the cas
SU~3!, SU~4! and SU~5! respectively.~There is obviously
some ambiguity in the precise choice.!

2. Over-relaxation

In addition to heat-bath sweeps one can also use o
relaxation sweeps@26–28#. In SU~2! this corresponds to re
placing our old link matrix,Uold , by a new link matrix,
Unew, defined by

Unew5
S†

uSu
Uold

† S†

uSu
, ~11!

where the notation is as in Eq.~9!. It is easy to see that thi
change does not alter the action. Moreover, it can be
tended to SU(Nc) using the Cabibbo-Marinari algorithm.

An over-relaxation step involves a large change in
link matrix and so it is plausible that it will increase the ra
at which we traverse our phase space@26–28#. Indeed, in 4
dimensions, there is evidence that this is so for large Wil
loops @29#. However, what we are interested in is the calc
lation of the low-lying mass spectrum and so what we w
to know is how over-relaxation affects such a calculation.
Appendix A we present a rather detailed study of this both
SU~2! and in SU~3!. ~This is, we believe, the only study o
this kind for gauge theories in 3 or 4 dimensions.! We find
that for physical quantities, such as masses, a suitable m

TABLE I. Average action per plaquette when a thermaliz
SU~5! field is cooled usingnG SU~2! subgroups.

Cools nG54 nG55 nG56 nG58

0 0.2010 0.2085 0.2072 0.2088
1 0.1272 0.1199 0.1067 0.0874
2 0.0813 0.0662 0.0494 0.0266
5 0.0596 0.0417 0.0254 0.0073
10 0.0516 0.0328 0.0168 0.0028
15 0.0483 0.0291 0.0132 0.0015
20 0.0463 0.0269 0.0111 0.0010
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over-relaxation and heat bath sweeps decorrelates field
figurations significantly, although not dramatically, fast
than a pure heat bath. There is an additional gain that ar
from the fact that an over-relaxation step is faster than a h
bath step, which in any case involves the calculation of
the staples.~This gain is greater in 3 than in 4 dimension
since there are fewer staples to calculate in the former ca!

Thus in the calculations of this paper we shall typica
choose to make 4 or 5 over-relaxation sweeps for each
bath sweep.

B. Calculating masses

Our mass calculations are entirely conventional. The st
ing point is the observation that

^f†~ t !f~0!&5(
n

u^vacufun&u2exp$2Ent%

→
t→`

u^vacufu0&u2exp$2E0t% ~12!

whereu0& is the lightest state that couples to the operatorf
and E0 is its energy.~We use operators that are localize
within a single time-slice.! So if we want the mass of the
lightest color singlet state with quantum numbersJ,P,C we
simply construct apW 50 operator with those quantum num
bers, calculate its correlation function and then obtain
mass (5E0) using Eq. ~12!. If the quantum numbers ar
trivial, the lightest state might be the vacuum, in which ca
we use vacuum subtracted operators. Of course it migh
that for some quantum numbers the lightest state is a m
glueball state. We shall come back to this possibility later
but shall, for convenience, ignore it for now.

On the latticet5na and so what we obtain, not surpris
ingly, is aEn , the energy in lattice units. Note that if we a
on a lattice with a finite periodic temporal extent, then t
expression in Eq.~12! needs to have an additional term fo
the propagation around the ‘‘back’’ of the torus. Such a te
will always be included in the numerical calculations of th
paper, although we shall, for simplicity, persist in writing a
our expressions as though the temporal extent were infin
We also note that the temporal extent of our lattice,T
[aLt , will always be chosen large enough for the partiti
function, Z, to be accurately given by its vacuum contrib
tion: Z.exp$2EvacT%. Thus the energies we calculate w
always be with respect to the energy of the vacuum.

In principle we can obtain from Eq.~12! any number of
excited states as well. In practice, however, fitting sums
exponentials to a function is a badly conditioned problem.
one needs to develop a more sophisticated strategy, as
scribed later on in this section.

Again in principle, one can use in Eq.~12! any operator
with the desired quantum numbers. However, a numer
calculation has finite statistical errors, and because the fu
tion ^f†(t)f(0)& is decreasing roughly exponentially int, it
will, at large enought, disappear into the statistical nois
Thus in practice we need to be able to extractE0 from Eq.
~12! at small values oft. This requires the coefficien
2-5



se
e

e
te
in
c
al
io

s
a
o

or
th

r-
s

i

tt

nd
ld

ar

v

a
s
-

th
Tr

d
wi

bel

er

late
int

ticu-

der
ju-

an
-

-
tric
an

i.e.,

nd
op-

m-
ver,
let:

the
ates
n
at as

e
nte
lity
uum

g
ver
Only
und
oth
ed

MICHAEL J. TEPER PHYSICAL REVIEW D 59 014512
u^vacufu0&u2 to be large. That is to say, we need to u
operators that are close to the wave-functional of the stat
question.

If we want to use good operators, we obviously ne
some simple way to decide which operator is in fact bet
We shall use a variational criterion. However, before com
to that we say something more about the operators we a
ally use. This splits naturally into a discussion of glueb
operators and those from which we extract the string tens

1. Operators for glueballs

We are interested in color singlet operators because, a
shall see, our theories are confining. Now, the trace of
ordered product of link matrices around any closed path
the lattice is a color singlet. So we can build our operat
out of such loops. Moreover, under charge conjugation
trace will go to its complex conjugate: so the real part isC
51 and the imaginary part isC52. ForNcÞ2 we can also
construct color singlet operators containing ‘‘baryonic’’ ve
tices. We shall not use such operators in the calculation
this paper, but include a discussion of their properties
Appendix B.

As a simple example, consider the set of spatial plaque
Uxy(xW ,t) and form the operator

f~ t !5(
xW

ReTrUxy~xW ,t !. ~13!

It is a color singlet. Moreover, it is translation invariant a
so haspW 50. ~To obtain a non-zero momentum we wou
include a factor of exp$ipW•xW%.) It is C51 because we take
the real part of the trace. It is obviously invariant under p
ity and so isP51. Finally it is obviously invariant under
the np/2 rotational symmetry of our lattice: so it hasJ50.
This operator will therefore project onto states that ha
JPC5011 and pW 50. So from its correlation function we
can, using Eq.~12!, extract the lightest 011 glueball mass.

Suppose we now consider the ordered product of link m
trices around an arbitrary closed curveC that starts and end
at the point (xW ,t). Call it UC(xW ,t). Then the linear combina
tion

f~ t !5(
xW

(
n

ei j unReTr$UR~un!C6UPR~un!C
† % ~14!

will have J5 j , C51, and P56. Here the angles being
summed over areun5np/2. R(u) is a rotation operator, so
that R(u)C is the contour obtained when we rotateC by an
angleu. Similarly PC is the parity transform ofC. In the
second termU is conjugated because the order around
curve is reversed under parity. If we replace ReTr by Im
we getC52. Symmetries of the curveC will be reflected in
the operator in Eq.~14!, being null for some values ofJPC.

There is obviously an ambiguity in our assignment ofJ.
We use the continuum notation because we are intereste
the continuum spectrum and we expect that the lattice
recover continuum rotational invariance asa→0, at least on
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physical length scalesj/a→`. If in constructing our opera-
tors we limit ourselves to rotations ofnp/2, then any con-
tinuum spinJ that gives the same value of exp$ijnp/2% will
couple to this operator. That is to say, the state that we la
by J50 actually contains states withJ50,4,8,12, . . . and
similarly for the states we label byJ51 andJ52 ~which is
all we have with rotations ofp/2). A similar ambiguity oc-
curs in 4 dimensions. It is usually assumed that in this tow
of states it is the state with the smallest value ofJ that has the
smallest mass. Thus, in our case, we shall claim to calcu
the lightestJ50, 1 and 2 states. We shall return to this po
later.

It might be useful to indicate the operatorsUC that we
actually use. Clearly we need only specify the curvesC. The
first set consists of square and rectangular curves, in par
lar the 131, 232, 333 squares and the 132, 133, 2
33 rectangles. These curves are obviously symmetric un
parity reflection. Taking into account that parity also con
gates the matrix, it is easy to see from Eq.~14! that we can
only getJ11 andJ22 states. Moreover, the square loops c
give us onlyJ50 while linear combinations of the rectan
gular loops can give bothJ50 andJ52. However, all the
loops are symmetric under rotations ofp and so cannot give
J51. To obtainJ51 andP52C states we need other op
erators; in particular we need curves that are not symme
underP. To describe such curves it is convenient to use
obvious shorthand notation in which the plaquette in thex,y
plane would be written asxyx†y†. In this notation the curves
we use are a path ordered product of 2 plaquettes
xyx†y†x†y†xy, and the ‘‘twisted’’ version of this
xyx†y†y†x†yx; the path ordered product of the 132 loop
and a plaquette i.e.,xyyx†y†y†x†y†xy, and the twisted ver-
sion of thisxyyx†y†y†y†x†yx; and finally the path ordered
product of two 132 loops i.e.,xyyx†y†y†xxy†x†x†y and
the twisted version of this,xyyx†y†y†y†xxyx†x†. From suit-
able linear combinations of rotations, parity inversions a
real or imaginary parts of these loops we can construct
erators withJ50,1,2,P56, andC56.

At this point we have described in some detail the sy
metry properties that the operators need to have. Howe
all the operators we have described so far are ultravio
they are based on loops of sizeO(a). Such operators will
have an approximately equal projection onto all states of
specified quantum numbers. The number of excited st
increases rapidly asa→0. Thus the normalized projectio
onto the ground state decreases rapidly. This means th
a→0 we have to go to much largert in Eq. ~12! to see the
ground state dominating the correlation function. But w
cannot do so because of the statistical noise in our Mo
Carlo calculation. This means that we rapidly lose the abi
to calculate ground states as we approach the contin
limit.

An efficient remedy for this has been known for a lon
time @30–32#. What one needs are operators that extend o
physical length scales and are smooth on such scales.
such an operator has a chance of looking like the gro
state wave-functional if, as one expects, the latter is smo
on physical length scales. Guided by an intuition develop
2-6
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SU(N) GAUGE THEORIES IN 211 DIMENSIONS PHYSICAL REVIEW D 59 014512
in the context ofqq̄ wave-functions, one would expect th
first excited state to have a node. This could be approxima
by a linear combination of large smooth operators. Hig
excited states would be characterized by more nodes, h
by more complicated linear combinations. While this arg
ment is by itself no more than plausible, it turns out that t
strategy works remarkably well.

We use the iterative ‘‘blocking’’ or ‘‘fuzzing’’ algorithm
that has been used extensively inD5311 spectrum calcu-
lations @30,32#. We shall not repeat the details here; for
recent detailed account@in the context of SU~2! gauge fields
coupled to fundamental scalars inD5211] see @33#.
Briefly, at the first ‘‘blocking’’ level one has the usual lin
matrices:Um

1 (xW ,t)[Um(xW ,t). At the second level we con

struct a ‘‘blocked’’ link matrix, e.g.,Ux
2(xW ,t), by summing

the pathsxx, yxxy†, andy†xxy and projecting back to the
‘‘nearest’’ SU(Nc) matrix. All the paths start from the poin
(xW ,t) and end at the point 2a away in thex direction. But
these blocked links are not just longer; they are fatter~in the
spatial directions! as well. One iterates this procedure: t
blocked link matricesUm

N are formed in exactly this way
from the Um

N21 ~all this for spatialm only!. Thus these op-
erators join sites that are 2N21a apart, and are correspond
ingly fat as well. We can form path ordered products of the
blocked links: for example around a super-plaquette,C
[xyx†y†, where now each step is of length 2N21a. The
trace of this will be a color singlet.@After taking expectation
values, there may be small non-gauge invariant pieces
depend on how we projected from the sum of paths back
SU(Nc). See Appendix B for a brief discussion.# Clearly the
blocking algorithm is far from unique. In Appendix B w
compare a particular subset of such algorithms in orde
motivate the particular version we have used.

Thus we can form large smooth operators on any s
scale we like. When we reducea by a factor of 2, we need
only iterate the blocking procedure one extra time. We fo
operators, using a sufficient range of blockings~as deter-
mined by preliminary test calculations!, on all the paths de-
scribed earlier in this subsection. Thus we often haveO(50)
different operators for any given quantum numbers.
course we do not need to consider all of these; many
dominated by uninteresting ultraviolet excitations. How
choose the ‘‘best’’ is the question we shall return to, afte
brief detour describing the slightly different problem of e
tracting the string tension.

2. Operators for the string tension

We can calculate the string tension by calculating the
ergy of the lightest state composed of a staticq and q̄ a
distanceR apart.~Any fundamental charges will do; we useq
for quarks because they are so familiar.! If we have linear
confinement, then this energy,Emin(R), provides our defini-
tion of the string tension,s, as well as providing us with a
definition of the static quark ‘‘potential,’’Vqq̄(R):

Emin~R![Vqq̄~R! .
R→`

sR. ~15!
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For largeR one thinks of this state as being composed of
dressed static quarks with a confining flux tube of length.R
joining them.

We note that the usual potential that enters phenome
logical discussions of the string tension@34# is essentially
based on the Schro¨dinger equation and the relationship wi
our definition is not a simple one; this is apparent if o
considers, for example, the case of QCD. Vacuum qu
fluctuations break the string; so the potential as defined
Eq. ~15! will flatten off for largerR. The phenomenologica
potential, on the other hand, continues to rise, althoug
may acquire a modest imaginary part to incorporate the
cay of the confining flux tube. Effectively it incorporate
information about the time-scales associated with the dif
ent dynamical processes that contribute. The two definiti
differ most dramatically in the large-Nc , narrow-width limit
of QCD ~less so in the pure gauge theories of interest he
unless, for example, one considers the potential between
joint sources!.

To project onto thisqq̄ state we define the gauge
invariant operator

f~ t !5q̄~0!) Ulq~R! ~16!

where we can suppose that the quarks are separated alon
x-direction and the product of link matrices is along t
shortest path joining them. The correlation function of th
operator, taken fromt50 to t5T, will, for large enoughT,
be }exp$2Emin(R)T%. This correlation function involves two
quark propagators, one from (x5R,t50) to (x5R,t5T)
and the other from (x50,t5T) to (x50,t50). In the mq
→` limit ~which is how one implements static quarks d
namically! the quark hops along the shortest available rou
that is to say its propagator is equal to the product of lin
along the straight line joining its end-points. Thus the cor
lation function is equal~up to some irrelevant factor! to the
expectation value of the Wilson loop,^W(R,T)&. If we have
linear confinement, as in Eq.~15!, then ^W(R,T)&
}exp$2Emin(R)T%}exp$sRT%, the usual confining area deca
of Wilson loops. We can improve this calculation, just as
have improved the glueball calculation, using the smea
link matrices in Eq.~16!. The timelike link matrices will, of
course, not be smeared; they arise from the quark propag
calculation.

We shall use a modified version of the above that empl
Polyakov loops rather than Wilson loops. Construct a pr
uct of link matrices that closes on itself through a spa
boundary, for example

fP~x,t !5Tr)
n51

L

Uy~x,y1nŷ,t !, ~17!

on aL3L spatial lattice. This non-contractible loop is wh
one gets if one stretches our operator in Eq.~16! until the q

and q̄ meet and annihilate. It couples to the correspond
state: a flux tube of lengthL that encircles the torus. Such a
operator has zero overlap onto any contractible loop. O
can readily prove this using the symmetry of the action a
2-7
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MICHAEL J. TEPER PHYSICAL REVIEW D 59 014512
measure under the transformation Uy(x,y0 ,t)
→zNUy(x,y0 ,t),;t wherey0 is an arbitrarily chosen value
of y andzN is a non-trivial element of the center. A contrac
ible loop is obviously invariant under this symmetry whi
the Polyakov loop is not. This argument breaks down if
symmetry is spontaneously broken, which occurs, for
ample, in the high temperature deconfining phase.

If we sum overx to make f translation invariant (pW
50) and form the correlation function, we obtain at largt
the mass,mP(L), of the lightest state containing a period
flux loop of lengthaL:

^fP
† ~ t !fP~0!& }

t→`

e2mP~L !t5e2$saL2p/6aL1•••%t. ~18!

Here we have explicitly included the first correction ter
which is the translation to Polyakov loops@36# of the usual
Luscher correction@37# for Wilson loops. This correction is
‘‘universal,’’ but obviously one needs to test whether t
physical flux tube does indeed fall into this particular univ
sality class.

As we have seen above, using Wilson loops produce
heavy-quark potential. This contains a Coulomb term wh
is long range,}g2logr, in D5211. This term will of course
be screened, but having to disentangle it from the lin
piece, at the intermediate values ofr where the calculations
are accurate, can decrease the accuracy of the estimates.
In D5311 the Coulomb term is}1/r and its presence
makes it difficult to identify thep/12r universal string cor-
rection. By contrast, in using as we do correlators ofpW 50
sums ofspatial Polyakov loops, we have completely di
pensed with any charges and have transformed the prob
into a standard mass calculation. Because there are
charges, there is no longer a Coulomb contribution. T
benefit has of course been achieved at a price: we no lo
have a calculation of the heavy quark potential, but only
the string tension.

Just as for glueballs, the simplest operator is too ultrav
let to be useful asa→0. To remedy this we replace th
product of elementary links in Eq.~17! with a product of
blocked link matrices, as defined earlier in this section.
we shall see, there is always a blocking level for which t
smeared Polyakov loop is very close to the wave-functio
of the ground state of a flux tube that winds around the to

Two technical asides: when using link matrices at
blocking levelNB , the sites are spaced a distance 2NB21a
apart. A given product of blocked links, which starts at s
y51, is not quite invariant under translations in th
y-direction because the blocked links themselves are
completely invariant. One can remedy this by summ
products that start aty51,2, . . . ,2NB2121, respectively, and
this does in fact improve the operator overlap slightly.
second point is thatL need not be divisible by the length o
the blocked link. In that case we include links of a low
blocking level, averaged with staples that include transve
links blocked to the level of interest.~In practice this extra
smearing with staples is of marginal utility in getting a go
overlap.!
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3. Variational criterion and excited states

Our lattice action possesses the positivity properties
allow our lattice correlation functions to be decomposed
in Eq. ~12!. Let us define an effective mass by

ame f f~ t !52 lnH ^f†~ t !f~0!&

^f†~ t2a!f~0!&J . ~19!

Then it is easy to see from the fact that all the coefficients
Eq. ~12! are positive that

ame f f~ t !>ame f f~ t1a!;t. ~20!

This is a very useful property; it tells us thatme f f(t) provides
an upper bound for the mass,mG , of the lightest state with
the quantum numbers of the operatorf, whatever the value
of t and whatever the actual operator used. Since the st
tical errors oname f f(t) increase witht, we can assume tha
any apparent increase of the effective mass witht is in fact a
statistical fluctuation.

Now we know from Eq.~12! that

ame f f~ t !→
t→`

amG . ~21!

When ist large enough for this limit to have been effective
reached? Since we know thatme f f(t) decreases with increas
ing t, we can estimatemG by the value of the effective mas

amG.ame f f~ t0! ~22!

wheret0 is the lowest value oft for which

me f f~ t0!<me f f~ t.t0! ~23!

within errors.
Obviously this criterion becomes convincing only if th

errors are small enough for the relation in Eq.~23! to repre-
sent a significant constraint. In practice that will only be t
case if t0 is small, which will only happen if we have a
‘‘good’’ operator, i.e. one which mainly projects onto th
lightest state. Thus it would be useful to have a simple pr
tical criterion to decide, early on in a calculation, which o
erator is the best. Such a criterion is immediately sugges
by considering the normalized correlation function

C~ t ![
^f†~ t !f~0!&

^f†~0!f~0!&
5

^f†e2Htf&

^f†f&
. ~24!

Clearly if we were using a complete basis of operators, th
the best operator would be the one that maximizedC(t): it
would be the wave-functional of the lightest state and
would haveC(t)5exp$2mGt%. If the basis is not complete
this suggests a variational criterion: the ‘‘best’’ operator,f,
is the one which maximizesC(t). In practice we shall use
t5a. The reason is that one obtains an accurate value
C(a) in even a small calculation, and so can determine ea
on which are the operators that one needs to calculate w
The value of C(a) provides us with an estimate o
exp$2amG% and henceamG , which we know to be an uppe
bound on the true mass. In practice we improve upon
2-8
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SU(N) GAUGE THEORIES IN 211 DIMENSIONS PHYSICAL REVIEW D 59 014512
estimate by calculating the correlation function of this b
operator and getting our mass estimate using the first ef
tive mass that satisfies Eq.~23!.

Our general strategy for obtaining estimates of the gro
state and excited state masses is an extension of the p
dure we have just described. We start with some set of,
N lattice operators,f i , i 51, . . . ,N, which we normalize so
that ^f i

†f i&51. ~These are chosen from the operators d
cussed earlier in this section.! We then find the normalized
linear combination of the f i that maximizes C(a)
5^f†(a)f(0)&. Call this operatorF1 . This is our best es-
timate for the ground state wave-functional within the spa
$f i%, and the associated value ofC(a) provides us with a
lower bound estimate for exp$2am1% wherem1 is the ground
state mass. We can find higher excited states just as sim
First we construct a basis of operators,f i8 , i 51, . . . ,N
21, that spans the (N21)-dimensional subspace of th
space$f i% which is orthogonal toF1 . We now find the
linear combination of thesef i8 that maximizes C(a)

5^f8†(a)f8(0)&. Call this operatorF2 . This is our best
estimate for the wave-functional of the first excited state. T
associated value ofC(a) provides us with an estimate fo
exp$2am2% wherem2 is the mass of the excited state. W
can continue this procedure obtaining operatorsF3 ,F4 , . . .
from which we can obtain the energies of higher exci
states.

Because our basis is finite, the above mass estimates
not be very good. To improve upon them we calculate c
relations of our approximate wave-functiona
^F i

†(t)F i(0)&, and from these obtain effective masses
as large a range oft as our statistical errors~which grow with
t) will allow. For each correlation function we look for
‘‘plateau’’ in the effective masses and use the first m
along that plateau. For the lightest state we are, in princi
looking for a plateau that extends tot5`. For the excited
states we expect, with our incomplete basis, to have s
admixture of lighter eigenstates, and so the initial plate
should be finite and will eventually drop to the masses of
lighter states. That is to say, for excited states the mass
mate can be lower than the mass of the state whose ma
being estimated. This undoubtedly means that there
larger systematic error on our estimate of the mass of
excited state than on that of a ground state. We do not kn
how to estimate this error~for either type of state! but the
reader should be aware of its existence.

We have not yet said how we calculate theF i . We use
the following standard procedure@35#. Define theN3N cor-
relation matrixC(t) by

Ci j ~ t !5^f i
†~ t !f j~0!&. ~25!

Let the eigenvectors of the matrixC21(0)C(a) be vW i ,i
51, . . . ,N. Then

F i5ci (
k51

N

vk
i fk[(

k51

N

aikfk ~26!
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where the constantci is chosen so thatF i is normalized to
unity. There are of course many variations possible on
above procedure.

We return now to the choice of our original basis ofN
operators,f i ,I 51, . . . ,N. What we do is to carry out a
short preliminary calculation with typically 5 blocking leve
of perhaps 6–12 different operators. We calculate only
diagonal correlation functions. Comparing the values at
5a we identify the best operator and a few which are alm
as good. We also take a number which are significan
worse, since, after all, we want our basis to contain a reas
able overlap onto some excited states. The sort of basis
we were easily able to accommodate~in terms of memory!
had ;15 operators. In those cases where we had more
split the basis into two and worked with both bases se
rately. Ideally of course one wants to work with a sing
basis. The smallest basis was for the string tension, but
we were only interested in the ground state because by u
operators that are translation invariant along the Polya
loop, we automatically exclude any significant overlap on
the interesting string excitations of the basic flux loop.

4. Lattice and continuumJ

Suppose we have an operatorf obtained by multiplying
the ~blocked! link matrices around some closed curveC. The
rotation of this curve by an angleu gives the operatorfu .
We can then form an operator of spinJ,

f~J!5E dueiJufu , ~27!

in the usual way. This assumes we are in the continuum
course. On our square lattice we only use rotations ofp/2:

fL~J!5(
n

eiJnp/2fnp/2 . ~28!

As we remarked earlier,fL(J) is not just spinJ but will
obviously contain all spinsJ64N,;N, since all these spins
provide identical phases atu5np/2. It is nonetheless cus
tomary to label the lowest energy state by the lowest poss
spin, in the expectation that higher spin states will natura
be more massive. This is quite unsatisfactory: for exampl
is really not at all obvious that aJ53 glueball must be
heavier than aJ51 glueball @these are ambiguous sinceJ
521 and J51 are degenerate parity transforms and
2(21)54]. Which one is heavier can be an important iss
in any given dynamical model~as, for example, in@11#!.

In fact the situation is significantly better than this@10# in
the case where one uses smeared operators with large
laps onto the ground state. We shall now show this.

We note that the smeared operators that we construct
which we then insert into Eq.~28!, spread substantially in al
spatial directions. We are here only interested in the fact
this also involves an angular spread. We might imagine m
elling this qualitative feature using some function lik
;exp$2u2/a2%, with the value ofa determining the angula
spread of the operator. This would be the amplitude to fi
uu& in fuvac&. The amplitude would change to;exp$2(u
2-9
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MICHAEL J. TEPER PHYSICAL REVIEW D 59 014512
2u0)
2/a2% if we rotatef through an angleu0 . Of course, we

cannot use precisely this form because it does not reflec
periodic nature of the angular variable. However, we c
modify it slightly so that it does,

f5(
n

e2~u22pn!2/a2
, ~29!

and in that case it possesses the Fourier expansion

f5
1

2aAp
(

m52`

m51`

e2a2m2/4eimu. ~30!

Suppose we now insert this in Eq.~28! with, for example,
J50. We obtain

fL~J50!5
1

2aAp
(

m52`

m51`

e2a2m2/4

3eimu$11 i m1~21!m1~2 i !m%

5
2

aAp
(

N52`

N51`

e24a2N2
ei4Nu. ~31!

We see, as expected, that we not only haveJ50, but that
states withJ54N,;N also contribute. However, what is in
teresting is their overlap, which is}exp$24a2N2%. We see
from this that ifa is not small, then these higher spin co
tributions are severely suppressed. This should be no
prise: in the extreme limit where our operator is smea
uniformly over all angles it is obvious that onlyJ50 can
contribute.

We see from this argument that smeared operators
generically have the largest overlap onto the lowestuJu. The
argument relies on the operator being smooth over som
nite angular region. This is true of our elementary smea
operators, but is not necessarily true of linear combinati
of these. Since our variational calculation produces such
ear combinations, we need to continue the argument a l
further.

What Eq.~31! tells us is that states of larger than minim
J will have a suppressed coupling to an elementary sme
operator. Thus while it is certainly possible that the light
state with ‘‘J50’’ actually possessesJ54 and that it has a
large overlap onto the variationally selected linear combi
tion of elementary smeared operators, its overlap onto
individual smeared operator should be visibly suppressed
practice we have found this not to be the case in any of
channels: typically we can find a smeared operator for wh
the overlap is>80%. Thus we can confidently state that t
lightest states withJ50,1,2 do indeed have those spins, f
all values ofP,C. We have not attempted to perform a sim
lar check for the excited states in these channels.

Clearly one should use the approximate rotational inv
ance on scalesj@a to construct operators that, to a goo
approximation, have any value ofJ that one desires. Such
calculation is in progress@38#.
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IV. CONFINEMENT AND THE STRING TENSION

In the previous section we described how to calculate
mass,mP(L), of a flux tube that winds around ourL3L
spatial torus. Whether such a flux tube actually exists, tha
to say whether we have linear confinement, will be revea
by how mP(L) varies withL. This is the first question we
address.

Having shown that we do have linear confinement,
turn to the problem of extracting continuum values of t
string tension in units of the mass scale provided byg2. This
turns out to be much less ambiguous than the correspon
D5311 calculations where the scale is provided by, s
Lmom. Nonetheless, we shall see that using ‘‘improve
couplings does indeed enable us to produce more accu
extrapolations. An explicit demonstration of the extent of t
improvement is provided in Appendix C.

Having obtained the continuum values ofAs/g2 for the
SU~2!, SU~3!, SU~4!, SU~5! gauge theories, we then test ce
tain expectations concerning the large-Nc limit:

~i! is SU(̀ ) confining?
~ii ! is theNc→` limit reached by varyingg2}1/Nc?
~iii ! is the leading correctionO(1/Nc

2)?
We also get our first indication of how small we can ma

Nc and still be close to theNc5` limit.

A. Testing for linear confinement

When we are using Eq.~18! to extractmP(L), it is not t
that we know butnt where t5ant : so what we actually
extract is amP(L). If we have linear confinement with a
string tensions, then we should find

amP~L !5a2sL2
p

6L
1 ••• ~32!

for large enoughL. Here we have also included the ‘‘unive
sal’’ string correction. Its presence is also something
would like to test.

Since the numerical calculations are fastest in SU~2!, that
is where we have performed our most detailed tests. In F
1 and 2 we show howamP(L) varies withL for b56.0 and
b59.0, respectively. The first thing we note is that there
indeed an approximate linear dependence ofamP(L) on L,
with an apparent trend towards exact linearity at largeL.
Ideally we would like to see this rise continue toL5`. This
is not possible to test in a numerical calculation, but what
can ask is whether the linear rise extends to physically la
values of the string length,aL, or not. Now a convenien
physical length scale is given byjs[1/As where we can get
a2s from the asymptotic linear rise. Doing so we find th
our largest lengths correspond toaL;8js and aL;5js at
b56 andb59 respectively. These, we claim, are large d
tances. For example, they would correspond to.4 fm and
2.5 fm respectively in the real world wherejs[1/As
.0.5 fm.

We can see from Fig. 1 and Fig. 2 that the dependenc
the mass onL is not exactly linear; indeed in the latter figur
we plot the ratioamP(L)/L precisely in order to expose th
2-10
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deviations from linearity. We note that the approach is fro
below; i.e., the leading correction must have a negative s
just as it does in Eq.~32!. We have plotted a fit of this form
in Fig. 2 and we see that it appears to be compatible with
observed variation. Can we test the correction term in
~32! more precisely? Suppose the lattice sizesLi are ordered
so thatLi 11.Li . Let us parametrize the corresponding lo
masses byamP(Li)5a2sLi2ce f f /Li and the same for
amP(Li 11). Then we obtain

FIG. 1. Mass of periodic flux loop,amP , against its length,L, at
b56. The straight line is to guide the eye.

FIG. 2. Mass of periodic flux loop of length,L, atb59, divided
by L to expose the correction to the linear rise. Curve is fit using
~32!.
01451
n,
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ce f f5

amP~Li 11!

Li 11
2

amP~Li !

Li

1

Li
2 2

1

Li 11
2

. ~33!

What are we looking for? At smallL higher order corrections
in 1/L will be important and soce f f will vary as we increase
L. If however ce f f→c as L→`, then this tells us that the
functional form of the leading correction is indeedc/L. If
the value ofc is compatible withp/6.0.52, then we have
some evidence that the correction is of the universal fo
How much evidence depends on the precision of the co
parison of course.

In Table II we list the values ofce f f for various ranges of
Li ,Li 11 . We also show a single value obtained atb512. In
comparing the distances at various values ofb, we can use
the fact that lim

a→0
b54/ag2 which tells us that, roughly,

a}1/b. So L532–48 atb512 corresponds roughly toL
524–36 atb59 and toL516–24 atb56. As expected we
see a strong variation ofce f f at the small values ofL where
our calculations are most accurate. As the length,L, of the
flux loop increases its mass also increases and so the rel
error once f f increases quite rapidly. So while there is go
evidence that, for largerL, ce f f grows to be at least as larg
as the theoretical value ofp/6.0.52, there is only a little
direct evidence, from theb59 values, that this is indeed th
asymptoticL→` value. Taken as a whole, we read the r
sults in Table II as providing significant support for the a
plicability of the Luscher universal string correction to th
confining flux tube. We remark that in contrast toD5311
studies using Wilson loops, the present analysis has the
vantage of there being no confusion with a Coulomb term
the same functional form as the Luscher term.

Since this is our first serious mass calculation in this
per, it might be worth discussing the extraction of tho
masses in a little more detail. By way of example we list
Table III the effective masses, as defined in Eq.~19!, for the
b59, 12, and 14.5 calculations.~The last corresponds to ou
smallest lattice spacing.! We show not only the masses ob
.

TABLE II. Coefficient of effective leading 1/L correction in the
flux loop mass: as extracted from loops of lengthL and L8 using
Eq. ~33!.

b L,L8 ce f f

12 32,48 0.66~20!

9 24,32 0.79~26!

16,24 0.63~9!

12,16 0.47~7!

8,12 0.10~2!

6,8 0.00~2!

6 24,32 -1.7~2.9!
16,24 1.26~70!

12,16 0.87~27!

8,12 0.41~8!

6,8 0.28~5!
2-11
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MICHAEL J. TEPER PHYSICAL REVIEW D 59 014512
tained usingpW 50 operators, but also those obtained us
operators with the lowest non-zero momentum,ap52p/L
on anL3L spatial lattice. From the latter we obtain effectiv
energies,aE(p), which we have translated into effectiv
masses using the continuum dispersion relationm25E2

2p2. As L decreases,ap52p/L becomes larger and a
some point it should become sensitive to the cutoff at wh
point this relation will break down. Comparing the two se
of masses in Table III, we observe that they are compati
within small errors, thus demonstrating the restoration
continuum Lorentz invariance. The dispersion relation d
break down on theL56 lattice, but at this pointp52p/3a
;2/a which is certainly an ultraviolet momentum.

It might seem remarkable how small we can makeL while
still retaining all the string-like properties of the flux tub
which after all will have a width of the order of;1/aAs. In
fact, as we have argued elsewhere@19#, this is not surprising
if the fluctuations of the tube are not too rough, and
transverse volume is periodic.

We return to the masses. Our criterion is that we cho
m(t0) as our mass estimate if, within errors,m(t0)
5m(t);t>t0 . In most of the cases shown in Table III th
is straightforward; the choice ofm(t52a) seems appropri-
ate. In some cases there is a downward drift in the value
m(t) at largert, for example on theL548 lattice atb512.
In this case however the mass from thepW Þ0 operator shows
no such effect: indeed it shows a slight upward drift. Th
suggests that this drift is a statistical fluctuation. Indeed
large drop seen in going fromm(3a) to m(4a) cannot be
accommodated in any realistic decomposition of the c
relator that respects positivity. In the case of theL532
masses at the sameb there is a marginal hint thatm(2a) is
not asymptotic, but it is difficult to see why it should not b
if t52a is asymptotic atb59 and atb514.5 ~as it appears
to be!. The fact that correlators can drift@32# and indeed
oscillate @39# outside their apparent errors introduces so
subjective bias into our analysis. But, as we have seen, it
often be resolved either by performing simultaneouspW Þ0
calculations or by considering other calculations at nea
values ofb andL. This renders the problem a minor one
practice, although it may well induce a systematic bias at
level of the statistical errors. For this reason we do not t
seriously the fact that the mean values ofce f f at largerL tend
to be abovep/6, albeit within statistical errors.

We turn now to the SU~3!, SU~4! and SU~5! theories. In
each case we have performed an explicit test of linear c
finement at one value ofb at least. These are listed in Tab
IV. We see that in every case there is an approximately lin
increase of the mass with the length of the loop. That is
say, we have linear confinement. We also extract and list
values ofce f f as defined in Eq.~33!. We see that we have
some evidence for the validity of the string correction in E
~32! for all our values ofNc .

On the basis of this evidence we shall assume that
have linear confinement at all other values ofb so that we
need calculatemP(L) for only one value ofL and can then
use Eq.~32! to extracta2s. Of courseaL has to be chosen
large enough for the leading correction to be the domin
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one. We shall use lattices that are about as large asL524 at
b59.0 in SU~2!. As we see from Table II, this should ce
tainly be large enough.

B. Extrapolating to the continuum limit

In Tables V, VI, and VII we list the values of the strin
tension that we shall use. These have been obtained from
calculated flux loop masses using Eq.~32!. The lengths of
these loops are also shown in the tables.

The flux loop masses have been obtained from the cr
correlation matrix, as described earlier. The exceptions
all in SU~2!: the b56.56 andL516, b56.0 calculations
and those at such strong coupling,b<3.47, that the eigen-
value calculation becomes error-driven and breaks down
these cases we applied the simplified variational calcula
where one chooses, from the original basis of operators,
single smeared Polyakov loop that maximizesame f f(t5a).
By comparing how such a procedure differs from the full o
at neighboring values ofL and b we believe that any bias
induced is within the statistical errors. Once we have cho
the ‘‘best’’ operator, we extracts from ame f f(t52a).
There are a few cases where the naive application of
‘‘effective mass plateau’’ criterion would lead us to us
ame f f(t53a) ~or largert). However, these are typically two
standard deviation effects that occur infrequently enough
they can be fluctuations. And in practice if we were to u
them, it would make no material difference to the calcu
tions we now describe.

We now wish to use these values to obtain the continu
string tension. Since the only explicit mass scale is provid
by g2, we expect thatAs should be some multiple of it. We
can obtain this ratio from our tabulated values ofaAs:

lim
b→`

baAs52Nc

As

g2 ~34!

using Eq.~7!.
To perform the limit in Eq.~34! we can add a correction

term

baAs5c01
c1

b
~35!

and fit the unknown constants,c052NcAs/g2 andc1 , to the
values ofbaAs that we obtain from our tables. In practic
higher order corrections will be important at smallb and so
we will need to systematically drop off the lowest-b points
until we get a fit with an acceptablex2. Although this is a
workable approach, we recall, from theD5311 case, that
the lattice bare coupling provides a poor definition of a ru
ning coupling. The basic problems are similar in 211 and
311 dimensions and so we might expect that the hig
order corrections to Eq.~35! will be much larger than if we
were to use a physically motivated coupling. A very simp
such coupling@40# is the mean field improved coupling

b I5b K 1

Nc
Tr UpL . ~36!
2-12
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TABLE III. Effective loop masses for various loop lengthsL and from the lowest 2 momenta,p
52pnmom/L, in SU~2! at the values ofb shown.

b L nmom am(a) am(2a) am(3a) am(4a) am(5a)

14.5 40 0 0.373~1! 0.364~2! 0.364~2! 0.364~3! 0.363~5!

1 0.375~1! 0.365~2! 0.363~2! 0.361~3! 0.358~4!

12.0 48 0 0.685~2! 0.668~5! 0.656~9! 0.628~16! 0.632~36!

1 0.690~2! 0.670~4! 0.671~7! 0.677~13! 0.677~25!

32 0 0.443~2! 0.434~2! 0.429~3! 0.426~4! 0.426~7!

1 0.447~1! 0.434~2! 0.430~3! 0.425~4! 0.425~6!

9.0 32 0 0.846~3! 0.826~5! 0.832~10! 0.837~21!

1 0.846~2! 0.823~4! 0.821~7! 0.832~17!

24 0 0.617~2! 0.605~4! 0.601~6! 0.590~9! 0.593~17!

1 0.622~1! 0.609~2! 0.600~5! 0.599~10! 0.597~17!

16 0 0.389~2! 0.381~2! 0.378~4! 0.378~5! 0.379~7!

1 0.398~2! 0.383~2! 0.378~4! 0.370~5! 0.364~9!

12 0 0.274~2! 0.269~2! 0.268~3! 0.271~3! 0.272~4!

1 0.291~3! 0.274~6! 0.261~10! 0.268~14!

8 0 0.174~1! 0.172~1! 0.172~1! 0.172~2! 0.173~2!

1 0.215~6! 0.182~10! 0.163~25!

6 0 0.130~1! 0.129~1! 0.129~1! 0.128~2! 0.128~2!

1 0.093~16!
te
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To defineb I we need the values of the average plaquet
^(1/Nc)TrUp&. These are provided in Tables VIII, IX, and X
In Appendix C we compare extrapolations inb andb I in the
cases of SU~2! and SU~3!, where we have calculations over
wide range ofb values. We are able to demonstrate that
mean field improved coupling does indeed provide a m
better expansion parameter. Thus we shall extrapolate to
continuum limit using

b IaAs5c01
c1

b I
~37!

in all cases.
The results of these extrapolations are listed in Table

together with the confidence levels of the fits and the fit
range. Having obtained the continuum string tensions

As

g2 55
0.3353~18!, SU~2!,

0.5530~20!, SU~3!,

0.7581~40!, SU~4!,

0.9657~54!, SU~5!,

~38!

we turn now to an analysis of theirNc dependence.

C. Confinement at largeN

In Fig. 3 we plot our calculated values ofAs/g2 against
Nc . We immediately observe that the variation approache
linear form for largerNc ,

As

g2 }Nc , ~39!
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and indeed is nearly linear even down toNc52. Now, if our
SU(Nc) gauge theories are to have a smoothNc→` limit,
then in that limit they will have some fixed physical ma
scale that we shall callm. If this limit is to be confining, we
must have

As

m
→const, Nc→`. ~40!

From Eq.~39! and Eq.~40! we immediately infer that

g2}
m

Nc
. ~41!

TABLE IV. Flux loop masses as a function of the loop lengt
L, for SU~3!, SU~4! and SU~5!. Also shown isce f f , the coefficient
of the 1/L correction in Eqs.~32!,~33!.

Nc b L amP ce f f

5 44 8 0.4490~33!

12 0.7314~71! 0.55~8!

16 1.0110~56! 0.75~23!

33 8 0.997~8!

12 1.551~25! 0.53~26!

4 28 8 0.4257~45!

12 0.7139~66! 0.72~9!

16 0.9857~66! 0.70~23!

3 15 8 0.4425~27!

12 0.7391~46! 0.72~6!

16 1.0103~92! 0.51~23!

24 1.5636~180! 0.92~44!
2-13
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MICHAEL J. TEPER PHYSICAL REVIEW D 59 014512
We recall that the usual all-order diagrammatic analysis
mands thatg2}1/Nc for a smooth large-Nc limit. Equation
~41! embodies precisely that requirement and so provide
fully non-perturbative confirmation of those arguments.

To complete our demonstration that the theory is con
ing in the Nc→` limit we need to show tha
lim

Nc→`
mG /As is finite and non-zero for the lightest glue

ball masses. That this is in fact the case is something tha
shall demonstrate in the next section; for now we shall
sume it to be so.

In addition to predicting thatg2}1/Nc , the usual dia-
grammatic analysis also predicts that the leading correc
should beO(1/Nc

2). To test this we fit our string tension
with the functional form

As

g2Nc
5c01

c1

Nc
a . ~42!

In Fig. 4 we show how the goodness of fit varies with t
powera. From this we can infer that

a51.9660.45. ~43!

If we assume, in addition, that the power should be an in
ger, then only one value is allowed:a52. Thus we conclude
that we have rather strong evidence that the leading cor
tion is also in agreement with the usual diagrammatic exp
tations.

Fitting our calculated values, we obtain

TABLE V. SU~2! string tensions as extracted from flux loo
masses of lengthL using Eq.~32!.

b L aAs b L aAs

14.5 40 0.09713~20! 6.0 16 0.2538~10!

12.0 48 0.1179~8! 5.0 16 0.3129~20!

12.0 32 0.1179~5! 4.5 12 0.3527~30!

9.0 32 0.1622~4! 3.75 8 0.4487~33!

9.0 24 0.1616~6! 3.47 8 0.4889~56!

6.56 24 0.2297~10! 3.0 6 0.584~16!

6.0 32 0.2529~33! 2.5 4 0.709~11!

6.0 24 0.2562~26! 2.083̇ 4 0.852~50!

TABLE VI. SU~3! string tensions as extracted from flux loo
masses of lengthL using Eq.~32!.

b L aAs b L aAs

34.0 40 0.10379~26! 8.175 6 0.5598~31!

28.0 32 0.12753~20! 7.5 6 0.591~23!

21.0 24 0.17479~38! 7.5 4 0.633~3!

15.0 24 0.2570~15! 7.0 4 0.698~5!

15.0 16 0.2553~12! 6.5 4 0.782~26!

11.0 12 0.3748~23! 6.0 4 0.835~41!
01451
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As

g2Nc
50.1975~10!2

0.119~8!

Nc
2 . ~44!

This fit has a good confidence level,;80%. We note that
this tells us something interesting: we can describe the ph
ics of SU(Nc) gauge theories, all the way down to SU(2),
by that of the SU(̀ ) theory supplemented by the leadin
correction with a modest coefficient. Of course, so far
have only shown this for the string tension: in the next s
tion we shall see that this is also the case for the mass s
trum.

Before moving on from our result for the string tension,
is interesting to ask whether it is possible to quantify t
potential error associated with keeping only the leading c
rection in Eq.~44!. There is no unique way to do this, o
course, but a first step would be to include a higher or
correction and see what difference it makes. When we do
we obtain the following range of fits:

As

g2Nc
50.1976~22!2

0.121~43!

Nc
2 2

0.01~14!

Nc
4 . ~45!

We observe that our result for lim
Nc→`

As/g2Nc is robust

under the inclusion of the higher order correction. Our c
culations constrain the coefficient of this higher-order corr
tion to be small, and the only significant effect from inclu
ing it is to double the error on the extrapolated value of
string tension.

The discussion so far has concerned the continuum lim
which is of course what we are mainly interested in. Ho
ever, the large-Nc expectations will also apply to lattice cor

TABLE VIII. Average SU~2! plaquette values.

b L Plaquette b L Plaquette

14.5 40 0.929803~3! 6.0 16 0.824744~33!

12.0 48 0.914824~3! 5.0 16 0.786850~20!

12.0 32 0.914823~3! 4.5 12 0.760841~45!

9.0 32 0.885445~5! 3.75 8 0.706986~48!

9.0 24 0.885438~7! 3.47 8 0.680058~59!

6.56 24 0.840548~22! 3.0 6 0.624023~62!

6.0 32 0.824772~10! 2.5 4 0.54737~20!

6.0 24 0.824782~16! 2.083̇ 4 0.47100~13!

TABLE VII. SU~4! and SU~5! string tensions as extracted from
flux loop masses of lengthL using Eq.~32!.

SU~4! SU~5!

b L aAs b L aAs

51.0 32 0.12859~23! 82.0 32 0.12715~27!

40.0 24 0.16804~30! 64.0 24 0.1664~4!

28.0 16 0.2523~8! 44.0 16 0.2554~7!

21.0 12 0.3597~24! 33.0 12 0.3645~29!
2-14
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rections, and we can ask if they are fulfilled. What we wou
expect is that theO(ag2) correction should also be a func
tion of g2Nc , i.e.,

aAs

ag2Nc
5b01b1ag2Nc , Nc→`. ~46!

In terms of our fit in Eq.~37! this implies that the lattice
correction,c1 , should be given by

c154Nc
4b1 , Nc→`. ~47!

We note that our calculated values ofc1 , as listed in Table
XI, are entirely consistent with this being the leading larg
Nc behavior. Indeed, if we fit these values with a function
form c15cNa, we find a good fit witha54.260.6.

V. MASS SPECTRUM

Having seen that all our gauge theories are linearly c
fining, we infer that the asymptotic states are color sing
and so we can calculate the mass spectrum using the o
tors described earlier on in this paper.

We shall first indicate the quality of the lattice mass c
culations. We then investigate the finite volume depende
of these masses so as to establish control over this pote
source of systematic error. We shall then carry out the
trapolation to the continuum limit. Finally we turn to a stud
of the dependence of the mass spectrum onNc . We finish
with a discussion of some features of the calculated m
spectrum.

A. Calculating the masses

We shall focus on the lightest states because the cor
tions mediated by heavier states decrease so rapidly wt
that it becomes hard to know whether we have indeed
lated the asymptotic exponential decay. Moreover, glueb

TABLE IX. Average SU~3! plaquette values.

b L Plaquette b L Plaquette

34.0 40 0.919680~2! 8.175 6 0.620730~45!

28.0 32 0.901903~2! 7.5 6 0.57810~19!

21.0 24 0.867671~5! 7.5 4 0.57801~8!

15.0 24 0.810773~9! 7.0 4 0.54118~11!

15.0 16 0.810767~11! 6.5 4 0.50060~13!

11.0 12 0.733401~18! 6.0 4 0.45736~19!

TABLE X. Average SU~4! and SU~5! plaquette values.

SU~4! SU~5!

b L Plaquette b L Plaquette

51.0 32 0.898791~1! 82.0 32 0.899245~1!

40.0 24 0.869608~3! 64.0 24 0.869510~3!

28.0 16 0.809339~9! 44.0 16 0.805322~6!

21.0 12 0.737628~18! 33.0 12 0.731640~17!
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that are heavy enough will decay into lighter glueballs a
this may require more careful analysis.

Clearly we want to obtain the ground state in eachJPC

channel, and in those cases where the ground state is
enough we can estimate one or two excited masses as
So the states whose masses we shall calculate are tho
the 011, 011* , 011** , 022, 022* , 022** , 021, 012,
211, 211* , 221, 221* , 222, 222* , 212, 212* , 111,
121, 122, and 112 glueballs.

We shall calculate the masses, as described earlier
SU~2!, SU~3!, SU~4! and SU~5! gauge groups and, in eac
case, for a range ofb values sufficient to allow a continuum
extrapolation. In practice this means for most, but not all,
the values ofb at which we calculated the string tension.

For any state, the first question must be, how confident
we that we have indeed calculated the mass? That is to
do we have evidence for an effective mass plateau?

To address this question we analyze, by way of an
ample, our SU~5! calculation at the highest value ofb. We
show in Table XII the effective masses we obtain the

TABLE XI. Continuum extrapolations ofb IaAs→2NcAs/g2

as in Eq.~37!, with confidence level of best fit, and range ofb
fitted.

Group c0 c1 C.L. (%) b>

SU~2! 1.341~7! -0.421~51! 60 3.0
SU~3! 3.318~12! -2.43~22! 90 8.175
SU~4! 6.065~32! -7.74~1.10! 90 21.0
SU~5! 9.657~54! -21.4~2.7! 70 33.0

FIG. 3. The value ofAs/g2 as a function ofNc . The line shows
the fit in Eq.~44!.
2-15
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MICHAEL J. TEPER PHYSICAL REVIEW D 59 014512
Since the highestb corresponds to the smallesta, these cal-
culations are the closest to the continuum limit~and the clos-
est toNc5`) and so are the ones which are the most int
esting. We note that it is when the value ofa is smallest that
the correlation functions drop most slowly and we can
tract effective masses to largert. At smallerb, farther away
from the continuum limit, it will be harder to confirm that w
are seeing mass plateaux.

From this table we infer that a good estimate of the m
is provided byme f f(2a) in each case. That is to say, with
errors the effective mass is on a plateau fort>2a. This is
self-evident in most cases. In some cases, e.g. for the 022* ,
one sees a drop inme f f of over one standard deviation whe
going fromt52a to t53a. However, that is to be expected
just statistically, given the large number of correlation fun
tions that we consider. Positivity can be useful in such ca

FIG. 4. Thex2 per degree of freedom against the power,a, of
the leading large-Nc correction when fittingAs/g2Nc .

TABLE XII. Effective masses for the states shown, on a 33

lattice atb582 in SU~5!.

State am(a) am(2a) am(3a) am(4a) am(5a)

011 0.541~3! 0.533~5! 0.539~7! 0.523~11! 0.533~14!

011* 0.821~3! 0.798~7! 0.796~14! 0.799~29! 0.795~65!

011** 1.033~4! 1.009~10! 1.028~28! 1.013~66! 1.18~22!

022 0.793~3! 0.779~7! 0.765~10! 0.750~30! 0.71~5!

022* 1.016~4! 1.002~8! 0.969~26! 1.054~62! 1.09~17!

022** 1.202~5! 1.193~14! 1.14~4! 1.20~18!

021 1.208~5! 1.155~11! 1.146~43! 1.02~11!

012 1.326~6! 1.256~14! 1.256~59! 1.59~26!

211 0.913~3! 0.891~7! 0.905~19! 0.911~40!

211* 1.103~4! 1.072~9! 1.074~31! 1.00~10!

221 0.906~3! 0.879~7! 0.853~14! 0.847~43!

221* 1.094~4! 1.076~9! 1.069~32! 1.04~10!

222 1.081~4! 1.054~10! 1.051~28! 1.10~10!

222* 1.271~5! 1.225~16! 1.218~46! 1.17~11!

212 1.075~4! 1.043~9! 1.049~30! 1.10~11!

212* 1.276~4! 1.230~17! 1.218~49! 1.36~17!

111 1.344~4! 1.294~14! 1.284~48! 1.14~18!

121 1.355~5! 1.300~10! 1.327~46! 1.33~16!

122 1.255~3! 1.212~9! 1.176~34! 1.18~10!

112 1.286~5! 1.255~14! 1.231~44! 1.15~19!
01451
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If me f f(a) andme f f(2a) are sufficiently close, then one ca
argue that it is not possible forme f f(3a) to be very much
lower. At the margins, this allows us to make choices ab
what is, or is not, likely to be a statistical fluctuation. At th
level there is some subjective element in the analysis,
though it should be evident from Table XII that this will no
be an important problem in our calculation. To test this
have performed continuum extrapolations usingme f f(3a)
whenever a blind application of our criterion for identifyin
mass plateaux so dictated. We found it makes no signific
difference although the fits are often worse. The reason
the latter fact is that we discount anyrise in me f f(t) with t
simply because we know from positivity that the effecti
masses must decrease monotonically witht. From the statis-
tical point of view, this is a bias in the procedure whic
undermines the statistical analysis.

It is apparent from Table XII that as we go to heavi
states, the evidence for effective mass plateaux becomes
significant simply because the statistical errors will ov
whelm the signal at smaller values oft. As we go to smaller
b, and so largera, this becomes very much worse and w
will often not have a useful effective mass beyondt52a. In
these cases we simply assume thatme f f(2a) provides a good
mass estimate. This is reasonable. If at a high value ofb a
particular operator gives us a mass plateau fromt52a, then
at a larger lattice spacing, e.g.a852a, an operator that is
one blocking level down, and hence half the size, sho
surely give us a mass plateau fromt52a854a.

While the above argument is plausible, it cannot replac
direct demonstration. This can be provided by allowing t
spacelike,as , and timelike,at , lattice spacings to differ. We
then chooseat small enough that the correlation function
fall slowly enough over several~temporal! lattice spacings
for us to obtain several accurate effective masses. This i
old idea that was used precisely for this purpose@41# in the
early days of glueball calculations. More recently it has be
used very successfully@42# as part of the action improve
ment program. Since this is a somewhat different type
calculation to the one in this paper, we leave its discussio
Appendix D. The reader will find there an explicit demo
stration that even for a coarse spatial discretization, us
effective masses at distances betweenas and 2as is an accu-
rate way to estimate the masses.

In summary, we have taken all the masses that we us
the spectrum calculations of this paper fromme f f(t52a).
We have checked that usingme f f(t53a) in the few cases
that are ambiguous makes no significant difference.

B. Finite volume effects

In a theory with a mass gap,m, and on a periodic spatia
volume that isL lattice units across, the leading finite siz
corrections to masses are typicallyO(e2camL) where the
constantc5O(1) will depend on the details of the theor
being considered@43#. Of course this correction will only be
relevant onceaL is significantly larger than the typical had
ronic length scale,j. In that caseamL will be large, since
hadron Compton wavelengths are usually!j, and so the
correction will be small: usually too small to be observ
2-16
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with the kind of accuracy we possess. This means that
cannot expect to obtain a reliable estimate of the coeffic
of this correction term. This correction is interesting beca
it is proportional to a triple-glueball effective coupling. How
ever, if what we are interested in is controlling finite-volum
corrections, then the known functional form of this corre
tion has a very useful consequence. Essentially it tells us
if we calculate a mass on volumesaL1 and aL2 which are
both significantly larger thanj, and if we find that the
change in mass is small when we go fromL1 to L2 , then we
can be confident that any mass shift in going fromL5L2 to
L5` will be small compared to the observed change in
mass@as long asa(L22L1);j]. This is important: if the
leading correction were power-like rather than exponent
then this would not be true and controlling finite-volum
corrections would be appreciably more difficult.

So our strategy to control finite volume corrections is
follows. We calculate masses on a range of lattice volum
We include volumes that satisfy the conditions of the pre
ous paragraph. And once we observe very small change
our larger volumes, we can be confident that the mass ca
lated on the very largest volume is identical, within errors,
the L5` mass.

In practice it would be wasteful to perform such an ana
sis at each value ofb. Instead we choose a couple of valu
of b where we perform an extensive analysis, including v
large volumes in order to make sure there are no unplea
surprises. This allows us to establish what volumes are la
enough that any change in mass becomes invisible within
typical statistical errors of our calculations. We then use s
ing to infer how this translates to other values ofb.

We perform these calculations in SU~2!, simply because
that consumes much less computer time. Having determ
how large the volume has to be in, say, units of 1/aAs we
can take this criterion over to SU~3! etc. Of course there is
some danger in doing this and so we perform at least a m
est finite-volume check for each of our non-Abelian grou

As a first step, we show in Fig. 5 how some of the light
masses vary with the size,L, of the spatial volume, in the
case of SU~2! and at a coupling ofb59.0. This, as we see
from Table V, corresponds to quite a small lattice spaci
Our spatial length varies fromL56 to L532 which corre-
sponds to a variation from;1 to ;5 in units of 1/aAs
~about 0.5–2.5 fm if we were in QCD!, a range of sizes tha
satisfies the conditions laid out above. Note that since th
SU~2!, we have noC52 states; these shall appear in o
~less extensive! SU~3! study. So what we show in Fig. 5 ar
the masses of the lightest 011, 021, 211, 221, 111, and
121 glueballs. We also show twice the mass of the perio
flux loop, 2amP , for reasons that shall soon be apparent

There are several observations we can make from Fi
and the calculations on which it is based.

~i! As we decreaseL we do indeed observe the onset
substantial finite size effects.

~ii ! The parity doubling that we see at large volumes
badly broken by these finite-volume corrections. This is
unexpected: the toroidal boundary conditions break the
fective rotational symmetry from the~dynamically restored!
continuous one down to rotations ofp/2. As discussed ear
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lier, this undermines the argument for 26 degeneracy al-
though not 16 degeneracy. This is precisely what we obser
in Fig. 5. Thus the observed degeneracy of the 26 states can
serve as a criterion for the lack of finite volume effects.

~iii ! We observe that the value ofL at which the 21 be-
gins to show finite-volume corrections is roughly where t
asymptotic glueball mass equals twice the flux loop mas

2amP~L !.am21 /L5` . ~48!

The same is true for the 01. Since the latter is lighter, and
sincemP↑ asL↑, the scalar becomes volume-independen
smaller volumes than the tensor.

This correspondence with 2mP is easy to understand
Suppose we denote byl x thepW 50 smeared Polyakov loop in
thex-direction which has the best overlap onto thex-periodic
flux tube. Typically this overlap will be;90–100 %. Con-
sider now the operatorl xl x

† . This will also bepW 50 and color
singlet, but it falls into the sector of contractible loops and
can couple to glueball states. If the transverse spatial s
Ly , were very large, then this operator would mainly coup
to a state that consists of two periodic flux loops who
energy would be 2mP(L). We shall refer to such states a
‘‘torelons.’’ On our latticesLx5Ly5L and asL becomes
small these flux loops will necessarily interact; thus the lo
est energy will deviate somewhat from 2mP . We can form
011 and 211 combinations,l xl x

†1 l yl y
† and l xl x

†2 l yl y
† , re-

spectively. Again, on large volumes these will mainly coup
to states with two flux tubes and mass 2mP(L). On smaller

FIG. 5. How the lightest SU~2! masses vary with the spatia
volume, L2, at b59. States are the 011(s), the 211(n), the
221(L), the 111(3) and the 121(!). Also shown is twice the
mass of the periodic flux loop (d).
2-17
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MICHAEL J. TEPER PHYSICAL REVIEW D 59 014512
volumes,aL<j, the interaction between the flux tubes w
split these states away from each other and from this m
While we cannot predict the precise variation of the
masses withL, one would expect them to decrease, at le
until aL!j. Thus the fact that the 211 mass begins to de
crease with decreasingL, just when Eq.~48! is satisfied,
would seem to simply reflect the fact that for smallerL than
this the 211 state which is composed of a pair of flux loop
becomes the lightest state in that sector. And the same fo
011.

We have explicitly confirmed this scenario. For largeL at
least one of our usual glueball operators has a la
;90–100 %, overlap onto the lightest 011 or 211 state. By
contrast the double flux loop operators have poor overla
The value ofL at which the lightest mass begins to decrea
asL decreases marks the point at which things reverse.
smallerL it is one of the double flux loop operators that h
a very high overlap onto the lightest state and the usual
erators all become poor.

We remark that similar finite volume effects are observ
in D5311 gauge theories@44#, but becausemG /As is
slightly higher inD5211, the effects occur on somewh
larger volumes, and so their interpretation is that much l
ambiguous.

~i! Naively we would expect the spatial size at which w
begin to encounter large finite size effects to be related to
size of the glueball. However, in the case of the 011 and
211 glueballs, we have seen that the onset of finite s
effects is simply determined by the~infinite volume! mass
and the string tension. Thus the fact that we can go to sma
spatial volumes for the scalar than for the tensor, before
countering large finite size effects, is not telling us that
size of the scalar is less than that of the tensor. The s
holds true in the case of four dimensions.

~ii ! In addition to the above, there are finite size effec
visible in the 02,22,16 states, whose onset appears at mu
smaller values ofL, and which does not appear to be linke
to mixing with torelon states.~There are no simple torelo
states with these quantum numbers.!

~iii ! We infer from Fig. 5 that atb59 a spatial size of
L524 is large enough for the lightest glueballs to be free
finite size effects within our statistical errors. Assuming sc
ing andb54/ag2 this implies that at a general value ofb a
safe size isL>24b/9. One can do better by using the calc
lated value ofaAs to set the scale. Doing so, one can th
extend the criterion to SU~3! etc.

In practice we are more cautious than this and have
formed an extensive finite volume analysis atb56 as well.
This is for a larger value ofa, and we include larger lattices
up to more than 8 in units of 1/aAs. These masses ar
shown in Table XIII. We also have a more limited study,
L532 and L548 lattices, atb512 where a is smaller.
These masses will be displayed later, in Table XVII, whe
we display our ‘‘V5` ’’ SU ~2! mass values. All these resul
confirm our criterion for what constitutes a safe volume.

In Table XIV we show our SU~3! study. The presentation
here is slightly different to that in Table XIII in that we sho
estimates of the 011 and 211 torelon masses using the op
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erators described earlier on in this section. The glueb
masses have been obtained from the usual glueball oper
based on contractible loops.~Of course, the torelon and glue
ball operators do mix and att→` we would always find the
same effective mass. But if the mixing is small, one will,
general, find different effective mass plateux at small valu
of t.) Just as we saw in the case of SU~2!, it is clear that the
onset of large finite size effects for the scalar and ten
glueball masses is linked to the mass of the correspond
torelon state. We are also now able to see what happen
the C52 states and we show the 022 which is the lightest
of these. Since oura is not small, we do not have accura
values ofme f f(t52a) for the heavier states.~As usual our
quoted masses are extracted att>2a.) We can of course
look at me f f(t5a) which has the disadvantage of havin
some excited state component, but which is accurately
culated even for the heaviest states. Although we do
show the values here, we remark that they show no sign
any finite size effects that violate our above criterion, eith
for the C51 or for theC52 states. The same is true fo
our modest SU~4! and SU~5! finite volume studies, which
appear in Table XV.

This establishes the level of our control of finite volum
effects. There is one further important point. In the case
the 211 the torelon appears to exist as a bound state in
mass spectrum for largerL. This makes it difficult to extract
a consistent picture of the excited 211 states. Since there i
no such difficulty for the excited 221 states, and since thes
states should be degenerate with the non-torelon 211 exci-
tations, we do not try to overcome this difficulty. So th
reader should not be surprised to find no masses b

TABLE XIII. How the lightest SU~2! glueball masses depen
on the spatial volume. Twice the mass of the periodic flux loop
also shown.

SU~2!,b56
State L56 L58 L512 L516 L524 L532

011 0.99~2! 1.12~2! 1.21~2! 1.19~2! 1.20~2! 1.18~2!

211 0.92~2! 1.17~2! 1.71~5! 1.80~8! 1.99~12! 1.87~10!

221 2.20~13! 2.17~15! 2.15~21! 1.81~14! 2.01~16! 1.91~11!

23 l P 0.62~1! 0.90~1! 1.43~1! 2.00~2! 3.12~6! 4.11~15!

TABLE XIV. How the lightest SU~3! masses depend on th
spatial volume.

SU~3!,b515
State L58 L512 L516 L524

011 0.99~4! 1.09~2! 1.15~2! 1.10~2!

0l l
11 0.98~2! 1.49~4! 1.92~9! 2.0~4!

011* 1.24~4! 1.59~4! 1.66~6! 1.65~5!

022 1.72~7! 1.65~5! 1.57~6! 1.57~4!

211 0.95~5! 1.69~6! 1.81~7! 1.86~11!

2l l
11 0.95~2! 1.58~4! 2.08~15!

221 1.87~10! 1.83~7! 1.79~8! 1.76~6!
2-18
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SU(N) GAUGE THEORIES IN 211 DIMENSIONS PHYSICAL REVIEW D 59 014512
quoted for the excited 211 states later on. As an addendu
to this, we remark that this ‘‘difficulty’’ appears to disappe
for larger values ofNc . We assume that this is a manifest
tion of the suppression of all mixings at largeNc .

C. Lattice mass spectra

In the previous two subsections we discussed our crit
first for minimizing the systematic error associated with t
extraction of masses on a given lattice, and second for c
trolling the finite volume corrections to such masses. W
now use those criteria to extract our ‘‘infinite volume’’ la
tice mass spectra.

In Tables XVI, XVII, XVIII, XIX, and XX we list some
of the masses that we have extracted in the SU~2!, SU~3!,
SU~4! and SU~5! calculations respectively. All are in lattic
units. In addition, all these masses have been extracted
ame f f(t52a). There are a few exceptions to this. It som
times occurs, particularly at the smaller values ofb, that
ame f f(t5a),ame f f(t52a). On the other hand, we know
from positivity that ame f f(t) must decrease ast increases.
Since the error att5a is smaller than att52a, it is clear
that the t5a effective mass is the better mass estimate
these cases, and that is the value we list. However, the e
quoted is the larger one which is associated witht52a. In
principle when we come to extrapolating to the continuu
limit we should use thet52a effective masses in these cas
since otherwise there is a systematic downward bias in
statistical analysis.@That is, we correct some large upwa
statistical fluctuations iname f f(t52a), but none of the ones

TABLE XV. How the lightest SU~4! and SU~5! masses depend
on the spatial volume.

SU(4),b528 SU(5),b544
State L512 L516 L512 L516

011 1.08~2! 1.08~2! 1.09~3! 1.05~2!

011* 1.53~6! 1.62~4! 1.64~6! 1.65~3!

022 1.60~8! 1.60~4! 1.52~7! 1.58~5!

211 1.80~10! 1.76~4! 1.74~11! 1.69~7!

221 1.80~12! 1.79~5! 1.78~9! 1.60~6!
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that are large and downwards.# However, so few values are
affected, and these are usually at the lowest values ofb, that
we choose not to complicate the analysis by doing so.
also note that the volumes used here are always at lea
large as the minimum necessary, as indicated by our ea
finite volume studies.

We begin with a brief technical aside. Our calculations,
each value ofb andL, typically involved between 80000 an
200000 Monte Carlo sweeps with calculations of glueb
correlators being made every 5 sweeps. Typically we wo
have 3 or 5 over-relaxed sweeps for each heat bath sw
By comparing the values ofaAs the reader can see that th
SU~4! and SU~5! b values are more or less equivalent. Th
are also nearly equivalent to some of the SU~3! and SU~2! b
values.

We make some comments now, starting with the SU~5!
masses listed in Table XX. Here we focus on features t
might affect the reliability of the calculations; we leave
discussion of the physics until later. We first note that t
lightestJ51 andJ52 states display parity doubling within
errors, in contrast to the marked lack of doubling in theJ
50 sector. This confirms that we have made our ultravio
cutoff small enough and our infrared cutoff large enoug
The same is true of theJ52 excited states. However, it i
less clear what is going on among the excited states in
J51 sector; there appears to be a near-degeneracy bet
the ground and excited states in some cases. And the
pected degeneracy between the 111* and the 121* appears
to be broken. This may indicate the presence of aJ53 state
which is nearly degenerate with theJ51 state, it may be tha
some of these states are multiglueball scattering states
there may be finite volume corrections. We are not w
placed to distinguish among these possibilities in our pres
calculations. For example to investigate the last possibil
we need to do a finite volume study for a small value oa
where these very heavy masses can be accurately calcul
The only calculation of this kind is in SU~2! at b512 ~see
Table XVII!. We do not see any trend for the 111* and
121* masses to converge as we increaseL from L532 to
L548. So it does not seem to be a finite volume effect. If
compare differentb values, there appears to be no trend
this effect to decrease; so it would not seem to be a finita
TABLE XVI. The lightest SU~2! masses at lower values ofb.

State b53.75 b54.5 b55 b56 b56 b56
L58 L512 L516 L516 L524 L532

011 2.07~9! 1.642~43! 1.478~24! 1.193~18! 1.191~18! 1.170~23!

011* 2.7~3! 2.12~19! 2.11~11! 1.67~6! 1.60~6!

011** 2.6~4! 2.07~12! 2.10~13!

021 2.10~33! 2.41~35! 2.59~29!

211 2.26~17! 1.80~8! 1.94~11! 1.87~11!

211* 2.00~14! 1.94~12!

221 2.20~15! 1.81~14! 1.77~11! 1.91~9!

221* 2.28~27! 2.26~16!

111 2.43~31! 2.35~38! 2.64~27!

121 2.9~7! 2.4~5! 3.0~7!
2-19
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TABLE XVII. The lightest SU~2! masses at higher values ofb.

State b59 b59 b512 b512 b514.5
L524 L532 L532 L548 L540

011 0.7643~60! 0.7552~67! 0.5572~36! 0.5628~46! 0.4562~23!

011* 1.082~16! 1.087~14! 0.8072~53! 0.8047~74! 0.6532~33!

011** 1.271~21! 1.340~22! 0.949~8! 0.982~14! 0.790~4!

021 1.629~44! 1.60~4! 1.187~18! 1.188~18! 0.965~8!

021* 1.95~9! 1.75~7! 1.302~20! 1.350~28! 1.178~13!

211 1.259~13! 1.249~15! 0.913~7! 0.920~13! 0.7557~35!

211* 1.396~22! 1.484~27! 0.971~8! 1.055~11! 0.846~7!

221 1.276~24! 1.286~23! 0.928~9! 0.910~10! 0.7626~51!

221* 1.532~32! 1.480~31! 1.089~13! 1.094~18! 0.958~10!

111 1.814~54! 1.82~6! 1.258~17! 1.295~20! 1.042~9!

111* 2.04~10! 1.94~8! 1.493~24! 1.491~31! 1.240~15!

121 1.892~54! 1.81~8! 1.356~18! 1.317~20! 1.096~10!

121* 1.83~6! 1.73~6! 1.331~17! 1.320~19! 1.092~12!
-
no
e
s

hat
-

the
n-
effect. This is a puzzle. As far as the 162 states are con
cerned, we have even less to go on, because we haveC
52 in our SU~2! studies. These oddities need to be resolv
but they afflict the very heaviest of the states we study and
we shall not attempt to resolve the issue here.
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Although we have carefully chosen the volumes so t
the ground stateJ50 andJ52 masses are essentially infi
nite volume, this is not necessarily the case for theJ52
excited states. Indeed we observe in Table XVII that
mass of the 211* is volume dependent and is only dege
TABLE XVIII. The lightest SU~3! masses.

State b511 b515 b515 b521 b528 b534
L512 L516 L524 L524 L532 L540

011 1.626~36! 1.123~16! 1.095~14! 0.7561~62! 0.5517~38! 0.4482~36!

011* 2.19~14! 1.66~6! 1.652~44! 1.124~15! 0.823~6! 0.6737~45!

011** 2.06~9! 2.04~11! 1.411~23! 1.034~9! 0.8512~67!

022 2.30~15! 1.568~53! 1.569~38! 1.101~14! 0.8133~57! 0.6682~48!

022* 2.05~16! 2.00~10! 1.385~21! 1.025~10! 0.8386~49!

022** 2.44~41! 2.40~30! 1.596~39! 1.191~16! 0.9969~85!

021 2.32~24! 1.627~41! 1.206~15! 0.9634~81!

021* 1.835~73! 1.322~17! 1.194~14!

012 2.08~23! 1.826~59! 1.330~15! 1.088~10!

012* 1.98~11! 1.582~31! 1.315~16!

211 2.31~21! 1.81~7! 1.86~11! 1.218~16! 0.9123~70! 0.7354~43!

211* 2.15~14! 2.18~15! 1.520~27! 1.057~10! 0.9134~79!

221 2.64~29! 1.786~82! 1.758~58! 1.257~18! 0.937~8! 0.7526~48!

221* 2.10~16! 2.19~15! 1.618~43! 1.109~10! 0.9142~65!

222 2.05~15! 1.95~14! 1.475~23! 1.0928~86! 0.8913~63!

222* 2.21~19! 2.35~26! 1.705~42! 1.254~15! 1.0452~85!

212 2.04~16! 1.89~11! 1.539~27! 1.114~11! 0.8867~59!

212* 1.813~54! 1.325~15! 1.085~11!

111 1.738~40! 1.298~11! 1.0513~70!

111* 1.933~61! 1.481~19! 1.212~10!

121 1.881~51! 1.350~12! 1.082~8!

121* 1.902~48! 1.352~13! 1.096~9!

122 1.780~34! 1.269~11! 1.036~7!

122* 1.877~51! 1.371~15! 1.075~9!

112 1.788~37! 1.297~11! 1.074~9!

112* 1.996~56! 1.404~16! 1.103~7!
2-20
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erate with the 221* on the largest volume, and then only
those cases,b59 and 12, where this is exceptionally larg
Explicit calculations with the double Polyakov loop oper
tors described in the previous subsection indicate that th
an artifact of the presence of a corresponding scattering~or
bound?! state whose mass increases approximately line
with L. So asL↑ the mass moves out of the range of mas
we probe. We remark that we have no clear evidence o
correspondingJ50 state.~It would, in any case, not inter
fere with the lowest 011 excitations because these are
light.! It is interesting that this problem appears to disapp
for the larger SU~N! groups. A possibility is that, as ex
pected, the mixing between the double flux loops and
ordinary ‘‘local’’ glueballs is suppressed by powers of 1/N.
To investigate this properly one needs to include both dou
flux loops and our normal contractible loops within a sing
basis for our cross-correlation matrix~as has been done i
@45# for precisely this purpose!. We have not been able to d
this here because of the very large storage costs this w
have entailed. Since we cannot resolve the states unamb
ously, we shall not attempt a continuum extrapolation of
SU~2! 211* . For larger groups it seems that this problem
not there and so we shall attempt to obtain the correspon
continuum masses.

TABLE XIX. The lightest SU~4! masses.

State b521 b528 b540 b551
L512 L516 L524 L532

011 1.525~36! 1.083~14! 0.7109~52! 0.5466~40!

011* 2.31~22! 1.616~39! 1.080~10! 0.821~6!

011** 1.99~8! 1.364~21! 1.032~9!

022 2.10~13! 1.599~36! 1.039~13! 0.8040~46!

022* 2.00~7! 1.301~18! 1.010~8!

022** 2.38~17! 1.544~24! 1.186~10!

021 2.35~16! 1.575~27! 1.200~10!

021* 1.80~6! 1.325~14!

012 2.66~32! 1.76~6! 1.340~14!

012* 1.85~6! 1.564~22!

211 2.08~18! 1.76~4! 1.168~14! 0.9122~56!

211* 2.09~10! 1.408~17! 1.085~10!

221 2.15~19! 1.79~5! 1.205~18! 0.8936~67!

221* 1.99~10! 1.429~23! 1.095~12!

222 2.08~12! 1.430~23! 1.067~12!

222* 2.38~18! 1.57~4! 1.244~13!

212 2.17~10! 1.394~24! 1.077~9!

212* 2.53~29! 1.59~4! 1.296~13!

111 2.66~28! 1.720~31! 1.300~11!

111* 2.05~4! 1.454~15!

121 2.68~26! 1.67~3! 1.340~13!

121* 1.76~3! 1.344~10!

122 2.48~13! 1.70~3! 1.251~9!

122* 1.74~5! 1.320~13!

112 2.42~18! 1.73~5! 1.264~10!

112* 1.79~4! 1.313~16!
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D. Continuum mass spectrum

A lattice spectrum is only interesting insofar as it can le
us to the spectrum of the corresponding continuum theo
To obtain the continuum spectrum we need to extrapo
our lattice masses toa50. The first step is to take ratios o
masses so that the scale,a, in which they are expressed can
cels. We choose to take ratios of the glueball masses,amG ,
to aAs since the string tension is our most accurately cal
lated quantity.

The second step is motivated by the observation@46# that
in pure lattice gauge theories the leading lattice correction
dimensionless ratios of physical quantities, such asmG /As,
is O(a2). So for small enougha we expect thea-dependence
to be given, just as in four dimensions, by

mG~a!

As~a!
5

mG~a50!

As~a50!
1ca2s. ~49!

Of course, instead of using the correction termca2s we
could use c̃a2m̃G

2 where am̃G is any calculated gluebal
mass. The difference is formallyO(a4). The reason for
choosings is simply that it is so accurately determined. A
alternative way of extrapolating such a mass ratio toa50 is

TABLE XX. The lightest SU~5! masses.

State b533 b544 b564 b582
L512 L516 L524 L532

011 1.550~47! 1.054~15! 0.695~5! 0.5325~48!

011* 2.4~3! 1.654~30! 1.053~11! 0.798~7!

011** 2.06~11! 1.342~27! 1.009~10!

022 2.29~24! 1.581~44! 1.041~11! 0.765~10!

022* 2.05~11! 1.278~20! 0.997~8!

022** 2.27~19! 1.555~34! 1.19~2!

021 2.32~14! 1.478~23! 1.155~11!

021* 1.80~4! 1.347~18!

012 2.54~32! 1.78~7! 1.256~14!

012* 1.81~5! 1.580~33!

211 1.69~7! 1.08~5! 0.8914~69!

211* 2.05~9! 1.39~3! 1.072~9!

221 1.60~6! 1.07~5! 0.8785~69!

221* 2.06~14! 1.37~3! 1.075~9!

222 2.14~11! 1.390~25! 1.054~10!

222* 2.57~28! 1.559~31! 1.225~16!

212 2.08~12! 1.430~21! 1.043~9!

212* 2.51~36! 1.557~34! 1.230~17!

111 2.38~22! 1.718~30! 1.294~14!

111* 1.93~8! 1.421~14!

121 2.57~23! 1.697~31! 1.300~10!

121* 1.78~5! 1.331~15!

122 2.29~10! 1.654~32! 1.212~9!

122* 1.66~4! 1.27~2!

112 2.41~16! 1.71~5! 1.255~14!

112* 1.73~4! 1.29~2!
2-21
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to use the fact thatg2 has dimensions of mass and th
lim

b→`
b52Nc /ag2. Thus, for small enougha,

mG~a!

As~a!
5

mG~a50!

As~a50!
1

c

b2 . ~50!

What we do in practice is to choose one of the above fo
and attempt to fit all the mass values of some state with i
a good fit is not possible, we assume that this is because
largest value ofa used is too large for theO(a2) correction
to be adequate. So we drop the mass corresponding to
largest value ofa and try again. We keep doing this until w
get a good fit.

In Fig. 6 we show some examples drawn from the SU~3!
calculation. Since the mass ratios are plotted againsta2s,
the continuum extrapolations, in Eq.~49!, are simple straight
lines. The really striking feature of this plot is how littl
variation with a there is. This will make for unambiguou
and very accurate continuum extrapolations.

Our continuum extrapolations for our various theories
displayed in Table XXI. They have been obtained by fitti
the form in Eq. ~50! to the masses listed in Tables XV
XVII, XVIII, XIX, and XX and the string tensions listed in
Tables V, VI, and VII. The quality of each fit, as given b
the confidence level, is given in Table XXII. We have al
performed extrapolations using Eq.~49!; these give essen
tially identical results, with any differences being mu
smaller than our quoted errors.

FIG. 6. The ratio of some SU~3! masses toaAs, plotted against
a2s to show how they vary witha: the 011(d), the 022(s), the
221(!) and the 222(L). Extrapolations to the continuum limi
are shown as straight lines.
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The reader will note that the mass of the 211* is missing
from the SU~2! and SU~3! columns. This is because w
could find no acceptable fits. We believe this is related
mixing with torelons, as discussed previously. The mass
the latter depends sensitively on the volume and so will
provide a consistent set of masses at different values ob
~since the volumes are not exactly the same!. This is no
longer a problem with SU~4! and SU~5! and we assume tha
this is because any such mixing becomes suppressed at
Nc . A calculation including overlaps between torelon a
glueball operators would resolve this question, but we h
not carried this out. Why we cannot get an acceptable fit
the SU~2! 221* is less clear. The reason might be that o
SU~2! calculations in the 221 channel had a smaller basis~4
operators! than in the later calculations with larger group
This meant a very small basis for the excited states.

In addition to these spectra we have performed in App
dix D some calculations with a very asymmetric lattice a
tion, at.as/4. This may be thought of as being close to t
‘‘Hamiltonian’’ limit, and it is interesting, as a test of uni
versality, to confront this spectrum with the SU~2! spectrum
that we have obtained in this section. This we do in Ta
XXIII and we observe good agreement within errors. Fo
detailed discussion of our calculations with the asymme
lattice action we refer the reader to Appendix D.

We now have all our continuum spectra and can turn
their dependence onNc .

E. Nc dependence of the mass spectrum

We can already see from Table XXI that the variation
our mass ratios withNc is weak and that it appears to be
come weaker with increasingNc .

TABLE XXI. Glueball masses in units of the string tension:
the continuum limit.

mG /As
State SU~2! SU~3! SU~4! SU~5!

011 4.718~43! 4.329~41! 4.236~50! 4.184~55!

011* 6.83~10! 6.52~9! 6.38~13! 6.20~13!

011** 8.15~15! 8.23~17! 8.05~22! 7.85~22!

022 6.48~9! 6.271~95! 6.03~18!

022* 8.15~16! 7.86~20! 7.87~25!

022** 9.81~26! 9.21~30! 9.51~41!

021 9.95~32! 9.30~25! 9.31~28! 9.19~29!

012 10.52~28! 10.35~50! 9.43~75!

211 7.82~14! 7.13~12! 7.15~13! 7.19~20!

211* 8.51~20! 8.59~18!

221 7.86~14! 7.36~11! 6.86~18! 7.18~16!

221* 8.80~20! 8.75~28! 8.67~24!

222 8.75~17! 8.22~32! 8.24~21!

222* 10.31~27! 9.91~41! 9.79~45!

212 8.38~21! 8.33~25! 8.02~40!

212* 10.51~30! 10.64~60! 9.97~55!

111 10.42~34! 10.22~24! 9.91~36! 10.26~50!

121 11.13~42! 10.19~27! 10.85~55! 10.28~34!

122 9.86~23! 9.50~35! 9.65~40!

112 10.41~36! 9.70~45! 9.93~44!
2-22
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To illustrate this we plot in Fig. 7 and Fig. 8 the quanti
mG /g2Nc , which is obtained from the ratios in Table XX
and the string tensions in Eq.~38!. We choose to plot agains
1/Nc

2 because the usual diagrammatic analysis predicts th
large enoughNc we should expect

mG

g2Nc
5R`1

R1

Nc
2 ~51!

whereR`5 lim
Nc→`

mG /g2Nc . So on our plot this will be a

simple straight line. We observe that the dependence of

TABLE XXII. Confidence levels of the best fits in Table XXI
in brackets those of the fits that provide the errors.

Best fit confidence level~%!

State SU~2! SU~3! SU~4! SU~5!

011 85~25! 70~20! 70~20! 60~20!

011* 25~5! 80~25! 90~25! 100~25!

011** 15~3! 90~25! 40~10! 60~20!

022 95~25! 35~10! 15~3!

022* 90~25! 35~10! 23~5!

022** 65~20! 70~20! 70~20!

021 90~25! 45~15! 85~25! 35~10!

012 85~25! 95~25! 13~2!

211 95~25! 40~10! 25~6! 17~3!

211* 90~25! 90~25!

221 60~20! 50~15! 15~3! 30~8!

221* 12~3! 14~10! 65~20!

222 80~25! 25~6! 85~25!

222* 70~20! 40~10! 30~10!

212 25~5! 45~10! 3~0.3!
212* 80~25! 12~3! 40~10!

111 60~20! 40~10! 100~25! 22~4!

121 60~20! 60~15! 10~2! 100~25!

122 45~10! 10~2! 2~0.1!
112 25~5! 12~3! 15~3!

TABLE XXIII. Comparison between the continuum mass ratio
mG /As, obtained with the asymmetricr 50.25 SU~2! action, and
our previousr 51 SU~2! results. Also shown isAs/g2 for both
cases.

State SU(2),r 51.0 SU(2),r 50.25

011 4.718~43! 4.65~10!

011* 6.83~10! 6.83~20!

011** 8.15~15! 8.39~33!

021 9.95~32! 9.23~38!

211 7.82~14! 7.81~20!

211* 8.86~30!

221 7.86~14! 7.54~20!

221* 8.94~27!

111 10.42~34! 10.51~24!

121 11.13~42! 11.03~30!

@10.38~44!#
As/g2 0.3353~18! 0.3375~130!
01451
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masses onNc is really very weak indeed, all the way down t
Nc52. This indicates once again that the mass scale of
SU(Nc) theory is }g2Nc , as expected from the diagram
matic analysis.

In Table XXIV we list theNc→` limits and the slopes,
R1 , that result from fitting our continuum masses with E
~51!. We can, of course, perform a similar analysis usi
mG /As instead. The results of the corresponding extrapo
tions are presented in Table XXV.

Is there anything we can add to our previous result, in
~43!, on the power of the leading correction? The only ma
that is accurate enough to be potentially useful
m011 /g2Nc . However, as we see from Fig. 7, this vari
almost not at all withNc and so provides us with no usefu
information on the power of this correction.~The stronger
variation in m011 /As simply reflects the variation ofAs
which we have already studied.!

For purposes of comparison, it would be interesting
provide an example of a mass spectrum that is quite diffe
to the one we have calculated here and yet comes fro
theory with a dynamics that is not so dissimilar as to ma
the comparison meaningless. A natural possibility is to c
sider the U~1! theory. Since the leading-order large-Nc argu-
ments are in fact for U(Nc), this theory belongs naturally to
the sequence of theories we have considered. And yet it i
far from Nc5` that we would not expect it to fit into the
pattern we have observed so far. As far as dynamics goe
is a lattice gauge theory which is linearly confining and fr
at short distances. We discuss our results for the U~1! mass

,

FIG. 7. Some of theC51 glueball masses for 2, 3, 4, and
colors, in units of g2Nc and plotted against 1/Nc

2 : 011(d),
011* (3), 211(!), 021(L), 111(s). The best linear extrapo
lations to theNc5` limit are also shown.
2-23
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spectrum~listed in Table XXVI! and some peculiarities o
the theory, in Appendix E. Here we merely note that in t

FIG. 8. Some of theC52 glueball masses for 3, 4, and
colors, in units of g2Nc and plotted against 1/Nc

2 : 022(d),
022* (3), 222(!), 122(s). The best linear extrapolations to th
Nc5` limit are also shown.

TABLE XXIV. The largeNc limit of the mass spectrum in unit
of g2Nc , with the slope of the linear fit when plotted against 1/Nc

2 .
Also the range of colors fitted and the confidence level of the fi

State lim
Nc→`

m/g2Nc Slope Nc> C.L. ~%!

011 0.808~11! -0.070~79! 2 90~25!

011* 1.227~25! -0.31~18! 2 65~20!

011** 1.581~42! -0.84~28! 2 50~15!

021 1.787~60! -0.50~51! 2 85~25!

211 1.365~33! -0.25~28! 2 35~10!

221 1.369~36! -0.20~27! 2 15~4!

221* 1.704~70! -0.74~88! 3 95~25!

111 1.98~8! -0.90~57! 2 80~25!

121 1.99~8! -0.61~70! 2 35~10!

022 1.167~42! 0.26~50! 3 65~20!

022* 1.508~72! -0.07~87! 3 65~20!

022** 1.77~13! 0.24~161! 3 30~8!

012 1.87~23! 0.63~245! 3 45~10!

222 1.57~8! 0.40~93! 3 55~15!

222* 1.87~12! 0.23~143! 3 90~25!

212 1.59~10! -0.37~117! 3 65~20!

212* 1.97~17! -0.28~188! 3 50~15!

122 1.85~13! -0.33~149! 3 55~15!

112 1.87~16! 0.37~200! 3 45~10!
01451
U~1! theory the 011 is no longer the lightest state; the 022

is about half its mass. We also note that the mass r
m011 /As is much lower than in SU~2! @or in SU(̀ ) for that
matter#. So this spectrum is indeed quite different, and t
comparison enhances, by contrast, our claim that SU~2!
.SU(`).

The lack of any visibleNc dependence in our most accu
rately calculated mass,m011 /g2Nc , is quite striking and
provides strong evidence that there is a smooth nontri

.

TABLE XXV. The largeNc limit of the mass spectrum in units
of the string tension, with the slope of the linear fit when plott
against 1/Nc

2 . Also the range of colors fitted and the confiden
level of the fits.

State lim
Nc→`

m/As Slope Nc> C.L. ~%!

011 4.065~55! 2.58~42! 2 80~25!

011* 6.18~13! 2.68~100! 2 70~20!

011** 7.99~22! 0.79~160! 2 50~15!

021 9.02~30! 3.52~275! 2 85~25!

211 6.88~16! 3.50~134! 2 30~10!

221 6.89~21! 3.13~162! 2 20~5!

221* 8.62~38! 1.69~165! 3 90~25!

111 9.98~25! 1.78~203! 2 80~25!

121 10.06~40! 3.58~365! 2 30~8!

022 5.91~25! 5.24~300! 3 55~15!

022* 7.63~37! 4.61~460! 3 70~20!

022** 8.96~65! 7.2~80! 3 35~10!

012 9.47~116! 9.7~12.4! 3 40~10!

222 7.89~35! 7.6~44! 3 60~20!

222* 9.46~66! 7.6~77! 3 95~25!

212 8.04~50! 3.2~60! 3 60~20!

212* 9.97~91! 5.1~10.0! 3 50~15!

122 9.36~60! 4.4~70! 3 60~20!

112 9.43~75! 8.4~98! 3 50~15!

TABLE XXVI. The U~1! mass spectrum in units of the strin
tension, at several values ofb. In the last row is the string tension
in lattice units.

mG /As, U~1!

State b52.0 b52.2 b52.3

011 3.54~9! 3.29~23! 3.36~17!

022 1.97~7! 1.52~5! 1.50~5!

021 7.1~9! 8.1~4! 8.8~3!

012 8.5~4! 10.4~5!

211 5.2~7! 4.64~30! 5.12~27!

221 4.8~11! 4.9~9! 5.45~40!

222 6.1~4! 7.0~3! 6.3~4!

212 7.0~5! 6.7~3! 6.7~6!

111 9.6~6! 11.0~6!

121 9.7~6! 11.6~6!

122 7.8~8! 7.9~3! 8.7~3!

112 8.2~5! 8.0~3! 8.6~3!

aAs 0.2251~18! 0.1734~16! 0.1505~15!
2-24
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large-Nc limit, with a physical mass scale}g2Nc . Coupled
with our previous analysis of the string tension, this also te
us that theNc5` limit possesses linear confinement.~As we
see immediately from the behavior ofmG /As.) From the
intercepts and slopes listed in Tables XXIV and XXV a
from Eq. ~44!, we can obtain the mass spectrum for a
value of Nc . In this very concrete sense we can say t
SU(Nc) theories are close to SU(`) all the way down to
SU~2!. Thus the large-Nc analysis unifies our understandin
of all SU(Nc) theories in a compact and elegant fashion.

F. Features of the mass spectrum

The purpose of this paper is to calculate the mass s
trum. Extracting interesting physics from the detailed fe
tures of that spectrum is something that belongs elsewh
However, it would be churlish of us not to make a few co
ments. These will be brief and incomplete.

~i! There is clear evidence for the expected parity d
bling in the cases of the 261, 262, 262* , 161, and 162.
In contrast, for theJ50 states, where we do not expe
parity doubling, the splitting between theP51 and P52
states is huge.

~ii ! Our lightest glueball state is the 011, just as it is in
D5311 gauge theories. Moreover, its mass, in units ofAs,
is not that different. If we take the SU~3! continuum extrapo-
lation in @25#, which uses theD5311 lattice glueball mass
calculations in@32,49#, and if we perform a correspondin
SU~2! continuum extrapolation using theD5311 lattice
calculations in@47,50#, then we find

m011

As
5H 3.87~12! SU~2!,D5311,

3.65~11! SU~3!,D5311.
~52!

The fact that theD5311 mass ratio is smaller than the on
in D5211 follows naturally@10,11# in flux tube models of
gluonic states@9#. ~It does so from the fact that the close
flux loop has more transverse dimensions in which to os
late; this increases the corresponding ‘‘Casimir energy,’’ a
so decreases the mass of the loop, for a given loop leng!
We also note from Eq.~52! that theD5311 Nc dependence
has the same sign as inD5211.

~iii ! Just as inD5311 @25,32,49#, the next heaviest stat
in the C51 sector is the 211 ~ignoring excitations of the
011 since these have not been calculated in 4 dimensio!.
The scalar-tensor mass splitting is not dissimilar: e.g.

m211

m011
5H 1.65~3! SU~3!,D5211,

1.41~7! SU~3!,D5311.
~53!

~iv! Unlike the C51 sector, theC52 sector is very
different from its D5311 counterpart. For example, w
have a light 022, while there are no lightC52 states in 4
dimensions. This may arise from the fact that in 3 spa
dimensions there is an interplay betweenC and J that does
not exist in 2 space dimensions. Consider, for example
circular flux string. It will have an arrow on it, forNc>3.
Under C the direction of the arrow flips. In 3~but not 2!
space dimensions we can rotate the circle byp around a
01451
s

t

c-
-
re.
-

-

l-
d
.

s

e

a

diameter and this also flips the direction of the arrow. No
that this means that a rotationally symmetric linear combi
tion of such circular loops cannot beC52. One needs a
fluctuation away from a circle to allowJ50 andC52 and
this raises the energy. Of course we have gradually incor
rated some dynamical assumptions as we moved through
last few sentences. One needs to make the argument with
specific model framework and that belongs elsewhere@9–
11#.

~v! We observe that whatever splits theC51 and C
52 states is weakly dependent onNc and survives theNc
→` limit. On the other hand, in SU~2!, where we have no
C52, the spectrum is clearly a smooth continuation of t
Nc>3C51 spectrum~since our simple mass fit encom
passes 2<Nc<5). This provides a constraint on dynamic
mechanisms for theC56 splitting.

~vi! There are some striking approximate degeneracie
the spectrum. The typical pattern ism011* .m022,
m011** .m022* and similarly for theJ52 states. Again, if
this is not an accident, it does suggest some simplicity in
dynamics.

To go further requires confronting specific models w
the spectrum we have calculated here. That goes well bey
the scope of this paper.

VI. CONCLUSIONS

In this paper we presented our calculations of the m
spectra and string tensions in three dimensional SU~2!,
SU~3!, SU~4! and SU~5! lattice gauge theories. From thes
we obtained the corresponding continuum spectra. The a
racy of these continuum results reflects the large range in
lattice spacing,a, over which we performed our lattice ca
culations. We can compare this range to that in the m
familiar D54 SU~3! gauge theory by using the calculate
values of the string tension,a2s. Doing so we observe tha
the ~useful! range of ourD53 calculations would corre-
spond to 5.50<b<6.55 for the case of SU~2!, 5.50<b
<6.50 for SU~3!, and 5.70<b<6.35 for both SU~4! and
SU~5!. This range, and the statistics of our calculations,
the primary reason why ourD53 calculations are so muc
more accurate than what is available in four dimensions.
also gain something from the fact that our best operators
slightly better in three than in four dimensions.

We noted some strong similarities, in theC51 sector,
between the 211 and 311 dimensional spectra. This shou
provide an interesting test for models of glueballs. Inde
one of the main motivations for our calculations is to provi
a detailed spectrum against which models and analytic
proaches can test themselves.

At the more technical lattice level, we studied, during t
course of our calculations, the effectiveness of ov
relaxation, the use of asymmetric lattice actions, how go
are operators with baryonic vertices, the efficiency of o
‘‘blocking’’ algorithm, and the extent to which the mean
field–tadpole improvement of the coupling really represe
an improvement. In this last case we were aided by
super-renormalizability of the theory; this allowed us
compare directly extrapolations using the improved and b
2-25
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MICHAEL J. TEPER PHYSICAL REVIEW D 59 014512
lattice couplings, in a way which is not at present possible
four dimensions.

The primary purpose of our calculations was to study
large-Nc limit of SU(Nc) gauge theories in 211 dimensions
and to compare the results of our fully non-perturbative c
culations with the standard expectations obtained from
order perturbation theory. We found that there does appe
be a smoothNc→` limit and that it is obtained, as expecte
by varying g2}1/Nc . The leading correction isO(1/Nc

2),
again as expected. We found that confinement—the cru
ingredient for the usual phenomenology—does indeed
vive the large-Nc limit. And we obtained the detailed mas
spectrum in that limit. Finally, we observed that even SU~2!
is close to SU(̀ ), in the sense that the difference betwe
the mass spectra can be described by just the lea
O(1/Nc

2) correction.
Thus all D5211 SU(Nc) gauge theories can be de

scribed by the SU(̀ ) theory with a modestO(1/Nc
2) correc-

tion. This provides a very elegant way to unify and und
stand all these potentially quite different theories.

There is a wealth of large-Nc expectations that we hav
not explored. For example those involving decays,G
→GG, and, more generally, theNc-dependence of matrix
elements involving various products of singlet operators
well as their factorization properties. Neither have we
tempted to expose the existence of Witten’s master field@51#
or to determine its properties. All these topics should
readily accessible in three dimensional calculations of
kind presented in this paper. The reason we have not
dressed them in this paper is not because we find them
interesting than the questions we have addressed, bu
cause the SU~2! and SU~3! calculations were completed be
fore we realized that we might have something interesting
contribute concerning the large-Nc limit.

These calculations also need to be extended by the in
sion of matter fields in the fundamental representation.
this case the leading corrections are expected to be la
O(1/Nc), and so it is an interesting open question whet
SU~2! or even SU~3! will remain close to SU(̀ ). Needless
to say, all the above questions need to be addressed in
dimensions, and what we can say there is that the first i
cations@8# are quite promising.
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APPENDIX A: TESTING THE BENEFITS OF MONTE
CARLO OVER-RELAXATION

Although there is no systematic procedure known for
ducing the exponents associated with critical slowing do
01451
n

e

l-
l-
to

ial
r-

ng

-

s
-

e
e
d-
ss
e-

o

lu-
n
er,
r

ur
i-

s
,
p-
f
-
-
.
h

-
n

in D54, orD53, non-Abelian gauge theories, a method th
appears to have some effectiveness, and which is now
common use, is to mix heat bath and over-relaxation@26,27#
sweeps during the update~for reviews see@28#!. As far as
testing the efficiency of this method is concerned, wha
available are studies of the decorrelation of blocked Wils
loops in SU~2! and SU~3! @29# which show that there is a
strong reduction in fluctuations when most heat bath swe
are replaced with over-relaxation. This has helped to m
vate the widespread use of overrelaxation.

However, useful as these tests are, what one would lik
see is how the statistical errors on the physical quantitie
interest ~glueball masses, string tension, etc.! are reduced
when some fraction of the heat bath sweeps are replaced
over relaxation sweeps. InD5311 such an exercise would
be prohibitively expensive for the small lattice spacin
where the answer is interesting, and so, as far as we kn
no study of this kind has been published. InD5211, such a
study becomes possible and this is what we shall presen
this appendix. Because theD5211 andD5311 theories
have so much in common—in particular they both beco
free at short distances—we can hope that what we find
some relevance to four dimensions as well.

Our heat bath and over-relaxation algorithms have b
described in Sec. III A. We note that in both SU~2! and
SU~3! the over-relaxation algorithm explores phase spac
a constant value of the total action. We shall characterize
update pattern by the ratio,Ro , of the number of over-
relaxation sweeps to the number of heat bath sweeps. S
we use a pipelined CPU, all our sweeps employ a variat
of a checkerboard update.

Our study of SU~3! is the more extensive of the two an
so this is where we shall begin. We have performed comp
sons at three values ofb: at b511 and 15 on 12216 lattices,
and atb521 on a 243 lattice. If we use the calculated strin
tension to set the scale of the lattice spacing, then these t
values ofb correspond tob.5.7,5.9,6.15, respectively in
the D54 theory with which the reader is probably mo
familiar. The lattices atb511 andb521.0 are effectively of
infinite physical volume for the quantities we shall be co
sidering here. The lattice volume atb515 is of an interme-
diate size, which mainly effects the nature of the 211 glue-
ball. At b511 we performed calculations forRo50 ~pure
heat bath! and for Ro55. Each calculation involved 8000
sweeps with the data split into 40 bins of 2000 sweeps e
for the error analysis. Atb515 we performed 25000 sweep
at each ofRo50,2,5,10,20, with the data divided into 20 bin
in each case. Atb521 we performed 20000 sweeps at ea
of Ro50,3,5,7,10, with 20 bins in each case.

The quantities we use in our comparison are, first,
masses of the lightest glueballs: the 011,022,211 and,
where available, the 221 ~which should be degenerate wit
the 211 in large volumes and for small lattice spacings!. We
also use the mass of the lightest flux loop that closes thro
a periodic boundary. This provides us with our estimate
the string tension,s, since the mass of this loop isa2sL, up
to O(1/L) finite size corrections, whereL is the minimal
length of the loop~in lattice units!. In addition to these
masses we also calculate expectation values of the sim
2-26
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SU(N) GAUGE THEORIES IN 211 DIMENSIONS PHYSICAL REVIEW D 59 014512
closed loops made out of our ‘‘blocked’’ links. At a ‘‘block
ing’’ level of unity, Bl51, we have the simple plaquett
More generally these ‘‘superplaquettes’’ consist of a squ
that is length 2Bl21 in lattice units. The simple plaquette
dominated by ultraviolet fluctuations and is of relatively litt
physical interest. At higher smearing levels, the expecta
value is dominated by fluctuations closer to physical len
scales and how the accuracy of these is affected by o
relaxation is a more interesting question.

We compare the errors on these quantities in the diffe
runs characterized by different values ofRo . The reference
run is the one withRo50, i.e., pure heat bath. If theRo50
error is changed by a factor of, say,g in the mixed run, then
the latter is as good as a pure heat bath run whose leng
1/g2 times that of the mixed run. This of course assumes
our bins are large enough to be essentially independent.
have performed a variety of checks to convince oursel
that this is the case for the results we present here. For
ample, for theb515 pure heat bath run we checked that t
bins could be made a factor of 10 smaller and still be ne
gibly correlated.~With a factor of 20 the independence b
gan to break down.! In order to keep our bin sizes suffi
ciently large so that we could be confident of their mutu
independence, the number of bins for each calculation co
not be made very large. Hence there will be substantial fl
tuations on our error estimates. For this reason the re
should be cautious about drawing conclusions from any
error ratio, and in practice we will average the error compa
sons over several quantities.

In Tables XXVII, XXVIII, and XXIX we show the statis-
tical errors for the flux loop and glueball masses at the th
different values ofb. There are 2 rows of numbers for eac
mass. The second row contains the actual mass estim
The first row is the error on the effective mass extracted fr
the same correlation function but from one time step earl
This contains an admixture~typically only a few percent! of
excited states.~See Sec. III B for a discussion of effectiv
masses.! We display both because the individual error es
mates contain quite large fluctuations which appear to
largely independent and so can be averaged to obtain m
reliable error ratio estimates. Because we are equally in
ested in all these physical quantities, it makes sense to
struct a global average of these error ratios. We attach to
average an ‘‘error’’ obtained by treating the variations of t

TABLE XXVII. Errors on SU~3! masses on a 12216 lattice at
b511; Ro is the number of over-relaxed sweeps for every heat b
sweep.

State Ro50 Ro55

Flux loop 0.0054 0.0050
0.024 0.030

011 0.0098 0.0097
0.056 0.051

022 0.019 0.024
0.22 0.20

211 0.036 0.031
0.29 0.32
01451
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individual error ratios around the global average as thou
they were statistical fluctuations. This is intended to do
more than provide anindication of the significance of the
value of the average error ratio. The reader can manipu
the numbers in the tables in other ways if he so prefers.

Consider firstb511.0 ~Table XXVII! and the ratio of
errors in the run with over-relaxation to the errors in the pu
heat bath run. Taking the ratio of corresponding errors in
two columns we obtain an overall average error ratio
1.02~6!. So in this case there is no improvement in incorp
rating over-relaxation. Atb515.0~Table XXVIII ! we obtain
average ratios 1.27~12!, 0.96~7!, 1.09~9!, 1.09~10! for Ro
52,5,10,20, respectively. Again there is no sign of a sign
cant improvement for any over-relaxation mix. The glob
error ratio average, 1.10~5!, confirms this.

We turn now to our calculation at the weakest couplin
b521.0~Table XXIX!. We obtain average ratios of 0.91~8!,
0.81~6!, 0.88~7!, 0.94~7! for Ro53,5,7,10, respectively. We
observe a clear reduction in the errors of the runs with ov
relaxation: the global error ratio average is 0.885~33!. Al-
though we cannot be certain which mix is best, there is e
dence that a ratio of around 5:1 to 7:1 is as good as an
this value ofb and that this leads to an error ratio of arou
0.84. To this improvement we should add the fact that
over-relaxed sweep, for SU~3! in D5211, takes about 77%
of the time for a heat bath sweep. Thus the gain in us

th
TABLE XXVIII. Errors on SU~3! masses on a 12216 lattice at

b515.Ro is the number of over-relaxed sweeps for every heat b
sweep.

State Ro50 Ro52 Ro55 Ro510 Ro520

Flux loop 0.0036 0.0053 0.0033 0.0044 0.0043
0.0085 0.0123 0.0078 0.0074 0.0094

011 0.0086 0.0132 0.0075 0.0139 0.0085
0.034 0.040 0.037 0.038 0.033

022 0.017 0.026 0.020 0.018 0.022
0.081 0.113 0.086 0.082 0.125

211 0.025 0.015 0.015 0.024 0.021
0.090 0.092 0.092 0.079 0.070

TABLE XXIX. Errors on SU~3! masses on a 243 lattice atb
521. Ro is the number of over-relaxed sweeps for every heat b
sweep.

State Ro50 Ro53 Ro55 Ro57 Ro510

Flux loop 0.0053 0.0044 0.0040 0.0038 0.0030
0.0089 0.0075 0.0070 0.0057 0.0069

011 0.0085 0.0072 0.0058 0.0056 0.0095
0.0170 0.0172 0.0138 0.0132 0.0142

022 0.0123 0.0072 0.0090 0.0150 0.0103
0.030 0.035 0.035 0.030 0.034

211 0.0148 0.0106 0.0103 0.0119 0.0120
0.044 0.029 0.032 0.041 0.045

221 0.0094 0.0132 0.0103 0.0102 0.0094
0.043 0.044 0.026 0.044 0.054
2-27
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MICHAEL J. TEPER PHYSICAL REVIEW D 59 014512
over-relaxation is about 40% in the update time. Althou
the gain in the total time will be reduced by the inclusion
measurements~typically tuned to be about half of the tota
time!, there is no doubt that this is a worthwhile gain.

We turn now to the case of SU~2! where our tests are
much more limited. The lightest masses here are of the
loop and of the 01 and 21 glueballs. We performed com
parisons atb56.0 andb59.0. Using the calculated strin
tension to set the physical scale, these values ofb corre-
spond tob.2.4 and 2.55, respectively, in theD54 SU~2!
theory. At b56.0 we see no sign of any benefit from ove
relaxation, albeit in a calculation of limited statistics. O
calculations at b59.0 ~Table XXX! are with Ro
50,5,9,49,249,̀ and have much better statistics: 250
sweeps, split into 25 bins, for each value ofRo . The lattice is
12224 which is of small, but not very small, physical siz
there are certainly some finite size effects involving the 21.
We see from Table XXX that there is a significant benefit
using over-relaxation. We do not show our results forRo
5249 andRo5` ~all sweeps over-relaxed! which, while
amusing for various reasons, are not really relevant to
study. We obtain average error ratios of 0.76~8!, 0.71~9!,
0.80~11! for Ro55,9,49 respectively. The global error rat
average is 0.76~5!. For SU~2! over-relaxation is a simple
operation and is much faster than the heat bath; a run
Ro55 or 9 is about twice as fast as a run with only heat b
sweeps. Thus the overall saving is a factor of 231/0.762

;4. This is a large reduction. Again, the inclusion of me
surements will reduce the gain somewhat.

We turn now to the smeared superplaquettes. The ave
error ratios, for the runs described above, are summarize
Table XXXI. We note that, not surprisingly, the simp
plaquette acquires a larger error if we include ov
relaxation. ~These global averages mask the fact that

TABLE XXX. Errors on SU~2! masses on a 12224 lattice atb
59. Ro is the number of over-relaxed sweeps for every heat b
sweep.

State Ro50 Ro55 Ro59 Ro549

Flux loop 0.004 0.003 0.002 0.002
0.006 0.004 0.003 0.004

01 0.007 0.004 0.006 0.007
0.015 0.014 0.009 0.009

21 0.011 0.007 0.010 0.010
0.019 0.019 0.017 0.021

TABLE XXXI. Ratio of errors with and without over-
relaxation, for ‘‘plaquettes’’ at blocking levelBl .

Bl SU(3),b521 SU(3),b515 SU(3),b511 SU(2),b59

1 1.28~15! 1.00~13! 1.29 1.01~14!

2 0.92~5! 0.63~6! 0.88 1.02~5!

3 0.64~5! 0.63~4! 0.81 0.78~3!

4 0.75~4! 0.69~4! 0.79 0.71~6!

5 1.01~10!
01451
h
f

x

is

th
h

-

ge
in

-
r

small Ro the error is often reduced, whichis surprising.! On
the other hand we observe that the errors on large su
plaquettes are reduced and that, in contrast to what we
for masses, this effect is present at smaller couplings. Th
similar to what has been found in 4 dimensions@29# for large
and blocked Wilson loops.

In conclusion, we have seen that for sufficiently sm
couplings—equivalent toD54 values ofb;6.15 for SU~3!
and b;2.55 for SU~2!—there is a substantial increase
efficiency through mixing heat-bath and over-relaxati
sweeps. The CPU saving is about 40% for SU~3! and about
75% for SU~2!. The difference is largely due to the fact th
SU~2! over-relaxation is a very simple and fast operation.
D54 the operation of calculating ‘‘staples’’ is a little
lengthier and so this effect will be somewhat weaker the

APPENDIX B: TESTING THE EFFICIENCY
OF THE OPERATORS

In constructing a ‘‘good’’ basis of operators for our var
ous mass calculations, the use of spatial blocking is cruc
The general motivation is that if one wants a good over
onto the lightest physical states, then one needs to em
~combinations of! large smooth operators. There are ob
ously many possible variants on the particular recipe
have used in this paper~which is the one that has been us
successfully in earlierD5311 mass calculations!. In the
first part of this appendix we will consider some variation
the blocking procedure and we shall see that our choic
indeed an efficient one.

The range of operators we have used has been limited
only in the type of blocking employed but also in the varie
of ways we put the blocked loops together to form co
singlet operators. In practice we limited ourselves to sim
closed loops. However, once we go beyond SU~2! there is a
whole new class of operators that we can construct,
which take advantage of the fact that one can tie togetheNc
indices with a totally anti-symmetric tensor. We refer to th
for obvious reasons, as a baryonic vertex. Such opera
have not been used in previous lattice glueball calculati
as far as we are aware. Our attention was drawn to them
their possible role in splitting theC56 sectors, as pointed
out in @11#. For this reason we have carried out a sm
calculation to check whether they encode some interes
new information. This is described in the second part of t
appendix.

1. Variations on the blocking procedure

In our construction of ‘‘blocked’’ link matrices the mos
obvious parameter is the weighting of the direct path as co
pared to the staple-like paths. The choice we made wa
take an equal weighting for all the paths. So, for say
x-direction, we would takexx1yxxy†1y†xxy using the no-
tation in Sec. III B 1. In this section we shall perform som
calculations using a variable weightinggd . That is to say,
we use a blocking

Ūx
B5gdUxUx1UyUxUxUy

†1Uy
†UxUxUy ~B1!

th
2-28
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where we have suppressed some obvious arguments etc

blocked link, Ux
B , is then obtained by projectingŪx

B back
into the group. We then see which value ofgd is most effi-
cient in the sense of producing the best operators.

Before doing so we briefly comment on the projecti
back into the group and the resulting gauge transforma
properties of theUB. We begin by noting that if we perform
a local gauge transformation on the fields, thenŪB

→gnŪBgn8
† wheregn is the gauge transformation at siten

and the paths making upŪB start at the siten and end at the
site n8. If the group is SU~2!, we obtainUB by dividing ŪB

by det$ŪB%. Since the matricesg are unitary, we have
detgn51 and so det$ŪB% is gauge invariant. Thus, in th
case of SU~2!, UB has the gauge transformation properties
a product of links fromn to n8 and we can form color single
operators out of closed loops in the usual way. For SU(Nc

Þ2) the situation is different:ŪB is not proportional to an
SU(Nc) matrix, and if we wantUB to be in the group, we
need to define it some other way. The method we use i
defineUB as equal to the value of the SU(Nc) matrix U that
maximizes Tr$ŪBU†%. It is easy to see that for SU~2! this
reduces to the method we use there. It is also trivial to
~using the cyclic property of the trace! that if ŪB

→gnŪBgn8
† , then, just as in SU~2!, UB→gnUBgn8

† and we
can form color singlet closed loops in the usual way. Ho
ever, in practice we maximize the trace by a simple iterat
procedure which we stop before complete convergence
order to save computer time. This procedure requires, a
starting point, some first guess,Us , for the blocked matrix.
In practice we constructUs from ŪB in such a way that it
does not transform asUs→gnUsgn8

† under a gauge transfor
mationg. This means that when we stop the algorithm pr
to complete convergence, the resultingUB only transforms
approximately asUB→gnUBgn8

† . In principle this does not
matter; averaging over all field configurations in the Mon
Carlo calculation will lead to a cancellation of the non-gau
invariant pieces in the correlation functions. However, ag
in practice, this means we generate extra noise and this
increase our statistical errors—something to be avoide
possible.

We see from the discussion in the previous paragraph
there is more to ‘‘blocking’’ than choosing a sum of pat
and a relative weighting. One can ask if projecting back
the group produces better operators than not doing so~and
perhaps using some other form of normalization!. Studies in
D5311 of several alternative strategies in SU~2! @30# and
SU~3! @32# suggested that this was more or less so. So
tests then showed that approximating the maximization
the trace by one or two iterations did not significantly wors
the operators or increase the errors. However, there has
no demonstration that this continues to be the case as
increase the size of the group or that all this continues
hold in D5211. These are studies that still need to be c
ried out.

We return now to our study of how the operators va
with the choice ofgd in Eq. ~B1!. Our calculations are in
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SU~2! and are performed on a 163 lattice atb57.5 in a run
consisting of 10000 sweeps. On these configurations we
formed separate mass calculations, using our usual bas
operators, for the 5 different blocking schemes that usedgd
50.25, 0.50, 1.0, 2.0, and 4.0.

What we want to know is how efficient are the differe
schemes, and in particular how efficient is our usual cho
gd51. We shall confine ourselves to the lightest states
eachJPC channel. In that case our usual variational criterio
as discussed in Sec. III B 3, provides us with a simple cr
rion for comparing operators of the same quantum numb
one calculates the effective mass att5a and the ‘‘best’’
operator is the one that gives the smallest value of this
fective mass. So what we have done here is to find the
operator in our basis for each type of blocking. The b
form of blocking will then be the one that produces the mi
mal value of the effective mass.

In Table XXXII we present the value ofame f f(t5a) for
the best operator for each of the 5 kinds of blocking
consider and for the variousJPC quantum numbers. We ob
serve thatgdP@1,2# seems to work best overall, althoug
gd50.5 is virtually just as good if we ignore the 16 states.
Note that since the different calculations are performed
exactly the same sequence of field configurations, the er
will be highly correlated.

We have therefore seen that with respect to variation
this particular parameter, our choice ofgd51 is about as
good as any. Of course one can vary the algorithm in m
other ways, for example by including other paths than j
the direct path and the ‘‘staples.’’ A systematic study wou
be useful.

2. Operators with ‘‘baryonic’’ vertices

We will consider the specific case of SU~3!. Suppose we
have three curvesC1 ,C2 ,C3 each of which starts at som
point n and finish at some pointn8. Let us denote by
U1,U2,U3 the corresponding path ordered products
~blocked! link matrices along these three curves, runni
from n to n8. We can form singlet operators out of pairs
these in the usual way, e.g.

f5TrU1U2†. ~B2!

But in the case of SU~3! we also can form a color singlet ou
of all three of them:

TABLE XXXII. Effective masses att5a from the ‘‘best’’ op-
erators in different blocking schemes, as described in Appendix

minf $ameff(t5a)%
State gd50.25 gd50.50 gd51.0 gd52.0 gd54.0

Flux loop 0.622~11! 0.612~10! 0.603~10! 0.601~9! 0.630~8!

011 0.979~15! 0.967~13! 0.963~12! 0.969~11! 1.008~11!

211 1.53~4! 1.55~4! 1.56~3! 1.56~5! 1.63~3!

221 1.71~4! 1.61~3! 1.58~3! 1.58~3! 1.63~3!

021 2.51~6! 2.13~4! 1.99~3! 2.01~4! 2.12~5!

111 2.80~6! 2.32~7! 2.19~5! 2.20~4! 2.34~4!

121 3.01~19! 2.43~8! 2.27~8! 2.30~6! 2.48~6!
2-29
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fY5e i jkUii 8
1 U j j 8

2 Ukk8
3 e i 8 j 8k8 ~B3!

where we have exposed the matrix indices ande i jk is the
usual totally anti-symmetric tensor. This extends toNc.3 in
the obvious way; we haveU1, . . . ,UNc paths joined by the
appropriateNc-componente tensor.

Since the operators in Eq.~B2! and Eq.~B3! have the
same quantum numbers, they will have non-zero overl
and there is noa priori reason to think that we have los
anything by excluding the latter. However, it might be th
they constitute more efficient operators for some states,
if that is the case for one of the heavier states, where
practice we cannot calculate correlators beyond smallt, it
might be that, in using them, we will expose a state that
have not been able to see with operators of the type in
~B2!.

In this appendix we will describe a small exploratory c
culation designed to see if including such operators mi
make a serious difference to our calculations. We shall c
sider an operator,fY , of the form in Eq.~B3! with

U15UxUyUx
†

U25Uy

U35Ux
†UyUx, ~B4!

suppressing obvious arguments and indices. This is a r
angle with a central link crossing the rectangle. The p
ordering is out from the same vertex for all three curv
Under C such an operator reverses all three arrows on
curves, which for this particular operator is equivalent to
rotation ofp. So one can easily see that from this opera
~and the one we obtain byx↔y) we can obtain 011, 211,
and 122 quantum numbers.

We have performed a calculation on a 163 lattice at
b515 with this operator. In Table XXXIII we list the effec
tive 011, 211 and 122 masses obtained att5a using a

TABLE XXXIII. Effective masses att5a obtained from bases
with and without the operator,fY , which contains two ‘‘baryonic’’
vertices. From a 163 lattice atb515 in SU~3!.

ameff(t5a)
State WithfY Without fY

011 1.08~2! 1.08~2!

011* 1.67~5! 1.67~5!

011** 2.03~4! 2.05~3!

011*** 2.26~6! 2.26~5!

211 1.78~2! 1.78~2!

211* 2.15~6! 2.15~6!

211** 2.33~7! 2.34~7!

211*** 2.56~7! 2.61~7!

122 2.60~6! 2.60~6!

122* 2.62~5! 2.63~5!

122** 2.74~8! 2.78~9!

122*** 2.92~10! 3.02~7!
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basis that includes the best two blocking levels of this ope
tor. We compare it with what we obtain~on the same set o
field configurations! if we do not includefY . We observe
that there seems to be nothing new in these channels w
we includefY , at least not as far as the ground state and
first few excitations are concerned. There is a slight impro
ment in some of the overlaps, as indicated by a decreas
me f f(t5a), but one would expect that just from an increa
in the size of the basis.

This, albeit minimal, study leads us to believe that t
inclusion of operators incorporating baryonic vertices w
not alter our conclusions in any significant way. Howev
such operators can be convenient in providing a sim
means for constructingJ51 operators, and they may well b
important in investigating some physics, e.g. theC56 split-
tings, lower order in 1/Nc corrections, etc., so a more de
tailed investigation would be useful.

APPENDIX C: TESTING THE BENEFITS
OF MEAN-FIELD IMPROVEMENT

In this appendix we shall show that the mean-field
tadpole improved inverse coupling@40#

b I5b3 K 1

Nc
Tr~Up!L ~C1!

provides a much better expansion parameter thanb in our
D5211 calculations. This both complements the availa
D5311 evidence@40# and provides us with a more accu
rate way to determine lim

a→0
As/g2.

Our strategy will be to compare directly various extrap
lations toa50 using either 1/b or 1/b I as expansion param
eters. We shall perform these comparisons using our ca
lations in the SU~2! and SU~3! theories, since these cove
large ranges inb. Having found which extrapolation work
best, we shall take that information over to the SU~4! and
SU~5! theories where the range of our calculations is mu
more limited and where the use of a good expansion par
eter pays significant dividends.

We have focussed upon the string tension because
practice this is the quantity that we calculate most accura
on the lattice. Since lim

a→0
b52Nc /ag2, we know that

lim
b→`

baAs5 lim
a→0

2NcAs/g2. ~C2!

The approach to the continuum limit will involve higher o
der corrections that are inverse powers ofb and hence van-
ish as powers ofa. We thus expect that the approach to t
continuum limit will be under much better control than in
dimensions, where the analogous quantity that one would
calculating is lim

a→0
As/Lmom and where the correction

would be inverse powers of loga. This will allow us to make
a much more explicit and direct comparison than is poss
in D5311.

Since we expect
2-30
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baAs5c01
c1

b
1

c2

b2 1••• ~C3!

for largeb, it is useful to plot the values ofbaAs against
1/b; we do this in Fig. 9 for SU~2! and in Fig. 10 for SU~3!.
For large enoughb the first two terms in Eq.~C3! will domi-
nate and so the values should fall on a straight line as
approach the continuum limit. This we observe to be
case. For orientation we also show in Fig. 9 and Fig. 10
strong coupling predictions for the string tension up
O(b):

a2s52 logS b

4 D1O~b2! ~C4!

for SU~2! and

a2s52 logS b

18D2
b

12
1O~b2! ~C5!

in the case of SU~3!. @The extraO(b) term in the case of
SU~3! arises because in that case a product of two plaque
can be used just as well as a single plaquette in tiling
minimal surface spanning the Wilson loop.# We see that our
calculated values of the string tension extend well into

FIG. 9. The values ofbaAs plotted against 1/b for SU~2!. Also
shown is the leading-order strong coupling prediction at lowb and
a leading-order continuum extrapolation at highb.

FIG. 10. The values ofbaAs plotted against 1/b for SU~3!.
Also shown is the strong coupling prediction toO(b) at low b and
a leading-order continuum extrapolation at highb.
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strong-coupling regime. In this region an expansion in 1b,
such as in Eq.~C3!, should no longer be valid.

The maximum range, more or less, over which we c
perform linear fits with acceptablex2, turns out to beb
>4.5 in the case of SU~2! andb>15.0 for the case of SU~3!.
These fits are given by

baAs51.324~12!1
1.20~11!

b
, SU~2!, ~C6!

and

baAs53.275~24!1
8.35~61!

b
, SU~3!. ~C7!

~Note that the errors on the intercept and slope are a
correlated.!

While such a linear extrapolation is a perfectly accepta
procedure for extracting the continuum value of the str
tension, it must suffer from some systematic bias due to
neglect of higher order terms. These, it is clear from
figures, are certainly not negligible at intermediate values
b. If we includeO(1/b2) terms in our fits, we naturally find
larger acceptable ranges for the fits:b>3.0 for SU~2! and
b>6.5 for SU~3!. The fits are

baAs51.337~23!1
0.95~38!

b
1

1.1~1.3!

b2 , SU~2!,

~C8!

and

baAs53.367~50!1
4.1~1.7!

b
1

46.5~11.0!

b2 , SU~3!.

~C9!

We observe that in both cases the inclusion of the ex
O(1/b2) term has increased the value of the continuum lim
by an amount that, while small in absolute units, is unco
fortably large when compared to the claimed errors, es
cially so in the case of SU~3!. Moreover, in the case of SU~3!
the coefficient of the 1/b2 correction is so large that th
value of this correction is comparable to that of the 1b
correction over much of our range. Under such circu
stances one cannot motivate the neglect of the n
O(1/b3), correction. However, it is clear, from the larg
errors in Eq.~C9!, that our SU~3! data will not be able to
resolve these higher order terms with any useful accura
Moreover, there is also the danger that theO(1/b2) correc-
tion is being overly biased by the values ofaAs in the tran-
sition region between weak and strong coupling, where
very validity of an expansion in 1/b is breaking down. This
leaves us with an intrinsic systematic error on the SU~3!
continuum limit that may well be larger than the quoted s
tistical error.

The lattice corrections in Eq.~C3! are precisely what the
use of a better coupling should improve—by reducing th
coefficients. How well does that work here? If we use E
~C2! to defineb I , we can plotb IaAs against 1/b I as in Fig.
11 and Fig. 12. It is immediately apparent from a comparis
2-31
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with Fig. 9 and Fig. 10. that in terms of the ‘‘improved
coupling the higher order lattice corrections are dramatic
reduced. More quantitatively, if we perform fits as before b
with b I replacingb, we obtain the following results. In th
case of SU~2! we obtain good fits with just the leadin
O(1/b I) correction for the much larger rangeb>3.0 while
for SU~3! excellent fits are possible forb>8.175 ~and rea-
sonable ones all the way down tob56.0). Moreover, these
fits

b IaAs51.341~7!2
0.421~50!

b I
, SU~2!, ~C10!

b IaAs53.318~12!2
2.43~22!

b I
, SU~3!,

~C11!

display much smaller corrections to the leading asympt
terms than was the case in Eqs.~C6! and ~C7!. Since these
fits are so good, there is no real reason to include hig
order corrections. However, if we do so, then we obtain

b IaAs51.336~9!2
0.35~9!

b I
2

0.18~15!

b I
2

, SU~2!,

~C12!

FIG. 11. As in Fig. 9 but using the mean-field improved co
pling, b I , in place ofb.

FIG. 12. As in Fig. 10 but using the mean-field improved co
pling, b I , in place ofb.
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b IaAs53.323~28!2
2.57~80!

b I
1

0.7~3.7!

b I
2

, SU~3!.

~C13!

We observe that the coefficients of the higher order terms
small: so there is no reason to worry about the next corr
tion. A second and related observation is that the asympt
values are little changed with the inclusion of theO(1/b I

2)
correction—in contrast to what happened when we usedb as
our expansion parameter. Indeed even the coefficients o
1/b I terms are insensitive to the inclusion of a higher ord
term. All this represents a substantial improvement in
perturbative control of the continuum limit.

The fact that we can extrapolateb IaAs with fits involv-
ing just two parameters means that we do not need to
form calculations at more than four values ofb in the case of
SU~4! and SU~5!. This represents a substantial saving
computational effort.

From fits such as the above we can extract the continu
mass ratios shown in Eq.~38!. We remark that it is both
because we are in 3 dimensions, where the bare coup
decreases linearly with the scalea rather than just logarith-
mically, and because of the extent and accuracy of our lat
calculations, that it is possible to perform reasonably ac
rate extrapolations to the continuum limit even with t
‘‘bad’’ lattice bare coupling. This has enabled us to quanti
in a way that is not yet possible in 4 dimensions, how mu
the mean-field improved coupling actually improves the a
proach to the continuum limit of the lattice spacing,a.

APPENDIX D: CALCULATIONS WITH AN ASYMMETRIC
LATTICE ACTION

In this appendix we present an SU~2! calculation of the
mass spectrum on lattices with timelike and spacelike lat
spacings related byat.as/4. As discussed in Sec. V A th
primary purpose of this study is to check explicitly that o
criteria for which effective masses adequately reflect the
tual masses are in fact accurate. A second reason is that
being a calculation with a different action to the one we ha
used so far, will provide us with some test of universali
We shall first discuss some of the features that are peculia
such calculations. We then present our results.

1. Preliminaries

To allow different spatial and temporal lattice spacin
we use the action in Eq.~8!. What is the relation between ou
choice ofbs ,b t and the lattice asymmetry? Suppose we
aiming for a particular ratio

r 5
at

as
. ~D1!

In the limit as ,at→0 we have
-

2-32
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H 12
1

Nc
ReTrUpsJ→as

4 1

2Nc
TrF2

H 12
1

Nc
ReTrUptJ→as

2at
2 1

2Nc
TrF2

bS→
1

g2E d2xdt
1

2
TrF2

~D2!

whereF2 is the continuum field strength squared. Since
integration measure gives a factoras

2at when discretized, we
see that the choice

bs5rb, b t5
1

r
b, b5

2Nc

asg
2 ~D3!

is what is needed, at least at theclassicallevel, to achieve the
asymmetry,r, defined in Eq.~D1!.

In practice there will be quantum corrections to the
classical relations. Three related questions immediately a
~a! What do we need to know aboutas andat? ~b! In a given
simulation, how can we calculateas andat directly?~c! Can
we easily ‘‘improve’’ upon the relations in Eq.~D3!?

Before considering each of these questions in turn,
need to remark that the classical relations in Eq.~D3! should
remain a roughly reliable guide in the full theory. This
because our theory is super-renormalizable and this is in
trast to the situation in 4 dimensions. Nonetheless, we
expect significant corrections, as we saw when conside
theb dependence ofbaAs. We saw there~see Appendix C!
that the corrections to the classical relationb52Nc /ag2 are
quite large and can be drastically decreased by the use
mean-field improved coupling.

In the rest of this Appendix we shall assume that
asymmetric lattice has been chosen so thatat!as . This
means that we shall systematically ignore anyO(at

2) correc-
tions as compared to ones that areO(as

2).

a. How well do we need to know as and at?

The first thing we need to establish is whether we actu
need to knowas andat any more accurately than we alread
know them through using Eq.~D3!.

If we just wanted to calculate some lattice mass rati
mi /m0 , then these could be obtained without knowing t
lattice spacing at all: our usual procedure would give us
timates ofatmi and the lattice spacing then cancels in t
ratio. However, if we want to extrapolate to the continuu
limit, then the leading correction will beO(as

2), assuming
at!as as will be the case here, and so we need to knowasm
for some massm in order to provide the correction term i
the analogue of Eq.~49!. This can, however, be finessed b
using Eq.~50! instead; although 1/b2.a2g4/4Nc

21O(a3),
the correction has a small enough coefficient that it sho
not significantly degrade the accuracy of our extrapolatio

Of course, we also need to control finite volume effects
an efficient way—that is to say, more efficient than doing
detailed finite volume study at each coupling. So we nee
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be able to compare the lattice size,L[asLs , at different
couplings. For this we need to knowas to a reasonable ap
proximation; great accuracy is not needed because we
ally include a margin of safety in our choice of the volum

There is however at least one place where we do n
accurate values for the lattice spacings. This is in our ca
lation of the string tension. Our usual procedure is to cal
late the mass,atmP(L), of a flux loop of lengthL5asLs that
winds around the spatial torus. This mass,atmP(L), can be
written, using Eq.~32!, as

atmP~L !5at3Ls~L !

5atLS s~`!2
p

6L2D5atasLss2
p

6Ls

at

as
.

~D4!

Clearly we need to knowr 5at /as very accurately if we are
to be able to calculateatAs with the accuracy we are use
to. A similar situation arises if we calculate potentials usi
Wilson loops.

b. How do we calculate at /as directly?

There are two obvious methods that we can use to ca
late r 5at /as . The first involves calculating the energies
states with non-zero momenta. Suppose we have a partic
mass m. The allowed momenta are aspW
5(2pnx /Ls,2pny /Ls) and the corresponding energies th
we obtain from our correlators may be written asatE(p).
For small momenta we expect the continuum dispersion
lation, E25p21m2, to be accurately satisfied.~We have ex-
plicitly seen that this is so on the symmetric lattices that
have used in our main calculations in this paper.! So we
expect to have

at
2E2~p!5at

2~p21m2!5S at

as
D 2S 2p

Ls
D 2

~nx
21ny

2!1~atm!2.

~D5!

Therefore, from our calculated values ofatE(p) andatm we
can obtain, using Eq.~D5!, a value forat /as .

Our second method is even more direct. Normally
calculate correlators in thet-direction. We could instead cal
culate our correlators in, say, thex-direction. In that case ou
space would be (y,t) in place of (x,y). As long asatLt is
large, as it will always be, this new spatial volume will als
be large and we can assume there are no finite volume
fects. Thus we obtain the same mass in both calculations
to lattice spacing corrections. That is to say, we obtainatm
from our t-correlators andasm from ourx-correlators. Equat-
ing the two we obtainat /as .

We can combine the above two methods by calculat
glueball correlation functions in thex-direction with non-
zero momenta in either they or t directions. Comparing the
energies of such states gives us another direct estimat
at /as . If we include a range of momenta one can attemp
tune this ratio so that the dispersion relations inpt and py
coincide. This allows us to fix the asymmetry without assu
ing the continuum dispersion relation.
2-33
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MICHAEL J. TEPER PHYSICAL REVIEW D 59 014512
In practice, we shall not use this last method, and we s
only consider the lowest two momenta in applying our fi
method. While this reduces the precision with which we c
estimate the ratioat /as , it suffices for our purposes.

Both of the above methods will suffer from lattice spaci
corrections. The continuum dispersion relation will only
valid up to corrections of order (asp)2 and the eigenstates o
the transfer matrices defined on thex,y and y,t spatial tori
will differ by orderas

2 corrections because the latter torus h
a lattice spacingat rather thanas in one of the two direc-
tions. However, as long as we are consistent in the met
used to estimateat /as we can absorb this correction into th
correction term used in taking the continuum limit.

Before turning to some explicit calculations of the abo
kind it is worth pointing out that although the second meth
described above seems more direct, it is in practice m
awkward to implement. The reason is that we need to p
duce blocked link matrices in order to have useful operat
and this has to be carefully tailored in the case where
spatial lattice spacing is very different from the other. A
this is in addition to the fact that using two different spat
planes means producing two sets of blocked links. For th
reasons our calculations using the second method will be
only a subset of our lattices.

c. Can we ‘‘improve’’ upon the estimate of r?

We have seen in our previous calculations that we
much smaller corrections to the limitbaAs→2NcAs/g2 as
a→0, if we use a mean-field improved inverse coupling,b I ,
in place ofb. One might hope that a similar approach wi
an asymmetric lattice action would improve our control ov
the value ofr. The straightforward implementation of th
idea in the context of the action in Eq.~8! would be to define
‘‘improved’’ values of r andb by

r Ib I5rb K 1

Nc
TrUpsL

1

r I
b I5

1

r
b K 1

Nc
TrUptL . ~D6!

This is in the spirit of the approach suggested in@42# al-
though there one effectively replaces (1/Nc)^TrUpt

& by

unity. We shall calculater I below and explicitly check how
much of an improvement one really obtains.

2. Calculation

We perform calculations atb54.0, 5.3, and 8.0. In al
three cases we chooser 50.25 in the action, as given in Eq
~8!. The lattice sizes are 12260, 16264 and 24296. If the
classical relations in Eq.~D3! were valid, then the value o
as would be exactly what we obtained at the correspond
values ofb on symmetric lattices. The reader will note th
our lattice sizes are somewhat larger than would be ne
sary if this were the case; this is to give us some margin
case the quantum corrections to these relations are sig
cant.
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In addition to these calculations we also perform calcu
tions on somewhat smaller lattices, 8260, 12264, and 16296,
respectively. It is on these lattices that we calculate corre
tors in botht and x directions. We shall only calculate th
mass of the periodic flux loop,mP(L), on these lattices
Smaller lattices are preferable for this purpose beca
mP(L) will be smaller and so we will have more accura
values.~Obviously this is only important for the correlator
in the x-direction whereasmP will not be small.!

Our original motivation for performing such calculation
was to have a finer resolution on the effective mass plot
as to see whether the typical heavier mass could really
extracted from its effective masses betweent5a to t52a.
Since we haveat;as/4, this question becomes, have th
effective masses in the region 4at<t<8at already reached
their asymptotic plateau? So without further ado we plot
effective masses from the 24296 lattice in Fig. 13. Note tha
if we wished to obtain such a small lattice spacing in o
usual symmetric lattice calculation, we would have had to
it on a 963 lattice at b;30: a daunting prospect. We se
from Fig. 13 that there is reasonably good evidence in
cases that an effective mass extracted over the intervalat
<t<8at provides an unbiased estimate of the asympto
mass. We infer from this that extracting masses from
ranget5a to t52a on symmetric lattices in the neighbo
hood of b58, where the heavier states are in the noise
t.2a, is in fact justified. Ourb55.3 calculations also sup
port this way of calculating masses~although with less pre-
cision!, thus reassuring us that the estimates we have use

FIG. 13. The effective masses obtained on a 24296 lattice atb
58 in SU~2!, with a very small temporal lattice spacing:at

;0.25as . States are the 011(d), the 011* (s), the 211(!), the
211* (L) and the 111(3).
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this paper are indeed unbiased over the whole range ob
relevant to our continuum extrapolations.

Since these lattice actions are different from the symm
ric ones that we have used in the body of the paper—inde
as we have already remarked, one may regard them as b
close to the Hamiltonian limit—it is interesting to extract
continuum mass spectrum from them, so testing universa
to some extent.

In Table XXXIV we list the masses we have extracted
our three value ofb. They are all in units ofat . In addition
to the glueball masses we also list the mass of the flux l
that winds around the spatial torus. As discussed above
need to know the value ofat /as in order to extractatAs ~or
asAs). And we need to knowatAs if we are to calculate
mG /As for comparison with our previous calculations. W
therefore turn to this next.

In order not to confuse different quantities, we shall co
tinue to user for the parameter in the action, and we sh
chooser 50.25 here. Classically, but only classically, w
know thatr 5at /as . The ‘‘true’’ value of at /as is the one
that we explicitly calculate using the methods described e
lier in this appendix: this we shall either labelr measor sim-
ply refer to asat /as . Finally there isr I as defined by Eq.
~D6!.

We calculateat /as by comparing the flux loop energy a
calculated from two momenta,p1 andp2 , and then using Eq
~D5!. We do so using the lowest three momenta which
shall refer to aspi50,1,2 for convenience. This we shall d
on both our larger and smaller lattices at each value ofb.
Note that the smallerp, the more reliable will be the con
tinuum energy-momentum dispersion relation. Since
lowest momenta decrease as the lattice size increases
values obtained on the larger lattices will have smaller s

TABLE XXXIV. Masses with asymmetric SU~2! action; r
50.25 in Eq.~8!. Also shown are the average timelike and spa
like plaquettes.

atm with at.0.25as

State b54.0 b55.3 b58.0
12260 16264 24296

Flux loop 0.431~7! 0.305~5! 0.185~2!

011 0.443~5! 0.321~4! 0.207~2!

011* 0.63~1! 0.448~12! 0.302~3!

011** 0.77~2! 0.582~7! 0.368~7!

021 1.01~3! 0.68~3! 0.427~9!

021* 1.14~3! 0.73~3! 0.527~5!

211 0.717~10! 0.532~8! 0.344~4!

211* 0.86~2! 0.636~9! 0.395~6!

221 0.750~13! 0.538~5! 0.339~4!

221* 0.93~3! 0.647~8! 0.407~5!

111 1.03~3! 0.75~5! 0.471~4!

111* 1.3~1! 0.76~6! 0.551~7!

121 1.12~4! 0.80~6! 0.499~6!

121* 1.22~5! 0.80~5! 0.477~12!

^TrUps
/Nc& 0.64060~7! 0.73195~3! 0.82418~1!

^TrUpt
/Nc& 0.91436~2! 0.93597~1! 0.95795~1!
01451
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tematic errors although larger statistical errors. The val
thus obtained are listed in Table XXXV. We also show the
the values we get foratmP /asmP ; these have only been
calculated for the smaller lattices. From these results we in
the following values of the asymmetry:

at

as
5H 0.245~5!, b58.0,

0.237~6!, b55.3,

0.230~10!, b54.0.

~D7!

The deviation from the classical value,at /as5r 50.25, is
not large. We also note that although the ‘‘improved’’ valu
r I , is shifted in the right direction, it overshoots so that it
no closer to the ‘‘true’’ value than isr. This is even more so
if one replaces the time-like plaquettes by unity in Eq.~D6!.
Thus it seems that the most naive mean-field ‘‘improv
ment’’ is not an improvement here.

Using in Eq.~D4! the values ofat /as in Eq. ~D7! and the
values ofatmP in Table XXXIV, we obtain

atAs5H 0.04408~56!, b58.0,

0.06806~102!, b55.3,

0.0919~21!, b54.0.

~D8!

The uncertainty inat /as has roughly doubled the error o
atAs; thus it is no longer the most accurately calculat
quantity~as it was in case of the symmetric action!, and if we
were to calculate mass ratios from scratch, we might pre
to use the scalar glueball mass as our basic scale. We
extrapolate these values~multiplied by b) to the continuum
limit, using a 1/b correction just as in Eq.~35!. The fit has a
very good confidence level and gives us the continuum va
of 4atAs/asg

2. In the continuum limitat /as5r 50.25 and
so we finally obtain

As

g2 50.3375~130!. ~D9!

-
TABLE XXXV. Various estimates ofat /as as described in Ap-

pendix D. Also shown isr I , the mean-field improved value ofr.

b Ls r r I p50,1 p50,2 atml /asml

8.0 24 0.25 0.232 0.249~11! 0.252~5!

16 0.25 0.232 0.244~9! 0.241~4! 0.235~8!

5.3 16 0.25 0.221 0.239~25! 0.235~7!

12 0.25 0.221 0.235~10! 0.238~4! 0.241~6!

4.0 12 0.25 0.209 0.236~28! 0.241~8!

8 0.25 0.209 0.223~7! 0.219~5! 0.241~12!
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This is certainly consistent with the value of 0.3353(18)
Eq. ~38! which was obtained withr 51, but the error is much
larger. In large part this is just because the present calc
tion is a much smaller one. But in some part it is due to o
uncertainty in the value ofat /as . Without this uncertainty
our error in Eq.~D9! would have been smaller by about
factor of 1.5. We have performed other continuum extra
lations as well. If we use the classical valueat /as5r
50.25 in our calculations, then we again obtain a good
this time with a continuum value of

As

g2 50.3288~50!. ~D10!

This is consistent with our previous values, as it should
because the corrections tor can be absorbed into the 1/b
correction. Indeed we find that the coefficient of the 1/b term
is larger in the latter case,.0.22(3) versus.0.12(8), when
we use the values in Eq.~D7!. We have performed othe
extrapolations as well: the errors vary but the values are c
sistent with each other. It is worth remarking that the
leading to Eq.~D9! has a much smaller correction than o
finds in the symmetric case when usingb; indeed it is about
the same size as one obtains using the improved coup
b I . This suggests that lattice corrections are smaller on v
asymmetric lattices, and perhaps explains why we did
gain anything from using the mean-field recipe.

We can now take the values ofatmG in Table XXXIV,
the values ofatAs in Eq. ~D8!, form ratios, and extrapolat
to the continuum limit using Eq.~50!. We obtain the con-
tinuum mass ratios shown in Table XXIII. We also sho
there the symmetric lattice values that have been obta
elsewhere in this paper. We observe that they are consis
within errors. We note that if we extrapolate with anO(a2s)
correction as in Eq.~49!, we obtain almost identical results
This is also the case if we use string tensions calcula
usingat /as50.25, except that the fits tend to be significan
worse—as one would expect if this involved an error th
was reallyO(1/b) rather thanO(1/b2).

We observe in Table XXIII that the errors on the light
masses are larger in the asymmetric case. This is no sur
since our symmetric calculations areverymuch larger. What
is striking is that for the heaviest masses, such as the 161,
the asymmetric errors are actually smaller. This displays
power of such calculations for determining the masses
heavier states.

Two final asides on the spectrum. For reasons we do
entirely understand, we seem to have no problem in obt
ing a set of excited 261 masses that continue well toa50
and, indeed, are consistent with what one finds for hig
groups—see Table XXI. This is in contrast to the case o
symmetric lattice action. We also note in Table XXXIV th
the mass of the 121 is larger than that of the 121* . Our
ordering of the states is determined by the effective mas
t5a, which in this case seems to be unreliable. This is
doubtedly related to the peculiarities in theJ51 sector that
we have previously noted during our symmetric action c
culations. Obviously it is hard to argue with using the low
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mass for the ground state 121, and if we do so we obtain the
value in square brackets in Table XXIII. It is amusing th
this value fits better with parity doubling and with the valu
obtained for the higher groups.

APPENDIX E: THE U „1… MASS SPECTRUM

In this appendix we calculate the mass spectrum in
D5211 U~1! theory. U~1! is as far as one can get from
U(`); so this should provide us with a useful contrast to t
SU(Nc) mass spectra which we have calculated in this pap

Calculating the U~1! spectrum might seem pointless; th
continuum limit should be a theory of free, non-interacti
photons. While this would certainly provide a contrast to o
SU(Nc) spectra, it would hardly be very illuminating.

Although the continuum limit is indeed trivial, in the
sense that there will be no bound state whose mass is fini
units of the mass scaleg2, there is nonetheless interestin
dynamics at finite values of the lattice spacing,a. This arises
from the presence of magnetic monopoles in the theory.~To
be more precise, inD5311 these would be magneti
monopoles. Here they are pointlike instantons whose fie
are identical to the spatial fields of a static Dirac monopo
Hence we shall follow the usual custom and refer to them
magnetic monopoles, even inD5211.) These monopoles
clearly have an action that is.cM /ag2 wherecM is a con-
stant that depends on the particular lattice action being u
Thus a monopole has a weighting;exp$2cM /ag2% and
hence the average distance between monopoles will bedM
;aexp$cM/3ag2% ~up to weakly varying factors that com
from integrating small fluctuations around the monopole!.
This provides a scale for the theory that is different fromg2.
This scale is interesting because the monopoles change
physics in a qualitative fashion. As is well known@48# they
produce a linear confining force between external sta
charges. One could also expect them to produce a nontr
mass spectrum. At the very least, there will be a mass
‘‘photon.’’ Of course, in the continuum limitdM→` in units
of 1/g2 and so on the latter scale the monopoles disappea
r 5` as we approach the continuum limit.

Actually, the above description represents an ov
simplification. There is not just one new scale introduced
the monopoles. There is also a scale associated with
string tension,l s[1/As, and a scale associated with th
screening mass,l s[1/ms . These scales mutually diverge i
the continuum limit:l s; l s

2;dM
4/3 up to constants and power

of b. The origins of this peculiar situation lie in the fact th
the monopoles are singular objects.

For these reasons we will not try to calculate a ‘‘co
tinuum’’ mass spectrum. Rather we shall calculate the sp
trum for lattice spacings that are small compared to the
vious dynamical length scale,a!1/As.

The results of our calculation are presented in Ta
XXVI. How do they compare to the SU(Nc) spectra listed in
Tables XXI and XXV? An immediate difference with all o
the SU(Nc) spectra is that the 011 is no longer the lightest
particle; the 022 is about half the mass. We also note th
while the ratiom011 /As was increasing asNc decreased,
2-36
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the U~1! value is about as much below the SU(`) value as
the SU~2! ratio is above. Apart from these striking diffe
ences, the rest of the spectrum seems quite similar~albeit
within the large errors!. This is particularly so if we compare
to the 011 mass rather than toAs. For example, the 211 to
d-
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tt
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011 mass ratio is close to its SU(Nc) value. We note also
that we have approximate parity doubling forJÞ0, thus con-
firming that a is indeed small enough for continuum rot
tional symmetry to have been restored on hadronic len
scales.
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