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Phase structure of U1) lattice gauge theory with a monopole term
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We investigate four-dimensional compactlV lattice gauge theory with a monopole term added to the
Wilson action. First we consider the phase structure at neggtivevealing some properties of a third phase
region, in particular the existence of a number of different states. Then our present studies concentrate on larger
values of the monopole couplingwhere the confinement-Coulomb phase transition turns out to become of
second order. Performing a finite-size analysis we find that the critical experisrtlose to but, however,
different from the Gaussian value and that in the range consideredcreases somewhat with.
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PACS numbsgs): 11.15.Ha

I. INTRODUCTION done using the dynamical-parameter algorithm developed in
[6,7].

Because of the occurrence of a gap in the energy histo- After the mentioned evidence of first order the question
gram, the phase transition in 4-dimensional compagt)U arises where one can find a second-order phase transition in
lattice gauge theory with the Wilson action is believed to bethe U(1) gauge system. This leads to the modification of the
of first order. Actually this is to be studied in more detail by Wilson action where a monopole term is add&d which
a finite-size analysis. Recently critical exponents have beefeads
determined in a higher-statistics stuidyl. There the critical
exponentr has been found to decrease towagdsith in-
creasing lattice size, i.e., towards the value characteristic of a S= ﬂﬂ; x (1=cos0,,, X)H\E |M (.
first-order transition.

If the Wilson action is extended by a double charge termyith M,
with coupling y the first order transition weakens with de-
creasingy and has been conjectured to become of seconfUX G)er[ m,m) is related to the plaquette angle
order at some negative [2], which, however, so far has not © ,, e (—4m,4m) by ©,, ,= ®;w,x+ 2mn,, x [9].
been confirmed. In Refl3] instead of the usual periodic Using the action(1.1) from the energy distribution it is
boundary conditions a spherelike latti¢®., the surface of a seen that the gap gets smaller with increasing monople cou-
5-cube which is homeomorphic to a 4-sphdras been used. pling A [6,7], which indicates that the first-order transition
The disappearance of the gapjat0,—0.2,-0.5 observed gets weaker and for sufficiently large becomes of second
there has been interpreted by the authors as an earlier starta@fder. The latter has been corroborated by a finite-size analy-
the second order region and the relatively low valuer@s  sis[10] which has shown that at= 0.9 the critical exponent
related to a non-Gaussian fixed point. is already characteristic of a second-order transition.

In a more recent investigation of the action with a double In addition to showing a second-order phase transition for
charge term[4] the gap has been shown fgr down to sufficiently large\, the action(1.2) is particularly attractive
—0.4 to reappear on larger spherelike lattices. The absende view of the fact[6,11] that the confinement phase and the
of a gap on smaller lattices has been attributed to large€oulomb phase are unambiguously characterized by the
finite-size effects in the spherical geometry. These observgresence or absence, respectively, of an infinite network of
tions are just what was to be expected according to studies @fionopole current lines, where “infinite” on finite lattices is
the influence of different boundary conditioffs] where it  to be defined in accordance with the boundary conditihs
turned out that inhomogeneities weaken the transition an&ince the probability?,.;to find an infinite network takes the
that the gap reappears for sufficiently large lattice sizes. livalues 1 and 0, respectively, it is very efficient to discrimi-
addition in Ref[4] for y between+ 0.2 and—0.4 the critical nate between those phases. For the finite lattices with peri-
exponentr has been found to decrease towagdwith in-  odic boundary conditions we are considering here, “infi-
creasing lattice size for toroidal as well as for spherical gehite” means “topologically nontrivial in all directions.”
ometry. Further, in some cases stabilization of the latent heaWhile for loops this characterization is straightforward, to
has been observed. determine the topological properties of the occurring net-

Thus, for the above actions there are now rather strongvorks it is necessary to perform a more elaborate analysis
indications that, at least in the region which has been inveshased on homotopy preserving mappifgs 1.
tigated so far, the transition is of first order. Of course, it In [10] the location8,, of the transition from the confine-
remains desirable to check this on still larger lattices. Whilement phase to the Coulomb phase has been determined as a
this is hardly possible with conventional methods, it can beunction of A. It has been found that the related transition

pwv(@w, x+o— 04, )47 where the physical
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line continues to negativ@. On the other hand, in Refs. 2.0
[12,13 a further transition has been reportedgat — 1 for B
A=0 and atB=—0.7 for A=. This suggests to check in er
more detail what happens at negatjge 10 -

In the second-order region mentioned above an important Coulomb

guestion is whether one has universal critical properties
there. The energy distribution indicates that this region starts
at some finitex above 0.7/6,7]. For A =0.9 the critical ex- 0.0 - confinement
ponentw is known to be characteristic of a second-order
transition[10]. It appears important now to get more infor-
mation on this region. In particular finite-size analyses at -1.0 t
different values ofA and for a variety of observables are

desirable. third phase
In the present work we have performed Monte Carlo 20 , ‘ ‘
simulations to address the indicated questions. Simulation ) 0.0 1.0 'y 2.0
runs at various values of and 8 have been done to get an
overview of the situation at negative. The emerging pic- FIG. 1. Location of phase transition poings, on 8 lattice as

ture of this is discussed in Sec. Il. The emphasis of oufunction of A between confinement and Coulomb phagsecles
investigations has then been on higher-statistics simulationom C,,,,, square fromP,.) and to third phasediamonds.

at A=1.1 and A\=0.8 in the critical region of the Curves drawn to guide the eye.

confinement-Coulomb phase transition, which have been

evaluated by finite-size analyses. The results of this are prdselow the new transition line which will be discussed in the

sented in Sec. llI. following. Since so far we have no indication of a further
subdivision of this region, but rather find similar properties
Il. PHASE REGIONS throughout it, we consider it her@t least as a working hy-
pothesis as a third phase.
In [10] the locationp,, of the transition from the confine- ~ Figure 1 gives an overview of the phase regions as they

ment phase to the Coulomb phase has been determined Bye according to our present knowledge. The line separating
the maximum of the specific he&@,, up to A=1.3. Be-  confinement and Coulomb phases obtainefd.0j with C.y
cause the peak of the specific heat has been found to dggs been supplemented by a point\at 1.35 determined
crease strongly with, at larger values ok only Pnethas  here and by the point (1.4,0.52) found there only usig.
been used to locate the transition. In these investigations jt is seen that this transition line hits the boundary of the
has turned out that abowe= 1.2 the associated values 8f,  third phase at approximately (1.430.71).
become negative. While P, has provided an unambiguous criterion in the
The Wilson action has the symmetry8B——f8,  confinement phase and in the Coulomb phase, this is no
Up——Ug.* At A=0 it gives rise to a phase transition at jonger so in the third phase. At fixed (8) in this region
B=—1 in addition to the one g8=1 [12]. For A#0 this  yalues 0 as well as 1 occur fd?,.. The observations at
symmetry is violated by the monopole term. A= only  (10,—1000) in[10] appear to be related to this. That prop-
the transition at negativgg persists and occurs at about erties of monopole structures are no longer characteristic at
B=-0.7[12,13. sufficiently negative8 can be understood by noting that the
Here we have checked the occurrence of such transition agspective quantities are not invariant under the transforma-
negatives also at intermediate values afby determining  tion g— -8, Up——Ug.
Cmax- Our observations indicate a transition line extending As a characteristic feature of the third phase we have
from (\,8)=(0,—1) to (,—0.7). In the energy distribu- found that a number of different states exists there between
tion on the & lattice we have seen a double-peak structure afyhich transitions in the simulations are strongly sup-
A=0.5 and indications of such structuréhough not re- pressed. We have observed this phenomenon at various
solved with present accuracyt other\ values. Together negative8 in the N range from 0 to 2.5. Typical exam-
with the observations at=0 and atA =« in Refs.[12,13  ples of time histories of the average plaquetie
this hints at first order along that transition line. Of course, it:(1/6L4)EM>V,X(1—COS®W,X) are given in Fig. 2, with the
remains to confirm this with higher statistics and on largerresults of seven simulation runs, exhibiting different states
lattices. and some transitions from lower to higher ones. It turns out
We have also investigated some properties of the systefmhat there is no correlation between the state reached and the
type of start(hot or cold of a simulation run.
Comparing time histories of at different ¢, 8) the split-

The transformationU;— — Uy, of the plaquette fields can be tings of the states appear very similar. Closer inspection
realized by transforming the link angles @s,— +A ,,0 , where s_hows that at least nine states occur. The number of transi-
the sign choice is according 8, being in the interval§ — ,0) tions between states increases withThey have so far al-
and [0,m), respectively, and wheré\ ,=—1 if x;+X,+---  Wways been observed occurring from lower to higher
+X,-1 is odd andA ,,= +1 if it is even or if u=1. plaguette values. The widths in the time histories show little
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FIG. 2. Typical time histories of the average plaquettat
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TABLE I. Critical exponentsa/v from Cy,, Ugg-

A Cv Ucis
0.8 0.61622) 0.75623)
0.9 0.485%35)

11 0.28412) 0.39112)

breaking. In any case the third phase appears to have more
complicated properties which deserve furtligrough com-
putationally demandingstudies elsewhere.

lll. CRITICAL PROPERTIES

Monte Carlo simulations with about $0sweeps have
been performed at each of up to 20 valuegah the critical

negatives obtained for seven different simulation runs, shown for region of the confinement-Coulomb phase transition at

(M, B)=(2,—20) and & lattice.

dependence or while they strongly decreaseff gets more
negative(widthx 8 being roughly constaptThus at smaller
negativeg it gets increasingly difficult to resolve splittings.
The averages found show not much dependence ®n
however, they increase g gets more negative. Theval-

A=1.1 and atA=0.8 and for each lattice size considered.
Multihistogram technique$14] have been applied in the
evaluation of the data. The errors have been estimated by
Jackknife methods. In the finite-size analyses in addition to
the specific heat and the Challa-Landau-Bin@&tB) cumu-

lant [15] complex zeros of the partition functiofl6], in
particular the Fisher zerm, closest to the3 axis[17], have

ues, being somewhat below 2, indicate that at sufficientlyoeen used.

negativeg the average of cd®,,, gets close to-1. That
negative co$®,,,, occur at negativgg and positive co$),,,,,
at positive 8 in view of the symmetry8B——-p8, Up—
—Up of the Wilson action is conceivable.

Though at negative 3 the monopole densityp
=(14.Y=, M, | appears of less interest,

The specific heat is
C=—(E-(EN?) 31
6L* '

whereE=2 ., (1—c0s0,,,). Ford=4 its maximum is

it should be expected to behave as

mentioned that the states are also seen in its time histories.
The respective time histories are correlated with large values

of p corresponding to low values of. The widths forp Crnax~L* (3.2
decrease with.. They are rather large so that, except at the
largest values ok, the resolution of the states is very poor. if the phase transition is of first order and as
The value ofp decreases with.
The origin of the observed different states is not yet clear. alv
Similar observations are made in simulations of spin glasses CrmaxL 33

and of frustrated systems, and also in finite-temperature

SU(N) gauge theory with states related to spontanet{s)

2=0.8

6 8 0o, 16

FIG. 3. Maximum of specific heat . as function of lattice
size L for A=0.8, 0.9, and 1.1 at transition poinf, between
confinement and Coulomb phases.

if it is of second order, where is the critical exponent of the
specific heat and the critical exponent of the correlation
length.

In Fig. 3 we present the results f@,,, obtained on lat-
tices withL=6, 8, 10, 12, 16 fox=0.8,0.9,1.1.They
include data from simulations of the present investigation
(A=1.1 and\=0.8) and ones from simulations of R¢10]
(A=0.9). From Fig. 3 it is already obvious that'v as it
occurs in Eq.(3.3) decreases with, which by the hyper-
scaling relationa=2—dv means that increases with\.

TABLE II. Critical exponentsy from Im(zy), Cy, Ugg-

A Im(zg) Cv Ucs
0.8 0.4045) 0.4332) 0.4213)
09 0.44€5)

1.1 0.4218) 0.4672) 0.4552)
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TABLE lll. Critical B, from zy, Cy, Ug -
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TABLE IV. Fit data B¢ anda for zy, Cy, Ugg-

A L Re(zo) Cy UgcL A Re(zy) Cy Uce
0.8 6 0.46373) 0.4630(3) 0.4647(2) 0.9 B 0.4059(5)

8 0.4783(2) 0.4779(2) 0.4783(4) a -1.99(6)

10 0.4844(2) 0.4841(2) 0.4843(2) -

1.1 Ber 0.1888(6) 0.1902(5) 0.1896(5)

1.1 6 0.140910) 0.1387(5) 0.1431(6) a -3.14(13 -2.41(7) -2.49(8)

8 0.1636(10) 0.1618(5) 0.1630(6)

10 0.17424) 0.1731(5) 0.1736(6)

12 0.17758) 0.1782(8) 0.1784(8) Using the values of in Table Il and the data foB (L) in

16 0.18394) 0.1837(4) 0.1838(4) Table Ill, the numberg () anda in Eg. (3.7) have been

calculated forn=1.1. In Table IV they are compared with
those obtained fox =0.9 in[10]. The errors given are again

The fits to the data presented in Fig. 3 give the values fop )y statistical ones.

alv shown in Table I. They are clearly very far from 4 and

The observed increase ofwith N could indicate a non-

thus the transition cannot be expected to be of first orderyniversal behavior with a maximal valugvhich could be

Using the hyperscaling relatiom=2—dv the values forv

evens) reached at the boundary to the third phase. Another

listed iln Table Il are thained. They are different from th?possiblity is that, because the observations are on finite lat-
value ; of the Gaussian case, however, rather close 10 ittices and the range of considered is not too far from the
Thus in any case to conclude on second order appears quif@st-order region, the starting point of the second-order re-

safe.

gion is not yet sharp. Then this effect should disappear on

Similar results are obtained for the minimum of the CLB mych larger lattices.

cumulant

(E% ) (3.9

1
“CLB:§( RGEE

and for the imaginary part of the closest Fisher zgyoFor
these quantities finite-size scaling predicts the behaviors

(3.5
(3.6)

Im(zg)~L" ',

U CLB,min"~ L alv -

The results of the respective fits are also listed in Tables
and Il. It is seen that the values obtained from different quan
tities roughly agree, with some systematic deviations beyon
the given statistical errors. In any case it is obvious tha

increases somewhat with and that it is not far frons.
The related criticaB.(L) (i.e., the extrema positions &f
andU¢, g and the real part afy) are given in Table lll. They

illustrate the dependence anand lattice size. The critical

B (L) are expected to behave as

BelL)=Bg+aL . (3.7

To get hints on the dependence on lattice size effeative
(i.e., a sequence of ones related to two neighboring lattice
sizeg have also been considered. Though there was a slight
tendency in support of the above view of a finite-size effect,
it turns out that larger lattices and higher statistiahich
unfortunately are computationally very expensiweuld be
needed for firm conclusions.

If for very large latticesy gets independent of for the\
above a certain finite value and below the start of the third
phase, the question arises what the ultimatevould be.
Because the numbers forin Table Il come rather close tb
*"his could be simply the Gaussian value. If first order is
confirmed along the boundary to the third phase, an interest-

ipg aspect is that this transition line with= is met by the

t second-order line withv close to or equal tq.
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