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Phase structure of U„1… lattice gauge theory with a monopole term
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~Received 1 July 1998; published 7 December 1998!

We investigate four-dimensional compact U~1! lattice gauge theory with a monopole term added to the
Wilson action. First we consider the phase structure at negativeb, revealing some properties of a third phase
region, in particular the existence of a number of different states. Then our present studies concentrate on larger
values of the monopole couplingl where the confinement-Coulomb phase transition turns out to become of
second order. Performing a finite-size analysis we find that the critical exponentn is close to but, however,
different from the Gaussian value and that in the range consideredn increases somewhat withl.
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I. INTRODUCTION

Because of the occurrence of a gap in the energy hi
gram, the phase transition in 4-dimensional compact U~1!
lattice gauge theory with the Wilson action is believed to
of first order. Actually this is to be studied in more detail b
a finite-size analysis. Recently critical exponents have b
determined in a higher-statistics study@1#. There the critical
exponentn has been found to decrease towards1

4 with in-
creasing lattice size, i.e., towards the value characteristic
first-order transition.

If the Wilson action is extended by a double charge te
with coupling g the first order transition weakens with d
creasingg and has been conjectured to become of sec
order at some negativeg @2#, which, however, so far has no
been confirmed. In Ref.@3# instead of the usual periodi
boundary conditions a spherelike lattice~i.e., the surface of a
5-cube which is homeomorphic to a 4-sphere! has been used
The disappearance of the gap atg50,20.2,20.5 observed
there has been interpreted by the authors as an earlier st
the second order region and the relatively low value ofn as
related to a non-Gaussian fixed point.

In a more recent investigation of the action with a dou
charge term@4# the gap has been shown forg down to
20.4 to reappear on larger spherelike lattices. The abse
of a gap on smaller lattices has been attributed to lar
finite-size effects in the spherical geometry. These obse
tions are just what was to be expected according to studie
the influence of different boundary conditions@5# where it
turned out that inhomogeneities weaken the transition
that the gap reappears for sufficiently large lattice sizes
addition in Ref.@4# for g between10.2 and20.4 the critical
exponentn has been found to decrease towards1

4 with in-
creasing lattice size for toroidal as well as for spherical
ometry. Further, in some cases stabilization of the latent h
has been observed.

Thus, for the above actions there are now rather str
indications that, at least in the region which has been inv
tigated so far, the transition is of first order. Of course,
remains desirable to check this on still larger lattices. Wh
this is hardly possible with conventional methods, it can
0556-2821/98/59~1!/014510~5!/$15.00 59 0145
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done using the dynamical-parameter algorithm develope
@6,7#.

After the mentioned evidence of first order the quest
arises where one can find a second-order phase transitio
the U~1! gauge system. This leads to the modification of t
Wilson action where a monopole term is added@8#, which
reads

S5b (
m.n,x

~12cosQmn,x!1l(
r,x

uM r,xu ~1.1!

with M r,x5ersmn(Q̄mn,x1s2Q̄mn,x)/4p where the physical

flux Q̄mn,xP@2p,p) is related to the plaquette ang

Qmn,xP(24p,4p) by Qmn,x5Q̄mn,x12pnmn,x @9#.
Using the action~1.1! from the energy distribution it is

seen that the gap gets smaller with increasing monople c
pling l @6,7#, which indicates that the first-order transitio
gets weaker and for sufficiently largel becomes of second
order. The latter has been corroborated by a finite-size an
sis @10# which has shown that atl50.9 the critical exponent
is already characteristic of a second-order transition.

In addition to showing a second-order phase transition
sufficiently largel, the action~1.1! is particularly attractive
in view of the fact@6,11# that the confinement phase and t
Coulomb phase are unambiguously characterized by
presence or absence, respectively, of an infinite network
monopole current lines, where ‘‘infinite’’ on finite lattices i
to be defined in accordance with the boundary conditions@5#.
Since the probabilityPnet to find an infinite network takes the
values 1 and 0, respectively, it is very efficient to discrim
nate between those phases. For the finite lattices with p
odic boundary conditions we are considering here, ‘‘in
nite’’ means ‘‘topologically nontrivial in all directions.’’
While for loops this characterization is straightforward,
determine the topological properties of the occurring n
works it is necessary to perform a more elaborate anal
based on homotopy preserving mappings@6,11#.

In @10# the locationbcr of the transition from the confine
ment phase to the Coulomb phase has been determined
function of l. It has been found that the related transiti
©1998 The American Physical Society10-1
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line continues to negativeb. On the other hand, in Refs
@12,13# a further transition has been reported atb521 for
l50 and atb520.7 for l5`. This suggests to check i
more detail what happens at negativeb.

In the second-order region mentioned above an impor
question is whether one has universal critical proper
there. The energy distribution indicates that this region st
at some finitel above 0.7@6,7#. For l50.9 the critical ex-
ponent n is known to be characteristic of a second-ord
transition@10#. It appears important now to get more info
mation on this region. In particular finite-size analyses
different values ofl and for a variety of observables a
desirable.

In the present work we have performed Monte Ca
simulations to address the indicated questions. Simula
runs at various values ofl andb have been done to get a
overview of the situation at negativeb. The emerging pic-
ture of this is discussed in Sec. II. The emphasis of
investigations has then been on higher-statistics simulat
at l51.1 and l50.8 in the critical region of the
confinement-Coulomb phase transition, which have b
evaluated by finite-size analyses. The results of this are
sented in Sec. III.

II. PHASE REGIONS

In @10# the locationbcr of the transition from the confine
ment phase to the Coulomb phase has been determine
the maximum of the specific heatCmax up to l51.3. Be-
cause the peak of the specific heat has been found to
crease strongly withl, at larger values ofl only Pnet has
been used to locate the transition. In these investigation
has turned out that abovel51.2 the associated values ofbcr
become negative.

The Wilson action has the symmetryb→2b,
Uh→2Uh.1 At l50 it gives rise to a phase transition
b521 in addition to the one atb51 @12#. For lÞ0 this
symmetry is violated by the monopole term. Atl5` only
the transition at negativeb persists and occurs at abo
b520.7 @12,13#.

Here we have checked the occurrence of such transitio
negativeb also at intermediate values ofl by determining
Cmax. Our observations indicate a transition line extend
from (l,b)5(0,21) to (`,20.7). In the energy distribu
tion on the 84 lattice we have seen a double-peak structure
l50.5 and indications of such structures~though not re-
solved with present accuracy! at otherl values. Together
with the observations atl50 and atl5` in Refs.@12,13#
this hints at first order along that transition line. Of course
remains to confirm this with higher statistics and on larg
lattices.

We have also investigated some properties of the sys

1The transformationUh→2Uh of the plaquette fields can b
realized by transforming the link angles asQmx→6DmxQmx where
the sign choice is according toQmx being in the intervals@2p,0)
and @0,p), respectively, and whereDmx521 if x11x21•••

1xm21 is odd andDmx511 if it is even or if m51.
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below the new transition line which will be discussed in t
following. Since so far we have no indication of a furth
subdivision of this region, but rather find similar properti
throughout it, we consider it here~at least as a working hy
pothesis! as a third phase.

Figure 1 gives an overview of the phase regions as t
are according to our present knowledge. The line separa
confinement and Coulomb phases obtained in@10# with Cmax
has been supplemented by a point atl51.35 determined
here and by the point (1.4,0.52) found there only usingPnet.
It is seen that this transition line hits the boundary of t
third phase at approximately (1.43,20.71).

While Pnet has provided an unambiguous criterion in t
confinement phase and in the Coulomb phase, this is
longer so in the third phase. At fixed (l,b) in this region
values 0 as well as 1 occur forPnet. The observations a
(10,21000) in @10# appear to be related to this. That pro
erties of monopole structures are no longer characteristi
sufficiently negativeb can be understood by noting that th
respective quantities are not invariant under the transfor
tion b→2b, Uh→2Uh .

As a characteristic feature of the third phase we ha
found that a number of different states exists there betw
which transitions in the simulations are strongly su
pressed. We have observed this phenomenon at var
negativeb in the l range from 0 to 2.5. Typical exam
ples of time histories of the average plaquettee
5(1/6L4)(m.n,x(12cosQmn,x) are given in Fig. 2, with the
results of seven simulation runs, exhibiting different sta
and some transitions from lower to higher ones. It turns
that there is no correlation between the state reached an
type of start~hot or cold! of a simulation run.

Comparing time histories ofe at different (l,b) the split-
tings of the states appear very similar. Closer inspect
shows that at least nine states occur. The number of tra
tions between states increases withl. They have so far al-
ways been observed occurring from lower to high
plaquette values. The widths in the time histories show li

FIG. 1. Location of phase transition pointsbcr on 84 lattice as
function of l between confinement and Coulomb phases~circles
from Cmax, square fromPnet) and to third phase~diamonds!.
Curves drawn to guide the eye.
0-2



.

tl

e
rie
lue

th
r.

a
s

tu

ore

at
d.

by
to

n

ion

for

PHASE STRUCTURE OF U~1! LATTICE GAUGE . . . PHYSICAL REVIEW D 59 014510
dependence onl while they strongly decrease ifb gets more
negative~width3b being roughly constant!. Thus at smaller
negativeb it gets increasingly difficult to resolve splittings

The averagee found show not much dependence onl,
however, they increase asb gets more negative. Thee val-
ues, being somewhat below 2, indicate that at sufficien
negativeb the average of cosQmn,x gets close to21. That
negative cosQmn,x occur at negativeb and positive cosQmn,x
at positive b in view of the symmetryb→2b, Uh→
2Uh of the Wilson action is conceivable.

Though at negative b the monopole densityr
5(1/4L4)(r,xuM r,xu appears of less interest, it should b
mentioned that the states are also seen in its time histo
The respective time histories are correlated with large va
of r corresponding to low values ofe. The widths forr
decrease withl. They are rather large so that, except at
largest values ofl, the resolution of the states is very poo
The value ofr decreases withl.

The origin of the observed different states is not yet cle
Similar observations are made in simulations of spin glas
and of frustrated systems, and also in finite-tempera
SU~N! gauge theory with states related to spontaneousZ(N)

FIG. 3. Maximum of specific heatCmax as function of lattice
size L for l50.8, 0.9, and 1.1 at transition pointsbcr between
confinement and Coulomb phases.

FIG. 2. Typical time histories of the average plaquettee at
negativeb obtained for seven different simulation runs, shown
(l,b)5(2,220) and 84 lattice.
01451
y

s.
s

e

r.
es
re

breaking. In any case the third phase appears to have m
complicated properties which deserve further~though com-
putationally demanding! studies elsewhere.

III. CRITICAL PROPERTIES

Monte Carlo simulations with about 106 sweeps have
been performed at each of up to 20 values ofb in the critical
region of the confinement-Coulomb phase transition
l51.1 and atl50.8 and for each lattice size considere
Multihistogram techniques@14# have been applied in the
evaluation of the data. The errors have been estimated
Jackknife methods. In the finite-size analyses in addition
the specific heat and the Challa-Landau-Binder~CLB! cumu-
lant @15# complex zeros of the partition function@16#, in
particular the Fisher zeroz0 closest to theb axis @17#, have
been used.

The specific heat is

C5
1

6L4
^~E2^E&!2& ~3.1!

whereE5(m.n,x(12cosQmn,x). For d54 its maximum is
expected to behave as

Cmax;L4 ~3.2!

if the phase transition is of first order and as

Cmax;La/n ~3.3!

if it is of second order, wherea is the critical exponent of the
specific heat andn the critical exponent of the correlatio
length.

In Fig. 3 we present the results forCmax obtained on lat-
tices with L56, 8, 10, 12, 16 forl50.8,0.9,1.1.They
include data from simulations of the present investigat
(l51.1 andl50.8) and ones from simulations of Ref.@10#
(l50.9). From Fig. 3 it is already obvious thata/n as it
occurs in Eq.~3.3! decreases withl, which by the hyper-
scaling relationa522dn means thatn increases withl.

TABLE I. Critical exponentsa/n from CV , UCLB .

l CV UCLB

0.8 0.616~22! 0.756~23!

0.9 0.485~35!

1.1 0.284~12! 0.391~12!

TABLE II. Critical exponentsn from Im(z0), CV , UCLB .

l Im(z0) CV UCLB

0.8 0.404~5! 0.433~2! 0.421~3!

0.9 0.446~5!

1.1 0.421~8! 0.467~2! 0.455~2!
0-3
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The fits to the data presented in Fig. 3 give the values
a/n shown in Table I. They are clearly very far from 4 an
thus the transition cannot be expected to be of first ord
Using the hyperscaling relationa522dn the values forn
listed in Table II are obtained. They are different from t
value 1

2 of the Gaussian case, however, rather close to
Thus in any case to conclude on second order appears
safe.

Similar results are obtained for the minimum of the CL
cumulant

UCLB5
1

3S 12
^E4&

^E2&2D ~3.4!

and for the imaginary part of the closest Fisher zeroz0 . For
these quantities finite-size scaling predicts the behaviors

Im~z0!;L2 1/n, ~3.5!

UCLB,min;La/n 24. ~3.6!

The results of the respective fits are also listed in Table
and II. It is seen that the values obtained from different qu
tities roughly agree, with some systematic deviations bey
the given statistical errors. In any case it is obvious than
increases somewhat withl and that it is not far from1

2 .
The related criticalbcr(L) ~i.e., the extrema positions ofC

andUCLB and the real part ofz0) are given in Table III. They
illustrate the dependence onl and lattice size. The critica
b cr(L) are expected to behave as

bcr~L !5bcr
`1aL21/n. ~3.7!

TABLE III. Critical bcr from z0 , CV , UCLB .

l L Re(z0) CV UBCL

0.8 6 0.4637~3! 0.4630~3! 0.4647~2!

8 0.4783~2! 0.4779~2! 0.4783~4!

10 0.4844~2! 0.4841~2! 0.4843~2!

1.1 6 0.1409~10! 0.1387~5! 0.1431~6!

8 0.1636~10! 0.1618~5! 0.1630~6!

10 0.1742~4! 0.1731~5! 0.1736~6!

12 0.1775~8! 0.1782~8! 0.1784~8!

16 0.1839~4! 0.1837~4! 0.1838~4!
l.
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Using the values ofn in Table II and the data forb cr(L) in
Table III, the numbersbcr(`) anda in Eq. ~3.7! have been
calculated forl51.1. In Table IV they are compared wit
those obtained forl50.9 in @10#. The errors given are agai
only statistical ones.

The observed increase ofn with l could indicate a non-
universal behavior with a maximal value~which could be
even 1

2 ) reached at the boundary to the third phase. Anot
possiblity is that, because the observations are on finite
tices and the range ofl considered is not too far from th
first-order region, the starting point of the second-order
gion is not yet sharp. Then this effect should disappear
much larger lattices.

To get hints on the dependence on lattice size effectivn
~i.e., a sequence of ones related to two neighboring lat
sizes! have also been considered. Though there was a s
tendency in support of the above view of a finite-size effe
it turns out that larger lattices and higher statistics~which
unfortunately are computationally very expensive! would be
needed for firm conclusions.

If for very large latticesn gets independent ofl for thel
above a certain finite value and below the start of the th
phase, the question arises what the ultimaten would be.
Because the numbers forn in Table II come rather close to12
this could be simply the Gaussian value. If first order
confirmed along the boundary to the third phase, an inter
ing aspect is that this transition line withn5 1

4 is met by the
second-order line withn close to or equal to12 .
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TABLE IV. Fit data bcr
` anda for z0 , CV , UCLB .

l Re(z0) CV UCLB

0.9 bcr
` 0.4059~5!

a -1.99~6!

1.1 bcr
` 0.1888~6! 0.1902~5! 0.1896~5!

a -3.14~13! -2.41~7! -2.49~8!
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