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We present the final analysis of the light and strange hadron spectra from a full QCD lattice simulation with
two degenerate dynamical sea quark flavorgat5.6 on a 18x 32 lattice. Four sets of sea quark masses
corresponding to the range 068n,/m,<0.83 are investigated. For reference we also ran a quenched simu-
lation at B.4=6.0, which is the point of equal lattice spacir@;l. In the light sector, we find the chiral
extrapolation to physical andd masses to present a major source of uncertainty, comparable to the expected
size of unquenching effects. From linear and quadratic fits we can estimate the errors in the hadron masses
made from light quarks to be on a 15% level prior to the continuum extrapolation. For the hadrons with strange
valence quark content, thd-=2 approximation to QCD appears not to cure the well-known failure of
guenched QCD to reproduce the physikaK* splitting.
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PACS numbes): 12.38.Gc

[. INTRODUCTION and its chiral extrapolation is more cumbersome as the chiral
point fluctuates with the gauge field on a finite system.
The nonperturbative computation of hadronic propertieSSESAM is a second generation simulation which is still ex-
from quantum chromodynamic€QCD) presents a major ploratory, using hybrid Monte CarltHMC) algorithm[4] at
challenge in the unraveling of quark flavor dynamics fromB=5.6 on 16x 32 lattices. For technical reasons, we work
hadronic experiments. The methods and tools of latticavith two (degeneratedynamical fermionsN;=2. We de-
gauge theory have been refined over the past two decadassed several improvements in order to accelerate the com-
resulting in rather precise result® the level of a few per- putation of the fermionic forcgs]. In this way, on the avail-
cent accuracy in the physical spectrum of light hadrons, i.e.able APE100 hardwai], we could achieve HMC histories
after chiral and continuum extrapolationsvithin the  of sufficient lengths for a safe estimate of autocorrelation
guenched approximatiori]. High statistics quenched lattice times. This provides a sound basis for the error analysis.
studies on large lattice volumes revealed that the effects of In a full QCD computation there is no difference between
dynamical fermions on spectrum and matrix elements appeatea quarks, which contribute to the fermion determinant, and
to lie within a 10-20% rangg2,3]. valence quarks, which occur in the hadron operators that are
The “solution” of the full QCD binding problem with employed to excite hadronic states from the QCD vacuum.
lattice methods, on the other hand, is still very much lagging In our Ny=2 scenario, however, one is forced to intro-
behind. This is mainly due to the high cost in computationalduce “valencé& quarks different from sea quarkas soon as
effort to encompass the fermionic determinant in the underene wishes to deal with hadrons carrying strangeness. In a
lying stochastic sampling procedures. The simulation ofrecent Lettef7] devoted to the determination of the light and
large lattices in full QCD is definitely a task that requires thestrange quark masses, we have therefore considered hadronic
power of the upcoming teracomputers. Nevertheless, witltorrelators on a set of three different sea quark masses, with
the computing power of some several hundred of teraflowalence quark conteriioth equal to and different frorhat
hours it is of considerable interest to tackle QCD vacuumof the underlying sea quark and presented a consistent ap-
polarization effects by looking—on intermediate volumes inproach to analyze such “semiquenched” data.
the scaling regime—at quantities with inherent sea quark de- In this paper we will extend that worlkom three to four
pendence such as theNo term, then’ mass, and the quark different sea quark masses and present a detailed study of the
spin content of the nucleon. light and strange hadron spectra. We shall identify sea and
A full QCD simulation with Wilson fermions is particu- valence quarks in the light sectéof u andd quarks and
larly expensive, as the fermionic operator in this case carriesesort to the semiguenched ansatz with respect to the strange
more degrees of freedom than in the staggered formulatiorguarks, as residing in a sea of light quarks.
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TABLE |. Simulation parameters and characteristic numbers.

B=5.6,N;=2,VXT=16°%32

Ksea 0.156 0.1565
Algorithm ole SSOR 0.1570 0.1575
ole SSOR ole SSOR
T 1 1 1 1 1 0.5
NmgE 0(Nmg) 100+20 100+20 100+ 20 100+ 20 100+ 20 71+12
Nesa 6 7 8 9 11 3
No. of iterations 883) 89(6) 1685) 1253) 31712 150(6)
Acc. rate[%] 85 84 80 76 73
No. of trajectories 5000 5000 1500 3500 3000 2000
No. of confs. 200 200 200 200
Kyal— Kyal COMb. 15 15 10 10

For reference, we perform@ncomitant quenched simu- to a factor of 2 less computational costs thae precondi-
lation on equal lattice spacing and volume, Bz=6.01 tioning. In Table | we refer to this part of the simulation as
While unquenching definitely leads to a considerable de* SSor”

crease of the light quark mass estimgig we find—within As a third improvement of the molecular dynamics part
our errors—no visible sea quark effects both on the light andvithin our HMC algorithm, we have implemented the chro-
strange hadron masses. nological start vector guegd1]. The optimal depth of the

extrapolation,Ncsg, has been determined empirically for
eachkge,and with respect to the representation of the fermi-
Il. SIMULATION DETAILS onic determinant as listed in Table I.
We have selected the time step size and the number of
molecular dynamics stepbl,q4, to yield an acceptance rate
of >70% in the global Monte Carlo decision of the HMC
We have performed a large scale simulation of full QCDalgorithm. With decreasing sea quark mass we can observe a
at B=5.6 with two degenerate flavors of dynamical Wilson variation of the acceptance rate from 85% to 73%. We have
fermions. We have generated lattices of extentxi82 at varied the trajectory lengtN,,q by numbers uniformly dis-

four different values of the sea quark hopping parameter usriputed in the range: 24/N,,,q as recommended in Refl2]
ing the ® version|[8] of the HMC algorithm. The parameters to avoid deadlocks in periodic orbits of phase space due to
used in the HMC update and the statistics for the complet@he presence of well-defined Fourier modes.
runs on the 256-node APE100/Quadrics QH2 are given in The chosen stopping accuraByof the iterative solution
Table I. of MTMX=® is the only source of systematic error of the
The CPU costs of the HMC algorithm are mostly due toqMC algorithm. We have defined the convergence criterion
the time-consuming repeated solution of the linear systenpy R=||MX—®|//|[X|=10"8 throughout our simulations,
MTMX=®, with M being the Wilson fermion matrix. working at the level of APE’s 32-bit precision. BeyoiRl
Throughout our simulation we employed the biconjugate-<10-7 the difference HamiltoniamAH for the global
gradient-stabilized algorithn(BICGSTAB), which has been \jonte Carlo decision, computed in double precision, does
demonstrated to be the most efficient Krylov subspace solvegot vary significantly.
for Wilson fermion inversion§5]. UsingBICGSTAB, we com- We proceeded adiabatically from large to small sea quark
puted the linear system in a two-step procedure masses and, after thermalizing for more than 500 trajectories
at eachk., for each sea quark mass, we have generated
5000 trajectories. From these correlated samples we have
chosen 200 decorrelated lattices per sea quark mass, see

In the first stage of the simulation, we preconditioned byTable l

use of theo/e decomposition of the Wilson fermion matrix
M— M, [9], Me=1— k?D4 D, referred to a®/e in Table B. Error estimates
I. In a later stage of the simulation we switched from the
thinnedo/e representation de¥f{,) to the full fermion deter-
minant deti) in order to employ the locally lexicographic
ssorpreconditionelf 10] which has been shown to offer up

A. Hybrid Monte Carlo algorithm

MTY=d, MX=Y. )

Since the HMC algorithm is a Markov process, one is
faced with the problem of the autocorrelation of the gener-
ated series of trajectories. Of course, one would like to aim at
a decorrelated sample of configurations. However, since the
generation of trajectories for full QCD is extremely costly,
we cannot afford to skip many trajectories as one can do in
1This value is at the onset of tHguencheliscaling regime. guenched simulations. In order to control the statistical qual-
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FIG. 1. The standard error of the masses of the pseudoscalar, vector, and nucleon as a function of the inverse block size.

ity of the measured signals, we have to carefully study ther, .. We found 7;,;, which is observable dependent, to be

autocorrelation of the Markov chain. bound from above by, of the smallest eigenvalug of the

We paid attention to keep stable conditions for the HMCtarmion matrix2 Here . varies between 15 forc
" int sea

dynamics to evolve rather than retuning HMC parameters:0_156 and 30 fork..=0.1575; however, the integrated

during production. This provides the setting for a reliableautocorrelation times of most hadronic observables lie well
determination of the autocorrelation times related to various

hadronic quantities.

For all four x4, values, both exponential and integrated
autocorrelation times of various gluconic and fermionic ob- 2in Ref.[13] we shall present a detailed account of the underlying
servables have been measured. The relevant quantity for thtocorrelation analysis, and we shall propose a scaling rule for the
error determination is the integrated autocorrelation timecritical slowing down of the HMC algorithm.
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TABLE Il. Integrated autocorrelation times,; for pseudoscalar, vector, and nucleon for smeared-local
and smeared-smeared correlatorembers are in units of HMC time

Tin(Mpg) Tin(Mv) Tin(Mn)

B K \% sl SS sl Ss sl Ss B
5.6 0.1560 18x 32 229) <25 <25 <25 <25 <25 6
5.6 0.1570 18x 32 196) 17(5) <25 <25 <25 <25 6
5.6 0.1575 18x 32 4420) 33(22 <25 <25 37120 32(24) 7

below this limit(see Table . Therefore, we have decided to configurations. The result of this analysis is that no signifi-

analyze every 25th trajectory for spectrum and decay coneant dependence on the topological sector was found.

stants, after thermalization.

In order to account for possibly remaining correlations C. Hadronic observables

within our hadronic observables, we have carried out a . .

blocking investigation. For our smallest sea quark mass we At each of our four Sea qfuark_values we have investigated

show in Fig. 1 the errors ah,, m,, andmy, as a function zero-momentum two-point functions

of the blocking size. At block size 4—6 we find the jackknife

errors to run into plateaus. Accordingly, we shall use a block Cag(t)= 2 (0] xA(X) xg(0)]0), 2

size of 6 throughout our analysis, applying the bootstrap pro- X

cedure. Error$|n.the b|OCke.d dagaare obFamed from pOOt' with hadronic excitation operatorg as listed in Table Ill.

strap samples with 250 en_trles each. A S|m|lqr analysis of OWye combined light quark propagators with hopping param-

quenchr?dddataf_shows_ no Increase in er(rjor \.N;]th the bIOCkI SlZ&ers equal and different to that of the underlying sea quark,

g:tjegi(l;o?M::i):aﬁfggfgztﬁrs %2?5:;:3 a\r,éltseagrg\tlee(;rﬁ a; us providing ourselves with 15 hadronic mass combina-
P P Y 2ions at the 2 heaviest sea quarks and 10 at the 2 ligfstest

sweeps ;
We remark that we have investigated the decorrelatior-lr a\k;\lli I\Jsz)rt:]gegcaolgzl_?;i;ﬁ;m Wuppertal smearing proce-
efficiency of the HMC algorithm with respect to topology on dure[15] to calculate “smeared-local’(sl) and “smeared-

the chosen sampl&§14]. It is gratifying that we could es- " . ;
tablish sufficient tunneling of the topological charge throughsmeared (s9 correlators. The smearing parameter is chosen

the topoloaical tors for the f val investigated to be a=4, with N=50 iteration steps. In an attempt to
€ topological sectors 1or € 10Wse, VAIUES INVESUgated. ¢, hq, improve on our ground state projection, we carried
For our smallest quark mass we determined an mtegrategl

autocorrelation time with respect to the topological charge o ut an additional run with 100 smearing iterations.at,
P polog ge | =0.1565; although this rendered a somewhat faster drop into
min~50. Furthermore, we analyzed some hadronic

L . o -~ “"the ground state, it did not alter our fit results. Plots with
guantities—which do not explicitly depend on topological ~ 01565 f ithi= 100
effects—according to the topological charge content of the‘sed Y- are from our run With = 15%.
Our analyses are based on global masses as extracted

from single-exponential fits to the correlators:

3This investigation is a prerequisite for the investigation of quan- C(t)me=A(e M™+e~ mT=t)y,
tities related to topology.

C(t)pa=Ae™ M, 3
TABLE Ill. Operators studied. (Dar ©)

with T=32. As a cross-check, we also determined effective

-
Mesons XA(¥) xa(0) local masses. For mesons, they are computed iteratively from
Pseudoscalar Yps(X)=Ps=T (X) ¥°q() the implicit equation
Vector XE(X) = VE=TT (x) 7q(x) .
— MOt = Meg(H)(T—1)
Scalar X =T () d() Crglt) _ e ™ +e ' @
Axial vector Xax(X)=A*=7" (X) ysy*q(X) Cap(t+1) e MerD(tFD) 4 g~ Mer)(T—t=1)
T

Baryons Xa(X) xa(0) TABLE IV. Run parameters fokg.
Nucleon XN(X) = €ap(daC ¥50b) dc p {Kyal)
A: XE(X) = €2p4aC¥"0Up) e sea vl
Decay constants X/TA(X)vXB(O) 0.156 {0.156,0.157,0.1575,0.158,0.1%85

0.1565 {0.156,0.1565,0.157,0.1575,0.158
Pseudoscalar (A} Ps),(PL,Ag), (A}, Ag) 0.157 {0.1555,0,1565,0.157,0.1575
Vector (V:r V) 0.1575 {0.1555,0,1565,0.157,0.1575
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1 T T . T T T T TABLE V. Lattice results for the masses of the pion, rho,
nucleon, and delta at..=0.156. For all fits we find 04 x?/Npg
<1.

08 ]
* x Keoi=0.156
08 L | configs=198, nboot 200, correlated
oL (tmin tmax) (9,15 (9,19 (9,14 (8,14
- i X K1-K> m, m, my My
07 | S N 1
) A e 0.1585-0.1585 0.293745 0.4422% 0.676']2 0.7882}
5 o6l * 0.1585-0.1580 0.311T;’ 0.4507°52 0.689'1 0.796'1%
E . %
0.1580-0.1580 0.3277°3% 0.459T°% 0.711'15 0.809'17
05 % _, v - 0.1585-0.1575 0.327935 0.4597°35 0.702'1; 0.804 12
P FEa i 0.1580-0.1575 0.3438 3 0.4681% 07241 0.817°1¢
R Bk * T - H
04 | ¥R A s Rwon 4
x * TAE 0.1585-0.1570 0.3443 3 0.469T% 0715713 081215
% x
¥ x 0.1575-0.1575 0.3594'3% 0.47713 0.7471; 0.83215
03 PS &%, L s 1
T e e S e
¥ 0.1580-0.1570 0.35953% 0.4775¥ 0.737°} 0.825%¢
0.2 . 0.1575-0.1570 0.37453; 0.48652 0.760°} 0.840°13
0 2 4 6 8 10 12 14
t 0.1585-0.1560 0.3756 3% 0.4884% 0.742°3 0.830°%

FIG. 2. Effective masses at.,.=0.1575. Herer are smeared-  0.1570-0.1570 0.389235 0.4958'%0 0.783;] 0.857'13

smeared an& are smeared-local data. The results of our fits to the ) 33 57 13 15
smeared-smeared correlaténet to the effective massesire indi- 0.1580-0.1560 038995y 04969 07643 08433

cated by solid lines. 0.1575-0.1560 0.40403% 0.5059% 0.786'32 0.858 13

: o 0.1570-0.1560 0.4179'3; 0.51523 0.808'i; 0.8751¢
while for baryons they are determined in the standard man- %0 53 1 15

ner from the plateau of local masses: 0.1560-0.1560 0.445Z33 0.53455; 0.852°1% 0.910°}2

Cas(t)

Cag(t+1)° ©

Meg(t) =log

=tz oA, o oMy, 6
ﬂ'_mﬂ- A< 07T>1 _m\2/< " > )

fv

We use the smeared-smeared data to obtain both masses andrhe matrix elements are extracted from a direct fit to the
amplitudes. The fit ranges are determined by keeping thestios
upper limit fixed halfway across the lattice, while the lower

cut in t is varied in the interval 7-16.The mass plateau (0| ALAS|0)
range with the best?/Npg value is selected as fit interval. Rps= s~
Figure 2 illustrates the quality of our data by showing the (0AGAGI0)
different effective local masses in comparison to the global T
masses from correlated fits to the two-point functions, in the =(0|Ay|w)e” mpsT/4 cosH/Z[ mps(t— _> }
optimal fit ranges. We find that uncorrelated fits lead to con- Mpg 2
sistent results.
For future reference our “raw data” from these mass fits (0|V'vs|0)
are collected in Tables V-VIII. By inspection of these tables V= Wa
we retrievem,./m, ratios of 0.838), 0.80915), 0.75811),
and 0.68611) at k¢ 0.1560, 0.1565, 0.1570, and 0.1575, 1 T
respectively. =310V}, |V)e" ™ ——cosH'3 mv(t— E) }
We determine the pseudoscalar and vector decay con- v2my
stants from the respective current matrix elements on the (7)

lattice:

where the superscriptsands denote local and smeared op-
erators, respectively. Note that in the second equation the

“The smeared-local data yield consistent results, but correspond @PeratorsvV stand generically foE¢_, ViV, while the op-
smaller fit ranges in. eratorV on the right-hand sideRHS) denotesEﬁ‘zlvk.
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TABLE VI.

Lattice results for the masses of the pion, rho,
nucleon, and delta at,,;=0.1565. We find 1.5 y?/Npe<3 for fits

to 7~ and p and 0.5 y?/Npg=<1.5 for fits to the nucleon and.
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TABLE VIII. Lattice results for the masses of the pion, rho,
nucleon, and delta aks;0.1575. For all fits we find 0.5
<x?/Npe<1.5.

Kksea=0.1565 Kksei=0.1575
nconfigs= 198, nboot 200, correlated nconfigs= 198, nboot 200, correlated
(tmin vtmax) (9115) (9!15) (91149 (8!1‘9 (tmin 1tma><) (7!13 (10115 (8114) (8114;
K1-K2 mﬂ. mp mN mA K1-K»o mﬂ. mp mN mA
0.1580-0.1580 0.3092'8 0.4408 35 0.656'3; 0.704°3] 0.1575-0.1575 0.2803 53 0.4087% 0.633'15 0.6951¢
0.1580-0.1575 0.3257°3 0.4496% 0.6733) 0.721°% 0.1575-0.1570 0.2986'35 0.41783 0.648'1% 0.707°13
0.1575-0.1575 0.341 0.458 0.701'1% 0.74 0.1570-0.1570 0.3159°3] 0.42722% 0.673'§ 0.730°
0.1580-0.1570 0.341 0.458 0.68825 0.736°3; 0.1575-0.1565 0.316 0.42753} 0.6623, 0.719°
0.1575-0.1570 0.35722; 0.46755 0.716'1; 0.7633} 0.1570-0.1565 0.3325% 0.43723 06875 0.7423
0.1580-0.1565 0.357 0.468 0.70 0.750°3% 0.1565-0.1565 0.34853) 0.447 0.712°%  0.76
0.1570-0.1570 0.372 0.477 0.741°15 0.789°%5 0.1575-0.1555 0.348 0.447 0.690° 0.74
0.1575-0.1565 0.3724'2% 0.4772% 0.730°1; 0.776'5¢ 0.1570-0.1555 0.364235 0.45773; 0.715; 0.7651
0.1570-0.1565 0.3871°2 0.4868 7, 0.755'}; 0.802°%% 0.1565-0.1555 0.3790°% 0.46773 0.7387 0.786'13
0.1580-0.1560 0.372 0.478 0.716'3% 0.763 0.1555-0.1555 0.4079'37 0.488 0.7855  0.828
0.1565-0.1565 0.4016'32 0.496 0.77 0.827°3
0.1575-0.1560 0.387327 0.487272 0.744'15 0.789°3%
24
0.1570-0.1560 0.4017 0.496 0.76 0.8157%3 TABLE IX. Lattice results pseudoscalar and vector meson de-
0.1565-0.1560 0.4157°5! 0.5067°8 0.79 0.839' 23 cay constants at..=0.156. For all fits we find & y?/Npe<2.
0.1560-0.1560 0.42953% 0.5168% 0.814'}12 0.862°2% Kgei=0.156
nconfigs= 198, nboot 200, correlated
(tmin :tmax) (9115 (9,13
kiviy  (OlAglm)  foiZy 3TVAOIVIV)  1(Zyf)
TABLE VII. Lattice results for the masses of the pion, rho, " - o2 %
nucleon, and delta at,. = 0 157. We find 1.5 x?/Npp=<3 for fits 0.1585-0.15850.02891; 0.09855 0.161Tg  0.4758 g
2
Ksei=0.157 0.1580-0.15800.0338 12 0.103 0.168 0.4609 33
nconfigs= 198, nboot 200, correlated 2
0.1585-0.15750.0337 13 0.102 0.168 0.460
(tmin tma) (8,15 (8,15 914 (9,14 3l
K1-K m,, m, my my 0.1580-0.15750.0362 33 0. 1053i30 0172213 0.45373;
0.1575-0.1575 0.316 0.4397 72 0.695'13 0.77413  0.1585-0.15700.0361 13 0.104 0.172 0.452
0.1575-0.1570 0.332 0.4499 7% 0.708'12 0.786'}2  0.1575-0.15750.0386 13 0.107 0.176 0.4472°3°
0.1570-0.1570 0.3486;] 0.4600°75 0.732'}7 0.805'}3  0.1580-0.15700.0385 13 O. 1072*30 0.1763%%  0.4465 3
0.1575-0.1565 0.3489°5; 0.460372 0.722'12 079815  0.1575-0.15700.0410'15 0.1091[31 0.1806' %  0.44053)
0.1570-0.1565 0.364 0.470 0.746'13 081615  0.1585-0.15600.0408 3 0.1087" 0.180 0.4367
0.1565-0.1565 0.379 0.480 0.769°15 0.835°1%  0.1570-0.15700.043 13 0.1116'3 0.184 0.434
0.1575-0.1555 0.37973¢ 0.4812% 0.750°} 0.819°}%  0.1580-0.15600.0433 13 0.1110°% 0.1846 5  0.4317 %
0.1570-0.1555 0.393 0.491 0.77 0.837" 13 0.1575-0.15600.0458 13 0.113 0.189 0.426
0.1565-0.1555 0.408 0.501 0.797°¥ 0.856° 0.1570-0.15600.0483 13 0.115 0.1937%  0.421
0.1555-0.1555 0.4354'33 0.5211°% 0.842°1) 089514 0.1560-0.15600.0534 12 0.1199°% 0.2030°%  0.4103 &
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TABLE X. Lattice results pseudoscalar and vector meson decay TABLE XI. Lattice results pseudoscalar and vector meson de-

constants ak.;=0.1565. For all fits we find & y?/Npp=<2. cay constants atg.=0.157. For all fits we find & y%/Npe=<2.
Keea=0.1565 Keea= 0.157
nconfigs= 198, nboot 200, correlated nconfigs= 198, nboot= 200, correlated
(tmin rtmax) (9113 (10‘15 (tmin ‘tmax) (10‘15 (9115)
kikp  (OlAGlm)  fo1Za 3TVXOIVI|V) 1/(Zuf) ki-kp  (O|Aglm)y  foiza  3TVAOIV|V)  1/(Zyf,)

0.1580-0.1580 0.0317°1J 0.1024;3  0.162'13 0481},  0.1575-0.15750.03023° 0.0955%, 0.149T°%  0.4454 73

0.1580-0.1575 0.0341°2) 0.1047°35  0.165'17 04721 01575015700.03265° 009793 015387 043837

.1570-0.1570 0. o 2 o 2 o ®
0.1575-0.1575 0.0365 % 0.1070°3)  0.168}7  0.4631] 0.1570-0.15700.0350 15 0.10032;  0.15867;  0.43267

0.1580-0.1570 0.03652) 01068% 0169 046210 0.1575-0.1565 0.0349'1; 0.1001°35 0.1584'% 0431773

0.1570-0.1565 0.0374 12 0.1026'22  0.16335]  0.4261°12
0.1575-0.1570 0.0390°22 0.1091°3%  0.172'}2  0.454'18 10 % o &

_ 13 27 63 73
0.1580-0.1565 0.0389 2 0.1087% 017212 04531 0.1565-0.1565 0.0398 ;7 0.1050°5, 0.1680°¢;  0.4201°73

_ 12 27 67 72
0.1570-0.1570 0.0414 % 0.111371® 0176} 0.446'75 015750.15550.0395 35 0.10403 0.167L¢; 041677

0.1570-0.15550.0420°%2 0.106728 0.1721'% 0.4121°22
0.1575-0.1565 0.0414'23 0.111T3 017617 04453 12 28 o7 69

_ 14 28 62 70
0.1570-0.1565 0.04392 01133% 01808 0.43g 14 0.1565-0.1555 0.0445 13 0.109T°55 0.1770°%  0.4071° 9

_ 14 26 63 68
0.1580-0.1560 0.04172 01104% 01762 04442 0.1555-0.1555 0.0493 j3 0.113335 0.1863 % 0.3961°¢%;

0.1565-0.1565 0.0463 35 0.11533  0.184°] 0.431°72
»s 40 1 u tions. It will be interesting to trace the impact of this pecu-
0.1575-0.1560 0.043753 0.11297%;  0.180°;; 043715  |iarity on the accuracy of hadron masses and decay
0.1570-0.1560 0.0462 2 0.1151'%8  0.184'%, 0.430°1 ar_nplltudes under chiral extrapolation, in the full QCD situ-
ation.
0.1565-0.1560 0.0487 %2 0.11725] 0.188 3, 0.424'12 The pseudoscalar mass is used to extract the critical hop-

. c : . :
0.1560-0.1560 0.05122% 0119747  0.1933 0.417°22 ping parameterk.., Wwhile the value of the light hopping

parameter'3" is set by the conditioh
m S(Klight
The masses in Eqg6) and (7) are fixed to the values P_nsfg_: — " _0.1785. (8)
obtained from the mass fitgiven in Tables V-VII). My(Ksga M,

The “raw data” for the lattice matrix element®|A}| ) . . _ _ o
and 3 Y%0|V'|V) as well asf,/Z, and 1/¢,Z,) are col- The isospin-symmetric bare light quark mass is given by
lected in Tables IX-XII.

The renormalization factod, andZ, are computed per- ige_ L[ 1 1 9
turbatively, as explained in the Appendix. m=r=3 Kslgeﬁat g : ©
Il. CHIRAL EXTRAPOLATIONS Linear fits to our data for the pseudoscalmrﬁ,gss) and
) vector massesnfy ¢ With keei= x5 are shown in Fig. 3.
A. Light sector The resulting parameter values from the extrapolations are

We will first present our results for particles and decaygiven in Table XIll, where we employ the following nota-
constants containing nonstrange quarks only. It is obvious tgon:
identify the degenerate sea quarks in our simulation with the

u and d quarks since, naively, we expect the lightest sea s 1

guarks to make the largest effect on the hadronic properties. mps=a+b aa* (10
In this scenario the light hadrons are determined from our

raw data by a chiral extrapolation in quark mass. We call this My= Mt cmy gt et (11

setting “symmetric,” since it involves data points with equal
sea and valence quark masses only. )

At this stage one should remember that full QCD vacuumVith
configurations on different sea quark sectors are manifestly
decorrelated. This has some bearing on the error analysis of
hadron spectra, differently from the quenched situation Sin this paper we use the convention that physical mas@isare
where one normally determines entire hadron mass trajectavritten in capital letters, while lattice masses are denoted by small
ries configurationwise, with ensuing point-to-point correla-letters.
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TABLE XII. Lattice results pseudoscalar and vector meson de- TABLE XIll. Fit results for pseudoscalar, vector, nucleon, and
cay constants aks.=0.1575. For all fits we find 05 x?/Npe delta particledin lattice unitg from “symmetric” fits.
<1.

Particle a b X2/ Npe
Kseq= 0.1575 PS —12.407380 1.9666540 1.2/2
nconfigs= 198, nboot 200, correlated Particle et c o 2N
|
(tmintma) (9,15 (10,19 X or
ki (O|Aglm)  foiza  3TMXOIV|V)  1(Zf) V 0330090  4.070250 0 1.5/2
8 26 55 99 V. 0.2928410  6.442.40  —33.2834.) 0.27/1
0.1575-0.15750.0251°5 0.0894 5 0.12863; 0.4443 59 N 05012190  6.960460 0 27/
0.1575-0.15700.0276' 5 0.0924'25 0.1321°3] 0.4370°3; N 0.4246750 11.844.8 -67.9969.)  1.5/1
8 26 55 96 A 05851240  6.482670 0 6/2
0.1570-0.15700.0301°5 0.09533% 0.1361°2%  0.4305 32 A 0444110 151663  —118.4982.0 351
0.1575-0.1565 0.0300°5 0.0951°37 0.1360°233  0.4295 3 f.  0.049634) 0.88§101) 0 1.3/2
f 0.0423137  1.354779 —-6.58911.19 0.89/1
8 24 53 95 [
0.1570-0.15650.0325'5 0.09795; 0.140325 0.4239 5 Uf, 0302110 0372290 0 0.87(2
0.1565-0.15650.0350° 0.1004'2% 0.14483% 0.4180 3} 1/f,  0.29443) 0.1702.204  —7.4531.44 0.31/1
0.1575-0.1555 0.0347' 5, 0.0994'3% 0.14392% 041413
0.1570-0.15550.0372¢ 0.1020'2 014878  0.4009 % Kges=0.158507 g3, (12)

0.1565-0.15550.0396 %, 0.1046'55 0.1535% 040523  with x2/Npe=0.6. For the vector particle, both linear and

0.1555-0.1555 0.0444 1% 0.10892 0.16294  0.3948 83 quadratic parametrizations yield acgeptable fits,. with
10 22 > 8 Y?INpe=0.75 andy?/Npe=0.27, respectively. For the light

hopping parameter, we find

o111 Kki9IN=0.158462 ;)(linean,
sea Cc
2 \ Ksea Kee

kI9N=0.158471 33 quadratic. (13

We find the pseudoscalar data to be well described by thin the light sector we quote the results from the linear ansatz,
linear ansatz, the fit yielding the critical value of.,to be using the guadratic fit to estimate the systematic uncertain-
ties. This gives the following value for the unrenormalized
light quark mass:

0.7 —— ——
m'9M=0.00090154)(184), (14)
0.6 f
° the second error being the systematic uncertainty. Note that
this value is consistent with our previous estimatad™
05 | =0.00088(6)[7], obtained from simulations on three sea
quark masses.
04l We can now predict the nucleon addmasses and the
3 ’ and p decay constants by chiral extrapolation to the point
g <19 The resulting fit parameters, in the notation of of Eq.
2 03 - (12), are collected in Table XIlll. The extrapolations of the
¢ Z baryonic masses are visualized in Fig. 4. It turns out that
~ PS ; ) ;
£ o their mgeo,dependence is by a factor of 2—3 stronger than in
02 ] the mesonic case, leading to a statistical error in the mass
o1 L | TABLE XIV. Values of the coupling constant. We do not take
’ into account the light quark dependence of the plaquette in the
determination of the strong coupling constant.
0L
So ay ays  avs
(3.418) (wla) (1/a)
'16.3 6.32 6.34 6.36 6.38 6.4 6.42 6.44 B=5.6,Ng=2 (0.43012,0.42927, 0.167 0.150 0.215
1Vkgeq 0.42837,0.42749

B=6.0,N=0 0.406318 0.152 0.138 0.205

FIG. 3. méSSs andmy g5 as a function of ., (in lattice units.
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1 - . - . . data, which carry statistical errors in the range of 1-s&e
Tables V-VII). Just for reference, in state-of-the-art
guenched simulationd] the Tsukuba group achieves statis-
tical errors in the region of 0.5—1 % in the rangenof /m,
down to a value of 0.43].

For the decay constants we proceed similarly. The renor-
malized data are displayed in Fig. 5; they favor the linear
extrapolation(see also Table XI)l Again, by comparing lin-
ear and quadratic results, we estimate our systematic uncer-
tainties; they amount to 15% and 3% fof andf ,, respec-
tively.

p?

mSS

B. Strange sector

So far, we have usell? andM /M, to set the values of
the hopping parameter values in the chiral limit and atuhe
quark mass. In the following we shall briefly describe our
procedure to determine the value of the hopping parameter
related to the strange quark mdgs.

Our simulations are based on two “active,” degenerate

0.3 . s . s . sea quarks, which we identify with the light quarks. The
0 001 002 003 004 005 0.06 strange quark in this setting has to be treated as an effec-
Mgeq tively quenched quark that resides in the sea of the two
_ , ) , physical light quarks. In order to account for this situation let
FIG. 4. my andm, as a function oM, (in lattice units. us, for the sake of clarity, introduce a generic notation for
various types of hadron masses appearing in the course of
extrapolations for the nucleon and of 16% and 22%, re- our calculations: (1) mgg, both valence quarks are identical
spectively. By comparing the deviations among linear ando the sea quark;2) mg,, one valence quark coincides with
guadratic extrapolationsee Table XllIJ, we might estimate the sea quark(3) m,,, both valence quarks differ from the
a systematic error of 15% and 24%, respectively, which isea quark.
covered by the statistical error, however. In order to put these Note that the “symmetric extrapolations” operate on the
numbers into perspective, one should be aware that we agata setmg and suffice to determine both the critical and
extrapolating down fronm,/m,=0.686 on the basis of raw light hopping parameter values, as discussed in Sec. Il A.

0.12 T T T T v 0.4 T T T T

0.1 0.35 ¢

0.09

11y

0.08

fes

0.07

0.06 0.25 1
0.05

0.040 0.61 0.;)2 0.&)3 0.64 0.65 0.06 0‘20 0.61 0.62 O.E'JS 0.;34 0.65 0.06

m

Msea sea

FIG. 5. Linear chiral extrapolations dfg and 1f, .
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Let us consider the pseudoscalar masses. In a linear pa- TABLE XV. Fit results for the masses of pseudoscalar and vec-
rametrization, the three mass types can be written in terms d¢ér particles in the strange sector, according to E#8), (17), and
five slope parameters—d”: (18).

mIZDS.Ss:a,mseai PS (linear fit) a’ b’ Y*Npe

- 3.9312 1,0411) 26/31
mIZZ’SSU =a" msea+ b’ My,

V (linear fit) m’ ¢t c’ d’ X2/ Npe

2 m n
m =a"Meas+ D" (Myy. +Mya).
PSvv seat D" (Myal, * Myay) 0.330G93)  4.0725 0.94831) 13/31

In the symmetric situatiomg, = Myal, = Myal, this mapping v (quadratic fi m’ crit ¢’ d’ 2/ Npg
has to collapse to degeneracy on the LHS which leads to
constraints on the slopes. As a result, one ends up with the

0.2928412 6.442.4 0.908145 3/29
el f/ g/

simple form
—33.2834.3 —2.194.79 2.252.03
2
Mpsss a’ 0
2 ’ ' ’ Mgy
mPS, v | — a _b b ( ); (15) i ’ ’ ’ ' ’ ’
m%S,jv 2 — 20 2p | M m=m""+ (¢’ —2d")mp_+2d'mg+ (e’ — ' —g")mi,

: . . +f/ +g'mZ,.
which can be used for simultaneous fittingnmg,andm, ;. F MeedMyart ' Migy (18

In the spirit of our approach, we will identify the light quark e narameters from this nonlinear ansatz, with equal con-
mass Withmse,, while the strange quark mass is described bygyaints from the above symmetric analysis and vtk e,

mﬁ/al- _Nolte Ithfat thrr?ugh th degedneralcy requirlemelnt, V‘(’je r8re also included in Table XV. Note that the coefficients of
effectively left with two independensiopes only’, a’ an m2,, and Mg M, both come out to be negative, while the

b 2 .
. ' prefactor ofmy,, is positive, but small.
The valence quark masses in B5) are defined as Motivated by chiral perturbation theory and quenched
1/1 1 QCD, one might expect, instead of Hd7), a direct connec-
Myai=> (K—— KT) (16)  tion on the pseudoscalar mass, according to the form
v Se

— mCrit. hm?2
In this setting, with the three types of hadron masses we are m=m="+bmps, (19
in the position to perform “semiquenched extrapolations”

. ; which amounts to restricting the parameters
where valencec values withk, 4 # ksepare admitted.

Within the linear ansatz, other hadronic quantitiéke c'=ba’. d'=bb’ (20)
masses and decay constarttan be written in terms afnge, ' '
andm,q in the generic form To check for the validity of this idea, we have entered our
m o’ 0 entire data set into a “scatter plot” with axes, and m,%s.
s$ ) erit C s | Mge Figure 7 reveals that the entries do not collapse to a single
Mg, | =m'+{ c'—d d M) 17 line, but rather exhibit a clear pattern of sea quark mass
m ¢’ —2d’ 2d’ val

Vv

dependence, thus ruling out the one-slope andziz’
We have performed semiquenched fits to Ed$) and

(17) using the subset of mesonic data withe= Kval,

= Kval,» Kseda~ Kvallgﬁ Kyal, » Ksed” Kyal, = Kval, » as described

by the x combinations in Table Ill. In order to ensure con-

1. Determination ofStrange

There are three options to fixS@"% from the spec-
trum: (i) from theK* mass by solving

sistency with the above light sector analysis, we have used My o, (K19 ,Strangg
the parameters from the symmetric fits as inputs, namely, S = =1.16, (21)
a'=2b, kM xC  m'Cit=mit ¢'=c. My, s Ksea) M,
The results of such a simultaneous fitting are listed in light :c. ..
Table XV and illustrated in the plots of Fig. 6. All fits are \évherefsﬁ? is given by Eq(13), or (ii) from the kaon mass
characterized by reasonah}é/Npg. As we will discuss be- y matching
low, we have tested the stability of the procedure by relaxing light _ strang
the constraints. Messu(Ksea ;IKht i _ %=3.61, (22)
It is obvious how to extend the analysis to nonlinear con- Mps s Ksea M.

tributions inmgg,andm,

"Obviously, this statement can be generalized to any dependence
8In our previous Letter we used three independent such s[@pes of type m= f(mpg).
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0.25

0.2

0.15

2
M'pg

0.1

0.05

o i 1
6.3 6.32 6.34 6.36 6.38 6.4 6.42 6.44
1/k
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0.6

0.55

0.5

0.45

my

0.4

0.35

0.3 1 1 1
6.25 6.3 6.35 6.4 6.45

1/k

FIG. 6. Simultaneous fit of all pseudoscalar data and vector data t@LBQg.Symbols: *=mgs, ¢ =mg,, O=m,,.

0.55

0.45 -

04 |

0.35 -

FIG

0.05 0.1 0.15 02

. 7. Mass of the vector meson as a functiomdf.

or (iii) from the ® meson mass according to

light  stran
mvl,vv(Ksea K109

¢
= _—2-1.326. (23)
rnV2 ,SS( Kgggt) M p

It is well known that quenched simulations with Wilson
fermions fail to reproduce the size of the experimental hy-
perfine splitting amondK andK*. According to the results
of the CP-PACS Collaboratiofi], in the continuum limit
and on large lattices, the value bfyx (Mg) turns out to
deviate by 3%(5%) from experiment when matching?2"%
to M . On the other hand, they fild «« in accordance with
experiment when usiniyl 4, as input instead. The deviation is
generally attributed to quenching errors.

In the context of the linear ansatz, the determination of
«Sa"%efrom these alternative scale choices proceeds directly
by explicit use of the fit parameters of Table XV. Table XVI
lists the resulting values. While the two vector conditions,
Egs. (21) and (23), lead to consistent results, thé meson

mass condition asks for a considerably larger value of
Kstrang§

TABLE XVI. Collection of results forSange

Particle Kpnange Kauaa™
K 0.1565411) 0.1569442)
K* 0.1556114) 0.1559057)
& 0.1556314) 0.1559850)
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TABLE XVII. Lattice results in the strange quark sector. TABLE XVIII. Values of the inverse lattice spacing obtained
from different observablegat the light quark mags The lattice
Observable Linear fit ton,, Quadratic fit tom, value ofmy results from a quadratic extrapolation: the value of

stems from a linear extrapolation.

my () 0.2596) 0.241(25)

my(¢) 0.44312) 0.39554) Observable m( x9N at

Mx () 0.38811) 0.34547)

mK(K*) 025&6) 024328) mp (Iinear flt) 03349) 23(16)

m(K*) 0.44312) 0.39856) m, (quadratic fif 0.29741) 2.5837)

mK*(K*) 0~28811) 0.34&48) my (rho Iineab 0.43572) 2.1640)

M (k) 0.2156) 0.19226) f (rho linea) 0.050534) 2.6218)

my(K) 0.407113) 0.35653)

;T(’;Ef) 8(3);;(;;)3) 832?;;)8) 2. Stability of the semiquenched analysis

1/f 4( ) 0.274293) 0.277797) By lifting the constraint one can convince oneself in two

fi (K*) 0.063333) 0.061938) ways of the stability of the light sector, with respect to feed-

1/ 4(K*) 0.274193) 0.27649104) back from the strange sector.

f(K) 0.059133) 0.057234) (i) Performing an unconstrained fit to E@.5), ond finds

Uf 4(K) 0.283297) 0.2871105) (with x2/Npg=22/29, for the critical value 0fx e,

kS =0.158497 4%, 27
With the numbers fok®"@"%from this table, one can pro-
ceed to compute the meson masses in the strange sect@hich is nicely consistent with the result from the symmetric
within the linear ansatz. The results are collected in Tablgnalysis, Eq(12).
XVII. We find that, contrary to expectations, the discrepancy (i) An equally satisfying result is achieved with respect to
between the lattice results and the experimental hyperfmghggt: the vector masses are reproduced Wjth/Npe

splitting remains largely unaltered under unquenching. One:517/29, and one obtains the value of the light hopping pa-
might be tempted to blame the linear ansatz for this failure ;1 oter as

Hct)wever, as can be seen from Table XVI, the spread in
«""%%is by no means decreased under a quadratic extrapo- i
lation. We);hall come back to this point whgn we discuss tﬁe Koo =0.158451 3] (28)
J parameter.

If one interprets the spread from the three strange quarfhis number is also in good agreement with the outcome of
mass settings as a systematic error, our “best” value for théhe symmetric analysis, as given in Ed3).
strange hopping parameter reads

IV. DISCUSSION

,SraN9e= 0,1560814)(46), (24)
A. J parameter
which agrees with the mass ratios In the quenched scenario the dimensionless parameter
m m J=M M, (29
X _15917), —2=1.7922). (25) R TV
Mg My

has been proposed as a suitable lattice observable to avoid
chiral extrapolations altogethdil7], on the level of the
single masgi.e., effectivex) dependence of the approxima-
tion. Assuming the vector and pseudoscalar trajectories to be
linear, one can estimate the slope within this expression from
mfﬂt—'sa‘”g‘fz GeV)=151(30) MeV, (26)  experimental mass ratio, such that

The experimental mass ratios amg«/Mg=1.8 and
Mg /Mg=2.06. The quoted value 0kS""% implies a
strange quark

to be compared to our previous value from the three-sea- TABLE XIX. Physical results in the light quark sector.
quark analysi§7], my="9%2 GeV)=140(20) MeV.

The decay constantg and 1f , can be determined using
the semiquenched ansatz, Ef7), with m replaced byfpg  Linear vector

my [GeV] m, [GeV] f,. [GeV] 1,

and 1f,, respectively. We compile the results in Table 1.0016) 1.0523) 0.1168) 0.30211)
XVII. It turns out that the conditions, Eq$21), (22), and  Quadratic vector
(23), lead to consistent answers, the spread of 3% being well 1225) 1.1728) 0.13021) 0.30211)

covered by the statistical uncertainty.
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TABLE XX. Physical results for masses in the strange quark sector.

m(K*) [GeV]  my(¢) [GeV]  myx(K) [GeV]  my«(¢) [GeV]  my(K) [GeV] my(K*) [GeV]

Linear vector

0.5969) 0.5959) 0.8533) 0.894 0.937) 1.020
Quadratic vector
0.63347) 0.62344) 0.84212) 0.8904) 0.91824) 1.0299)
Mix—M, A third possible way to estimatgin the context of linear

JFP= My MZ_mZ ~0442). (30)  extrapolations is to apply the above procedure not to the
K g symmetric line, but on each individual line of tliked sea

The quenched lattice value fdrgenerally is of the order of duark masswith subsequent extrapolation 6fin ks, In
0.38, i.e., 25% below the empirical estimate. It has generalljiS approach, however, one has to artificially impose the

been surmised that this discrepancy provides evidence of R1ysical conditiorm, =1.8mps on each one of the unphysi-
quenching errofsee, e.g., the review ifL]). cal sea quark values. One can argue that a possible sea quark

Our approach tN;=2 full QCD treats light and strange eff_ect could be easily W_ashed out by such an unnaturally
quarks on unequal footing, as we associate them with sea a/gided procedure. And, indeed, we do not recover any ap-
valence quarks, respectively. Basically, this induces a gen(Rr€ciable dependence on the dynamical quark mass with this
ine two-parameter dependencenaj on the light and strange Method. Moreover, the numbed$xses=0.1560)=0.345),
guark masses. Thus, in ti&=2 theory, the notion obne J(Kseq=0.1565)=0.354), J(kseq=0.1570)=0.355),
effective hopping parameter is not appropriate and the latticd(Ksea=0-1575)=0.36(5) come out close to the quenched

determination ofl does noko ipsoenjoythe merit of avoid-  V&lues. _ _ _
ing chiral extrapolation. Needless to say, thé analysis does not provide us with

We have demonstrated in Sec. Il B 1 that our data do nof’dependent information:  obviously, if we had succeeded
confirm the single-slope ansatz, E49). Thus, in order to 1N Predicting the etxperlmental kaon aidt masses with a
avoid the problem of choosing an effective slopeSingle value of =M% theX tresults ford, Egs. (31),(32),
dM, /dM3¢ we calculate the lattice value dfdirectly from would agree exactly witkl® p.e(x)?e might blame the linear
the experimental definition: i.e., we insert our lattice masse&nSatz for the failure of andJ**to coincide. In this sense

(cf. Tables XVII and XVIII) on the RHS of Eq(30). We find this feature might be considered @gdence for curvaturen
' the vector particle trajectory. In order to explore this possi-

J=0.333) (31)  bility, we have carried out additionajuadratic fitsto the
vector particle trajectory both on the symmetric and on the
if we define the strange quark mass by E2p) and full data set. The results for the fit parameters can be found
in Tables XllIl and XV. The coefficients of the quadratic
J=0.323) (32) terms turn out to be negative, albeigrowithin the errors.

This theneven lowerghe value of].
for the condition (21). Both values are well below the As yet another alternative, we have also used an ansatz
quenched results. with the next to linear order in the quark massn®?. Such
We compare this result with the outcome from an analysisa behavior is expected by chiral perturbation thefit®].
restricted to the symmetric data. In this case an effectivéeHowever, we again find that thkparameter decreases com-

slope valuéb=dM, /dM2 can be determined by a linear fit pared to the result of the linear ansatz.

to my(mag on the symmetric data set. The resultbig,,
=1.07%6). Following Ref.[17], we set the quark mass by
the conditionmy=1.8mpg, which corresponds to the experi-  The lattice numbers for masses and decay constants can
mentalK*/K mass ratio. This then produces the estimhte be translated into physical results once the lattice cutoff
=0.4Q(2), which is significantly above the result of our two- at 3=5.6, Nc.=2 has been determined. This is done by
slope analysis, Eq31) or (32). We disfavor this approach, matching the lattice number of one observable with its ex-
however, since thésea quark mass, which satisfies the con- perimental counterpart. Obviously, within a complete nu-
dition my=1.8mpg on the symmetric line, is purely effective merical solution of QCD, the size af * should be indepen-
and does not correspond to a sea of ligrendd quarks. dent of the choice of the particular observable selected to set

B. Consistency of scale determinations

TABLE XXI. Physical results for decay constants in the strange quark sector.

f(¢) [GeV] f(K*) [GeV] f(K) [GeV] 1t 4(d) 1f 4(K*) 1/f 4(K)

Linear vector
0.145671) 0.145771) 0.136Q72) 0.274293) 0.274193) 0.283297)
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TABLE XXII. Physical results in the quenched sector. Fits to

the nucleon and\ are quadratic: all other fits are linear. To set 16 | ]
kS"a"%we used the kaon mass fég andmy. and the¢ mass for My Mg ¢ Uig J

1f,, mg, andJ. 14 L

my [GeV] m, [GeV] f,[GeV] 1/, N . ‘

1.06167) 1.30163 0.132548) 0.327152 '

mg [GeV] mg+ [GeV]  fx [GeV] i, J L 1
0.559@64) 0.864723) 0.151846) 0.298247) 0.391) ’

08} i i .

the scale. Vice versa, a variation of the cutoff with the ob- 06 | strange sector : .

servable provides another measure for the systematic uncer-
tainty of our lattice calculation.

L . FIG. 9. Comparison oN-=2 (circles and quenched results
Table XVIII exhibits the values of the cutoff as obtained (squaresin the strange sector with experiment. The data are nor-

by matching physical scales inside_ the light sector: ;bhe_ malized to their experimental values, nameM, =495 MeV,
mass, the nucleon mass, and the pion decay constant. W|thm1K*:892 MeV, f, =160 MeV, 1f,=0.234, and)=0.48. To set

statistical efrors, alllreSU|ts appear consistent. The differencg@e scale we used the linear fit to the vector meson trajectory.
betweeray - anda; ~, however, reflects a systematic uncer-
tainty of =20%, this being of course related to the the errorAs we mentioned above, the uncertainty due to the choice of

from the chiral extrapolation; cf. Sec. Il A. «S"an%js covered by the statistical errors in this case.
The impact of the uncertainty due to the chiral extrapola- The analogous quenched result,=6.0, a;l
tion can also be demonstrated a;jl itself by making qua- =2.3 (GeV), 200 configurations of §8 32 latticeg are

dratic fits to the vector trajectorysee Table XVII). One contained in Table XXII. Notice that the errors in the

observes a 10% change j;qjl, which goes along with an nucleo_n andA masses are smaller by a_fac_:tor of 2—-4. _

amplification of the error under the quadratic extrapolation In Figs. 8 and 9 we present a compilation of the various

from 4% to 15%. quantities. We conclude that the data resist revealing a clear
The physical predictions are collected in Table XIX for Sea quark effect on these observables. In particular, there

the light sector and in Table XX for the masses of particleg€mains the problem to account for tNeA mass splitting. It

containing strange quarks. Here we usag;‘c} both from lin- IS unlikely that an increase in statistics would remedy the

ear and quadratic fits in order to test for stability. It turns outSituation.

that the admission of quadratic contributions in fitting the

vector trajectory increases both baryon masses by 10-15% V. SUMMARY AND CONCLUSIONS

and does not reproduce the experimeital splitting. The

uncertainty in the strange sector is clearly dominated by th(f; We have presented, on moderately sized lattices and at
mismatch of«*™9FK) and x"9¢K*). which is connected ixed B, a detailed analysis of the light and strange hadron

with the failure to predict the experimentsi-K* splitting. spectra in full QCD. Both meet their particular difficulties:

) : X while the strange spectrum calculation is hampered by the
The physical results fofx and 1f , are listed in Table XXI. technical requirement oNz=2, the light baryonic sector

faces the problem of considerable variation of hadron masses

under chiral extrapolation.
161 | We found that with these limitations we are not able to
My My 1 overcome the well-known shortcomings of quenched calcu-
1471 1 lations, namely, the underestimation of tieK* and N-A
. spin splittings.
12t : . . The experimental parameter cannot be explained in a
Te ; : linear scenario of vector trajectories, and the admission of
1+ — . - 1 higher order terms does not help to improve on the situation.
: | . In view of this result, it would be highly desirable to make
08 I * : j more realistic computations by includingtlard type of ac-
tive sea quark.
06 | I.‘ ] The issue oN-A splitting could be considerably clarified
R ight sector R .. .
by a closer approach to the chiral limit, on larger to lattices.

Work along these lines is in progregEa].
FIG. 8. Comparison ofN-=2 (circles and quenched results
(squaregin the light sector with experiment. The data are normal- ACKNOWLEDGMENTS
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+0.822. (A2)

(A3)

(v) Neglecting the light quark dependence of the
APPENDIX: RENORMALIZATION CONSTANTS plaquette, we find

We briefly present our method of choice for the extraction
of the renormalization constang, ,,. We use the tadpole- Z,=0.93, Z,=0.82, (A4)
improved perturbation theory results from Lepage and Mack-
enzie[20]. The procedure is as follows.

(i) Use the plaquette valudsee Table XIV to calculate ~ for ny=2, andZ,=0.94,Z,=0.83 in the quenched case. We

the value ofay(3.414A) using also need to rescale our quark fields:
1
—log| 5 SH] V2KkW — \1—-3k/4k V. (A5)
417 . . . .
=3 ay(3.418)[1—(1.191+0.025¢) ay]- Matrix elements in Tables IX-XII are listed without the re-

scaling of the quark fields and before applying the renormal-
(A1) ization constants.

[1] T. Yoshig Nucl. Phys. B(Proc. Supp). 63, 3 (1998. [12] P. Mackenzie, Phys. Lett. B26, 369 (1989.
[2] F. Butleret al, Nucl. Phys.B430, 179(1994. [13] SESAM Collaboration, Th. Lippest al, “Performance of the
[3] CP-PACS Collaboration, S. Aokt al, Nucl. Phys. B(Proc. Hybrid Monte Carlo for QCD with Wilson fermions’(in
Suppl) 60A, 14 (1998 preparatioh
[4] S. Duane, A. Kennedy, B. Pendleton, and D. Roweth, Phys{14] B. Allés et al, Phys. Rev. 058, 071503(1998.
Lett. B 195 216(1987). ) [15] S. Gisken et al, Nucl. Phys. B (Proc. Supp). 17, 361
[5] A. Frommer, V. Hannemann, Th. Lippert, B. bkel, and K. (1990.

Schilling, Int. J. Mod. Phys. G, 1073(1994; A. Frommer, S. 16 particle Data Group, R. M. Barnett al, Phys. Rev. 054, 1
Gusken, Th. Lippert, B. Nokel, and K. Schillingjbid. 6, 627 (1996. We use the following massesm,= (M _-+M o)

. (R19$5_". e It 3. Mod. Phve. @ 425166 ~137.3MeV, M,=769MeV, M,=1.019.4GeV, My
[6] R. Tripiccione, Int. J. Mod. Phys. &, 425(1993. = L(My: + Myo) = 495.68 MeV, M » = 892 MeV.

[7] SESAM Collaboration, N. Eickest al,, Phys. Lett. B407, 290 [17] P. Lacock and C. Michael, Phys. Rev.52, 5213 (1995.

(19979). . X
[8] S. Gottlieb, W. Liu, D. Toussaint, L. R. Renken, and R. L [18] E. Jenkins, A. V. Manohar, and M. B. Wise, Phys. Rev. Lett.
) - - T ’ T 75, 2272(1995.

Sugar, Phys. Rev. B5, 2531(1987). . . . .
[9] T. DeGrand and P. Rossi, Comput. Phys. Comn).211 [19] TxL Collaboration, L. Conti, L. Giusti, U. Gksner, S.

(1990. Gusken, H. Hoeber, P. Lacock, Th. Lippert, G. Martinelli, F.
[10] S. Fischeret al, Comput. Phys. Commur@8, 20 (1996); Rapuano, G. Ritzentfer, K. Schilling, G. Siegert, and A.
Nucl. Phys. B(Proc. Supp). 53, 990 (1997. Spitz (in preparatioh _
[11] R. C. Brower, T. Ivanenko, A. R. Levi, and K. N. Orginos, [20] G. P. Lepage and P. B. Mackenzie, Phys. Rev4& 2250
Nucl. Phys.B484, 353 (1997). (1993.

014509-15



