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Equivariant gauge fixing of SU„2… lattice gauge theory
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~Received 28 May 1998; published 3 December 1998!

I construct a lattice gauge theory~LGT! with a discreteZ2 structure group and an equivariant BRST
symmetry that is physically equivalent to the standard SU~2! LGT. The measure of thisZ2 LGT is invariant
underall the discrete symmetries of the lattice and its partition function does not vanish. The topological lattice
theories~TLT! that localize on the moduli spaces are explicitly constructed and their BRST symmetry is
exhibited. The ghosts of theZ2-invariant local LGT are integrated in favor of a nonlocal bosonic measure. In
addition to the SU~2! link variables and the couplingg2, this effective bosonic measure also depends on an
auxiliary gauge invariant site variable of canonical dimension two and on a gauge parametera. The relation
between the expectation value of the auxiliary field, the gauge parametera and the lattice spacinga is obtained
to lowest order in the loop expansion. In four dimensions and the critical limit this expectation value is a
physical scale proportional toLL in the gaugea5g2(112nf)/241O(g4). Implications for the loop expansion
of observables in such a critical gauge are discussed.@S0556-2821~99!00401-4#

PACS number~s!: 11.15.Ha, 11.10.Jj, 11.15.Bt
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I. INTRODUCTION

Euclidean lattice gauge theory~LGT! is the only known
rigorous non-perturbative definition of a non-Abelian gau
theory. In the vicinity of a second order phase transition
a critical value of the couplings, the LGT can be interpre
as a regularization of a continuum quantum field theory
Euclidean space-time. Apart from numerical simulatio
such models also provide a mathematically rigorous foun
tion for various non-perturbative field theoretic ideas. The
statistical models however also have peculiarities of th
own that have no analog in other regularizations of a qu
tum field theory.

The discrete lattice by construction is devoid of any n
tion of ‘‘smoothness’’ and it is difficult to study effects re
lated to topological characteristics of the continuum gau
group. The ‘‘gauge-group’’ of a LGT is simply

G5 ^ sitesGi , ~1!

where the groupGi at thei -th site is isomorphic to the com
pact structure groupG. Only the vanishing fraction of lattice
gauge transformations that satisfy a Sobolev norm appare
correspond to continuum gauge transformations@1# in the
critical limit. For lattice perturbation theory and a continuu
interpretation of the lattice model it is thus desirable to
duce the rather large symmetry of the LGT to a more m
ageable level. This however has to be done without alte
physical observables of the model. The procedure is~as we
will see somewhat misleadingly! known as gauge fixing. One
hopes that gauge fixing the lattice model would help dis
tangle lattice gauge artifacts from the physically relev
continuum dynamics. The wild ‘‘gauge’’ group of the lattic
preferably should be tamed in a fashion that assure
smooth thermodynamic and critical limit of the physica
equivalent gauge fixed lattice model. In analogy with cov
riant gauges for the continuum theory that preserve all
isometries of a space-time manifold, a gauge fixing pro
dure that preservesall the~discrete! symmetries of a periodic
0556-2821/98/59~1!/014508~17!/$15.00 59 0145
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lattice will also be called ‘‘covariant’’ in the following.
While it is relatively simple to reduce the gauge group o
LGT ~by say ‘‘fixing’’ a maximal tree!, it is apparently not
entirely trivial to obtain acovariantly gauge fixed lattice
measure that is normalizable@2,3#.

In continuum perturbation theory, the method of choi
for covariant gauge fixing is Becchi-Rouet-Stora-Tyu
~BRST! quantization. Such gauges necessarily@4# have a
Gribov-ambiguity@5#, i.e. an orbit generally crosses the~co-
variant! gauge fixing surface more than once~and some or-
bits approach this surface tangentially!. Although apparently
of little relevance for an asymptotic perturbative expans
this ambiguity does concern the non-perturbative validity
the gauge-fixed model. In the context of Chern-Simo
theory it was even recently shown that a correct treatmen
the generic gauge zero modes of degenerate background
nections is essential for obtaining the~non-trivial!
asymptotic expansion of the model@6#.

A valid non-perturbative definition of the gauge fixe
model is also of importance for the lattice. It has be
pointed out@7# that conventional BRST-invariant Landau
gauge in fact counts the intersections of the orbit with a s
that depends on the direction in which the oriented ga
fixing surface is crossed—the ‘‘Gribov-ambiguity’’ in thi
case would not pose an obstruction to covariant gauge fix
as long as the degree of this map does not vanish. Q
generally the degree of this map however is zero for a co
riantly gauge fixed LGT@2#.

For continuum gauge theories the gauge fixing proced
was recently seen to be equivalent to the construction o
topological quantum field theory~TQFT! on the gauge group
@8#. It turns out that the partition function of this TQFT i
usually proportional to the generalized Euler characteristic
the gauge group manifold and thus proportional to the ‘‘d
gree of the map’’ of Sharpe. The TQFT construction sho
that it is a topological characteristic of thegauge groupthat
determines whether or not the gauge-fixed theory ma
sense non-perturbatively. It allows one to continuously
form the orbit and thus enables one to handle orbits that
©1998 The American Physical Society08-1
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on a Gribov horizon. One can also show that the partit
function of conventional covariantly gauge fixed continuu
models on compact space-time indeed vanishes n
perturbatively. The very construction of a TQFT howev
allows one to address and solve these problems@8,9#. We
will see that the method is also a powerful tool in the co
struction of a physically equivalent and covariantly gaug
fixed LGT.

The quest for a lattice analog of the elegant BRS
formalism of continuum gauge theories has been elus
Neuberger@10# first formulated the analog of the conve
tional continuum BRST-algebra for the lattice but sub
quently proved that the partition function of a gauge-fix
lattice theory with this BRST symmetry is not normalizab
@3#. His proof is based on particular properties of the BRS
algebra that do not hold for the equivariant BRST constr
tion we will consider below. For the special case of cert
covariant gauge fixings on the lattice, Sharpe@2# had shown
that the degree of the map is zero—and that the parti
function of the gauge-fixed lattice theory therefore vanis
due to the mutual cancellation of contributions from differe
Gribov copies. His proof however appeared to depend on
details of the gauge fixing and raises the question whe
some other covariantly gauge-fixed lattice action can
found. Sharpe proposed several models whose partition f
tions do not vanish. In the naive continuum limit some
them correspond to covariantly gauge fixed actions. Th
local lattice actions however break some of the symmet
of a periodic lattice. Determining the corresponding co
tinuum model in this case requires a somewhat naive
trapolation.

I will translate the recent developments in continuu
BRST-quantization to the mathematically more rigorous s
ting of LGT’s on finite lattices. I use an equivariant BRS
construction to reduce the gauge group of an SU~2! LGT to
a physically equivalent Abelian U~1! LGT in Sec. II. @The
generalization of the procedure to other lattice gauge gro
G and subgroupsH,G is relatively straightforward. The es
sential point is to use a subgroupH for which the Euler
characteristic of the coset manifoldx(G/H)Þ0.# In Sec. III I
examine the corresponding topological lattice theory~TLT!
and show that it is a constant on the orbit space. The valu
this constant is explicitly computed in Sec. IV at the trivi
link configurationU51. I verify that the partition function of
the TLT is indeed proportional to the Euler charac
x„G/H5@SU(2)/U(1)#N

…52NÞ0 and therefore normaliz
able.

This first step reduces the problem of constructing a
variant and BRST-invariant gauge-fixed LGT to that
BRST-invariant gauge fixing of an U~1! LGT. In Sec. V the
presence of local fields that arechargedunder the Abelian
group is utilized to build a TLT that also fixes the residu
Abelian invariance. The partition function of this TLT i
shown to be proportional to the number of connected co
ponents of the U~1! gauge-group and is thus normalizab
One thus obtains a local and ‘‘lattice-covariant’’Z2 LGT
that is physically equivalent to the original SU~2! LGT. The
loop expansion of thisZ2 LGT is examined in Sec. VI. I
show that the measure is maximal at certain discrete p
01450
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gauge configurationsand a non-vanishing constant configu
ration r i5 r̄(a) of an auxiliary ~gauge invariant! bosonic
field. The unique maximum of this bosonic measure is de
mined in the thermodynamic limit of a four dimension
lattice.

II. EQUIVARIANT BRST: GAUGE-FIXING A SU „2… LGT
TO A U „1… LGT

Consider aD-dimensional LGT with an SU~2! gauge
group and for simplicity assume that the SU~2! LGT is de-
scribed by a local actionSinv.@U# which depends only on the
link variablesU ji

† 5Ui j PSU(2). Thegeneralization to the
case with matter fields is straightforward. The invariance
the measure with respect to the lattice gauge group~1! im-
plies that

Sinv.@U#5Sinv.@UgPG#, with Ui j
g 5giUi j gj

† ,

giPSU~2!. ~2!

In this section we reduce the gauge invariance of the L
to the Abelian subgroup

H5 ^ sitesU~1!, ~3!

while preserving the locality of the measure and its inva
ance with respect to the isometries of the lattice. The res
ing model will exhibit an equivariant BRST-symmetry an
we will prove in Secs. III and IV that it is equivalent to th
original SU~2! LGT with regard to physical observables.

The construction of the equivariant BRST symmetry
analogous to the one in the continuum case@8#. Note that an
infinitesimal gauge transformation withgi511eu i1O(e2)
to ordere changes the links by

DUi j 5u iUi j 2Ui j u j1O~e!. ~4!

We accordingly define@10# the BRST-variation ofUi j as

sUi j 5~ci1v i !Ui j 2Ui j ~cj1v j !, v iPu~1!, ~5!

whereci and v i are Lie-algebra valued Grassmannian s
variables. The reason for the apparently redundant introd
tion of two ghostsci andv i instead of one for their sum is
that we can thusspecifythe action of one of these ghosts an
eventually decompose the Lie-algebra. For the case at h
we takev to be the ghost associated with the generator of
U~1! subgroup. Since our gauge fixing condition will b
U~1!-invariant, it is possible to arrange matters so that
BRST-invariant action of the physically equivalent U~1!
LGT does not depend on thev ghost. Requiring that the
BRST-variation be nilpotent,s250, Eq. ~5! implies

sci1sv i5~ci1v i !
25ci

21@v i ,ci #1v i
2 . ~6!

Here @•,•# is the commutator graded by the ghost numb
One satisfies Eq.~6! by
8-2
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sci5ci
21@v i ,ci #1f i , f iPu~1!

sv i5v i
22f i52f i

sf i5@v,f i #50, ~7!

where the ghost number 2 fieldf is introduced for the fol-
lowing reasons of consistency. Since thev i are in the Cartan
sub-algebra u~1! of su~2!, we can without loss of generalit
demand that theci span the remaining two generators of t
Lie-algebra. The necessary Lagrange multiplier fields t
implement this constraint will be introduced below. Cons
tency however then requires that the component in the C
tan sub-algebra ofsci also vanish. Sinceci

2 generally will
~only! have a component in the Cartan sub-algebra, we
satisfy this requirement only by introducing an addition
field fPu(1). Note that it is sufficient thatf take values in
the Cartan sub-algebra and thatv i generates U~1! transfor-
mations ofci andf i . Since the subgroup generated byv in
our case is Abelian, the BRST-variation ofv andf simplify
in Eq. ~7!. In general, the equivariant BRST-constructi
above can be employed to reduce any groupG to a subgroup
H,G also for non-AbelianH. In @8# a similar construction
was for instance used to factor the global gauge transfor
tions of the continuum gauge theory.

To complete the equivariant BRST construction one int
duces Lagrange multiplier fields as BRST-doublets that
force the constraints. For the gauge condition we requir
Nakanishi-Lautrup fieldbi of vanishing ghost number. It is
part of the doublet

sc̄i5@v i ,c̄i #1bi , sbi5@v i ,bi #2@f i ,c̄i #. ~8!

Note that the anti-ghostc̄i here transforms under the U~1!.
This is a natural consequence of Eq.~5!—we cannot takec̄i
to be neutral under U~1!, because the BRST-invariant actio
we intend to construct would otherwise bev-dependent. The
BRST transformation of theb-field is then given by the nil-
potency ofs. Note that the non-trivial transformation of th
Nakanishi-Lautrup fieldb in Eq. ~8! in the present contex
invalidates Neuberger’s proof@3# that the partition function
of a BRST-invariant lattice model is not normalizable. T
impose that the components in the Cartan sub-algebr
c,sc andc̄,sc̄ vanish, we need two more doublets. The fie
of these doublets take values in the Cartan sub-algebra
and therefore have the simple transformations

ss̄5s, ss50, s̄,sPu~1!

sḡ5g, sg50, ḡ,gPu~1!. ~9!

The construction of the partially gauge fixed action
completed by specifying a local gauge fixing functionFi@U#
on the lattice configuration. A sensible gauge fixing of t
SU~2! LGT to a U~1! structure group has to satisfy som
non-trivial conditions. For any link configurationU of the
lattice there should at least be one solutiongPG of

Fi@Ug#50. ~10!
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A U~1!-invariant gauge fixing furthermore requires that E
~10! be U~1! invariant, that is

Fi@U#50⇒Fi@Uh#50, ;hPH,G. ~11!

It is easy to see that Eq.~10! always has a solution if the
gauge fixing functionFi@U# is the Lie-derivative of a
bounded Morse potentialV@U#

(
i

Tr u iFi@U#5DV@U#, ~12!

because Eq.~10! then is the statement thatV@Ug#, consid-
ered as a function ofgPG for fixed link configurationU, has
at least one extremum. This is certainly the case for boun
V@U#. Equation~11! is furthermore automatically satisfied
the Morse potential is U~1! invariant, i.e.

V@Uh#5V@U#, ;hPH. ~13!

To have a ‘‘lattice-covariant’’ gauge fixing we pick a loca
Morse potentialV@U# that is a scalar under the action of th
lattice group. The simplest non-trivial Morse potential sat
fying all these requirements for the problem at hand is

V@U#5(
links

uTr t1Ui j u2. ~14!

Heret15t2
† andt0 are the su~2! matrices of the fundamen

tal representation

t15S 0 1

0 0D , t25S 0 0

1 0D , t05
1

2 S 1 0

0 21D ,

~15!

with the commutation relations

@t1 ,t2#52t0 , @t0 ,t6#56t6 . ~16!

The potential~14! is bounded below and on anyfinite lattice
is also bounded above. From Eq.~4! and the definition~12!
of the corresponding gauge fixing functionFi@U# one ob-
tains

Fi@U#5(
j ; i

Ui j t1~Tr Ui j
† t2!2t1Ui j

† ~Tr Ui j t2!

1Ui j t2~Tr Ui j
† t1!2t2Ui j

† ~Tr Ui j t1!. ~17!

Note that the gauge fixing function~17! is anti-Hermitian
and for a particular sitei involves only the links to the 2D
adjacent sites. With the su~2! Lie-algebra~16! one verifies
that

Tr t0Fi@U#50, ;U, ~18!

on any sitei . This is a consequence of the U~1!-invariance of
the Morse potential~14!. To construct the action we als
need the BRST-variation ofFi@U#. Becausev i only has a
component int0-direction it is of the form

sFi@U#5@v i ,Fi@U##1Mi@U,c#, ~19!
8-3
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with

Mi@U,c#5(
j ; i

~ciUi j t12Ui j cjt1!~Tr Ui j
† t2!

1~t1Ui j
† ci2t1cjUi j

† !~Tr Ui j t2!

1~Ui j t1!„Tr Ui j
† ~t2cj2cit2!…

1~t1Ui j
† !„Tr Ui j ~cjt22t2ci !…

1~t1↔t2!. ~20!

Using a particular parametrization for the SU~2! link vari-
ables, the intimidating expressions~17! and ~20! are simpli-
fied in Appendix A. For most of the following it suffices t
note thatMi only involves links attached to the sitei and is
linear in the ghost fieldc.

The action of the partially gauge fixed LGT is a loc
functional in the equivariant cohomology of the BRS
symmetry we have defined. It is thus of the form

S5Sinv.1SGF , with SGF5sWGF , ~21!

whereWGF is a local lattice action of ghost number 1 that
U~1! invariant and does not involve thev-ghost. The restric-
tion to operators that are relevant in the critical limit impos
additional constraints onWGF . The most general relevan
WGF for the SU~2! model is

WGF5(
i

TrF c̄iFi@U#1
a

2
c̄ibi1b c̄i

2ci G
1ḡ i Tr t0c̄i1s̄ i Tr t0ci . ~22!

This gauge fixing functional depends on two gauge para
etersa and b. Using Eq.~7!, Eq. ~8!, Eq. ~9! and Eq.~19!
one finds

SGF5sWGF5(
i

TrFbiFi@U#2 c̄iM i@U,c#1
a

2
bi

2

1bbi@ c̄i ,ci #1b c̄i
2ci

2G1~b2a!f i
0 Tr t0c̄i

2

1
1

2
s̄ if i

01s̄ i Tr t0ci
21g i Tr t0c̄i1ḡ i Tr t0bi

1s i Tr t0ci , ~23!

where use has been made of the fact thatv i5v i
0t0 andf i

5f i
0t0 are fields with values in the Cartan sub-algebra on

If we only consider expectation values of functionals that
not depend onf,s̄,g,ḡ nor s, these fields can be eliminate
by their equations of motion.

The last three terms in Eq.~23! enforce thatc̄,c as well as
b are orthogonal to thet0-direction, i.e. they eliminate the
U~1!-neutral components of these fields. It follows th
Tr bi@ c̄i ,ci #50 and thatci

2 as well asc̄i
2 only have compo-

nents in thet0-direction. The equations of motion fors̄ i and
f i

0 then give rise to a quartic ghost interaction which afte
01450
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bit of algebra can be brought in the form (a2b)Tr c̄i
2ci

2 .
These manipulations lead to a substantially simplified~on-
shell! action

SGF
on shell5(

i
TrFbiFi@U#2 c̄iM i@U,c#1

a

2
bi

21a c̄i
2ci

2G ,
~24!

wherebi , c̄i andci only have components that are charg
under the U~1!. Note that the on-shell action~24! no longer
depends on the gauge parameterb of Eq. ~22!. The equations
of motion have removed this parameter in favor of a qua
ghost interaction proportional toa. There is a quartic ghos
interaction in any gaugeaÞ0. It is a consequence of th
equivariant BRST construction and does not depend on
employed gauge fixing functionFi . As we will see in the
next section there is a good reason for this quartic gh
interaction. Let me comment here that Landau gauge w
a50 is in a certain sense animpossiblegauge on the lattice
that can only be perturbatively defined. A non-perturbat
definition of Landau gauge would require findingall solu-
tions to the constraintFi@Ug#50 exactlyfor any configura-
tion U. The problem is equivalent to finding all extrema
the Morse functionV@U# exactly—clearly an impossible
task for any algorithm. Unlike the constraints on the fiel
that we solved to arrive at Eq.~24!, the conditionFi@U#
50 is non-local andcannotbe solvedanalytically for large
lattices. Perhaps more important, the error in the estima
of an extremum ofV@U# to any finite numerical accurac
can be shown to grow rapidly with the number of latti
sites. In terms of the lattice renormalization group,a50 is
an unstablefixed point.

For the proof of the next two sections that the partia
gauge fixed lattice theory is physically equivalent to t
SU~2! LGT, it is useful to also eliminate the charge
Nakanishi-Lautrup fieldbi . Due to Eq.~18! one obtains the
effective gauge fixing action

SGF
eff 5(

i
TrF2

1

2a
Fi@U#Fi@U#2 c̄iM i@U,c#1a c̄i

2ci
2G ,
~25!

whereci andc̄i have only components that are charged un
the U~1!. Numerical integration of Grassmannian variables
not possible and the local action~25! so far is a mathematica
construct. To explicitly perform the Grassmann integrals, E
~25! would have to be bilinear in the ghostsc and c̄. Since
Mi@U,c# given by Eq.~20! is linear in the ghostc this ob-
jective is achieved by introducing an auxiliary site-variab
r i with vanishing ghost number tolinearizethe quartic ghost
interaction. The action

SGF
linear5(

i
TrF2

1

2a
Fi@U#Fi@U#2 c̄iM i@U,c#

2r it0@ c̄i ,ci #G1
1

4a
r i

2 , ~26!
8-4
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is equivalent to Eq.~25! upon using the equation of motio
of r i and the fact that@ c̄i ,ci #,ci

2 ,c̄i
2 all are in the Cartan

sub-algebra. The Grassmann integrals of the partition fu
tion over ci and c̄i can now be performed analytically an
give the determinant of a matrix that depends on the l
configurationU and the auxiliary field r. In a numerical
simulation of the partially gauge fixed LGT the Gaussi
average of this determinant overr determines the measur
for the link variables.

Before proving that the partition function of the partial
gauge fixed LGT does not vanish, note that the gauge fi
actionSeff5Sinv.1SGF

eff is invariant under the following rela
tively simple on-shell BRST symmetrys̃:

s̃Ui j 5ciUi j 2Ui j cj , s̃ci50, s̃c̄i52
1

a
Fi@U#, ~27!

where the ghost fields satisfy the constraints

Tr t0ci5Tr t0c̄i50, ~28!

andFi@U# is given by Eq.~17!. Note that the constraint~28!
on c̄i is consistent with Eq.~27! due to Eq.~18!. Furthermore
s̃ is on-shell nilpotent on functions that are invariant w
respect to the U~1! gauge group. Thus

s̃2Ui j 5ci
2Ui j 2Ui j cj

2, ~29!

effects an infinitesimal U~1! gauge transformation generate
by c2}t0 . Using the equation of motion forc̄i

M i@U,c#5a@ c̄i ,ci
2#, ~30!

we have that

s̃2c̄i52
1

a
Mi@U,c#.@ci

2 ,c̄i #, ~31!

and thus on-shell is equivalent to an infinitesimal U~1! gauge
transformation generated byc2. We similarly obtain using
Eq. ~17! and Eq.~29! that

s̃2Fi@U#5 s̃M i@U,c#5@ci
2 ,Fi@U##. ~32!

The BRST-symmetrys̃ thus defines anequivariantcohomol-
ogy on the~graded! Grassmann algebra of the set of U~1!-
invariant functions

Bª$A@U,c#:A@Uh,ch#5A@U,c#;hPH%, ~33!

of the link variables and ghost fieldc. The nontrivial observ-
ables of the partially gauge fixed LGT is the equivaria
cohomologyS,

Sª$OPB: s̃O50,OÞ s̃E,;EPB%. ~34!

The functions inS with vanishing ghost number are th
gauge-invariant functions of the links only, i.e. Wilson loo
and their~linked! products. The physical observables of t
original SU~2! LGT thus constitute the sector with vanishin
ghost number of the equivariant cohomologyS.
01450
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III. THE TOPOLOGICAL LATTICE THEORY „TLT …

I still have to show that the expectation value of a phy
cal observableO@U#PS

^O@U#&ªE )
l inks

dUi j )
sites

d2cid
2c̄iO@U#

3exp$2Seff[u,c,c̄,a] %, ~35!

with the action

Seff@U,c,c̄,a#5Sinv.@U#1SGF
eff @U,c,c̄,a#, ~36!

up to an overall~non-vanishing! normalizationN~a! is the
expectation value of the observable in the original LGT w
the gauge-invariant measure. We thus wish to show that

^O@U#&5N~a!E )
l inks

dUi j O@U#exp$2Sinv.@U#%

5:^O@U#& inv. , ~37!

for all physical observablesO@U# and anyfinite lattice.
Since the volume of the SU~2! lattice gauge group of a

finite lattice is a finite non-vanishing constant,

VG5E )
sites

dgi,`, ~38!

we can multiply both sides of Eq.~35! by VG and change the
integration variables

Ui j 5Ui j8
g5giUi j8 gj

† . ~39!

The Haar-measuredUi j 5dUi j8 as well as the gauge invarian
part of the lattice action and the observableO@U#5O@U8#
are invariant under this~gauge! transformation and Eq.~35!
becomes

VG^O@U#&5E )
l inks

dUi j O@U#Z@U,a#e2Sinv.[U] , ~40!

where

Z@U,a#5E )
sites

dgid
2cid

2c̄ie
2SGF

eff [Ug,c,c̄;a] . ~41!

EvidentlyZ@Ug,a#5Z@U,a# is itself a gauge invariant ob
servable. For Eq.~37! to hold for all observablesO@U#,
Z@U,a# must be a constant that does not depend on the
configurationU at all. We therefore have to show that E
~41! is a non-vanishing constant on the configuration spa
i.e. that the model defined by the partition function~41! is a
TLT.

I will first determine thea-dependence ofZ@U,a# and
then show that this partition function does not depend o
continuous deformation of the configurationU. The basis for
8-5
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these conclusions is thatSGF
eff @Ug,c,c̄;a# is invariant with re-

spect to a~on-shell nilpotent! BRST-symmetryŝ defined on
the variables as

ŝUi j 50

ŝgi5cigi , ŝgi
†52gi

†ci

ŝci50, ŝc̄i52
1

a
Fi@Ug#. ~42!

Note that the algebra~42! is very similar to the BRST-
algebra Eq.~27! but does not transform the link configura
tion U. The third relation in Eq.~42! is a consequence of th
second andgigi

†51. The invariance ofSGF
eff @Ug,c,c̄;a# fol-

lows immediately from the invariance ofSGF
eff @U,c,c̄;a# under

s̃ and

ŝ~giUi j gj
†!5cigiUi j gj

†2giUi j gj
†cj5 s̃Ui j uUi j→giUi j gj

†.

~43!

Since ŝc50, the measuredgid
2cid

2c̄i in Eq. ~41! is evi-
dently ŝ-invariant if dgi is the Haar-measure of the structu
group.

To simplify notation I define the~not normalized! expec-
tation value of any functionX of the fieldsg,c,c̄ in the TLT

^X&U,aªE )
sites

dgid
2cid

2c̄iXe2SGF
eff [Ug,c,c̄;a] . ~44!

The functionX can itself depend parametrically on the co
figurationU and the gauge parametera. In this notation,Z
of Eq. ~41! is just ^1&U,a . Using Eq.~25!, the definition~41!
implies that

a
]

]a
Z@U,a#52K (

sites
Tr

1

2a
Fi@Ug#Fi@Ug#1a c̄i

2ci
2L

U,a

5K ŝ(
sites

1

2
Tr c̄iFi@Ug#L

U,a

1K (
sites

Tr
1

2
c̄iM i@Ug,c#2a c̄i

2ci
2L

U,a

5NZ@U,a#, ~45!

for a lattice withN sites. The last equality in Eq.~45! is a
consequence of theŝ-invariance ofSGF

eff and the measure an
of the equation of motion~30!. Due to Eq.~45!,

Z̃@U#5a2NZ@U,a#, ~46!

is a gauge invariant functional of the configurationU that
does not depend ona.

Similar reasoning shows thatZ@U,a# does not change
under acontinuousdeformation of the orbit. SinceŝU50,
we symbolically have
01450
dUZ@U,a#

5K dU(
i

TrF 1

2a
Fi@Ug#Fi@Ug#1 c̄iM i@Ug,c#G L

U,a

52K ŝdU(
i

Tr
1

2
c̄iFi@U#L

U,a

1K dU(
i

TrF1

2
c̄iM i@Ug,c#2a c̄i

2ci
2G L

U,a

50, ~47!

where the last equality again makes use of the equatio
motion ~30!. @In Eq. ~47! the variationdU of the link vari-
ables of course respectsUi j PSU(2).#

The property Eq.~47! thatZ@U,a# ~and thus alsoZ̃@U#!
is constant on a connected set of link configurations gre
simplifies our task. To determine the value ofZ̃@U# we need
only consider a particular link configuration in each co
nected sector of the orbit space. In a LGTevery link con-
figuration is connected to the trivial one withUi j 51 on all
links. Thus Eq.~47! implies thatZ̃@U# is a constant that doe
not depend on the link configuration. To show that this co
stant does notvanish, it is sufficient that

Z̃@U51#Þ0, ~48!

for any finite lattice. Equation~47! and Eq. ~46! together
with Eq. ~40! imply that the expectation value~35! of any
physical observableO in the partially gauge fixed LGT is
proportional to the expectation value of the same observa
in the original SU~2! LGT. The proportionality constant fur
thermore does not depend on the observable and does
vanish when Eq.~48! holds.

Equation ~47! together with Eq.~46! establish that the
model described by the partition functionZ̃@U# is the lattice
version of a TQFT~of Witten type! on the spaceG/H. The
partition function of this TLT is some topological characte
istic of the coset space. In the next section we will explici
demonstrate thatZ̃ is proportional to the Euler characterist
x(G/H). Since x(G/H)5x@ ^ sitesSU~2!/U~1!.S2#

5@x(S2)#N52NÞ0, this will prove thatZ̃ indeed does not
vanish. Note that the basic reason for only partially gau
fixing the SU~2! LGT using an equivariant BRST construc
tion was thatx(G)50—the partition function of a TLT that
is proportional to the Euler character of the compact latt
gauge group would have vanished no matter what Mo
potential one chooses.

IV. SEMI-CLASSICAL EVALUATION OF Z̃†U51‡

Although multi-dimensional, a LGT is nevertheless only
statistical mechanical system. Even more importantly,
variables of this system are compact. Consequently the
tice action Sinv. , and alsoV@U# defined by Eq.~14! are
boundedfunctions for any finite lattice. We are in the fortu
8-6
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nate position that almost all requirements of Morse the
~which generally applies to compact spaces and boun
functions! are satisfied for the TLT. At this point we coul
therefore simply cite the Poincare´-Hopf theorem and known
results from topological quantum mechanical models@11# to
assert that the partition functionZ̃@U# is proportional to the
Euler characteristicx(G/H) of the manifold that is the do
main of theboundedMorse-functionVU@g#

VU@g#5V@Ug#:G/H→R, ~49!

whenV@Ug# is considered as a function of the gauge tra
formation for fixed link configurationU. Since x(G/H)
52NÞ0 this would prove our assertions.

The TLT on the other hand is a sufficiently simple mod
for us to explicitly see these topological theorems at wo
The following computation ofZ̃@1# also shows which ‘‘pure
gauge’’ configurations give a vanishing contribution toZ̃@1#
in the limit a→0 and which don’t. In Sec. VI this gives u
greater certainty in the evaluation of correlation functions
the critical limit g 2→0 of the gauge fixed model since on
a certain class of saddle points contributes in the limita
→0. In the course of the calculation we will furthermo
characterizeall Gribov copies of the vacuum configuratio
U51 to the gauge conditionFi@1g#50. Perhaps the mos
interesting aspect of the computation is the important role
the quartic ghost interaction in Eq.~25!.

Using the result of the previous section thatZ̃ does not
depend on the gauge parametera, we may choosea suffi-
ciently small for a saddle point approximation to the integ
~41! to be as accurate as we please. Although I will n
explicitly compute the errors of the saddle point approxim
tion, it is quite obvious that the evaluation becomes exac
the limit a→0 for a lattice with N,` sites, because
( i Tr Fi@1g#Fi@1g# in this case is a bounded function on
finite dimensional space of gauge transformations.

To compute

Z̃@1#5 lim
a→01

Z̃@1#, ~50!

with the action~25! in the definition~41! of Z, we need to
considerall solutionsg̃ to the equations

Fi@1g̃#50; sites i . ~51!

BecauseFi@U# is the Lie-derivative~12! of the Morse-
potential~14!, Eq. ~51! in principle requires us to determin
all extremaof

V@g#5V@Ui j 5gigj
†#5(

links
uTr t1gigj

†u2, ~52!

in the space of lattice gauge transformations. By constr
tion, Eq. ~52! is invariant with respect to left-handed U~1!
gauge transformationshPH,

V@hg#5V@g#;hPH. ~53!
01450
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We can use the invariance~53! to parametrize the SU~2!/
U~1! coset elementgi at each site by onlytwo real angles,

gi5S cos~u i /2! sin~u i /2!eiw i

2sin~u i /2!e2 iw i cos~u i /2!
D , ~54!

with u iP@0,p# and w iP@0,2p). We can always choosehi
PU(1) to eliminate the phase in the diagonal elements
gi . At u i5p the diagonal elements ofgi in Eq. ~54! vanish
and the phase of the off-diagonal elements can be arbitra
changed by an U~1!-transformation. Identifying all the points
(u5p,w) we see that there is a one-to-one corresponde

gi~u i ,w i !PSU~2!/U~1!↔ ŝiPS2, ~55!

between giPSU~2!/U~1! and unit ‘‘spins’’ ŝi
5(sinui cosfi ,sinui sinwi ,cosui) describing a two-
dimensional sphere. This is of course just the statement
the coset manifold SU~2!/U~1!.S2 . Using the parametriza
tion ~54!, Eq. ~52! after a bit of algebra can be seen to be t
energy of the Heisenberg model,

V@g#5
1

4 (
i; j

~ ŝi2 ŝj !
2. ~56!

The relation~56! helps to visualize and classify the ex
trema ofV@g#. V@g# possesses acontinuous globalSO~3!
invariance corresponding to a coherent rotation of all
spinsŝi . The extrema ofV@g# are thus characterized by th
subgroup of SO~3! under which they are invariant. There a
only two kinds of extrema:

~I! extrema that are invariant under an SO~2! subgroup of
SO~3!. In this case all the spins are collinear. There a
two zero modes associated with any extremum of t
kind, corresponding to the broken generators of the co
space SO~3!/SO~2!. These zero modes correspond to i
finitesimal global rotations of the collinear spin
whereas an SO~2!-rotation along the axis of any particu
lar spin does not change these extremal configuratio
Thus type I extrema fall in classes@ g̃# I modulo global
rotations of all the spins. One can select a unique rep
sentative of such a class by specifying the direction
any particular spin. There is a one-to-one corresponde
between configurations in@ g̃# I and points on a two-
dimensional sphereS2 . Since all the spins are collinea
there are exactly 2N21 classes@ g̃# I on a lattice withN
sites.

~II ! extrema that arenot invariant under any continuous sub
group of SO~3!. In this case the spins are notall collin-
ear. An example of this kind of extrema are the solito
of the 1-dimensional periodic spin chain@12#. By Gold-
stone’s theorem there arethreezero modes correspond
ing to the generators of SO~3!. Their action on a particu-
lar configuration can be visualized as follows: tw
generators correspond to global rotations of the extre
configuration. The third effects an infinitesimal SO~2!-
rotation of the configuration along the axis of aparticu-
lar spin. Thus type II extrema fall into classes@ g̃# II
modulo SO~3! rotations. A particular representative o
8-7
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MARTIN SCHADEN PHYSICAL REVIEW D 59 014508
such a class is selected by specifying the direction
one of the spins, sayŝ0 and the direction ofŝ03 ŝj ,
wheresj is a specific spin of the configuration that isnot
collinear to s0 . There is thus a one-to-one correspo
dence between configurations in@ g̃# II and the points of
a 3-dimensional sphereS3 .

The above classification of the extrema ofV@g# is complete
in the sense that there are no othercontinuoussymmetries
relating extremal configurations.

ExpandingV@g# and Fi@1g# to quadratic-, respectively
linear-, order near an extremumg̃ one has

V@g5g̃eu#5V@ g̃#2(
i

Tr u i
†Mi@1g̃,u#1O~u3!

Fi@1g#5Mi@1g̃,u#1O~u2!. ~57!

For the saddle point evaluation it is useful to expand in ter
of eigenvectors of the 2N linear equations

Mi@1g̃,f~n!#5l~n!f i
~n! , n51,2,. . . ,2N ~58!

where the eigenvaluesl (n) and eigenvectorsf (n) implicitly
depend on the extremumg̃. Since V@g# in Eq. ~56! is a
globally SO~3! invariant real function of the spins, Eq.~57!
implies that the eigenvaluesl (n) are real and depend only o
the class@ g̃# of the extremal configuration~and not on the
particular representative of that class!. Since the quadratic
form in Eq. ~57! is real, the eigenvectorsf (n) furthermore
can be chosen to form a complete orthonormal set with
spect to the inner product

^num&5 (
sites

Tr f i
~n!†f i

~m!5dnm . ~59!

In the vicinity of an extremal configurationg̃, the action
SGF

eff is of the form@using the expansions~57!#,

SGF
eff @a;g̃eu,c,c̄#;(

i
TrF 1

2a
Mi

†@1g̃,u#Mi@1g̃,u#

2 c̄iM i@1g̃,c#1a c̄i
2ci

2G , ~60!

up to terms of orderu3, respectivelyucc̄. Since we omitted
terms of orderu3 and u c̄c in the expansion~60!, retaining
the quartic ghost interaction could appear questionable.
will however soon see that the sole purpose of the qua
ghost interaction to leading order ina is to absorb Grass
mannian zero-modes. The neglected terms are higher o
variations of the Morse-potential and therefore do not cou
to the zero-modes. Theleadingcontribution ina can thus be
calculated using Eq.~60!. Note also thatMi@U,u# given by
Eq. ~20! is anti-Hermitian.

To diagonalize the quadratic form in Eq.~60! we expand
u,c andc̄ in the complete set of orthonormal eigenvectors
Eq. ~58!
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u j5 i(
n

j~n!f j
~n! , cj5(

n
c~n!f j

~n! , c̄ j5(
n

c̄~n!f j
~n!† ,

~61!

with real coefficients j (n) and Grassmannian variable
c(n),c̄(n). In terms of these coefficients the action~60! in the
vicinity of the extremumg̃ takes the form

SGF
eff @ g̃,a;$j~n!,c~n!,c̄~n!%#

;(
n

F 1

2a
j~n!l~n!

2 j~n!2 c̄~n!l~n!c
~n!

1a(
klm

Rklmnc̄
~k!c̄~ l !c~m!c~n!G , ~62!

with

Rklmn5 (
sites

Tr f i
~k!†f i

~ l !†f i
~m!f i

~n! . ~63!

The change of basis~61! diagonalizes the quadratic part o
the action near an extremum. The remaining quartic gh
interaction is irrelevant for the semi-classical evaluationex-
ceptfor Grassmannian zero-modes that do not enter quad
cally.

As noted above, extrema of type I are characterized
two zero-modes with vanishing eigenvalues. I will deno
these eigenvectors byf (1),f (2) in the following (l (1)
5l (2)50). The SO~2! symmetry of type I extrema also im
plies that the dimension of the space of solutions to a gi
eigenvalue iseven@there are no SO~2!-invariant eigenmodes
in this case#. We thus can arrange matters so thatl (2m)
5l (2m21) , m51, . . . ,N.

There are on the other handthreezero-modes for type II
extrema, which I will labelf (1),f (2),f (3), with l (1)5l (2)
5l (3)50.

In a semi-classical evaluation ofZ̃@1# the zero-modes
have to be handled with care. The introduction of collect
coordinates for the bosonic zero modes is standard@13#:

~i! The representatives in a class@ g̃# I of type I extrema,
are described by two collective anglesu,w which ~for
instance! denote the direction ofŝ0 , the spin at a par-
ticular site.

~ii ! a particular representative in a class@ g̃# II of type II
extrema is specified by three collective anglesu,w,c.
u,w again give the direction ofŝ0 , while cP@0,p#
can be chosen to denote the direction ofŝ03 ŝj ,
whereŝj is a particular spin that isnot collinear toŝ0 .
The range of c is restricted to @0,p#, since c
P@p,2p# are equivalent configurations~as can be
seen by interchanging the meaning ofŝ0 andŝj in the
above definitions of the angles!. These three collec-
tive angles parametrize anS3 .

In terms of the anglesu i ,w i parameterizing the cose
SU~2!/U~1! as in Eq.~54!, the Haar-measuredgi is propor-
tional to
8-8
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E dgi→E dhiE
S2

dV i5E dhiE
0

p

sin u idu iE
0

2p

dw i ,

~64!

wheredhi is the Haar-measure of the U~1! group. After the
change of variables~61! the bosonic measure in Eq.~41! for
sufficiently small fluctuationsj (n) near an extremal solution
g̃ thus becomes

)
sites

dgiU
g̃

5VH)
n51

2N

dj~n!. ~65!

For l (n)Þ0 the fluctuationj (n) is of orderAa and the ap-
proximation~65! in this case is valid for sufficiently smalla.
The coefficients of bosonic zero-modes on the other hand
not suppressed. These fluctuations generate~small! SO~3!
rotations of the extremal configurationg̃ and are replaced by
integrations over the collective coordinates of the extrem
configurations in the corresponding class@ g̃#. The correct
semi-classical measure for the integration of bosonic fluc
tions around a class of type I extrema thus is

)
sites

dgiU
[ g̃] I

5VHS E
S2

dV2D )
n53

2N

dj~n!, ~66!

wheredV25sinududf is the parametrization of theS2 in
terms of the collective coordinates. Similarly the sem
classical measure for a class of type II extrema is

)
sites

dgiU
[ g̃] II

5VHS E
S3

dV3D )
n54

2N

dj~n!, ~67!

wheredV35sinududf sin2 cdc is the parametrization ofS3
in terms of the collective angles. The Jacobian for the cha
of basis ~61! is a constant and the measure for t
Grassmann-coefficientsc(n),c̄(n) thus can be written

)
sites

d2cid
2c̄i5 )

n51

2N

dc~n!dc̄~n!. ~68!

Using Eq. ~46!, Eq. ~62! and the appropriate sem
classical measures~66!, ~67! and ~68!, the saddle point
evaluation ofZ̃@1# gives

Z̃@1#5 lim
a→01

a2NE )
sites i

dhidV id
2cid

2c̄ie
2SGF

eff [1g,c,c̄;a]

5VHH(
[ g̃] I

ZI~@ g̃# I !1 (
[ g̃] II

ZII ~@ g̃# II !J , ~69!

with the semi-classical weights

ZI~@ g̃# I !5 lim
a→01

a2NE
S2

dV2)
n53

2N

dj~n!)
n51

2N

dc~n!dc̄~n!

3exp$2SGF
eff @ g̃~V2!,a;$j~n!,c~n!,c̄~n!%#%, ~70!
01450
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ZII ~@ g̃# II !5 lim
a→01

a2NE
S3

dV3)
n54

2N

dj~n!)
n51

2N

dc~n!dc̄~n!

3exp$2SGF
eff @ g̃~V3!,a;$j~n!,c~n!,c̄~n!%#%,

~71!

of a class of extrema of type I, respectively type II. T
crucial observation that enables us to actually computeZ̃@1#
is that the weightZII vanishes. It vanishes due to the 3rd

zero-mode of type II extrema. The argument goes as follo
In Eq. ~71! we may perform the bosonic and fermionic int
grations of all modes except the zero-modes correspon
to n51, 2 or 3. The integrals are Gaussian and the qua
ghost interaction in Eq.~62! to leading order ina does not
contribute to these integrations. The Grassmann integra
of a pair c(n),c̄(n) and the corresponding bosonic integr
over j (n) for nÞ1, 2 or 3 results in a factor proportional to

l~n!A a

~l~n!!
256Aa, ~72!

depending on whetherl (n) is a positive or negative eigen
value ~l (n)Þ0 for nÞ1,2,3!. We can perform 2N23 inte-
grals in this fashion and the expression forZII to leading
order ina ~up to an irrelevant finite anda-independent nor-
malization! becomes

ZII ~@ g̃# II !5 lim
a→01

6a23/2E
S3

dV3E )
n51

3

dc~n!dc̄~n!

3expF2a (
klmn

Rklmnc̄
~k!c̄~ l !c~m!c~n!G

5 lim
a→01

68p2a21/2R1212E dc~3!dc̄~3!

50. ~73!

The coefficient of the leading term in the loop expansion
ZII vanishes due to two uncompensated Grassmann mo
The integration over the corresponding bosonic zero-mo
is finitebecauseS3 is compact.@This is in agreement with the
Poincare´-Hopf theorem which states that the contribution
such a class of extrema is proportional tox(S3)50.# The
objection that we only computed the coefficient of the te
of order 1/Aa and that higher orders of the loop expansi
could lead to a finite result does not hold, because the
rametera in this calculationis the loop parameter. Correc
tions to the above result thus are at least of orderAa and
vanish in the limita→01 . The weightZII of a single class
of type II extrema therefore indeed vanishes. With a fin
number of spins one furthermore expects only a finite nu
ber of such classes. In this case the total contribution of t
II extrema toZ̃@1# also certainly vanishes. Thus the numb
of classes of type II extrema for the 1-dimensional perio
8-9
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MARTIN SCHADEN PHYSICAL REVIEW D 59 014508
spin chain is given by its length. Since none of our arg
ments explicitly depend on the dimensionality of the lattic
it is safe to conclude that type II extrema give a vanish
contribution toZ̃@1# on any finite periodic lattice.

The semi-classical weight of a class@ g̃# I of type I ex-
trema on the other hand doesnot vanish. These are solution
of Eq. ~51! where all the spins are collinear. As noted befo
the SO~2!-invariance of such an extremal configuration im
plies that for every eigenvectorf (2m), there is also an or-
thogonal onef (2m21) to the sameeigenvalue. The latter is
just an SO~2! rotation by 90° around the common spin ax
of the first. Eigenvalues thus come in pairs. Proceeding
before and performing the 2(N21) bosonic and Grassman
integrals overj (n), c(n) andc̄(n) with nÞ1,2 in Eq.~70!, one
obtains~again up to an irrelevant finite anda-independent
overall normalization!

ZI~@ g̃# I !5 lim
a→01

a21E
S2

dV2E )
n51

2

dc~n!dc̄~n!

3expF2a (
klmn

Rklmnc̄
~k!c̄~ l !c~m!c~n!G

54p~4R1212!58p/N, ~74!

for the weight of any class of type I extrema. To evalua
R1212 in Eq. ~74! I used the zero-modesf (1) andf (2) corre-
sponding to global rotations of the extremal configurat
and normalized by Eq.~59!. For a collinear spin configura
tion of type I these zero-modes are readily found and
result forR1212 defined by Eq.~63! does not depend on th
~collinear! configuration. Note that the semi-classical weig
ZI of each class is the same. By suitably normalizing
Haar-measure, we can thus setZI(@ g̃# I)52 for any class
@ g̃# I . @I choose this normalization of the weight in acco
dance with the Poincare´-Hopf theorem, where the contribu
tion of anS2 manifold of extremal solutions is normalized
x(S2)52.# Relative to the direction of one of the spins, th
other collinear spin can be either parallel or anti-paral
There are thus 2(N21) classes of extremal configurations
type I and we finally obtain~with the conventional normal
ization!

Z̃@1#52N5x„~S2!N
…5x~G/H!Þ0, ~75!

in complete agreement with the Poincare´-Hopf theorem.

V. GAUGE FIXING OF THE RESIDUAL U „1…
GAUGE GROUP

In the last three sections we have shown that the parti
gauge fixed U~1!-invariant LGT is normalizable and repro
duces the expectation values of gauge-invariant physical
servables of the original SU~2! LGT. The lattice action~36!
is local, invariant with respect to the Abelian lattice gau
group H and preserves the space-time symmetries of
lattice. This model could be of considerable interest in
numerical investigation of LGT because its structure grou
Abelian. Following the procedures of@14# one perhaps can
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also derive a correspondingdual lattice model.
A perturbative evaluation however requires a further

duction of the U~1! structure group to a discrete one. Fo
crand and Hetrick@15# presented an elegant algorithm
uniquelyand covariantly fix the gauge of an Abelian LGT b
Hodge decomposition. Their procedure solves the prob
of covariant Abelian gauge fixing from a numerical point
view. The algorithm is however non-local and I have n
been able to derive the corresponding effective gauge fi
action it generates. Recently an alternative solution@16# was
suggested that corresponds to a certain coherent super
tion of Sharpe’s gauges@2#. To apply these gauge-fixing
ideas to the Abelian subgroup of SU~2! is not entirely trivial
nor very transparent and will not be pursued here. It has b
argued@2,17# that a BRST-symmetric local ‘‘covariant’’ lat-
tice action of the link-variables that is physically equivale
to a U~1! LGT with well-defined lowest order continuum
propagators does not exist. This is in agreement with
topological considerations. From the topological point
view this problem is a consequence of the fact th
x@U(1)/Zn#5x@U(1)#50 for any~finite! discrete subgroup
Zn,U(1). Thepartition function of a TLT that localizes on
a gauge fixing surface derivable from a Morse potential
the U~1! case thus vanishes~and consequently also the pa
tition function of the ‘‘gauge-fixed’’ BRST-invariant model!.
Unfortunately the ‘‘linear’’ covariant gauge condition tha
gives well-defined continuum propagatorsis the Lie-
derivative of a Morse function@18#.

Requiring that a non-Abelian gauge-fixed local lattice a
tion leads to well-defined propagators in the~naive! con-
tinuum limit could however simply be too much to ask—th
continuum model is after all related to the continuum gau
group, which is non-compact and topologically quite diffe
ent from the compact structure group of the lattice. We
fact can demand that a loop expansion of the gauge-fix
non-AbelianLGT makes sense although the naive continu
propagators are ill-defined. One should stress in this con
that a loop expansion of lattice correlators coincides with
conventional perturbative expansion only for vanishi
~bare! coupling g2. The loop expansion is obtained by e
panding thefull bosoniclattice measure in the vicinity of its
maximum for small butfinite bare coupling. Additional qua-
dratic terms of sub-leading order ing2 arise in such an ex-
pansion of the effective action from the Haar-measure
well as the ghost-~and possibly the fermionic-! determinants.
The quadratic terms from the ghost-determinant and
Haar-measure generally are not transverse in a non-Abe
LGT and thus lead to well-definedlattice propagators. For
sufficiently small couplingg2, the transverse~physical! part
of these lattice propagators is dominated by the naive c
tinuum expression whereas the longitudinal part is forma
of order 1/g2. The loop expansion should nevertheless res
in ananalytic g2-expansion of gauge invariant~physical! lat-
tice correlators. The loop expansion of unphysical corre
tion functions generally will not be analytic ing2. This sys-
tematic expansion of the bosonic lattice measure is perh
rather similar to the phenomenologically successfultadpole
improvedlattice perturbation theory@19#.

One can isolate the classical configuration maximizin
8-10
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the measure with respect to~lattice! gauge transformation
by reducing the gauge symmetry of the Abelian LGT cov
riantly while preserving a BRST-symmetry. The partitio
function of the corresponding TLT simplymust notbe pro-
portional to the Euler characteristic of the U~1! structure
group. One has to choose somenon-vanishingtopological
invariant of the group manifold—such as the number of c
nected components. The construction of such a TLT belo
based on a nilpotent BRST-symmetryd and proves that a
local Z2 LGT is physically equivalent to the original SU~2!
LGT. A numerical simulation of thisZ2 LGT is furthermore
hardly more complicated than the simulation of the partia
fixed U~1!-invariant model.

The key to a further reduction of the continuous gau
symmetry of the U~1!-invariant lattice theory in our case i
the Nakanishi-Lautrup fieldbi that was introduced by the
equivariant BRST-construction. It is a Hermitian scalar th
is chargedunder the U~1!. At every site it is of the form

bi5Bit11Bi* t2 , ~76!

whereBi is a complex number andBi* its complex conju-
gate. Parametrizinghi5e2iw it0PU(1), with wP@0,2p), one
observes thatBi transforms as

Bi
h5e2iw iBi , ~77!

under the residual U~1!. We thus have the option to fix th
phase of the Nakanishi-Lautrup field and thereby reduce
gauge invariance of the model to the discrete gauge gr
Z2,U(1) ~we cannot do better, since the Nakanishi-Lautr
field is oblivious toZ2 gauge transformations of the lattic
configuration!. We can for instance require thatB is a real
and positivefield. The corresponding measure in the gau
fixed functional integral becomes

E d2bj ——→
U~1!→Z2 E

0

`

BjdBj . ~78!

Note that the integration is overpositive real variablesBj
only. ~An unconstrained integration over all real values ofBj
would lead to a vanishing partition function of the corr
sponding TLT which can then be shown to be proportiona
the Euler character ofS1 .!

We can perform the integration of the Nakanishi-Lautr
field bi also in the Z2 LGT. Due to Eq. ~18! the anti-
Hermitian field F j@U# at each site is given by a comple
numberf j@U# and may be written

F j@U#5t1 f j@U#2t2 f j* @U#. ~79!

Using Eq.~78! and Eq.~24! theB-dependent bosonic part o
the partition function for theZ2 LGT is local and propor-
tional to

)
sites

E
0

`

BidBie
22iBi Im f i [U] 2aBi

2
} )

sites
PS Im f i@U#

Aa
D ,

~80!

with the complex weight functionP,
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P~x!512xe2x2S iAp1E
2x

x

et2dtD , ~81!

related to the error function on the imaginary axis. Note t
P(2x)5P* (x) and that f i@U#52 f i@U†#, i.e. f i changes
sign when the direction of all the links is reversed. The e
pectation value of Hermitian observables of the link va
ables is thus real. From Eq.~81! we observe that the loca
measureP(x;`);1/(2x2) does not vanish exponentiall
for large values ofx5Im fi@U#/Aa. uP(x)u however de-
creases monotonically and peaks atx50. For sufficiently
large lattices P(x) can be approximated byP(x)
;exp@2iApx2(22p/2)x2# up to terms that are irrelevan
in the critical limit of the model. Note that the total phase
the measure in this limit is proportional to( i Im fi@U# and
vanishes on a periodic lattice. Expanding near the trivial c
figuration U51, it is readily seen that Imfi@U;1# is not
linear in all longitudinal fluctuations. In agreement with th
previous discussion, the modification of the lattice action
a term proportional to (Imfi@U#)2 does not lead to well de
fined ~naive! continuum propagators.

To exhibit the BRST-structure of this U~1! gauge fixing
and relate it to a TLT, we note that it can be obtained
inserting

ZU~1!@B#5 )
sites

Z@Bi #, ~82!

in the functional integral. Here the local TLT ‘‘partition
function’’ at each site is simply the integral

Z@x#5 R
uzu51

z* dzuxz1x* z* u

3d„i ~xz2x* z* !…. ~83!

The integration of the U~1!-group elementhiPU(1) in Eq.
~83! is here written as a contour integral ofz along the unit
circle in the complex plane. Equation~77! shows that one in
principle has to integrate twice over the unit circle. Th
however just introduces an irrelevant factor of 2 in Eq.~83!.

If Z@x# is a non-vanishing constant one can insert Eq.~82!
in the functional integral and change variables to factor
the group volumeVH and arrive at the effective measure~78!
of the gauge-fixed model. Performing the integrations in E
~83! one explicitly finds thatZ@x# does not vanish and fur
thermore does not depend onx. The integralZ@x# is thus a
topological invariant of the circleS1 . The corresponding to-
pological model with local ‘‘action’’ can be explicitly con
structed by exponentiating all the factors in Eq.~83!. Intro-
ducing real bosonic variablesu,v and Grassmann variable
h,h̄,n,n̄ one can rewriteZ@x# as the integral

Z@x#5 R
uzu51

z* dzE E
2`

`

dudvdhdh̄dndn̄

3e2S[xz,u,v,h,h̄,n,n̄] , ~84!

with the local ‘‘action,’’
8-11
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S@a,u,v,h,h̄,n,n̄ #

5u~a2a* !1~a1a* !„v2~a1a* !1hh̄1nn̄….

~85!

Performing the Grassmann integrals overh̄,h,n̄,n and the
ordinary Gaussian integral overv in Eq. ~84! gives ua
1a* u. The integration overu leads to the constrainta
5a* . To show that Eq.~84! with action~85! is a topological
integral of Witten type, we verify thatS is exact with respec
to a nilpotent symmetryd defined on the~local! variables as

dx50

dz5zh, dz* 52z* h, dh50

da5dxz5ah, da* 52a* h

dh̄5u1nn̄1v2~a2a* !,

du52nn̄h2v2~a1a* !~n1h!

dn̄5 n̄~n2h!22v2a, dv52vn/2, dn50. ~86!

Using the algebra~86! it is straightforward to show thatd is
nilpotent,d250. Note thatzz* 51 and~consequently! aa*
are invariants. I obtained Eq.~86! by demandingdx50 and
dz5zh, i.e. by ghostifying the U~1! transformation. To-
gether with the nil-potency ofd these assumptions imply th
first three lines of relations in Eq.~86!. The remainder of the
algebra was found by demanding that the action~85! is d-
closed. I unfortunately can offer no further insight for th
construction of the algebra~86! which appears to be far to
involved for the problem it solves. At the end of the day o
obtains that the action~85! is thed-exact expression

S@a,u,v,h,h̄,n,n̄ #5d„h̄~a2a* !22n̄a* …. ~87!

This shows that Eq.~84! can be interpreted as a topologic
invariant of Witten type. This invariant does not vanish a
is not proportional to the Euler character of U~1!. The only
independent topological invariant of a circle is the number
its connected components@the lowest Betty numberb0(S1)
515b1(S1)#. This topological characteristic, like the Eule
character of a manifold, is multiplicative, i.e.b0(M13M2)
5b0(M1)b0(M2) for any two compact manifoldsM1 and
M2 . We can evidently choose to normalize Eq.~83! so that
Z@x#5b0(S1)51 and then interpret the partition functio
ZU(1)@B# of Eq. ~82! as the number of connected comp
nents of the U~1! gauge group of the lattice. The TLT con
struction supports the claim@8# that gauge fixing is equiva
lent to the construction of a TQFT on the gauge group wh
partition function doesnot vanish.

VI. THE AUXILIARY FIELD r

In the Appendix the Grassmannian fields are integrate
favor of a non-local measure~A19! for the gauge fixed LGT.
It is thus in principle possible to numerically simulate theZ2
LGT. We have shown that such a simulation would rev
01450
f

e

in

l

nothing new forgauge invariantphysical observables. Th
reason for constructing a physically equivalent covari
LGT with a much smaller invariance group was to gain
betteranalytical understanding of the model in the critica
limit. The best we could do was a reduction of the contin
ous SU~2! gauge symmetry of the original LGT to a discre
Z2-structure group. The natural question to ask is whet
this discrete gauge group is spontaneously broken. Altho
there is no gauge invariant physical order parameter, whe
or not this symmetry is broken could shed some light on
dynamics of the model.

Here I will however only discuss the role of the auxilia
scalar fieldr i introduced to linearize the quartic ghost inte
action. I will show that the bosonic measure is maximal a
non-trivial ~constant! r i . This is crucial for a loop expansion
of physical observables of the lattice model. I first show th
the effective measure for the fieldr i is non-trivial and gauge
invariant. Consider the weight of Eq.~A17! as a function of
the link configurationU and the auxiliary variabler inte-
grated over the gauge groupG:

Q@U,r;a#5E )
sites

dgiW@Ug,r;a#. ~88!

By construction the observableQ is gauge invariant

Q@Ug,r;a#5Q@U,r;a#, ~89!

for any configurationr. We furthermore know from the pre
vious sections that on any finite lattice,

N~a!5E )
sites

dr iQ@U,r;a#, ~90!

is a non-vanishing~finite! normalization constant that doe
not depend on the link configurationU. The two results@Eq.
~89! and Eq.~90!# imply that one can define a normalizab
measureW@r# for the scalar fieldr

W@r;a,g2#5^Q@U,r;a#& inv. . ~91!

Here the expectation value on the RHS is with the origi
SU~2!-invariant measure. Equation~90! implies thatW@r# is
normalizable and does not vanish identically. The meas
~91! for the configurationsr is therefore non-trivial. Upon
changing variablesU→Ug in the gauge-invariant RHS o
Eq. ~91! we can decouple the integration over the gau
groupG and equivalently write

W@r;a,g2#5^1&r , ~92!

where^O&r , given by

^O&r5E )
l inks

dUi jO@U,r#W@U,r;a#e2Sinv.[U] , ~93!

is the expectation value of agauge invariant function
O@U,r#5O@Ug,r# for a given configurationr of thegauge-
8-12
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fixedmodel. Due to Eq.~88! computing Eq.~93! for gauge
invariant observablesO is entirely equivalent to evaluatin
the gauge-invariant correlator

^O&r5^Q@U,r;a#O& inv. , ~94!

with the SU~2!-invariant measure of the SU~2! LGT.
A perturbative evaluation of theZ2 LGT should at least

retain those configurationsr̄ for which ^O&r̄ ~and in particu-
lar ^1&r̄! do notvanish in the limitg2→0. I argue that these
are configurations in the vicinity of non-trivial constant co
figurationsr̄ i5const only.

In the limit g2→0, the gauge invariant actionSinv.@U# on
a finite lattice constrains the configuration spaceU to the
subset of pure gauge configurationsUi j 5gigj

† . As we have
seen in Sec. IV there are at least two zero modes of
quadratic form in Eq.~25! in this case: they correspond t
global rotations of the gauge spinsŝi . These zero-mode
were shown to be absorbed by the quartic ghost interac
of Eq. ~25!. In the linearized version~26! of the model these
zero-modes couple to the auxiliary fieldr only. The deter-
minant in Eq.~A17! and consequently Eq.~93! for a finite
lattice thus vanish in the limitg2→0 for configurationsr
that satisfy

(
i

r i Tr@t0 ,f i
~1!†#f i

~2!50, ~95!

where f i
(1) ,f i

(2) are the two global zero modes of a pu
gauge configuration. Since theglobal zero-modes rotate al
the spins equally, the vectorv i

Tr@t0 ,f i
~1!†#f i

~2!5v i5const, ~96!

has constant entries irrespective of the pure gauge con
ration being considered. Equation~95! implies that ^1&r

→0 in the limit g2→0 on anyfinite lattice if the configura-
tion r is orthogonal tov i , i.e. has no constant componen
Note that this is true for any value ofaÞ0.

The argument above is however true only in thewrong
limit where one takesg2→0 beforeconsidering the thermo
dynamic limit N→`. In the thermodynamic limit one ca
only say that the relevant configurations in the limitg2;0
are ~in a statistical sense! in the vicinity of pure gauge con
figurations. One nevertheless would expect that configu
tions r with large contributions tô 1&r are also in some
sense close to nontrivial constant ones. More precisely,
argument above and the considerations of Sec. III indic
that a loop expansion of the gauge fixedZ2-model on afinite
lattice in the vicinity of a~particular! pure gauge configura
tion is sensible only forr i5 r̄ i5constÞ0. We otherwise
would expand about a configuration that has vanish
weight.

The covariant loop expansion of theZ2-model can in fact
be examined in more detail and also gives some insight
the critical limit of the model on an infinite lattice. Consi
tency requires that the value ofr̄ be determined order by
order of the loop expansion by

^r i&5 r̄, ~97!
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with ^r i& given by Eq.~A19!. At the ‘‘tree’’-level of the loop
expansion for thebosonic measure~97! implies that the
unique maximum of the measure is atr̄ tree which is the
solution of

]

]r̄
W@Utree,r̄;a#U

r̄ tree

50, ~98!

for a pure gauge configurationUtree that satisfies the gaug
condition,

Im f i@Utree#50. ~99!

As far as the perturbative expansion of gauge invariant
servables is concerned, we may choose anyone of the 2N

~gauge equivalent! configurationsUtree that contribute to the
partition function. These were obtained in Sec. IV and c
respond to collinear gauge spins. We may then solve
~98! to obtain the appropriate value ofr̄ tree. In fact, r̄ tree is
the same for any one of the 2N discrete ‘‘vacua’’ due to the
gauge invariance~91! of W@r#.

The simplest~perturbative! vacuum configuration for the
links, and the only one that leads to a covariant perturba
expansion, isUi j

tree51. With periodic boundary conditions
for the lattice, detM@u51,v50,r# is readily calculated for
constantr i5 r̄. One can diagonalizeM@1,0,r̄ # in the basis
of eigenvectorsXi(nW ) of the Hermitian matrixA@1# given by
Eq. ~A14!,

A@1#•X~nW !5DnWX~nW !, ~100!

where

DnW524 (
m51

D

sin2~pnm /L !, nm51, . . . ,L ~101!

are the eigenvalues of the Laplace-operator of
D-dimensional hyper-cubic lattice withLD5N sites. The ei-
genvalues ofM@1,0,r̄ # are

l6
~nW !5DnW6 i r̄, ~102!

and detM for the vacuum configuration therefore is

detM@1,0,r̄ #5)
nW

~DnW
21 r̄2!. ~103!

As expected, the determinant~103! vanishes forr̄→0 like
r̄2 on any finite lattice. The determinant~103! is furthermore
a monotonically increasing positive function ofr̄2. For r̄2

@D, the determinant behaves asM@1,0,r̄@D#;r̄2N

5eN ln r̄2
. Comparing with the monotonically decreasing e

ponente2Nr̄2/(4a) in W, we see that the maximum isunique
and of orderr̄2;4a for largea. For a perturbative expan
sion we are however interested in the value for the maxim
at ~arbitrary! small a;0 for which gauge fluctuations ar
suppressed. In this limit we expectr̄2;0 also. Using Eq.
~103!, Eq. ~A17! and the definition~91!, the unique value
r̄(a) where the weightW@ r̄(a);a,g2;0# is maximal to
lowest order in the loop expansion is the solution of
8-13
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(
nW

1

DnW
21 r̄2 5

N

4a
. ~104!

For afinite lattice this gap equation would have to be solv
numerically. In the thermodynamic limit, the summations
Eq. ~104! can be performed. In this limit~104! on a periodic
D-dimensional lattice becomes

E
0

`

dx
sin~xr̄ !

r̄
„e22xI 0~2x!…D5

1

4a
, ~105!

whereI 0(x) is the Bessel function of zeroth order at imag
nary arguments. Equation~105! is obtained by exponentiat
ing the summand in Eq.~104! and using the identity

lim
L→`

1

L (
n51

L

e22x sin 2~pn/L !5
e2x

2p E
0

2p

ex cosfdf5e2xI 0~x!.

~106!

The asymptotic behavior ofI 0(x;`);ex/A2px shows that
the integral in Eq.~105! converges forr̄Þ0 in any dimen-
sion. In D,4 dimensions the integral behaves liker̄ (D24)/2

for r̄;0. At the upper critical dimensionD54 its behavior
is logarithmic. For sufficiently smalla, Eq. ~105! in D54 is
well approximated by

ln
r̄2

k4 52
2p2

a
1O~ r̄ !, ~107!

where the constantk is given by

ln
k2

4p
512gE14p2E

0

`

dxxF „I 0~x!e2x
…

42
1

114p2x2G
52.26098. . . . ~108!

For a;0, Eq. ~107! determines the optimalr̄ of the corre-
sponding vacuum configuration (U51,r̄) for the perturba-
tive expansion inD54 dimensions. Note that the relatio
~107! is not affected by physical fermions~i.e. quarks!. The
corresponding fermionic determinant is gauge invariant, d
not depend on the auxiliary fieldr and does not vanish at th
pure gauge configurationU51. This contribution to lowest
order in the loop expansion can thus be absorbed in the
malization ofW. The critical limit g2,a→0, of the LGT can
be interpreted as a quantum field theory by assigning a s
ing a to the lattice and defining continuum fields. The co
tinuum fieldr̃(x) has canonical dimension 2 and is related
r by r i5a2r̃(xi). In the critical limit ~107! is the tree-level
statement

^r̃~x!&5~k2/a2!e2p2/a, ~109!

for the continuum fieldr̃(x). Because of Eq.~91!, ^r̃& is a
physical gauge invariant quantity and we could regard
LHS of Eq. ~109! as a constant physical scale of the mod
In this case Eq.~109! is the expression for dimensional tran
mutation of the gauge parametera to lowest order. On the
other hand the physical asymptotic scale parameterLL of the
01450
s
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lattice to this order in the loop expansion is related to
couplingg2 and the lattice spacinga by

a2LL
25e224p2/~112nf !g

21O~ ln g2!. ~110!

LL is a finite physical scale in the critical limit of the SU~2!
LGT with nf fermionic flavors. Equation~109! singles out a
particular gauge ā(g)5g2(112nf)/241O(g4) in which
^r̃(x)& scales like a physical quantity in the critical limi
that is

^r̃&5k2LL
2 for a5ā5g2~112nf !/241O~g4!.

~111!

In this critical gauge the loop expansion of gauge invaria
correlators automatically produces power corrections~in r̄
Þ0! that scale correctly in the critical limit. Note that th
power corrections of the loop expansion vanish expon
tially compared to LL in the critical limit for gauges
limg→0 a/g2,(112nf)/24 and dominate the correlations
gauges limg→0 a/g2.(112nf)/24—a sign that the
asymptotic expansion does not make much sense in s
gauges. We know on the other hand thatphysical power
corrections do arise in the full theory. In critical gauges w
limg→0 a/g25(112nf)/24 they also arise in the loop expan
sion of the gauge-fixed model. It is justified to call the
gaugescritical because they delineate the domain of valid
of the loop expansion.

To check the assertion thatr̄ scales like a physical quan
tity in critical covariant gauges, one should evaluate
anomalous dimension ofr̃. From the foregoing one expect
this anomalous dimension to vanish to leading order in
gaugeā(g)5g2(112nf)/241O(g4). It is then possible to
adjust the critical valueā(g) order by order in the loop
expansion so that the anomalous dimension ofr̃ vanishes to
all orders. I only wish to stress here that the existence of s
a critical gauge is a direct consequence of the fact that
ghost determinantM @U51,r# vanishesfor r50. If it were
finite at r50, we would have been justified to expand pe
turbatively aroundr̄50 for sufficiently small values ofa. In
actual fact Eq.~105! hasno solutionfor a→0 in D.4 di-
mensions: in the thermodynamic limit the weightW@r,a#
peaks atr̄50 for a less than some critical value inD.4
dimensions. InD<4, r̄50 is however only approached a
a→0 and the weightW is maximal at a nontrivial value ofr̄
for any non-vanishinga.

VII. SUMMARY AND COMMENTS

In the foregoing we constructed a LGT with a discre
structure groupZ2 that is physically equivalent to the stan
dard SU~2! LGT. The Z2-model possesses all of the spac
time symmetries of the original LGT. The reduction of th
gauge group was shown to be equivalent to the formula
of a TLT on a coset, respectively group, manifold. Care w
taken to ensure that the partition function of the TLT’s~and
consequently the partially gauge-fixed LGT’s! are normaliz-
able. On a lattice, using Morse theory to construct a T
whose partition function is proportional to the Euler chara
8-14
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teristic of a compact manifold is a mathematically rigoro
procedure. We saw that this method by itself does not suf
to fix the gauge completely because the Euler characte
the lattice gauge groupG vanishes. To partially fix the origi-
nal SU~2!-gauge symmetry to a discreteZ2 gauge symmetry
we proceeded in two steps.

The gauge invariance was first reduced to the Abe
U~1! gauge group using an equivariant BRST-constructi
We showed that this procedure is equivalent to the formu
tion of a TLT on the coset spaceG/H5@SU~2!/U~1!#N5S2

N

and explicitly proved that the partition function of this TL
is proportional to the Euler characteristic of the coset ma
fold. Since this Euler number does not vanish, the TLT
normalizable and the partially gauge fixed U~1! LGT is
physically equivalent to one with non-Abelian structu
group SU~2!. Although we here only considered an SU~2!
LGT, the procedure can be generalized to fix the gauge o
SU(n) LGT to the maximal Abelian subgroupH
5@U(1)n21#N. This follows by induction from SU(n
11)/@SU(n)3U(1)#.S2n11 /S1.CPn and the fact that the
Euler characterx(CPn)5n11 does not vanish.1 In the case
I considered, the action Eq.~36! of the U~1! LGT is local but
depends on Grassmannian ghosts and includes a 4-gho
teraction. To my knowledge it is the first example of a~par-
tially! gauge-fixed lattice model with an~equivariant! BRST-
symmetry that is proven to be physically equivalent to
original SU~2! LGT also non-perturbatively. It could be con
sidered the first concrete realization of non-Abelian BRS
symmetry in a non-perturbative setting. The construction
the corresponding TLT and the proof in Sec. IV show ho
the Gribov-ambiguity associated with the covariant gau
fixing is circumvented: althoughthere aremany Gribov cop-
ies ~and even whole manifolds of them! associated with any
orbit, they conspire to give a topological invariant@in our
example the Euler characterx(S2

N)52N# that does not de-
pend on the orbit within a connected sector. Since the o
space of a LGT is connected, the existence of Gribov cop
in covariant gauges doesnot invalidate the gauge-fixing pro
cedure if the topological invariant the TLT computes do
not vanish. This is in contradistinction to conventional Dira
quantization of first class constraints@20#, which in principle
is valid only if the solution to the gauge condition isunique.
The formulation of gauge-fixing as a topological model
the moduli-space of the gauge theory perhaps also clar
the dispute@2,16,17# concerning the non-perturbative valid
ity of covariantly gauge fixed models with BRST-symmetr
I believe this procedure in general permits one to han
Gribov ambiguities.

The U~1!-invariant lattice model was subsequently r
duced to one with aZ2-structure group by using th
Nakanishi-Lautrup field of the previous partial gauge fixin
This U~1!-gauge fixing is entirely local and the constrain
can besolvedexplicitly. The gauge fixing can again be re
lated to a corresponding local TLT. The partition function
this TLT is however proportional to the number of connec

1I would like to thank A. Rozenberg for this remark.
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components of the U~1!-gauge group rather than its Eule
character~which vanishes!. The gauge fixing isnot linear
and naive continuum propagators do not exist. I argued
this should not prevent one from considering theloop expan-
sion of theZ2 LGT since the lattice propagatorsdo existfor
any finite value of the coupling.

The maxima of the measure of theZ2 LGT are isolated
and a loop expansion of gauge invariant observables in
vicinity of any gauge-equivalent vacuum configuration
this model is feasible. The price one pays is the considera
more complicated non-local and generally complex meas
of the resulting bosonicZ2 LGT after integration of the
Grassmannian variables. This bosonic partition function
pends on the link variablesUi j as well asa local gauge
invariant scalar fieldr i and on two coupling constantsg2

anda. The former is inherited from the original SU~2! LGT
whereas the latter was introduced by the gauge fixing.

The expectation values of physical gauge invariant
servables of the original LGT~gauge invariant functions o
the link variables only! do not depend ona by construction.
The expectation value of gauge invariant functions of
auxiliary field r i and especiallŷ r i& however generallydo
depend ona as well asLL . We found that the maximum o
the bosonic measure foraÞ0 occurs atr i5 r̄(a)Þ0 and
derived thegap equation~104! relating r̄ to a in lowest
order. In the thermodynamic limit of a 4-dimensional latti
the relation is given by Eq.~107! in the limit of very small
a;0. The most interesting result of this analysis is that
expectation valuê r̃(x)& of the corresponding continuum
field r i5a2r̃(xi) is proportional to the asymptotic scale p
rameter LL

2 in a particular critical gauge ā(g)5g2(11
2nf)/241O(g4). Non-perturbativepower corrections to
physical observables proportional toLL

2k/p2k ~with k>2! ap-
pearcomputablein this critical gauge. In effect this would
imply that the non-perturbative expectation values of W
son’s operator-product-expansion for the asymptotic beh
ior of physical correlators arepart of the asymptotic loop
expansion in thecritical gauge. Although a direct~numeri-
cal! evaluation of physical correlations was shown to be
dependent of the gauge parameter, I argued that theaccuracy
of the asymptotic perturbative expansion may, and gener
does, depend on the gauge. The analysis of the SU~2! LGT
tends to support the conjecture that power corrections
accessible by the loop-expansion in certain covariant gau
A similar mechanism was previously observed in the co
tinuum theory@21#. In this case the expectation value of
scalar moduli-parameter also was related@22# to the scale
anomaly of the model.

If power corrections to physical correlators are inde
computable in critical covariant gauges, the loop expans
in conjunction with dispersion relations could be a power
tool to obtain information on the spectrum of the model. T
phenomenological success of QCD sum-rules@23# suggests
that it might be worth pursuing this possibility.

Apart from these speculations, the topological approac
gauge fixing of a LGT has shown that

~i! gauge fixing of a LGT is equivalent to the constru
tion of a certain TLT of Witten type;
8-15
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~ii ! the gauge-fixed lattice model is normalizable only
the topological invariant computed by the partitio
function of the associated TLT does not vanish;

~iii ! the BRST-symmetry of the gauge fixed LGT is inhe
ited from the associated TLT and is also realized n
perturbatively;

~iv! covariant and BRST-invariant gauge fixing of a LG
is possible and the Gribov ambiguity of these gaug
can be controlled;

~v! quartic ghost interactions arise naturally in the no
Abelian case due to residual global invariances a
are perhaps unavoidable in covariant gauges.

At present this approach appears to be the only system
method that guarantees that the gauge-fixed model iscova-
riant, local and physically equivalentto the original non-
Abelian gauge invariant theory also non-perturbatively.
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APPENDIX: SOME CALCULATIONS
SPECIFIC TO AN SU„2… LGT

The link matricesUi j PSU(2) of an SU~2! LGT,

Ui j 5ui j ~1/21t0!1ui j* ~1/22t0!1v i j t12v i j* t2 ,
~A1!

can be parametrized by two complex numbersui j and v i j
that satisfy the constraint

uui j u21uv i j u251. ~A2!

This parametrization facilitates some calculations in
SU~2! LGT @24#. Below I give expressions for some of th
quantities of the main text in terms of theui j ’s andv i j ’s.

The Morse-potential~14! can be written

V@u,v#5 (
l inks

uv i j u25 (
l inks

~12uui j u2!. ~A3!

U~1! gauge transformations change the phases ofui j andv i j
but not their lengths. An infinitesimal transformationgi;1
PSU~2!/U~1! is of the form

gi511u it12u i* t2 , ~A4!

where theu i are infinitesimal complex numbers. To first o
der, the parametersui j andv i j of a link change by

Dui j 5v i j u j* 2u iv i j*

Dv i j 5u iui j* 2ui j u j . ~A5!

The constraint~A2! to this order is invariant under the tran
formation ~A5!. From Eq.~A5! we obtain that the Morse
function ~A3! changes by
01450
-

s

-
d

tic

.

e

DV@u,v#5 (
l inks

u iv i j* ui j* 2v i j* ui j u j1c.c.

5(
i

(
j ; i

u iv i j* ui j* 1c.c., ~A6!

whereuji 5ui j* andv j i 52v i j was used to rewrite the secon
term. On the other hand Eq.~12! together with Eq.~79!
imply

DV52(
i

~ f i* @U#u i1c.c.!. ~A7!

Comparing Eq.~A7! with Eq. ~A6! one obtains

f i@u,v#52(
j ; i

v i j ui j . ~A8!

We can compute the linear operatorMi@U,c# in analogous
fashion by considering the variation off i@u,v# under infini-
tesimal transformations of the form~A5!. One gets

s fi@u,v#uv505(
j ; i

Ci~ uv i j u22uui j u2!1ui j
2 Cj2v i j

2 Cj* ,

~A9!

where the Grassmann variablesCi ,Ci* are defined by the
decomposition

ci5Cit12Ci* t2 . ~A10!

Similarly decomposingc̄ as

c̄i5C̄it11C̄i* t2 , ~A11!

one obtains for the quadratic form

(
i

Tr c̄iM i@U,c#

5(
i

Tr c̄isFi@U#uv50

52(
i

~C̄is fi@u,v#uv502c.c.!

5(
i

(
j ; i

C̄i~ uui j u22uv i j u2!Ci

1C̄iv i j
2 Cj* 2C̄iui j

2 Cj2c.c. ~A12!

Here ‘‘complex conjugation’’ for Grassmann variables is t
substitutionC,C̄↔C* ,C̄* at each site.

Using Eq.~A10! and Eq.~A11! the interaction with the
real scalar fieldr i in Eq. ~26! is written

(
i

r i Tr t0@ c̄i ,ci #52(
i

r i~C̄iCi* 1C̄i* Ci !. ~A13!

Defining the two complexN3N matrices with entries,
8-16
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Ai j @u#5ui j
2 1d i j (

k; i
~122uuiku2!

Bi j @v,r#5d i j r i2v i j
2 , ~A14!

the integration of the Grassmannian variables in the ga
fixing part of the action~26! results in a weight proportiona
to

detM@u,v,r#, ~A15!

for the remaining bosonic functional integral. The 2N32N
complex matrixM is

M@u,v,r#5S A@u# B@v,r#

B†@v,2r# A†@u#
D . ~A16!

Note the dependence on the auxiliary fieldr in Eq. ~A16!.
For purely imaginaryr i the matrixM is Hermitian and its
eigenvalues~and thus its determinant! are real. The weight
~A15! of a given bosonic configuration with realr i is how-
ever generally complex. One can also corroborate
A@ui j 51# is the lattice Laplacian with exactlyonevanishing
eigenvalue on a periodic lattice.M@1,0,0# thus has exactly
two vanishing eigenvalues corresponding to the two ze
modes of this vacuum configuration that were found in S
IV. The same reasoning shows that, detM@u,v,0# in fact
vanishes for any pure gauge configuration.
s.

,

-

o

01450
e

at

-
c.

Collecting these results, the gauge-fixing weig
W@u,v,r;a# of a given link configuration can be written

W@u,v,r;a#5detM@u,v,r# )
sites

e2r i
2/~4a!

3PS f i@u,v#

Aa
D , ~A17!

where the local weightP(x) depends on whether the SU~2!
LGT is partially gauge fixed to the Abelian U~1! or the dis-
creteZ2 structure group

P~x!5H e2uxu2 for U~1!

P~ Im x! of Eq. ~81! for Z2 .
~A18!

The expectation value of operatorsO@u,v,r# that only de-
pend on the link variables and the auxiliary fieldr can now
be found by~numerically! evaluating the remaining bosoni
integrals in

^O@u,v,r#&5E )
l inks

d2ui j d
2v i j d~12uui j u22uv i j u2!

3 )
sites

dr iO@u,v,r#W@u,v,r;a#

3exp$2Sinv.@u,v#%. ~A19!
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