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| construct a lattice gauge theofyGT) with a discreteZ, structure group and an equivariant BRST
symmetry that is physically equivalent to the standard23WGT. The measure of thiZ, LGT is invariant
underall the discrete symmetries of the lattice and its partition function does not vanish. The topological lattice
theories(TLT) that localize on the moduli spaces are explicitly constructed and their BRST symmetry is
exhibited. The ghosts of thé,-invariant local LGT are integrated in favor of a nonlocal bosonic measure. In
addition to the SIR) link variables and the coupling?, this effective bosonic measure also depends on an
auxiliary gauge invariant site variable of canonical dimension two and on a gauge parameéter relation
between the expectation value of the auxiliary field, the gauge paramatet the lattice spacing is obtained
to lowest order in the loop expansion. In four dimensions and the critical limit this expectation value is a
physical scale proportional td, in the gaugex=g?(11— n;)/24+ O(g*). Implications for the loop expansion
of observables in such a critical gauge are discud®@b56-282(99)00401-4

PACS numbses): 11.15.Ha, 11.10.Jj, 11.15.Bt

I. INTRODUCTION lattice will also be called “covariant” in the following.
While it is relatively simple to reduce the gauge group of a
Euclidean lattice gauge theoGT) is the only known LGT (by say “fixing” a maximal treg, it is apparently not
rigorous non-perturbative definition of a non-Abelian gaugeentirely trivial to obtain acovariantly gauge fixed lattice
theory. In the vicinity of a second order phase transition formeasure that is normalizabj2, 3].
a critical value of the couplings, the LGT can be interpreted |n continuum perturbation theory, the method of choice
as a regularization of a continuum quantum field theory infor covariant gauge fixing is Becchi-Rouet-Stora-Tyutin
Euclidean space-time. Apart from numerical simulations,(BRST) quantization. Such gauges necessaf#y have a
such models also provide a mathematically rigorous fOUﬂdaGribov-ambiguity[5], i.e. an orbit genera”y crosses thﬂ)-
tion for various non—perturbative field theoretic ideas. TheSQ/arian'D gauge f|X|ng surface more than on(m']d some or-
statistical models however also have peculiarities of theipjtg approach this surface tangentiallflthough apparently
own that have no analog in other regularizations of a quancf little relevance for an asymptotic perturbative expansion
tum field theory. this ambiguity does concern the non-perturbative validity of
The discrete lattice by construction is devoid of any no-the gauge-fixed model. In the context of Chern-Simons
tion of “smoothness” and it is difficult to study effects re- theory it was even recently shown that a correct treatment of
lated to topological characteristics of the continuum gaugehe generic gauge zero modes of degenerate background con-

group. The “gauge-group” of a LGT is simply nections is essential for obtaining thénon-trivial)
asymptotic expansion of the modd].
G=®site i, N A valid non-perturbative definition of the gauge fixed

model is also of importance for the lattice. It has been
where the groujis; at thei-th site is isomorphic to the com- pointed out[7] that conventional BRST-invariant Landau-
pact structure grou®. Only the vanishing fraction of lattice gauge in fact counts the intersections of the orbit with a sign
gauge transformations that satisfy a Sobolev norm apparenttypat depends on the direction in which the oriented gauge
correspond to continuum gauge transformatiphkin the  fixing surface is crossed—the “Gribov-ambiguity” in this
critical limit. For lattice perturbation theory and a continuum case would not pose an obstruction to covariant gauge fixing
interpretation of the lattice model it is thus desirable to re-as long as the degree of this map does not vanish. Quite
duce the rather large symmetry of the LGT to a more mangenerally the degree of this map however is zero for a cova-
ageable level. This however has to be done without alteringiantly gauge fixed LGT2].
physical observables of the model. The procedur@sswe For continuum gauge theories the gauge fixing procedure
will see somewhat misleadinglknown as gauge fixing. One was recently seen to be equivalent to the construction of a
hopes that gauge fixing the lattice model would help disentopological quantum field theofT QFT) on the gauge group
tangle lattice gauge artifacts from the physically relevan{8]. It turns out that the partition function of this TQFT is
continuum dynamics. The wild “gauge” group of the lattice usually proportional to the generalized Euler characteristic of
preferably should be tamed in a fashion that assures the gauge group manifold and thus proportional to the “de-
smooth thermodynamic and critical limit of the physically gree of the map” of Sharpe. The TQFT construction shows
equivalent gauge fixed lattice model. In analogy with cova-+that it is a topological characteristic of tigauge grouphat
riant gauges for the continuum theory that preserve all theletermines whether or not the gauge-fixed theory makes
isometries of a space-time manifold, a gauge fixing procesense non-perturbatively. It allows one to continuously de-
dure that preserveall the (discret¢ symmetries of a periodic form the orbit and thus enables one to handle orbits that are
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on a Gribov horizon. One can also show that the partitiongauge configurationand a non-vanishing constant configu-
function of conventional covariantly gauge fixed continuumration p;=p(«) of an auxiliary (gauge invariant bosonic
models on compact space-time indeed vanishes noriield. The uniqgue maximum of this bosonic measure is deter-
perturbatively. The very construction of a TQFT howevermined in the thermodynamic limit of a four dimensional
allows one to address and solve these problgsn@. We lattice.
will see that the method is also a powerful tool in the con-
struction of a physically equivalent and covariantly gauge- |I. EQUIVARIANT BRST: GAUGE-FIXING A SU (2) LGT
fixed LGT. TO A U(D) LGT

The quest for a lattice analog of the elegant BRST- ) ) ) )
formalism of continuum gauge theories has been elusive. Consider aD-dimensional LGT with an S(2) gauge
Neuberger10] first formulated the analog of the conven- group and for simplicity assume that the @ULGT is de-
tional continuum BRST-algebra for the lattice but subse-Scribed by a local actioB,,[U] which depends only on the
quently proved that the partition function of a gauge-fixedlink variablesU[;=U;; e SU(2). Thegeneralization to the
lattice theory with this BRST symmetry is not normalizable case with matter fields is straightforward. The invariance of
[3]. His proof is based on particular properties of the BRST-the measure with respect to the lattice gauge grdypm-
algebra that do not hold for the equivariant BRST construcplies that
tion we will consider below. For the special case of certain

covariant gauge fixings on the lattice, Shafggéhad shown S IU]=S,,[U%9], with Uﬂ =giUi,-ng,
that the degree of the map is zero—and that the partition
function of the gauge-fixed lattice theory therefore vanishes gie SU(2). )

due to the mutual cancellation of contributions from different

Gribov copies. His proof however appeared to depend on the |, ths section we reduce the gauge invariance of the LGT
details of the gauge fixing and raises the question whetheg, the Abelian subgroup

some other covariantly gauge-fixed lattice action can be

found. Sharpe proposed several models whose partition func- H=® (1), 3)
tions do not vanish. In the naive continuum limit some of

them correspond to covariantly gauge fixed actions. Thgsﬁlhile preserving the locality of the measure and its invari-

o . - . Ance with respect to the isometries of the lattice. The result-
qf a periodic '?‘“'C‘?- Determining the correspondmg €ON%ing model will exhibit an equivariant BRST-symmetry and
tlnuurln _model in this case requires a somewhat naive Xwve will prove in Secs. Il and IV that it is equivalent to the
trapolation. original SU2) LGT with regard to physical observables.

BRlSYI'VI” tra?_slat'ge t?e ﬂ:ecentthdeve:pprl?ents n _contlnuumt The construction of the equivariant BRST symmetry is
-quantization to the mathematically more rigorous se analogous to the one in the continuum cp&k Note that an

ting of LGT's on finite lattices. | use an equivariant BRST ; o i) transf i ith=1-+ 6.+ O( 2
construction to reduce the gauge group of anB3WGT to ![2 Ig:deesrlzn?hsr?;g:thrgr:isnlgsrn;?, lon wigh € (€)

a physically equivalent Abelian @) LGT in Sec. Il.[The
generalization of the procedure to other lattice gauge groups
G and subgroup${C g is relatively straightforward. The es-
sential point is to use a subgroudp for which the Euler
characteristic of the coset manifoldG/H) #0.] In Sec. Il |
examine the corresponding topological lattice the@rkT)
and show that it is a constant on the orbit space. The value of

this constant is explicitly computed in Sec. IV at the trivial ) ) .
link configurationU = 1. | verify that the partition function of Wherec; and «; are Lie-algebra valued Grassmannian site

the TLT is indeed proportional to the Euler characterVariables. The reason for the apparently redundant introduc-

Y(GIH=[SU(2)/U(1)]M)=2N+0 and therefore normaliz- tion of two ghostsc; and w; instead of one for their sum is
able. that we can thuspecifythe action of one of these ghosts and

This first step reduces the problem of constructing a co€ventually decompose the Lie-algebra. For the case at hand,
variant and BRST-invariant gauge-fixed LGT to that of W& takew to be the.ghost associated .vvllth the generator of the
BRST-invariant gauge fixing of an(W) LGT. In Sec. V the U@ _subg_roup._ Since our gauge fixing condition will be
presence of local fields that aohargedunder the Abelian Y()-invariant, it is possible to arrange matters so that the
group is utilized to build a TLT that also fixes the residual BRST-invariant action of the physically equivalent(1))
Abelian invariance. The partition function of this TLT is GT does not depend on ”2“9 ghost. Requiring that the
shown to be proportional to the number of connected comBRST-variation be nilpotens”=0, Eq.(5) implies
ponents of the () gauge-group and is thus normalizable.

AU|J:0|U|]_U|J0J+O(€) (4)
We accordingly defin¢10] the BRST-variation olJ;; as

SUij=(Ci+wi)Uij—Uij(Cj+wJ), wiEU(l), (5)

One thus obtains a local and “lattice-covarian?, LGT SG+sw;=(¢+w)?=c/+[w; ]+ wf. (6)
that is physically equivalent to the original 8) LGT. The
loop expansion of thiZ, LGT is examined in Sec. VI. | Here[-,-] is the commutator graded by the ghost number.

show that the measure is maximal at certain discrete pur®ne satisfies Eq6) by
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sg=c’+[w;,Ccil+ i, ¢ieu(l) A U(1)-invariant gauge fixing furthermore requires that Eq.
(10) be U1) invariant, that is
— 2 g
Soi= i~ $i=— ¢, F[U]=0=F[U"=0, VheHCG. (11)
s¢i=[w,¢;]=0, (7)  Itis easy to see that Eq10) always has a solution if the

gauge fixing functionF;[U] is the Lie-derivative of a
where the ghost number 2 fielfl is introduced for the fol-  pounded Morse potential[ U]
lowing reasons of consistency. Since theare in the Cartan
sub-algebra (1) of su2), we can without loss of generality
demand that the; span the remaining two generators of the 2.: Tr oF[U]=AV[U], (12)
Lie-algebra. The necessary Lagrange multiplier fields that
implement this constraint will be introduced below. Consis-pecause Eq(10) then is the statement thaf U], consid-
tency however then requires that the component in the Cakred as a function af e G for fixed link configuratiorlJ, has
tan sub-algebra o$¢ also vanish. Since&:i2 generally will  at least one extremum. This is certainly the case for bounded
(only) have a component in the Cartan sub-algebra, we caw[U]. Equation(11) is furthermore automatically satisfied if
satisfy this requirement only by introducing an additionalthe Morse potential is (1) invariant, i.e.
field ¢ e u(1). Note that it is sufficient tha take values in o
the Cartan sub-algebra and that generates (1) transfor- V[U"]=V[U], VheH. (13
mations ofc; and ¢; . Since the subgroup generated dyn
our case is Abelian, the BRST-variation @fand ¢ simplify
in Eq. (7). In general, the equivariant BRST-construction
above can be employed to reduce any grGup a subgroup
‘HC G also for non-Abeliar{. In [8] a similar construction
was for instance used to factor the global gauge transforma-
tions of the continuum gauge theory. V[U]= 2 |Tr 7. Uy% (14

To complete the equivariant BRST construction one intro- finks

duces Lagrange multiplier fields as BRST-_d_oubIets that_ enI'-|erer+= 7' and 7o are the s(R) matrices of the fundamen-
force the constraints. For the gauge condition we require &l representation
Nakanishi-Lautrup field; of vanishing ghost number. It is

part of the doublet (0 1) (0 0) 1(1 0)
SG=[w, Gl+b, sb=[w b]l-[4c. (@® 100" T l1 o 2lo 1)

Note that the anti-ghost; here transforms under the(1).
This is a natural consequence of Ef)—we cannot take;
to be neutral under (1), because the BRST-invariant action [7.,7_1=2719, [70,72]=%Ts. (16)
we intend to construct would otherwise bedependent. The

BRST transformation of the-field is then given by the nil- The potential14) is bounded below and on atffiyite lattice
potency ofs. Note that the non-trivial transformation of the is also bounded above. From E¢) and the definitior(12)
Nakanishi-Lautrup field in Eq. (8) in the present context of the corresponding gauge fixing functiéh[U] one ob-
invalidates Neuberger's pro¢8] that the partition function tains

of a BRST-invariant lattice model is not normalizable. To

impose that the components in the Cartan sub-algebra of ) _ - T _ T -
c,scandc,sc vanish, we need two more doublets. The fields FilU] JZ' Uiyre(Tr Uy 7-) = 7 Uy (Tr Uy 7-)

of these doublets take values in the Cartan sub-algebra only t +

and therefore have the simple transformations U7 (Tr Uy r) = U (Tr Uyyre). (17)

To have a “lattice-covariant” gauge fixing we pick a local

Morse potentiaV[ U] that is a scalar under the action of the
lattice group. The simplest non-trivial Morse potential satis-
fying all these requirements for the problem at hand is

(15

with the commutation relations

Note that the gauge fixing functiofl?) is anti-Hermitian
and for a particular sité involves only the links to the 2D

) adjacent sites. With the &) Lie-algebra(16) one verifies
that

The construction of the partially gauge fixed action is Tr 7,F,[U]=0, VU, (18)
completed by specifying a local gauge fixing functigfiU ]
on the lattice configuration. A sensible gauge fixing of theon any sitd. This is a consequence of théL)-invariance of
SU(2) LGT to a U1) structure group has to satisfy some the Morse potential14). To construct the action we also
non-trivial conditions. For any link configuratiod of the  need the BRST-variation d¥;[U]. Becausew; only has a
lattice there should at least be one solutipa g of component inry-direction it is of the form

so=0, So=0, o,0eu(l)

sy=v, sy=0, vy,yeull).

FifU?]=0. (10 sFi[U]=[w;,F[U]]+M;[U,c], (19
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with bit of algebra can be brought in the forma € B8)Tr ¢c?.
These manipulations lead to a substantially simplified-
Mi[U’C]:; (Ui 7+ — Uy )(TrUfiro) shel) action
T T _ a
(e Ujici—mocUp)(Tr Uy 7o) SoenFsheng Tr b,F;[U]-¢M[U,c]+ Ebi2+ac?ci2 ,
+(Uy 7 ) (Tr Ul (7-¢j—ci72)) (24)

T T —T G
T Up) T Uii(egr-—7-¢) whereb;, ¢; andc; only have components that are charged

+(ToeT). (200  under the W1). Note that the on-shell actiof24) no longer
depends on the gauge paramedaf Eq.(22). The equations
Using a particular parametrization for the @Jlink vari-  of motion have removed this parameter in favor of a quartic
ables, the intimidating expressiofik7) and (20) are simpli-  ghost interaction proportional ta. There is a quartic ghost

fied in Appendix A. For most of the following it suffices to interaction in any gauger#0. It is a consequence of the
note thatM; only involves links attached to the siteand is  equivariant BRST construction and does not depend on the
linear in the ghost field. employed gauge fixing functioR;. As we will see in the
The action of the partially gauge fixed LGT is a local next section there is a good reason for this quartic ghost
functional in the equivariant cohomology of the BRST- interaction. Let me comment here that Landau gauge with

symmetry we have defined. It is thus of the form a=0 is in a certain sense ampossiblegauge on the lattice
) that can only be perturbatively defined. A non-perturbative
S=Siw.tSer, With Sgp=sWgk, (21)  definition of Landau gauge would require findia$ solu-

. . . _ tions to the constrainf;[ U%]=0 exactlyfor any configura-
whereWge is a local lattice action of ghost number 1 that i tjon . The problem is equivalent to finding all extrema of
U(1) invariant and does not involve theghost. The restric- e \Morse functionV[U] exactly—clearly an impossible
tion to operators that are relevant in the critical limit imposes; ;g for any algorithm. Unlike the constraints on the fields
additional constraints oMVgr. The most general relevant o+ \we solved to arrive at Eq24), the conditionF;[U]

W for the SU2) model is =0 is non-local andtannotbe solvedanalytically for large
o lattices. Perhaps more important, the error in the estimation
Wee=2, T GF[U]+ —Cib;+ BcPc; of an extremum ofV[U] to any fir_1ite numerical accuracy
i 2 can be shown to grow rapidly with the number of lattice

sites. In terms of the lattice renormalization groups 0 is
an unstablefixed point.

This gauge fixing functional depends on two gauge param- or the proof of the next two sections that the partially

etersa and B. Using Eq.(7), Eq. (8), Eq. (9) and Eq.(19) gauge fixed !att_lce theory is physmally equivalent to the

one finds SU@2) LGT, it is useful to also eliminate the charged
Nakanishi-Lautrup field; . Due to Eq.(18) one obtains the

effective gauge fixing action

+79; Tr 7oCi+ o Tr 7oC; . (22

_ o
SGF:SWGF:Z Tr[biFi[U]_CiMi[U,C]‘F Eblz
I
1 —
Sg=2 T — 5o FIIUIF[U]-CM[U c]+acfcf,

(B )] Tr 7C 5

+Bbi[ci ¢+ Bere

+ } ;i¢?+;i Tr ToCi2+ yi Tt 170G+ Tt 1ob; wherec; andc; have only components that are charged under
2 the U(1). Numerical integration of Grassmannian variables is
(23) not possible and the local actid®5) so far is a mathematical
construct. To explicitly perform the Grassmann integrals, Eq.
where use has been made of the fact that w’7, and¢; (25 would have to be bilinear in the ghostsandc. Since
— ¢07, are fields with values in the Cartan sub-algebra only MilU,c] given by Eq.(20) is linear in the ghose this ob-

If we only consider expectation values of functionals that do/€Ctive is achieved by introducing an auxiliary site-variable
not depend orb, 7, 7,7 nor o, these fields can be eliminated i with yanlshlng gh_ost number tomearizethe quartic ghost
by their equations of motion. interaction. The action

The last three terms in E¢R3) enforce that,c as well as
b are orthogonal to they-direction, i.e. they eliminate the S””ear:E Tr
U(1)-neutral components of these fields. It follows that GF i
Tr bi[¢;,¢{]1=0 and thatc? as well asc? only have compo-
nents in thery-direction. The equations of motion for, and
d)io then give rise to a quartic ghost interaction which after a

+ o Tr 70Ci ,

[—%Fi[U]Fi[U]—aMi[UaC]

_ 1,
—piTolCiCil +EPi ) (26)
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is equivalent to Eq(25) upon using the equation of motion  Ill. THE TOPOLOGICAL LATTICE THEORY  (TLT)

of p; and the fact thafc;,c;],¢; ¢ all are in the Cartan | still have to show that the expectation value of a physi-

sub-algebra. The Grassmann integrals of the partition func

i - . cal observabl®©[U]eX

tion overc; andc; can now be performed analytically and

give the determinant of a matrix that depends on the link

configurationU and the auxiliary fieldp. In a numerical (O[U])::f [T du; Il d%cd%coru]

simulation of the partially gauge fixed LGT the Gaussian links sites

average of this determinant overdetermines the measure _ ceff —

for the link variables. xexp =S u.c.c.all, (35)
Before proving that the partition function of the partially

gauge fixed LGT does not vanish, note that the gauge fixe

actionS*f=g,, +SeGﬁ,: is invariant under the following rela- geff = eff =

i X - u,c,c,a]= U]+ S5 U,c,c,a], 36

tively simple on-shell BRST symmetf; [ 1= S [UT+ Serl al (36)

&vith the action

1 up to an overallinon-vanishing normalization\V{«) is the
3U;=cU;;—Ujc;, 3¢;=0, 3=——F[U], (27) expectation value of the observable in the original LGT with
@ the gauge-invariant measure. We thus wish to show that

where the ghost fields satisfy the constraints

Tr 7oC;=Tr 7,¢;=0, (28) <O[U]>:N(a)f Iilnls AUy OLUJex = S [V}

andF;[U] is given by Eq.(17). Note that the constrairi28) —(O[U]), @7
on¢c; is consistent with Eq27) due to Eq(18). Furthermore ' inv.»

S is on-shell nilpotent on functions that are invariant with for all physical observable®[U] and anyfinite lattice.
respect to the (1) gauge group. Thus Since the volume of the S@) lattice gauge group of a
(29 finite lattice is a finite non-vanishing constant,

=2 _ A2 2
S Uij_ci Uij_UijCj!

effeczts an |nf|_n|teS|maI )] gauge transforrlatlon generated V= f H dg <, (39)
by c“x 7. Using the equation of motion far; sites
Mi[U,c]=a[c; ], (300 we can multiply both sides of E¢35) by V; and change the
integration variables
we have that
Ujj=U/%=gUjg] . (39)

1 _
gza:_—Mi[U,C]:[Ciz,Ci], (31)

@ The Haar-measur@U;; = dUj; as well as the gauge invariant
part of the lattice action and the observallpU]=0[U’]
are invariant under thiggauge transformation and Eq35)
becomes

and thus on-shell is equivalent to an infinitesimél)jgauge
transformation generated . We similarly obtain using
Eqg. (17) and Eq.(29) that

EF[U]=3M;[U,c]=[c? ,Fi[U]]. (32) Vg<o[u]>:flq dU;;0[U]2[U,ale SVl (40)

The BRST-symmetr§ thus defines aequivariantcohomol-
ogy on the(graded Grassmann algebra of the set ofl}  where
invariant functions
_ ceff e

B:={A[U,c]:A[U" c"=A[U,c]Vhe™H}, (33 Z[U,a]= Sgsdgidzcidzae SeelU%ecial - (41)
of the link variables and ghost fietd The nontrivial observ-
ables of the partially gauge fixed LGT is the equivariant
cohomologyZ,,

Evidently Z[U9,a]= Z[U,a] is itself a gauge invariant ob-
servable. For Eq(37) to hold for all observablesO[U],
Z[U,a] must be a constant that does not depend on the link
3:={0eB30=0,0+3E,VEeB}. (34) configurationU at all. We therefore have to show that Eq.
(41) is a non-vanishing constant on the configuration space,
The functions in2 with vanishing ghost number are the i.e. that the model defined by the partition functi@ri) is a
gauge-invariant functions of the links only, i.e. Wilson loops TLT.
and their(linked) products. The physical observables of the | will first determine thea-dependence of[U,a] and
original SU2) LGT thus constitute the sector with vanishing then show that this partition function does not depend on a
ghost number of the equivariant cohomolagy continuous deformation of the configuration The basis for
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these conclusions is th%ﬁp[ug,cf;a] is invariant with re-
spect to aon-shell nilpotent BRST-symmetrys defined on
the variables as

1
gCi:O, éa:_EF|[Ug] (42)

Note that the algebr#42) is very similar to the BRST-
algebra Eq(27) but does not transform the link configura-
tion U. The third relation in Eq(42) is a consequence of the
second andy;g/=1. The invariance oiS‘éF[Ug c.C,a] fol-
lows immediately from the invariance Gﬂ [U,c.c;a] under

S and

i97ci=

SU|1|U Hg,u”g

(43

8(giU;;9)) =cigiU;;9] —giU

Since 8c=0, the measurelg;d®c;d%c; in Eq. (41) is evi-

PHYSICAL REVIEW D 59 014508

.

SuZ[ U, a]

1 —
:<5UZ TI{ZFi[Ug]Fi[Ug]+CiMi[Ug,C]
A 1_
—<s5u2 TrzciFi[U]>
! U,a

CM;[U9,¢c]—-acicl

1
+<5U2 Tr =
- 2

>U,a
(47)

where the last equality again makes use of the equation of
motion (30). [In Eq. (47) the variationdy of the link vari-
ables of course respedt; e SU(2) ]

The property Eq(47) that Z[U, ] (and thus alsE[U])
is constant on a connected set of link configurations greatly
simplifies our task. To determine the valueZfU] we need
only consider a particular link configuration in each con-
nected sector of the orbit space. In a L@&Verylink con-

01

dently &-invariant if dg; is the Haar-measure of the structure figuration is connected to the trivial one with; =1 on all

group.
To simplify notation | define thénot normalized expec-
tation value of any functioiX of the fieldsg,c,c in the TLT

<X>U,a::f

The functionX can itself depend parametrically on the con-
figurationU and the gauge parameter In this notation,Z
of Eq. (41) is just(1), .. Using Eq.(25), the definition(41)
implies that

> U,a

T dgd?c,d%c xe Serlu.ecial,

sites

(44)

> TriF [[U9]F [U9+ ac’c;

sites

& —
a—— ZlU,a]=—

1
=<s TrcF[U9]>
sites 2

<Z T

sites

U,a

C Mi[Ug,C]—a?izci2>
U,a

=NZ[U,a], (45)
for a lattice withN sites. The last equality in Eq45) is a
consequence of tHeinvariance ofSJt and the measure and
of the equation of motiori30). Due to Eq.(45),

Z[U]=a NZ[U,qa],

is a gauge invariant functional of the configurationthat
does not depend oa.

Similar reasoning shows that[U,«] does not change
under acontinuousdeformation of the orbit. SincéU=0,
we symbolically have

(46)

links. Thus Eq(47) implies thatZ[ U] is a constant that does
not depend on the link configuration. To show that this con-
stant does notanish it is sufficient that
Zlu=1]=0, (48)

for any finite lattice. Equatior{47) and Eq.(46) together
with Eg. (40) imply that the expectation valug5) of any
physical observabl® in the partially gauge fixed LGT is
proportional to the expectation value of the same observable
in the original SW2) LGT. The proportionality constant fur-
thermore does not depend on the observable and does not
vanish when Eq(48) holds.

Equation (47) together with Eq.(46) establish that the

model described by the partition functici U] is the lattice
version of a TQFT(of Witten type on the spac&/H. The
partition function of this TLT is some topological character-
istic of the coset space. In the next section we will explicitly

demonstrate thak is proportional to the Euler characteristic
x(GI'H). Since  x(G/I'H) = X[ @sitesSU)/U(1)=S,]
=[x(S,)IN=2N+0, this will prove thatZ indeed does not
vanish. Note that the basic reason for only partially gauge
fixing the SU2) LGT using an equivariant BRST construc-
tion was thaty(G) = 0—the partition function of a TLT that

is proportional to the Euler character of the compact lattice
gauge group would have vanished no matter what Morse
potential one chooses.

IV. SEMI-CLASSICAL EVALUATION OF Z[U=1]

Although multi-dimensional, a LGT is nevertheless only a
statistical mechanical system. Even more importantly, the
variables of this system are compact. Consequently the lat-
tice actionS;,,, and alsoV[U] defined by Eq.(14) are
boundedfunctions for any finite lattice. We are in the fortu-
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nate position that almost all requirements of Morse theoryWe can use the invariand®3) to parametrize the SQ)/
(which generally applies to compact spaces and bounded(1) coset elemeng; at each site by onlywo real angles,
functionsg are satisfied for the TLT. At this point we could ) :
therefore simply cite the Poincakéopf theorem and known [ cod6i2) sin( 6;/2)e'¢
results from topological quantum mechanical modéals to 9= —sin(6/2)e ¢ cog6,/2) |’
assert that the partition functiof[ U] is proportional to the )

Euler characteristior(G/H) of the manifold that is the do- With 6;€[0,7] and ¢; €[0,27). We can always choose

(54)

main of theboundedMorse-functionV[g] e U(1) to eliminate the phase in the diagonal elements of
g;. At 6,=m the diagonal elements @f in Eq. (54) vanish
Vulgl=V[U9]:G/IH—R, (49  and the phase of the off-diagonal elements can be arbitrarily

changed by an (1)-transformation. Identifying all the points
whenV[UY] is considered as a function of the gauge trans{ = m,¢) we see that there is a one-to-one correspondence
formation for fixed link configurationU. Since x(G/H) .
=2N+0 this would prove our assertions. 9i( 01, ¢i) € SUMU(D) 5 € S, (59
The TLT on .the other hand is a su_ff|C|entIy simple model hatween 9eSUQRMM) and unit ‘“spins” &
for us to e'xpllcnly see t'hese~topolog|cal theorems at work. =(sin 6 cos¢; ,sin 6 sin g ,cosd) describing a  two-
The following computation o£[ 1] also shows whlchN“pure dimensional sphere. This is of course just the statement that
gauge” configurations give a vanishing contributiondpl]  the coset manifold S(2)/U(1)=S,. Using the parametriza-
in the limit @—0 and which don't. In Sec. VI this gives us tion (54), Eq.(52) after a bit of algebra can be seen to be the
greater certainty in the evaluation of correlation functions inenergy of the Heisenberg model,
the critical limit g2—0 of the gauge fixed model since only 1
a certain class of saddle points contributes in the limit _ a_2a)2
. . V[ig]=—+ 5—5)“. 56
—0. In the course of the calculation we will furthermore La] 4 .Z, &=5) (56)
characterizeall Gribov copies of the vacuum configuration _ _ _ _
U=1 to the gauge conditioff;[19]=0. Perhaps the most The relation(56) helps to wsuahzg and classify the ex-
interesting aspect of the computation is the important role ofrema of V[g]. V[g] possesses eontinuous globalSQ(3)
the quartic ghost interaction in E(5). invariance corresponding to a coherent rotation of all the
Using the result of the previous section titdoes not  SPINSSi. The extrema oW/[g] are thus characterized by the
depend on the gauge parameterwe may chooser suffi- subgroup of S@8) under which they are invariant. There are

ciently small for a saddle point approximation to the integral®™y two kinds of extrema:

(41).t(.3 be as accurate as we please. Altho.ugh I WI||. not(|) extrema that are invariant under an @Dsubgroup of
explicitly compute the errors of the saddle point approxima- ~ gy3). In this case all the spins are collinear. There are
tion, it is quite obvious that the evaluation becomes exact in tvo zero modes associated with any extremum of this
the limit a—0 for a lattice with N<« sites, because kind, corresponding to the broken generators of the coset
= Tr Fi[19]F;[19] in this case is a bounded function on a space S@8)/SO(2). These zero modes correspond to in-

finite dimensional space of gauge transformations. finitesimal global rotations of the collinear spins,
To compute whereas an SQ)-rotation along the axis of any particu-
_ - lar spin does not change these extremal configurations.
Z[1]= lim Z[1], (50 Thus type | extrema fall in class§], modulo global
a—0, rotations of all the spins. One can select a unique repre-

sentative of such a class by specifying the direction of
any particular spin. There is a one-to-one correspondence
between configurations ifi§g], and points on a two-
dimensional spher§&,. Since all the spins are collinear,

with the action(25) in the definition(41) of Z, we need to
considerall solutionsg to the equations

Fi[19]=0V sitesi. (51) there are exactly ! classeqg], on a lattice withN
) ) o sites.
BecauseF;[U] is the Lie-derivative(12) of the Morse- (j) extrema that areotinvariant under any continuous sub-
potential(14), Eq. (51) in principle requires us to determine group of S@3). In this case the spins are nait collin-

all extremaof ear. An example of this kind of extrema are the solitons

of the 1-dimensional periodic spin chdib2]. By Gold-
Vial=V[U. =g qgf1= Tr 7, 0:97[2, 52 _stone's theorem there athreezer'o ques corresppnd—
[g1=VIV;;=aig/] I%;s Tr 799, 62 ing to the generators of §8). Their action on a particu-
lar configuration can be visualized as follows: two
in the space of lattice gauge transformations. By construc-  generators correspond to global rotations of the extremal

tion, Eq. (52 is invariant with respect to left-handed(1) configuration. The third effects an infinitesimal &p
gauge transformationse 7, rotation of the configuration along the axis oparticu-
lar spin. Thus type Il extrema fall into class§g];,

V[hg]=V[g]VheH. (53 modulo S@3) rotations. A particular representative of
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such a class is selected by specifying the direction of .

one of the spins, sa$, and the direction of$,x3;, 9j=i; Ve, Cj:; cWepi™, CJZE Tt
wheres; is a specific spin of the configuration thainist (61)
collinear tosy. There is thus a one-to-one correspon-

dence between configurations[ig];, and the points of with real coefficients &M and Grassmannian variables
a 3-dimensional spher§;. cM ¢ In terms of these coefficients the acti@0) in the

. i vicinity of the extremuni takes the form
The above classification of the extrema\fg] is complete y m

in the sense that there are no otlw@ntinuoussymmetries S, a;{E™,c™ M}
relating extremal configurations.
ExpandingV[g] and F;[19] to quadratic-, respectively

1
. ~ ~ —gn)y 2 g(n)_gtn) (n)
linear-, order near an extremugnone has ; zaf M =C A mC

V[g=ge’]=V[g]- 2 Tr 6/M|[1%,6]+0(¢% +a> Rgmpc™ce M|, (62
i kim
Fi[19]=M,[15,6]+ O(¢?). (57) W
For the saddle point evaluation it is useful to expand in terms Rimn= > Tr ¢{OTp(DT (M (M (63
of eigenvectors of the® linear equations sites

The change of basi€6l) diagonalizes the quadratic part of
the action near an extremum. The remaining quartic ghost
interaction is irrelevant for the semi-classical evaluagor
ceptfor Grassmannian zero-modes that do not enter quadrati-
cally.

As noted above, extrema of type | are characterized by
two zero-modes with vanishing eigenvalues. | will denote
these eigenvectors bys™, ¢ in the following (\(y)
=\(2)=0). The S@2) symmetry of type | extrema also im-
plies that the dimension of the space of solutions to a given
eigenvalue igven[there are no S@)-invariant eigenmodes
in this cas¢ We thus can arrange matters so thajn,
:)\(mel)v m=1,... N.

Mi[19,¢M]=\me™, n=12,....N (58)

where the eigenvalues™ and eigenvectorg™ implicitly
depend on the extremui@. SinceV[g] in Eg. (56) is a
globally SAQ3) invariant real function of the spins, E7)
implies that the eigenvalues,, are real and depend only on
the clasqg] of the extremal configuratiofand not on the
particular representative of that clasSince the quadratic
form in Eq. (57) is real, the eigenvectorg™ furthermore
can be chosen to form a complete orthonormal set with re
spect to the inner product

(njmy= 2 Tr ¢,i(“>T¢i<m>: Sm- (59) There are on the other hatidree zero-modes for type I
sites extrema, which | will labelp™®, $@), $3), with X 1y=X\ 3
=N3=0.
(3)

In the vicinity of an extremal configuratiof, the action

In a semi-classical evaluation &Z[1] the zero-modes
S is of the form[using the expansion&7)], oL L]

have to be handled with care. The introduction of collective
coordinates for the bosonic zero modes is stanfiagii

1 - -
ZM?[lgﬂ]Mi[lgﬂ] (i)  The representatives in a clagg], of type | extrema,
are described by two collective anglés which (for

st a;gel,c,cl~>, Tr

- instancé denote the direction &, the spin at a par-
—CiM;[19,c]+acic?|, (60) ticular site. ° P P
(i)  a particular representative in a cld§s|,, of type Il
up to terms of ordes®, respectivelydcc. Since we omitted extrema is specified by three collective angtes, .
terms of orders® and #cc in the expansior(60), retaining 6,¢ again give the direction of,, while e[0,7]
the quartic ghost interaction could appear questionable. We can be chosen to denote the direction x5,
will however soon see that the sole purpose of the quartic where§; is a particular spin that isot collinear toS .
ghost interaction to leading order im is to absorb Grass- The range of ¢ is restricted to[0,7], since ¢
mannian zero-modes. The neglected terms are higher order e[w,27w] are equivalent configurationgs can be
variations of the Morse-potential and therefore do not couple seen by interchanging the meaningsgfands; in the
to the zero-modes. THeadingcontribution in« can thus be above definitions of the anglesThese three collec-
calculated using Eq60). Note also thatM;[ U, 8] given by tive angles parametrize #8y.
Eq. (20) is anti-Hermitian.
To diagonalize the quadratic form in E@O) we expand In terms of the angle®,,¢; parameterizing the coset
0,c andc in the complete set of orthonormal eigenvectors ofSU(2)/U(1) as in Eq.(54), the Haar-measurég; is propor-
Eq. (58) tional to
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T 27 and
J dg|—>f dhlj dlej dh|J sin G,dﬁlf dQDl,
S, 0 0 2N 2N

(64) Z,([],)= lim a—NLBdﬂsn]l dg<n>nl;[l deMgem

a—04

wheredh; is the Haar-measure of the(l) group. After the

change of variable&1) the bosonic measure in E@i1) for X exp{ — STG(Qg), a;{&M,c™ TM}},
sufficiently small fluctuationg™ near an extremal solution (71)
¥ thus becomes
oN of a class of extrema of type |, respectively type Il. The
IT dg| =V, I dem. (65)  crucial observation that enables us to actually comite]
sites - n=1 is that the weightZ,, vanishes. It vanishes due to thé&'3

zero-mode of type Il extrema. The argument goes as follows.
For Ay #0 the fluctuationé™ is of orderya and the ap- In Eq.(71) we may perform the bosonic and fermionic inte-
proximation(65) in this case is valid for sufficiently smadl. grations of all modes except the zero-modes corresponding
The coefficients of bosonic zero-modes on the other hand ait® n=1, 2 or 3. The integrals are Gaussian and the quartic
not suppressed. These fluctuations genetateal) SO(3) ghost interaction in Eq(62) to leading order ine does not
rotations of the extremal configurati@nand are replaced by contribute to these integrations. The Grassmann integration
integrations over the collective coordinates of the extremabf a pair ¢, ¢ and the corresponding bosonic integral
configurations in the corresponding cldgs]. The correct over &M for n#1, 2 or 3 results in a factor proportional to
semi-classical measure for the integration of bosonic fluctua-

tions around a class of type | extrema thus is a
ANV 2= = Ve, (72)
2N (Any)
Sillsdgi‘[a] :VH( fSZdQZ)Ins dg'™, (66) depending on whethex, is a positive or negative eigen-
|

value A\(M =0 for n#1,2,3. We can perform R—3 inte-

grals in this fashion and the expression # to leading

order ina (up to an irrelevant finite and-independent nor-
malization) becomes

where dQ),=sin 6d6d¢ is the parametrization of th8, in

terms of the collective coordinates. Similarly the semi-
classical measure for a class of type Il extrema is

2N

3
= — | + =32 (n) n)
ol [ [Laen, @ P07 [ a0a] I acra

X exp{ —a Y, Rgmrc®chcMcm
kimn

I] dg

sites ‘[51”
whered(Q ;= sin 6d6dé¢ sir? ydy is the parametrization &,

in terms of the collective angles. The Jacobian for the change
of basis (61) is a constant and the measure for the
Grassmann-coefficients™, ct™ thus can be written

lim i8ﬂ'2a_1/2R1212f dc®dc®
a—04
2N
IT d%cd’c=]1 dc™dc™. (68) =0. (73
sites n=1
) ) _ The coefficient of the leading term in the loop expansion of
Using Eq. (46), Eq. (62 and the appropriate semi- 7z vanishes due to two uncompensated Grassmann modes.
classical measure66), (67) and (68), the saddle point The integration over the corresponding bosonic zero-modes
evaluation ofZ[ 1] gives is finite becauses; is compact[This is in agreement with the
PoincareHopf theorem which states that the contribution of

Z[1]= lim a_Nf 11 dhiindZCidzae_S%ﬁF[lg’c’aa] such a class of extrema is proportional }¢S;)=0.] The

a0, sites i objection that we only computed the coefficient of the term
of order 1A/a and that higher orders of the loop expansion
:VH[E Z(31)+ > Z“([Q]”)], (69  could lead to a finite result does not hold, because the pa-
(gl (@l rametera in this calculationis the loop parameter. Correc-
. . ] . tions to the above result thus are at least of orglerand
with the semi-classical weights vanish in the limita— 0. . The weightz,, of a single class
IN 9N of type Il extrema therefore indeed vanishes. With a finite
o N n n n number of spins one furthermore expects only a finite num-
Z|([g]|)—aIer;+ @ L,Zdﬂznng d¢' )nl:[l de™de™ ber of such classes. In this case the total contribution of type

off (e (0 () =) Il extrema toZ[ 1] also certainly vanishes. Thus the number
xXexp{—Sgel0(22),;{&™,c'™,c™ ]}, (7O of classes of type Il extrema for the 1-dimensional periodic
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spin chain is given by its length. Since none of our argu-also derive a correspondirdyal lattice model.
ments explicitly depend on the dimensionality of the lattice, A perturbative evaluation however requires a further re-
it is safe to conclude that type Il extrema give a vanishingduction of the W1) structure group to a discrete one. For-
contribution toZ[1] on any finite periodic lattice. crand and Hetric{15] presented an elegant algorithm to
The semi-classical weight of a clag§], of type | ex-  uniquelyand covariantly fix the gauge of an Abelian LGT by
trema on the other hand doeet vanish. These are solutions Hodge decomposition. Their procedure solves the problem
of Eq. (51) where all the spins are collinear. As noted before,of covariant Abelian gauge fixing from a numerical point of
the S@2)-invariance of such an extremal configuration im- view. The algorithm is however non-local and | have not
plies that for every eigenvectap®™, there is also an or- been able to derive the corresponding effective gauge fixed
thogonal onep®™ 1) to the sameeigenvalue. The latter is action it generates. Recently an alternative solufif] was
just an S@2) rotation by 90° around the common spin axis suggested that corresponds to a certain coherent superposi-
of the first. Eigenvalues thus come in pairs. Proceeding aton of Sharpe’s gaugef2]. To apply these gauge-fixing
before and performing the R(— 1) bosonic and Grassmann ideas to the Abelian subgroup of ) is not entirely trivial
integrals overg(”), ¢ andct™ with n#1,2 in Eq.(70), one  nor very transparent and will not be pursued here. It has been
obtains(again up to an irrelevant finite anetindependent argued2,17] that a BRST-symmetric local “covariant” lat-
overall normalizatioh tice action of the link-variables that is physically equivalent
to a U1) LGT with well-defined lowest order continuum
2 propagators does not exist. This is in agreement with our
Z([9])= lim CflJ' dQ, | [ dc™de™ topological considerations. From the topological point of
a—0, S n=t view this problem is a consequence of the fact that
x[U(1)/Z,]= x[U(1)]=0 for any(finite) discrete subgroup
Z,CU(1). Thepartition function of a TLT that localizes on
a gauge fixing surface derivable from a Morse potential in
— 47(4R919) = 871N, (74) th_e ul) case thus vanishe{arjd conseque.ntly also the par-
tition function of the “gauge-fixed” BRST-invariant model
for the weight of any class of type | extrema. To evaluateUnfortunately the “linear” covariant gauge condition that
R1212in Eq. (74) | used the zero-modes® and ¢? corre-  gives well-defined continuum propagatois the Lie-
sponding to global rotations of the extremal configurationderivative of a Morse functiofl8].
and normalized by Eq559). For a collinear spin configura-  Requiring that a non-Abelian gauge-fixed local lattice ac-
tion of type | these zero-modes are readily found and thdion leads to well-defined propagators in tfeaive con-
result for Ry»;, defined by Eq(63) does not depend on the finuum limit could _however simply be too much_to ask—the
(collineay configuration. Note that the semi-classical weightcontinuum model is after all related to the continuum gauge
Z, of each class is the same. By suitably normalizing thedroup, which is non-compact and topologically quite differ-
Haar-measure, we can thus §([G],)=2 for any class €nt from the compact structure group of the lattice. We in
[],. [I choose this normalization of the weight in accor- fact can demand that a loop expansion of the gauge-fixed
dance with the Poincatdopf theorem, where the contribu- NOn-AbelianLGT makes sense although the naive continuum
tion of anS, manifold of extremal solutions is normalized to Propagators are ill-defined. One should stress in this context
¥(S,)=2.] Relative to the direction of one of the spins, the that a loop expansion of lattice correlators coincides with the
other collinear spin can be either parallel or anti-parallel.conventional perturbative expansion only for vanishing
There are thus @1 classes of extremal configurations of (0aré couplingg®. The loop expansion is obtained by ex-

type | and we finally obtairiwith the conventional normal- Panding thefull bosoniclattice measure in the vicinity of its
maximum for small bufinite bare coupling. Additional qua-

X exr{ —a Y, RgmcchcMcm

kImn

ization) \ ! - 9. r
dratic terms of sub-leading order @f arise in such an ex-
Zr17=2N= Ny _ /H) %0, 75 pansion of the effective action from the Haar-measure as
1] X(S)T)=x(GIH) (79 well as the ghostfand possibly the fermionigdeterminants.
in complete agreement with the PoinGatepf theorem. The quadratic terms from the ghost-determinant and the

Haar-measure generally are not transverse in a non-Abelian
LGT and thus lead to well-defineldttice propagators For
sufficiently small couplingy?, the transverséphysica) part
of these lattice propagators is dominated by the naive con-
In the last three sections we have shown that the partiallyinuum expression whereas the longitudinal part is formally
gauge fixed (1)-invariant LGT is normalizable and repro- of order 142. The loop expansion should nevertheless result
duces the expectation values of gauge-invariant physical obn ananalytic ¢>-expansion of gauge invariafghysica) lat-
servables of the original SB) LGT. The lattice actior(36)  tice correlators. The loop expansion of unphysical correla-
is local, invariant with respect to the Abelian lattice gaugetion functions generally will not be analytic ig?. This sys-
group H and preserves the space-time symmetries of théematic expansion of the bosonic lattice measure is perhaps
lattice. This model could be of considerable interest in theather similar to the phenomenologically successdalpole
numerical investigation of LGT because its structure group ismprovedlattice perturbation theorj19].
Abelian. Following the procedures §14] one perhaps can One can isolate the classical configuration maximizing

V. GAUGE FIXING OF THE RESIDUAL U (1)
GAUGE GROUP
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the measure with respect ttattice) gauge transformations o
by reducing the gauge symmetry of the Abelian LGT cova- P(x)=1—-xe*
riantly while preserving a BRST-symmetry. The partition

function of the corresponding TLT simplyiust notbe pro- o |ated to the error function on the imaginary axis. Note that
portional to the Euler characteristic of the(1) structure P(—x)=P*(x) and thatf,[U]=—f[U'], i.e. f; changes

. . . I I [ |

group. One has to choose somen-vanishingtopological  gjgn when the direction of all the links is reversed. The ex-
invariant of the group manifold—such as the number of CONyactation value of Hermitian observables of the link vari-

nected components. The construction of such a TLT below i bles is thus real. From E¢81) we observe that the local
measureP(x~»)~1/(2x?) does not vanish exponentially

based on a nilpotent BRST-symmetfiyand proves that a

local Z, LGT is physically equivalent to the original $2) for | | fx=1m f.rUV h de-

LGT. A numerical simulation of thiZ, LGT is furthermore c?;agtragsemvgnl:)?sni(():;lly r;ndl[ p]e;/I:as.g(gX)lLorO;\lﬁf\ilgirentle;/

hardly more complicated than the simulation of the partiallylarge lattices P(x) can be approximated byP(x)

fIXerh(;J (l%()a-)l/n)[/(;i r;a?:lrmgtrjerléduction of the continuous gauge _ exif —i\mx— (2 m/2)x] up to terms that are irrelevant

: : . . - 271n the critical limit of the model. Note that the total phase of

symmetry of the Wl)-invariant lattice theory in our case is the measure in this limit is proportional & Im f-[U[]) and

the Nakanishi-Lautrup field; that was introduced by the . o ; . ! =1 e

equivariant BRST-construction. It is a Hermitian scalar that}’igﬂggiii ?Jn jlpeirtlOiglcr(l,ztgi(l:ye.sEe)((a%art]ﬁ;rtl%r?]?grjg]e itg'VgtCO”'

is chargedunder the W1). At every site it is of the form linear in all longitudinal fluctuations. In agreement with the
b,=B;7, +B*71_, (76)  brevious discussion, the modification of the lattice action by

a term proportional to (Infi[U])? does not lead to well de-

whereB; is a complex number anB?* its complex conju- fined (naive) continuum propagators.

X
i\/;+j et’dt
—X

: (81)

gate. Parametrizing; = e?¢"0e U(1), with ¢ €[0,27), one To exhibit the BRST-structure of this(l) gauge fixing
observes thaB; transforms as and relate it to a TLT, we note that it can be obtained by
_ inserting
B=e?*B;, (77
under the residual (1). We thus have the option to fix the ZywlB]= H Z[Bi], (82

phase of the Nakanishi-Lautrup field and thereby reduce the sttes

gauge invariance of the model to the discrete gauge grouj the functional integral. Here the local TLT “partition
Z,CU(1) (we cannot do better, since the Nakanishi-Lautrupgynction” at each site is simply the integral

field is oblivious toZ, gauge transformations of the lattice

configuration. We can for instance require thBtis a real

and positivefield. The corresponding measure in the gauge Z[x]= fﬁlzlz*dZ|XZ+ x*z*|

fixed functional integral becomes N

V-2, .. X 8(1(Xz—x*Z¥)). (83

dzbj - 0 B;dB;. (78) The integration of the (1)-group elemenh; e U(1) in Eq.
(83) is here written as a contour integral nfalong the unit
Note that the integration is ovegositive real variablesB; circle in the complex plane. Equatidi7) shows that one in
only. (An unconstrained integration over all real valuespf ~ principle has to integrate twice over the unit circle. This
would lead to a vanishing partition function of the corre- however just introduces an irrelevant factor of 2 in E&p).
sponding TLT which can then be shown to be proportional to  If Z[x] is a non-vanishing constant one can insert(8@)
the Euler character 8, .) in the functional integral and change variables to factorize
We can perform the integration of the Nakanishi-Lautrupthe group volumé/,, and arrive at the effective measuits)
field b; also in theZ, LGT. Due to Eq.(18) the anti- of the gauge-fixed model. Performing the integrations in Eq.
Hermitian field F;[U] at each site is given by a complex (83) one explicitly finds thaZ[x] does not vanish and fur-

numberf;[U] and may be written thermore does not depend &n The integralZ[x] is thus a
topological invariant of the circl&;. The corresponding to-
FilUl=7.fj[U]—7_ff[U]. (79 pological model with local “action” can be explicitly con-

) ) structed by exponentiating all the factors in E§3). Intro-
Using Eq.(78) and Eq.(24) the B-dependent bosonic part of qycing real bosonic variablasy and Grassmann variables
:he platrt|t|on function for theZ, LGT is local and propor- 7, 7,v,v 0ne can rewrit&Z[ x] as the integral
ional to

= * - — .
11 fwBidBie’ZiBi im 101 - a8 T pf LYY Z[x] 3gz|=1z dzf fﬁwdudvdndndvdv
sites J O sites \/Z o
(80) X efs[xz,u,v,rz, 7,v,v] , (84)
with the complex weight functiofP, with the local “action,”
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Sa,u,v,7,7,v,7] nothing new forgauge invariantphysical observables. The
. e . o reason for constructing a physically equivalent covariant
=u(a—a*)+(at+a*)(at+a*)+nntvv). LGT with a much smaller invariance group was to gain a

(85) better analytical understanding of the model in the critical
limit. The best we could do was a reduction of the continu-
Performing the Grassmann integrals ovgrm,v,v and the ous SU2) gauge symmetry of the original LGT to a discrete
ordinary Gaussian integral over in Eq. (84) gives |a  Z,-structure group. The natural question to ask is whether
+a*|. The integration overu leads to the constraind this discrete gauge group is spontaneously broken. Although
=a*. To show that Eq(84) with action(85) is a topological there is no gauge invariant physical order parameter, whether
integral of Witten type, we verify tha is exact with respect  or not this symmetry is broken could shed some light on the
to a nilpotent symmetry defined on thelocal) variables as dynamics of the model.
Here | will however only discuss the role of the auxiliary

ox=0 scalar fieldp; introduced to linearize the quartic ghost inter-
action. | will show that the bosonic measure is maximal at a
dz=z7m, ©6z*=-7"7n, &7=0 non-trivial (constank p; . This is crucial for a loop expansion
of physical observables of the lattice model. | first show that
da=oxz=an, da*=-a*y the effective measure for the fiefg is non-trivial and gauge
— — . invariant. Consider the weight of E¢A17) as a function of
dn=utvrtvi(a-a’), the link configurationU and the auxiliary variable inte-

rated over the gauge gro
Su=—vvp—vi(a+a*)(v+7n) g gauge grogp

Sv=m(v—n)—2v?%a, Sv=-vvl2, Sv=0. (86) Q[U,p:a]=J H dg W U9, p;al. (88)

Using the algebrd86) it is straightforward to show that is ] ) ] ]
nilpotent, 52=0. Note thatzz* =1 and (consequentlyaa* By construction the observabl@ is gauge invariant

are invariants. | obtained E¢86) by demandingsx=0 and

5z=zn, i.e. by ghostifyingthe U1) transformation. To- Q[UY,p;a]=9Q[U,p;a], (89
gether with the nil-potency of these assumptions imply the
first three lines of relations in E486). The remainder of the
algebra was found by demanding that the acti88) is &
closed. | unfortunately can offer no further insight for the
construction of the algebr@6) which appears to be far too _ f _ .
involved for the problem it solves. At the end of the day one Ma) slls dpi QLU pial, 0
obtains that the actiofB85) is the 5-exact expression

for any configuratiorp. We furthermore know from the pre-
vious sections that on any finite lattice,

. . . is a non-vanishindfinite) normalization constant that does
Sa,uv,7,nv,v]=d(nla-a*)-2va*). (87  notdepend on the link configuratiah. The two result§Eq.
(89 and Eq.(90)] imply that one can define a normalizable

This shows that Eq84) can be interpreted as a topological measuréM[ p] for the scalar fieldp

invariant of Witten type. This invariant does not vanish and
is not proportional to the Euler character of1). The only 42— U o ald 91
independent topological invariant of a circle is the number of Wlp;a,g7]=(QU.p;al)ins ©
its connected componenfthe lowest Betty numbeng(S,)
=1=Db,(S;)]. This topological characteristic, like the Euler
character of a manifold, is multiplicative, i.6g(M{XM))

Here the expectation value on the RHS is with the original
SU(2)-invariant measure. Equatidf0) implies thatW[ p] is

“b b f ifold q normalizable and does not vanish identically. The measure
= bo(M1)bo(M>) for any two compact manifold#l, and gy for the configurationg is therefore non-trivial. Upon

M,. We can evidently choose to normalize E§3) so that changing variables) — U9 in the gauge-invariant RHS of

Z[x]=by(S1)=1 and then interpret the partition function Eq. (91) we can decouple the integration over the gauge
Zyw)[B] of Eq. (82) as the number of connected compo- group G and equivalently write

nents of the 1) gauge group of the lattice. The TLT con-

struction supports the claiff8] that gauge fixing is equiva- cw0?1=(1 92

lent to the construction of a TQFT on the gauge group whose Wipi . g%1=(1),. ®2

partition function doesot vanish. where(O),, given by
p!

VI. THE AUXILIARY FIELD p

@) =f du; O[U, U,p;ale SVl (93
In the Appendix the Grassmannian fields are integrated in (O Iilnls OLY.p MU pia] ©3

favor of a non-local measuk@&19) for the gauge fixed LGT.
It is thus in principle possible to numerically simulate the is the expectation value of g@auge invariantfunction
LGT. We have shown that such a simulation would revealO[U,p]=O[UY,p] for a given configuratiop of the gauge-
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fixedmodel. Due to Eq(88) computing Eq.(93) for gauge
invariant observable® is entirely equivalent to evaluating
the gauge-invariant correlator

(0),=(Q[U.p;a]Oiny. , (94

with the SU2)-invariant measure of the $P) LGT.

A perturbative evaluation of th&, LGT should at least
retain those configurationsfor which (O) (and in particu-
lar (1);) do notvanish in the limitg?—0. | argue that these
are configurations in the vicinity of non-trivial constant con-
figurationsp; = const only.

In the limit g?>— 0, the gauge invariant actid®},,[U] on
a finite lattice constrains the configuration spadeto the
subset of pure gauge configuratiddg =ging. As we have

PHYSICAL REVIEW D 59 014508

with {p;) given by Eq.(A19). At the “tree”-level of the loop
expansion for thebosonic measure(97) implies that the
unique maximum of the measure is af®® which is the
solution of

=0,

;tree

d
a_ﬁmutreeiﬁa] (98

for a pure gauge configuratida'™® that satisfies the gauge
condition,
Im f;[U"ee]=0. (99)

As far as the perturbative expansion of gauge invariant ob-
servables is concerned, we may choose ang of the 2V

seen in Sec. IV there are at least two zero modes of thégauge equivalentonfigurationdJ'"© that contribute to the

guadratic form in Eq(25) in this case: they correspond to
global rotations of the gauge spirg. These zero-modes

were shown to be absorbed by the quartic ghost interactiof8) to obtain the appropriate value pf"®®. In fact,

of Eq. (25). In the linearized versiof26) of the model these
zero-modes couple to the auxiliary fietdonly. The deter-
minant in Eq.(A17) and consequently Eq93) for a finite
lattice thus vanish in the limig?>—0 for configurationsp
that satisfy

Ei pi Tr 79,V 1¢{? =0, (95)

where Y, ¢ are the two global zero modes of a pure
gauge configuration. Since tlggobal zero-modes rotate all
the spins equally, the vector

T 70, {1 1¢p{? =v;=const, (96)

has constant entries irrespective of the pure gauge configu-

ration being considered. Equatigi®5) implies that(1),
—0 in the limitg2—0 on anyfinite lattice if the configura-
tion p is orthogonal tov;, i.e. has no constant component.
Note that this is true for any value af#0.

The argument above is however true only in thiong
limit where one takeg?— 0 beforeconsidering the thermo-
dynamic limit N—<. In the thermodynamic limit one can
only say that the relevant configurations in the ligft~0
are(in a statistical sengen the vicinity of pure gauge con-

figurations. One nevertheless would expect that configura-

tions p with large contributions tq1), are also in some
sense close to nontrivial constant ones. More precisely,

partition function. These were obtained in Sec. IV and cor-

respond to collinear gauge spins. We may then solve Eq.
—tree

p IS
the same for any one of thé'2iscrete “vacua” due to the
gauge invariancé9l) of W[ p].

The simplest(perturbative vacuum configuration for the
links, and the only one that leads to a covariant perturbative
expansion, isUitj’eez 1. With periodic boundary conditions
for the lattice, detM[u=1y=0,p] is readily calculated for
constantp;=p. One can diagonalizé1[1,0p] in the basis
of eigenvectors;(f) of the Hermitian matribA[ 1] given by
Eqg. (A14),

A[1]-X(A)=AX(7), (100

where

1,...L (101

D
Ag=—42 sird(mn,/L), n,
u=1

are the eigenvalues of the Laplace-operator of a

D-dimensional hyper-cubic lattice with®=N sites. The ei-

genvalues ofM[1,0p] are
ANV=Asxip, (102

and detM for the vacuum configuration therefore is

detM[1,0p]=]] (AZ+p2). (103

thgs expected, the determina(it03) vanishes forp—0 like

argument above and the considerations of Sec. lll indicat?,a on any finite lattice. The determinafit03 is furthermore

that a loop expansion of the gauge fix@gmodel on dinite
lattice in the vicinity of a(particula)y pure gauge configura-
tion is sensible only forp;=p;=const0. We otherwise

would expand about a configuration that has vanishing

weight.
The covariant loop expansion of tZg-model can in fact

a monotonically increasing positive function pf. For p?
>D, the determinant behaves a$1[1,0p>D]~p2N

eNinv?, Comparing with the monotonically decreasing ex-

ponente NP7(49) in 1, we see that the maximum isique
and of ordefp?~ 4« for large a. For a perturbative expan-

the critical limit of the model on an infinite lattice. Consis-
tency requires that the value of be determined order by
order of the loop expansion by

(pi)=p, 97)

at (arbitrary small a«~0 for which gauge fluctuations are
suppressed. In this limit we expept~0 also. Using Eq.
(103, Eqg. (A17) and the definition(91), the unique value

@) where the weightV[p(«);a,g°~0] is maximal to
pla) ghtW[p g

lowest order in the loop expansion is the solution of
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> —2—1 _ N (104
A Aﬁ+52_4a

For afinite lattice this gap equation would have to be solved
numerically. In the thermodynamic limit, the summations in

Eq. (104) can be performed. In this lim{{L04) on a periodic
D-dimensional lattice becomes

fwdxsin(xﬁj
0

)
wherel y(x) is the Bessel function of zeroth order at imagi-
nary arguments. Equatiofl05) is obtained by exponentiat-
ing the summand in Eq104) and using the identity

1
(€ H(2x)P=5=, (109

1 L i e X (2=
lim E ] e—2x sin (wn/L)ZE fo eX cosand):e—x'O(X).
n:

(106)

L—oo

The asymptotic behavior df(x~ )~ e*/{2mx shows that
the integral in Eq(105 converges folp#0 in any dimen-
sion. InD<4 dimensions the integral behaves Iig& 42
for p~0. At the upper critical dimensiob =4 its behavior
is logarithmic. For sufficiently smal, Eq. (105 in D=4 is
well approximated by

77_2

52
F e PO

In

(107
where the constant is given by

fwd T L———
o xX (Io(x)e™™) 1+ 47252

(108

2
In——=1— yg+4n?
40 e
=2.26098 . ..

For a«~0, Eq. (107 determines the optimal of the corre-
sponding vacuum configuratior= 1,p) for the perturba-
tive expansion inD=4 dimensions. Note that the relation
(107 is not affected by physical fermior(ge. quarks. The
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lattice to this order in the loop expansion is related to the
couplingg? and the lattice spacing by
aZAE _ e—24w2/(11—nf)gz+ o(In gz)_ (110
A, is a finite physical scale in the critical limit of the &)
LGT with n; fermionic flavors. Equatioil09 singles out a
particular gauge a(g)=g2(11—n;)/24+0(g* in which
(p(x)) scales like a physical quantity in the critical limit,
that is
(py=K?A? for a=a=g?(11—n;)/24+0(g%.
(111

In this critical gauge the loop expansion of gauge invariant
correlators automatically produces power correctiGnsp
#0) that scale correctly in the critical limit. Note that the
power corrections of the loop expansion vanish exponen-
tially compared toA_ in the critical limit for gauges
limg_.o alg?<(11—ny)/24 and dominate the correlations in
gauges ling .o @/g?>(11-ny)/24—a sign that the
asymptotic expansion does not make much sense in such
gauges. We know on the other hand tlpdiysical power
corrections do arise in the full theory. In critical gauges with
limg_.o alg?=(11—n,)/24 they also arise in the loop expan-
sion of the gauge-fixed model. It is justified to call these
gauge<ritical because they delineate the domain of validity
of the loop expansion.

To check the assertion thatscales like a physical quan-
tity in critical covariant gauges, one should evaluate the
anomalous dimension @f. From the foregoing one expects
this anomalous dimension to vanish to leading order in the
gaugea(g) =g2(11—n;)/24+0O(g?). It is then possible to
adjust the critical valuex(g) order by order in the loop
expansion so that the anomalous dimensiop @anishes to
all orders. | only wish to stress here that the existence of such
a critical gauge is a direct consequence of the fact that the
ghost determinanM[U =1,p] vanishedor p=0. If it were
finite at p=0, we would have been justified to expand per-
turbatively aroungp =0 for sufficiently small values od. In

corresponding fermionic determinant is gauge invariant, doegctual fact Eq(105) hasno solutionfor a—0 in D>4 di-

not depend on the auxiliary fiejdand does not vanish at the
pure gauge configuratiod =1. This contribution to lowest

mensions: in the thermodynamic limit the weighf p, «]
peaks afp=0 for « less than some critical value >4

order in the loop expansion can thus be absorbed in the nodimensions. IND<4, p=0 is however only approached as

malization ofW. The critical limitg?,a—0, of the LGT can

a—0 and the weighW is maximal at a nontrivial value gf

be interpreted as a quantum field theory by assigning a spafer any non-vanishinge.

ing a to the lattice and defining continuum fields. The con-
tinuum fieldp(x) has canonical dimension 2 and is related to

p by pi=a®p(x;). In the critical limit (107) is the tree-level
statement
(B(x)=(x2a2)e "', (109

for the continuum fieldp(x). Because of Eq(91), (p) is a

VII. SUMMARY AND COMMENTS

In the foregoing we constructed a LGT with a discrete
structure groupZ, that is physically equivalent to the stan-
dard SU2) LGT. The Z,-model possesses all of the space-
time symmetries of the original LGT. The reduction of the
gauge group was shown to be equivalent to the formulation

physical gauge invariant quantity and we could regard thef a TLT on a coset, respectively group, manifold. Care was

LHS of Eqg. (109 as a constant physical scale of the model
In this case Eq(109) is the expression for dimensional trans-
mutation of the gauge parameterto lowest order. On the
other hand the physical asymptotic scale parameteof the

.taken to ensure that the partition function of the TLT{asid

consequently the partially gauge-fixed LGJra&e normaliz-
able. On a lattice, using Morse theory to construct a TLT
whose partition function is proportional to the Euler charac-
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teristic of a compact manifold is a mathematically rigorouscomponents of the (1)-gauge group rather than its Euler
procedure. We saw that this method by itself does not sufficeharacter(which vanishes The gauge fixing isot linear

to fix the gauge completely because the Euler character aind naive continuum propagators do not exist. | argued that
the lattice gauge grou@ vanishes. To partially fix the origi- this should not prevent one from considering kbep expan-

nal SU?2)-gauge symmetry to a discrefg gauge symmetry sion of theZ, LGT since the lattice propagatod® existfor

we proceeded in two steps. any finite value of the coupling.

The gauge invariance was first reduced to the Abelian The maxima of the measure of ti#&® LGT are isolated
U(1) gauge group using an equivariant BRST-constructionand a loop expansion of gauge invariant observables in the
We showed that this procedure is equivalent to the formulavicinity of any gauge-equivalent vacuum configuration of
tion of a TLT on the coset spac®H=[SU(2)/U(1)]N=S)  this model is feasible. The price one pays is the considerably
and explicitly proved that the partition function of this TLT more complicated non-local and generally complex measure
is proportional to the Euler characteristic of the coset maniof the resulting bosoni, LGT after integration of the
fold. Since this Euler number does not Vanish, the TLT isGrassmannian variables. This bosonic partition function de-
normalizable and the partially gauge fixed1 LGT is  Pends on the link variablet);; as well asa local gauge
physically equivalent to one with non-Abelian structure invariant scalar fieldp; and ontwo coupling constants?
group SU2). Although we here only considered an @V and a. The former is inherited from the original $2) LGT

LGT, the procedure can be generalized to fix the gauge of afynereas the latter was introduced by the gauge fixing.
SU() LGT to the maximal Abelian subgroupH The expectation values of physical gauge invariant ob-
=[U(1)" YN, This follows by induction from SU{ servables of the original LGTgauge invariant functions of

+1)/[SU(N) X U(1)]=S,,.1/S;=CP, and the fact that the the link variab_les onlydo not depend Ol by consf[ruction.
Euler charactey(CP,)=n+1 does not vanishin the case The_ expectation value of gauge invariant functions of the
| considered, the action E€g6) of the U1) LGT is local but ~ 2uxiliary field p; and especiallyp;) however generallylo
depends on Grassmannian ghosts and includes a 4-ghost figPend onx as well asA, . We found that the maximum of
teraction. To my knowledge it is the first example ofpar- e Posonic measure fae+#0 occurs atp;=p(a)#0 and
tially) gauge-fixed lattice model with aequivariant BRST- ~ derived thegap equation(104 relating p to a in lowest
symmetry that is proven to be physically equivalent to theorder. In_ the_ the_rmodynamu: I|m_|t of a é_l-o!lmensmnal lattice
original SU2) LGT also non-perturbatively. It could be con- the relation is given by Eq107) in the limit of very small
sidered the first concrete realization of non-Abelian BRST-¢~0- The most interesting result of this analysis is that the
symmetry in a non-perturbative setting. The construction ofXPectation valug(p(x)) of the corresponding continuum
the corresponding TLT and the proof in Sec. IV show howfi€ld pi=a’s(x;) is proportional to the asymptotic scale pa-
the Gribov-ambiguity associated with the covariant gauggameter A{ in a particular critical gauge a(g)=g?(11
fixing is circumvented: althougthere aremany Gribov cop-  —Nf)/24+0(g*). Non-perturbative power corrections to

ies (and even whole manifolds of therassociated with any physical observables proportionalAg*/p? (with k=2) ap-
orbit, they conspire to give a topological invaridim our  pearcomputablein this critical gauge. In effect this would
example the Euler charactgi(Sy)=2"] that does not de- imply that the non-perturbative expectation values of Wil-
pend on the orbit within a connected sector. Since the orbi$on’s operator-product-expansion for the asymptotic behav-
space of a LGT is connected, the existence of Gribov copie®r of physical correlators arpart of the asymptotic loop

in covariant gauges doemt invalidate the gauge-fixing pro- €xpansion in theeritical gauge. Although a dirednumeri-
cedure if the topological invariant the TLT computes doescal evaluation of physical correlations was shown to be in-
not vanish. This is in contradistinction to conventional Dirac-dependent of the gauge parameter, | argued thaacberacy
quantization of first class constraif0], which in principle ~ of the asymptotic perturbative expansion may, and generally
is valid only if the solution to the gauge conditionisique ~ does depend on the gauge. The analysis of theZ3WGT

The formulation of gauge-fixing as a topological model ontends to support the conjecture that power corrections are
the moduli-space of the gauge theory perhaps also clarifiedccessible by the loop-expansion in certain covariant gauges.
the dispute[2,16,17 concerning the non-perturbative valid- A similar mechanism was previously observed in the con-
ity of covariantly gauge fixed models with BRST-symmetry. tinuum theory[21]. In this case the expectation value of a

| believe this procedure in general permits one to handl&calar moduli-parameter also was relafe@] to the scale
Gribov ambiguities. anomaly of the model.

The U1)-invariant lattice model was subsequently re- If power corrections to physical correlators are indeed
duced to one with aZ,-structure group by using the computable in critical covariant gauges, the loop expansion
Nakanishi-Lautrup field of the previous partial gauge fixing.in conjunction with dispersion relations could be a powerful
This U(1)-gauge fixing is entirely local and the constraints tool to obtain information on the spectrum of the model. The
can besolvedexplicitly. The gauge fixing can again be re- Phenomenological success of QCD sum-ryte3] suggests
lated to a corresponding local TLT. The partition function of that it might be worth pursuing this possibility.

this TLT is however proportional to the number of connected Apart from these speculations, the topological approach to
gauge fixing of a LGT has shown that

() gauge fixing of a LGT is equivalent to the construc-
1 would like to thank A. Rozenberg for this remark. tion of a certain TLT of Witten type;
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(i)  the gauge-fixed lattice model is normalizable only if

the topological invariant computed by the partition AV[U-U]ZIE giviiuf —viiu; 6;+c.c.
function of the associated TLT does not vanish; e

(i) the BRST-symmetry of the gauge fixed LGT is inher-
ited from the associated TLT and is also realized non- = Z ;I fujjuji +c.c., (AB)
perturbatively;

(iv)  covariant and BRST-invariant gauge fixing of a LGT whereu;; =uj; andv ;= —u;; was used to rewrite the second
is possible and the Gribov ambiguity of these gaugeserm. On the other hand Edq12) together with Eq.(79)
can be controlled; imply

(v)  quartic ghost interactions arise naturally in the non-

Abelian case due to residual global invariances and AV:_Z (f*[U]6,+c.c). (A7)

are perhaps unavoidable in covariant gauges.

At present this approach appears to be the only systematiéomparing Eq(A7) with Eq. (A6) one obtains

method that guarantees that the gauge-fixed modebvs-

riant,. local andi phy§icaIIy equivalenb the origina}l non- fi[u,v]=—z DU - (A8)
Abelian gauge invariant theory also non-perturbatively. =i

ACKNOWLEDGMENTS We can comput_e the linear operaMn[U,c] in anal_og_om_Js
fashion by considering the variation &f u,v] under infini-
| would like to thank D. Zwanziger, L. Baulieu and L. tesimal transformations of the for(@5). One gets
Spruch for their invaluable support and A. Starinets and A.
Rozenberg for endless but valuable discussions.
9 Sfi[U,v]|w=o:j2i Ci(Jvjj |2_|uij |2)+U%Cj—vi2jcj* ,
APPENDIX: SOME CALCULATIONS (A9)

SPECIFIC TO AN SU(2) LGT . % .
where the Grassmann variabl€s,C;" are defined by the

The link matricesU;; e SU(2) of an SW2) LGT, decomposition

Uij:Uij(1/2+To)'f‘ui’}(l/z_To)‘f’UijT_'__Uﬁ7'_, Ci:CiT+_CEk77- (A].O)
(A1)
_ Similarly decomposing as
can be parametrized by two complex numbeys and v;;
that satisfy the constraint Ci= E, T+ Ei* T_, (A11)

|uij |+ Jvij| =1 (A2) " one obtains for the quadratic form

This parametrization facilitates some calculations in the
SU(2) LGT [24]. Below | give expressions for some of the E TrciM;[U,c]
quantities of the main text in terms of thg’s anduv;;’s. !
The Morse-potentiaf14) can be written
=2 TresFlU]l-o
Viuwl= > Jojil?= 2, (1-]u?).  (A3)

inks _

=-2 (Cisfiluv]y-0—c.C)
U(1) gauge transformations change the phasasg;cndu;; :
but not their lengths. An infinitesimal transformatigp~ 1 _
e SU(2)/U(1) is of the form IZ > Ci(lu;j|>=vi1AC;

]I

=14+60.7. — 6% 1_ — —
gi= 1t bir, =0T, (A4) +C2Cr-CuiC—cc. (A1)

where theg, are infinitesimal complex numbers. To first or- Y . | ‘uaation” for G iables is th
der, the parameters; andu;; of a link change by ere “complex conjugation” for Grassmann variables is the

substitutionC,C«+— C* ,C* at each site.
Auji=v; 01?* — eivﬁ Using Eqg.(A10) and Eq.(Al1l) the interaction with the
real scalar fieldp; in Eq. (26) is written
Avij=0iuﬁ—uij91. (AS)
- _ * *
The constraintA2) to this order is invariant under the trans- 2,: pi Tr 7ol Ci,Gi]= _Z pi(CiCT +CTCy). (AL3)
formation (A5). From Eq.(A5) we obtain that the Morse-
function (A3) changes by Defining the two compleXN X N matrices with entries,
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Ai,-[u]:uﬁwi,-gi (1—-2|uyl?)

Bij[v.p]=&ijpi—vf, (A14)

the integration of the Grassmannian variables in the gauge

fixing part of the actior(26) results in a weight proportional
to

det M[u,v,p], (A15)

for the remaining bosonic functional integral. ThBI2 2N
complex matrixM is

Alu]
B'[v,—p]
Note the dependence on the auxiliary figldn Eq. (A16).
For purely imaginaryp; the matrix M is Hermitian and its

eigenvaluegand thus its determinanare real. The weight
(A15) of a given bosonic configuration with real is how-

Blv,p]

Mlu,v,p]= Alfu] )

(Al6)

ever generally complex. One can also corroborate that

Aluj;=1] is the lattice Laplacian with exactiynevanishing
eigenvalue on a periodic latticév1[1,0,0] thus has exactly

two vanishing eigenvalues corresponding to the two zero-
modes of this vacuum configuration that were found in Sec.

IV. The same reasoning shows that, ddfu,v,0] in fact
vanishes for any pure gauge configuration.

PHYSICAL REVIEW D 59 014508

Collecting these results, the gauge-fixing weight
W u,v,p;a] of a given link configuration can be written

Wu,v,p;a]=det M[u,v,p] H e*pi2/(4a)

sites

P( fi[u,v]>
\/Z 1
where the local weighP(x) depends on whether the §)

LGT is partially gauge fixed to the Abelian(l) or the dis-
creteZ, structure group

(A17)

ef|X|2

[ for U(1)
P(x)=
P(Im x) of Eq. (81

A18
for Z,. (A18)

The expectation value of operatafj u,v,p] that only de-
pend on the link variables and the auxiliary figldcan now
be found by(numerically evaluating the remaining bosonic
integrals in

(O[UyU:PDZJ Iilrls d?uid?i; (1 |ugj > = vy ]?)

X ]___[ dPiO[uyvaP]MurvrP;a’]
sites

Xexp{ — S [Uv]}. (A19)
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