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We examine artifacts associated with the chiral symmetry breaking induced through the use of Wilson-Dirac
fermions in lattice Monte Carlo computations. For light quark masses, the conventional quenched theory
cannot be defined using direct Monte Carlo methods due to the existence of nonintegrable poles in physical
quantities. These poles are associated with the real eigenvalue spectrum of the Wilson-Dirac operator. We
show how this singularity structure can be observed in the analysis of both QED in two dimensions and QCD
in four dimensions[S0556-282(198)07323-9

PACS numbgs): 11.15.Ha, 11.10.Kk, 11.30.Rd

[. INTRODUCTION In previous work[4,5] we have shown that the precisely
real eigenvalues of the Wilson-Dirac operator play a special

During the past 20 years, considerable progress has be#ple in the quenched theory. These eigenvalues are the ana-
achieved in studying the nonperturbative structure of gaug#g of the zero modes of the continuum theory which are
field theory through numerical computations of lattice fieldassociated with the topological structure of the background
theory. The principal method of analysis has involved Montedauge field. In the lattice formulation of the theory, these
Carlo computations of physical quantities such as meson cofiodes are responsible for the singular behavior of the
relation functions where fermions have been treated usin§uenched theory for light fermion masses. The singularities
the quenched approximation. The quenched approximatiofiiS€ Whgn the fermlon_mass'ls chosen to lie within Fhe band
omits the contribution of the fermion determinant to the Of real eigenvalues which exists because of the chiral sym-
functional integral defining the transition amplitudes. ThisMetry breaking property of the Wilson-Dirac operator. This
approximation is known to be quite sensitive to the particuladS Well known and is the principal reason for the “excep-
formulation used to define fermions on the lattice. In thistional” configurations observed in Monte Carlo calculations
paper we will address certain problems associated with thef the quenched theof$]. Indeed, we have previously made
study of light fermions using the Wilson-Dirac formulation @ careful analysig4] of the correlation between the behavior
[1] of lattice fermions. of th_e real elg_envalye spectrum and the observation o_f ex-

In the continuum the usual Dirac operator defining thece_ptlonal conflgurfatlons. Ho_weve_r, the problem associated
fermion action preserves a chiral symmetry structure in thavith these exceptional configurations goes beyond the an-
presence of gauge interactions which is broken only by th&0Ying problem of an occasional large contribution of a
addition of fermion mass terms or Yukawa interactions. InSingle configuration and its implication for the statistical er-
the Wilson-Dirac formulation of lattice fermions, this chiral fors of the associated ensemble averages. We have previ-
structure is explicitly broken by the analog of second deriva0usly pointed out that this problem cannot be solved simply
tive terms which are needed to remove the doubling degerl?y @ccumulating larger statistical samples as the exceptional
eracy of the naive lattice action for Dirac fermions. This configurations are expected to occur at a level where, even in
chiral symmetry breaking modifies the eigenvalue spectruni@fge statistical samples, the statistical errors will not dimin-
of the Wilson-Dirac operator from that expected for the con-iSh éven in the limit of infinite statistics. _
tinuum Dirac operator. In Euclidean space, the chiral struc- 1he singularities associated with the real eigenvalues are
ture of the usual Dirac operator implies a purely imaginaryrelatec_i to bot_h the chiral symmetry breaking assomat_ed Wlth
spectrum for its eigenvalues. However, the Wilson-Dirac opihe Wilson-Dirac operator and the quenched approximation
erator will have a spectrum of complex eigenvalues whichwhich enhances smgularlt_les of the fermion propagators that
fill a region of the complex plang2,3). In particular, there ~are normally suppressed in the full unquenched theory. The
will be a spread in the values of the real part of these eigenf€rmion propagator can be written as a sum over the eigen-
values which means that the massless fermion limit cannofalues of the Wilson-Dirac operatox;
be uniquely specified and the chiral limit can only be defined
through ensemble averages of physical quantities. Unfortu- _ _ : _
nately, the relevant physical quantities, such as the pion cor- Se (Y. AX) Z viGAWY AVIN(A) + Mol (1)
relator, are singular functions of the Wilson-Dirac eigenval-
ues in the standard quenched approximation and there isherev (w) are left(right) eigenmodes in a particular back-
growing evidencd4] that ensemble averages may not existground gauge fieldA(x).
for sufficiently small fermion masses. We will give explicit  In the continuum, the fermion mass parameter being non-
evidence that this is the case for Wilson fermion theories irzero implies that there are no singular terms in the sum when
two and four dimensions including two-dimensional QED the gauge fields are smoothly varied. However, this is not the
(QED2 and four-dimensional QCQCD4). case on the lattice. As the background gauge field is varied,
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isolated real eigenvalues are restricted to remain on the reahdefined. A convenient statistical diagnostic for revealing
axis. The symmetries of the Wilson-Dirac operdiy7] im-  the existence and strength of nonintegrable singularities in a
ply that the complex eigenvalues occur in complex conjugatguenched path integral is introduced and applied. Section Il
pairs and a single real eigenvalue cannot become twdlustrates certain universal aspects of the statistical behavior
complex-conjugate eigenvalues via smooth variation of thef the Monte Carlo simulation of divergent integrals using a
gauge potentials. Because of this constraint, the contributiogimple one-dimensional test function with essentially identi-
of the real eigenvalue modes to the functional integral ovecal behavior to meson correlators in quenched lattice gauge
the gauge potential can be reduced to a one-dimensional itheory. The analysis of Sec. Il for QED?2 is repeated in Sec.
tegral corresponding to the position of the real eigenvaluelV using data from a full four-dimensional quenched QCD
Hence, the quenched functional integral will contain nonin-simulation at relatively strong couplingd&5.7)—one in-
tegrable singularities associated with the contribution of thdected with frequent “exceptional” configurations. In Sec. V
real modes if the fermion mass is chosen to lie within thewe comment on the use of spectral characteristics of the
band associated with the spread of the real eigenvalues. Felermitian Wilson-Dirac operator in studying new phases of
example, the nonsinglet meson propagator is obtained bguenched gauge theory with Wilson fermions, and empha-
squaring the quark propagator and, therefore, the real modaize the need for a regularized version of quenched theory in
will generate a dipole contribution to the meson correlator. Ifstudying otherwise undefined correlator averages.
the bare fermion mass is chosen to lie within the band of real
eigenvalues, the Monte Carlo calculation will smoothly
sample eigenvalues in the neighborhood of fermion mass
corresponding to a one-dimensional integration parameter The two-dimensional version of massive quantum electro-
even though the original gauge integration corresponds to gynamics, the massive Schwinger model, has frequently
very high dimensional space of integration variables. Hencepeen used as a testbed for studying the structure of fermions
the sum for the meson correlator effectively reduces to  in lattice field theony[2]. It shares many features in common
with four-dimensional quantum chromodynamics, including
f A RegA) _’f Reg\) @ aspects of chiral symmetry, a nontrivial topological structure,
[N pold A) +mg]* (A +mg)?’ fermion doubling problems on the lattice, and the excep-
tional configuration artifacts of Wilson-Dirac fermions.
which is not directly defined. For this reason we argue that In a previous pape], we have emphasized the role that
the naive quenched theory does not exist. The “exceptional’exactly real eigenvalues play in generating exceptional con-
configurations observed in Monte Carlo calculations are nofigurations. In QED2 with Wilson-Dirac fermions, the real
strictly speaking an exceptional feature but are, instead, &igenvalues occur in bands rather than at a particular critical
genericproperty of the quenched theory signaling the breakvalue associated with the zero modes of the continuum
down of the naive theory for light fermion masses. Thetheory. The bands tend to narrow for gauge configurations
Monte Carlo averages simply do not converge for suffi-generated with larger values ¢ corresponding to the ap-
ciently large statistical samples. Indeed, this singular behawroach to the continuum theory.
ior of the naive quenched theory led us to prop@ska We have carried out simulations of QED2 defined on a
modification of the quenched theomnodified quenched ap- 10x10 lattice at3=4.5. According to the analysis of Smit
proximation (MQA)], where these lattice fermion artifacts and Vink[2], the massless theory is associated with a bare
are explicitly removed in the evaluation of the quenched corfermion mass given by the approximate relation
relation functions by restoring the chiral structure of the con-my=m,=2.0-0.65=1.9155. In Fig. 1, we show the spec-
tinuum theory. Others have recently proposed that the entirsum of accumulated eigenvalues of the Wilson-Dirac opera-
band of light fermion masses might be associated with dor in a typical set of 500 consecutivencorrelateglconfigu-
massless phase of the thedi§]. Unfortunately, we shall rations in a quenched simulation@# 4.5. Only eigenvalues
argue below that this interpretation cannot be directly apwith a real part less than the critical value of Smit and Vink
plied because the naive quenched hadronic correlation funé@re shown in this plot. Both real and complex eigenvalues
tions simply are not defined in this region for the reasonsxist in this region. Because the real eigenvalues are less
given above. than the critical value, they will produce poles in the fermion
While we have given a general argument concerning thgropagators at positive values of the fermion mass, leading
difficulties of defining the naive quenched theory, we will to a singular behavior of physical quantities constructed from
now show explicit evidence of this singular behavior in athese propagators in the quenched theory. We have marked
number of calculations in QED2 and QCDA4. In particular,the positions where real eigenvalues would produce poles for
we wish to show in this paper that nonintegrable singularitiesn,=m,—m.=0.06 and 0.10, respectively. The smaller fer-
in the quenched functional integral have a characteristic anthion massm,=0.06, lies within the band of real eigenval-
clearly detectable statistical signature in a Monte Carlo simuues, while the larger mass),=0.10, lies outside this region
lation. In Sec. Il, the singularity structure of quenched two-and should not be associated with singular behavior.
dimensional QED is explored using a variety of detailed sta- In the quenched theory, various physical quantities, such
tistical signatures. Explicit numerical evidence is provided toas correlation functions, can be computed from products of
show that the quenched functional integral of physical corrthe valence fermion propagator. The propagators in turn can
elators contains nonintegrable singularities and is thereforbe written as a spectral sum involving eigenfunctions of the

II. QUENCHED SINGULARITY STRUCTURE OF QED2
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FIG. 1. Wilson-Dirac spectrum near the left critical branch
[QED2]. The eigenvalue positions correspondingnig=0.10 and 0.2 |
my=0.06 are denoted by crosses.
| | | |

Wilson-Dirac operator and associated eigenvalues as in Eq o '
(1). The pseudoscaldfpion” ) propagator is then given as a 0 200 400 600 800 1000
sum over the eigenvalues: configurations averaged
FIG. 3. Convergence of pseudoscalar correlator with increasing
Trystiy (%Y, A) yst i (Y. X, A) (3)  statistics in quenched QED2. Hem,=0.10.

J55(X,Y)=§J_: [Ni(A)+mg][N(A)+mg]

. tical errors are plotted for a sample of 1000 quenched gauge
wheremy=mg+m.. The eigenvalue dependence of the de-configurations separated by 10 Metropolis sweeps. The
nominators exhibits the potential for double pole singular,ohagator averages for the lighter mass clearly reflect the
behavior in an integral ovek. For heavy-light mesons, one presence of singularities in the functional integral. Afigr
would encounter a single pole, for light-light-light baryons in

QCD4, atriple pole in the quenched functional integral.

As an example of this divergence, we computed the pseu
doscalar propagator at Euclidean titre2 for m;=0.06 and 35 |
0.10. In Fig. 2 the cumulative averages and associated statis
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FIG. 4. 1fP plot for 1000 configurations in QED2. The con-
figurations are ordered from lowest to highest value oP1/Re-

FIG. 2. Convergence of pseudoscalar correlator with increasingults for my=0.10 (dotted curvg and my=0.06 (solid curve are
statistics in quenched QED2. Hemg,=0.06. shown.

configurations averaged
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my=0.06 (solid line) are compared with the associated MQA cor-
FIG. 5. 1P plot. Results for the lowest 200 configurations with relators(open circles

my=0.06 in Fig. 4 are show(small diamondg The solid line is a
linear fit to the first 40 configurations. ture of the singular structure can be obtained from the

propagator by computing the value of the inverse square root
parent convergence with the first 100 configurations, theof the propagator tP= 1/\/P(t). Ordering the configura-
contributions of a number of exceptional configurations bedions according to the size ofrE should then reveal a linear
come dominant and no reliable average value can be exextrapolation to a zero value at the singularity, reflecting the
tracted from the simulation. For this mass value, we arginiform sampling by the Monte Carlo in the neighborhood of
within the band of real eigenvalues and the Monte Carldhe singularity. In Fig. 4 we show these plots for the two
process eventually samples eigenvalues arbitrarily close tmass values discussed above.
the double pole singularity in the pseudoscalar propagator. Itis clear that the smaller mass valug,=0.06, shows a
We can compare this behavior to the propagator average f@mooth extrapolation of P to zero while the larger value,
the larger massm,=0.10, which lies outside the band of m,=0.10, reveals a gap. Since the poles are expected to
real eigenvalue¢see Fig. 3. Here the propagator appears to dominate only for configurations with eigenvalues close to
converge to its average value after about 400-500 sweepBe poles, only the behavior asr®/— 0 is relevant here. In
and there is no obvious singular behavior. Fig. 5, we focus on this region for the small mass case to

Even if we do not directly know the eigenvalue spectrumbring out clearly the linear behavior close to the origin.

(and this is in general the case for QCD in four dimensipns  The correlation between the singular behavior observed in
we can infer the singular structure of the quenched integrathe 1fP plots and the real eigenvalues can be seen by com-
directly from physical quantities such as meson propagatorgaring the raw data with propagators modified using the
For example, the pseudoscalar propagator in @B).is a  MQA procedurd5]. This procedure modifies fermion propa-
singular function as an eigenvalue approaches the criticajators by shifting the poles due to real eigenvalues to the
value \;—mg. In this singular limit, one eigenvalue will critical value expected for the continuum theory. Only real
dominate the propagator sum in the form of a double polepoles to the left of the critical value, as shown in Fig. 1, are
singularity. The Monte Carlo average will sample eigenval-shifted in this procedure. In applying the procedure to the
ues in the neighborhood of this singularity so long as theQED2 data, it is clear that any difference observed in the
mass lies within the band defined by the purely real part obehavior of the correlation functions is directly attributable
the spectrum. It should be expected that eigenvalues close to the structure of the real eigenvalues. In Fig. 6 we compare
the singularity will be uniformly samplecgiven sufficient the 1fP plot for the raw propagator with that for the MQA
statistic$ as neighboring gauge configurations smoothly varyshifted propagator. The configurations are, in each case, or-
the values of the real eigenvalu€$his uniform sampling is dered according to the value of the raw propagator. It is
a consequence of the fact that, unlike full QCD, the distribu-apparent that all the points close to the origin in this plot
tion of quenched gauge configurations is unaffected by sinwere associated with the singular structure of the real modes.
gularities in the quark propagatpience a definitive signa- This correlation can be made more explicit by considering
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FIG. 7. 1fP versus the position of the nearest real pole eigen- configurations averaged

lue Re fi =0.06. (QED2. . N
value Re\ for m=0.06. (QED2) FIG. 8. Cumulative average for Monte Carlo estimation of a test

. . . ) . function| [Eq. (4)] versus number of sampling point&onfigura-
only the configurations with real poles lying within the band ¢j;g).

shown in Fig. 1. We have checked that in QED2 these con-

figurations all correspond to nonzero topological charge. Iyt 5 gouble pole singularity with a spectral weight similar to

Fig. 7, we plot the value of LP for each configuration ver- hat seen for the real eigenvalues of the QED2 analysis. We
sus the position of the nearest real eigenvalue for that conspose an integral of the form

figuration. The close correlation is obvious and the position

of the singular eigenvalue is clearly identified for this mass . )
value, my=0.06. In many casegspecially in QCD#it is |:f dxzxe—z. (4)
not possible to identify all the real poles. However, we have 0 (x—a)“+b

seen that the behavior ofrH can clearly be used to exhibit
the singularities associated with bands of real eigenvalue$:or positive values o andb=0 the integral is divergent
The method will only be effective however when there isand we do not expect the estimate of its value by Monte
sufficient Monte Carlo statistics to smoothly sample theCarlo methods to converge. Analogously to the case of
neighborhood of the propagator singularities. QED2, we generate 1000 configurations according to the
spectral weight 2 exp(—x%). To imitate the contributions of
configurations with complex poles, we have randomly cho-
sen the width parametér to be either zero or a fixed non-
We have argued that the presence of a band of real eigezero value for each term in the sum. As a result we have a
values of the Wilson-Dirac operator implies that the unmodi-sample of 200 configurations to integrate a singular double
fied quenched functional integral simply does not exist forpole term(with b=0) and 800 configurations with integrable
bare fermion masses which place the propagator singularitiesomplex pole contribution&he 4:1 balance chosen here was
within the real eigenvalue band. Even with unlimited Montesimilar to that found in the QED2 simulatiprin Fig. 8 the
Carlo statistics, the real poles generate exceptional configiwwumulative averages and errors for the integral are plotted as
rations at a fixed rate, with fluctuations increasing as eigena function of the number of configurations includedl Fig.
values appear closer to the poles of the fermion propagato?). While there seems to be an approximate convergence
This problem can be seen in the clearest possible way bwith 300—400 configurations, the exceptional terms associ-
attempting to estimate a singular one-dimensional integrakted with Monte Carlo sampling close to the pole causes the
corresponding to the meson propagator, by Monte Carl@rror eventually to explode—reflecting the fact that the inte-
methods. The properties of such a simulation, where weral does not exist. This plot is remarkably similar to the plot
know that the answer does not exist, can then be comparddr the pseudoscalar propagator for QED2 shown in Fig. 2.
with our Monte Carlo simulations of QED2 and QCD4. In fact, the cause of the exceptional configurations in both
The test function we wish to examine is a simple integralcases is exactly the same—a nonintegrable dipole

Ill. A SIMPLE TEST FUNCTION
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FIG. 9. 1fP for the test function I. The solid curve represents configuration number
the raw “configurations” ordered by value; while the open circles
show the effect of applying an MQA procedure. FIG. 10. 1fP plot for 200 configurations a8=5.7 on a 18

X 32 lattice (QCD4). The Wilson quark propagators usesd
singularity—so the resemblance should hardly be surprising™ 0.1685. Configurations are ordered by value cnPl/T_he naive
We can also plot the analog of the B/ plot of Fig. 4. In Fig. pseudoscalar correlator results are denoted as a solid curve, while
9 we show the inverse square root of the individual Surn_the corresponding results using the MQA procedure are denoted by

mands placed in sequential order. The plot again shows th&e" cireles.

linear behavior near the origin due to sampling near the polgence of the linear behavior near the origin. We can see that
singularity. In addition, we have shown, in open circles, theyyis pehavior is directly attributable to real eigenvalues by
effect of applying the equivalent of the MQA shift moving potting (open circlesthe same configurations with propaga-
subcritical real eigenvalues &=0; again, this removes the (45 computed using the MQA analysis where only real poles
linear part of the curve as in the QED2 case and introduces gre shifted. Again, all of the contributions near the origin are
gap. We note that fluctuations in the imaginary part of theemoved, indicating that the real poles dominate the excep-
eigenvalues and in the pole residues for QED2 explain thgonaj configurations. Here again, direct Monte Carlo simu-
deviations between QED2 and the simple test function. Howpation of the quenched functional integral will be seen to fail
ever, the approximate quantization of the pole residuegnce sufficient statistics are accumulated. At heavier quark

(which are effectively instanton zero modes in the QEDZyasses the density of real eigenvalues is smaller and a much
case is important in generating the observed linear behaworhigher level of Monte Carlo statistics may be needed to

From the analysis we see that thePL/plot provides a useful clearly identify the singular behavior, which is nevertheless
and clear signal of nonintegrability in Monte Carlo simula- ;|| present, at least for fermion masses< 2.0.
tions. The singular behavior of the Monte Carlo integréde-
riving in turn from the underlying nonintegrable singularity
IV. QUENCHED SINGULARITY STRUCTURE OF QCD4 of the qyenched fgnctional integyas no'g a unique feature of
the Wilson action. Improved actions, such as the
Quenched calculations of quantum chromodynamics irSheikholeslami-WohlertSW) [9] action, also suffer from
four dimensions are also known to suffer from problems asthe singularities associated with real eigenvalues. Subcritical
sociated with exceptional configurations and singularities ocreal modes can be extracted from the&lependence of had-
casioned by real eigenvalues. In a previous pdpérwe  ron propagators or we may use theP/test to see the im-
were able to identify the spectrum of subcritical real eigen-pact of the exceptional configurations. In Fig. 11 we show
values using fits to the dependence of observables such ashe 1fP plot for a 12X 24 lattice at3=5.7 with clover
the integrated pseudoscalar density. We can also study tlmefficientC,,=1.57 andx=0.1425. Once more, the linear
statistical behavior of the quenched singularities using théehavior near the origin gives a clear signal of the singular
1/rP plots for the pion propagators discussed above. In Fignature of the unmodified Monte Carlo integral and the com-
10 we show the 1P plot for a 16x 32 lattice at3=5.7 and  parison with the MQA analysis shows that the real eigenval-
a « value of 0.1685, corresponding to a quark mass withinues play the essential role.
the band of real eigenvalues for this There is clear evi- These results provide convincing evidence that real
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FIG. 12. Spectral density afi(m) for QED2 with my=0.06.
The total number of eigenvalues are shown with bin size 0.01.

Dirac operator in a 1-1 fashion, and therefore to identify
o | J J . modes which play the special role of the real eigenvalues in
0 50 100 150 200 the Wilson-Dirac case. Nevertheless, the physical quantities
configuration number of the quenched theorgmeson propagators and other had-
ronic amplitudes are unique and share the same singular
FIG. 11. 1fP plot for 200 configurations g8=5.7 on a 18  behavior that we have established using the Wilson-Dirac
X 32 lattice (QCD4). The SW quark propagators used=0.1425  approach.
and Cy,=1.57. Configurations are ordered by value afPL/ The The small eigenvalues of tHd(m) operator are usually
naive pseudoscalar correlator results are denoted as a solid curygentified with the dynamical breaking of chiral symmetry.
while the corresponding results using the MQA procedure are deHowever, we know that these eigenvalues must also reflect
noted by open circles. the nonintegrable singularities found in the Wilson-Dirac ap-

] ) ] . proach. Indeed, exactly zero eigenvalues arise from common
modes are responsible for generating the singular behavior @igenfunctions. By varying the fermion mass we can estab-
the unmodified quenched approximation. For sufficientlyjish the same band of masses which correspond to singulari-
light quark masses, hadron propagators determined from thgss caused by subcritical real eigenvalues of the Wilson-
valence quark propagators contain nonintegrable singularprgc operator. Thus, the closing of a gap in the spectrum of
ties. With low statistics these singularities are manifested by, H(m) operator corresponds in part to the appearance of
the appearance of an occasional exceptional configuratiopgnintegrable contributions in the quenched path integral. In
However, it isinevitablethat the Monte Carlo average will Figs. 12 and 13 we display the central part of the spectral
diverge as the statistics are increased and the eigenvalugesgion of H(m) in QED2 for the bare quark value masses

near the propagator poles are closely sampled. While wg og and 0.10 studied earlier. The disappearance of a gap for
have emphasized spectral properties associated with the

Wilson-Dirac operator, it is important to realize that these
nonintegrable singularities are present in completely physica
hadronic amplitudes in the unmodified quenched theory,
such as the pseudoscalar correlation functions. 400

V. EXCEPTIONAL CONFIGURATIONS, GAPLESS
PHASES, AND CHIRAL SOURCE TERMS

envalues
W
Q
o

A number of authors have preferred to use a Hermitian2
operatorH(m) [10] to discuss properties of the quenched
theory. This operator is simply related to the Wilson-Dirac
operator 100

200

H(m)=ys(D—-W), ©)

-0.4 -0.2 0 0.2

but has a completely different eigenvalue spectrum. Since .
Central spectral region

H(m) is Hermitian it has only real eigenvalues amdth the

exception of zero eigenvalues is not possible to uniquely FIG. 13. Spectral density dfi(m) for QED2 with m;=0.10.
associate eigenvalues &f(m) with those of the Wilson- Bin size 0.01.
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the smaller mass exactly corresponds to the fact that thphase can thus be studied in a well-defined way at large
rightmost cross in Fig. 1 is immersed in a band of real ei-volume before taking the limii— 0, as is done typically in
genvalues of the complex Wilson-Dirac operator. order to isolate the condensate. Of course, at finite volume,
Some author$8] have recently suggested that this bandthe singularity will return as the source term is set to zero, so
should reflect the dynamical realization of the chiral phasess in the case of studies of spontaneous symmetry breaking
of the quenched theory. They propose an identification of that finite volume one has to be careful to extrapolate in an
entire band with a massless phase of the theory. These coappropriate way from larger values of the source parameter.
clusions are based on studies with limited statistics on smaBut in the absence of such a source term in the propagator
lattices. We do not think that their conclusions can be susinversion, or of pole shifting as in the MQA procedure, one
tained once larger data samples are examined. The arguill necessarily encounter completely undefined statistical
ments presented above show that the normal Monte Carlaverages of meson propagators as more configurations are
integral of the quenched theory for meson propagators simincluded in a quenched simulation.
ply does not exist if the fermion masses lie within the band
identified with the putative massless phase. Hence, any in- VI. SUMMARY
ference of a particular physical behavior of the meson propa-
gators based on a small sample of configurations, particularly We conclude by summarizing our basic results on the
exceptional configurations where real modes are present, fg@ture of the quenched chiral artifacts in the Wilson-Dirac
unwarranted. We make no specific claims here about théormulation of lattice gauge theory:
possible existence, nonexistence or properties of additional (1) The appearance of exceptional configurations in
massless chiral phases in the unquenched theory at infinifflenched simulations is directly attributable to the appear-
volume. However, for the quenched Wilson theory at finiteance of exactly real modes of the Wilson-Dirac operator in
volume, the detailed statistical analyses presented in this p&ontrivial topological charge sectors of the theory.
per provide strong evidence that conventional hadron corr- (2) Even in cases where the extraction of the spectrum of
elators(and in particular, the pion correlators needed to esthe Wilson-Dirac operator is computationally prohibitive,
tablish the chiral spectrum in any putative new phasply there are a number of reliable statistical tests that can be
do not existonce the gapless region is entered. applied to diagnose the presence of the exactly real modes.
The suggestion that the flavor-parity breaking Aoki phasdn particular, the convergence properties of cumulative aver-
[11,12 of Wilson lattice QCD be studied by perturbing the ages of physical quantitiggf. Figs. 2, 3, 8 as well as the
system with a flavor-parity noninvariant source leads to arPehavior of the reordered inverse square-root of meson cor-
interesting point concerning the divergence of quenched anfelators(cf. Figs. 4, 5, 6, 7, 9, 10, 2Ican be used to signal
plitudes. The addition to the theory of any nontrivial chiral/ directly the appearance of such modes.
flavor rotation of the conventional mass term as a source (3) Finally, the statistical diagnostics used here reveal the
term (here we are dealing with two flavors of Wilson fermi- hature of the singularity of the quenched functional integral

ons, and are the corresponding isospin generators which corresponds to a one-dimensional integral with a non-
) integrable singularity. The singularity can be removed, and a
hip—hype 75y (6)  Well-defined quenched theory obtained, either by the MQA
pole-shifting technique introduced in our earlier pagé:s],
modifies the Hermitian Dirac operator by or by introducing a chirally rotated source at interim stages

R of the simulations.

H(m)—H(m)+hys cog #)+ih sin(6)0-a. (7)
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