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Quenched chiral artifacts for Wilson-Dirac fermions
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We examine artifacts associated with the chiral symmetry breaking induced through the use of Wilson-Dirac
fermions in lattice Monte Carlo computations. For light quark masses, the conventional quenched theory
cannot be defined using direct Monte Carlo methods due to the existence of nonintegrable poles in physical
quantities. These poles are associated with the real eigenvalue spectrum of the Wilson-Dirac operator. We
show how this singularity structure can be observed in the analysis of both QED in two dimensions and QCD
in four dimensions.@S0556-2821~98!07323-8#

PACS number~s!: 11.15.Ha, 11.10.Kk, 11.30.Rd
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I. INTRODUCTION

During the past 20 years, considerable progress has
achieved in studying the nonperturbative structure of ga
field theory through numerical computations of lattice fie
theory. The principal method of analysis has involved Mo
Carlo computations of physical quantities such as meson
relation functions where fermions have been treated us
the quenched approximation. The quenched approxima
omits the contribution of the fermion determinant to t
functional integral defining the transition amplitudes. Th
approximation is known to be quite sensitive to the particu
formulation used to define fermions on the lattice. In th
paper we will address certain problems associated with
study of light fermions using the Wilson-Dirac formulatio
@1# of lattice fermions.

In the continuum the usual Dirac operator defining t
fermion action preserves a chiral symmetry structure in
presence of gauge interactions which is broken only by
addition of fermion mass terms or Yukawa interactions.
the Wilson-Dirac formulation of lattice fermions, this chir
structure is explicitly broken by the analog of second deri
tive terms which are needed to remove the doubling deg
eracy of the naive lattice action for Dirac fermions. Th
chiral symmetry breaking modifies the eigenvalue spectr
of the Wilson-Dirac operator from that expected for the co
tinuum Dirac operator. In Euclidean space, the chiral str
ture of the usual Dirac operator implies a purely imagina
spectrum for its eigenvalues. However, the Wilson-Dirac
erator will have a spectrum of complex eigenvalues wh
fill a region of the complex plane@2,3#. In particular, there
will be a spread in the values of the real part of these eig
values which means that the massless fermion limit can
be uniquely specified and the chiral limit can only be defin
through ensemble averages of physical quantities. Unfo
nately, the relevant physical quantities, such as the pion
relator, are singular functions of the Wilson-Dirac eigenv
ues in the standard quenched approximation and ther
growing evidence@4# that ensemble averages may not ex
for sufficiently small fermion masses. We will give explic
evidence that this is the case for Wilson fermion theories
two and four dimensions including two-dimensional QE
~QED2! and four-dimensional QCD~QCD4!.
0556-2821/98/59~1!/014507~9!/$15.00 59 0145
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In previous work@4,5# we have shown that the precise
real eigenvalues of the Wilson-Dirac operator play a spe
role in the quenched theory. These eigenvalues are the
log of the zero modes of the continuum theory which a
associated with the topological structure of the backgrou
gauge field. In the lattice formulation of the theory, the
modes are responsible for the singular behavior of
quenched theory for light fermion masses. The singulari
arise when the fermion mass is chosen to lie within the b
of real eigenvalues which exists because of the chiral s
metry breaking property of the Wilson-Dirac operator. Th
is well known and is the principal reason for the ‘‘exce
tional’’ configurations observed in Monte Carlo calculatio
of the quenched theory@6#. Indeed, we have previously mad
a careful analysis@4# of the correlation between the behavi
of the real eigenvalue spectrum and the observation of
ceptional configurations. However, the problem associa
with these exceptional configurations goes beyond the
noying problem of an occasional large contribution of
single configuration and its implication for the statistical e
rors of the associated ensemble averages. We have p
ously pointed out that this problem cannot be solved sim
by accumulating larger statistical samples as the excepti
configurations are expected to occur at a level where, eve
large statistical samples, the statistical errors will not dim
ish even in the limit of infinite statistics.

The singularities associated with the real eigenvalues
related to both the chiral symmetry breaking associated w
the Wilson-Dirac operator and the quenched approxima
which enhances singularities of the fermion propagators
are normally suppressed in the full unquenched theory.
fermion propagator can be written as a sum over the eig
values of the Wilson-Dirac operator,l i ,

SF„x,y,A~x!…5(
i

v i~x,A!wi~y,A!/@l i~A!1m0#, ~1!

wherev (w) are left~right! eigenmodes in a particular back
ground gauge field,A(x).

In the continuum, the fermion mass parameter being n
zero implies that there are no singular terms in the sum w
the gauge fields are smoothly varied. However, this is not
case on the lattice. As the background gauge field is var
©1998 The American Physical Society07-1
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isolated real eigenvalues are restricted to remain on the
axis. The symmetries of the Wilson-Dirac operator@4,7# im-
ply that the complex eigenvalues occur in complex conjug
pairs and a single real eigenvalue cannot become
complex-conjugate eigenvalues via smooth variation of
gauge potentials. Because of this constraint, the contribu
of the real eigenvalue modes to the functional integral o
the gauge potential can be reduced to a one-dimensiona
tegral corresponding to the position of the real eigenva
Hence, the quenched functional integral will contain non
tegrable singularities associated with the contribution of
real modes if the fermion mass is chosen to lie within
band associated with the spread of the real eigenvalues
example, the nonsinglet meson propagator is obtained
squaring the quark propagator and, therefore, the real m
will generate a dipole contribution to the meson correlator
the bare fermion mass is chosen to lie within the band of
eigenvalues, the Monte Carlo calculation will smooth
sample eigenvalues in the neighborhood of fermion m
corresponding to a one-dimensional integration param
even though the original gauge integration corresponds
very high dimensional space of integration variables. Hen
the sum for the meson correlator effectively reduces to

E DA
Res~A!

@lpole~A!1mo#2→E dl
Res~l!

~l1mo!2 , ~2!

which is not directly defined. For this reason we argue t
the naive quenched theory does not exist. The ‘‘exception
configurations observed in Monte Carlo calculations are
strictly speaking an exceptional feature but are, instea
genericproperty of the quenched theory signaling the bre
down of the naive theory for light fermion masses. T
Monte Carlo averages simply do not converge for su
ciently large statistical samples. Indeed, this singular beh
ior of the naive quenched theory led us to propose@5# a
modification of the quenched theory@modified quenched ap
proximation ~MQA!#, where these lattice fermion artifac
are explicitly removed in the evaluation of the quenched c
relation functions by restoring the chiral structure of the co
tinuum theory. Others have recently proposed that the en
band of light fermion masses might be associated wit
massless phase of the theory@8#. Unfortunately, we shall
argue below that this interpretation cannot be directly
plied because the naive quenched hadronic correlation f
tions simply are not defined in this region for the reaso
given above.

While we have given a general argument concerning
difficulties of defining the naive quenched theory, we w
now show explicit evidence of this singular behavior in
number of calculations in QED2 and QCD4. In particul
we wish to show in this paper that nonintegrable singulari
in the quenched functional integral have a characteristic
clearly detectable statistical signature in a Monte Carlo sim
lation. In Sec. II, the singularity structure of quenched tw
dimensional QED is explored using a variety of detailed s
tistical signatures. Explicit numerical evidence is provided
show that the quenched functional integral of physical co
elators contains nonintegrable singularities and is there
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undefined. A convenient statistical diagnostic for reveal
the existence and strength of nonintegrable singularities
quenched path integral is introduced and applied. Section
illustrates certain universal aspects of the statistical beha
of the Monte Carlo simulation of divergent integrals using
simple one-dimensional test function with essentially iden
cal behavior to meson correlators in quenched lattice ga
theory. The analysis of Sec. II for QED2 is repeated in S
IV using data from a full four-dimensional quenched QC
simulation at relatively strong coupling (b55.7)—one in-
fected with frequent ‘‘exceptional’’ configurations. In Sec.
we comment on the use of spectral characteristics of
Hermitian Wilson-Dirac operator in studying new phases
quenched gauge theory with Wilson fermions, and emp
size the need for a regularized version of quenched theor
studying otherwise undefined correlator averages.

II. QUENCHED SINGULARITY STRUCTURE OF QED2

The two-dimensional version of massive quantum elec
dynamics, the massive Schwinger model, has freque
been used as a testbed for studying the structure of ferm
in lattice field theory@2#. It shares many features in commo
with four-dimensional quantum chromodynamics, includi
aspects of chiral symmetry, a nontrivial topological structu
fermion doubling problems on the lattice, and the exce
tional configuration artifacts of Wilson-Dirac fermions.

In a previous paper@4#, we have emphasized the role th
exactly real eigenvalues play in generating exceptional c
figurations. In QED2 with Wilson-Dirac fermions, the re
eigenvalues occur in bands rather than at a particular crit
value associated with the zero modes of the continu
theory. The bands tend to narrow for gauge configurati
generated with larger values ofb corresponding to the ap
proach to the continuum theory.

We have carried out simulations of QED2 defined on
10310 lattice atb54.5. According to the analysis of Sm
and Vink @2#, the massless theory is associated with a b
fermion mass given by the approximate relati
m05mc.2.0– 0.65/b51.9155. In Fig. 1, we show the spec
trum of accumulated eigenvalues of the Wilson-Dirac ope
tor in a typical set of 500 consecutive~uncorrelated! configu-
rations in a quenched simulation atb54.5. Only eigenvalues
with a real part less than the critical value of Smit and Vi
are shown in this plot. Both real and complex eigenvalu
exist in this region. Because the real eigenvalues are
than the critical value, they will produce poles in the fermi
propagators at positive values of the fermion mass, lead
to a singular behavior of physical quantities constructed fr
these propagators in the quenched theory. We have ma
the positions where real eigenvalues would produce poles
mq[m02mc50.06 and 0.10, respectively. The smaller fe
mion mass,mq50.06, lies within the band of real eigenva
ues, while the larger mass,mq50.10, lies outside this region
and should not be associated with singular behavior.

In the quenched theory, various physical quantities, s
as correlation functions, can be computed from products
the valence fermion propagator. The propagators in turn
be written as a spectral sum involving eigenfunctions of
7-2
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QUENCHED CHIRAL ARTIFACTS FOR WILSON-DIRAC . . . PHYSICAL REVIEW D 59 014507
Wilson-Dirac operator and associated eigenvalues as in
~1!. The pseudoscalar~‘‘pion’’ ! propagator is then given as
sum over the eigenvalues:

J55~x,y!5(
i j

Trg5r i j ~x,y,A!g5r j i ~y,x,A!

@l i~A!1m0#@l j~A!1m0#
, ~3!

wherem05mq1mc . The eigenvalue dependence of the d
nominators exhibits the potential for double pole singu
behavior in an integral overA. For heavy-light mesons, on
would encounter a single pole, for light-light-light baryons
QCD4, atriple pole in the quenched functional integral.

As an example of this divergence, we computed the ps
doscalar propagator at Euclidean timet52 for mq50.06 and
0.10. In Fig. 2 the cumulative averages and associated st

FIG. 1. Wilson-Dirac spectrum near the left critical bran
@QED2#. The eigenvalue positions corresponding tomq50.10 and
mq50.06 are denoted by crosses.

FIG. 2. Convergence of pseudoscalar correlator with increa
statistics in quenched QED2. Heremq50.06.
01450
q.

-
r

u-

tis-

tical errors are plotted for a sample of 1000 quenched ga
configurations separated by 10 Metropolis sweeps. T
propagator averages for the lighter mass clearly reflect
presence of singularities in the functional integral. Afterap-

g

FIG. 3. Convergence of pseudoscalar correlator with increas
statistics in quenched QED2. Heremq50.10.

FIG. 4. 1/rP plot for 1000 configurations in QED2. The con
figurations are ordered from lowest to highest value of 1/rP. Re-
sults for mq50.10 ~dotted curve! and mq50.06 ~solid curve! are
shown.
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parent convergence with the first 100 configurations, t
contributions of a number of exceptional configurations
come dominant and no reliable average value can be
tracted from the simulation. For this mass value, we
within the band of real eigenvalues and the Monte Ca
process eventually samples eigenvalues arbitrarily clos
the double pole singularity in the pseudoscalar propaga
We can compare this behavior to the propagator average
the larger mass,mq50.10, which lies outside the band o
real eigenvalues~see Fig. 3!. Here the propagator appears
converge to its average value after about 400–500 swe
and there is no obvious singular behavior.

Even if we do not directly know the eigenvalue spectru
~and this is in general the case for QCD in four dimension!,
we can infer the singular structure of the quenched inte
directly from physical quantities such as meson propagat
For example, the pseudoscalar propagator in Eq.~3! is a
singular function as an eigenvalue approaches the cri
value l i→m0 . In this singular limit, one eigenvalue wil
dominate the propagator sum in the form of a double p
singularity. The Monte Carlo average will sample eigenv
ues in the neighborhood of this singularity so long as
mass lies within the band defined by the purely real par
the spectrum. It should be expected that eigenvalues clos
the singularity will be uniformly sampled~given sufficient
statistics! as neighboring gauge configurations smoothly v
the values of the real eigenvalues.~This uniform sampling is
a consequence of the fact that, unlike full QCD, the distrib
tion of quenched gauge configurations is unaffected by
gularities in the quark propagator.! Hence a definitive signa

FIG. 5. 1/rP plot. Results for the lowest 200 configurations wi
mq50.06 in Fig. 4 are shown~small diamonds!. The solid line is a
linear fit to the first 40 configurations.
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ture of the singular structure can be obtained from
propagator by computing the value of the inverse square
of the propagator 1/rP[ 1/AP(t). Ordering the configura-
tions according to the size of 1/rP should then reveal a linea
extrapolation to a zero value at the singularity, reflecting
uniform sampling by the Monte Carlo in the neighborhood
the singularity. In Fig. 4 we show these plots for the tw
mass values discussed above.

It is clear that the smaller mass value,mq50.06, shows a
smooth extrapolation of 1/rP to zero while the larger value
mq50.10, reveals a gap. Since the poles are expecte
dominate only for configurations with eigenvalues close
the poles, only the behavior as 1/rP→0 is relevant here. In
Fig. 5, we focus on this region for the small mass case
bring out clearly the linear behavior close to the origin.

The correlation between the singular behavior observe
the 1/rP plots and the real eigenvalues can be seen by c
paring the raw data with propagators modified using
MQA procedure@5#. This procedure modifies fermion propa
gators by shifting the poles due to real eigenvalues to
critical value expected for the continuum theory. Only re
poles to the left of the critical value, as shown in Fig. 1, a
shifted in this procedure. In applying the procedure to
QED2 data, it is clear that any difference observed in
behavior of the correlation functions is directly attributab
to the structure of the real eigenvalues. In Fig. 6 we comp
the 1/rP plot for the raw propagator with that for the MQA
shifted propagator. The configurations are, in each case
dered according to the value of the raw propagator. It
apparent that all the points close to the origin in this p
were associated with the singular structure of the real mo
This correlation can be made more explicit by consider

FIG. 6. 1/rP plot. The pseudoscalar correlators in Fig. 4 wi
mq50.06 ~solid line! are compared with the associated MQA co
relators~open circles!.
7-4
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QUENCHED CHIRAL ARTIFACTS FOR WILSON-DIRAC . . . PHYSICAL REVIEW D 59 014507
only the configurations with real poles lying within the ba
shown in Fig. 1. We have checked that in QED2 these c
figurations all correspond to nonzero topological charge
Fig. 7, we plot the value of 1/rP for each configuration ver
sus the position of the nearest real eigenvalue for that c
figuration. The close correlation is obvious and the posit
of the singular eigenvalue is clearly identified for this ma
value, mq50.06. In many cases~especially in QCD4! it is
not possible to identify all the real poles. However, we ha
seen that the behavior of 1/rP can clearly be used to exhib
the singularities associated with bands of real eigenval
The method will only be effective however when there
sufficient Monte Carlo statistics to smoothly sample t
neighborhood of the propagator singularities.

III. A SIMPLE TEST FUNCTION

We have argued that the presence of a band of real ei
values of the Wilson-Dirac operator implies that the unmo
fied quenched functional integral simply does not exist
bare fermion masses which place the propagator singular
within the real eigenvalue band. Even with unlimited Mon
Carlo statistics, the real poles generate exceptional confi
rations at a fixed rate, with fluctuations increasing as eig
values appear closer to the poles of the fermion propaga
This problem can be seen in the clearest possible way
attempting to estimate a singular one-dimensional integ
corresponding to the meson propagator, by Monte Ca
methods. The properties of such a simulation, where
know that the answer does not exist, can then be comp
with our Monte Carlo simulations of QED2 and QCD4.

The test function we wish to examine is a simple integ

FIG. 7. 1/rP versus the position of the nearest real pole eig
value Rel for mq50.06. ~QED2!.
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of a double pole singularity with a spectral weight similar
that seen for the real eigenvalues of the QED2 analysis.
chose an integral of the form

I 5E
0

`

dx2x
e2x2

~x2a!21b
. ~4!

For positive values ofa and b50 the integral is divergen
and we do not expect the estimate of its value by Mo
Carlo methods to converge. Analogously to the case
QED2, we generate 1000 configurations according to
spectral weight 2x exp(2x2). To imitate the contributions of
configurations with complex poles, we have randomly ch
sen the width parameterb to be either zero or a fixed non
zero value for each term in the sum. As a result we hav
sample of 200 configurations to integrate a singular dou
pole term~with b50! and 800 configurations with integrabl
complex pole contributions~the 4:1 balance chosen here w
similar to that found in the QED2 simulation!. In Fig. 8 the
cumulative averages and errors for the integral are plotte
a function of the number of configurations included~cf. Fig.
2!. While there seems to be an approximate converge
with 300–400 configurations, the exceptional terms ass
ated with Monte Carlo sampling close to the pole causes
error eventually to explode—reflecting the fact that the in
gral does not exist. This plot is remarkably similar to the p
for the pseudoscalar propagator for QED2 shown in Fig
In fact, the cause of the exceptional configurations in b
cases is exactly the same—a nonintegrable dip

-

FIG. 8. Cumulative average for Monte Carlo estimation of a t
function I @Eq. ~4!# versus number of sampling points~‘‘configura-
tions’’!.
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singularity—so the resemblance should hardly be surpris
We can also plot the analog of the 1/rP plot of Fig. 4. In Fig.
9 we show the inverse square root of the individual su
mands placed in sequential order. The plot again shows
linear behavior near the origin due to sampling near the p
singularity. In addition, we have shown, in open circles,
effect of applying the equivalent of the MQA shift movin
subcritical real eigenvalues toa50; again, this removes th
linear part of the curve as in the QED2 case and introduc
gap. We note that fluctuations in the imaginary part of
eigenvalues and in the pole residues for QED2 explain
deviations between QED2 and the simple test function. Ho
ever, the approximate quantization of the pole resid
~which are effectively instanton zero modes in the QE
case! is important in generating the observed linear behav
From the analysis we see that the 1/rP plot provides a usefu
and clear signal of nonintegrability in Monte Carlo simul
tions.

IV. QUENCHED SINGULARITY STRUCTURE OF QCD4

Quenched calculations of quantum chromodynamics
four dimensions are also known to suffer from problems
sociated with exceptional configurations and singularities
casioned by real eigenvalues. In a previous paper@5# we
were able to identify the spectrum of subcritical real eige
values using fits to thek dependence of observables such
the integrated pseudoscalar density. We can also study
statistical behavior of the quenched singularities using
1/rP plots for the pion propagators discussed above. In F
10 we show the 1/rP plot for a 163332 lattice atb55.7 and
a k value of 0.1685, corresponding to a quark mass wit
the band of real eigenvalues for thisb. There is clear evi-

FIG. 9. 1/rP for the test function I. The solid curve represen
the raw ‘‘configurations’’ ordered by value; while the open circl
show the effect of applying an MQA procedure.
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dence of the linear behavior near the origin. We can see
this behavior is directly attributable to real eigenvalues
plotting ~open circles! the same configurations with propag
tors computed using the MQA analysis where only real po
are shifted. Again, all of the contributions near the origin a
removed, indicating that the real poles dominate the exc
tional configurations. Here again, direct Monte Carlo sim
lation of the quenched functional integral will be seen to f
once sufficient statistics are accumulated. At heavier qu
masses the density of real eigenvalues is smaller and a m
higher level of Monte Carlo statistics may be needed
clearly identify the singular behavior, which is neverthele
still present, at least for fermion massesm0,2.0.

The singular behavior of the Monte Carlo integrals~de-
riving in turn from the underlying nonintegrable singulari
of the quenched functional integral! is not a unique feature o
the Wilson action. Improved actions, such as t
Sheikholeslami-Wohlert~SW! @9# action, also suffer from
the singularities associated with real eigenvalues. Subcrit
real modes can be extracted from thek dependence of had
ron propagators or we may use the 1/rP test to see the im-
pact of the exceptional configurations. In Fig. 11 we sh
the 1/rP plot for a 123324 lattice atb55.7 with clover
coefficientCsw51.57 andk50.1425. Once more, the linea
behavior near the origin gives a clear signal of the singu
nature of the unmodified Monte Carlo integral and the co
parison with the MQA analysis shows that the real eigenv
ues play the essential role.

These results provide convincing evidence that r

FIG. 10. 1/rP plot for 200 configurations atb55.7 on a 163

332 lattice ~QCD4!. The Wilson quark propagators usedk
50.1685. Configurations are ordered by value of 1/rP. The naive
pseudoscalar correlator results are denoted as a solid curve, w
the corresponding results using the MQA procedure are denote
open circles.
7-6
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QUENCHED CHIRAL ARTIFACTS FOR WILSON-DIRAC . . . PHYSICAL REVIEW D 59 014507
modes are responsible for generating the singular behavio
the unmodified quenched approximation. For sufficien
light quark masses, hadron propagators determined from
valence quark propagators contain nonintegrable singu
ties. With low statistics these singularities are manifested
the appearance of an occasional exceptional configura
However, it isinevitable that the Monte Carlo average wi
diverge as the statistics are increased and the eigenva
near the propagator poles are closely sampled. While
have emphasized spectral properties associated with
Wilson-Dirac operator, it is important to realize that the
nonintegrable singularities are present in completely phys
hadronic amplitudes in the unmodified quenched theo
such as the pseudoscalar correlation functions.

V. EXCEPTIONAL CONFIGURATIONS, GAPLESS
PHASES, AND CHIRAL SOURCE TERMS

A number of authors have preferred to use a Hermit
operatorH(m) @10# to discuss properties of the quench
theory. This operator is simply related to the Wilson-Dir
operator

H~m!5g5~D2W!, ~5!

but has a completely different eigenvalue spectrum. Si
H(m) is Hermitian it has only real eigenvalues and~with the
exception of zero eigenvalues! it is not possible to uniquely
associate eigenvalues ofH(m) with those of the Wilson-

FIG. 11. 1/rP plot for 200 configurations atb55.7 on a 163

332 lattice ~QCD4!. The SW quark propagators usedk50.1425
and Csw51.57. Configurations are ordered by value of 1/rP. The
naive pseudoscalar correlator results are denoted as a solid c
while the corresponding results using the MQA procedure are
noted by open circles.
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Dirac operator in a 1-1 fashion, and therefore to ident
modes which play the special role of the real eigenvalue
the Wilson-Dirac case. Nevertheless, the physical quant
of the quenched theory~meson propagators and other ha
ronic amplitudes! are unique and share the same singu
behavior that we have established using the Wilson-Di
approach.

The small eigenvalues of theH(m) operator are usually
identified with the dynamical breaking of chiral symmetr
However, we know that these eigenvalues must also refl
the nonintegrable singularities found in the Wilson-Dirac a
proach. Indeed, exactly zero eigenvalues arise from comm
eigenfunctions. By varying the fermion mass we can est
lish the same band of masses which correspond to singu
ties caused by subcritical real eigenvalues of the Wils
Dirac operator. Thus, the closing of a gap in the spectrum
the H(m) operator corresponds in part to the appearance
nonintegrable contributions in the quenched path integral
Figs. 12 and 13 we display the central part of the spec
region of H(m) in QED2 for the bare quark value mass
0.06 and 0.10 studied earlier. The disappearance of a ga

ve,
e-

FIG. 12. Spectral density ofH(m) for QED2 with mq50.06.
The total number of eigenvalues are shown with bin size 0.01.

FIG. 13. Spectral density ofH(m) for QED2 with mq50.10.
Bin size 0.01.
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the smaller mass exactly corresponds to the fact that
rightmost cross in Fig. 1 is immersed in a band of real
genvalues of the complex Wilson-Dirac operator.

Some authors@8# have recently suggested that this ba
should reflect the dynamical realization of the chiral pha
of the quenched theory. They propose an identification of
entire band with a massless phase of the theory. These
clusions are based on studies with limited statistics on sm
lattices. We do not think that their conclusions can be s
tained once larger data samples are examined. The a
ments presented above show that the normal Monte C
integral of the quenched theory for meson propagators s
ply does not exist if the fermion masses lie within the ba
identified with the putative massless phase. Hence, any
ference of a particular physical behavior of the meson pro
gators based on a small sample of configurations, particul
exceptional configurations where real modes are presen
unwarranted. We make no specific claims here about
possible existence, nonexistence or properties of additio
massless chiral phases in the unquenched theory at infi
volume. However, for the quenched Wilson theory at fin
volume, the detailed statistical analyses presented in this
per provide strong evidence that conventional hadron c
elators~and in particular, the pion correlators needed to
tablish the chiral spectrum in any putative new phase! simply
do not existonce the gapless region is entered.

The suggestion that the flavor-parity breaking Aoki pha
@11,12# of Wilson lattice QCD be studied by perturbing th
system with a flavor-parity noninvariant source leads to
interesting point concerning the divergence of quenched
plitudes. The addition to the theory of any nontrivial chira
flavor rotation of the conventional mass term as a sou
term ~here we are dealing with two flavors of Wilson ferm
ons, andsW are the corresponding isospin generators!

hc̄c→hc̄eiuW •sW g5c ~6!

modifies the Hermitian Dirac operator by

H~m!→H~m!1hg5 cos~u!1 ih sin~u!û•sW . ~7!

The additional antiHermitian term~nonvanishing for anyu
Þ0,np! clearly renders the spectrum ofH(m) complex, in-
troducing a gap, as all eigenvaluesl of H(m) now satisfy
ulu.husin(u)u. Consequently, pion correlators comput
with quark propagators including the source term will no
be perfectly well-defined even in the quenched theory, as
nonintegrable poles are moved away from the integra
contour of the quenched path integral.~This corresponds to
the situation in the one-dimensional test integral of Sec.
whenbÞ0.! The properties of meson correlators in the Ao
01450
e
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phase can thus be studied in a well-defined way at la
volume before taking the limith→0, as is done typically in
order to isolate the condensate. Of course, at finite volu
the singularity will return as the source term is set to zero,
as in the case of studies of spontaneous symmetry brea
at finite volume one has to be careful to extrapolate in
appropriate way from larger values of the source parame
But in the absence of such a source term in the propag
inversion, or of pole shifting as in the MQA procedure, o
will necessarily encounter completely undefined statisti
averages of meson propagators as more configurations
included in a quenched simulation.

VI. SUMMARY

We conclude by summarizing our basic results on
nature of the quenched chiral artifacts in the Wilson-Dir
formulation of lattice gauge theory:

~1! The appearance of exceptional configurations
quenched simulations is directly attributable to the appe
ance of exactly real modes of the Wilson-Dirac operator
nontrivial topological charge sectors of the theory.

~2! Even in cases where the extraction of the spectrum
the Wilson-Dirac operator is computationally prohibitiv
there are a number of reliable statistical tests that can
applied to diagnose the presence of the exactly real mo
In particular, the convergence properties of cumulative av
ages of physical quantities~cf. Figs. 2, 3, 8!, as well as the
behavior of the reordered inverse square-root of meson
relators~cf. Figs. 4, 5, 6, 7, 9, 10, 11! can be used to signa
directly the appearance of such modes.

~3! Finally, the statistical diagnostics used here reveal
nature of the singularity of the quenched functional integ
which corresponds to a one-dimensional integral with a n
integrable singularity. The singularity can be removed, an
well-defined quenched theory obtained, either by the MQ
pole-shifting technique introduced in our earlier papers@4,5#,
or by introducing a chirally rotated source at interim stag
of the simulations.
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