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Efficient algorithm for QCD with light dynamical quarks
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A new approach to the inclusion of virtual quark effects in lattice QCD simulations is presented. Infrared
modes which build in the chiral physics in the light quark mass limit are included exactly and in a gauge
invariant way. At fixed physical volume the number of relevant infrared modes does not increase as the
continuum limit is approached. The acceptance of our procedure does not decrease substantially in the limit of
small quark masses. Two alternative approaches are discussed for including systematically the remaining
ultraviolet modes. In particular, we present evidence that these modes are accurately described by an effective
action involving only small Wilson loops.@S0556-2821~98!02423-0#

PACS number~s!: 12.38.Gc
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I. INTRODUCTION

Recent studies of the origin and role of exceptional c
figurations@1–3# leading to extremely noisy hadron correl
tors in quenched lattice QCD for light quark masses h
underlined the importance of nonlocal topological fluctu
tions in determining the chiral physics of the quench
theory. It has been known for a long time@4# that such fluc-
tuations completely alter the behavior of the theory in
light quark mass limit once the quark determinant is includ
in a full dynamical calculation. Moreover, the appearance
spurious real modes@1# of the Wilson-Dirac operator on fi
nite lattices in association with such fluctuations accounts
the increasing frequency of exceptional configurations
stronger coupling and low quark mass. These connection
suggest that reliable calculations in the chiral limit of latti
QCD require an accurate treatment of the low eigenmode
the quark Dirac operator.

Singularities of quark propagators in the quenched the
are automatically regulated by corresponding zeroes of
quark determinant. However, this regularization is only
fective if the low eigenmodes of the quark Dirac operator
treated precisely: in particular, valence and sea quark ma
must be identical. On the other hand, the high eigenmo
~corresponding to imaginary masses for scales well above
QCD scale up to the lattice cutoff! when integrated out con
tribute to an effective gauge-invariant gluonic action whic
for physics on small momentum scales, simply amounts
redefinition of the scale of the theory. To the extent that
ground state hadron spectrum involves hadronic bound s
with constituent quarks all off-shell on the order ofLQCD, it
therefore seems likely that high eigenmodes are simply ir
evant for spectrum calculations, even in full QCD. By wr
ing the fermion determinant in terms of the Hermitian ope
tor H[g5„D” (A)2m… @5# we are able to deal with a
completely real spectrum. Moreover, the individual eigenv
ues have a direct physical interpretation as a gauge-inva
measure of off-shellness of the quark fields~to see this, we
recall that for the free continuum theory, the eigenvalues
H are simply 6Ap21m2 for a quark mode of Euclidean
momentump!.
0556-2821/98/59~1!/014505~12!/$15.00 59 0145
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We shall argue in this paper that a separation of low a
high eigenmodes can in fact be carried out in a practical w
in unquenched lattice QCD calculations, leading to an e
cient way of building in the important physics of the qua
determinant in the chiral limit. Such a separation also cor
sponds to a completely gauge-invariant and smooth inte
lation between the quenched and full dynamics of the theo
The procedure we propose also yields as a byproduct v
detailed and useful information about the infrared spectr
of the Dirac operator which is known to be intimately relat
to the chiral physics of the theory@6#, and central to the
overlap formulation@7# of lattice QCD.

In Sec. II we describe a regularized version of the ferm
onic determinant which interpolates smoothly between
quenched and full theory, in a way which allows for th
selective inclusion of fermionic modes in a predetermin
momentum range~typically from zero up to a given cutof
m!. This regularization is amenable to an analytic pertur
tive calculation in which the role of the high eigenmod
contributing to the full fermionic determinant can be clea
isolated. Such a regularization can be studied analyticall
Abelian 4D gauge theory, where them-dependence of the
determinant for largem and low momentum is seen to reduc
to a shift of bare coupling~or in the lattice context, of scale!.

In Sec. III we describe the results of some simulations
2-dimensional lattice QED~QED2!, which has proven to be
an extremely useful testbed for exploring features of
Dirac-Wilson spectrum in lattice gauge theory. Here, a
henceforth in all the numerical simulations, we employ
regularization of the fermionic determinant in terms of
sharp mode cutoff which is physically equivalent to t
smooth regularization of Sec. II but suitable for numeric
implementation in large systems. It is shown that the fluct
tions of the full fermionic determinant in an exact dynamic
simulation of QED2 are essentially restricted to a small fr
tion ~for the lattices studied here, essentially the lowest f
percent! of the spectrum. Comparisons of pseudoscalar c
relators computed in the quenched and full dynamical the
are made with an approximate simulation where only
lowest ten percent of the eigenvalues of the Hermitian
eratorg5(D” 2m) are included in the fermionic determinan
©1998 The American Physical Society05-1
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A. DUNCAN, E. EICHTEN, AND H. THACKER PHYSICAL REVIEW D59 014505
The truncated determinant simulations essentially reprod
the full dynamical results. Two characteristic features of u
quenched gauge theory, the suppression of topologic
nontrivial sectors and the breaking of the string due
shielding, are also illustrated using the truncated determin
approach in QED2. Of course, in the case of QED2,
superrenormalizability of the theory implies that the hi
eigenmodes are basically inert, in distinction to the case
4D gauge theory where these modes will necessarily in
duce a further logarithmic rescaling due to the varia
screening effect of virtual quark pairs at different leng
scales.

In Sec. IV we describe in detail the algorithm we ha
employed for the simulations of full QCD~on a 123324
lattice atb55.9 and inverse lattice spacinga2151.78 Gev
for the quenched theory! with a truncated determinant. Th
Lanczos procedure allows reliable extraction of Dirac eig
modes up to energies;370 MeV, certainly enough to in
clude the essential low energy chiral physics of QCD. Mo
over, the Lanczos procedure extracts the needed s
eigenvalues rapidly as the spectrum is relatively sparse th
Unlike the case of propagator inversion, the Lanczos met
is stable even in the presence of very small eigenvalues
vided these are not too dense. We also discuss some as
of the Monte Carlo dynamics~acceptance rate and equilibr
tion time! for our update procedure, in which pure gau
heat bath sweeps alternate with Metropolis accept or re
steps for the truncated determinant. A crucial point is that
do not see a dramatic fall in the acceptance rate of our
cedure as we go to lighter quark masses.

In Sec. V we present the results of our truncated deter
nant simulations of QCD4. The initial study involves runs
a 123324 lattice at b55.9 and at three kappa value
~0.1570, 0.1587 and 0.1597!, reaching in the lightest case
pion mass on the order of 280 MeV. Pseudoscalar me
masses are measured and a value for the critical hop
parameter extracted. The inclusion of 100 quark eigenmo
~all modes up to;370 MeV! eliminates the necessity fo
considering quenched chiral logs@8# in the chiral extrapola-
tions. The topological charge distribution is measured
different quark masses and compared with the quenched
sult. As expected, nonzero topological charge is stron
suppressed in the light quark limit. Measurements of
string tension reveal clearly a screening of the qua
antiquark potential from the virtual sea quarks, although
lattice used is still too small to allow us to see the asympto
flattening expected at large distances.

In Sec. VI we show that the high momentum modes c
be included in a precise way by a combination of the tru
cated determinant and multiboson methods@9#. The proce-
dure suggested in this paper is in a sense exactly com
mentary to the multiboson approach of Lu¨scher. The latter
approach treats the high eigenmodes of the Dirac oper
very well, but necessarily introduces errors whenever sm
eigenvalues are present. In the chiral limit such modes
come frequent and in fact dominate the chiral physics. H
we propose treating these modes as precisely as poss
Another approach to the inclusion of the high modes, a lo
Ansatz for the short distance piece of the quark determin
01450
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is also discussed in this final section. Such an Ansatz, inv
ing relatively short Wilson loops~up to length 6!, is shown
to give a very accurate description of the high end of
quark determinant. Finally, in Sec. VII we summarize o
conclusions.

II. TRUNCATED DETERMINANTS IN GAUGE THEORY

The separation of low and high eigenmodes in the fer
onic determinant can be accomplished in an analytically c
venient way by smoothly switching off the higher eigenva
ues above a sliding momentum scalem. Given a matrixM
then det„tanh(M/m)… reduces to unity form much below the
smallest eigenvalue ofM while reproducing the full deter-
minant~up to an irrelevant multiplicative factor! for m much
above the highest eigenvalue. For a gauge theory, defi
the Hermitian operatorH[g5„D” (A)2m…, then the effective
action obtained from integrating out each flavor of fermi
of mass m can be regularized as the logarithm of th
smoothly truncated determinant

D~m![
1

2
tr lnXtanhS H2

m2D C ~1!

5tr$ ln~12e22H2/m2
!2 ln~11e22H2/m2

!%. ~2!

This definition allows an analytic calculation of the reg
larized determinant in weak coupling perturbation theo
which describes them-dependence ofD(m) for m well above
the QCD scale. The calculation can be carried out for a n
Abelian lattice regularized theory, but we shall illustrate t
procedure here for the case of a continuum 4-dimensio
Abelian gauge theory. Note that

H25K01K11K2 ~3!

K0[h1m2 ~4!

K1[$2 i ]” ,A” % ~5!

K2[AmAm . ~6!

To second order in weak coupling perturbation theory,
may computeD(m) by expanding to first order inK2 and to
second order inK1 . The calculation is lengthy but straigh
forward~details will be given elsewhere!—here we quote the
result only. Expressed in terms of momentum space fie
one finds

D5E d4k

~2p!4 b~k2,m,m!Am~k!~k2dmn2kmkn!An~2k!.

~7!

The contribution of the high modes can be studied by tak
m large compared with the quark massm and, in the Non-
abelian case, with the QCD scale. Then these modes a
the low energy physics~i.e for k!m! through the low mo-
mentum limit ofb(k2). Explicit calculation gives
5-2
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EFFICIENT ALGORITHM FOR QCD WITH LIGHT . . . PHYSICAL REVIEW D 59 014505
b~k2,m,m!.2
1

24
lnS m2

m2D1O~k2!, ~8!

which exactly corresponds to the expectedm-dependence o
the screening shift in the running coupling induced by virtu
fermionic modes in the momentum range up tom.

The decoupling of the high fermionic modes suggests
lattice QCD calculations performed at a weak enough c
pling should be insensitive to the fluctuations induced
eigenvalues of the Dirac operator much above the Q
scale, except for an overall shift in the scale of the the
induced by renormalizations of the coefficients of the lo
dimension operators making up the effective pure gauge
tion. In particular, dimensionless ratios of physical quantit
should fairly soon become insensitive to inclusion of high
modes in the fermionic determinant. In a superrenorma
able theory like QED2, this insensitivity should even be a
parent in dimensionful quantities, as we do not have a lo
rithmic running of scale in this case.

III. TRUNCATED DETERMINANT ALGORITHM IN QED2

Abelian gauge theory in 2 space-time dimensions~the
massive Schwinger model! has proven to be a marvelous
manageable testbed for exploring in detail@10,2# the spectral
properties of the Dirac-Wilson operator. The computatio
expense of performing even exact update full dynam
simulations is relatively slight, essentially full informatio
on the spectrum can be obtained configuration by config
tion, and the system mimics, at least qualitatively, many
the topological and chiral properties of 4-dimensional QC
This model also turns out to be a very useful starting po
for investigating the relative importance of the infrared a
ultraviolet ends of the Dirac spectrum in a full dynamic
lattice simulation.

Although the calculation of all the eigenvalues ofH, and
hence ofD(m) as defined in the previous section, is perfec
feasible for 2D QED, the restriction of practical numeric
techniques for the much larger matrices of 4D QCD to
low-lying eigenvalues suggest the use of a simpler trunca
of the determinant, in which the lowest~in absolute magni-
tude! Nl positive and negative eigenvalues ofH are included
and all higher modes dropped. As we shall see in Sec
precisely such a truncation scheme matches exactly to a
accurate representation of the high end of the determinan
terms of an effective loop action. Labelling positive eige
values ofH ashn and negative eigenvalues aszn ~where the
index runs in the direction of increasing absolute magnitu!
we define

D~Nl![
1

2 (
n51

Nl

ln~hn
2zn

2! ~9!

D̂~Nl![
1

2 (
n5Nl11

D

ln~hn
2zn

2!, ~10!

where 2D is the dimensionality of the discrete Wilson-Dira
matrix for the lattice theory. An exact full dynamical simu
01450
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lation would include the full ~log! determinantD(Nl)
1D̂(Nl) in the effective gauge action. The extent to whi
the low eigenvalues determine the physics of the unquenc
theory can be examined by comparing the fluctuations—i
dynamical simulation—ofD(Nl) with those ofD̂(Nl) for
various choices ofNl!D. These fluctuations are show
graphically in Fig. 1, for 40 configurations generated in a f
dynamical simulation using an exact update algorithm.
Fig. 2 the fluctuations are shown for 40 configurations in
quenched simulation. The lattice used was 10310 at b
54.5 with a bare quark mass of 0.095. Evidently the flu
tuations are essentially all confined to the low end of
spectrum. In the quenched case the size of the fluctuation
the infrared end is considerably larger than for the dynam
configurations, as configurations with small eigenvalues
suppressed once the determinant factor is included in
update procedure. The appearance of such configuratio
intimately related to the exceptional configurations enco
tered in quenched calculations at strong coupling and
small quark mass.

This behavior suggests an approximate unquenched a
rithm in which onlyD(Nl) is used in the determinant part o

FIG. 1. Fluctuations inD(Nl),D̂(Nl), dynamical configura-
tions. For ease of visibility, the curves have been shifted vertica

FIG. 2. Fluctuations inD(Nl),D̂(Nl) quenched configurations
5-3
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A. DUNCAN, E. EICHTEN, AND H. THACKER PHYSICAL REVIEW D59 014505
the effective lattice action. IfNl is chosen large enough, a
the nonperturbative infrared physics will be properly i
cluded. Exceptional configurations, in which there is
anomalously low eigenmode of the Dirac-Wilson operat
are tamed in the expected way@11#, and the convergence o
the procedure can be examined simply by repeating the
for increasingly largeNl . The update algorithm we hav
chosen is very simple: a number~typically 5! of conventional
Monte Carlo~Metropolis! sweeps are performed to obtain
new gauge configuration, a new value forD(Nl) is calcu-
lated~for QED2 on a 10310 lattice, we can easily obtain a
the eigenvalues by direct diagonalization! and compared
with that for the preceding configuration. Then the trunca
determinant factor is used to provide a Metropolis accep
reject criterion for the gauge configuration update. The
sulting algorithm is exact provided that the pure gauge
date step is performed in a way which respects detailed
ance @12#. This can be done by updating links, or sets
noninterfering links, in a random order, or alternatively, in
sequence which is symmetric under transposition.
QED2, we found no statistically significant difference in t
results for correlators~even at the lightest sea quark value!
when the gauge link updates were performed sequentiall
a fixed order, or in a random order. The results descri
below, both for QED2 and QCD4, use a standard link upd
procedure~not completely random! for the pure gauge step
~A fully parallel implementation@13#, suitable for the Fermi-
lab ACPMAPS machine, of a gauge link update procedu
with rigorous detailed balance, is presently being written a
will be employed in all future truncated determinant simu
tions!.

With Nl510, the acceptance ratio was typically in th
range of 50–75 %. Measured quantities such as the pse
scalar correlator decorrelated after a few configuration
dates ~the statistical errors shown include autocorrelat
times computed from the data!. The results of such a proce
dure for the pseudoscalar correlator are shown in Fig. 3 f
quark mass~lattice units! of 0.05. For such a small mas
using Wilson fermions, the quenched functional integra
dominated by real pole contributions which appear in
simulation as wildly noisy values for the correlators~one

FIG. 3. Comparison of quenched, full dynamical and trunca
determinant simulations: 10310 lattice,b54.5, m50.05.
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finds in a typical run of 800 sweeps values for the pi
propagator at zero time separation ranging from sev
thousand to zero, for a quantity averaging to order unity
the dynamical theory!. Instead we have plotted the quench
results regularized by the pole shifting~or ‘‘modified
quenched approximation’’! procedure of@1#. Evidently the
full dynamical result for the pseudoscalar correlator
reached with only a small fraction~in this case, about 10%!
of the eigenmodes included in the fermionic determina
When only 5% of the eigenvalues are included, the resu
intermediate between the quenched and full dynamical
ues. As we are working at a very small value of quark ma
it is also of interest to study the effect of the truncated d
terminant factor on the topological charge distribution a
the string tension of the theory. For the quenched simulati
on a 10310 lattice atb54.5, the topological charge, define
as

Qtop[
1

2p (
P

sin~uP! ~11!

~whereuP is the plaquette angle for plaquetteP!, is found to
be concentrated atroughly integer values, with charges 0 an
1 dominating. The histogram of topological charge valu
obtained from 800 quenched configurations is shown in F
4. As low eigenvalues are introduced via the truncated de
minant, the nonzero topological charge configurations
suppressed. Again, withNl55, the resulting distribution is
hardly distinguishable from the full dynamical result.

The quark-antiquark potential determined for two diffe
ent sea quark masses~bare mass 0.06 and 0.10! is shown in
Fig. 5. The calculation was done in the truncated theory o
16316 lattice atb54.5 using Nl510 eigenvalues. Also
shown is the exact result for the quenched theory and e
update full dynamical theory~at sea quark mass 0.06!. The
small eigenvalues properly represent the large loops indu
by the determinant, leading to a breaking of the string
longer distances for light quarks.

d
FIG. 4. Topological charge distribution for quenched, full d

namical and truncated determinant simulations: 10310 lattice,b
54.5, m50.05.
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IV. CALCULATING TRUNCATED DETERMINANTS
IN LARGE SPARSE SYSTEMS

There are a number of techniques available for the ext
tion of a limited number of low eigenvalues of a large spa
linear system: most popular are conjugate gradient
proaches@14#, or the Lanczos technique@15#, suitably modi-
fied to guard for the appearance of spurious eigenvalues@16#.
The latter approach has been studied extensively by Kalk
ter @17#, and has proven to be most well suited for the task
hand, namely, the accurate extraction of a complete se
low-lying eigenvalues ofg5(D” 2m) up to an energy scale
which ensures that all the important soft chiral dynamics
full QCD is included in the Monte Carlo simulation. Typ
cally, on lattices of physically interesting volume in 4
QCD, this requires the determination of something on
order of 100 eigenvalues. One advantage of the Lanczos
proach is that it can be pushed through to the determina
of as many eigenvalues as desired, with a numerical ef
which grows empirically as roughly the square of the desi
energy cutoff~in the portion of the spectrum correspondin
to the physical branch!. In particular, on small lattices, it is
relatively straightforward to determine the entire spectru
which is useful both for diagnostic purposes and in study
the systematic effects of an algorithm based on a trunc
determinant.

The Lanczos technique is a standard part of the litera
in numerical analysis~see, for example,@15#! so we shall
give only a very brief review of the procedure here. Given
Hermitian matrix H @in our case, this is just the matri
g5(D” 2m) discussed previously#, a series of orthonorma
vectorsv1 ,v2 ,v3 . . . are generated from a starting vect
w0[v1 by the following recursion:

vn115wn /bn ~12!

n→n11 ~13!

an5~vn ,Hvn! ~14!

wn5~H2anI !vn2bn21vn21
~15!

FIG. 5. Quark-antiquark potential in QED2.
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bn5A~wn ,wn!, ~16!

wherean ,bn are real numbers~by virtue of the hermiticity
of H!, and the initial conditions areb051,v050. It is
straightforward to verify that the matrix ofH, in the basis
spanned by the Lanczos vectorsvn is tridiagonal, with the
numbersa1 ,a2 ,... down the main diagonal, and the num
bersb1 ,b2 ,... on thefirst super-~and sub-!diagonals. If the
Lanczos recursion is carried to orderN, one is thus led to a
N3N truncation of the original linear system, and the eige
values of the resulting tridiagonal matrixT(N) represent in-
creasingly accurate approximants to the eigenvalues of
full system, provided only that the starting vectorw0 is not
entirely contained in an invariant subspace ofH. Typically,
w0 is chosen randomly and one expects that such a ran
vector will overlap nontrivially with all the eigenvectors o
H.

There are several features of the Lanczos procedure w
appear at first sight problematic but which nevertheless t
out not to compromise its efficacy in the present applicati
First, degenerate eigenvalues of the original matrixH are not
properly handled~although methods have been devised
circumventing this drawback@15#!. This turns out to be ir-
relevant in our QCD application as the generic spectrum
H[g5(D” 2m) for a typical gauge configuration encounter
in the course of a Monte Carlo simulation is entirely nond
generate. Secondly, the effects of roundoff error in the al
rithm can be quite severe, and lead to the appearanc
spurious eigenvalues and to the false duplication of real
genvalues. Fortunately a simple and effective cure for t
problem, first suggested by Cullum and Willoughby@16#,
proves to be practical in the gauge theory case@17#. How-
ever, it remains an unfortunate feature of the algorithm t
the number of accurate eigenvalues extracted at levelN of
the recursion is typically considerably smaller thanN. For
example, on a 123324 lattice atb55.9, the extraction of the
lowest 100 eigenvalues of the Dirac operator typically
quires on the order of 10,000 Lanczos sweeps.~The compu-
tational cost of a single Lanczos sweep is essentially tha
the singleD” multiplication incurred in producing the nex
Lanczos vectorwn5Hvn1... .! Finally, although the diago-
nalization of a tridiagonal matrix is conceptually trivial an
efficiently implementable by scalar algorithms~e.g. by a
standard implicit shift algorithm@20#!, the parallel imple-
mentation of this procedure is not entirely trivial. In ou
simulations, this is essential to avoid a serious bottlenec
the simulation when tridiagonal matrices of order up to s
eral tens of thousands must be efficiently processed. We
scribe below an elegant parallel approach to the extractio
the spectrum ofT(N).

In the case of the Dirac operator in QCD, the choice
the random vectorw0 used to start the recursion appears
be fairly innocuous~a local source seems perfectly adequa
for example!. An important check that the spurious eigenva
ues are correctly identified and that the remaining ‘‘goo
eigenvalues are sufficiently converged relies on the gau
invariance of the individual eigenvalues ofH which can be
verified explicitly by recomputing the eigenvalues with var
5-5
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A. DUNCAN, E. EICHTEN, AND H. THACKER PHYSICAL REVIEW D59 014505
ing degrees of gauge-fixing. We have performed extens
checks to ensure that the eigenvalue spectrum, anda fortiori
the truncated determinantD(Nl), is invariant~typically to at
least 8 significant figures! under gauge transformations of th
input configuration.

The procedure we use to isolate converged eigenvalue
H involves two stages. First, spurious eigenvalues are id
tified by the procedure of Cullum and Willoughby—name
eigenvalues of the tridiagonal matrixT(N) are compared with

those of the matrixT(̂N) obtained by deleting the first row
and column ofT(N) and removing all common eigenvalues
the two systems. Secondly, converged eigenvalues are i
tified by requiring either duplication of the remaining goo
eigenvalues or stability within a preassigned precision le
when eigenvalues are compared at recursion levelN2Ngap
and N. Typically we insist on a precision level of at lea
1025 and chooseNgap5100. The above procedure requir
the resolution of the central part of the eigenvalue spect
for four large tridiagonal matrices~of dimensionN, N21,
N2Ngap, and N2Ngap21, respectively!. It is therefore
highly desirable to perform these diagonalizations in a w
that allows parallelization.

The key to extracting the central part of the spectrum o
tridiagonal matrix in a parallel machine lies in the Stur
sequence property of such matrices@15#, valid provided none
of the subdiagonal entriesbn vanish, as is certainly the cas
for generic gauge configurations. Letpn(l) be the secular
determinant det(Tn

(N)2lI) of the n3n principal submatrix
Tn

(N) of T(N). Then the number of eigenvalues ofT(N) less
than any preassignedl equals the number of sign changes
the sequencep0(l),p1(l), . . .pN(l). As the pn(l) can
readily be calculated by a simple two term recursion relati
an obvious bisection procedure can be used to determine
nth eigenvalue ofT(N) at any desired level of precision
Moreover, the task of extracting different eigenvalues can
assigned completely independently to separate proces
provided global access to the elements (a i ,b i) of T(N) is
arranged.

In Fig. 6 we show the spectrum ofH for a typical con-
figuration on a 123324 lattice atb55.9, k50.1587. In this
case an extended Lanczos recursion was carried out u

FIG. 6. Spectral densityb55.9, k50.1587.
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orderN578000, yielding 1478 converged eigenvalues in t
central region of the spectrum. Converting the gau
invariant eigenvalues ofH to a physical energy scale~using
the scalea2151.78 GeV from the charmonium spectrum!,
this corresponds to all quark eigenmodes up to 970 M
The energy reach as a function of number of Lanczos swe
for this lattice is shown in Fig. 7. In the simulations report
below, we have typically used 9500–12 000 Lanczos swe
~with slightly different tunings of the Cullum-Willoughby
procedure! and included the lowest 100~i.e. 50 positive and
50 negative! eigenvalues ofH in the update procedure. Thi
cutoff corresponds to inclusion of quark eigenmodes up to
energy of approximately 370 MeV. Lanczos recursion to
derN;10 000 requires~for a 123324 lattice! about an hour
on 64 nodes of the Fermilab ACPMAPS system.

The relaxation of the determinant from its typic
quenched value to the equilibrium value appropriate for
system simulated with the truncated determinant is show
Figs. 8 and 9. On a small lattice, (64 at b55.7, k50.1685!
a dynamical run includingNl530 eigenvalues~or up to
about 500 MeV in quark mode energy! was performed, with
a determinant update accept or reject every 3 heat-b
sweeps of the lattice. The resulting evolution ofD(Nl) start-
ing from a quenched configuration is shown in Fig. 8. T
same evolution is shown for a run on a 123324 lattice at

FIG. 7. Lanczos convergenceb55.9, k50.1587.

FIG. 8. Determinant relaxationb55.7, k50.1685,Nl530.
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b55.9, k50.1587 withNl5100 in Fig. 9, and with deter
minant acceptor reject every 2 heat-bath sweeps.

The procedure we have used does not show a very st
dependence of the acceptance rate on the quark mass~fortu-
nately!. For the heaviest quark mass studied atb55.9, k
50.1570~slightly lighter than the strange quark!, the accep-
tance rate for a run with a determinant accept or reject p
formed every two gauge heat bath sweeps was 40%. Fo
lightest two quark masses (k50.1587 and 0.1597! two sepa-
rate runs were performed with determinant accept or re
steps separated by either one or two heat-bath sweeps
the heavier case,k50.1587~corresponding to a pion mass o
around 400 MeV!, the acceptance was on the order of 37
for new configurations separated by 2 heat-bath sweeps,
57% for configurations separated by a single heat-b
sweep. For the lighter mass,k50.1597,~corresponding to a
pion mass of around 280 MeV! the acceptance was 30% fo
new configurations separated by 2 sweeps, and 43%
those separated by a single heat-bath sweep.

V. SIMULATIONS IN QCD4

To test the efficacy of the truncated determinant appro
in unquenched QCD we have performed some prelimin
runs on a 123324 lattice atb55.9, for two degenerate fla
vors of dynamical quarks at hopping parameter valuesk
50.1570, 0.1587 and 0.1597. For the heaviest massk
50.1570, propagators were computed for every fifth c
figuration~60 in all!, and a determinant accept or reject pe
formed after every two heat-bath gauge updates. For
lighter two masses, we also performed parallel runs wit
determinant accept or reject after every heat-bath sweep
with propagators measured every tenth configuration.
results are based on 104 propagators fork50.1587 and 88
propagators fork50.1597. As fluctuations in the large dis
tance behavior at light quark masses grow, the run ak
50.1597 is continuing and results with much higher sta
tics will be presented in a later work.

Pseudoscalar meson masses were determined by me
ing meson correlators with a smeared source and local
and doing a fully correlated Euclidean time fit in the tim
window 8–11. At kappa valuesk50.1570, 0.1587, and

FIG. 9. Determinant relaxationb55.9, k50.1587,Nl5100.
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1597, the pion masses were found to be~lattice units! Mp

50.33960.011, 0.24160.019 and 0.19860.069. The ex-
trapolation to zero pion mass gives a critical kappa value
kc'0.1602, slightly higher than the pure quenched value
kc50.15972 found in previous calculations@18#. With this
critical kappa, the pion mass corresponding to our light
case should be about 0.157~lattice units!, which converts to
about 280 MeV using the scale determined for the quenc
theory at this beta. We do not expect the scale in the tr
cated determinant simulation to be much changed from
quenched theory as the shift in beta in full dynamical sim
lations ~see @19#! is due to a large logarithm accumulate
from quark modes all the way up to the lattice cuto
whereas the truncated determinant included here only ta
into account the infrared modes up to 370 MeV. Higher s
tistics are presently being accumulated at the lightest qu
mass, where the fluctuations in the large time meson corr
tors are largest.

An important aspect of the low energy chiral dynamics
QCD is the response of the topological structure of
theory to the presence of light dynamical quarks. Integrat
the vacuum expectation value of the U~1! axial anomaly in
QCD yields immediately, in the continuum, the anomalo
chiral Ward identity

mqE d4x^c̄~x!g5c~x!&5
1

32p2 E d4xFmnF̃mn[Qtop.

~17!

We may therefore define a topological charge on the lat
by simply evaluating the left-hand side of the above equat
configuration by configuration. The advantage of this defi
tion is that the required information is already immediate
accessible: the Euclidean vacuum expectation va
*d4x^c̄(x)g5c(x)& reduces to the trace of the inverse
H[g5(D” 2m), the low eigenvalues of which were extracte
in the course of the simulation. Namely, we have the follo
ing lattice definition ofQtop

Qtop[
1

2k S 12
k

kc
D(

i 51

N
1

l i
, ~18!

where the matrix dimension ofH is N andl i are the eigen-
values ofH.

As the larger eigenvalues occur roughly as equal and
posite pairs, this sum actually saturates quickly at the l
end, and the 100 eigenvalues computed already in the co
of the simulation suffices to determineQtop to a few percent.
An example of the convergence of this spectral sum, with
mode eigenvalues converted to a physical energy scale~re-
call that the inclusion of 100 eigenvalues corresponds
modes up to about 370 MeV!, is shown in Fig. 10 for a
typical configuration.

With the definition~18!, the qualitative effect of the quark
determinant on the topological charge distribution c
readily be studied. Two effects are clearly visible in our da

~1! The real mode artifacts characteristic of quench
Wilson gauge theory, and which underly the increasin
frequent appearance of exceptional configurations as
5-7
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goes to lighter quark masses, do not occur. Configurat
with very small eigenvalues ofH are suppressed by the d
terminant factor which is driven strongly negative for a
such configuration. In Fig. 11 this effect is seen compar
the topological charge distribution for a dynamical run atk
50.1587 ~including the lowest 100 modes! with a com-
pletely quenched run at the same valence quark mass,
12. The distributions are broadly similar~although the dy-
namical one is slightly narrower! but the outlying points cor-
responding to very large values ofQtop ~i.e to the appearanc
of an exactly real mode of the Wilson-Dirac operator ve
close to the chosen kappa value! are eliminated in the dy-
namical run. In fact in the quenched case there are sev
outlying points~the furthest out atQtop5291.6! not shown
on the figure. For the dynamical run only chargesuQtopu,5
are seen.

~2! Nonzero topological charges must be suppresse
the chiral limit of vanishing quark mass, so we expect t
the histogram of measured topological charges will narr
as one approacheskc . This effect is shown in Figs. 13 an
14 where the topological charge distribution is compared
two dynamical runs at the lowest and highest quark mas
studied (k50.1597 and 0.1570!. The narrowing of the dis-

FIG. 10. Convergence of the topological charge spectral sum
a typical configuration.

FIG. 11. The same topological charge frequency distribution
300 configurations generated by the truncated determinant a
rithm with sea quark massk50.1587 on a 123324 lattice atb
55.9.
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tribution for the lighter mass is immediately apparent. F
comparison we plot the analytic result predicted by the ch
analysis of Leutwyler and Smilga@6# in the light quark limit
for two degenerate flavors:

P~Q!5I Q~x!22I Q11~x!I Q21~x!, ~19!

with x[ 1
2 VFp

2 Mp
2 . Here V,Fp ,Mp denotes the lattice

space-time volume, the pseudoscalar decay constant an
pion mass respectively, all in lattice units. Fork50.1597 we
have takenMp50.15 andFp50.07 ~the latter number is
extrapolated from high statistics quenched runs for this
tice @18#!.

The presence of low-momentum virtual sea-quark mo
in the simulation should result in screening of the qua
antiquark potential extracted from Wilson loops at large d
tance. In Fig. 15 the potential obtained in the quench
theory on a 123324 lattice atb55.9 ~200 configurations! is
compared with that calculated from our dynamical config
rations at the lightest sea quark mass (k50.1597). The ef-
fect of screening is clear although asymptotic flattening
the potential on this lattice occurs at distances where sta
tical fluctuations as well as finite volume effects dominat

or

r
o-

FIG. 12. The topological charge frequency distribution co
puted fork50.1587 using 100 decorrelated quenched QCD c
figurations on a 123324 lattice atb55.9.

FIG. 13. The topological charge frequency distribution with s
quark massk50.1570. ~Other parameters are as in the previo
figure.!
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VI. MATCHING THE HIGH EIGENVALUES

Because QCD in four dimensions is only renormalizab
not superrenormalizable, the fluctuations of the fermion
terminant are significant at all physical scales. Therefore,
like QED in two dimensions, it cannot in general be suf
cient to compute accurately only the low eigenvalues of
fermionic determinant. Fortunately the short distance beh
ior of QCD is very well understood. This should allow th
identification of the important degrees of freedom and lead
a method for including the effects of the higher eigenvalu
into the Monte Carlo process. In particular, we know that
sufficiently high momentum scales this physics should
accurately described by an improved gauge action involv
Wilson loops on short distance scales only.

The fermion determinant can be separated into t
pieces,

ln det H5@Tr ln H# low l1@Tr ln H#high l , ~20!

where the lowestncut eigenvalues are directly calculated a
included in the Monte Carlo updating procedure. The con
bution of the vast majority of the larger eigenvalues can
included by some approximation to the high end that~1!
matches onto the low eigenvalue results without gaps
double counting,~2! is controlled and~3! becomes exact in
the continuum limit. We can define the differenceD between
the approximate action, denotedSa , and the exact contribu
tion of the high eigenvalues,St[@Tr ln H#highl as follows:

D5St2Sa . ~21!

Any acceptable method must ensure that this differenc
small (<1) for each configuration. Therefore, we will de
mand that the variance ofD for any set configurations is les
than unity. Actually, we will find that a relatively simpl
effective loop action yields values ofD considerably less
than unity for interesting values ofncut.

Two numerical methods suggest themselves for calcu
ing the high eigenvalues of the fermion determinant:

~1! The multiboson approach of Lu¨scher@9#.

FIG. 14. The same topological charge frequency distribut
with sea quark massk50.1597. The expected distribution from
chiral perturbation theory is shown with diamonds.
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~2! Using a small number of gauge loops to model the
terminant as proposed by Sexton and Weingarten@21#,
and Irving and Sexton@22#.

One method to compute the high eigenvalues which
guaranteed to succeed is the multiboson approach of Lu¨scher
@9#. Define

Pe f f~U ![@det~D1m!#nf exp„2Sg~U !… ~22!

and

H5g5~D1m!/@cm~81m!# ~cm>1!, ~23!

wherecm is chosen so that the eigenvalues ofH are in the
interval (21,1). Consider two flavors of light Wilson-Dira
quarks (nf52). Lüscher chooses a sequence of polynomi
Pn(s) of even degree n such that

lim
n→`

Pn~s!51/s for all 0,s<1 ~24!

then

det H25 lim
n→`

@det Pn~H2!#21. ~25!

Choose polynomials such that complex rootsz1 . . . zn come
in complex conjugate pairs~non real! so thatAz5m1 in.
Then

P~H2!5const)
k51

n

@~H2mk!
21nk

2# ~26!

and

det H25 lim
n→`

)
k51

n

det@~H2mk!
21nk

2#21. ~27!

Hence we can finally write

n

FIG. 15. Quark-antiquark potential for quenched theory and
namical theory with sea quark kappa values 0.1570, 0.1597. E
bars shown only for lightest mass~errors are largest for this case!.
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Pe f f~U !5 lim
n→`

1

Zb
E DfDf† exp2Sb~U,f!, ~28!

where the bosonic action is given by

Sb5Sg~U !1 (
k51

n

(
x

u~H2mk!fk~x!u21n2ufk~x!u2.

~29!

To estimate how many boson fields are required to repre
the original action to a fixed accuracy in the range (e,s
<1) Lüscher considered polynomials of the Chebyshev t
~denoted T!. Defining u5(s2e)/(12e) and cosu52u21,
Tr

!(u)5cos(ru) and we can write

P~s!5@11rTn51
! ~u!#/s

R~s!5@P~s!2~1/s!#s~e,s<1!,
~30!

where r is chosen so that theP(s) is finite ass→0. The
error is given by

uR~s!u<2S 12Ae

11Ae
D n11

~31!

where n is the number of boson fields and the fit is cutoff
eigenvalues belowe. Therefore, the convergence is expone
tial with rate 2Ae asn→`.

The main practical problem with this multiboson meth
is that it requires an increasingly large number of bos
fields as the quark mass becomes lighter. Asmq→0, we
must takee→0, but to obtain a fixed level of accuracy w
must hold 2Aen fixed and hencen increases without bound

However the multiboson method matches nicely onto
calculation of low eigenvalues discussed previously. T
was first suggested by Alexandrouet al. @23#. In our trun-
cated determinant method, the cutoffe for the multiboson
method is set by the highest eigenvalue ofs5„g5(D
1m)…2 which is explicitly included in the low end calcula
tions. Hence it does not explode as the quark mass goe
zero. The combination of methods remain accurate for
quark masses. For example, forb55.9 on a 123324 lattice
with direct inclusion of the lowest 100 eigenvalues, the
sociated cutoff for the multiboson simulation of the hig
eigenvalues isAe'0.035 independent of the light quar
mass.

Furthermore, the error associated with the inaccurate
havior of the polynomial fit in the range 0,s,e can be
corrected as low eigenvalues are computed for every c
figuration update. We obtain a reweighting term,

DSb5(
i 51

ncut

ln„l i
2P~l i

2!…, ~32!

which can be included to eliminate errors in the region
,s<e.
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Using the multiboson method for the high end of the d
terminant satisfies all our requirements and completes
algorithm. However it is interesting to study if we can redu
the total required computations even further using a m
physical approach to the high eigenvalues. First, cons
how many of the high eigenvalues we are computing actu
have physical information and are not just lattice artifac
For example, for a 123324 lattice with b55.9 and k
50.1587 there are 497 664 total eigenvalues of the Wils
Dirac operator. We can explicitly calculate the number
eigenvalues less than some high energy cutoff. Using 1 G
we have approximately 1500 eigenvalues~0.3%!. For a fixed
volume V and quark massmq only a decreasing fraction o
the eigenvalues are below a fixed physical scale asb→`.
Therefore, most of the range of large s fit in Lu¨scher’s multi-
boson method is physically unimportant.

This suggests a more physically motivated method
dealing with the high eigenvalue part of the fermion det
minant, in which one approximates the ultraviolet contrib
tion to the quark determinant with an effective gauge act

@Tr ln H#high l'(
i 50

i max

a iL i ~33!

where eachLi is a set of gauge links which form a close
path. The natural expansion is in the number of links. F
zero links we haveL0 , which is just a constant, for four links
we have a plaquette, and six links give the three terms fo
in considerations of improved gauge actions@24#.

This idea was originally proposed by Sexton and We
garten@21# and studied in more detail by Irving and Sexto
@22#. These studies were done on a 64 lattice atb55.7 with
hybrid Monte Carlo full QCD simulations~with a heavy sea
quark!. Their results were rather discouraging. It was hard
get a good approximation to the determinant with a clos
set of loops and they needed large loops to even approa
reasonable fit@22#.

There are however two important differences betwe
their study and our situation.

They simulated thewhole determinant, while here we
only need to approximate the eigenvalues above some cu
Hence we would expect the small loops to dominate at le
for sufficiently high cutoff.

Also, they used an approximate procedure to estimate
chastically the logarithm of the determinant needed, wh
we are exactly computingall eigenvalues for this study.

It turns out that these differences are critical, as us
approximately the same lattices~and with even lighter
quarks! we find an excellent approximation to the high e
with only small loops.

We generated a set of 75 configurations on a 64 lattice at
b55.7 andk50.1685. We included the lowest 30 eigenva
ues~which corresponds to a physical cutoff of approximate
.350 Mev! in the Monte Carlo accept or reject step in th
generation of these independent configurations. The s
trum of eigenvalues is shown in Fig. 16.

We can see the importance of the higher eigenvalues
separating the high and low part of the fermion determin
for each configuration. This is shown in Fig. 17. Unlike th
5-10
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case of QED2~cf. Fig. 1! it is apparent that the UV contri
bution to the determinant definitely involves large fluctu
tions. Of course, the issue here is just whether these fluc
tions are well described by a simple effective gauge acti

Considering only the high eigenvalues, an excellent fi
the fluctuations is obtained including four and six link clos
loops. The variance of the fit is 0.265. The comparison
tween the fluctuations in the exact and approximate act
for the high eigenvalue piece is shown in Fig. 18.

As expected, if only the plaquette term is included t
variance is larger~2.25! and we must move the low eigen
value cutoff toN550 ('700 MeV) to reduce the varianc
below one. The results for various cutoffs and terms includ
are shown in Table I.

Although more study is required this second method lo
very attractive for dealing with the high end of the fermio
determinant in full QCD with light dynamical quarks. Simu
lations would be performed by including the predetermin
effective gauge actionSa in the gauge updates and compu
ing the infrared part of the determinant as in the trunca
determinant simulations described in this paper.

In summary, we have found that there are at least
viable methods to deal with the contribution of the fermi

FIG. 16. Spectrum of eigenvalues for 64 lattice b55.7, k
50.1685,Nl530.

FIG. 17. Fluctuations in the low (n,30) and high eigenvalue
for the same configurations as the previous figure.
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determinant not computed explicitly in a truncated determ
nant approach.

VII. CONCLUSIONS

We have proposed an algorithm for Monte Carlo simu
tion of full QCD with light dynamical quarks which has a
its central feature a separation of the quark determinant
products over low and high eigenvalues. This separation
direct reflection of the different physical roles played
these two sectors, with high eigenvalues~small quark loops!
having the primary effect of modifying the gauge interacti
strength, while the low eigenvalues~large quark loops! de-
termine the long-range chiral structure of the theory. O
procedure for generating full QCD configurations then e
tails an exact calculation of some fixed number of the low
lying eigenvalues ofH[g5„D” (A)2m…, using a Lanczos al-
gorithm. This careful treatment of low Dirac eigenmodes
motivated by the conviction that the most essential diff
ences between quenched and full QCD reside in their lo
range chiral structure and associated topological propert

The complete formulation of our proposed algorithm a
allows various methods of incorporating the higher eigenv
ues which were omitted in the Lanczos calculation. For
ample, the algorithm matches cleanly onto the multibos
approach. We have also explored a particularly promis
approach for incorporating the correct ultraviolet behavior

FIG. 18. Fluctuations in the high eigenvalue piece of Tr lnH are
indicated by a dashed line. Fluctuations in the fitted effective ga
action ~6 links and less! are indicated with open circles.

TABLE I. Fits to the high eigenvalues of the quark determina
by various small gauge loops~WL denotes a Wilson line passin
through the entire lattice!.

nl cut l ~MeV! 4 link fit
6 link fit
wo WL

6 link fit
with WL

0 0 4.98 1.074 0.835
615 340 2.25 0.2652 0.233
650 700 0.940 0.0564 0.0491
6250 1,210 0.0733 0.0695 0.0641
61250 2,220 0.138 0.0198 0.0180
5-11
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the use of a sum over relatively small Wilson loops to re
resent the high-eigenvalue contribution to ln DetH. By do-
ing a complete diagonalization on 64 gauge lattices, we
found that this Wilson loop representation works well w
only a few small Wilson loops~4-link and 6-link! included.
Here, the small loop approximation to the truncated ln DeH
only succeeds when the lowest eigenvalues
(,300– 400 MeV) are excluded, so it forms an ide
complement to the Lanczos treatment of the low eigenvalu
In the Monte Carlo simulations discussed in this paper,
have used the pure Wilson plaquette gauge action for
heat-bath sweeps and carried out the accept or reject
using the truncated low-eigenvalue contribution to the de
minant. In the context of the more general Wilson-loop d
scription of the high-eigenvalue segment, our present pro
dure is equivalent to approximating the high-eigenva
contribution to ln DetH by just the sum of a constant and
plaquette term.~This is in the same sense that the ordina
quenched approximation is equivalent to approximating
full determinant by a shift ofb.!

Perhaps the best news to emerge from these nume
simulations is that the Metropolis test on the low-eigenval
truncated determinant yields a reasonably large accept
ratio after one or more complete heat bath sweeps, e
when the quarks are very light. This is in marked contras
what would happen if one tried to include the full determ
nant via an accept or reject step between quenched M
Carlo sweeps. Even for a single heat bath sweep, the
tuations of the full determinant are much too large to yield
H
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reasonable acceptance rate. The Lanczos calculation o
lowest few hundred eigenvalues requires an amount of c
puting time of the same order as that of an ordina
conjugate-gradient inversion of the Dirac operator. Th
even if the accept or reject step is performed after ev
sweep, the computing required is still comparable to tha
other full QCD algorithms such as the hybrid Monte Car
Moreover, the performance of the algorithm does not s
ously degrade in the light quark limit, which may provide
significant advantage over the hybrid Monte Carlo for t
study of chiral behavior in full QCD. Finally, for issues a
sociated with chiral symmetry, the special handling of lo
eigenvalues is theoretically appropriate, and the eigenmo
extracted by the Lanczos analysis provide a detailed view
the connection between chiral symmetry breaking and
low-lying Dirac spectrum.
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