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A new approach to the inclusion of virtual quark effects in lattice QCD simulations is presented. Infrared
modes which build in the chiral physics in the light quark mass limit are included exactly and in a gauge
invariant way. At fixed physical volume the number of relevant infrared modes does not increase as the
continuum limit is approached. The acceptance of our procedure does not decrease substantially in the limit of
small quark masses. Two alternative approaches are discussed for including systematically the remaining
ultraviolet modes. In particular, we present evidence that these modes are accurately described by an effective
action involving only small Wilson loop$S0556-282(198)02423-0

PACS numbds): 12.38.Gc

I. INTRODUCTION We shall argue in this paper that a separation of low and
high eigenmodes can in fact be carried out in a practical way
Recent studies of the origin and role of exceptional conin unquenched lattice QCD calculations, leading to an effi-
figurations[1—-3] leading to extremely noisy hadron correla- cient way of building in the important physics of the quark
tors in quenched lattice QCD for light quark masses haveleterminant in the chiral limit. Such a separation also corre-
underlined the importance of nonlocal topological fluctua-sponds to a completely gauge-invariant and smooth interpo-
tions in determining the chiral physics of the quenchedation between the quenched and full dynamics of the theory.
theory. It has been known for a long tirf¥] that such fluc-  The procedure we propose also yields as a byproduct very
tuations completely alter the behavior of the theory in thedetailed and useful information about the infrared spectrum
light quark mass limit once the quark determinant is includedf the Dirac operator which is known to be intimately related
in a full dynamical calculation. Moreover, the appearance ofio the chiral physics of the theor6], and central to the
spurious real modefsl] of the Wilson-Dirac operator on fi- overlap formulatior{7] of lattice QCD.
nite lattices in association with such fluctuations accounts for In Sec. Il we describe a regularized version of the fermi-
the increasing frequency of exceptional configurations abnic determinant which interpolates smoothly between the
stronger coupling and low quark mass. These connections ajuenched and full theory, in a way which allows for the
suggest that reliable calculations in the chiral limit of lattice selective inclusion of fermionic modes in a predetermined
QCD require an accurate treatment of the low eigenmodes afiomentum rangétypically from zero up to a given cutoff
the quark Dirac operator. ©). This regularization is amenable to an analytic perturba-
Singularities of quark propagators in the quenched theoryive calculation in which the role of the high eigenmodes
are automatically regulated by corresponding zeroes of theontributing to the full fermionic determinant can be clearly
quark determinant. However, this regularization is only ef-jsolated. Such a regularization can be studied analytically in
fective if the low eigenmodes of the quark Dirac operator areAbelian 4D gauge theory, where the-dependence of the
treated precisely: in particular, valence and sea quark massegterminant for largg:. and low momentum is seen to reduce
must be identical. On the other hand, the high eigenmode a shift of bare couplingor in the lattice context, of scale
(corresponding to imaginary masses for scales well above the |n Sec. Il we describe the results of some simulations in
QCD scale up to the lattice cutofivhen integrated out con- 2-dimensional lattice QEBQED2), which has proven to be
tribute to an effective gauge-invariant gluonic action which,an extremely useful testbed for exploring features of the
for physics on small momentum scales, simply amounts to ®irac-Wilson spectrum in lattice gauge theory. Here, and
redefinition of the scale of the theory. To the extent that thenenceforth in all the numerical simulations, we employ a
ground state hadron spectrum involves hadronic bound statesgularization of the fermionic determinant in terms of a
with constituent quarks all off-shell on the orderdfcp, it sharp mode cutoff which is physically equivalent to the
therefore seems likely that high eigenmodes are simply irrelsmooth regularization of Sec. Il but suitable for numerical
evant for spectrum calculations, even in full QCD. By writ- implementation in large systems. It is shown that the fluctua-
ing the fermion determinant in terms of the Hermitian opera-tions of the full fermionic determinant in an exact dynamical
tor H=vy5(D(A)—m) [5] we are able to deal with a simulation of QED2 are essentially restricted to a small frac-
completely real spectrum. Moreover, the individual eigenval+ion (for the lattices studied here, essentially the lowest few
ues have a direct physical interpretation as a gauge-invariapercent of the spectrum. Comparisons of pseudoscalar cor-
measure of off-shellness of the quark fieltis see this, we relators computed in the quenched and full dynamical theory
recall that for the free continuum theory, the eigenvalues olire made with an approximate simulation where only the
H are simply = p?+m? for a quark mode of Euclidean lowest ten percent of the eigenvalues of the Hermitian op-
momentump). erator yg([D —m) are included in the fermionic determinant.
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The truncated determinant simulations essentially reproduds also discussed in this final section. Such an Ansatz, involv-
the full dynamical results. Two characteristic features of un4ing relatively short Wilson loopgup to length 6, is shown
guenched gauge theory, the suppression of topologicallio give a very accurate description of the high end of the
nontrivial sectors and the breaking of the string due toquark determinant. Finally, in Sec. VIl we summarize our
shielding, are also illustrated using the truncated determinaronclusions.

approach in QED2. Of course, in the case of QED2, the

superrenormalizability of the theory implies that the high [I. TRUNCATED DETERMINANTS IN GAUGE THEORY
eigenmodes are basically inert, in distinction to the case in

4D gauge theory where these modes will necessarily intro- "€ Separation of low and high eigenmodes in the fermi-
duce a further logarithmic rescaling due to the variable®MC determinant can be accomplished in an analytically con-

screening effect of virtual quark pairs at different length VENie€Nt way by smoothly switching off the higher eigenval-
scales. ues above a sliding momentum spaderen a matrixm

In Sec. IV we describe in detail the algorithm we havethen detanh(M/w)) reduces to unity fo much below the
employed for the simulations of full QCon a 13x 24 smallest eigenvalue a1 while reproducing the full deter-
lattice at@=5.9 and inverse lattice spacimg *=1.78 Gev minant(up to an irrelevant multiplicative factpfor u much
for the quenched theoryith a truncated determinant. The 2P0Ve the highest eigenvalue. For a gauge theory, defining

Lanczos procedure allows reliable extraction of Dirac eigenin€ Hermitian operatdr = ys(D(A) —m), then the effective
modes up to energies 370 MeV, certainly enough to in- action obtained from integrating out each flavor of fermion

clude the essential low energy chiral physics of QCD. Moreof massm can be regularized as the logarithm of the

over, the Lanczos procedure extracts the needed smajinoothly truncated determinant

eigenvalues rapidly as the spectrum is relatively sparse there. 5

Unlike the case of propagator inversion, the Lanczos metho%(mE i In(tank(H—)) 1)

is stable even in the presence of very small eigenvalues pro- 2 w?

vided these are not too dense. We also discuss some aspects

of the Monte Carlo dynamic&cceptance rate and equilibra- —tr{In(1—e 2H¥k%) —|n(1+ e 2Hu?)). )

tion time) for our update procedure, in which pure gauge

heat bath sweeps alternate with Metropolis accept or reject Thjs definition allows an analytic calculation of the regu-

StepS fOI’ the truncated determinant. A CrUCiaI pOint iS that WQarized determinant in Weak Coup“ng perturbation theory,

do not see a dramatic fall in the acceptance rate of our prayhich describes the-dependence dP(u) for u well above

cedure as we go to lighter quark masses. the QCD scale. The calculation can be carried out for a non-
In Sec. V we present the results of our truncated determiapelian lattice regularized theory, but we shall illustrate the

nant simulations of QCD4 The initial Study involves runs on procedure here for the case of a continuum 4-dimensional
a 12x24 lattice at 3=5.9 and at three kappa values Apelian gauge theory. Note that

(0.1570, 0.1587 and 0.1597#eaching in the lightest case a

pion mass on the order of 280 MeV. Pseudoscalar meson H2=Ko+K;+K, 3
masses are measured and a value for the critical hopping
parameter extracted. The inclusion of 100 quark eigenmodes Ko=0+m? @)

(all modes up to~370 MeV) eliminates the necessity for
considering quenched chiral 0¢8] in the chiral extrapola-
tions. The topological charge distribution is measured for
different quark masses and compared with the quenched re-
sult. As expected, nonzero topological charge is strongly Ka=AuA,. (6)
suppressed in the light quark limit. Measurements of the ) . )
string tension reveal clearly a screening of the quark-TO Second order in weak coupling perturbation theory, we
antiquark potential from the virtual sea quarks, although thénay computeD(u) by expanding to first order ik, and to
lattice used is still too small to allow us to see the asymptotic¢écond order irK, . The calculation is lengthy but straight-
flattening expected at large distances. forward (details will be given elsewheye-here we quote the

In Sec. VI we show that the high momentum modes Carresult_ only. Expressed in terms of momentum space fields,
be included in a precise way by a combination of the trun-one finds
cated determinant and multiboson methd&s The proce- "
dure suggested in this paper is in a sense exactly comple- . 2 2
mentary to the multiboson approach ofdaher. The latter D_J’ (277)4’3(k M ALK (K0 = KK AL —K).
approach treats the high eigenmodes of the Dirac operator )
very well, but necessarily introduces errors whenever small
eigenvalues are present. In the chiral limit such modes beFhe contribution of the high modes can be studied by taking
come frequent and in fact dominate the chiral physics. Hergw large compared with the quark massand, in the Non-
we propose treating these modes as precisely as possiblbelian case, with the QCD scale. Then these modes affect
Another approach to the inclusion of the high modes, a loogthe low energy physic§.e for k<w) through the low mo-
Ansatz for the short distance piece of the quark determinantnentum limit of 8(k?). Explicit calculation gives

Ki={—id,A} (5

014505-2



EFFICIENT ALGORITHM FOR QCD WITH LIGHT . .. PHYSICAL REVIEW D 59 014505

2

1 VYV TV VT rrryy Ty eV T vy Ty VY Fyyy VT Yv YT Yy
B2 m,u)=— —In| | + O(K?), ®  _ af
24 m 5
=
which exactly corresponds to the expecjediependence of -é 2 | WA IR VRV
the screening shift in the running coupling induced by virtual A N;=10, low
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lattice QCD calculations performed at a weak enough cou-g .

pling should be insensitive to the fluctuations induced by3
eigenvalues of the Dirac operator much above the QCDg
scale, except for an overall shift in the scale of the theoryx [ a A aad
induced by renormalizations of the coefficients of the low ah At aahaa s Candtit s
dimension operators making up the effective pure gauge ac L : 4
tion. In particular, dimensionless ratios of physical quantities 0 zgonﬁ uration numbe‘:O
should fairly soon become insensitive to inclusion of higher 9

modes in the fermionic determinant. In a superrenormaliz- G, 1. Fluctuations inD(N,),D(N,), dynamical configura-
able theory like QEDZ2, this insensitivity should even be ap+ions. For ease of visibility, the curves have been shifted vertically.
parent in dimensionful quantities, as we do not have a loga-

rithmic running of scale in this case.

lation would include the full(log) determinantD(N,)

+D(N,) in the effective gauge action. The extent to which
the low eigenvalues determine the physics of the unquenched
Abelian gauge theory in 2 space-time dimensigtie  theory can be examined by comparing the fluctuations—in a

massive Schwinger modehas proven to be a marvelously dynamical simulation—ofD(N,) with those of D(N,) for
manageable testbed for exploring in defal,2] the spectral  various choices ofN,<D. These fluctuations are shown
properties of the Dirac-Wilson operator. The CompUtationaEraphically in Fig. 1, for 40 configurations generated in a full
expense of performing even exact update full dynamicafjynamical simulation using an exact update algorithm. In
simulations is relatively Sllght, essentia"y full information F|g 2 the fluctuations are shown for 40 Conﬁgurations in a
on the spectrum can be obtained configuration by configuraquenched simulation. The lattice used wasx10 at 3
tion, and the system mimics, at least qualitatively, many of= 4 5 with a bare quark mass of 0.095. Evidently the fluc-
the topological and chiral properties of 4-dimensional QCD tyations are essentially all confined to the low end of the
This model also turns out to be a very useful starting poinipectrum. In the quenched case the size of the fluctuations at
for investigating the relative importance of the infrared andhe infrared end is considerably larger than for the dynamical
ultraviolet ends of the Dirac spectrum in a full dynamical configurations, as configurations with small eigenvalues are
lattice simulation. suppressed once the determinant factor is included in the
Although the calculation of all the eigenvaluestdf and  ypdate procedure. The appearance of such configurations is
hence ofD(u) as defined in the previous section, is perfectlyintimately related to the exceptional configurations encoun-
feasible for 2D QED, the restriction of praCtical numerical tered in quenched calculations at Strong Coup"ng and/or
techniques for the much larger matrices of 4D QCD to thesmall quark mass.
low-lying eigenvalues suggest the use of a simpler truncation This behavior suggests an approximate unquenched algo-

of the determinant, in which the lowegh absolute magni-  rithm in which onlyD(N,) is used in the determinant part of
tude N, positive and negative eigenvaluestbfare included

and all higher modes dropped. As we shall see in Sec. V.,

Ill. TRUNCATED DETERMINANT ALGORITHM IN QED2

precisely such a truncation scheme matches exactly to a ver A _'""v"'""'w"v"""v'v"w"""v'
accurate representation of the high end of the determinant irg
terms of an effective loop action. Labelling positive eigen- £
values ofH as 7, and negative eigenvalues &s(where the g 2 [FWVWWWWWWYWWIWVWRvv/wvevwevey x Neto
index runs in the direction of increasing absolute magnitude ¢ v N0, ,figh
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. . . . . . . Configuration number
where D is the dimensionality of the discrete Wilson-Dirac

matrix for the lattice theory. An exact full dynamical simu-  FIG. 2. Fluctuations irD(N,),D(N,) quenched configurations.
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FIG. 3. Comparison of quenched, full dynamical and truncated

determinant simulations: 3010 lattice, 3= 4.5, m=0.05. FIG. 4. Topological charge distribution for quenched, full dy-

namical and truncated determinant simulationsx10 lattice, 8

. . . . =4.5,m=0.05.
the effective lattice action. IN, is chosen large enough, all

the nonperturbative infrared physics will be properly in-
cluded. Exceptional configurations, in which there is an
anomalously low eigenmode of the Dirac-Wilson operator
are tamed in the expected wg¥1], and the convergence of
the procedure can be examined simply by repeating the ru
for increasingly largeN, . The update algorithm we have
chosen is very simple: a numbgypically 5) of conventional
Monte Carlo(Metropolis sweeps are performed to obtain a
new gauge configuration, a new value fB(N,) is calcu-
lated (for QED2 on a 1% 10 lattice, we can easily obtain all
the eigenvalues by direct diagonalizatioand compared

finds in a typical run of 800 sweeps values for the pion
propagator at zero time separation ranging from several
'thousand to zero, for a quantity averaging to order unity in
We dynamical theony Instead we have plotted the quenched
results regularized by the pole shiftingpr “modified
guenched approximation)”procedure of{1]. Evidently the

full dynamical result for the pseudoscalar correlator is
reached with only a small fractiofin this case, about 1096

of the eigenmodes included in the fermionic determinant.
When only 5% of the eigenvalues are included, the result is

with that for the preceding configuration. Then the truncatedntermemate between the quenched and full dynamical val-

determinant factor is used to provide a Metropolis accept olkze;:' ;;Aliow(?f ?r:?e\r,\tlaosrtklggs?lj(? thg zfrpefﬂ ;?I?ﬁeotzgﬁf;fe?%?_’
reject criterion for the gauge configuration update. The re_terminant factor on the to ){)Io ical charge distribution and
sulting algorithm is exact provided that the pure gauge up: polog 9

date step is performed in a way which respects detailed baf—he string tensiqn of the theory. For the quenched simul_ations
ance[12]. This can be done by updating links, or sets ofon a 10x 10 lattice atB=4.5, the topological charge, defined
noninterfering links, in a random order, or alternatively, in a
sequence which is symmetric under transposition. For
QED2, we found no statistically significant difference in the 1 )
results for correlator¢even at the lightest sea quark values Qup=5_ EP: sin(p) (13)
when the gauge link updates were performed sequentially in
a fixed order, or in a random order. The results described
below, both for QED2 and QCD4, use a standard link updatéwhere 6y is the plaquette angle for plaquefs, is found to
procedure(not completely randoinfor the pure gauge step. be concentrated abughlyinteger values, with charges 0 and
(A fully parallel implementatio13], suitable for the Fermi- 1 dominating. The histogram of topological charge values
lab ACPMAPS machine, of a gauge link update procedurepbtained from 800 quenched configurations is shown in Fig.
with rigorous detailed balance, is presently being written andt. As low eigenvalues are introduced via the truncated deter-
will be employed in all future truncated determinant simula-minant, the nonzero topological charge configurations are
tions). suppressed. Again, with, =5, the resulting distribution is
With N, =10, the acceptance ratio was typically in the hardly distinguishable from the full dynamical result.
range of 50—75 %. Measured guantities such as the pseudo- The quark-antiquark potential determined for two differ-
scalar correlator decorrelated after a few configuration upent sea quark massésare mass 0.06 and 0)18 shown in
dates (the statistical errors shown include autocorrelationFig. 5. The calculation was done in the truncated theory on a
times computed from the datarhe results of such a proce- 16X 16 lattice at3=4.5 usingN, =10 eigenvalues. Also
dure for the pseudoscalar correlator are shown in Fig. 3 for ahown is the exact result for the quenched theory and exact
guark masglattice unitg of 0.05. For such a small mass, update full dynamical theoryat sea quark mass 0.06The
using Wilson fermions, the quenched functional integral issmall eigenvalues properly represent the large loops induced
dominated by real pole contributions which appear in theby the determinant, leading to a breaking of the string at
simulation as wildly noisy values for the correlataiene longer distances for light quarks.
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Bn=V(Wn,Wp), (16)

Quenched
1F X m=0.10 (N=10 modes)
A m=0.06 (N=10 modes)

--------- m=0.06 (fult dynamicai) where a,, 8, are real numbergby virtue of the hermiticity

% % of H), and the initial conditions arg8,=1v,=0. It is
X straightforward to verify that the matrix dl, in the basis
spanned by the Lanczos vectars is tridiagonal, with the
numbersa,,a,,... down the main diagonal, and the num-
[ SO S bersB,,8,,... on thefirst super-(and subydiagonals. If the
"""" Lanczos recursion is carried to ord€r one is thus led to a
NN truncation of the original linear system, and the eigen-
values of the resulting tridiagonal matriX™) represent in-
' ' ' creasingly accurate approximants to the eigenvalues of the
full system, provided only that the starting vecteg is not
entirely contained in an invariant subspacetbf Typically,
FIG. 5. Quark-antiquark potential in QED2. Wy is chosen randomly and one expects that such a random
vector will overlap nontrivially with all the eigenvectors of
IV. CALCULATING TRUNCATED DETERMINANTS H.
IN LARGE SPARSE SYSTEMS There are several features of the Lanczos procedure which

There are a number of techniques available for the extracPpear at first sight problematic but which nevertheless turn

tion of a limited number of low eigenvalues of a large spars out not to compromise its efficacy in the present application.

. ) . : eFirst, degenerate eigenvalues of the original matriare not
linear system: most popular are conjugate gradient ap-

. . . properly handledalthough methods have been devised for
proache$14], or the Lanczos techmqt[&f;?], sm.tably modi circumventing this drawbacKl5]). This turns out to be ir-
fied to guard for the appearance of spurious eigenvallL@s : oo .

. ; relevant in our QCD application as the generic spectrum of
The latter approach has been studied extensively by Kalkrey (D— m) for a typical gauge configuration encountered
ter[17], and has proven to be most well suited for the task at_ ", s ypical gaug g

. In the course of a Monte Carlo simulation is entirely nonde-
hand, namely, the accurate extraction of a complete set o

low-lying eigenvalues ofys(D—m) up to an energy scale generate. Secondly, the effects of roundoff error in the algo-

; \ . . frithm can be quite severe, and lead to the appearance of
which ensures that all the important soft chiral dynamics O'spurious eigenvalues and to the false duplication of real ei-
full QCD is included in the Monte Carlo simulation. Typi- P 9 P

cally, on lattices of physically interesting volume in 4D genvalues. Fortunately a simple and effective cure for this

QCD, this requires the determination of something on theoroblem, first suggested by Cullum and Willoughte],

order of 100 eigenvalues. One advantage of the Lanczos a| foves to be' practical in the gauge theory cpd. HOW'
ver, it remains an unfortunate feature of the algorithm that

proach is that it can be pushed through to the determinatio e number of accurate eigenvalues extracted at INvef
of as many eigenvalues as desired, with a numerical efforlg: T : gen
e recursion is typically considerably smaller thdn For

which grows empirically as roughly the square of the desire& . .

: : .~ example, on a 2 24 lattice at3=5.9, the extraction of the
energy cutqff(m the portion OT the spectrum corrgspond!ng Iowes[t) 100 eigenvalues of tht'g Dirac operator typically re-
to the physical branghIn particular, on small lattices, it is

relatively straightforward to determine the entire spectrumqu!reS on the OrdeT of 10,000 Lanczos syveeéﬂihe compu-
ational cost of a single Lanczos sweep is essentially that of

which is useful both for diagnostic purposes and in studyin . I T ) .
the systematic effects of an algorithm based on a truncate e single@ multiplication incurred in producing the next
Lanczos vectow,=Huv,+... .) Finally, although the diago-

determinant. o 1 L L
The Lanczos technique is a standard part of the Iiteraturga!'z."jlt'On (.)f a tridiagonal matrix is conceptually trivial and
éfficiently implementable by scalar algorithnise.g. by a

in numerical analysigsee, for example[15]) so we shall R ) ) .
give only a very b?/ief review of the pFr)oc[edgj)re here. Given astandard implicit shift algorithnj20)), the parallel imple-

Hermitian matrix H [in our case, this is just the matrix mentation of this procedure is not entirely trivial. In our
ye(D—m) discussed previous]yé series of orthonormal simulations, this is essential to avoid a serious bottleneck in
5

VeCtorsvy,v,.vs ... are generated from a starting vectorthe simulation when tridiagonal matrices of order up to sev-
o . o eral tens of thousands must be efficiently processed. We de-
wo=v, by the following recursion: . X
scribe below an elegant parallel approach to the extraction of
the spectrum off V.

Un+1=Wn/Bn (12 In the case of the Dirac operator in QCD, the choice of
the random vectow, used to start the recursion appears to
n—n+1 13 pe fairly innocuouga local source seems perfectly adequate,
for example. An important check that the spurious eigenval-
an=(vn,Hoy) (14 ues are correctly identified and that the remaining “good”
eigenvalues are sufficiently converged relies on the gauge-
wWo=(H—an)v,—Bn-10n-1 invariance of the individual eigenvalues Hf which can be

(150  verified explicitly by recomputing the eigenvalues with vary-
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FIG. 7. Lanczos convergengg=5.9, k=0.1587.
FIG. 6. Spectral densit=5.9, k=0.1587.

orderN= 78000, yielding 1478 converged eigenvalues in the
ing degrees of gauge-fixing. We have performed extensivgentral region of the spectrum. Converting the gauge-
checks to ensure that the e|genVa|Ue Spectrumadm“o” invariant eigenva'ues dfl to a physical energy Sca(esing
the truncated determinaf(N, ), is invariant(typically to at  the scalea—1=1.78 GeV from the charmonium spectrym
!eastssig.nificant figur@sinder gauge transformations of the thig corresponds to all quark eigenmodes up to 970 MeV.
input configuration. . _ The energy reach as a function of number of Lanczos sweeps

The procedure we use to isolate converged eigenvalues @b this lattice is shown in Fig. 7. In the simulations reported
H involves two Stages. FiI’St, SpUI’iOUS eigenvalues are iderbe|ow' we have typ|ca”y used 9500—-12 000 Lanczos sweeps
tified by the procedure of Cullum and Willoughby—namely, (with slightly different tunings of the Cullum-Willoughby
eigenvalues of the tridiagonal mati¥") are compared with  procedurg and included the lowest 10@e. 50 positive and
those of the matrixrN) obtained by deleting the first row 50 negative eigenvalues of in the update procedure. This
and column off™ and removing all common eigenvalues of cutoff corresponds to inclusion of quark eigenmodes up to an
the two systems. Secondly, converged eigenvalues are idefnergy of approximately 370 MeV. Lanczos recursion to or-
tified by requiring either duplication of the remaining good der N~ 10 000 requiresfor a 12 24 lattice about an hour
eigenvalues or stability within a preassigned precision levebn 64 nodes of the Fermilab ACPMAPS system.
when eigenvalues are compared at recursion I&lreNg,, The relaxation of the determinant from its typical
and N. Typically we insist on a precision level of at least quenched value to the equilibrium value appropriate for the
10°° and chooseNg,= 100. The above procedure requires System simulated with the truncated determinant is shown in
the resolution of the central part of the eigenvalue spectrunfigs. 8 and 9. On a small lattice, {@t 3=5.7, x=0.1689
for four large tridiagonal matrice@f dimensionN, N—1, @ dynamical run includingN, =30 eigenvaluegor up to
N—Ngap, and N—Ng,—1, respectively It is therefore about 50Q MeV in quark mode enef}g\yas performed, with
highly desirable to perform these diagonalizations in a way? determinant update accept or reject every 3 heat-bath
that allows parallelization. sweeps of the lattice. The resulting evolutiorZa(N, ) start-

The key to extracting the central part of the spectrum of dng from a quenched configuration is shown in Fig. 8. The
tridiagonal matrix in a parallel machine lies in the Sturmsame evolution is shown for a run on a®k24 lattice at
sequence property of such matri¢&$], valid provided none
of the subdiagonal entrie8, vanish, as is certainly the case
for generic gauge configurations. Lpi(\) be the secular
determinant deT™—\I) of the nxn principal submatrix 66 I
TN of TN, Then the number of eigenvalues ofY) less
than any preassignedequals the number of sign changesin  -68 |-
the sequencey(N),p1(N), ...pn(N). As the p,(N) can -
readily be calculated by a simple two term recursion relation, 2 4|
an obvious bisection procedure can be used to determine thi™
nth eigenvalue ofT™) at any desired level of precision.
Moreover, the task of extracting different eigenvalues can be
assigned completely independently to separate processors
provided global access to the elements ,(3;) of TN is
arranggd. : (I) 1(1)0 2c|10 360 4(‘)o 5:)0 etl)o
_ In F_|g. 6 we show the _spectrum of for a typical con- Configuration number
figuration on a 12x 24 lattice at3=5.9, k=0.1587. In this
case an extended Lanczos recursion was carried out up to FIG. 8. Determinant relaxatiof=5.7, x=0.1685,N, = 30.
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1597, the pion masses were found to (badtice units M

310 =0.332:0.011, 0.2410.019 and 0.1980.069. The ex-
trapolation to zero pion mass gives a critical kappa value of
312 | k~0.1602, slightly higher than the pure quenched value of
k.=0.15972 found in previous calculation8]. With this
. B critical kappa, the pion mass corresponding to our lightest
é case should be about 0.183attice unitg, which converts to
- a6 about 280 MeV using the scale determined for the quenched
theory at this beta. We do not expect the scale in the trun-
318 | cated determinant simulation to be much changed from the
quenched theory as the shift in beta in full dynamical simu-
320 | lations (see[19]) is due to a large logarithm accumulated
. . . L L L L from quark modes all the way up to the lattice cutoff,

0 100 200 300 400 500 600

o whereas the truncated determinant included here only takes
Configuration number

into account the infrared modes up to 370 MeV. Higher sta-
FIG. 9. Determinant relaxatiof="5.9, k=0.1587,N, = 100. tistics are presently being accumulated at the lightest quark
mass, where the fluctuations in the large time meson correla-
B=5.9, k=0.1587 withN, =100 in Fig. 9, and with deter- tors are largest.
minant acceptor reject every 2 heat-bath sweeps. An important aspect of the low energy chiral dynamics of
The procedure we have used does not show a very strofdCD is the response of the topological structure of the
dependence of the acceptance rate on the quark (feags-  theory to the presence of light dynamical quarks. Integrating
nately. For the heaviest quark mass studied@at5.9, x  the vacuum expectation value of thé1) axial anomaly in
=0.1570(slightly lighter than the strange quarkhe accep- QCD Yyields immediately, in the continuum, the anomalous
tance rate for a run with a determinant accept or reject perchiral Ward identity
formed every two gauge heat bath sweeps was 40%. For the

. — 1

lightest two quark masses & 0.1587 and 0.1597wo sepa- m f d4%( U x X)) = J' d*xF F =

rate runs were performed with determinant accept or reject ¢ () y59(x) 327° urF = Quop-
steps separated by either one or two heat-bath sweeps. For 17

the heavier case;=0.1587(corresponding to a pion mass of ' . .
around 400 MeY, the acceptance was on the order of 37%We may therefore define a topological charge on the lattice

for new configurations separated by 2 heat-bath sweeps, arl?é( S|_mply _evaluatmg 'ghe Ief_t-hand side of the above _equapo_n
57% for configurations separated by a single hea,[_batl;fonﬂgurat|on by configuration. The advantage of this defini-

sweep. For the lighter mass=0.1597,(corresponding to a tion is that the required information is already immediately

pion mass of around 280 Mé\the acceptance was 30% for accesiible: the Euclidean vacuum expectation value
new configurations separated by 2 sweeps, and 43% fokd*™X(#(X)ys¢/(x)) reduces to the trace of the inverse of

those separated by a single heat-bath sweep. H= y5(D —m), the low eigenvalues of which were extracted
in the course of the simulation. Namely, we have the follow-

V. SIMULATIONS IN QCD4 ing lattice definition ofQ,,

N
To test the efficacy of the truncated determinant approach 1 ( K ) E

in unquenched QCD we have performed some preliminary Qup= 7, | 1~ Ke
runs on a 12x 24 lattice at3=5.9, for two degenerate fla-
vors of dynamical quarks at hopping parameter valges where the matrix dimension ¢ is N and\; are the eigen-
=0.1570, 0.1587 and 0.1597. For the heaviest mass, values ofH.
=0.1570, propagators were computed for every fifth con- As the larger eigenvalues occur roughly as equal and op-
figuration(60 in all), and a determinant accept or reject per-posite pairs, this sum actually saturates quickly at the low
formed after every two heat-bath gauge updates. For thend, and the 100 eigenvalues computed already in the course
lighter two masses, we also performed parallel runs with @f the simulation suffices to determiig,, to a few percent.
determinant accept or reject after every heat-bath sweep amth example of the convergence of this spectral sum, with the
with propagators measured every tenth configuration. Oumode eigenvalues converted to a physical energy <cele
results are based on 104 propagators{er0.1587 and 88 call that the inclusion of 100 eigenvalues corresponds to
propagators fotkk=0.1597. As fluctuations in the large dis- modes up to about 370 MegVis shown in Fig. 10 for a
tance behavior at light quark masses grow, the runcat typical configuration.
=0.1597 is continuing and results with much higher statis- With the definition(18), the qualitative effect of the quark
tics will be presented in a later work. determinant on the topological charge distribution can
Pseudoscalar meson masses were determined by measteadily be studied. Two effects are clearly visible in our data.
ing meson correlators with a smeared source and local sink (1) The real mode artifacts characteristic of quenched
and doing a fully correlated Euclidean time fit in the time Wilson gauge theory, and which underly the increasingly
window 8-11. At kappa valuex=0.1570, 0.1587, and frequent appearance of exceptional configurations as one

1
2N (18
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FIG. 12. The topological charge frequency distribution com-
puted for x=0.1587 using 100 decorrelated quenched QCD con-
FIG. 10. Convergence of the topological charge spectral sum fofigurations on a 12x 24 lattice atg=5.9.
a typical configuration.

Mode energy cutoff (MeV)

tribution for the lighter mass is immediately apparent. For
goes to lighter quark masses, do not occur. Configurationsomparison we plot the analytic result predicted by the chiral
with very small eigenvalues dfi are suppressed by the de- analysis of Leutwyler and Smild#®] in the light quark limit
terminant factor which is driven strongly negative for any for two degenerate flavors:
such configuration. In Fig. 11 this effect is seen comparing
the topological charge distribution for a dynamical rurkat
=0.1587 (including the lowest 100 modgsvith a com-
pletely quenched run at the same valence quark mass, Fig.
12. The distributions are broadly similéalthough the dy-
namical one is slightly narrowgbut the outlying points cor- With x=3VF2M?2. Here V,F_ .M, denotes the lattice
responding to very large values @f, (i.e to the appearance space-time volume, the pseudoscalar decay constant and the
of an exactly real mode of the Wilson-Dirac operator verypion mass respectively, all in lattice units. o= 0.1597 we
close to the chosen kappa valugre eliminated in the dy- have takenM .=0.15 andF,=0.07 (the latter number is
namical run. In fact in the quenched case there are severgktrapolated from high statistics quenched runs for this lat-
outlying points(the furthest out aQ,,= —91.6) not shown  tice [18]).
on the figure. For the dynamical run only Chaf¢%p|<5 The presence of low-momentum virtual sea-quark modes
are seen. in the simulation should result in screening of the quark-

(2) Nonzero topological charges must be suppressed iantiquark potential extracted from Wilson loops at large dis-

the chiral limit of vanishing quark mass, so we expect thatance. In Fig. 15 the potential obtained in the quenched
the histogram of measured topological charges will narrowtheory on a 12x 24 lattice atg=5.9 (200 configurationsis
as one approachesg,. This effect is shown in Figs. 13 and compared with that calculated from our dynamical configu-
14 where the topological charge distribution is compared forations at the lightest sea quark mass=(0.1597). The ef-
two dynamical runs at the lowest and highest quark massééct of screening is clear although asymptotic flattening of
studied «=0.1597 and 0.1570 The narrowing of the dis- the potential on this lattice occurs at distances where statis-

tical fluctuations as well as finite volume effects dominate.

P(Q):IQ(X)2_|Q+1(X)IQ—1(X): (19

0.6 |-

0.6 |-

04 |

04 |

Frequency Distribution

02 |

Frequency Distribution

FIG. 11. The same topological charge frequency distribution for
300 configurations generated by the truncated determinant algo- FIG. 13. The topological charge frequency distribution with sea
rithm with sea quark mass=0.1587 on a 12x24 lattice atg guark massk=0.1570.(Other parameters are as in the previous
=5.9. figure)
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FIG. 14. The same topological charge frequency distribution 1 2 3 4 5
with sea quark mas&=0.1597. The expected distribution from Ra

chiral perturbation theory is shown with diamonds. FIG. 15. Quark-antiquark potential for quenched theory and dy-

namical theory with sea quark kappa values 0.1570, 0.1597. Error
VI. MATCHING THE HIGH EIGENVALUES bars shown only for lightest maserrors are largest for this case

Because QCD in four dimensions is only renormalizable, )
not superrenormalizable, the fluctuations of the fermion de(?) Using a small number of gauge loops to model the de-
terminant are significant at all physical scales. Therefore, un-  terminant as proposed by Sexton and Weingaft),
like QED in two dimensions, it cannot in general be suffi-  and Irving and Sextof22].
cient to compute accurately only the low eigenvalues of the . _ o
fermionic determinant. Fortunately the short distance behav- ©On€ method to compute the high eigenvalues which is
ior of QCD is very well understood. This should allow the guaranteed to succeed is the multiboson approach sgher
identification of the important degrees of freedom and lead t9]- Define
a method for including the effects of the higher eigenvalues .
into the Monte Carlo process. In particular, we know that for Peri(U)=[de(D+m)]" exp(—Sy(U)) (22
sufficiently high momentum scales this physics should be
accurately described by an improved gauge action involving

Wilson loops on short distance scales only. H=ys(D+m)/[c,(8+m)] (c,=1) (23)
The fermion determinant can be separated into two ° m m '
pieces, wherec,, is chosen so that the eigenvalueshbfare in the
interval (—1,1). Consider two flavors of light Wilson-Dirac
In detH=[Tr In H]jo , +[TrIn Hlpign» . (20 quarks ;=2). Luscher chooses a sequence of polynomials

P,(s) of even degree n such that
where the lowesh eigenvalues are directly calculated and

included in the Monte Carlo updating procedure. The contri- Lnl Pn(s)=1/s for all 0<s<1 (24)
bution of the vast majority of the larger eigenvalues can be
included by some approximation to the high end thiBt
matches onto the low eigenvalue results without gaps or
double counting(?2) is controlled and3) becomes exact in detH2= lim [det P,(H2)] L. (25)
the continuum limit. We can define the differentdetween P
the approximate action, denot&g, and the exact contribu-
tion of the high eigenvalue§=[Tr In H],jgn, as follows: Choose polynomials such that complex ropts . . z, come
in complex conjugate pairgnon rea) so that\z=u+iv.
A=S-S,. (21)  Then
n
Any acceptable method must ensure that this difference is 2y N2 2
small (=1) for each configuration. Therefore, we will de- P(HY constkll [(H =m0+ vid (28

mand that the variance df for any set configurations is less

than unity. Actually, we will find that a relatively simple and

effective loop action yields values df considerably less

than unity for interesting values of;. s 5 211
Two numerical methods suggest themselves for calculat- detH*= lim H def(H-w)+w] " (27

ing the high eigenvalues of the fermion determinant: e

n

(1) The multiboson approach of saher{9]. Hence we can finally write
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1 Using the multiboson method for the high end of the de-
Per(U) = lim —- J D¢D" exp—Sp(U,¢), (28)  terminant satisfies all our requirements and completes the
n—e b algorithm. However it is interesting to study if we can reduce
the total required computations even further using a more
physical approach to the high eigenvalues. First, consider
how many of the high eigenvalues we are computing actually

where the bosonic action is given by

n
_ 4 _ 2, 2 2 have physical information and are not just lattice artifacts.
S=5(U) kzl ; |(H =) a1+ v 400 For example, for a 1224 lattice with 3=5.9 and «
(29 =0.1587 there are 497 664 total eigenvalues of the Wilson-

Dirac operator. We can explicitly calculate the number of
To estimate how many boson fields are required to represerigenvalues less than some high energy cutoff. Using 1 GeV
the original action to a fixed accuracy in the range<6  we have approximately 1500 eigenvals3%9. For a fixed
<1) Luscher considered polynomials of the Chebyshev typeolume V and quark mass), only a decreasing fraction of
(denoted 7. Definingu=(s—e€)/(1—¢) and cos¥=2u—1, the eigenvalues are below a fixed physical scalgasx.

T7(u)=cosfu) and we can write Therefore, most of the range of large s fit indcher's multi-
boson method is physically unimportant.
P(s)=[1+pTh_,(W)]/s This suggests a more physically motivated method for
dealing with the high eigenvalue part of the fermion deter-
R(s)=[P(s)—(1/s)]s(e<s<1), minant, in which one approximates the ultraviolet contribu-
(300  tion to the quark determinant with an effective gauge action
where p is chosen so that th€(s) is finite ass—0. The 'max
error is given by [TrIn Hlhign X”ZO ail (33
1- e e where each.; is a set of gauge links which form a closed
R(s)|=2 1+ e (32) path. The natural expansion is in the number of links. For

zero links we havé y, which is just a constant, for four links

where n is the number of boson fields and the fit is cutoff forVe have a plaquette, and six links give the three terms found
eigenvalues below. Therefore, the convergence is exponen-in considerations of improved gauge actig@d]. .
tial with rate 2\/e asn— . This idea was originally proposed by Sexton and Wein-
The main practical problem with this multiboson method 92rten[21] and studied in more detail by Irving and Sexton
is that it requires an increasingly large number of bosor22- These studies were done on ‘%léttice at=5.7 with
fields as the quark mass becomes lighter. s—0, we hybrid Monte Carlo full QCD simulationéwith a heavy sea
must takee— 0, but to obtain a fixed level of accuracy we quark. Their results were rather discouraging. It was hard to

must hold 2/en fixed and hence increases without bound. get a good approximation to the determinant with a closed
However the multiboson method matches nicely onto the®t of loops and they needed large loops to even approach a

calculation of low eigenvalues discussed previously. This,reasonable fiL22]. . .
was first suggested by Alexandra al. [23]. In our trun- There are however two important differences between

cated determinant method, the cutefffor the multiboson the_:_rhstudy anld tOlér tsr:tuagloln. determinantwhile h
method is set by the highest eigenvalue ®f (y5(D | €y dS|tmuae . e’: ct)he germlr;am Wb'e ere Wet f
+m))? which is explicitly included in the low end calcula- 'Y N€€d 0 approximate the eigenvaiués above some cutoft.

tions. Hence it does not explode as the quark mass goes F}ence we would expect the small loops to dominate at least

zero. The combination of methods remain accurate for al or :‘ll;f;'ct'ﬁgtly Sé%ha%u;c’ff'm imate procedure to estimate sto-
quark masses. For example, #8=5.9 on a 13X 24 lattice ey u pproxi P u :

with direct inclusion of the lowest 100 eigenvalues, the as—ChaSt'Ca”y the logarithm of the determinant needed, while

sociated cutoff for the multiboson simulation of the high we are exactly computingll eigenvalues for this study.

. T : . It turns out that these differences are critical, as using
ﬁ:gﬁgvalues is/e~0.035 independent of the light quark approximately the same lattice@nd with even lighter

Furthermore, the error associated with the inaccurate b quarks we find an excellent approximation to the high end

havior of the polynomial fit in the range<0Os<e can be with only small loops.

corrected as low eigenvalues are computed for every con; We generated a set of 75 configurations orf dafitice at
. . 9 X omp y =5.7 and«=0.1685. We included the lowest 30 eigenval-
figuration update. We obtain a reweighting term,

ues(which corresponds to a physical cutoff of approximately
Neut =350 MeV) in the Monte Carlo accept or reject step in the
AS&FZ |”()\i2P(7\i2))v (32) generation of these independent configurations. The spec-
i=1 trum of eigenvalues is shown in Fig. 16.
We can see the importance of the higher eigenvalues by
which can be included to eliminate errors in the region Oseparating the high and low part of the fermion determinant
<s<e. for each configuration. This is shown in Fig. 17. Unlike the
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FIG. 16. Spectrum of eigenvalues for* 8attice 8=5.7, «
=0.1685,N, =30.

case of QEDZAcS. Fig. 1) it is apparent that the UV contri-
bution to the determinant definitely involves large fluctua-

tions. Of course, the issue here is just whether these fluctua-

tions are well described by a simple effective gauge action

Considering only the high eigenvalues, an excellent fit to

the fluctuations is obtained including four and six link closed
loops. The variance of the fit is 0.265. The comparison be

tween the fluctuations in the exact and approximate action

for the high eigenvalue piece is shown in Fig. 18.

As expected, if only the plaquette term is included the

variance is largef2.25 and we must move the low eigen-
value cutoff toN=50 (=700 MeV) to reduce the variance

below one. The results for various cutoffs and terms included

are shown in Table I.

Although more study is required this second method look
very attractive for dealing with the high end of the fermion
determinant in full QCD with light dynamical quarks. Simu-
lations would be performed by including the predetermine
effective gauge actios, in the gauge updates and comput-
ing the infrared part of the determinant as in the truncate
determinant simulations described in this paper.

In summary, we have found that there are at least tw
viable methods to deal with the contribution of the fermion
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FIG. 17. Fluctuations in the lown<30) and high eigenvalues
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FIG. 18. Fluctuations in the high eigenvalue piece of THIare
indicated by a dashed line. Fluctuations in the fitted effective gauge
action (6 links and lesgare indicated with open circles.

determinant not computed explicitly in a truncated determi-
nant approach.

VIl. CONCLUSIONS

We have proposed an algorithm for Monte Carlo simula-
tion of full QCD with light dynamical quarks which has as
its central feature a separation of the quark determinant into
products over low and high eigenvalues. This separation is a
direct reflection of the different physical roles played by
these two sectors, with high eigenvalysemall quark loops
having the primary effect of modifying the gauge interaction
strength, while the low eigenvaluékrge quark loopsde-
termine the long-range chiral structure of the theory. Our

Sprocedure for generating full QCD configurations then en-

tails an exact calculation of some fixed number of the lowest

Glying eigenvalues oH= y5(D(A) —m), using a Lanczos al-

gorithm. This careful treatment of low Dirac eigenmodes is
motivated by the conviction that the most essential differ-
ences between quenched and full QCD reside in their long-
range chiral structure and associated topological properties.

The complete formulation of our proposed algorithm also
allows various methods of incorporating the higher eigenval-
ues which were omitted in the Lanczos calculation. For ex-
ample, the algorithm matches cleanly onto the multiboson
approach. We have also explored a particularly promising
approach for incorporating the correct ultraviolet behavior by

TABLE |I. Fits to the high eigenvalues of the quark determinant
by various small gauge lood$VL denotes a Wilson line passing
through the entire lattige

6 link fit 6 link fit

n, cut N (MeV) 4 link fit wo WL with WL

0 0 4.98 1.074 0.835

+15 340 2.25 0.2652 0.233
+50 700 0.940 0.0564 0.0491
+250 1,210 0.0733 0.0695 0.0641
+1250 2,220 0.138 0.0198 0.0180

for the same configurations as the previous figure.
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the use of a sum over relatively small Wilson loops to rep-reasonable acceptance rate. The Lanczos calculation of the
resent the high-eigenvalue contribution to In et By do-  lowest few hundred eigenvalues requires an amount of com-
ing a complete diagonalization on*6gauge lattices, we puting time of the same order as that of an ordinary
found that this Wilson loop representation works well with conjugate-gradient inversion of the Dirac operator. Thus,
only a few small Wilson loop$4-link and 6-link included. even if the accept or reject step is performed after every
Here, the small loop approximation to the truncated In Bet sweep, the computing required is still comparable to that of
only succeeds when the Ilowest eigenvalues other full QCD algorithms such as the hybrid Monte Carlo.
(<300-400 MeV) are excluded, so it forms an idealMoreover, the performance of the algorithm does not seri-
complement to the Lanczos treatment of the low eigenvalueswusly degrade in the light quark limit, which may provide a
In the Monte Carlo simulations discussed in this paper, wesignificant advantage over the hybrid Monte Carlo for the
have used the pure Wilson plaquette gauge action for thetudy of chiral behavior in full QCD. Finally, for issues as-
heat-bath sweeps and carried out the accept or reject tesociated with chiral symmetry, the special handling of low
using the truncated low-eigenvalue contribution to the detereigenvalues is theoretically appropriate, and the eigenmodes
minant. In the context of the more general Wilson-loop de-extracted by the Lanczos analysis provide a detailed view of
scription of the high-eigenvalue segment, our present procghe connection between chiral symmetry breaking and the
dure is equivalent to approximating the high-eigenvaludow-lying Dirac spectrum.
contribution to In DetH by just the sum of a constant and a
plaquette term(This is in the same sense that the ordinary
guenched approximation is equivalent to approximating the
full determinant by a shift 08.) A. Duncan is grateful for the hospitality of the Fermilab
Perhaps the best news to emerge from these numeric@heory Group, where this work was performed. The work of
simulations is that the Metropolis test on the low-eigenvalueA. Duncan was supported in part by NSF grant PHY97-
truncated determinant yields a reasonably large acceptan@2097. The work of E. Eichten was performed at the Fermi
ratio after one or more complete heat bath sweeps, eveNational Accelerator Laboratory, which is operated by Uni-
when the quarks are very light. This is in marked contrast toversity Research Association, Inc., under contract DE-AC02-
what would happen if one tried to include the full determi- 76CHO3000. The work of H. Thacker was supported in part
nant via an accept or reject step between quenched Montey the Department of Energy under grant DE-AS05-
Carlo sweeps. Even for a single heat bath sweep, the flu89ER40518. Much of the numerical work was performed on
tuations of the full determinant are much too large to yield athe Fermilab ACPMAPS system.
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