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Measuring the broken phase sphaleron rate nonperturbatively
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We present details for a method to compute the broken phase sphalergratatef hot baryon number
violation below the electroweak phase transijinnnperturbatively, using a combination of multicanonical and
real time lattice techniques. The calculation includes the “dynamical prefactor,” which accounts for prompt
recrossings of the sphaleron barrier. The prefactor depends on the hard thermal loops, getting smaller with
increasing Debye mass; but for realistic Debye masses the effect is not large. The baryon number erasure rate
in the broken phase is slower than a perturbative estimate by about&§)( Assuming the electroweak
phase transition has enough latent heat to reheat the universe to the equilibrium temperature, baryon number is
preserved after the phase transition if the rati¢“dfmensionally reduced” thermalscalar to gauge couplings
N g? is less than 0.037S0556-282(98)00523-7

PACS numbds): 11.15.Ha, 11.15.Kc

I. INTRODUCTION This topological structure appears both in (8U(weak
and SU3) (strong, where it is responsible for the physics of
20 years ago, 't Hooft showed that baryon number is nospontaneous chiral symmetry breaking. What 't Hooft no-
a good quantum number in the standard mgdél The rea-  ticed is that, because fermions couple to the weak2sU
son involves the nontrivial vacuum structure of the(3U  group of the standard model chirally, the anomaly relates
(weak gauge group of the standard model. In any gaugen.gto baryon number. If the gauge fields pass through some
theory, the vacuum is not unique; any gauge transformatioRonvacuum intermediate state from one topological vacuum
of A=0 has zero energy and is an acceptable vacuum. Bub another(or around a noncontractible loop, if we think of
SU(2) (and any simple gauge groupas the property that the configurations modulo gauge transformatiprsaryon num-
space of three-dimensioneD) gauge transformations is to- ber changes. Such changes are classically forbidden at zero
pOlOgica“y nontrivial. A gauge transformation has an integertemperature, S0 they 0n|y occur via guantum tunne"ng_ Be-
73 winding number_associated with it. Since the winding cause the S(2) gauge coupling is weak, and because the
number must be an integer, the space of smooth gauges, apgygs field breaks the symmetry, such processes are steeply
also the space of vacua, is dlsconngcted. The qlfferent Coré;xponentially suppressed, by-exp(—16m2/g?)~10"17°
nected _components are characterized by their values Pence such processes are of no terrestrial phenomenological
Chern-Simons number, interest.
However, as a general rule, if a process only occurs in
FaA2— g fabcAiaAijﬁ), (1)  vacuum via quantum tunneling, then above some tempera-
ture it occurs much faster via thermal activatio@hemistry
o . . , and condensed matter physics are full of examples; anneal-
which is an integer for a vacuum configuration, though nOting of crystal defects, for instangeThe same is true for
necessarily for an excited state. Classically, for the 9aU9Baryon number changing processes in the standard model,
fields to change from one topological vacuum at tirsd; to although the “annealing temperature” (100 GeV). In
another at time=t;, they must pass through excited statesfact, there is a phase transitionTt~ 100 GeV in which the

g2
Nes= fdsxe
S 32m2 1k

in the intervening time; to be specific, Higgs field loses its condensate, and above this transition
5 baryon number violation is efficiefi2,3]. It is quite possible

dNcg/dt= 9 f d3xFa FAuv (2)  that the baryon number of the universe originated in a cos-

3272 pra mological electroweak phase transition, and in recent years

this belief has driven the study of the electroweak phase
which is clearly a gauge invariant quantishough its inte- transition.
gral Ncgis not, because of the constant of integrafiorhis It takes two things for a cosmological electroweak phase
means that it is possible to pass from a vacuum configuratiotransition to generate the baryon asymmetry of the universe.
to a gauge copy of that configuration via a path which cannoFirst, there needs to be enou@ violation to generate at
be smoothly deformed to remain always in vacuum. If weleast the observed abundance of baryons during the transi-
mod out the space of 3D configurations by the gauge trangion. Second, there cannot be too much “annealing” of the
formations, the space we get will then have noncontractibléaryon number after the phase transition, that is, baryon
loops. number violation must be inefficient enough after the phase
transition that a good fraction of the baryons survive to the
present day. This is a condition on the phase transition’s
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TABLE |. Perturbation theory versus nonperturbativg. Appearances oTC’4 are really (2.§°T,) %
x=\/g? is the ratio of the Higgs boson self-coupling to the gauge coupling,y@ﬂdﬁ(T)/g“T2 is the
dimensionless Higgs boson mass squared. The error bars for the nonpertughatare dominated by
statistical errors in the determined valueTqf; errors in the nonperturbative value Bfare statistical errors
from the Monte Carlo calculation. The last row includes the nonunity dynamical prefactor in the rate and
should be taken as our most reliable estimate.

(x=\/g?) x=0.047 x=0.039 x=0.033
d(T)/gT, 1.360 1.568 1.789
two loop B=gEs{47¢ 1.643 1.633 1.626
perturbative Espon/ T 28.08 32.20 36.55
—In(T4T% 22.27 25.39 28.82
—d In(TgT, %)/dy 860 920 1000
d(T)/gT, 1.38+0.02 1.60-0.01 1.82:0.03
nonperturbative —In(T4T.* (excl. prefactor 24.7+0.4 28.3-0.4 31.2:0.6
—In(T'4T.* (incl. prefactoy 25.9+0.5 29.5£0.5 32.4-0.7

The minimal standard model fails both conditions badlythe importance to the broken phase sphaleron rate of hard
[4,5]. However, well motivated extensions, such as the minithermal loops, which can modify the dynamical prefactor.
mal supersymmetric extension of the standard model For the impatient reader, we will present the basic ideas
(MSSM) with a light right scalar top, appear to be viable. and the results right now. To find the sphaleron rate nonper-
Recent studies of baryon number production during thdurbatively, we first define nonperturbatively a surface called
phase transition appear to show that enoG§hviolation can  the separatrix, which sits half way between distinct topologi-
hide in places with few low energy consequences to generafe?! vacua. Sphaleron transitions which permanently change
the observed abundance of baryon number, and maybe Mcs must cross this surface. To find this diffusion rate,
little more (for recent work see, for instance, Ref6—8]). W€ first compute the probability in the canonical ensemble to

And the phase transition can be stronger. If the lightest scal te N a narrow ba?d akiOUt the ?ﬁpztratr(ljx;_lgﬂen W% Cotmp?;e
top quark is not very light, then perturbation theory can re-''€ M€an INVerse ime 1o cross the band. The product IS the
robability flux across the separatrix. Then we compute a

liably relate the phase transition in the MSSM to the phasé,)

e ; dynamical prefactor,” which tells what fraction of cross-
transition in the same effective theory used to study the Star]hgs lead to permanent resettling about a different vacuum.
dard model[9], which has been well analyzed numerically

; o ; All three quantities can be computed nonperturbatively on
[5,10,1]. If the lightest scalar top quark is lighter still, the yhe |attice, using a combination of Monte Carlo and real time
phase transition may be stronger and more eXd#}. This  (gchniques. Including strong hard thermal loop effects modi-

system can also be studied by nonperturbative lattice techies the dynamics in a way which lowers the dynamical pref-
niques[13]. actor, but for realistic parameter values the effect is minor.

At present, the weakest link in our knowledge of baryonThe N4 diffusion constant is presented, and compared to an
erasure after the phase transition is the relation between thghalytic estimate based on the two loop effective potential, in
strength of the phase transition, now known nonperturbaTable |I.
tively, and the efficiency of baryon number violation after it ~ The paper is structured as follows. In Sec. Il, we outline
is over, for which we have only a one loop calculation the general idea of the calculation. Section Il defines Chern-
[3,14,13. We know that the perturbation expansion at highSimons number on the lattice, and the order parameter we
temperature near the electroweak phase transition cannot éll use, which is very closely related. It also discusses ap-
viewed as an expansion i) but at best as an expansion in a plication of the definition to the symmetric phase case. Sec-
ratio of couplings. We also know that the two loop correc-tion IV tells how we go about things numerically. Section V
tions in the perturbative expansion for the strength of thePresents numerical results and compares them to a “semi-
phase transition are not very small in the “interesting” rangetWo loop™ analytic estimate, and to the erasure bound. The
of couplings where the baryon number violation after thelast section conclqdes. For readers who are_allerglc to details
transition is close to the efficiency limit. So it would be nice Of numerical studies, we recommend reading Sec. Il care-
to actually know how good the one loop calculation is, or tofUlly: @nd perhaps the first subsection of Sec. IV, and then
replace it with a fully nonperturbative investigation. skipping to Sec. V.

Very recently we have proposed a nonperturbative
method to determine the rate of baryon number violation in
the broken electroweak phagko]. This paper will fill in all We want a technique for determining tiN:g diffusion
the details left out in that paper. Also, the calculation thereconstant in the broken electroweak phase, where the rate is
was incomplete; it did not include a measurement of theextremely small. The technique will be geared around the
“dynamical prefactor,” discussed below. This paper will smallness of the rate and the fact that the system in finite
complete this aspect of the calculation. It will also discussvolume will spend almost all of its time in a “neighbor-

Il. BROKEN PHASE MEASUREMENT: GENERAL IDEA
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hood” of a topological vacuum, in a sense to be made preThe phase transition occurs near where it is zero, at a critical
cise below. These assumptions can be cheekpdsteriorj  temperature which in the context of dimensional reduction
and do not constitute a real limit to the technique in thebecomes a criticalm3(T). At the tree level, \/g?
broken phase. They will fail in the symmetric phase or when=(m,/my,)?/8 but the radiative corrections are important
the phase transition is very weak, but in that case we caand the relation betweex/g? and the ratio of physical zero
apply real time techniqugd7—-23, which can now produce temperature masses,/myy is not simple, especially in ex-
quantitative result§24—26. (We should mention here that tensions to the standard model with new light bosons. Also
the symmetric phase case is not completely settled; it haote that, for instance, if the MSSM right scalar top quark is
recently been argued that there are logarithmic corrections t&0 light, the reduction to an MSM-like effective theory is
the parametric scaling behavif7], which are however too Not Very reliable; we should use an effective theory which
small to be seen over the noise and other systematics stfiontains the light squark and the gluons. Dropping heavy

present in26].) modes is not a necessary step for using our technique, it is
merely convenient to reduce the numerical demands, which
A. Thermodynamic approximations would be a few times larger if we include ti#g fields and

) order 10 times larger if we include the squarks and QCD. We
Before we start to describe our approach to the calculay;i discuss how we think light squarks would change our

tion, we will specify the approximations to be made. results in the conclusion. We discuss the matter of integrat-
We treat the thermodynamics of the standard model, ofng out theA, field in more detail in Sec. IV B. It is not
whatever extension is of interest, in the dimensional reducgiways appropriate to do so, and in particular we cannot
tion approximation28-30, that is, as being well approxi- \when we are studying the influence of hard thermal loops.
mated by a three-dimensional, bosonic path integral with pa- We do keep the (1) subgroup, which is often left out in
rameters carefully matched to those of the full theory. This iselectroweak studies. Its role in setting the sphaleron rate is
an excellent approximation and we have no regrets in makprobably almost entirely due to its effect on the strength of
ing it. For a study of corrections to this approximation in thethe phase transition and not a direct modification of the
present context, see R¢B1], which shows that the leading sphaleron, see Ref36], but the numerical cost of including
thermodynamic effects not included in the dimensional redt is small enough that dropping it is pointless. We use
duction procedure have a negligibly small effect on thetar? ®,,=0.32, based on a one loop match between vacuum
sphaleron energy. modified minimal subtraction schem&§) and 3D thermal
Conveniently, dimensional reduction is equivalent tovalues using results in Ref30].
treating the theory’s thermodynamics as equivalent to those
of the classical bosonic theof{9], with certain mass coun- B. The separatrix

terterms. Similarly, we can treat the theory's dynamics in &  pg deq of the separatrix between vacuum states is es-
classical approximation. This should be valid in the infraredseniial to our technique. Before introducing it, let us review
[23,32, with one serious complication. That is, the structure,yhat we expect the space of gauge-Higgs configurations to
of divergent radiative corrections to unequal time correlator§ook like in the broken phase. The space of three-
is much more complicated than that for equal time correlayimensional gauge-Higgs configurations is periodic, with a
tors. For the equal time correlators, which are all that mattejiscrete set of vacua. To be more precise, we should consider
to thermodynamics, the divergent radiative corrections argne space of gauge-Higgs configurations modak) gauge
mass squared corrections for the Higgs @qdields, which  transformations. In this case all vacua coindibet the space
can be computed once and balanced by counterterms. FRf not simply connected. Since the index of the Dirac opera-
unequal times the linearly divergent radiative corrections, thgs; remembers when we go around a noncontractible loop in
hard thermal loops, have a more complicated structure. Angonfiguration space, the relevant space of physical configu-
they can significantly change the dynamical behavior on timgations is the universal cover of the space of configurations
scales longer than the inverse plasma frequency. The modinodulo (all) gauge transformations. The universal cover has
fications can be important for the Chern-Simons number dify giscrete set of vacua labeled by the index of the Dirac
fusion ratef33-35,27, as has recently been verified numeri- gperator If the line connecting two vacua in the universal
cally for the symmetric phase dynami@g]. In the current
context they will modify the “dynamical prefactor,” but
they have little bearing on those parts of the calculation | ) .
which are thermodynamical. _If the global topology of space is multlp_ly cor)nected then Yang-
We will also frequently make the approximation that the Mills éheorty h(??fa cotnnelcted :‘nantlfold of '?equt'v‘."“em vacu? Cot.rkr)?'
s0 called “heavy” degrees of frecdom can be egrated ouffT 1 1 e Vs o race o conan porconuecine
[30], including both the time component of the gauge ﬁelds.connected' h.owever théundamental representatipiliggs con-
and any squarks _pr_esent, s0 the theory reduc_es toan effecn\égnsate lifts the degeneracy of the would be gauge vacua. These
theory for the minimal standard modfd]. This theory is

ified b — /a2 th 0 of I complications will not be important for what we do.
specified by two parametersi=A/g* the ratio of scalar to 2The universal cover is roughly the same as the space of configu-

gauge self-couplings, anehf;(T) the thermal Higgs boson rations modulo small gauge transformations. But we prefer to think
mass squared Lagrangian paramemﬁ',(T) is @ monotone in terms of the universal cover of the space of configurations
increasing function off, going fromO(g?T?) at high tem- modulo all gauge transformations, because this is an explicitly
peratures to quite negatieymmetry breakingin vacuum.  gauge invariant approach.
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\ <—"Good" separatrix

. Path leading to true N
Exceptional,

N changing

= \ B change \
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[ ] o
Vacuum
Typical path /

Path which “fakes"
two separatrix crossings \
for the "poor" separatrix

<——"Poor" separatrix

Separatrix Separatrix FIG. 2. Diagram of how a poor choice of separatrix can lead to

FIG. 1. Diagram showing the periodic vacuum structure, sepa-oVercountlng the flux, and a small dynamical prefactor.

ratrix, typical path which stays near a vacuum, and exceptional path
which crosses the separatrix and leads to permaNegthange.  separatrices, and the dynamical prefactor, then we know the
diffusion constant foNcg; the diffusion constant is

_ ([Ncg(t)=Ncg(0)1%)
cover projects to a winding one loop—or in more conven- ~ Yd='M t
tional language, if two vacua differ by 1 in Chern-Simons &)
number—we will refer to them as neighboring vacua.
We expect that, in the broken phase, almost all of the
weight of the canonical ensemble lies in states whichimre What we really want is the diffusion constant per unit vol-
some senselose to one of the vacua. The Hamiltonian evo-ume I'y=vy4/V. We should use a volume which is large
lution of a generic state in the ensemble will wander aroundenough to prevent finite size systematics but small enough
in the neighborhood of one vacuum for an exponentially longthat there are almost never two simultanedls; changing
time before it happens to make an excursion far enougkvents in different places.
away that it crosses to being nearest another vacuum, which A few points are in order here. First, the assumption that
it may find instead. We expect that this is hdlgs diffusion  there are no prompt crossings of multiple separatrices is es-
will occur. - ~ sential to the calculation. As we will see, it is also easy to
To determine the rate dfics diffusion, we draw acodi-  test, Second, if we make a somewhat poor choice of the
mension ] surface separating one vacuum from its neighborgenaratrix, so that there is some place where it bends nearer
halfway between the minima in some sense, so that all of thg, ;1o vacuum than the other, then much of the flux in that

well populated area near one minimum fals on one side aanIace will be of trajectories which double cross and return to

all the well populated area near the other minimum lies or], _. . o ;
. . . . heir starting v m. The pr ility flux will be larger than
the other side. This surface is called the separatrix betweene starting vacuu e probability flu be larger tha

the vacuasee Fig. 1. To cross from being near one vacuum with a better definition of the separatrix. However, the dy-

to being near another vacuum, a Hamiltonian trajectory museg tlead t h The rat determi
pass through the separatrix dividing them. We will assum 0 not lead to permanenics change. The rate we determine

that, after such a crossing, the trajectory almost nevelS independent of exactly where we put the separatrix as long
promptly continues to and crosses the next separatrix, bitS the flux across it is exponentially small, and as long as we
instead either settles around the new minimum for longh@ke & complete calculation, including the dynamical pref-
enough that ergodicity “erases its memory,” or turns around@ctor. We illustrate this point in Fig. 2. In practice we should
and returns to the vacuum it started from. Then the flux of ®°K for a good choice of separatrix, since a poor choice of
probability of the thermal ensemble through the separatrix [SEParatrix may make it harder to get good statisticd fos
anupper boundn the diffusion rate foN¢s. It is an upper most .Of the(numerlca] effort will go towards study|r)g tra-
bound because of trajectories which cross the separatrix, tulfctories which double cross rather than ones which really
around, and return to the original vacuum. These lead to flugnangeNcs permanently.

of probability through the separatrix, but not Mg diffu-
sion. To get the true diffusion rate, we need to find not only
the flux through the separatrix, but the average number of
crossings of the separatrix per long term change from being The existing perturbative calculations of the broken phase
near one vacuum to being near another. We will call thediffusion constant foNcgare along the lines of the approach
reciprocal of this, the fraction of separatrix crossings whichwe just described. To allow a perturbative calculation, they
are associated with permanéW¢s change, the “dynamical make an additional assumption; that the separatrix is domi-
prefactor.” If we know both the flux of probability across nated by its saddle point. That is, they assume that gauge-

= (prefactoyx (flux).

amical prefactor will be smaller, since these extra crossings

C. Calculation: perturbation theory
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Higgs configurations on the separatrix are perturbativelythe thermal ensemble is completely dominated by configura-
small excitations about a background field which is the low-tions in which every elementary plaquette is close to the
est energy point on the separatrix, which will be theidentity. This means, roughly, that fields are perturbatively
Klinkhamer-Manton sphalerof86]. The choice of a defini- small at the lattice scale. This subspace of the space of lattice
tion of the separatrix is then made perturbatively; a point isconfigurations does have the same topological structure as
on the separatrix if the excitation in the unstable direction otthe continuum theory. Hence, if we excise a subspace of
the sphaleron is zero. The probability flux through thelattice configurations which carries an exponentially small
sphaleron can be computed in perturbation theory by comweight, then we can talk about topology on the lattice.
paring the free energy of all excitations of the sphaleron to The physical meaning of this is as follows. The space of
the free energy of excitations about the naive vacuum, witttcontinuum configurations permits sphaleronlike objects of
the frequency of the unstable mode serving to convert arbitrarily small spatial extent. They also exist on the lattice,
probability into a flux and the translational zero modes con-down to where their size is comparable to the lattice spacing;
verting this into a flux per unit volume. but at this point it becomes unclear how to define a smoothly
The probability flux through the separatrix has been cominterpolating continuum field, and the topological meaning is
puted in the above approximation at the one loop levelost. Such a configuration in the analogous four-dimensional
[14,15. However, extending the calculation beyond one loopcontext is referred to as an “exceptional configuration.”
raises severe technical problems. The sphaleron is not a spdewever, the energy of spatially small, sphaleronlike field
tially homogeneous background field, so the perturbative caleonfigurations rises linearly with inverse radius; so the
culation must be done in real space with a numerically deBoltzmann suppression of lattice scale sphalerons is enor-
termined spectrum of fluctuations. The one loop calculatiormous and they essentially never occur. As long as the
requires finding this spectrum, but the two loop calculation“genuine” sphalerons we study are comfortably larger than
involves overlap integrals to compute the energy of theirhe lattice spacing, we have no problem. And when the genu-
mutual interactions. There are also Conceptual prObIemS, bqhe Spha|erons we want to Study are not Comfortab|y |arger

cause one of the fluctuation directions is unstable. At ongngp the lattice spacing, then obviously the lattice spacing is
loop it is excised from the sum over fluctuations; the otheryg coarse. and we should use a finer lattice.

fluctuations set the probability to be near the separatrix and it e situation here is much better than it is in the 4D case

Furns that probability into aflu?< through the separatrix. But itconsidered in QCD. It is also true in four dimensions that if
is not clear how to separate it from the other modes at twi
d

S e gauge fields are smooth enough, then topology is well
loops. These_problems obstruct a systematic improvement efined[38—40.3 However, in practice the fields may not
the perturbative treatment.

There is also the problem of how to determine the dy_generally be smooth enough. Instantons just larger than the

namical prefactor perturbatively. Khlebnikov and Shaposhni-Iattlce spacing typically do exist, because the instanton ac-

kov argued that it should equal to[87], but Armold and tion is classically scale independent, and so only varies loga-

McLerran made an estimate based on Landau dampingthmically with instanton size. Making the lattice finer does

which suggests that it is quite a bit less tharf3l. That not .elimin.ate lattice s.pacing sized instanto(rwce.ptionaI.
argument has been more carefully developed by Amomgonﬂguraﬂon}; very quickly; in fact, because their density
Son, and Yaffe, who claim that, so long as the Higgs congoes as expt1/g®) andg? varies logarithmically with lattice
densate gives 8V mass which is parametricaliy,~ g°T, spacing, their density declines as an algebraic power bf

the prefactor should be parametricall(«,) [33]. Their  the 3D context, though, the energy of a sphaleron of radius
argument has recently been tested in the symmetric phag®es as 14%r) and the density of exceptional configurations
[26]. No one has used their picture to get a quantitative prevaries with lattice spacing as dxp(coefficient)/@?aT)],
diction of the dynamical prefactor within the context of the which falls off extremely rapidly as is made small. This
perturbative calculation of the sphaleron rate, although thiglifference between the 3D and 4D cases is because the 3D
should be possible in principle. These limitations of the pel‘-theory is super-renormalizable; the coupling constag’?'ﬂ's
turbative approach, together with the generally spotty perforwhich is dimensionful. Since 4f appears in the exponent
mance of perturbation theory for electroweak phenomena gby the rate of any nonperturbative phenomenon, and since it
temperatures near the electroweak phase transition, motivagyst be accompanied byTaon dimensional grounds a non-

a fully nonperturbative attack on the problem. perturbative phenomenon which occurs at the lattice spacing
. scale must proceed at a rate which goes asl&ading to the
D. Topology and the lattice exponentially fast rolloff in the density of exceptional con-

The nonperturbative technique best suited to studying thégurations asa—0.
sphaleron rate is the lattice. There is an apparent complica-
tion, though, which is that topology cannot in general be well
defined on the lattice; the global structure of the space of 3| fact the 3D case is a subset of the 4D one, since the topology
three dimensional lattice gauge-Higgs configurations is difwe are talking about is the second Chern class of a closed loop in
ferent than in the continuum, and in particular it is simply 3D configuration space, which is equivalent to a periodic 4D lattice
connected, so there are not topologically distinct vacuaconfiguration with the spacing in the fourth dimension driven to
However, if we make the lattice spacing suitably small, therzero.
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E. A "nice” nonperturbative choice for the separatrix First, we should measure the probability over the canoni-
Now that we have established that topological question _al enserrlble t.haN.'S within some .s_mall tolerance/2 of
tegert)s. This gives the probability to be very near a

can have a meaning on the attice, we ask how to choose separatrix. Since the probability to be close to the separatrix
separatrix which is defined nonperturbatively and can be P : b y P

. . . is (expected to beexponentially small, we will need to use a
|mplemente(_j on the Lattwe_. A deflrlmon_vye_ would prefer fqr multicanonical reweighting technique to sample here accu-
the separatrix is the “gradient flow” definition, suggested in

. . . . rately. The basic idea is presented early in Sec. IV.
Refs.[37,41,43. It is defined in terms of gradient flow under Then we need to know the mean inverse time for crossing

the Hamiltonian. The Hamiltonian is a smooth function OVelihis narrow region, to turn the probability into a flux. This is

the space of configurations, with degenerate global minimg ;. times (|dN/dt|), the mean of the absolute value of the
at the vacua. We believe that these are the only local minimgme derivative ofN, where the averaging is over the en-
of the Hamiltonian in 3D Yang-Mills Higgs theory, although sempje restricted to the narrow band about the separatrix. We
we do not know a proof. Hence, following the direction of getermine this by taking a canonical sample of states with
steepest descent of the enefgyadient flow will lead, offa |N—1/2/< ¢/2, drawing momenta for each from the thermal
set of measure zero, to a vacuum configuration. A rigorougnsemblé, and performing a short segment of Hamiltonian
definition of “the vacuum closest to a configuration™ is the gyg|ytion, comparing\ with its value a short Hamiltonian
vacuum arrived at by such gradient flow, which is also easilyjme |ater. Thus, we can determine the flux.

implemented on the lattice. A very sensible definition of the 14 determine the dynamical prefactor, we take a canoni-
separatrix is then the boundary between the gradient flowa)ly weighted sample of configurations at the separatrix and
basins of attraction of two neighboring vactzacua with  -y00se momenta for each, just as we do to fjeN/dt|).

Ncs differing by 1). Equivalently, it is the basin of attraction Then we perform the Hamiltonian evolution both forward
of the saddle point which sits between the two vacua, i.e., thgnq packward in time, until the forward and backward histo-
sphaleron. If we mod out by all gauge transformations thgjes poth settle into the neighborhood of a vacuum. We count
two vacua are equivalent, but the separatrix can still be denow many times the Hamiltonian trajectory crosses the sepa-

fined as the surface where two infinitesimally separated cofyayrix pefore it settles semipermanently about a minimum.
figurations on opposite sides will have macroscopically dif-The prefactor is

ferent gradient flow paths which, when spliced together,
form a noncontractible loop.

Alternatively we could define the separatrix just in terms 1
of the Yang-Mills field (connection and the Yang-Mills prefactontsa%ple number of crossings
term in the Hamiltonian. This choice has the added benefit
that, as the configuration gradient flows under the Yang- 1 final vacuuminitial vacuum,
Mills Hamiltonian in three dimensions, it becomes exceed- X 4

ingly smooth(meaning that all gauge invariant local measur- 0 final vacuuminitial vacuum.

ables are slowly varying and the energy density is very

smal). Also, leaving out the Higgs fields evades the compli-This is not the same as adding up the number of times the
cation that the Higgs mass squared is renormalized by ultrdinal vacuum differed from the initial one and dividing by the
violet thermal excitations, which change during the gradienfiumber of crossings of the separatrix. The reason is that the
flow. The Yang-Mills gradient flow separatrix may not coin- latter overcounts trajectories with many crossings, since the
cide with the Yang-Mills Higgs separatriwhich is not de- ensemble samples them more often than trajectories with
fined until we decide how to deal with the renormalization offewer crossings. This is our recipe; given an order parameter
the Higgs mass term in the LagrangiaBut if we performa N, we can determine both the flux of probability through the
complete calculation, including the dynamical prefactor, therseparatrix, and the dynamical prefactor, and hdnge

the exact choice of separatrix should not matter, as long as It remains to choose an order parameter. We want one
crossings are exponentially rare. Of course, a poor choicguch that theN=3 separatrix will be either the same as or
will make the calculation inefficient, since most crossingsquite close to the “good” choice of the gradient flow sepa-
will not be associated with topology change. But we do notratrix. Naively, we expect a gool to be the Chern-Simons
expect the Yang-Mills gradient flow separatrix to be a poornumberNcs. Actually, this is not quite right, as we discuss
choice, and we will be able to check this belief when weat some length in the next section.

study the dynamical prefactor.
Ill. DEFINING LATTICE Ncsg

F. Approach to computation We now have an idea for a nonperturbative definition of
Now, we will outline how to compute the flux and the the separatrix, but we need an order parameter which varies

dynamical prefactor. To do so, we need more than just a

definition of a separatrix. We need an order paraméter

which takes a special value, shiy= 3, on the separatrix, and 4t is essential here that the phase space is the tangent bundle of
is smaller on one side and larger on the otfeay, going the configuration space, and that the thermal probability distribution
from N=0 at one vacuum tbl=1 at the other Assume that is a product of a configuration space function andGaussiah

we have such ail. function over momentum space.
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How many of these properties can we preserve on the
y lattice? Not all of them; as we pointed out in REZ0], there
plaguete 1 ! is no local operator definition dE?B® which is a total de-
i rivative. We also argue there that there are severe difficulties
’ = satisfying property(2); but this is because we demanded a
/\k . Q link, on which // n singly valued, nongauge invariant definition Mgs. In fact
sie, where transporter U / we can present a lattice definition ®fcg which satisfies
defined is defined i everything but property4) and the continuity requirement,

Four plaquettes contributing

ettes provided we restrict to gauge fields which are smooth
to Fyat this point

enough, in the sense of the last section, so that prog2rty
FIG. 3. lllustration of the pieces which make up a lattice gaugemakes Sense.
theory. Before constructing a lattice definition b5, we remind
the reader how the lattice fields are defirisde Fig. 3. On a
from 0 to 1 as it ranges between vacua and eqgal® a lattice, scalar fields are only defined at a discrete set of
surface close to the Yang-Mills gradient separatrix. The lit-points, the lattice sites. The gauge field should be a connec-
erature generally considers the Chern-Simons numNBeto  tjon, that is, it should be a rule which tells how to parallel
be the best choice for thi837], so we will discuss how to transport fields along paths. We allow a path on the lattice to
defineN¢s on the lattice; then we will define a different but ¢onsist of a series of straight lines between nearest neighbor
closely related order parametly which gives a separatrix |atiice sites. The connection is then defined by associating a
much closer to the gradient flow separatrix thdgs does,  gr5yp elementU e SU2) with each of these elementary
and which we will actually use in the calculation of the bro- g »iqpht jineg(referred to as the links of the latticeA small
ken phase diffusion rate. closed path, or the product of thiearound the path, is called
a plaquette; the X1 square is the elementary plaquette.
When we do not specify the shape of a plaguette we mean an
The Chern-Simons number should be defined as some realementary plaquette. The product of thé around a
valued function over the space of three-dimensional gaugplaquette (written U5, often just referred to as “a
connections. Let us review some properties whidas  plaquette’) will not in general be the identity; its failure, a
would have in the continuum, and see how closely we carurvature in the connection, is a field strength.
preserve them on the lattice. It is important that the field strength is not associated with
In the continuum,Ncs, defined on the space of gauge j site of the lattice, but with a plaquette, which sits in be-
field confi.gurations modulcall gauge transformations, has tyeen sites. Then, to make a lattice implementation of
the following properties. _ __ [€*"*PF ,F .z, we will have to do some averaging. The
(1) Ncs should be a continuous, multiply valued function, argumenlf[ of the integral is a pseudoscalar and should per-
with the values separated by 1. haps be defined at the lattice sites; but the field strength is

diff(ezr)ell—?eoﬂils“gf t\rgiluuenﬁv(;?;ﬁsfg\?edr tf/)vrggi priOSJeSCirt:OlneS Ofassociated with a plaquette. To preserve cubic symmetry,
P ' s 9 F,, at a site will have to be the average over the four

. . ) . v
valued. A noncontractible loop in the configuration space laquettes in the, » plane which touch the siféBecause of

lifts to a line segment in the cover space, and the differencg1i verading or ver thinas which do not liv ite at
in Ncg between the end points is the winding humber of the S averaging process ove gs ch do not five quite &

loop. (A more conventional way of saying this is thals 2 lattice site, the resulting lattice definition ot PF L F up
differs between two gauge copies by the winding number ovill not be a total derivative; and we cannot fix this problem
the gauge transformation between them. But we prefer thBY going to fancier definitions involving weighted averages
above, gauge invariant statement. of plaquettes of various shap0]. The problem is that the
(3) A vacuum configuration had.s modulo 1 equal zero. continuum proof thaEF is a total derivative relied on con-
(4) Consider a path in configuration space parametrizedinuity of the fields, and this continuity is lost on the lattice.
by 7. The difference irNcg between the beginning and end This makes it impossible to satisfy~prope(4). Note, how-

of the path should be ever, that the lattice definition d&f,,,F ,, is gauge invariant.

A. The definition

92
ANCS:@ J de d3X€iijﬁ(DTAk)a. (5)

o ) ) ) o ®We are thinking of a path through configuration space as a four-
This is the same as saying tHags is the indefinite integral  gimensional lattice, where the fourth dimension is the path param-
of eter, taken as a discrete rather than a continuous variable. Succes-

sive three-dimensional slices are configurations along the path. In a
2 2 numerical setting, a path through the configuration space will al-
9 J d3xF2 F2 :g_ J d3xE2B2. (6) ways look like this, though making the spacing in the fourth direc-
327 HYO RV g2 . tion arbitrarily small restores the continuity of the path.
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However, when the gauge fields are weak at the lattice
scale(meaning that the elementary plaquettes are close to the
identity) and slowly varying(meaning that the departure
from the identity is nearly the same between a plaquette and
the parallel transport of a nearby plaquette in the same
plane, then the lattice definition dE?B? is approximately a
total derivative. Further, we can pick a definition Mgs so
that property(4) is satisfied at least in one particular special .
direction. We choose it to be true in the cooling direction,
that is, the direction of energy gradient flow. Here the energy
of the lattice field is given by the standard Kogut-Susskind FIG. 4. Original lattice and the coarsened version, which is just
Hamiltonian [43], which is defined up to a multiplicative the solid lines and filled vertices. The link matrix between two
factor as vertices of the coarsened lattice is the product of the matrices on the

two original links which make it up.

o
B SRR
é

'
'
&
<
]
i
]

—-Q-__G)-__é_
é

1
Hys(U)ex . %ey (1— > TfUD)- (7)  become unstabRBut sufficient cooling may demand going
Pl - to 7 of order 100@2. However, the cooling is by far the most
The gradient ofHys is to be understood in terms of the efficient at removing ultraviolet excitations, and already by
KS 2 ] ; ; ;
metric of the configuration space, which is the product of the”~ 8 the fields are.slowly varying. After this much cooling
Haar measure over each link mattix we lose almost no information if we drop some UV degrees

We will call a path which follows the steepest descent?f freedom by setting up a coarsened lattice. Define an even
of H a cooling path, and we parametrize it with a site as a site where all three coordinates are even numbers. In
KS 7

cooling time r, defined asdr=d(path length)fdHys/ a scalar field theory, we would coarsen by dropping out all

d(path length]. The gauge fields evolve along the path aC_the Iatt|c<_a sites Whlc_h are not_even, leaving a lattice half as
cording to[25] many points across in each direction. In a gauge theory, we

also need to define the connections between the sites of the
coarsened lattice; we define the connection between two
U ; . . )
— =—D*UD“Hs, (8)  neighboring even sites as the product of the two connections
Jgt along the straight line between them. We illustrate the idea in
_ _ _ o Fig. 4. The remainder of the cooling then proceeddites
where D is the left acting covariant derivativeD“U  faster, 2 because the lattice is smaller and Because we
=i7%U, andD“Hys is Hxs with U replaced wittD*U. This  can use ar step size which is larger in physical units.
is the gauge invariant lattice implementation of the con- Of course we must check that this procedure produces the

tinuum evolution same answer as we get by not coarsening. But if we use an
O(a?) improved definition ofE - B, for instance the one we
IAZ(X) oH developed in Ref21], then this is not a problem at all. The
ar IAX(X) ) value of Nqg gets rescaled b)_/ an amount pric_ally_ less _than
1% and has an amount of noise added to it which is typically
7 has dimensions of length squared. even smaller. For lattices more than about 28 sites across, we

We are definind\ g so that conditior{4) is true along the can even safely perfo”‘.‘ a second stage of coarsening gfter
cooling path. Since cooling eventually leads to the Vac:uur,rperformlng several coolings on the once coarsened configu-

off a set of measure zero, and sindgs of the vacuum is by ration.
definition an integer, we get
B. Application to the symmetric phase
o] 2 . B . - . g
Ncr=integer—f dr g ; f dSXEiaBia1 (10) As an apphcathn we d|§cuss how to use this definition of
0 8m Ncs to studyNcg diffusion in the symmetric phase, or pure

Yang-Mills theory. In this case we want to trableg along
where we mean the lattice definition BfB? which we have the projection into configuration space of a Hamiltonian tra-
described, and which is written down in REf9]. This defi-  jectory in phase space. That is, generating a Hamiltonian
nition of N¢g is nice because the cooling path leads mostrajectory will give us a closely spaced series of points in
quickly towards configurations with weak, slowly varying configuration space, and we must associate a single valued
gauge fields, so the definition is minimally contaminated byfunction Ncs with this series. Our definition says that we
the problems with the lattice definition &*B? which we  Should measurblcs at each point by performing the integral
have discussed.

Performing the integral in Eq(10) takes an enormous
numerical effort. Cooling the field§following the cooling %We improve on this marginally by using alternately larger and
path stably requires using astep size of less thaa?/6 (a  smaller step sizes, analogous to what we did in 28] when
the lattice spacing or else the most ultraviolet excitations quenching theE fields to enforce the Gauss law.
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Ty T T T T behaving as a total derivative, especially if we use4a?)
I : ] improved definition ofE?B?. The interpolated value dficg
i 1\/\’\ § is therefore almost what we would get by using the direct

-

3 ] definition at each time. We only need it to be close enough to
A f 1 determine the integer part of E(L.0) unambiguously, which

[TV ] we can if the value we get by integrating on path 1 in Fig. 6
and the value we get by integrating on path 2 in that figure
S differ by an integer plus a small remainder. We can think of
’%ﬁ . this remainder as a calibration of the integration along the
I | cooled path, so the approach is a “calibrated cooling
S P O B method,” with the occasional cooling paths to the vacuum

0 5 10 recalibrating the method of Amhjo and Krasnitz[25] to
Hamiltonian time *(g2T) make it topological.

We compared this approach of measuriNgs to the
“slave field” topological method[24], by evolving Yang-
Mills theory on a 24 grid ata=1/(2g%T)(3,=8) for a total
time of 600@, trackingN¢g by each technique. For the tech-

_ ) _ _ nique we just described, we constructed a cooled image path
in Eq. (10), that is, we must cool the configuration at eachy, gne point evena/s time. The cooling depth to this path
point along the Hamlltonlan trajectory to the vacuum. We,as 52/8, and we calibrated by cooling to the vacuum every
also have to choose the Integer part of E@) someho_w. Al 23 time. With this lattice spacing and this frequency of cali-
certain points, the value of the integral will abruptly jump by y oiing the largest remainder we observed was 0.2 and the
almost an integer. This happens whenever the Hamiltonia pical ’absolute value was less than 0.05. We present the
trajectory Crosses a gradient f'.OV.V _separatrix. We shoul esults forNcg in Fig. 7. We have offseN.5 measured by
choose the integer part &fcs to minimize the magnitude of o gjave field method by 5 to keep the curves from lying on
the jump inNgg at the separatrix. We illustrate with an ex- top of each other. The agreement is outstanding, and the
ample of real data from a simulation of Yang-Mills theory in difference in the determined values Nf. is white on long

Fig. 5. Note that the discontinuities Mcs do not necessarily 1o scales.

occur wher’N_Cs is near+3; we will discuss this more in the To explain why the two methods have a white noise dif-
next subsection. _ , _ _ference, we review briefly how the slave field method works.

In practice, even with lattice coarsening, the numerical; (ies to keep track of the “integer” part of Eq10) by
costs of cooling every configuration are unbearable, but wesqming that the cooling path will end in a vacuum which
can do better. We show ho"‘g in Fig. 6. Every few steps, W&, winding number zero in Coulomb gauge, and then add-
cool a little, to a depth of~a*, and we thereby construct & jnq p the number of large gauge transformations required to
cooled image of the Hamiltonian path, a technique exploreqgey the system in Coulomb gauge during the Hamiltonian
by Ambjérn and Krasnit25]. We measurédNcs Using EQ.  rajectory. However, this ignores the contribution to Exf)

(10) at occasional points along this path, interpolatiigs in  from the integral, that is, the difference betwedgs of the
between by integrating'B? along the cooled image of the ¢onfiguration and of the vacuum it cools to. Also, the algo-
Hamiltonian path The COOIing haS eliminated most Of thenthm used to f|nd Cou|omb gauge Sometimes gets trapped
UV excitations, soE?B{ along the cooled path is close to temporarily in a Gribov copy with a different winding num-

ber. But neither difference between the methods will grow

Points generated by Hamitonian teciory without limit in time, so the difference between the two mea-
. ’ o ' o ‘ R I ‘ ne ‘ o { e surement methods foNcg is white on long time scales.

@ ® parallel codled path

(g2/8m?) fE-Bd®xdT
=
"
o
W
L
?
L
1

-
T
xx XXX
XX XXX
e
XRx X
|

FIG. 5. (g%8w?) [E*B2d3xdr for a series of points on a Hamil-
tonian trajectory. It is clear where to adjust the integer part of Eq.
(10) to keepNcg (approximately continuous.

Hamiltonian
time:

Hence, the derived diffusion constant will be the same within
— . . . errors(caused by the white noise differencéndeed, when
g o Path 1 we used the technique of RéR4] to extractl’y from each
trajectory, the two methods of trackingcs gave the same
answer within error §4=0.0515-0.007& ! for the new
method, versus y4=0.0516-0.0082" 1 for the slave
method. As an aside, we mention that Hetrick and de For-
crand have used the method of cooling to resolve the Gribov
problem, by defining Coulomb gaug@r, in their four-
FIG. 6. (Time, cooling tim¢ plane, with curves used to track dimensional context, Landau gayges the gauge in which
Ncs for a Hamiltonian trajectory. Every few Hamiltonian updates, the vacuum configuration arrived at via cooling has the mini-
we construct a cooled copy of the configuration, giving a parallelmum value off A% [44].
cooled path. Every few points on that path, we measuge di-
rectly, and we fill in between by integratirigr B along the parallel
cooled path. As long as the integrals along paths 1 and 2 always
agree modulo an integer, within a small tolerance, the technique is The definition ofN-g which we just presented more ac-
topological. curately reproduces the continuum meaningNgf than any

Cooling time

Path 2

Integrate E*B on this path
10 get NCS at (a)

C. Modifications for measuring I' y in the broken phase
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FIG. 7. Left: Ncg measured by the slave fieldipper curve and “calibrated cooling method'{lower curve. Right: the difference
between the curve@ote scalg The difference is small and spectrally white, so the methods are in good agreement.

other we know. But we do not actually want all of the at- soNcgwill be Gaussian distributed with a linearly divergent
tributes of the continuum meaning &g if we want to  variance. On the lattice, the UV divergence will be cut off by
measurel 'y in the broken phase by the separatrix methodthe lattice scale; the coefficient was found by Ambjorn and
The reason is thallgis only directly a measure of topology Krasnitz[19] and is

for vacuum configurations. There are contribution®tg; in
excited states which are uncorrelated to topology; for in-
stance Ncg does not vanish in Abelian gauge theory, even
though that theory has ns; topological sectors. In the con-
tinuum Abelian theoryN¢sis given by

(NZ2g=(1.44x10 %) g*VT%a. (14

The divergence occurs because, while the energy cost of
92 storingNcsin a UV mode grows linearly witlp, the number
> f d3XEiijijAk, (11 of available states in which to stofé.g grows faster; en-
32m tropy wins over energy. The same thing happens in2sU
) theory, becaus@lcs also contains the;; Fj;A, term. The
and the mean square value M¢s is coefficient of the divergence in SP) is larger by 3, the
dimension of the group. Since Yang-Mills theory in 3D is

Ncs=

4

2\ 9 303 super-renormalizable, the UV decouples from the IR, where
(Neg = 10247 f d*xd°y €iji €imn the genuine topology changing physics occurs, so this UV
divergent, Gaussian contribution will appear as an additive
X(Fij () A Fim(Y)A(Y)). (12 correction to the IR contribution thlc5. That is, to reason-
able accuracy we can think ®fcs, defined in Eq.(10), as

Using Wick’s theorem and the momentum representation ol.g=N{x+NgZ¥, where topological information is iN,

the propagator, in a general covariant gauge, this becomesynq N is independent oN\X, and Gaussian distributed.
Given a single IR field configuration with some particular

N2 — g* oo [ EPEA ey value of N, different realizations of the UV excitations on
{Neg= 102474 (277)® € top of the IR fields will then give a distribution of values of
Ncs; so the probability thalN-g will have a particular value
4p;p pip X, Pneg(X), will be
X EijkflmnTz ﬁ 5]m+(a 1) ! zm)
dkd Prnes(X) = J S(x—NE—NZY), (15
X 5kn+(a_1) k2n +(m<—>ﬂ)1 NCS( ) IR configsJ UV excit ( cs cs ( )
q
412 3 2
_gTv j dp p (13  or. definingPyto(x) and Pydd(x) to be the probability dis-
64" (2m)3 (p?)2’ tributions for the IR and UV components bl.s,
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Pres(X) = f dy f dzP{o(Y) PNés(2) 8(x—y—2)

- [ dayPldy Py, (16

The probability distribution foNg will be a convolution of
the interesting IR distribution and a Gaussian noise distribu-
tion. Convolving any periodic function with a Gaussian al- N R T T
ways degrades contrasts in that periodic function, enhancing 0 J 10 3 20
the probability to be near thd-s=3 separatrix relative to Time*g®T

the case of no UV noise. The distortion will be small only if

FIG. 8. N¢g (wildly oscillating curve andN (curve which stays
near Q during a broken phase Hamiltonian trajectory, in & B6x

2 IR
d”In Pres(x) (17 Wwith a=2/(5g°T) [and usingro=3.2/(g"T)?]. Ncshas a lot of UV
2

(N <

dx 12 noise, which is absent iN.
Later, we will use a 4dlattice with a=2/(5g°T). Mul- giT2V d®p p2e74p27
tiplying Eq. (14) by the group factor of 3 and plugging in (N?y= m f S 5 (21)
numbers{(Ngs)?) = 0.44 for such a lattice, which is too big. 64 (2m)°  (p°)

So definingNeg by Eq. (10) will not do.

Another way to state the above is that the separatrix ongo precooling removes the UV noise from the definition of
gets from the conditioNcg=3 is sensitive to ultraviolet Ncs.
excitations, which makes it “all wiggly”; it will have lots of For comparison, Fig. 8 shows and N¢s for the same
“fingers” which stick out towards one or the other topologi- proken phase Hamiltonian trajectory; whilcs varies
cal vacuum, and the problems we discussed in Sec. Il, ofyiidly on a short time scale due to UV fluctuation, is
there being many crossings of the separatrix which do noteady, and shows that the infrared fields never stray far from
have to do with permanecs change, will be severe. the vacuumN will not meet all the conditions we set out for

The problem is thaNcs=3 is not particularly similar to  Ng; for instance it will violate conditiort4) severely. How-
the “good” gradient flow definition of the separatrix. We ever, it will be closer to a continuous function, since initial
want an order parameter which is closeNe-; on the gra-  cooling removes UV excitation from the configuration, leav-
dient flow separatrix. Th&l=3 separatrix does not need to ing weaker and more slowly varying fields for which the
correspond exactly with the gradient flow definition; is suf- definition of E2B? is less problematical. There is also less
ficient if the distribution of values o on the gradient flow problem using coarsening with this definition. For instance,
separatrix is narrow, preferably narrower thiiPy(x)/dx*.  on a 28 grid, single coarsening after=(5/4)a2 and double
A slight change to Eqc10) will do the trick; define coarsening after=2.8(2a)?, and using a0 (a?) improved
definition of E*BY, the discontinuity inN across the gradient
flow separatrix is 0.98760.0029 (drawing configurations
from broken phase Yang-Mills Higgs theory gt =7, see
next section To makeN a continuous function modulo 1,
where we mean the lattice implementation of the integralghe jump should have been 1. By rescaliNgslightly, the
andE, B as before. In other words, we “precool” the con- discontinuity is removed almost altogether. The value of the
figuration for cooling timer, and then measurbl.s. The discontinuity for larger lattices and deeper cooling is even
precooling is intended to remove UV excitations without af-closer to 1 with less noise.
fecting the underlying IR fields much. Let us check that the new definition &f will have N

Now considerN in the Abelian theory again. The theory =3 on the gradient flow separatrix. A point right on the
is linear, so it is easy to analyze how cooling affects it. Aseparatrix will gradient flow to the saddlepoint configuration
particular transverse mod&k) evolves according to and stick theré.Perturbing the starting configuration slightly
off the separatrix, it will cool to the saddle, miss slightly, and
then slide off to a vacuum. The closer to the separatrix we
start, the longer we will stick in the saddle before we slide
(19 out. There is some earlyr (transient contribution to

2 o
NEintegeHg— j drf d3xE?B?, (18)
8’772 70

dA(k)  dH ¥
dr Al < A=Akn=eTAKD.

The propagator in Landau gauge becomes

koK. —oK2, "This saddle point is not the same as the Klinkhamer-Manton
(A(k, DA, 7)=| &;— '_21> S(k+1), (20)  sphaleron, because we are considering the Yang-Mills Hamiltonian
k k? only, in a finite volume. But we know such a saddle will exist by
the same argument Manton originally made for the existence of the
and the variance dil is sphaleror{45].
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T given by the unstable frequency squared_j? of the
3 : ] saddl€® Increasingr, makes them spread further before we

?5_ measure theilNcg; so the sample of states will be more
¥ diluted, by a factor of eXp-A7y/(w_)?]. This reduce®, by

. the same factor. However, we measudid/dt by choosing

f two neighboring configurations on a Hamiltonian trajectory
< and finding the difference in their values Nf The spread
= between these at cooling time will also increase as we

increasery, by the same amount; $pdN/dt|) will go up by

exdA7y/(w_)?]. Hence,I'y will be 7, independent. This
means, however, that neithéfdN/dt|) nor Py(x) have

simple physical interpretations.

0 20 40 60 80 100
(Elapsed cooling time)*g*T?

FIG. 9. Plot of[E-B from O to 7, as a function ofr, for a series There is a modification of the above reasoninggfis too
of points along a Hamiltonian trajectory as it passes through thehort to eliminate the early transient; namely, a contribution
gradient flow separatrix. to dN/dt due to the time evolution of the transient. In the

complete calculation this will be compensated for because

JTE{B3d®*xdr while it is approaching the saddle, and thenthe dynamical prefactor will differ from the gradient flow
there is a contribution, almost exactly equaliaas it rolls  yalye by ar, dependent amount, which becomes non-
from the saddle to the vacuum. By choosingarge enough, negligible at the same time the transient contribution to
we miss the transient and pick up only theand so theN  dN/dt does. In a complete calculatioRiy will be indepen-
=1 separatrix will correspond almost precisely with the gra-dent of 70, @s we argued in the last section.
dient flow separatrix. We illustrate this with data from a e end this section by discussing briefly why we choose
Yang-Mills theory simulation in Fig. 9. The figure plots  to defineN based only on the Yang-Mills fields and using the
Yang-Mills Hamiltonian for the cooling, rather than includ-
ing the Higgs field. Doing so is reasonable becalke
should be defined as a function of the gauge fields alone.
Also, cooling all the fields under the full Hamiltonian is
(shifted so the vacuum will have integhlgg) againstrfora  problematic, because the UV fluctuations of the gauge and
series of points on a Hamiltonian trajectory as it goesHiggs fields renormalize the Higgs mass squédil. The
through the separatrix. Each curve records the cooling probare potential needs a large, negative mass squared counter-
cess of a successive point on the Hamiltonian trajectory. Wéerm. However, the UV fluctuations are the first casualty of
see that as the Hamiltonian trajectory approacheggtasli-  the cooling process, and so they stop generating a thermal
end separatrix, the cooling path stays near the saddlepoirtliggs mass squared, early in the cooling. To keep the mini-
for longer and longer. When the Hamiltonian trajectorymum of the Higgs potential from changing radically, one
crosses the separatrix, the cooling paths roll out of the saddiould need to vary the bare Higgs potential in a complicated
towards the other side. The figure also shows the early way as the cooling progressed. Other important fluctuation
transient. We want to chooserg large enough to eliminate induced effects are also lost; for instance, the cubic term
this transient, soN=2% will hold for a configuration which which makes the phase transition first order disappears as we
starts almost exactly on the gradient flow separatrix. cool the excitations. Depending on how we handle the Higgs

We should make sure that the result T&f will be inde- ~ potential during cooling, we will either cause symmetry to
pendent ofr,, oncer, is large enough to eliminate the UV break during cooling when we start in the symmetric phase,
problems. We remind the reader thBf is computed by Or cause it to be restored when we start in the broken phase;
choosing are<1, and computing the probability to be within We cannot avoid both, because there is a range of tempera-
€2 of &, tures where each phase is metastable. Cooling only the gauge

fields avoids this complication.

9* (-
s OdT’ J d3xE?B?2 (22)

(1+e)2
szj Pn(x)dx. (23
(1—e)l2
IV. MONTE CARLO CALCULATIONS
Also, one computes the time rate of changéNpf|dN/dt|),

evaluated for configurations witN=21. The ratel'y is then Here we discuss details of performing the calculation of

Pn(x) and({|dN/dt|) using the definition oN from Eq.(18).

1P, We also discuss the computation of the dynamical prefactor,
Fo=y— (|dN/dt]), (24 with and without “adding” hard thermal loops. Readers who
do not do this kind of calculation will want to skip all but the
times the dynamical prefactor. first subsection and go to the results.

Increasing the cooling time will decreaBe. The reason
is that configurations which are near the saddle point at cool-

ing time 7 are spreading out from each other as cooling time #which does not equals{_)? of the Klinkhamer-Manton sphale-
progresses, as Fig. 9 illustrates. The rate of the spreading isn.
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A. Multicanonical Monte Carlo calculation: the idea P(C,,Cy)

We need to compute the probability distributi®t, of p(cz,cl)'—eXP[B(H(Cl)—H(Cz))]. (30)
Chern-Simons numbéreally, the Chern-Simons number of
a precooled configuration, defined in Ef8)]. The probabil- ~ then iterating the Markov process generates the canonical
ity density thatN=x is distribution. We get the best statistics if applyiMyis nu-
merically cheap and if the return value differs as much as
possible from the starting value.
If we have a Markov process which generates the canoni-
cal ensemble, we make it generate the multicanonical en-
XO[N(U)—x]0[x+ ox—N(U)], (25) semble with weight functiori (C) by making the following
modification. Given a configurationC,, generate C,
whereU, u, ® are the S(2) connection, the () connec-  =M(Cy,£). AcceptC, as the next configuration in the se-
tion, and the Higgs field, antl(U) is defined in Eq.(18). guence with probability
Here [DUDuUD® means the integral over the value of each
field at each lattice site, andl is the value of the integral min[1,exdf(C,)—f(Cy))] (39
without the step functions. On ax® lattice, this is a 18/

dimensional integral, which foN=40 is 1 024 000 dimen- and otherwise reject it and mak®, the next configuration.

sions. For this reason we turn to Monte Carlo integration. |7 his changes the detailed balance relation for the sequence to

a canonical Monte Carlo integration we generate a sample dfcorporatef into the weight. We may no longer want

1
Pn(X)= lim

— | DUDUDDe AHUUD)
X—0 26X J

configurations drawn with weight M(C4,£) to differ from C, by as much as possible, though,
because that may make the reject rate very large. Instead we
e  AHULPDYDUDY, (26)  want|[f(M(Cy,£))—f(Cy)|~1.

and replace the integral with a sum over that sample. This

will not do in the present context, because we want to know ) ) o
Pn(X) even where it is exponentially small. To get a good We negd to do two I§|nds Qf things. The first is to evalu_ate
sampling there would require generating an exponentially;he path integral for dimensionally reduced 3D Yang-Mills

B. Note on algorithm

large sample. Higgs theory. The second is to study the dynamics of the
We evade this problem by doing a multicanonical Monte(3+ 1)-dimensional classical theory. We comment briefly on
Carlo calculation[47]. We rewrite Eq.(25) as the connection between the two; in particular we should

compare the partition function of the classical theory to the

) 1 B path integral for the dimensionally reduced theory, a com-
Py(x)= lim —— f (DUDUDDe ARV PlelINUI) parison first made by Ambja and KrasnitZ19].
*=0 The partition function of classical (81)-dimensional
x{e~ INWI@[N(U) —x]O[x+ dx—N(U) T}, Yang-Mills Higgs theory(not worrying about the difference

between lattice and continuum, which will not be important
(27) here looks similar to

with f(x) some function we are free to choose. Now we
generate a sample of configurations drawn with weight Z=J’ DA DO DE; DI1 [ (D;E)2+ (g/2) (i 72D +H.c.)]

e AU DINUIDYDUDY, (28) x ext — H(A,®,E,TT)/T], (32)

and replace the integration in E7) with a sum over this

2 2
sample, with the term in the second set of parenthesis as the H :f d3x| — + E_ +(D;®)%+ 72|, (33
argument of the sum. By choositfi¢x) = — InPy(X), we push 2 2

the exponential suppression from the sampling into the inte- o . .
grand. The quality of the integration is now limited by how whereE, the electric field, is the conjugate momentum’of

quickly we can generate a quality sample with this weight,andH Is the conjugate momentur_n df. The delta function
i enforces the Gauss law. We can implement the Gauss law by
and how well we can choosKx), which we must do by

some form of bootstrapping. means of an adjoint valued Lagrange multiplég}, giving
A usual way to generate a canonical ensemble is by som[é‘g]

Markov process. Given a configurati@n and a realizatio

of some random noise distribution, the process returns anew 7= f DA;DODE,;DIIDA,

configurationC,=M(C,,&). Define the probability to return

a particularC, as X exp{iA3[(D;E;)2+ (gl 2 + H.c]/T}

P(C..Co= [ deaM(CLEC). (29 XA -HADEID] 39
The integrals ovele and Il are rendered Gaussian; doing
If M satisfies detailed balance, them gives
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field on a link is represented by a single real numBgx),
Z:J' DADP DA, exl —H(A,®,A¢)/T], (35  and the terms in the action which depend on th@)Uield
are

2 2 2

H:Jd3x(%+(D'§°) +(Did>)2+gZASCI>2 . a _ -
HD —— 20 | X [Bi(x)+Bj(x+i)=Bj(x)~Bi(x+])]
(36) 209°z "x |i>]

So the thermodynamics of the classical theory with the T ) i
Gauss law is governed by the 3D dimensionally reduced path —a; Z ¢ () Ui(x)expiaB;(x)]p(x+1), (37)
integral, but including theA, field at zero(bare Debye
mass. We could get the path integral without thefield if wherea is the lattice spacingz=tarf 0y, andU;(x) is the
we did not enforce the Gauss law. There are two choicessU(2) connection on théx link. The compact formalism is

either we treat the dynamics dropping the Gauss law or Wg,o same except that}Y(SB)? is replaced bya 71

inclut_je theA, field in the 3D Monte Carlo parts of the cal- — cos@=B)]. In the compact case the energy, as a function of
culation. .oneB, is a trigonometric function. It is easy to perform an
Bxact heat bath or over-relaxation sfap|. For the noncom-

act case the energy is the sum of a quadratic and a trigono-
etric function and it is not easy to perform an exact over-
laxation or heat bath update. We perform the update based
just on the(much larger quadratic term and include the

igonometric term by an accept reject step. The accept rate

the dynamics, which means including Ag field in the ther-
modynamics. The easiest canonical Monte Carlo Marko
process in this case is a short Hamiltonian trajectory startinge
with randomized but constraint respectiigand I fields,
with the multicanonical accept reject steps inserted betwee

evo_ILrJ]tmns. Jhr']s IS ab‘l‘consgcrgmeq mom;‘ﬁ'?r dynr:]amﬁs” al- is quite high, so the cost to algorithm efficiency is low. We
gorithm, and the problem of drawirigan rom the ther- = 4154 occasionally gauge transform to bring Bdields to-

mal distribution respecting the constraints is addressed iWards Coulomb gauge so that the typi@als close to zero

Ref.[20]. Alternately we could use heat bath and overrelax- ; : . .
ation updates on the system described in 8%). Neither and the series expansion of gl (x)] converges quickly.

approach is terribly efficient We always applyO(a) improvement to the lattice action
0 ' . ri in Reff48, 49. Whenever we refer hysical
The other option is to assume that Gauss’ Law is not ver as described efp48, 49 enever we refer to physica

. . . Yinits in this paper they are always related to the lattice ones
important to the dynamics, and not enforce it when we dra

. V\fhrough O(a) improved relations. The improvement is es-
momentaE andIl from the thermal ensemble. This assump- g tial to achieving the numerical accuracy we want at rea-

t'ﬁjnN /('jst| CE\EI:/tr?IT)t/h Jusm'g.d ;{V'th cEr eg?jrﬁsf to dmeasmgrmg sonable lattice spacings, and it makes small spacing extrapo-
( )- at the combination At an Orced Zero by |ations of most guantities unnecessary. For instance, we have

the Gauss law would do if we did not set them zero is to ; Por 2 il

gauge rotate the fields, but not the momenta. On long um?‘;":”llj’%gg Ehﬁilggnsr:?a:a;/tggez ??;Iliblrlct)l)nl Otesrzgerzgwrseﬁr
scales that might be important, but at leading order in thesitive results are to varying. The results areX ¢2/g2T2)
length of a short Hamiltonian trajectory it only changes the:2 51+ 0.02 and 2.560 03.respectively' thgO(a?)] er-

gauge of the final configuration. Sinbeis a gauge invariant .rors are smaller than the statistical errors we will be able to

object, this does not matter. A less rigorous but more phySIélchieve forT'y, so lattice spacing errors are under control.

cally intuitive way to see the unimportance of the Gauss Law We have also used the technique of RE8] to study the

to (|dN/dt|) is to note that it is roughly the instantaneous. :
A influence of hard thermal loops on the dynamical prefactor.
value of fd®xE?B2. Now the magnetic field is transverse by P y P

he Bianchi identi v th he idea is to add a large number of weakly interacting,
the Bianchi identity, so only the transverse cOmponents ofjigtic charged particles to the lattice system, which repro-

the electric field contribute tdN/dt. But the Gauss law only  y,ce the effects of the hard degrees of freedom left out when

depends on the longitudinal componentsdwdtshould be we set up our lattice. We refer the reader to R@B] for

the same whether or not we enforce it ) __details. This approach demands that we apply the Gauss law,
It is less clear whether the Gauss law will have a role ing 4 \ve must use th@amiltonian thermalization algorithm

setting the dynamical prefactor, since it depends on longess o Mmarkov process. This is very inefficient, so we can

time dynamics; but we are getting the dynamical prefactol,,, ;se the technique to study the dynamical prefactor, not
wrong anyway if we do not enlarge the system somehow t he flux through the separatrix.

account for hard thermal loop effects properly. We should
deal with these two questions together.

The chief advantage of not enforcing the Gauss law is that
there are very efficient update algorithms for the path inte- At what temperature should we study the sphaleron rate in
gral without either the, T, or A, fields, for instance the one the broken phase? We choose the equilibrium temperature
developed by Rummukainest al.[5]. We adopt their lattice  for the phase transition. This is appropriate if the latent heat
action, which is the standard Wilson 3D Yang-Mills Higgs liberated during the cosmological electroweak phase transi-
action, but we add a noncompactl field. We use their tion is sufficient to reheat the universe Tg, which would
update, which must be extended to include the noncompadte the case if the latent heat were large or the supercooling
U(1) field. In the noncompact formulation, the(1) gauge were small. It is in fact not clear whether this will be the

C. Finding T,

014503-14



MEASURING THE BROKEN PHASE SPHALERON RAH . .. PHYSICAL REVIEW D 59 014503

case, in the MSM or in more viable extensions. We will We get an initial condition for a box an integer number of
chooseT. anyway, because we then have a well specifiedimes wider in each short direction by extending the final
question with only one free paramet®fg?; in addition, configuration in the skinny box periodically. We also use a
complete reheating may generically occur in supersymmetrismaller value ofy to improve the resolution of the deter-
extensions with a light top squarldt also may not; see Ref. mined mﬁ. Our final values formﬁ are typically taken with
[50].) a box of dimension, in physical units, of (16T)?

In the effective 3D theory we actually find the critical x (96/g2T), easily large enough to achieve the large volume
Higgs mass squared, which is related through the dimerregime.
sional reduction procedure to the critical temperature. Since
this involves comparing the thermodynamical favorability of  p_practicing with the symmetric phase in small volume
the broken and symmetric phases, it necessarily involves . o
some multicanonical technique. We will use a particularly ~Before presenting the determination of the broken phase
simple approach, somewhat similar to the one used in RefPhaleron rate, we will do a “practice run” on a system
[51]. It is based on the fact that, in a very long rectangulaPVhere we can get good statistics more quickly, which is the
box, values of [®Td/V=(¢?) intermediate between the symmetric phase in a small e_nough volume 1o suppress to-
symmetric and broken phase values are obtained by havingRP!09y change. This problem is almost certainly of no phe-

mixed phase configuration, where part of the volume is in thd’omenological significance, but it will let us test thg de-
symmetric phase and the rest is in the broken phase. pendence of our technique and to study whether hard thermal

The free energy, as a function @$2), is — T In(P), with loops do indeed modify the dynamical prefactor.
P the probability to have that value ¢&?2). In the range of For the time being we drop the(l) subgroup. We choose
intermediate($2), the free energy will vary linearly with @ Very weak scalar self-coupling ‘Xff 02-0257 and a large
(¢?), since a change of¢?) represents a change of how Higgs boson mass s_quaremf(:l.Sg T )!350 we will be
much bulk free energy comes from one phase and how mucifmly in the symmetric phase. We use a”lattice with a
comes from the other phase. The slope of the linear relatiolttice spacing ofa=1/(4gT) (84=16), so the physical
tells the free energy difference between the two bulk phaseyolume is (3¢°T)*. This volume is small enough that topol-
This linear regime breaks down whef#?) comes close to 09y change is suppressed and the broken phase techniques
the value in one or the other phase, since the phase interfacé§ are developing are applicable, but not so small that it will
then get close enough together to interact. be har_d to gather good statistics. It is also small e_nough that

Our approach is to add @p?) dependent contribution to numerical costs are not overburdening, so we will enforce

the Higgs boson mass, which we achieve by adding to théhe Gauss lawand use the less efficient update algorithm
Hamiltonian a new nonlocal term We measureN by cooling for 7=(5/4)a?, coarsening

once, and using a@(a?) improved definition ofE2B2 dur-

1 2 ing the subsequent cooling. The first thing we do is to deter-

7N® oN® > oo . (38 mine the actual discontinuity it across the gradient flow

separatrix, which will differ from 1 because of lattice arti-
facts. To do this we generate an ensemble of configurations
[ the gradient flow separatrix. For each, we perform a short
amiltonian evolution which crosses the separatrix, and we
ggeasurd\l at closely spaced intervals during the crossing to

Choosingz to be positive means that, if most of space is in
the broken phase, the Higgs boson mass is heavier and t
symmetric phase is favorable, whereas if most of space is i
the symmetric phase, then the Higgs boson mass is small . ) O
and the broken phase is favorable. The free energy is then etermine the discontinuity; it iAN=0.982+0.005, where

ratic function. and th ffective Hi nm e error is the standard deviatidhis tells us hoyv to re-
quadratic function, and the effective Higgs boso aséscale all further measurements Mfso that there will be an

squared at its minimum, including the contribution from the: t di tinuity at th tfixp t tabl I
7 term, gives the equilibrium Higgs boson mass. The added[1'€9er discontinuity at the separattip to acceptably sma

T . .~ _noise.
term is simple enough that we can modify the canonical’ . .
update to incorporate it, and Monte Carlo evolution will then Next, we measure the probability distribution fr We

- 1 T
naturally settle in a mixed phase configuration whose valué)nIy need to do this n the rangesN<3, by pe”Od'Cl'tY' S0
of ($?) tells us the equilibrium Higgs boson mass we add 1 to all negative values bfand then putN>3 into

' range byN—1—N. We use a continuous, piecewise linear

mﬁ(equilibrium)=mﬁ(<¢2>=0)+n<¢2). (39) reweighting function, with the widths of the linear piece§
chosen by hand and the slopes of each segment determined
This approach can be viewed as a type of multicanonicaPy @n automated bootstrapping procedure. We corr21puted the
Monte Carlo calulation with they term as the multicanonical probab|llt3£ distribution for two values of,; 70=1.2%" and
reweighting. T0=6.25°. For the 7;=1.25 data we also recorded(
In practice we start with a long but very narrow box and a
high value of7, to get a preliminary value. The narrowness
is necessary to make it easy to nucleate a bubble of onedt s important to compare the extrapolation based on a fit of the
phase in the other. To get the large volume limit, though, waast few points on one side of the discontinuity with the value on the
need to go to a wider box; we necessarily need results in ather, to remove errors from the time step size of the Hamiltonian
regime where one phase cannot easily nucleate in the othesvolution used to find the discontinuity.
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FIG. 11. A winding number changing section of a Hamiltonian
trajectory in constrained volume Yang-Mills theory. After the
crossing the system settles immediately into the neighborhood of a
topological vacuum.
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N using 7,=1.25, 6.25 sincefE?B?d_?‘xdr_abruptly changes sign when it does; so
we can also identify how well correlated crossings of khe
FIG. 10. Probability distribution oN for two values of7y: 7 =1 and gradient flow separatrices até/e cannot directly
=1.2%2 (the rounder curve which is lower a&i=3) and r,  determine the gradient flow separatrix prefactor if the corre-
=6.252 (the curve which is higher &ti=3). lation is not good, because our sampling procedure is for the

N=3 separatrix and not the gradient flow one.

=6.25); the data can therefore be used to get the probability Figure 11 gives an example of a Hamiltonian trajectory
distribution for either choice of. developed in this way, withry=3.752. It is clear in this

The probability distributions are compared in Fig. 10. Thefigure that once the trajectory settles in the neighborhood of
distributions are clearly different. Cooling longer before in- a topological vacuum, in the sense tiNi-0, then it stays
tegrating E?BY concentrates probability arould=0 and there for some time. Since the maximal Lyapunov exponent
thins out the largd\ configurations. It is less likely to hawé  of the Yang-Mills Higgs system is known to be aboutd¥B
within some range of for the largerr,. But this does not [52,53,19, the direction of the next permanent change in
mean that the different, values give different values for the Ncgwill surely be statistically independent from the previous
diffusion constant, as we still have not includgdN/dt|) or ~ one. This fact is essential to the whole approach; our most
the dynamical prefactor. basic assumption is that the very long tifNes diffusion is

To get the dynamical prefactor andidN/dt|) we first made up of a series of statistically independent steps, and we
need a sample of configurations very closéNte 2. We get  only need find out how frequently one of those steps is taken
them by multicanonically sampling, not necessarily with the(which is what we are computing when we say we are com-
same reweighting function used to find the probability distri-puting yg).
bution of N. Then, for each, we choose momenta out of the Also note from Fig. 11 that there is no “overshoot” after
appropriate distribution and perform a Hamiltonian evolu-reachingN=_0, no sign that the trajectory is continuing in the
tion, with the algorithm of Ref[18]. Once the Hamiltonian direction of the next separatrix. This is true of all trajectories
trajectory has settled into the neighborhood of a vacuum, wave have studied, both in finite volume and in the broken
return to the configuration before we started the Hamiltoniarelectroweak phase, which confirms the absence of prompt
evolution and reverse the sign of the momentum; then wenultiple crossings.
evolve. Since momenta are odd and fields are even under Our final results for this small volume system are pre-
time reversal, this computes the Hamiltonian trajectory in thesented in Table 1l. Note that both the probability to be near
backwards time direction. We determitielN/dt|) from the  the separatrix an¢dN/dt|) vary quite a bit when we change
first time step in each time direction, and the dynamical prefsy, but in opposite directions. Also, the shorter cooling leads
actor from the number dfl= 3 crossings, as discussed in the to a smaller dynamical prefactor, though for the volume and
previous section. It is also easy to find how many times theooling considered here the difference does not turn out to be
Hamiltonian trajectory crosses the gradient flow separatrixlarge. The determined value ®f for the two values ofrg

TABLE II. Ingredients and results for theg diffusion rate in a cubic, periodic volumed3T on a side.
The measurements with two values gf disagree at 1&.

quantity value atry=1.25%2 value atry=6.252
In P(N—0.5<0.05) —13.39+0.22 —14.30+0.18
|[dN/dt| (0.121:x 0.004)3°T (0.174+0.005)9°T
prefactor 0.520.03 0.554-0.024
IN[T/(at, T)*] —7.03+.23 —7.51+0.19
r (0.0009* 0.0002) g T* (0.0005+ 0.0001 ) T4
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differ at 1.6s. This does not bother the author since it is the L L
first statistical fluctuation above lr5he has encountered ’
since starting numerical work; he had one coming.

We can make a more stringent check of theindepen-
dence of the method by using the data set taken wjth 2
=1.2%? to determine the probability distribution & for = oa |
each value ofry, since we recordedli(7o=6.2%2) at each I
point while developing this data set. This data set gives a o2 [
slightly different probability to be at largd(7=6.2%2); the
—14.30 in the table becomes13.88. Using this number, we 0
get INT'/(a, T)*]=—7.09. To compare to the,=1.25%? data
we must remember that the probability distributions are now
100% correlated, so the expected difference is just from sta- FIG. 12. Hamiltonian trajectory through the separatrix in the
tistical errors in(|dN/dt|) and the prefactor. The difference symmetric phase in small volume, including hard thermal loops
in the logs of the rates is 0.660.09, so they do agree within with m3~43g*T2. Plasma oscillations are clear, and there are nu-
error. The results fof'y are indeedr, independent. merous crossings of the separatrix.

How do hard thermal loops change the rate? At the level
of thermodynamics, hard thermal loofi4TL’s) become just crossing the separatrix is shown in Fig. 12. The qualitative
a Debye mass. They make thAg field heavier, which pushes features are indeed the same as Arnold, Son, and Yaffe pre-
it further to the regime where it decouples. So their thermodict, see Fig. 8 of Ref[33]; plasma oscillations drive the
dynamic influence is very small. Hence, they will barely system across the separatrix numerous times. The dynamical
change the probability distribution &, which will have a  prefactor is correspondingly significantly smaller than with-
well behaved large HTL strength limit. Similarly, as we have out hard thermal loops; for these parameters it is about 0.16.
discussed,(|dN/dt|) does not depend on longitudin®  Note, however, that we have had to add truly huge HTL
fields, and hence depends on the Debye mass only througdffects to achieve this value, so at the realistic value the
its thermodynamic influence on the gauge fields. The fluweffect may not be too significant. We will study this question
through the separatrix should depend weakly on hard thermdbr the broken phase case in the next section.
loops and should have a good large HTL limit. How do our nonperturbative results compare to perturba-

The dynamical prefactor is a completely different matter.tion theory? We will not attempt to do a complete one loop
It is a dynamical quantity which depends on unequal timecalculation of the sphaleron rate in finite volume, but it is
correlators, potentially over quite long times. Hard thermalquite easy to compute the “sphaleron” energy, the energy of
loops will change the time evolution of infrared degrees ofthe saddle point between topological minima. We can use the
freedom on all time scales longer than the inverse plasmeechnique of Refl54], or any other technique which can find
frequency. Arnold, Son, and YaffASY) have argued33] a saddle point solution(we have ong We find E
that hard thermal loops will suppress the baryon number vio=27.77N, with N the linear dimension of the lattice. In our
lation rate by a factor parametrically of ordeg*T 2/m2D), case that mean8E =37 and we would naively expect a rate
because the number of crossings of the separatrix per permadppression of exp{37) before zero modes and the fluctua-
nent Ncg change will be of ordem3/g*T2. That is, they tion determinant are included. This might be compared with
predict that turning on hard thermal loops will reduce thethe free energy difference betwelis=0 andN= 3, which is
dynamical prefactor by an amount linear iin§, when it is  of order 15. We know that the complete inclusion of the zero
large. Their arguments have recently been verified in thénodes and the fluctuation determinant is likely to make up
symmetric phasg26]. Now we need to check what the hard some of this difference, but it certainly will not account for
thermal loops do in the broken phase. all of it. Nonperturbative physics is at work and it enhances

To address this question we include the hard thermalhe rate of sphaleron transitions in this case.
loops by using the technique developed in R26]. We add
a large number of new “particle” degrees of freedom to the E. Broken phase rate
S Pt e oo eecte 2" Nowwe wil apl he same technology o the physicall

do when they are extremely strong, so we can understand trl{%terestmg case of large volume, broken phasé25U(1)

A ; ang-Mills Higgs theory. Since the previous subsections al-
arametric limit in which the ASY arguments should hold. . .
\F;Vith this in mind we put in particles gf charg@=0.1 and ready explained both the Monte Carlo update technique and

th | time tool d to finddN/dt dthed ical
number density 5@7,%° which give a Debye mass of ¢ real time tools used to fird ) and the dynamica

43g*TZ, an enormous number about 10 times the value in th refactor, we will just discuss here how this case is different
' . > o : om the small volume, symmetric phase calculation, and
MSM at a realistic value ofy“. A Hamiltonian trajectory \\hat we have to do differently to get it to work.
As we discussed, we will work at the critical temperature,
which corresponds in the 3D language to the critical Higgs
10see Ref[26] for the implementation and the definitions of these boson mass. This means that the broken phase, which we
guantities, and their relation to the Debye mass. want to study, is actually only metastable; the symmetric

0.8

L L L | L L L | L n L |
0 20 40 60 80

time xg?®T
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phase is equally thermodynamically preferable. In a smaltheckerboard” of the sites are updated, and an overrelax-
volume there can be fairly easy tunneling between the twoation sweep updating only the Higgs fields. Since the over-
but the metastability becomes stronger as the volume baelaxation sweep of the Higgs fields does not change the
comes larger. We must choose a volume which is larggauge fields, and sindd depends on the gauge fields alone,
enough that metastability is very strong and tunneling bethis sweep can be automatically accepted. Doing this means
tween the phases will not occur. This means that the physicahat the evolution of the Higgs fields can be made “fast” in
size of the lattice we use must be significantly larger than theomparison to the update of the gauge fields. That ensures
physical size of the sphaleron, which would have to be trughat the thermalization of the gauge fields is not gummed up
anyway to keep the exponential tails of the sphaleron fronby slow evolution of the Higgs fields. Even with the extra
seeing each other around the periodic boundary conditionsupdates for the Higgs fields, and the blocking procedure for
The problem of tunneling to the symmetric phase is madeccelerating the measurement Mf most machine time is
worse because the sphaleron has a zero of the Higgs condespent measuringl, and further improvements in the update
sate at its core, so it looks somewhat similar to a symmetri@lgorithm will not help.
phase bubble. To keep from nucleating to the symmetric The results for the flux through thd=3 separatrix are
phase we should use a volume big enough that the free egiven in Table I, and also in Ref16]. We have also mea-
ergy of the state intermediate between phases is comparalsered the dynamical prefactor for tike= 0.039 case, without
to the free energy of the sphaleron. We have studied threadded hard thermal loops or enforcement of the Gauss law.
values for x=\/g? x=0.047, 0.039, and 0.033; for the The value we get is 0.380.05, slightly lower than the value
former two we used a physical volume of (48T)% and for  for the gradient flow separatrix, which is 0£0.05 (we
the latter we used (13.3§7T)3. These were all sufficient to measure this by choosing a valuemgflarge enough that the
prevent nucleation of the symmetric phase, but for two separatrices almost coincide, so there is a one to one
=0.047, a volume of (12.87T)% was not. The volume re- correspondence between crossiiig 3 and crossing the gra-
guirement becomes less severe as the phase transition lehent flow separatrix It is not clear whether this represents
comes stronger at smallegr so forx=0.039 and 0.033 we some interesting dynamical behavior of the theory or
used a good margin of excess volume. The volume requirewhether it means that the Yang-Mills gradient flow separa-
ment would also have been less severe if we worked belowix is not the optimal divider between topological vacua.
rather than at, the equilibrium Higgs boson mass parameter. Another interesting question is how the dynamical prefac-
The need for a large volume drives up numerical costs ifor depends on hard thermal loops. Unfortunately, the nu-
two ways. One is obvious; we need to update a lot of latticamerical cost of using the “particles” technique of Rg26]
volume which is “dead weight” since the sphaleron is notis so high in this context that we have to cut a few more
sitting there. But the large volume also makes the multicacorners to make the calculation. We drop thél)Jfactor,
nonical algorithm perform worse. Examining Fig. 10, we seeincrease the lattice spacing froma=2/(5g%T) to a
the free energy rises roughly linearly wikhat small values =1/(2g°T) (8=8), and reduce the volume to (14T)3.
of N. This behavior is also expected analytically in the bro-To prevent nucleation to the symmetric phase, we work at a
ken phase case, see, for instance, R&%]. Naively, then, somewhat larger value of, x=0.042, and below the equi-
having the gauge fields being part way up the sphaleron dibrium temperature, so the broken phase is more stable than
one place in the box is not thermodynamically favored oveithe symmetric phase. We choose the temperdtine ther-
having them half as far up the sphaleron in two differentmal Higgs boson mass, reallgo the Higgs condensate is
places, at least for relatively small. In fact the entropy ¢o=1.79T, just more than enough to make the sphaleron
from getting to choose the locations of the two places meangate too low to erase baryon numbere expect We cannot
that this may be slightly preferred to being further up thedirectly measure the sphaleron rate with this set of param-
sphaleron in one place, for the range fwhere the free eters because the update including particles is expensive
energy is varying linearly wittN. But at largerN the free  enough that the multicanonical calculations are prohibitive,
energy for a single “near sphaleron” levels off while that for but we can get a good sample of points on the separatrix by
two continues to rise linearly, so nelde= 3 we prefer having  using a reweighting which favols~ 3 strongly, and we can
a single sphaleron. Somewhere in between there is a miget sufficient statistics for the dynamical prefactor to make a
match in what kind of configuration is dominating the en-good determination.
semble, and such a mismatch can reduce the efficiency of the We can “shut off” the hard thermal loop contribution to
Monte Carlo calculation. the dynamics without changing their contribution to thermo-
To cut the numerical demand we integrate éytfields  dynamics by not allowing the particles to move during the
(i.e., we do not enforce the Gauss law when we study dyHamiltonian evolutions used to determine the dynamical
namicg, which allows us to use the very efficient update prefactor. Also, if the arguments of Arnold are corrgsb,
algorithm of Rummukainemt al.[5]. In fact a single step of changing the velocity at which the particles move changes
the Rummukaineet al. update(one heat bath and four over- their contribution to the key part of the hard thermal loops,
relaxation sweepss far too large an update of the fields; if the w<k~g?T regime, linearly in the velocity. Hence we
the value off(N) typically changes by more than 1 under could explore very strong hard thermal loops either by put-
one update then the accept rate for updates becomes veligig in very many particles, or by making them move very
small. Instead, we alternate between performing a “scaledast. The numerical cost is the same but the memory costs
back” version of the update in which only some “mqgu favor the latter.
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FIG. 13. Free energyleft) and (&' dproker ¢’ dsymm/(9°T?) as functions ofN at x=\/g?=0.039, in a (164°T)* volume [at 7,
=3.6/(g?T)?]. In each case the upper curve is the broken phase and the lower curve is the symmetric phase. Tl slodws that the
volume used was large enough that the sphaleron did not bring us anywhere near a transition to the symmetric phase. The behavior of the
two phases is completely different; in the broken phase there is a free energy barrier, and in the symmetric phase there is not.

We use a realistic total hard thermal loop strengtty,  the value ofr, we used to define the measurablés around
=5g*T? from particles.[The standard model value i85  0.3=0.1. We have included a row in the table where we
=(11/6)g°T?, and sincey®~0.40 on performing the dimen- include this(estimated effect in the rate.
sional reduction calculatiof80], this is just smaller than the For amusement, we have also compared the broken and
value we used. The dynamical prefactor changes only symmetric phase probability distributions file We present
mildly, from 0.52+0.05 to 0.4@-0.05, when we turn the the results in Fig. 13, which also shows hey varies with
particles on. When we increase the particle velocities to 4 in each case. The two data sets were taken using identical
times the speed of light, the prefactor becomes 8.0893. values for all parameter§lattice spacinga=2/59°T, x
Hard thermal loops do indeed reduce the dynamical prefac=0.039, critical temperaturé.e., critical Higgs mass lat-
tor, which is already less than 1 without them. However, thetice volume=(16/g2T)3, and 7,=3.6/(g?T)?], but starting
parametric limit in which the reduction is large is not with a broken phase initial condition in one case and a sym-
achieved for realistic parameter values. Also note that theénetric phase initial condition in the other. A barrier to
value 0.52 is larger than we got at=0.039 andmj  changingNcsis clearly present in the broken phase case and
=mf|vcm. We assume this is because the larger value waslearly absent in the symmetric phase case.
evaluated below the equilibrium temperature, where the We cannot use the data for the symmetric phase case to
Higgs condensate is larger and stiffer and the sphaleron ideterminel’§ in the symmetric phase. Although it would be
smaller and more energetic; its decay should be more vigorstraightforward to computg|dN/dt|) and get the flux
ous and less susceptible to buffeting by large IR fields.  through the separatrix, the calculation of the dynamical pref-

actor is impossible. A Hamiltonian path through the separa-
V. RESULTS trix does not settle into the neighborhood of a topological
vacuum and stay there for a long time; it just continues to
~ We present our results for the diffusion constant®ys  wander around, as we already saw in Fig. 5. But we can
in Table 1. The first qgoted value is without the dynam'ca|measurel“d in the symmetric phase with purely real time
prefactor. The dynamical prefactor is less than 1 for te ( techniques; the value including hard thermal logpsd ac-
=1) sep_arqtnx we have used, and also for the gradient ﬂOVYuaIIy for pure SW2) Yang-Mills theory is I'y=(29
separatrix; its value for the=0.039 data is about 0.33, and +6)a>T* or —InTy=13.9. (This result may get revised
we will take this to be representative of the other two valuejownwards somewhat when the issues involving logarithmic

of x as well. It is not clegr whether the prefactor is less tharborrections[Z?] have been fully accounted fors expected,
1 because our separatrix is suboptimal, or because the dyse proken phase rate at smalE=M/g? is enormously

namics are nontrivial in a way which often leads to multiplesma”er; forx=0.033 the ratio is about $0
crossings.

We have found that the dynamical prefactor depends on
the strength of hard thermal loops; but for the realistic Debye
mass the effect is not strong. A reasonable estimate for the We want to compare the determined sphaleron rate to two
relevant dynamical prefactor for the cases of interest and fothings; perturbation theory and the value required to avoid

A. Comparison to perturbation theory
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erasure of baryon number generated at the electroweak phasgmmetry, in which additional degrees of freedom can store
transition. One loop perturbation theory giv&§!! baryon numbet? Integrating from the end of the phase tran-
sition to the present day,

w_ [aw\t 47\’
ramart oo ] (5 e o2 ao i [~
90 ? IN[Ng/Ng(To)]=~ f P T(OIT (b,
t
Here ¢ is the broken phase Higgs condensate expectation ° (42)

value, w_ is the unstable frequency of the sphaleron,

NNV, are zero mode factors, is the one loop fluctuation Where we have shown the dependencd’gfon T and of T

determinant, ancEgy, is the energy of the Klinkhamer- Ont. _ N

Manton sphaleron, using the tree level Hamiltonian. For Now InT'y is very sensitive to/(¢'¢), and hence td;

small \/g°=x, — T In k equals the energy due to the oneso we can  approximate  Iy(T)=InI'y(To)+(T

loop effective potential term, plus a modest correcfidf].  —Tc)(d In 'y/dT)lr—r, and perform the integral:

We can guess that the dominant two loop corrections to Eq.

(40) are absorbed by including the two loop effective poten- Iy(To)

tial terms in the Hamiltonian. So it seems reasonable to es- N{—IN[Ng/Ng(T¢)]}=In(39/4)+In T4

timate the sphaleron rate by E@O0), but settingk=1 and

solving for the sphaleron energy using the two loop effective I ( d In T'4(T(t))
—Inl = ad

potential at the equilibrium temperature. One should also Tdt )
solve for the zero modes and_/ ¢, at this value, but they T=T,
are very weak functions of the effective potenfia#]. We (43)
use the values from Ref14] at x=(\/g?)=0.04 for these,

but solve for the sphaleron energig,=4mB¢y/g, nu- By the chain rule,

merically, using the two loop effective potential Bt. We

use the two loop potential presented in R 7], without dinl'y dinTydydinT
pieces from longitudinal gauge bosof@ssumed integrated Tdt  dy dT dt
out). We also drop two loop terms proportionalxg? or A2,

because the perturbative determinationpgfis an expansion wherey=m?(T)/(g*T?) is the dimensionless thermal Higgs
in AM/g?, and such terms contribute at the same or higheboson mass squared.

(44)

order as unknown three loop term@ncluding these two We getdy/dT from the one loop correction tm? [57],
loop terms movesp, closer to the nonperturbative value by

an insignificant amountThe “two loop” analytic sphaleron dy 8)\+4gf,+ g’(3+tar? Oy)

rate, also included in Table I, is about exp(2.5) times faster aT= 8g'T , (45

than the numerically determined nonperturbative rate, and

falls fqrther off yvhen we include the dynammal prefaéﬁ?r. and we getd In T/dt from the Friedmann equation in a ra-
The difference is more than can be explained by the differ-,. . . :

; . . . diation dominated universe,
ence ingq, but it is not huge in the sense that it represents a

change of less than 20% in the exponent. The difference gets

2 3 2
smaller, relative to the exponent, as the sphaleron energy_:|_|2:87TG ™ 9 4:d In T:_ A0, T_
becomes larger. 412 3 30 dt 45 mp,
(46)

B. Comparison to the erasure bound whereg, is the number of radiative degrees of freedom in

We should compare the sphaleron rate to the limit set byhe universe ¢, =106.75 in the minimal standard mogel
requiring that baryon number not be erased. The rate aind mp=1.22<10'° GeV is the Planck mass. Finally, we

which sphalerons degrade baryon numbdi3is determined In I'y/dy perturbatively, by varyingy slightly
from the equilibrium value and recomputing the two loop
1 %: _ % r.7-3 (41) sphaleron rate. The dependence is quite strong. We include it
Ng dt 4 "4 in Table 1.

The most widely cited discussion of baryon number era-
whereNg=3 is the number of families, and the numerical sure after the phase transition makes the approximation that
factor 13N:/4 would be smaller in theories, such as super-the baryon number violation rate after the phase transition is

constant for about one Hubble tii&8]. In fact, becausé',
depends very strongly oy which in turn depends strongly

1The definition ofl" used in Refs[3,14] is the response rate to a
chemical potential, which is half the diffusion rd/]; so Eq.(40)
differs by a factor of 2 from the expressions in those references. 3Again, there is a factor of 2 difference from the reference be-
There is no literature calculation of the dynamical prefactor,cause they write in terms of the response to a chemical potential,
including hard thermal loops but in the perturbative context. which is half the diffusion constant. This 2 cancels the other 2.
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on T, most baryon number erasure occurs in the first®0 perturbatively reduced to a standard-model-like effective

Hubble times after the phase transition. Hence the initial rat¢heory. These are slightly looser than we quote in REd)

of baryon number violationl"4(T.), which prevents wash- because the measured value of the dynamical prefactor is

out is 16 times larger than assumed in RE58], leading to  smaller than our estimate there. Another convenient way to

a weaker bound ol 4(T.), roughly state our result is that the bound on the Higgs condensate
after the phase transition is abogig=1.67T in the MSM

—In[T4(Te)To “1>30.4-In(T/100 GeV. (47  and ¢,=1.6T in the MSSM (with the MSSM value

weaker because the larger temperature dependence of the

The values ofg, anddy/dT will both be larger in super- hormal Higgs boson mass makes the erasure rate fall off
symmetric extensions of the standard model. Unless quite g ciar with time after the transition

number of supersymmetric partners have masses under 100 the pound is softened if the universe does not reheat to
GeV, which now seems unlikelyg, will not be too much 1 qyring the phase transition, because the phase transition
larger; but if there are stops with supersymmetry breakingne ends at a lower temperature with a larger Higgs vacuum
masses of less than 100 GeV, which is necessary 10 get @ pectation value. Incomplete reheating may well be generic.
strong enpugh transition without violating the current experi-ynfortunately, we do not have a nonperturbative measure-
mental Higgs boson mass bound, thedy/dT gets extra  ment of the bubble nucleation action, which is required to
contributions from top squarks which bring it up by about agetermine definitively whether reheating happens. This is an
factor of 2. The bound, EqA47), is weakened by about 1. jneresting project which can perhaps be approached by tech-
Also note that, because E@3) is for the double log of pig es similar to what we have used here, i.e., defining a
Ng/Ng(Tc), failing to meet the bound by 1 means the gonaratrix corresponding to the critical bubldes the sepa-
baryon number is diminished by exxp(1)=15, and failure  a4rix here corresponds to the sphaléyand making a com-

by 2 reduces baryon number by ¢2pp(2)=1600; so the pjete calculation including the dynamical prefactor.

bound is quite sharp. We should comment on what we expect to be true below
the equilibrium temperature and in the case of a light top
VI. CONCLUSION squark. As the temperature falls below equilibrium and the

We have shown how to define a lattice measurable Whic#iggs condensate becomes larger, perturbation theory should

allows a(multicanonical Monte Carlo calculatipmonper- become better, at least in the sense that the error in the ex-

turbative determination of the broken phase sphaleron barridfonent should get smaller compared to the magnitude of the

height. We have combined this with real time techniques toexponent. It would be very surprising if the nonperturbative

measure the diffusion constant dles (and hence baryon rate switches to'being faster than the pertL_erative estimate,
number violation in the broken electroweak phase nonper-though.' Itis straightforward, though EXpensive, .to _repeat .the
turbatively, including the dynamical prefactor. We find that analysis here_ for temperatures below the equilibrium point.
the diffusion constant is smaller by about ex{¥.6) than in F_>r0b_ably I W'II only be worth it after we have nonperturba-

a perturbative estimate using the two loop effective potentiarr\]/e ;nfﬁ rmation on tkhe bubble nuclr:aatlon rate. sy Cg‘?‘f of
and no wave function correctioitand assuming a dynamical e light top squark, we expect the most important differ-

prefactor of 3. The difference is too large to ascribe to the ences to be in the effective potential, in which case pertur-

difference between the perturbative and nonperturbativgatIon theory should do as well as it does here, if we permit

; e a “by hand” correction for the strength of the phase transi-
value of¢y. However, it represents a shift in the exponent of . . i
) . tion. We expect this because, while the top squark contrib-
less than 20% from the perturbative estimate.

We have also demonstrated that the physics of hard therg:ﬁs i{;ﬁ‘lﬁ2?\clgc:/f/)at\(/)et?fniggr?t::\i)errggzi)}ggl, st%aela|_r|i|nt:rarc;|_ons
mal loops does change the sphaleron rate in the broken y Y 995 9

phase, apparently consistently with the arguments of Arnoldd!ent energy of the sphalerbat two loops, and there is no

Son, and Yaffe[33]. But to really achieve the parametric direct interaction between a light right top squark and the
- . -~ SU(2) gauge fields.
limit they discuss takes an unrealistically large Debye mass;
for physical values of the parameters, the correction due to
hard thermal loops is fairly minor.

Interpolating between the values ®&=\/g? where we | would like to thank Jim Cline, Jim Hetrick, Kari Rum-
have measured, and including the estimate for the dynamicahukainen, Misha Shaposhnikov, and Alex Krasnitz for dis-
prefactor, we get a bound of abowt/¢?)=x=0.037 in the  cussions and correspondence. | also thank BerndieMand

standard model ang=0.039 in the MSSM when it can be the North Carolina Supercomputing Center.
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