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Measuring the broken phase sphaleron rate nonperturbatively

Guy D. Moore*
Department of Physics, McGill University, 3600 University Street, Montreal, PQ, Canada H3A 2T8

~Received 11 May 1998; published 19 November 1998!

We present details for a method to compute the broken phase sphaleron rate~rate of hot baryon number
violation below the electroweak phase transition! nonperturbatively, using a combination of multicanonical and
real time lattice techniques. The calculation includes the ‘‘dynamical prefactor,’’ which accounts for prompt
recrossings of the sphaleron barrier. The prefactor depends on the hard thermal loops, getting smaller with
increasing Debye mass; but for realistic Debye masses the effect is not large. The baryon number erasure rate
in the broken phase is slower than a perturbative estimate by about exp(23.6). Assuming the electroweak
phase transition has enough latent heat to reheat the universe to the equilibrium temperature, baryon number is
preserved after the phase transition if the ratio of~‘‘dimensionally reduced’’ thermal! scalar to gauge couplings
l/g2 is less than 0.037.@S0556-2821~98!00523-2#

PACS number~s!: 11.15.Ha, 11.15.Kc
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I. INTRODUCTION

20 years ago, ’t Hooft showed that baryon number is
a good quantum number in the standard model@1#. The rea-
son involves the nontrivial vacuum structure of the SU~2!
~weak! gauge group of the standard model. In any gau
theory, the vacuum is not unique; any gauge transforma
of AW 50 has zero energy and is an acceptable vacuum.
SU~2! ~and any simple gauge group! has the property that th
space of three-dimensional~3D! gauge transformations is to
pologically nontrivial. A gauge transformation has an integ
p3 winding number associated with it. Since the windi
number must be an integer, the space of smooth gauges
also the space of vacua, is disconnected. The different
nected components are characterized by their values
Chern-Simons number,

NCS[
g2

32p2 E d3xe i jk S Fi j
a Ak

a2
g

3
f abcAi

aAj
bAk

cD , ~1!

which is an integer for a vacuum configuration, though n
necessarily for an excited state. Classically, for the ga
fields to change from one topological vacuum at timet5t i to
another at timet5t f , they must pass through excited stat
in the intervening time; to be specific,

dNCS/dt5
g2

32p2 E d3xFmn
a Fa

mn , ~2!

which is clearly a gauge invariant quantity~though its inte-
gral NCS is not, because of the constant of integration!. This
means that it is possible to pass from a vacuum configura
to a gauge copy of that configuration via a path which can
be smoothly deformed to remain always in vacuum. If
mod out the space of 3D configurations by the gauge tra
formations, the space we get will then have noncontract
loops.

*Email address: guymoore@physics.mcgill.ca
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This topological structure appears both in SU~2! ~weak!
and SU~3! ~strong!, where it is responsible for the physics o
spontaneous chiral symmetry breaking. What ’t Hooft n
ticed is that, because fermions couple to the weak SU~2!
group of the standard model chirally, the anomaly rela
NCS to baryon number. If the gauge fields pass through so
nonvacuum intermediate state from one topological vacu
to another~or around a noncontractible loop, if we think o
configurations modulo gauge transformations!, baryon num-
ber changes. Such changes are classically forbidden at
temperature, so they only occur via quantum tunneling.
cause the SU~2! gauge coupling is weak, and because t
Higgs field breaks the symmetry, such processes are ste
exponentially suppressed, by;exp(216p2/g2);102170.
Hence such processes are of no terrestrial phenomenolo
interest.

However, as a general rule, if a process only occurs
vacuum via quantum tunneling, then above some temp
ture it occurs much faster via thermal activation.~Chemistry
and condensed matter physics are full of examples; ann
ing of crystal defects, for instance.! The same is true for
baryon number changing processes in the standard mo
although the ‘‘annealing temperature’’ isO(100 GeV). In
fact, there is a phase transition atTc;100 GeV in which the
Higgs field loses its condensate, and above this transi
baryon number violation is efficient@2,3#. It is quite possible
that the baryon number of the universe originated in a c
mological electroweak phase transition, and in recent ye
this belief has driven the study of the electroweak ph
transition.

It takes two things for a cosmological electroweak pha
transition to generate the baryon asymmetry of the unive
First, there needs to be enoughCP violation to generate a
least the observed abundance of baryons during the tra
tion. Second, there cannot be too much ‘‘annealing’’ of t
baryon number after the phase transition, that is, bar
number violation must be inefficient enough after the ph
transition that a good fraction of the baryons survive to
present day. This is a condition on the phase transitio
strength.
©1998 The American Physical Society03-1
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TABLE I. Perturbation theory versus nonperturbativeGd . Appearances ofTc
24 are really (2.5g2Tc)

24.
x[l/g2 is the ratio of the Higgs boson self-coupling to the gauge coupling, andy[mH

2 (T)/g4T2 is the
dimensionless Higgs boson mass squared. The error bars for the nonperturbativef0 are dominated by
statistical errors in the determined value ofTc ; errors in the nonperturbative value ofG are statistical errors
from the Monte Carlo calculation. The last row includes the nonunity dynamical prefactor in the rat
should be taken as our most reliable estimate.

(x[l/g2) x50.047 x50.039 x50.033

f(Tc)/gTc 1.360 1.568 1.789
two loop B[gEsph/4pf 1.643 1.633 1.626

perturbative Esph/Tc 28.08 32.20 36.55
2 ln(GdTc

24) 22.27 25.39 28.82
2d ln(GdTc

24)/dy 860 920 1000

f(Tc)/gTc 1.3860.02 1.6060.01 1.8260.03
nonperturbative 2 ln(GdTc

24) ~excl. prefactor! 24.760.4 28.360.4 31.260.6
2 ln(GdTc

24) ~incl. prefactor! 25.960.5 29.560.5 32.460.7
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The minimal standard model fails both conditions bad
@4,5#. However, well motivated extensions, such as the m
mal supersymmetric extension of the standard mo
~MSSM! with a light right scalar top, appear to be viabl
Recent studies of baryon number production during
phase transition appear to show that enoughCP violation can
hide in places with few low energy consequences to gene
the observed abundance of baryon number, and mayb
little more ~for recent work see, for instance, Refs.@6–8#!.
And the phase transition can be stronger. If the lightest sc
top quark is not very light, then perturbation theory can
liably relate the phase transition in the MSSM to the ph
transition in the same effective theory used to study the s
dard model@9#, which has been well analyzed numerica
@5,10,11#. If the lightest scalar top quark is lighter still, th
phase transition may be stronger and more exotic@12#. This
system can also be studied by nonperturbative lattice te
niques@13#.

At present, the weakest link in our knowledge of bary
erasure after the phase transition is the relation between
strength of the phase transition, now known nonpertur
tively, and the efficiency of baryon number violation after
is over, for which we have only a one loop calculatio
@3,14,15#. We know that the perturbation expansion at hi
temperature near the electroweak phase transition cann
viewed as an expansion in\, but at best as an expansion in
ratio of couplings. We also know that the two loop corre
tions in the perturbative expansion for the strength of
phase transition are not very small in the ‘‘interesting’’ ran
of couplings where the baryon number violation after t
transition is close to the efficiency limit. So it would be nic
to actually know how good the one loop calculation is, or
replace it with a fully nonperturbative investigation.

Very recently we have proposed a nonperturbat
method to determine the rate of baryon number violation
the broken electroweak phase@16#. This paper will fill in all
the details left out in that paper. Also, the calculation th
was incomplete; it did not include a measurement of
‘‘dynamical prefactor,’’ discussed below. This paper w
complete this aspect of the calculation. It will also discu
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the importance to the broken phase sphaleron rate of h
thermal loops, which can modify the dynamical prefactor

For the impatient reader, we will present the basic ide
and the results right now. To find the sphaleron rate nonp
turbatively, we first define nonperturbatively a surface cal
the separatrix, which sits half way between distinct topolo
cal vacua. Sphaleron transitions which permanently cha
NCS must cross this surface. To find theNCS diffusion rate,
we first compute the probability in the canonical ensemble
be in a narrow band about the separatrix; then we comp
the mean inverse time to cross the band. The product is
probability flux across the separatrix. Then we compute
‘‘dynamical prefactor,’’ which tells what fraction of cross
ings lead to permanent resettling about a different vacu
All three quantities can be computed nonperturbatively
the lattice, using a combination of Monte Carlo and real tim
techniques. Including strong hard thermal loop effects mo
fies the dynamics in a way which lowers the dynamical pr
actor, but for realistic parameter values the effect is min
TheNCS diffusion constant is presented, and compared to
analytic estimate based on the two loop effective potentia
Table I.

The paper is structured as follows. In Sec. II, we outli
the general idea of the calculation. Section III defines Che
Simons number on the lattice, and the order parameter
will use, which is very closely related. It also discusses
plication of the definition to the symmetric phase case. S
tion IV tells how we go about things numerically. Section
presents numerical results and compares them to a ‘‘se
two loop’’ analytic estimate, and to the erasure bound. T
last section concludes. For readers who are allergic to de
of numerical studies, we recommend reading Sec. II ca
fully, and perhaps the first subsection of Sec. IV, and th
skipping to Sec. V.

II. BROKEN PHASE MEASUREMENT: GENERAL IDEA

We want a technique for determining theNCS diffusion
constant in the broken electroweak phase, where the ra
extremely small. The technique will be geared around
smallness of the rate and the fact that the system in fi
volume will spend almost all of its time in a ‘‘neighbor
3-2
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MEASURING THE BROKEN PHASE SPHALERON RATE . . . PHYSICAL REVIEW D 59 014503
hood’’ of a topological vacuum, in a sense to be made p
cise below. These assumptions can be checkeda posteriori,
and do not constitute a real limit to the technique in t
broken phase. They will fail in the symmetric phase or wh
the phase transition is very weak, but in that case we
apply real time techniques@17–23#, which can now produce
quantitative results@24–26#. ~We should mention here tha
the symmetric phase case is not completely settled; it
recently been argued that there are logarithmic correction
the parametric scaling behavior@27#, which are however too
small to be seen over the noise and other systematics
present in@26#.!

A. Thermodynamic approximations

Before we start to describe our approach to the calc
tion, we will specify the approximations to be made.

We treat the thermodynamics of the standard model
whatever extension is of interest, in the dimensional red
tion approximation@28–30#, that is, as being well approxi
mated by a three-dimensional, bosonic path integral with
rameters carefully matched to those of the full theory. Thi
an excellent approximation and we have no regrets in m
ing it. For a study of corrections to this approximation in t
present context, see Ref.@31#, which shows that the leadin
thermodynamic effects not included in the dimensional
duction procedure have a negligibly small effect on t
sphaleron energy.

Conveniently, dimensional reduction is equivalent
treating the theory’s thermodynamics as equivalent to th
of the classical bosonic theory@19#, with certain mass coun
terterms. Similarly, we can treat the theory’s dynamics in
classical approximation. This should be valid in the infrar
@23,32#, with one serious complication. That is, the structu
of divergent radiative corrections to unequal time correlat
is much more complicated than that for equal time corre
tors. For the equal time correlators, which are all that ma
to thermodynamics, the divergent radiative corrections
mass squared corrections for the Higgs andA0 fields, which
can be computed once and balanced by counterterms.
unequal times the linearly divergent radiative corrections,
hard thermal loops, have a more complicated structure.
they can significantly change the dynamical behavior on t
scales longer than the inverse plasma frequency. The m
fications can be important for the Chern-Simons number
fusion rate@33–35,27#, as has recently been verified nume
cally for the symmetric phase dynamics@26#. In the current
context they will modify the ‘‘dynamical prefactor,’’ bu
they have little bearing on those parts of the calculat
which are thermodynamical.

We will also frequently make the approximation that t
so called ‘‘heavy’’ degrees of freedom can be integrated
@30#, including both the time component of the gauge fie
and any squarks present, so the theory reduces to an effe
theory for the minimal standard model@9#. This theory is
specified by two parameters;x[l/g2 the ratio of scalar to
gauge self-couplings, andmH

2 (T) the thermal Higgs boson
mass squared Lagrangian parameter.mH

2 (T) is a monotone
increasing function ofT, going fromO(g2T2) at high tem-
peratures to quite negative~symmetry breaking! in vacuum.
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The phase transition occurs near where it is zero, at a crit
temperature which in the context of dimensional reduct
becomes a criticalmH

2 (T). At the tree level, l/g2

5(mH /mW)2/8 but the radiative corrections are importa
and the relation betweenl/g2 and the ratio of physical zero
temperature massesmH /mW is not simple, especially in ex
tensions to the standard model with new light bosons. A
note that, for instance, if the MSSM right scalar top quark
too light, the reduction to an MSM-like effective theory
not very reliable; we should use an effective theory wh
contains the light squark and the gluons. Dropping hea
modes is not a necessary step for using our technique,
merely convenient to reduce the numerical demands, wh
would be a few times larger if we include theA0 fields and
order 10 times larger if we include the squarks and QCD.
will discuss how we think light squarks would change o
results in the conclusion. We discuss the matter of integ
ing out theA0 field in more detail in Sec. IV B. It is not
always appropriate to do so, and in particular we can
when we are studying the influence of hard thermal loop

We do keep the U~1! subgroup, which is often left out in
electroweak studies. Its role in setting the sphaleron rat
probably almost entirely due to its effect on the strength
the phase transition and not a direct modification of
sphaleron, see Ref.@36#, but the numerical cost of including
it is small enough that dropping it is pointless. We u
tan2 QW50.32, based on a one loop match between vacu
modified minimal subtraction scheme (MS) and 3D thermal
values using results in Ref.@30#.

B. The separatrix

The idea of the separatrix between vacuum states is
sential to our technique. Before introducing it, let us revie
what we expect the space of gauge-Higgs configuration
look like in the broken phase. The space of thre
dimensional gauge-Higgs configurations is periodic, with
discrete set of vacua. To be more precise, we should cons
the space of gauge-Higgs configurations modulo~all! gauge
transformations. In this case all vacua coincide1 but the space
is not simply connected. Since the index of the Dirac ope
tor remembers when we go around a noncontractible loo
configuration space, the relevant space of physical confi
rations is the universal cover of the space of configurati
modulo~all! gauge transformations. The universal cover h
a discrete set of vacua labeled by the index of the Di
operator.2 If the line connecting two vacua in the univers

1If the global topology of space is multiply connected then Yan
Mills theory has a connected manifold of inequivalent vacua co
sponding to different values for traces of certain noncontract
Wilson loops. The toroidal spaces we will consider are multip
connected; however, the~fundamental representation! Higgs con-
densate lifts the degeneracy of the would be gauge vacua. T
complications will not be important for what we do.

2The universal cover is roughly the same as the space of con
rations modulo small gauge transformations. But we prefer to th
in terms of the universal cover of the space of configuratio
modulo all gauge transformations, because this is an explic
gauge invariant approach.
3-3
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GUY D. MOORE PHYSICAL REVIEW D 59 014503
cover projects to a winding one loop—or in more conve
tional language, if two vacua differ by 1 in Chern-Simo
number—we will refer to them as neighboring vacua.

We expect that, in the broken phase, almost all of
weight of the canonical ensemble lies in states which arin
some senseclose to one of the vacua. The Hamiltonian ev
lution of a generic state in the ensemble will wander arou
in the neighborhood of one vacuum for an exponentially lo
time before it happens to make an excursion far eno
away that it crosses to being nearest another vacuum, w
it may find instead. We expect that this is howNCS diffusion
will occur.

To determine the rate ofNCS diffusion, we draw a~codi-
mension 1! surface separating one vacuum from its neighb
halfway between the minima in some sense, so that all of
well populated area near one minimum falls on one side
all the well populated area near the other minimum lies
the other side. This surface is called the separatrix betw
the vacua~see Fig. 1!. To cross from being near one vacuu
to being near another vacuum, a Hamiltonian trajectory m
pass through the separatrix dividing them. We will assu
that, after such a crossing, the trajectory almost ne
promptly continues to and crosses the next separatrix,
instead either settles around the new minimum for lo
enough that ergodicity ‘‘erases its memory,’’ or turns arou
and returns to the vacuum it started from. Then the flux
probability of the thermal ensemble through the separatri
an upper boundon the diffusion rate forNCS. It is an upper
bound because of trajectories which cross the separatrix,
around, and return to the original vacuum. These lead to
of probability through the separatrix, but not toNCS diffu-
sion. To get the true diffusion rate, we need to find not o
the flux through the separatrix, but the average numbe
crossings of the separatrix per long term change from be
near one vacuum to being near another. We will call
reciprocal of this, the fraction of separatrix crossings wh
are associated with permanentNCS change, the ‘‘dynamica
prefactor.’’ If we know both the flux of probability acros

FIG. 1. Diagram showing the periodic vacuum structure, se
ratrix, typical path which stays near a vacuum, and exceptional
which crosses the separatrix and leads to permanentNCS change.
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separatrices, and the dynamical prefactor, then we know
diffusion constant forNCS; the diffusion constant is

gd[ lim
t→`

^@NCS~ t !2NCS~0!#2&
t

5~prefactor!3~flux!.

~3!

What we really want is the diffusion constant per unit vo
ume Gd[gd /V. We should use a volume which is larg
enough to prevent finite size systematics but small eno
that there are almost never two simultaneousNCS changing
events in different places.

A few points are in order here. First, the assumption t
there are no prompt crossings of multiple separatrices is
sential to the calculation. As we will see, it is also easy
test. Second, if we make a somewhat poor choice of
separatrix, so that there is some place where it bends ne
to one vacuum than the other, then much of the flux in t
place will be of trajectories which double cross and return
their starting vacuum. The probability flux will be larger tha
with a better definition of the separatrix. However, the d
namical prefactor will be smaller, since these extra crossi
do not lead to permanentNCS change. The rate we determin
is independent of exactly where we put the separatrix as l
as the flux across it is exponentially small, and as long as
make a complete calculation, including the dynamical pr
actor. We illustrate this point in Fig. 2. In practice we shou
look for a good choice of separatrix, since a poor choice
separatrix may make it harder to get good statistics forG, as
most of the~numerical! effort will go towards studying tra-
jectories which double cross rather than ones which re
changeNCS permanently.

C. Calculation: perturbation theory

The existing perturbative calculations of the broken ph
diffusion constant forNCS are along the lines of the approac
we just described. To allow a perturbative calculation, th
make an additional assumption; that the separatrix is do
nated by its saddle point. That is, they assume that gau

-
th

FIG. 2. Diagram of how a poor choice of separatrix can lead
overcounting the flux, and a small dynamical prefactor.
3-4
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MEASURING THE BROKEN PHASE SPHALERON RATE . . . PHYSICAL REVIEW D 59 014503
Higgs configurations on the separatrix are perturbativ
small excitations about a background field which is the lo
est energy point on the separatrix, which will be t
Klinkhamer-Manton sphaleron@36#. The choice of a defini-
tion of the separatrix is then made perturbatively; a poin
on the separatrix if the excitation in the unstable direction
the sphaleron is zero. The probability flux through t
sphaleron can be computed in perturbation theory by c
paring the free energy of all excitations of the sphaleron
the free energy of excitations about the naive vacuum, w
the frequency of the unstable mode serving to conve
probability into a flux and the translational zero modes c
verting this into a flux per unit volume.

The probability flux through the separatrix has been co
puted in the above approximation at the one loop le
@14,15#. However, extending the calculation beyond one lo
raises severe technical problems. The sphaleron is not a
tially homogeneous background field, so the perturbative
culation must be done in real space with a numerically
termined spectrum of fluctuations. The one loop calculat
requires finding this spectrum, but the two loop calculat
involves overlap integrals to compute the energy of th
mutual interactions. There are also conceptual problems,
cause one of the fluctuation directions is unstable. At o
loop it is excised from the sum over fluctuations; the oth
fluctuations set the probability to be near the separatrix an
turns that probability into a flux through the separatrix. Bu
is not clear how to separate it from the other modes at
loops. These problems obstruct a systematic improvemen
the perturbative treatment.

There is also the problem of how to determine the d
namical prefactor perturbatively. Khlebnikov and Shaposh
kov argued that it should equal to 1@37#, but Arnold and
McLerran made an estimate based on Landau dam
which suggests that it is quite a bit less than 1@3#. That
argument has been more carefully developed by Arno
Son, and Yaffe, who claim that, so long as the Higgs c
densate gives aW mass which is parametricallymW;g2T,
the prefactor should be parametricallyO(aw) @33#. Their
argument has recently been tested in the symmetric p
@26#. No one has used their picture to get a quantitative p
diction of the dynamical prefactor within the context of th
perturbative calculation of the sphaleron rate, although
should be possible in principle. These limitations of the p
turbative approach, together with the generally spotty per
mance of perturbation theory for electroweak phenomen
temperatures near the electroweak phase transition, mot
a fully nonperturbative attack on the problem.

D. Topology and the lattice

The nonperturbative technique best suited to studying
sphaleron rate is the lattice. There is an apparent comp
tion, though, which is that topology cannot in general be w
defined on the lattice; the global structure of the space
three dimensional lattice gauge-Higgs configurations is
ferent than in the continuum, and in particular it is simp
connected, so there are not topologically distinct vac
However, if we make the lattice spacing suitably small, th
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the thermal ensemble is completely dominated by configu
tions in which every elementary plaquette is close to th
identity. This means, roughly, that fields are perturbativ
small at the lattice scale. This subspace of the space of la
configurations does have the same topological structure
the continuum theory. Hence, if we excise a subspace
lattice configurations which carries an exponentially sm
weight, then we can talk about topology on the lattice.

The physical meaning of this is as follows. The space
continuum configurations permits sphaleronlike objects
arbitrarily small spatial extent. They also exist on the latti
down to where their size is comparable to the lattice spac
but at this point it becomes unclear how to define a smoo
interpolating continuum field, and the topological meaning
lost. Such a configuration in the analogous four-dimensio
context is referred to as an ‘‘exceptional configuration
However, the energy of spatially small, sphaleronlike fie
configurations rises linearly with inverse radius; so t
Boltzmann suppression of lattice scale sphalerons is e
mous and they essentially never occur. As long as
‘‘genuine’’ sphalerons we study are comfortably larger th
the lattice spacing, we have no problem. And when the ge
ine sphalerons we want to study are not comfortably lar
than the lattice spacing, then obviously the lattice spacin
too coarse, and we should use a finer lattice.

The situation here is much better than it is in the 4D ca
considered in QCD. It is also true in four dimensions tha
the gauge fields are smooth enough, then topology is w
defined @38–40#.3 However, in practice the fields may no
generally be smooth enough. Instantons just larger than
lattice spacing typically do exist, because the instanton
tion is classically scale independent, and so only varies lo
rithmically with instanton size. Making the lattice finer doe
not eliminate lattice spacing sized instantons~exceptional
configurations! very quickly; in fact, because their densit
goes as exp(21/g2) andg2 varies logarithmically with lattice
spacing, their density declines as an algebraic power ofa. In
the 3D context, though, the energy of a sphaleron of radiur
goes as 1/(g2r ) and the density of exceptional configuratio
varies with lattice spacing as exp@2(coefficient)/(g2aT)#,
which falls off extremely rapidly asa is made small. This
difference between the 3D and 4D cases is because the
theory is super-renormalizable; the coupling constant isg2T,
which is dimensionful. Since 1/g2 appears in the exponen
for the rate of any nonperturbative phenomenon, and sinc
must be accompanied by aT, on dimensional grounds a non
perturbative phenomenon which occurs at the lattice spa
scale must proceed at a rate which goes as 1/a, leading to the
exponentially fast rolloff in the density of exceptional co
figurations asa→0.

3In fact the 3D case is a subset of the 4D one, since the topo
we are talking about is the second Chern class of a closed loo
3D configuration space, which is equivalent to a periodic 4D latt
configuration with the spacing in the fourth dimension driven
zero.
3-5



on
se
b

or
in
r
e
im
im
h
of

ou
e

sil
he
o

n
th
th
d
o
if
e

s

e
ng
d

ur
er
li

ltr
en
n-

o

e

oic
g
o
o
e

e
t
r

ni-

a
trix
a
cu-

ing
is
e

n-
We
ith
al
n

ni-
and

rd
to-
unt
pa-
m.

the
e
the
the

with
eter
he

one
or
a-

s

of
ries

le of
tion

GUY D. MOORE PHYSICAL REVIEW D 59 014503
E. A ‘‘nice’’ nonperturbative choice for the separatrix

Now that we have established that topological questi
can have a meaning on the lattice, we ask how to choo
separatrix which is defined nonperturbatively and can
implemented on the lattice. A definition we would prefer f
the separatrix is the ‘‘gradient flow’’ definition, suggested
Refs.@37,41,42#. It is defined in terms of gradient flow unde
the Hamiltonian. The Hamiltonian is a smooth function ov
the space of configurations, with degenerate global min
at the vacua. We believe that these are the only local min
of the Hamiltonian in 3D Yang-Mills Higgs theory, althoug
we do not know a proof. Hence, following the direction
steepest descent of the energy~gradient flow! will lead, off a
set of measure zero, to a vacuum configuration. A rigor
definition of ‘‘the vacuum closest to a configuration’’ is th
vacuum arrived at by such gradient flow, which is also ea
implemented on the lattice. A very sensible definition of t
separatrix is then the boundary between the gradient fl
basins of attraction of two neighboring vacua~vacua with
NCS differing by 1!. Equivalently, it is the basin of attractio
of the saddle point which sits between the two vacua, i.e.,
sphaleron. If we mod out by all gauge transformations
two vacua are equivalent, but the separatrix can still be
fined as the surface where two infinitesimally separated c
figurations on opposite sides will have macroscopically d
ferent gradient flow paths which, when spliced togeth
form a noncontractible loop.

Alternatively we could define the separatrix just in term
of the Yang-Mills field ~connection! and the Yang-Mills
term in the Hamiltonian. This choice has the added ben
that, as the configuration gradient flows under the Ya
Mills Hamiltonian in three dimensions, it becomes excee
ingly smooth~meaning that all gauge invariant local meas
ables are slowly varying and the energy density is v
small!. Also, leaving out the Higgs fields evades the comp
cation that the Higgs mass squared is renormalized by u
violet thermal excitations, which change during the gradi
flow. The Yang-Mills gradient flow separatrix may not coi
cide with the Yang-Mills Higgs separatrix~which is not de-
fined until we decide how to deal with the renormalization
the Higgs mass term in the Lagrangian!. But if we perform a
complete calculation, including the dynamical prefactor, th
the exact choice of separatrix should not matter, as long
crossings are exponentially rare. Of course, a poor ch
will make the calculation inefficient, since most crossin
will not be associated with topology change. But we do n
expect the Yang-Mills gradient flow separatrix to be a po
choice, and we will be able to check this belief when w
study the dynamical prefactor.

F. Approach to computation

Now, we will outline how to compute the flux and th
dynamical prefactor. To do so, we need more than jus
definition of a separatrix. We need an order parameteN
which takes a special value, sayN5 1

2 , on the separatrix, and
is smaller on one side and larger on the other~say, going
from N50 at one vacuum toN51 at the other!. Assume that
we have such anN.
01450
s
a

e

r
a
a

s

y

w

e
e
e-
n-
-
r,

fit
-
-
-
y
-
a-
t

f

n
as
e

s
t
r

a

First, we should measure the probability over the cano
cal ensemble thatN is within some small tolerancee/2 of
~integer1!1

2. This gives the probability to be very near
separatrix. Since the probability to be close to the separa
is ~expected to be! exponentially small, we will need to use
multicanonical reweighting technique to sample here ac
rately. The basic idea is presented early in Sec. IV.

Then we need to know the mean inverse time for cross
this narrow region, to turn the probability into a flux. This
1/e times ^udN/dtu&, the mean of the absolute value of th
time derivative ofN, where the averaging is over the e
semble restricted to the narrow band about the separatrix.
determine this by taking a canonical sample of states w
uN21/2u,e/2, drawing momenta for each from the therm
ensemble,4 and performing a short segment of Hamiltonia
evolution, comparingN with its value a short Hamiltonian
time later. Thus, we can determine the flux.

To determine the dynamical prefactor, we take a cano
cally weighted sample of configurations at the separatrix
choose momenta for each, just as we do to find^udN/dtu&.
Then we perform the Hamiltonian evolution both forwa
and backward in time, until the forward and backward his
ries both settle into the neighborhood of a vacuum. We co
how many times the Hamiltonian trajectory crosses the se
ratrix before it settles semipermanently about a minimu
The prefactor is

prefactor5 (
sample

1

number of crossings

3H 1 final vacuumÞinitial vacuum,

0 final vacuum5initial vacuum.
~4!

This is not the same as adding up the number of times
final vacuum differed from the initial one and dividing by th
number of crossings of the separatrix. The reason is that
latter overcounts trajectories with many crossings, since
ensemble samples them more often than trajectories
fewer crossings. This is our recipe; given an order param
N, we can determine both the flux of probability through t
separatrix, and the dynamical prefactor, and henceGd .

It remains to choose an order parameter. We want
such that theN5 1

2 separatrix will be either the same as
quite close to the ‘‘good’’ choice of the gradient flow sep
ratrix. Naively, we expect a goodN to be the Chern-Simons
numberNCS. Actually, this is not quite right, as we discus
at some length in the next section.

III. DEFINING LATTICE NCS

We now have an idea for a nonperturbative definition
the separatrix, but we need an order parameter which va

4It is essential here that the phase space is the tangent bund
the configuration space, and that the thermal probability distribu
is a product of a configuration space function and a~Gaussian!
function over momentum space.
3-6
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MEASURING THE BROKEN PHASE SPHALERON RATE . . . PHYSICAL REVIEW D 59 014503
from 0 to 1 as it ranges between vacua and equals1
2 on a

surface close to the Yang-Mills gradient separatrix. The
erature generally considers the Chern-Simons numberNCS to
be the best choice for this@37#, so we will discuss how to
defineNCS on the lattice; then we will define a different bu
closely related order parameterN, which gives a separatrix
much closer to the gradient flow separatrix thanNCS does,
and which we will actually use in the calculation of the br
ken phase diffusion rate.

A. The definition

The Chern-Simons number should be defined as some
valued function over the space of three-dimensional ga
connections. Let us review some properties whichNCS
would have in the continuum, and see how closely we
preserve them on the lattice.

In the continuum,NCS, defined on the space of gaug
field configurations moduloall gauge transformations, ha
the following properties.

~1! NCS should be a continuous, multiply valued functio
with the values separated by 1.

~2! The multiple values correspond to the projections
different points on the universal cover, whereNCS is single
valued. A noncontractible loop in the configuration spa
lifts to a line segment in the cover space, and the differe
in NCS between the end points is the winding number of
loop. ~A more conventional way of saying this is thatNCS
differs between two gauge copies by the winding numbe
the gauge transformation between them. But we prefer
above, gauge invariant statement.!

~3! A vacuum configuration hasNCS modulo 1 equal zero
~4! Consider a path in configuration space parametri

by t. The difference inNCS between the beginning and en
of the path should be

DNCS5
g2

16p2 E dtE d3xe i jkFi j
a ~DtAk!

a. ~5!

This is the same as saying thatNCS is the indefinite integral
of

g2

32p2 E d3xFmn
a F̃mn

a 5
g2

8p2 E d3xEi
aBi

a . ~6!

FIG. 3. Illustration of the pieces which make up a lattice gau
theory.
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How many of these properties can we preserve on
lattice? Not all of them; as we pointed out in Ref.@20#, there
is no local operator definition ofEi

aBi
a which is a total de-

rivative. We also argue there that there are severe difficul
satisfying property~2!; but this is because we demanded
singly valued, nongauge invariant definition ofNCS. In fact
we can present a lattice definition ofNCS which satisfies
everything but property~4! and the continuity requirement
provided we restrict to gauge fields which are smoo
enough, in the sense of the last section, so that property~2!
makes sense.

Before constructing a lattice definition ofNCS, we remind
the reader how the lattice fields are defined~see Fig. 3!. On a
lattice, scalar fields are only defined at a discrete set
points, the lattice sites. The gauge field should be a conn
tion, that is, it should be a rule which tells how to paral
transport fields along paths. We allow a path on the lattice
consist of a series of straight lines between nearest neig
lattice sites. The connection is then defined by associatin
group elementUPSU~2! with each of these elementar
straight lines~referred to as the links of the lattice!. A small
closed path, or the product of theU around the path, is called
a plaquette; the 131 square is the elementary plaquet
When we do not specify the shape of a plaquette we mea
elementary plaquette. The product of theU around a
plaquette ~written Uh , often just referred to as ‘‘a
plaquette’’! will not in general be the identity; its failure, a
curvature in the connection, is a field strength.

It is important that the field strength is not associated w
a site of the lattice, but with a plaquette, which sits in b
tween sites. Then, to make a lattice implementation
*emnabFmnFab , we will have to do some averaging. Th
argument of the integral is a pseudoscalar and should
haps be defined at the lattice sites; but the field strengt
associated with a plaquette. To preserve cubic symme
Fmn at a site will have to be the average over the fo
plaquettes in them, n plane which touch the site.5 Because of
this averaging process over things which do not live quite
a lattice site, the resulting lattice definition ofemnabFmnFab

will not be a total derivative; and we cannot fix this proble
by going to fancier definitions involving weighted averag
of plaquettes of various shapes@20#. The problem is that the
continuum proof thatFF̃ is a total derivative relied on con
tinuity of the fields, and this continuity is lost on the lattic
This makes it impossible to satisfy property~4!. Note, how-
ever, that the lattice definition ofFmnF̃mn is gauge invariant.

5We are thinking of a path through configuration space as a fo
dimensional lattice, where the fourth dimension is the path par
eter, taken as a discrete rather than a continuous variable. Su
sive three-dimensional slices are configurations along the path.
numerical setting, a path through the configuration space will
ways look like this, though making the spacing in the fourth dire
tion arbitrarily small restores the continuity of the path.

e
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GUY D. MOORE PHYSICAL REVIEW D 59 014503
However, when the gauge fields are weak at the lat
scale~meaning that the elementary plaquettes are close to
identity! and slowly varying~meaning that the departur
from the identity is nearly the same between a plaquette
the parallel transport of a nearby plaquette in the sa
plane!, then the lattice definition ofEi

aBi
a is approximately a

total derivative. Further, we can pick a definition ofNCS so
that property~4! is satisfied at least in one particular spec
direction. We choose it to be true in the cooling directio
that is, the direction of energy gradient flow. Here the ene
of the lattice field is given by the standard Kogut-Sussk
Hamiltonian @43#, which is defined up to a multiplicative
factor as

HKS~U !} (
plaquettesUh

S 12
1

2
TrUhD . ~7!

The gradient ofHKS is to be understood in terms of th
metric of the configuration space, which is the product of
Haar measure over each link matrixU.

We will call a path which follows the steepest desce
of HKS a cooling path, and we parametrize it with
cooling time t, defined as dt5d(path length)/@dHKS/
d(path length)#. The gauge fields evolve along the path a
cording to@25#

]U

]gt
52DaUDaHKS, ~8!

where Da is the left acting covariant derivative,DaU
5 i taU, andDaHKS is HKS with U replaced withDaU. This
is the gauge invariant lattice implementation of the co
tinuum evolution

]Ai
a~x!

]t
52

]H

]Ai
a~x!

. ~9!

t has dimensions of length squared.
We are definingNCS so that condition~4! is true along the

cooling path. Since cooling eventually leads to the vacu
off a set of measure zero, and sinceNCS of the vacuum is by
definition an integer, we get

NCS[ integer2E
0

`

dt
g2

8p2 E d3xEi
aBi

a , ~10!

where we mean the lattice definition ofEi
aBi

a which we have
described, and which is written down in Ref.@19#. This defi-
nition of NCS is nice because the cooling path leads m
quickly towards configurations with weak, slowly varyin
gauge fields, so the definition is minimally contaminated
the problems with the lattice definition ofEi

aBi
a which we

have discussed.
Performing the integral in Eq.~10! takes an enormou

numerical effort. Cooling the fields~following the cooling
path! stably requires using at step size of less thana2/6 ~a
the lattice spacing!, or else the most ultraviolet excitation
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become unstable.6 But sufficient cooling may demand goin
to t of order 1000a2. However, the cooling is by far the mos
efficient at removing ultraviolet excitations, and already
t.a2 the fields are slowly varying. After this much coolin
we lose almost no information if we drop some UV degre
of freedom by setting up a coarsened lattice. Define an e
site as a site where all three coordinates are even numbe
a scalar field theory, we would coarsen by dropping out
the lattice sites which are not even, leaving a lattice half
many points across in each direction. In a gauge theory,
also need to define the connections between the sites o
coarsened lattice; we define the connection between
neighboring even sites as the product of the two connect
along the straight line between them. We illustrate the ide
Fig. 4. The remainder of the cooling then proceeds 25 times
faster, 23 because the lattice is smaller and 22 because we
can use at step size which is larger in physical units.

Of course we must check that this procedure produces
same answer as we get by not coarsening. But if we use
O(a2) improved definition ofE•B, for instance the one we
developed in Ref.@21#, then this is not a problem at all. Th
value ofNCS gets rescaled by an amount typically less th
1% and has an amount of noise added to it which is typica
even smaller. For lattices more than about 28 sites across
can even safely perform a second stage of coarsening
performing several coolings on the once coarsened confi
ration.

B. Application to the symmetric phase

As an application we discuss how to use this definition
NCS to studyNCS diffusion in the symmetric phase, or pur
Yang-Mills theory. In this case we want to trackNCS along
the projection into configuration space of a Hamiltonian t
jectory in phase space. That is, generating a Hamilton
trajectory will give us a closely spaced series of points
configuration space, and we must associate a single va
function NCS with this series. Our definition says that w
should measureNCS at each point by performing the integra

6We improve on this marginally by using alternately larger a
smaller step sizes, analogous to what we did in Ref.@20# when
quenching theE fields to enforce the Gauss law.

FIG. 4. Original lattice and the coarsened version, which is j
the solid lines and filled vertices. The link matrix between tw
vertices of the coarsened lattice is the product of the matrices on
two original links which make it up.
3-8
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MEASURING THE BROKEN PHASE SPHALERON RATE . . . PHYSICAL REVIEW D 59 014503
in Eq. ~10!, that is, we must cool the configuration at ea
point along the Hamiltonian trajectory to the vacuum. W
also have to choose the integer part of Eq.~10! somehow. At
certain points, the value of the integral will abruptly jump b
almost an integer. This happens whenever the Hamilton
trajectory crosses a gradient flow separatrix. We sho
choose the integer part ofNCS to minimize the magnitude o
the jump inNCS at the separatrix. We illustrate with an e
ample of real data from a simulation of Yang-Mills theory
Fig. 5. Note that the discontinuities inNCS do not necessarily
occur whenNCS is near61

2; we will discuss this more in the
next subsection.

In practice, even with lattice coarsening, the numeri
costs of cooling every configuration are unbearable, but
can do better. We show how in Fig. 6. Every few steps,
cool a little, to a depth oft;a2, and we thereby construct
cooled image of the Hamiltonian path, a technique explo
by Ambjo”rn and Krasnitz@25#. We measureNCS using Eq.
~10! at occasional points along this path, interpolatingNCS in
between by integratingEi

aBi
a along the cooled image of th

Hamiltonian path. The cooling has eliminated most of t
UV excitations, soEi

aBi
a along the cooled path is close t

FIG. 5. (g2/8p2)*Ei
aBi

ad3xdt for a series of points on a Hamil
tonian trajectory. It is clear where to adjust the integer part of
~10! to keepNCS ~approximately! continuous.

FIG. 6. ~Time, cooling time! plane, with curves used to trac
NCS for a Hamiltonian trajectory. Every few Hamiltonian update
we construct a cooled copy of the configuration, giving a para
cooled path. Every few points on that path, we measureNCS di-
rectly, and we fill in between by integratingE•B along the parallel
cooled path. As long as the integrals along paths 1 and 2 alw
agree modulo an integer, within a small tolerance, the techniqu
topological.
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behaving as a total derivative, especially if we use anO(a2)
improved definition ofEi

aBi
a . The interpolated value ofNCS

is therefore almost what we would get by using the dir
definition at each time. We only need it to be close enough
determine the integer part of Eq.~10! unambiguously, which
we can if the value we get by integrating on path 1 in Fig
and the value we get by integrating on path 2 in that fig
differ by an integer plus a small remainder. We can think
this remainder as a calibration of the integration along
cooled path, so the approach is a ‘‘calibrated cooli
method,’’ with the occasional cooling paths to the vacuu
recalibrating the method of Ambjo”rn and Krasnitz@25# to
make it topological.

We compared this approach of measuringNCS to the
‘‘slave field’’ topological method@24#, by evolving Yang-
Mills theory on a 243 grid ata51/(2g2T)(bL58) for a total
time of 6000a, trackingNCS by each technique. For the tech
nique we just described, we constructed a cooled image
with one point everya/5 time. The cooling depth to this pat
was 5a2/8, and we calibrated by cooling to the vacuum eve
2a time. With this lattice spacing and this frequency of ca
brating, the largest remainder we observed was 0.2 and
typical absolute value was less than 0.05. We present
results forNCS in Fig. 7. We have offsetNCS measured by
the slave field method by 5 to keep the curves from lying
top of each other. The agreement is outstanding, and
difference in the determined values ofNCS is white on long
time scales.

To explain why the two methods have a white noise d
ference, we review briefly how the slave field method wor
It tries to keep track of the ‘‘integer’’ part of Eq.~10! by
assuming that the cooling path will end in a vacuum wh
has winding number zero in Coulomb gauge, and then a
ing up the number of large gauge transformations require
keep the system in Coulomb gauge during the Hamilton
trajectory. However, this ignores the contribution to Eq.~10!
from the integral, that is, the difference betweenNCS of the
configuration and of the vacuum it cools to. Also, the alg
rithm used to find Coulomb gauge sometimes gets trap
temporarily in a Gribov copy with a different winding num
ber. But neither difference between the methods will gr
without limit in time, so the difference between the two me
surement methods forNCS is white on long time scales
Hence, the derived diffusion constant will be the same wit
errors~caused by the white noise difference!. Indeed, when
we used the technique of Ref.@24# to extractGd from each
trajectory, the two methods of trackingNCS gave the same
answer within error (gd50.051560.0077a21 for the new
method, versusgd50.051660.0082a21 for the slave
method!. As an aside, we mention that Hetrick and de F
crand have used the method of cooling to resolve the Gri
problem, by defining Coulomb gauge~or, in their four-
dimensional context, Landau gauge! as the gauge in which
the vacuum configuration arrived at via cooling has the m
mum value of*A2 @44#.

C. Modifications for measuring Gd in the broken phase

The definition ofNCS which we just presented more ac
curately reproduces the continuum meaning ofNCS than any

.
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ys
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FIG. 7. Left: NCS measured by the slave field~upper curve! and ‘‘calibrated cooling method’’~lower curve!. Right: the difference
between the curves~note scale!. The difference is small and spectrally white, so the methods are in good agreement.
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other we know. But we do not actually want all of the a
tributes of the continuum meaning ofNCS if we want to
measureGd in the broken phase by the separatrix meth
The reason is thatNCS is only directly a measure of topolog
for vacuum configurations. There are contributions toNCS in
excited states which are uncorrelated to topology; for
stance,NCS does not vanish in Abelian gauge theory, ev
though that theory has nop3 topological sectors. In the con
tinuum Abelian theory,NCS is given by

NCS5
g2

32p2 E d3xe i jkFi j Ak , ~11!

and the mean square value ofNCS is

^NCS
2 &5

g4

1024p4 E d3xd3ye i jke lmn

3^Fi j ~x!Ak~x!Flm~y!An~y!&. ~12!

Using Wick’s theorem and the momentum representation
the propagator, in a general covariant gauge, this becom

^NCS
2 &5

g4

1024p4 E d3xd3yE d3pd3q

~2p!6
ei ~p1q!•~x2y!

3e i jke lmnT
2F4pipl

p2q2 S d jm1~a21!
pj pm

p2 D
3S dkn1~a21!

qkqn

q2 D 1~m↔n!G
5

g4T2V

64p4 E d3p

~2p!3

p2

~p2!2
, ~13!
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soNCS will be Gaussian distributed with a linearly diverge
variance. On the lattice, the UV divergence will be cut off
the lattice scale; the coefficient was found by Ambjorn a
Krasnitz @19# and is

^NCS
2 &5~1.4431025!g4VT2/a. ~14!

The divergence occurs because, while the energy cos
storingNCS in a UV mode grows linearly withp, the number
of available states in which to storeNCS grows faster; en-
tropy wins over energy. The same thing happens in SU~2!
theory, becauseNCS also contains thee i jkFi j Ak term. The
coefficient of the divergence in SU~2! is larger by 3, the
dimension of the group. Since Yang-Mills theory in 3D
super-renormalizable, the UV decouples from the IR, wh
the genuine topology changing physics occurs, so this
divergent, Gaussian contribution will appear as an addit
correction to the IR contribution toNCS. That is, to reason-
able accuracy we can think ofNCS, defined in Eq.~10!, as
NCS5NCS

IR 1NCS
UV, where topological information is inNCS

IR ,
andNCS

UV is independent ofNCS
IR and Gaussian distributed.

Given a single IR field configuration with some particul
value ofNCS

IR , different realizations of the UV excitations o
top of the IR fields will then give a distribution of values o
NCS; so the probability thatNCS will have a particular value
x, PNCS(x), will be

PNCS~x!5E
IR configs

E
UV excit

d~x2NCS
IR 2NCS

UV!, ~15!

or, definingPNCS
IR (x) and PNCS

UV (x) to be the probability dis-
tributions for the IR and UV components ofNCS,
3-10
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MEASURING THE BROKEN PHASE SPHALERON RATE . . . PHYSICAL REVIEW D 59 014503
PNCS~x!5E dyE dzPNCS
IR ~y!PNCS

UV ~z!d~x2y2z!

5E dyPNCS
IR ~y!PNCS

UV ~x2y!. ~16!

The probability distribution forNCS will be a convolution of
the interesting IR distribution and a Gaussian noise distri
tion. Convolving any periodic function with a Gaussian a
ways degrades contrasts in that periodic function, enhan
the probability to be near theNCS5

1
2 separatrix relative to

the case of no UV noise. The distortion will be small only

^~NCS
UV!2&!

d2 ln PNCS
IR ~x!

dx2 U
x51/2

. ~17!

Later, we will use a 403 lattice with a52/(5g2T). Mul-
tiplying Eq. ~14! by the group factor of 3 and plugging i
numbers,̂ (NCS

UV)2&50.44 for such a lattice, which is too big
So definingNCS by Eq. ~10! will not do.

Another way to state the above is that the separatrix
gets from the conditionNCS5

1
2 is sensitive to ultraviolet

excitations, which makes it ‘‘all wiggly’’; it will have lots of
‘‘fingers’’ which stick out towards one or the other topolog
cal vacuum, and the problems we discussed in Sec. II
there being many crossings of the separatrix which do
have to do with permanentNCS change, will be severe.

The problem is thatNCS5
1
2 is not particularly similar to

the ‘‘good’’ gradient flow definition of the separatrix. W
want an order parameter which is close toN5 1

2 on the gra-
dient flow separatrix. TheN5 1

2 separatrix does not need t
correspond exactly with the gradient flow definition; is su
ficient if the distribution of values ofN on the gradient flow
separatrix is narrow, preferably narrower thand2PN(x)/dx2.
A slight change to Eq.~10! will do the trick; define

N[ integer1
g2

8p2 Et0

`

dtE d3xEi
aBi

a , ~18!

where we mean the lattice implementation of the integr
andE, B as before. In other words, we ‘‘precool’’ the con
figuration for cooling timet0 and then measureNCS. The
precooling is intended to remove UV excitations without
fecting the underlying IR fields much.

Now considerN in the Abelian theory again. The theor
is linear, so it is easy to analyze how cooling affects it.
particular transverse modeA(k) evolves according to

dA~k!

dt
52

]H

]A~k!
52k2A~k!⇒A~k,t!5e2k2tA~k,0!.

~19!

The propagator in Landau gauge becomes

^Ai~k,t!Aj~ l ,t!&5S d i j 2
kikj

k2 D e22k2t

k2
d~k1 l !, ~20!

and the variance ofN is
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^N2&5
g4T2V

64p4 E d3p

~2p!3

p2e24p2t

~p2!2
. ~21!

So precooling removes the UV noise from the definition
NCS.

For comparison, Fig. 8 showsN and NCS for the same
broken phase Hamiltonian trajectory; whileNCS varies
wildly on a short time scale due to UV fluctuations,N is
steady, and shows that the infrared fields never stray far f
the vacuum.N will not meet all the conditions we set out fo
NCS; for instance it will violate condition~4! severely. How-
ever, it will be closer to a continuous function, since initi
cooling removes UV excitation from the configuration, lea
ing weaker and more slowly varying fields for which th
definition of Ei

aBi
a is less problematical. There is also le

problem using coarsening with this definition. For instan
on a 283 grid, single coarsening aftert5(5/4)a2 and double
coarsening aftert52.8(2a)2, and using anO(a2) improved
definition ofEi

aBi
a , the discontinuity inN across the gradien

flow separatrix is 0.987060.0029 ~drawing configurations
from broken phase Yang-Mills Higgs theory atbL57, see
next section!. To makeN a continuous function modulo 1
the jump should have been 1. By rescalingN slightly, the
discontinuity is removed almost altogether. The value of
discontinuity for larger lattices and deeper cooling is ev
closer to 1 with less noise.

Let us check that the new definition ofN will have N
> 1

2 on the gradient flow separatrix. A point right on th
separatrix will gradient flow to the saddlepoint configurati
and stick there.7 Perturbing the starting configuration slight
off the separatrix, it will cool to the saddle, miss slightly, an
then slide off to a vacuum. The closer to the separatrix
start, the longer we will stick in the saddle before we sli
out. There is some earlyt ~transient! contribution to

7This saddle point is not the same as the Klinkhamer-Man
sphaleron, because we are considering the Yang-Mills Hamilton
only, in a finite volume. But we know such a saddle will exist b
the same argument Manton originally made for the existence of
sphaleron@45#.

FIG. 8. NCS ~wildly oscillating curve! andN ~curve which stays
near 0! during a broken phase Hamiltonian trajectory, in a 403 box
with a52/(5g2T) @and usingt053.2/(g2T)2]. NCS has a lot of UV
noise, which is absent inN.
3-11
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**Ei
aBi

ad3xdt while it is approaching the saddle, and th
there is a contribution, almost exactly equal to1

2, as it rolls
from the saddle to the vacuum. By choosingt0 large enough,
we miss the transient and pick up only the1

2, and so theN
5 1

2 separatrix will correspond almost precisely with the g
dient flow separatrix. We illustrate this with data from
Yang-Mills theory simulation in Fig. 9. The figure plots

g2

8p2 E0

t

dt8E d3xEi
aBi

a ~22!

~shifted so the vacuum will have integerNCS) againstt for a
series of points on a Hamiltonian trajectory as it go
through the separatrix. Each curve records the cooling p
cess of a successive point on the Hamiltonian trajectory.
see that as the Hamiltonian trajectory approaches the~gradi-
ent! separatrix, the cooling path stays near the saddlep
for longer and longer. When the Hamiltonian trajecto
crosses the separatrix, the cooling paths roll out of the sa
towards the other side. The figure also shows the eart
transient. We want to choose at0 large enough to eliminate
this transient, soN> 1

2 will hold for a configuration which
starts almost exactly on the gradient flow separatrix.

We should make sure that the result forGd will be inde-
pendent oft0 , oncet0 is large enough to eliminate the UV
problems. We remind the reader thatGd is computed by
choosing ane!1, and computing the probability to be withi
e/2 of 1

2,

Pe5E
~12e!/2

~11e!/2
PN~x!dx. ~23!

Also, one computes the time rate of change ofN, ^udN/dtu&,
evaluated for configurations withN> 1

2 . The rateGd is then

Gd5
1

V

Pe

e
^udN/dtu&, ~24!

times the dynamical prefactor.
Increasing the cooling time will decreasePe . The reason

is that configurations which are near the saddle point at c
ing timet0 are spreading out from each other as cooling ti
progresses, as Fig. 9 illustrates. The rate of the spreadin

FIG. 9. Plot of*E•B from 0 tot, as a function oft, for a series
of points along a Hamiltonian trajectory as it passes through
gradient flow separatrix.
01450
-

s
o-
e

nt

le

l-
e
is

given by the unstable frequency squared (v2)2 of the
saddle.8 Increasingt0 makes them spread further before w
measure theirNCS; so the sample of states will be mor
diluted, by a factor of exp@2Dt0 /(v2)2#. This reducesPe by
the same factor. However, we measuredN/dt by choosing
two neighboring configurations on a Hamiltonian trajecto
and finding the difference in their values ofN. The spread
between these at cooling timet0 will also increase as we
increaset0 , by the same amount; so^udN/dtu& will go up by
exp@Dt0 /(v2)2#. Hence, Gd will be t0 independent. This
means, however, that neither^udN/dtu& nor PN(x) have
simple physical interpretations.

There is a modification of the above reasoning ift0 is too
short to eliminate the early transient; namely, a contribut
to dN/dt due to the time evolution of the transient. In th
complete calculation this will be compensated for beca
the dynamical prefactor will differ from the gradient flow
value by a t0 dependent amount, which becomes no
negligible at the same time the transient contribution
dN/dt does. In a complete calculation,Gd will be indepen-
dent oft0 , as we argued in the last section.

We end this section by discussing briefly why we choo
to defineN based only on the Yang-Mills fields and using th
Yang-Mills Hamiltonian for the cooling, rather than includ
ing the Higgs field. Doing so is reasonable becauseNCS
should be defined as a function of the gauge fields alo
Also, cooling all the fields under the full Hamiltonian i
problematic, because the UV fluctuations of the gauge
Higgs fields renormalize the Higgs mass squared@46#. The
bare potential needs a large, negative mass squared cou
term. However, the UV fluctuations are the first casualty
the cooling process, and so they stop generating a the
Higgs mass squared, early in the cooling. To keep the m
mum of the Higgs potential from changing radically, on
would need to vary the bare Higgs potential in a complica
way as the cooling progressed. Other important fluctuat
induced effects are also lost; for instance, the cubic te
which makes the phase transition first order disappears a
cool the excitations. Depending on how we handle the Hig
potential during cooling, we will either cause symmetry
break during cooling when we start in the symmetric pha
or cause it to be restored when we start in the broken ph
we cannot avoid both, because there is a range of temp
tures where each phase is metastable. Cooling only the g
fields avoids this complication.

IV. MONTE CARLO CALCULATIONS

Here we discuss details of performing the calculation
PN(x) and^udN/dtu& using the definition ofN from Eq.~18!.
We also discuss the computation of the dynamical prefac
with and without ‘‘adding’’ hard thermal loops. Readers wh
do not do this kind of calculation will want to skip all but th
first subsection and go to the results.

8Which does not equal (v2)2 of the Klinkhamer-Manton sphale
ron.

e
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MEASURING THE BROKEN PHASE SPHALERON RATE . . . PHYSICAL REVIEW D 59 014503
A. Multicanonical Monte Carlo calculation: the idea

We need to compute the probability distributionPN of
Chern-Simons number@really, the Chern-Simons number o
a precooled configuration, defined in Eq.~18!#. The probabil-
ity density thatN5x is

PN~x!5 lim
dx→0

1

Zdx E DUDuDFe2bH~U,u,F!

3Q@N~U !2x#Q@x1dx2N~U !#, ~25!

whereU, u, F are the SU~2! connection, the U~1! connec-
tion, and the Higgs field, andN(U) is defined in Eq.~18!.
Here*DUDuDF means the integral over the value of ea
field at each lattice site, andZ is the value of the integra
without the step functions. On anN3 lattice, this is a 16N3

dimensional integral, which forN540 is 1 024 000 dimen-
sions. For this reason we turn to Monte Carlo integration
a canonical Monte Carlo integration we generate a sampl
configurations drawn with weight

e2bH~U,U,F!DUDuDF, ~26!

and replace the integral with a sum over that sample. T
will not do in the present context, because we want to kn
PN(x) even where it is exponentially small. To get a go
sampling there would require generating an exponenti
large sample.

We evade this problem by doing a multicanonical Mon
Carlo calculation@47#. We rewrite Eq.~25! as

PN~x!5 lim
dx→0

1

Zdx E ~DUDuDFe2bH~U,u,F!ef @N~U !#!

3$e2 f @N~U !#Q@N~U !2x#Q@x1dx2N~U !#%,

~27!

with f (x) some function we are free to choose. Now w
generate a sample of configurations drawn with weight

e2bH~U,u,F!ef @N~U !#DUDuDF, ~28!

and replace the integration in Eq.~27! with a sum over this
sample, with the term in the second set of parenthesis as
argument of the sum. By choosingf (x)>2 lnPN(x), we push
the exponential suppression from the sampling into the in
grand. The quality of the integration is now limited by ho
quickly we can generate a quality sample with this weig
and how well we can choosef (x), which we must do by
some form of bootstrapping.

A usual way to generate a canonical ensemble is by s
Markov process. Given a configurationC1 and a realizationj
of some random noise distribution, the process returns a
configurationC25M (C1 ,j). Define the probability to return
a particularC2 as

P~C1 ,C2![E djd„M ~C1 ,j!,C2…. ~29!

If M satisfies detailed balance,
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P~C1 ,C2!

P~C2 ,C1!
5exp@b„H~C1!2H~C2!…#, ~30!

then iterating the Markov process generates the canon
distribution. We get the best statistics if applyingM is nu-
merically cheap and if the return value differs as much
possible from the starting value.

If we have a Markov process which generates the can
cal ensemble, we make it generate the multicanonical
semble with weight functionf (C) by making the following
modification. Given a configurationC1 , generate C2
5M (C1 ,j). AcceptC2 as the next configuration in the se
quence with probability

min@1,exp„f ~C2!2 f ~C1!…# ~31!

and otherwise reject it and makeC1 the next configuration.
This changes the detailed balance relation for the sequen
incorporate f into the weight. We may no longer wan
M (C1 ,j) to differ from C1 by as much as possible, thoug
because that may make the reject rate very large. Instea
want u f „M (C1 ,j)…2 f (C1)u;1.

B. Note on algorithm

We need to do two kinds of things. The first is to evalua
the path integral for dimensionally reduced 3D Yang-Mi
Higgs theory. The second is to study the dynamics of
(311)-dimensional classical theory. We comment briefly
the connection between the two; in particular we sho
compare the partition function of the classical theory to
path integral for the dimensionally reduced theory, a co
parison first made by Ambjo”rn and Krasnitz@19#.

The partition function of classical (311)-dimensional
Yang-Mills Higgs theory~not worrying about the difference
between lattice and continuum, which will not be importa
here! looks similar to

Z5E DAiDFDEiDPd @~DiEi !
a1~g/2!~ ip†taF1H.c.!#

3exp@2H~A,F,E,P!/T#, ~32!

H5E d3xS B2

2
1

E2

2
1~DiF!21p2D , ~33!

whereE, the electric field, is the conjugate momentum ofA,
andP is the conjugate momentum ofF. The delta function
enforces the Gauss law. We can implement the Gauss law
means of an adjoint valued Lagrange multiplierA0

a , giving
@19#

Z5E DAiDFDEiDPDA0

3exp$ iA0
a@~DiEi !

a1~g/2!P†taF1H.c.#/T%

3exp@2H~A,F,E,P!#. ~34!

The integrals overE and P are rendered Gaussian; doin
them gives
3-13
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Z5E DAiDFDA0 exp@2H~A,F,A0!/T#, ~35!

H5E d3xS B2

2
1

~DiA0!2

2
1~DiF!21

g2

4
A0

2F2D .

~36!

So the thermodynamics of the classical theory with
Gauss law is governed by the 3D dimensionally reduced p
integral, but including theA0 field at zero ~bare! Debye
mass. We could get the path integral without theA0 field if
we did not enforce the Gauss law. There are two choic
either we treat the dynamics dropping the Gauss law or
include theA0 field in the 3D Monte Carlo parts of the ca
culation.

The conservative approach is to include the Gauss law
the dynamics, which means including anA0 field in the ther-
modynamics. The easiest canonical Monte Carlo Mark
process in this case is a short Hamiltonian trajectory star
with randomized but constraint respectingE and P fields,
with the multicanonical accept reject steps inserted betw
evolutions. This is a ‘‘constrained molecular dynamics’’ a
gorithm, and the problem of drawingE andP from the ther-
mal distribution respecting the constraints is addressed
Ref. @20#. Alternately we could use heat bath and overrela
ation updates on the system described in Eq.~35!. Neither
approach is terribly efficient.

The other option is to assume that Gauss’ Law is not v
important to the dynamics, and not enforce it when we dr
momentaE andP from the thermal ensemble. This assum
tion is certainly justified with regards to measurin
^udN/dtu&. What the combination ofE andP forced zero by
the Gauss law would do if we did not set them zero is
gauge rotate the fields, but not the momenta. On long t
scales that might be important, but at leading order in
length of a short Hamiltonian trajectory it only changes t
gauge of the final configuration. SinceN is a gauge invarian
object, this does not matter. A less rigorous but more ph
cally intuitive way to see the unimportance of the Gauss L
to ^udN/dtu& is to note that it is roughly the instantaneo
value of*d3xEi

aBi
a . Now the magnetic field is transverse b

the Bianchi identity, so only the transverse components
the electric field contribute todN/dt. But the Gauss law only
depends on the longitudinal components, sodN/dt should be
the same whether or not we enforce it.

It is less clear whether the Gauss law will have a role
setting the dynamical prefactor, since it depends on lon
time dynamics; but we are getting the dynamical prefac
wrong anyway if we do not enlarge the system somehow
account for hard thermal loop effects properly. We sho
deal with these two questions together.

The chief advantage of not enforcing the Gauss law is
there are very efficient update algorithms for the path in
gral without either theE, P, or A0 fields, for instance the one
developed by Rummukainenet al. @5#. We adopt their lattice
action, which is the standard Wilson 3D Yang-Mills Higg
action, but we add a noncompact U~1! field. We use their
update, which must be extended to include the noncom
U~1! field. In the noncompact formulation, the U~1! gauge
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field on a link is represented by a single real numberBi(x),
and the terms in the action which depend on the U~1! field
are

H.
a

2g2z
(

x
F(

i . j
@Bi~x!1Bj~x1 i !2Bj~x!2Bi~x1 j !#2G

2a(
x

(
i

f†~x!Ui~x!exp@ iaBi~x!#f~x1 i !, ~37!

wherea is the lattice spacing,z5tan2 QW, andUi(x) is the
SU~2! connection on thei,x link. The compact formalism is

the same except that (1
2 )((B)2 is replaced bya22@1

2cos(a(B)#. In the compact case the energy, as a function
one B, is a trigonometric function. It is easy to perform a
exact heat bath or over-relaxation step@10#. For the noncom-
pact case the energy is the sum of a quadratic and a trig
metric function and it is not easy to perform an exact ov
relaxation or heat bath update. We perform the update ba
just on the ~much larger! quadratic term and include th
trigonometric term by an accept reject step. The accept
is quite high, so the cost to algorithm efficiency is low. W
also occasionally gauge transform to bring theB fields to-
wards Coulomb gauge so that the typicalB is close to zero
and the series expansion of exp@iaBi(x)# converges quickly.

We always applyO(a) improvement to the lattice action
as described in Refs.@48, 49#. Whenever we refer to physica
units in this paper they are always related to the lattice o
through O(a) improved relations. The improvement is e
sential to achieving the numerical accuracy we want at r
sonable lattice spacings, and it makes small spacing extr
lations of most quantities unnecessary. For instance, we h
computed the jump inf2 at the equilibrium temperature fo
a54/7g2T (b57) anda52/5g2T (b510) to see how sen
sitive results are to varyinga. The results are (Df2/g2T2)
52.5160.02 and 2.5660.03 respectively; the@O(a2)# er-
rors are smaller than the statistical errors we will be able
achieve forGd , so lattice spacing errors are under contro

We have also used the technique of Ref.@26# to study the
influence of hard thermal loops on the dynamical prefac
The idea is to add a large number of weakly interactin
ballistic charged particles to the lattice system, which rep
duce the effects of the hard degrees of freedom left out w
we set up our lattice. We refer the reader to Ref.@26# for
details. This approach demands that we apply the Gauss
and we must use the~Hamiltonian! thermalization algorithm
as our Markov process. This is very inefficient, so we c
only use the technique to study the dynamical prefactor,
the flux through the separatrix.

C. Finding Tc

At what temperature should we study the sphaleron rat
the broken phase? We choose the equilibrium tempera
for the phase transition. This is appropriate if the latent h
liberated during the cosmological electroweak phase tra
tion is sufficient to reheat the universe toTc , which would
be the case if the latent heat were large or the supercoo
were small. It is in fact not clear whether this will be th
3-14
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MEASURING THE BROKEN PHASE SPHALERON RATE . . . PHYSICAL REVIEW D 59 014503
case, in the MSM or in more viable extensions. We w
chooseTc anyway, because we then have a well specifi
question with only one free parameterl/g2; in addition,
complete reheating may generically occur in supersymme
extensions with a light top squark.~It also may not; see Ref
@50#.!

In the effective 3D theory we actually find the critic
Higgs mass squared, which is related through the dim
sional reduction procedure to the critical temperature. Si
this involves comparing the thermodynamical favorability
the broken and symmetric phases, it necessarily invo
some multicanonical technique. We will use a particula
simple approach, somewhat similar to the one used in R
@51#. It is based on the fact that, in a very long rectangu
box, values of*F†F/V[^f2& intermediate between th
symmetric and broken phase values are obtained by havi
mixed phase configuration, where part of the volume is in
symmetric phase and the rest is in the broken phase.

The free energy, as a function of^f2&, is 2T ln(P), with
P the probability to have that value of^f2&. In the range of
intermediate^f2&, the free energy will vary linearly with
^f2&, since a change of̂f2& represents a change of ho
much bulk free energy comes from one phase and how m
comes from the other phase. The slope of the linear rela
tells the free energy difference between the two bulk pha
This linear regime breaks down where^f2& comes close to
the value in one or the other phase, since the phase interf
then get close enough together to interact.

Our approach is to add âf2& dependent contribution to
the Higgs boson mass, which we achieve by adding to
Hamiltonian a new nonlocal term

hN3S 1

2N3 ( F†F D 2

. ~38!

Choosingh to be positive means that, if most of space is
the broken phase, the Higgs boson mass is heavier and
symmetric phase is favorable, whereas if most of space
the symmetric phase, then the Higgs boson mass is sm
and the broken phase is favorable. The free energy is th
quadratic function, and the effective Higgs boson m
squared at its minimum, including the contribution from t
h term, gives the equilibrium Higgs boson mass. The ad
term is simple enough that we can modify the canoni
update to incorporate it, and Monte Carlo evolution will th
naturally settle in a mixed phase configuration whose va
of ^f2& tells us the equilibrium Higgs boson mass,

mH
2 ~equilibrium!5mH

2 ~^f2&50!1h^f2&. ~39!

This approach can be viewed as a type of multicanon
Monte Carlo calulation with theh term as the multicanonica
reweighting.

In practice we start with a long but very narrow box and
high value ofh, to get a preliminary value. The narrowne
is necessary to make it easy to nucleate a bubble of
phase in the other. To get the large volume limit, though,
need to go to a wider box; we necessarily need results
regime where one phase cannot easily nucleate in the o
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We get an initial condition for a box an integer number
times wider in each short direction by extending the fin
configuration in the skinny box periodically. We also use
smaller value ofh to improve the resolution of the dete
minedmH

2 . Our final values formH
2 are typically taken with

a box of dimension, in physical units, of (16/g2T)2

3(96/g2T), easily large enough to achieve the large volum
regime.

D. Practicing with the symmetric phase in small volume

Before presenting the determination of the broken ph
sphaleron rate, we will do a ‘‘practice run’’ on a syste
where we can get good statistics more quickly, which is
symmetric phase in a small enough volume to suppress
pology change. This problem is almost certainly of no ph
nomenological significance, but it will let us test thet0 de-
pendence of our technique and to study whether hard the
loops do indeed modify the dynamical prefactor.

For the time being we drop the U~1! subgroup. We choose
a very weak scalar self-coupling ofx50.025, and a large
Higgs boson mass squared (mH

2 .1.5g4T2), so we will be
firmly in the symmetric phase. We use a 123 lattice with a
lattice spacing ofa51/(4g2T) (bg516), so the physical
volume is (3/g2T)3. This volume is small enough that topo
ogy change is suppressed and the broken phase techn
we are developing are applicable, but not so small that it w
be hard to gather good statistics. It is also small enough
numerical costs are not overburdening, so we will enfo
the Gauss law~and use the less efficient update algorithm!.

We measureN by cooling for t5(5/4)a2, coarsening
once, and using anO(a2) improved definition ofEi

aBi
a dur-

ing the subsequent cooling. The first thing we do is to de
mine the actual discontinuity inN across the gradient flow
separatrix, which will differ from 1 because of lattice art
facts. To do this we generate an ensemble of configurat
on the gradient flow separatrix. For each, we perform a sh
Hamiltonian evolution which crosses the separatrix, and
measureN at closely spaced intervals during the crossing
determine the discontinuity; it isDN50.98260.005, where
the error is the standard deviation.9 This tells us how to re-
scale all further measurements ofN so that there will be an
integer discontinuity at the separatrix~up to acceptably smal
noise!.

Next, we measure the probability distribution forN. We
only need to do this in the range 0<N< 1

2 , by periodicity; so
we add 1 to all negative values ofN and then putN. 1

2 into
range byN→12N. We use a continuous, piecewise line
reweighting function, with the widths of the linear piece
chosen by hand and the slopes of each segment determ
by an automated bootstrapping procedure. We computed
probability distribution for two values oft0 ; t051.25a2 and
t056.25a2. For thet051.25 data we also recordedN(t0

9It is important to compare the extrapolation based on a fit of
last few points on one side of the discontinuity with the value on
other, to remove errors from the time step size of the Hamilton
evolution used to find the discontinuity.
3-15
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GUY D. MOORE PHYSICAL REVIEW D 59 014503
56.25); the data can therefore be used to get the probab
distribution for either choice oft0 .

The probability distributions are compared in Fig. 10. T
distributions are clearly different. Cooling longer before i
tegrating Ei

aBi
a concentrates probability aroundN50 and

thins out the largeN configurations. It is less likely to haveN
within some range of12 for the largert0 . But this does not
mean that the differentt0 values give different values for th
diffusion constant, as we still have not included^udN/dtu& or
the dynamical prefactor.

To get the dynamical prefactor and̂udN/dtu& we first
need a sample of configurations very close toN5 1

2 . We get
them by multicanonically sampling, not necessarily with t
same reweighting function used to find the probability dis
bution of N. Then, for each, we choose momenta out of
appropriate distribution and perform a Hamiltonian evo
tion, with the algorithm of Ref.@18#. Once the Hamiltonian
trajectory has settled into the neighborhood of a vacuum,
return to the configuration before we started the Hamilton
evolution and reverse the sign of the momentum; then
evolve. Since momenta are odd and fields are even u
time reversal, this computes the Hamiltonian trajectory in
backwards time direction. We determine^udN/dtu& from the
first time step in each time direction, and the dynamical pr
actor from the number ofN5 1

2 crossings, as discussed in th
previous section. It is also easy to find how many times
Hamiltonian trajectory crosses the gradient flow separat

FIG. 10. Probability distribution ofN for two values oft0 : t0

51.25a2 ~the rounder curve which is lower atN5
1
2 ) and t0

56.25a2 ~the curve which is higher atN5
1
2 ).
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aBi

ad3xdt abruptly changes sign when it does;
we can also identify how well correlated crossings of theN
5 1

2 and gradient flow separatrices are.~We cannot directly
determine the gradient flow separatrix prefactor if the cor
lation is not good, because our sampling procedure is for
N5 1

2 separatrix and not the gradient flow one.!
Figure 11 gives an example of a Hamiltonian trajecto

developed in this way, witht053.75a2. It is clear in this
figure that once the trajectory settles in the neighborhood
a topological vacuum, in the sense thatN;0, then it stays
there for some time. Since the maximal Lyapunov expon
of the Yang-Mills Higgs system is known to be about 0.3g2T
@52,53,19#, the direction of the next permanent change
NCS will surely be statistically independent from the previo
one. This fact is essential to the whole approach; our m
basic assumption is that the very long timeNCS diffusion is
made up of a series of statistically independent steps, and
only need find out how frequently one of those steps is ta
~which is what we are computing when we say we are co
puting gd).

Also note from Fig. 11 that there is no ‘‘overshoot’’ afte
reachingN50, no sign that the trajectory is continuing in th
direction of the next separatrix. This is true of all trajectori
we have studied, both in finite volume and in the brok
electroweak phase, which confirms the absence of pro
multiple crossings.

Our final results for this small volume system are p
sented in Table II. Note that both the probability to be ne
the separatrix and̂udN/dtu& vary quite a bit when we chang
t0 , but in opposite directions. Also, the shorter cooling lea
to a smaller dynamical prefactor, though for the volume a
cooling considered here the difference does not turn out to
large. The determined value ofG for the two values oft0

FIG. 11. A winding number changing section of a Hamiltoni
trajectory in constrained volume Yang-Mills theory. After th
crossing the system settles immediately into the neighborhood
topological vacuum.
TABLE II. Ingredients and results for theNCS diffusion rate in a cubic, periodic volume 3/g2T on a side.
The measurements with two values oft0 disagree at 1.6s.

quantity value att051.25a2 value att056.25a2

ln P(uN20.5u,0.05) 213.3960.22 214.3060.18
udN/dtu (0.12160.004)g2T (0.17460.005)g2T
prefactor 0.5260.03 0.55460.024

ln@G/(awT)4# 27.036.23 27.5160.19
G (0.000960.0002)aw

4 T4 (0.000560.0001)aw
4 T4
3-16
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differ at 1.6s. This does not bother the author since it is t
first statistical fluctuation above 1.5s he has encountere
since starting numerical work; he had one coming.

We can make a more stringent check of thet0 indepen-
dence of the method by using the data set taken witht0

51.25a2 to determine the probability distribution ofN for
each value oft0 , since we recordedN(t056.25a2) at each
point while developing this data set. This data set give
slightly different probability to be at largeN(t56.25a2); the
214.30 in the table becomes213.88. Using this number, we
get ln@G/(awT)4#527.09. To compare to thet051.25a2 data
we must remember that the probability distributions are n
100% correlated, so the expected difference is just from
tistical errors in^udN/dtu& and the prefactor. The differenc
in the logs of the rates is 0.0660.09, so they do agree withi
error. The results forGd are indeedt0 independent.

How do hard thermal loops change the rate? At the le
of thermodynamics, hard thermal loops~HTL’s! become just
a Debye mass. They make theA0 field heavier, which pushe
it further to the regime where it decouples. So their therm
dynamic influence is very small. Hence, they will bare
change the probability distribution ofN, which will have a
well behaved large HTL strength limit. Similarly, as we ha
discussed,̂ udN/dtu& does not depend on longitudinalE
fields, and hence depends on the Debye mass only thro
its thermodynamic influence on the gauge fields. The fl
through the separatrix should depend weakly on hard ther
loops and should have a good large HTL limit.

The dynamical prefactor is a completely different matt
It is a dynamical quantity which depends on unequal ti
correlators, potentially over quite long times. Hard therm
loops will change the time evolution of infrared degrees
freedom on all time scales longer than the inverse plas
frequency. Arnold, Son, and Yaffe~ASY! have argued@33#
that hard thermal loops will suppress the baryon number
lation rate by a factor parametrically of order (g4T2/mD

2 ),
because the number of crossings of the separatrix per pe
nent NCS change will be of ordermD

2 /g4T2. That is, they
predict that turning on hard thermal loops will reduce t
dynamical prefactor by an amount linear inmD

2 when it is
large. Their arguments have recently been verified in
symmetric phase@26#. Now we need to check what the ha
thermal loops do in the broken phase.

To address this question we include the hard ther
loops by using the technique developed in Ref.@26#. We add
a large number of new ‘‘particle’’ degrees of freedom to t
system, which propagate the hard thermal loop effects.
now we will be happy to know what the hard thermal loo
do when they are extremely strong, so we can understand
parametric limit in which the ASY arguments should ho
With this in mind we put in particles of chargeQ50.1 and
number density 50/a3,10 which give a Debye mass o
43g4T2, an enormous number about 10 times the value in
MSM at a realistic value ofg2. A Hamiltonian trajectory

10See Ref.@26# for the implementation and the definitions of the
quantities, and their relation to the Debye mass.
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crossing the separatrix is shown in Fig. 12. The qualitat
features are indeed the same as Arnold, Son, and Yaffe
dict, see Fig. 8 of Ref.@33#; plasma oscillations drive the
system across the separatrix numerous times. The dynam
prefactor is correspondingly significantly smaller than wit
out hard thermal loops; for these parameters it is about 0
Note, however, that we have had to add truly huge H
effects to achieve this value, so at the realistic value
effect may not be too significant. We will study this questi
for the broken phase case in the next section.

How do our nonperturbative results compare to pertur
tion theory? We will not attempt to do a complete one lo
calculation of the sphaleron rate in finite volume, but it
quite easy to compute the ‘‘sphaleron’’ energy, the energy
the saddle point between topological minima. We can use
technique of Ref.@54#, or any other technique which can fin
a saddle point solution~we have one!. We find E
527.77/N, with N the linear dimension of the lattice. In ou
case that meansbE537 and we would naively expect a ra
suppression of exp(237) before zero modes and the fluctu
tion determinant are included. This might be compared w
the free energy difference betweenN50 andN5 1

2 , which is
of order 15. We know that the complete inclusion of the ze
modes and the fluctuation determinant is likely to make
some of this difference, but it certainly will not account fo
all of it. Nonperturbative physics is at work and it enhanc
the rate of sphaleron transitions in this case.

E. Broken phase rate

Now we will apply the same technology to the physica
interesting case of large volume, broken phase SU~2!3U~1!
Yang-Mills Higgs theory. Since the previous subsections
ready explained both the Monte Carlo update technique
the real time tools used to find̂udN/dtu& and the dynamical
prefactor, we will just discuss here how this case is differ
from the small volume, symmetric phase calculation, a
what we have to do differently to get it to work.

As we discussed, we will work at the critical temperatu
which corresponds in the 3D language to the critical Hig
boson mass. This means that the broken phase, which
want to study, is actually only metastable; the symme

FIG. 12. Hamiltonian trajectory through the separatrix in t
symmetric phase in small volume, including hard thermal loo
with mD

2 ;43g4T2. Plasma oscillations are clear, and there are
merous crossings of the separatrix.
3-17
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phase is equally thermodynamically preferable. In a sm
volume there can be fairly easy tunneling between the t
but the metastability becomes stronger as the volume
comes larger. We must choose a volume which is la
enough that metastability is very strong and tunneling
tween the phases will not occur. This means that the phys
size of the lattice we use must be significantly larger than
physical size of the sphaleron, which would have to be t
anyway to keep the exponential tails of the sphaleron fr
seeing each other around the periodic boundary conditio

The problem of tunneling to the symmetric phase is ma
worse because the sphaleron has a zero of the Higgs con
sate at its core, so it looks somewhat similar to a symme
phase bubble. To keep from nucleating to the symme
phase we should use a volume big enough that the free
ergy of the state intermediate between phases is compa
to the free energy of the sphaleron. We have studied th
values for x[l/g2, x50.047, 0.039, and 0.033; for th
former two we used a physical volume of (16/g2T)3 and for
the latter we used (13.33/g2T)3. These were all sufficient to
prevent nucleation of the symmetric phase, but forx
50.047, a volume of (12.8/g2T)3 was not. The volume re
quirement becomes less severe as the phase transitio
comes stronger at smallerx, so for x50.039 and 0.033 we
used a good margin of excess volume. The volume requ
ment would also have been less severe if we worked be
rather than at, the equilibrium Higgs boson mass parame

The need for a large volume drives up numerical costs
two ways. One is obvious; we need to update a lot of latt
volume which is ‘‘dead weight’’ since the sphaleron is n
sitting there. But the large volume also makes the multi
nonical algorithm perform worse. Examining Fig. 10, we s
the free energy rises roughly linearly withN at small values
of N. This behavior is also expected analytically in the b
ken phase case, see, for instance, Ref.@55#. Naively, then,
having the gauge fields being part way up the sphalero
one place in the box is not thermodynamically favored o
having them half as far up the sphaleron in two differe
places, at least for relatively smallN. In fact the entropy
from getting to choose the locations of the two places me
that this may be slightly preferred to being further up t
sphaleron in one place, for the range ofN where the free
energy is varying linearly withN. But at largerN the free
energy for a single ‘‘near sphaleron’’ levels off while that f
two continues to rise linearly, so nearN5 1

2 we prefer having
a single sphaleron. Somewhere in between there is a
match in what kind of configuration is dominating the e
semble, and such a mismatch can reduce the efficiency o
Monte Carlo calculation.

To cut the numerical demand we integrate outA0 fields
~i.e., we do not enforce the Gauss law when we study
namics!, which allows us to use the very efficient upda
algorithm of Rummukainenet al. @5#. In fact a single step of
the Rummukainenet al.update~one heat bath and four ove
relaxation sweeps! is far too large an update of the fields;
the value off (N) typically changes by more than 1 und
one update then the accept rate for updates becomes
small. Instead, we alternate between performing a ‘‘sca
back’’ version of the update in which only some ‘‘modp
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checkerboard’’ of the sites are updated, and an overre
ation sweep updating only the Higgs fields. Since the ov
relaxation sweep of the Higgs fields does not change
gauge fields, and sinceN depends on the gauge fields alon
this sweep can be automatically accepted. Doing this me
that the evolution of the Higgs fields can be made ‘‘fast’’
comparison to the update of the gauge fields. That ens
that the thermalization of the gauge fields is not gummed
by slow evolution of the Higgs fields. Even with the ext
updates for the Higgs fields, and the blocking procedure
accelerating the measurement ofN, most machine time is
spent measuringN, and further improvements in the upda
algorithm will not help.

The results for the flux through theN5 1
2 separatrix are

given in Table I, and also in Ref.@16#. We have also mea
sured the dynamical prefactor for thex50.039 case, without
added hard thermal loops or enforcement of the Gauss
The value we get is 0.3360.05, slightly lower than the value
for the gradient flow separatrix, which is 0.4060.05 ~we
measure this by choosing a value oft0 large enough that the
two separatrices almost coincide, so there is a one to
correspondence between crossingN5 1

2 and crossing the gra
dient flow separatrix!. It is not clear whether this represen
some interesting dynamical behavior of the theory
whether it means that the Yang-Mills gradient flow sepa
trix is not the optimal divider between topological vacua.

Another interesting question is how the dynamical pref
tor depends on hard thermal loops. Unfortunately, the
merical cost of using the ‘‘particles’’ technique of Ref.@26#
is so high in this context that we have to cut a few mo
corners to make the calculation. We drop the U~1! factor,
increase the lattice spacing froma52/(5g2T) to a
51/(2g2T) (b58), and reduce the volume to (14/g2T)3.
To prevent nucleation to the symmetric phase, we work a
somewhat larger value ofx, x50.042, and below the equi
librium temperature, so the broken phase is more stable
the symmetric phase. We choose the temperature~the ther-
mal Higgs boson mass, really! so the Higgs condensate
f051.7gT, just more than enough to make the sphaler
rate too low to erase baryon number~we expect!. We cannot
directly measure the sphaleron rate with this set of para
eters because the update including particles is expen
enough that the multicanonical calculations are prohibiti
but we can get a good sample of points on the separatrix
using a reweighting which favorsN; 1

2 strongly, and we can
get sufficient statistics for the dynamical prefactor to mak
good determination.

We can ‘‘shut off’’ the hard thermal loop contribution t
the dynamics without changing their contribution to therm
dynamics by not allowing the particles to move during t
Hamiltonian evolutions used to determine the dynami
prefactor. Also, if the arguments of Arnold are correct@56#,
changing the velocity at which the particles move chan
their contribution to the key part of the hard thermal loop
the v!k;g2T regime, linearly in the velocity. Hence w
could explore very strong hard thermal loops either by p
ting in very many particles, or by making them move ve
fast. The numerical cost is the same but the memory c
favor the latter.
3-18
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FIG. 13. Free energy~left! and (f†fbroken2f†fsymm)/(g2T2) as functions ofN at x[l/g250.039, in a (16/g2T)3 volume @at t0

53.6/(g2T)2#. In each case the upper curve is the broken phase and the lower curve is the symmetric phase. The plot off2 shows that the
volume used was large enough that the sphaleron did not bring us anywhere near a transition to the symmetric phase. The beha
two phases is completely different; in the broken phase there is a free energy barrier, and in the symmetric phase there is not.
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We use a realistic total hard thermal loop strength,mD
2

55g4T2 from particles.@The standard model value ismD
2

5(11/6)g2T2, and sinceg2;0.40 on performing the dimen
sional reduction calculation@30#, this is just smaller than the
value we used.# The dynamical prefactor changes on
mildly, from 0.5260.05 to 0.4060.05, when we turn the
particles on. When we increase the particle velocities t
times the speed of light, the prefactor becomes 0.1560.03.
Hard thermal loops do indeed reduce the dynamical pre
tor, which is already less than 1 without them. However,
parametric limit in which the reduction is large is n
achieved for realistic parameter values. Also note that
value 0.52 is larger than we got atx50.039 and mH

2

5mH,crit
2 . We assume this is because the larger value

evaluated below the equilibrium temperature, where
Higgs condensate is larger and stiffer and the sphalero
smaller and more energetic; its decay should be more vi
ous and less susceptible to buffeting by large IR fields.

V. RESULTS

We present our results for the diffusion constant forNCS
in Table I. The first quoted value is without the dynamic
prefactor. The dynamical prefactor is less than 1 for theN
5 1

2 ) separatrix we have used, and also for the gradient fl
separatrix; its value for thex50.039 data is about 0.33, an
we will take this to be representative of the other two valu
of x as well. It is not clear whether the prefactor is less th
1 because our separatrix is suboptimal, or because the
namics are nontrivial in a way which often leads to multip
crossings.

We have found that the dynamical prefactor depends
the strength of hard thermal loops; but for the realistic Deb
mass the effect is not strong. A reasonable estimate for
relevant dynamical prefactor for the cases of interest and
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the value oft0 we used to define the measurableN is around
0.360.1. We have included a row in the table where w
include this~estimated! effect in the rate.

For amusement, we have also compared the broken
symmetric phase probability distributions forN. We present
the results in Fig. 13, which also shows howf2 varies with
N in each case. The two data sets were taken using iden
values for all parameters@lattice spacing a52/5g2T, x
50.039, critical temperature~i.e., critical Higgs mass!, lat-
tice volume5(16/g2T)3, and t053.6/(g2T)2], but starting
with a broken phase initial condition in one case and a sy
metric phase initial condition in the other. A barrier
changingNCS is clearly present in the broken phase case a
clearly absent in the symmetric phase case.

We cannot use the data for the symmetric phase cas
determineGd in the symmetric phase. Although it would b
straightforward to computê udN/dtu& and get the flux
through the separatrix, the calculation of the dynamical pr
actor is impossible. A Hamiltonian path through the sepa
trix does not settle into the neighborhood of a topologi
vacuum and stay there for a long time; it just continues
wander around, as we already saw in Fig. 5. But we c
measureGd in the symmetric phase with purely real tim
techniques; the value including hard thermal loops@and ac-
tually for pure SU~2! Yang-Mills theory# is Gd5(29
66)aw

5 T4, or 2 ln Gd.13.9. ~This result may get revised
downwards somewhat when the issues involving logarithm
corrections@27# have been fully accounted for.! As expected,
the broken phase rate at smallx5l/g2 is enormously
smaller; forx50.033 the ratio is about 108.

A. Comparison to perturbation theory

We want to compare the determined sphaleron rate to
things; perturbation theory and the value required to av
3-19
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erasure of baryon number generated at the electroweak p
transition. One loop perturbation theory gives@3#11

Gd54T4
v2

gf0
S aW

4p D 4S 4pf0

gT D 7

NtrNVrotke2bEsph. ~40!

Here f0 is the broken phase Higgs condensate expecta
value, v2 is the unstable frequency of the sphalero
NtrNVrot are zero mode factors,k is the one loop fluctuation
determinant, andEsph is the energy of the Klinkhamer
Manton sphaleron, using the tree level Hamiltonian. F
small l/g2[x, 2T ln k equals the energy due to the on
loop effective potential term, plus a modest correction@15#.
We can guess that the dominant two loop corrections to
~40! are absorbed by including the two loop effective pote
tial terms in the Hamiltonian. So it seems reasonable to
timate the sphaleron rate by Eq.~40!, but settingk51 and
solving for the sphaleron energy using the two loop effect
potential at the equilibrium temperature. One should a
solve for the zero modes andv2 /f0 at this value, but they
are very weak functions of the effective potential@14#. We
use the values from Ref.@14# at x5(l/g2)50.04 for these,
but solve for the sphaleron energy,Esph54pBf0 /g, nu-
merically, using the two loop effective potential atTc . We
use the two loop potential presented in Ref.@57#, without
pieces from longitudinal gauge bosons~assumed integrate
out!. We also drop two loop terms proportional tolg2 or l2,
because the perturbative determination off0 is an expansion
in l/g2, and such terms contribute at the same or hig
order as unknown three loop terms.~Including these two
loop terms movesf0 closer to the nonperturbative value b
an insignificant amount.! The ‘‘two loop’’ analytic sphaleron
rate, also included in Table I, is about exp(2.5) times fas
than the numerically determined nonperturbative rate,
falls further off when we include the dynamical prefactor12

The difference is more than can be explained by the dif
ence inf0 , but it is not huge in the sense that it represent
change of less than 20% in the exponent. The difference
smaller, relative to the exponent, as the sphaleron en
becomes larger.

B. Comparison to the erasure bound

We should compare the sphaleron rate to the limit set
requiring that baryon number not be erased. The rate
which sphalerons degrade baryon number is@3#

1

NB

dNB

dt
52

13NF

4
GdT23, ~41!

whereNF53 is the number of families, and the numeric
factor 13NF/4 would be smaller in theories, such as sup

11The definition ofG used in Refs.@3,14# is the response rate to
chemical potential, which is half the diffusion rate@37#; so Eq.~40!
differs by a factor of 2 from the expressions in those reference

12There is no literature calculation of the dynamical prefact
including hard thermal loops but in the perturbative context.
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symmetry, in which additional degrees of freedom can st
baryon number.13 Integrating from the end of the phase tra
sition to the present day,

ln@NB /NB~Tc!#52
13NF

4 E
t0

`

Gd@T~ t !#T23~ t !dt,

~42!

where we have shown the dependence ofGd on T and ofT
on t.

Now ln Gd is very sensitive toA^f†f&, and hence toT;
so we can approximate lnGd(T).ln Gd(Tc)1(T
2Tc)(d ln Gd /dT)uT5Tc

, and perform the integral:

ln$2 ln@NB /NB~Tc!#%5 ln~39/4!1 lnS Gd~Tc!

T4 D
2 lnS 2

d ln Gd„T~ t !…

Tdt U
T5Tc

D .

~43!

By the chain rule,

d ln Gd

Tdt
5

d ln Gd

dy

dy

dT

d ln T

dt
, ~44!

wherey5mH
2 (T)/(g4T2) is the dimensionless thermal Higg

boson mass squared.
We getdy/dT from the one loop correction tomH

2 @57#,

dy

dT
.

8l14gy
21g2~31tan2 QW!

8g4T
, ~45!

and we getd ln T/dt from the Friedmann equation in a ra
diation dominated universe,

1

4t2
5H25

8pG

3

p2g*
30

T4⇒ d ln T

dt
52A4p3g*

45

T2

mPl
,

~46!

whereg* is the number of radiative degrees of freedom
the universe (g* 5106.75 in the minimal standard mode!
and mPl.1.2231019 GeV is the Planck mass. Finally, w
determined ln Gd /dy perturbatively, by varyingy slightly
from the equilibrium value and recomputing the two loo
sphaleron rate. The dependence is quite strong. We inclu
in Table I.

The most widely cited discussion of baryon number e
sure after the phase transition makes the approximation
the baryon number violation rate after the phase transitio
constant for about one Hubble time@58#. In fact, becauseGd
depends very strongly ony, which in turn depends strongly

,

13Again, there is a factor of 2 difference from the reference b
cause they write in terms of the response to a chemical poten
which is half the diffusion constant. This 2 cancels the other 2.
3-20
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MEASURING THE BROKEN PHASE SPHALERON RATE . . . PHYSICAL REVIEW D 59 014503
on T, most baryon number erasure occurs in the first 1023

Hubble times after the phase transition. Hence the initial r
of baryon number violation,Gd(Tc), which prevents wash
out is 103 times larger than assumed in Ref.@58#, leading to
a weaker bound onGd(Tc), roughly

2 ln@Gd~Tc!Tc
24#.30.42 ln~Tc/100 GeV!. ~47!

The values ofg* and dy/dT will both be larger in super-
symmetric extensions of the standard model. Unless qui
number of supersymmetric partners have masses under
GeV, which now seems unlikely,g* will not be too much
larger; but if there are stops with supersymmetry break
masses of less than 100 GeV, which is necessary to g
strong enough transition without violating the current expe
mental Higgs boson mass bound, thenTdy/dT gets extra
contributions from top squarks which bring it up by abou
factor of 2. The bound, Eq.~47!, is weakened by about 1
Also note that, because Eq.~43! is for the double log of
NB /NB(Tc), failing to meet the bound by 1 means th
baryon number is diminished by exp@exp(1)#.15, and failure
by 2 reduces baryon number by exp@exp(2)#.1600; so the
bound is quite sharp.

VI. CONCLUSION

We have shown how to define a lattice measurable wh
allows a ~multicanonical Monte Carlo calculation! nonper-
turbative determination of the broken phase sphaleron ba
height. We have combined this with real time techniques
measure the diffusion constant ofNCS ~and hence baryon
number violation! in the broken electroweak phase nonp
turbatively, including the dynamical prefactor. We find th
the diffusion constant is smaller by about exp(23.6) than in
a perturbative estimate using the two loop effective poten
and no wave function corrections~and assuming a dynamica
prefactor of 1!. The difference is too large to ascribe to th
difference between the perturbative and nonperturba
value off0 . However, it represents a shift in the exponent
less than 20% from the perturbative estimate.

We have also demonstrated that the physics of hard t
mal loops does change the sphaleron rate in the bro
phase, apparently consistently with the arguments of Arn
Son, and Yaffe@33#. But to really achieve the parametr
limit they discuss takes an unrealistically large Debye ma
for physical values of the parameters, the correction du
hard thermal loops is fairly minor.

Interpolating between the values ofx[l/g2 where we
have measured, and including the estimate for the dynam
prefactor, we get a bound of about (l/g2)[x50.037 in the
standard model andx50.039 in the MSSM when it can b
tt.
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perturbatively reduced to a standard-model-like effect
theory. These are slightly looser than we quote in Ref.@16#
because the measured value of the dynamical prefacto
smaller than our estimate there. Another convenient way
state our result is that the bound on the Higgs conden
after the phase transition is aboutf051.67gT in the MSM
and f051.60gT in the MSSM ~with the MSSM value
weaker because the larger temperature dependence o
thermal Higgs boson mass makes the erasure rate fal
faster with time after the transition!.

The bound is softened if the universe does not rehea
Tc during the phase transition, because the phase trans
then ends at a lower temperature with a larger Higgs vacu
expectation value. Incomplete reheating may well be gene
Unfortunately, we do not have a nonperturbative measu
ment of the bubble nucleation action, which is required
determine definitively whether reheating happens. This is
interesting project which can perhaps be approached by t
niques similar to what we have used here, i.e., definin
separatrix corresponding to the critical bubble~as the sepa-
ratrix here corresponds to the sphaleron!, and making a com-
plete calculation including the dynamical prefactor.

We should comment on what we expect to be true be
the equilibrium temperature and in the case of a light
squark. As the temperature falls below equilibrium and
Higgs condensate becomes larger, perturbation theory sh
become better, at least in the sense that the error in the
ponent should get smaller compared to the magnitude of
exponent. It would be very surprising if the nonperturbati
rate switches to being faster than the perturbative estim
though. It is straightforward, though expensive, to repeat
analysis here for temperatures below the equilibrium po
Probably it will only be worth it after we have nonperturb
tive information on the bubble nucleation rate. In the case
the light top squark, we expect the most important diffe
ences to be in the effective potential, in which case per
bation theory should do as well as it does here, if we per
a ‘‘by hand’’ correction for the strength of the phase tran
tion. We expect this because, while the top squark cont
utes at one loop to the effective potential, scalar interacti
only influence wave function corrections~say, the Higgs gra-
dient energy of the sphaleron! at two loops, and there is no
direct interaction between a light right top squark and
SU~2! gauge fields.
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