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Tadpole-improved SU„2… lattice gauge theory
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A comprehensive analysis of tadpole-improved SU~2! lattice gauge theory is made. Simulations are done on
isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are
employed, one using average plaquettes, the other using mean links in the Landau gauge. Simulations are done
with spatial lattice spacingsas in the range of about 0.1–0.4 fm. Results are presented for the static quark
potential, the renormalized lattice anisotropyat /as ~whereat is the ‘‘temporal’’ lattice spacing!, and for the
scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static
quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy
that is input to the action. We also find that tadpole improvement using mean links in the Landau gauge results
in smaller discretization errors in the scalar glueball mass~as well as in the static quark potential!, compared
to when average plaquettes are used. The possibility is also raised that further improvement in the scalar
glueball mass may result when the coefficients of the operators which correct for discretization errors in the
action are computed beyond the tree level.@S0556-2821~98!00623-7#

PACS number~s!: 11.15.Ha, 12.38.Gc
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I. INTRODUCTION

Simulations of lattice quantum chromodynamics~QCD!
have undergone significant changes in the past few ye
with a host of new actions under investigation, and with
viewpoint emerging that simulations on coarse lattice c
yield reliable results. A major impetus for these changes w
the realization that the large radiative corrections which
cur in many quantities in lattice theories have a comm
origin, coming from cutoff effects due to tadpole diagram
specific to lattice actions@1#.

Tadpole diagrams in lattice theories are induced by
nonlinear connection between the lattice link variab
Um(x) and the continuum gauge fieldsAm(x):

Um~x![eiagAm~x!. ~1!

The cutoff dependence of ultraviolet divergent tadpole d
grams spoils naive power counting in the lattice spacinga.
Higher dimension operators that are generated by lattice
tions generally induce large radiative corrections, their c
tributions being suppressed by powers ofas(a), rather than
of a. Fortunately, there is now considerable evidence that
effects of tadpole diagrams can largely be removed wit
simple mean field renormalization of the links@1#:

Um~x!→
Um~x!

u0
, ~2!

where an operator dominated by short-distance fluctuat
is used to determineu0 . ~Alternative approaches to the de
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sign of improved lattice actions include the construction
fixed point actions@2#, and the use of nonperturbative reno
malization conditions@3#.!

Tadpole improvement has helped to revitalize interes
the Symanzik improvement program@4#, with a number of
new more complex actions currently under investigatio
partly with the goal of doing precision simulations on coar
lattices~for a review see Ref.@5#!. One of the earliest appli-
cations of tadpole improvement was in the developmen
the nonrelativistic QCD~NRQCD! action for heavy quarks
@6#. Tadpole improvement is now widely used in large sc
simulations of many actions@7#, and plays an important role
in current efforts to extract continuum results from simu
tions on fine lattices.

The current interest in simulations on very coarse latti
was stimulated by the first study of tadpole-improved g
onic actions@8#. Simulations of the static quark potentia
and of the spin-average charmonium spectrum in NRQC
using an improved gluonic action on lattices with spacings
large as 0.4 fm, showed discretization errors of only a f
percent.

This has led to more recent efforts to further optimi
tadpole-improved actions. In particular, there has been c
siderable work to determine the optimal choice of operato
use in defining the mean field renormalization factoru0 @9–
13#. Most previous simulations have used the fourth root
the average plaquetteu0,P for tadpole improvement where, in
SU~N! gauge theory~on isotropic lattices!

u0,P[ K 1

N
Re TrUplL 1/4

. ~3!

However simulations of the static quark potential@9#, of the
quarkonium spectrum in NRQCD@10,12,13#, and of a rela-
tivistic fermion action@11# have demonstrated that discre
zation errors are further reduced when the mean link in L
dau gaugeu0,L is used, where
©1998 The American Physical Society02-1
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u0,L[ K 1

N
Re TrUmL , ]mAm50. ~4!

There has also been a rapid evolution of more comp
highly improved actions~see, e.g., Refs.@5,11,14,15#!. In
particular, there has been a revival of interest in actions
fined on anisotropic lattices, where the lattice spacing in
‘‘temporal’’ direction at is kept smaller than the spatial spa
ing as @14,15#. This enables much more efficient simulatio
of hadronic systems with large masses, for example, wh
the exponential suppression of the correlation function
comes prohibitive on lattices with largeat . This is especially
relevant for glueball simulations, where discretization err
may be acceptably small even withas as large as 0.4 fm
@16–18#, but where the correlation function becomes e
tremely noisy after only a few time steps if a comparableat
is used.

An impediment to the use of anisotropic lattices has b
the need to measure the renormalized anisotropy (at /as)phys
in the simulation which, in the case of the Wilson gluo
action @19,20#, can differ appreciably from the bare aniso
ropy j that is input to the action

j[S at

as
D

bare

. ~5!

However it has recently been shown that tadpole impro
ment reduces the renormalization ofj to a few percent
@14,15#, which is small enough to be neglected in many a
plications. Recent simulations of a variety of glueball sta
with a tadpole-improved action, on anisotropic lattices w
coarseas , have provided results that compete with mu
larger scale simulations on fine lattices@17,18#.

In this paper we present a comprehensive analysis of
tadpole-improved SU~2! lattice gauge theory. We do simula
tions on both isotropic and anisotropic actions, with a
without improvement. Results are obtained with two tadp
renormalization schemes, one using average plaquettes
the other using mean links in Landau gauge. We also c
pare with simulations of the Wilson action. Simulations a
done with spatial spacingsas in the range of about 0.1–0.
fm. Results are presented for the static quark potential,
renormalized anisotropy, and for the scalar and tensor g
ball masses. Some of our results have been reviewed in
liminary form elsewhere@5,14,15,18#. A full account of this
work is presented here for the first time@21#. @Simulations of
the tadpole-improved SU~2! gauge theory on isotropic lat
tices have also recently been reported in Refs.@22,23#.#

We note that there is a long history of simulations
SU~2! gauge theory, motivated by the fact that this theo
exhibits much of the physics found in SU~3! color, including
linear confinement of static quarks and a rich glueball sp
trum. Simulations of SU~2! color have been used to she
light on the physics of confinement, and to test new al
rithms for use in more realistic simulations. The reduc
computational cost of simulations in SU~2! continues to be
exploited in, for example, recent large scale simulations
the static quark potential@24#.
01450
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The work we present here on tadpole-improved SU~2!
gluonic actions is not only of interest in reproducing t
features of the SU~3! theory, but also serves to suggest ne
avenues for further development. Of particular interest
new results presented here for the SU~2! scalar glueball
mass, which relate to a peculiar feature that has previou
been observed in SU~3! coarse lattice simulations@17#. We
find that the SU~2! scalar glueball mass first decreases as
lattice spacingas is increased, reaching a minimum atas

'0.3 fm; the mass then gradually increases withas . A simi-
lar ‘‘dip’’ in the SU~3! scalar glueball mass was reported
Ref. @17#. It has been conjectured@17,18# that this behavior
may be related to the presence of a critical endpoint in a
of phase transitions in gluonic actions that include an adjo
coupling @25#.

On the other hand, we find that the depth of the dip in
SU~2! theory with plaquette tadpole improvement is abo
half of that found with the Wilson action. We also find th
the depth of the dip is further reduced when mean link t
pole improvement is used@the SU~3! simulations in Ref.@17#
were done with average plaquette tadpoles#. This suggests
that the dip may be due, at least in part, to discretizat
errors that are more fully removed with mean link tadpol
The tensor glueball mass exhibits somewhat smaller sca
violations, even with the Wilson action, which could indica
that the tensor has a larger size than the scalar. In this
nection, we note that the scalar glueball has been found t
much less sensitive to finite volume effects than the ten
@26#. This supports the conjecture that the scalar glueball
a smaller size than the tensor, and hence is more sensitiv
discretization corrections to the action.

We also performed simulations after making sm
changes to the coefficients of the operators which correct
discretization errors in the action. These results raise the
sibility that the dip in the scalar glueball mass might
eliminated once the correctO(as) renormalizations of the
relevant operators in the action are included.

The rest of this paper is organized as follows. In Sec
we present results from an improved SU~2! action on isotro-
pic lattices. Two independent sets of simulations are do
using the two tadpole renormalization schemes discus
above@Eqs.~3! and ~4!#. We simulate on lattices with spac
ings of about 0.25 fm and 0.40 fm. We compare the sta
quark potential with improvement to the results of a simu
tion using the Wilson action. We also present results for
scalar glueball mass. Details of our Wilson loop and glueb
correlation functions are also discussed in Sec. II.

In Sec. III we present results from our simulations
anisotropic lattices. We run at several spatial lattice spaci
as in the range of about 0.1 fm to 0.4 fm, where the tempo
spacingat is kept near 0.1 fm. We run simulations for im
proved actions using the two tadpole renormalizat
schemes, and we also run on several lattices using the
son action. We compare bare and renormalized anisotrop
static quark potentials, and scalar and tensor glueball ma
from these actions. We also illustrate the sensitivity of t
scalar glueball mass to small changes in the coefficient
the operators which correct for discretization errors in
2-2
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TABLE I. Simulation parameters for three isotropic tadpole-improved lattices, and one Wilson a
lattice. The mean field for plaquette improvement~third column! and mean link improvement~fourth column!
are given. The lattice spacings were determined from the string tension, withAs50.44 GeV. The measured
errorsDV in the off-axis potential atR5(a,a,a) are also shown@see Eq.~10!#.

Action b ^ 1
2 Re TrUpl&

1/4 ^ 1
2 Re TrUm&1/4 a ~fm! Volume DV(A3a)

Improved 0.730 0.844 0.779 0.394~2! 84 0.04~1!

~plaquette! 0.935 0.872 0.817 0.264~1! 84 0.02~1!

Improved 0.550 0.845 0.779 0.404~2! 84 0.01~1!

~Landau!
Wilson 1.7 0.802 0.742 0.402~2! 84 0.32~4!
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action. We briefly summarize our results and outline poss
directions for further work in Sec. IV.

II. ISOTROPIC LATTICES

The isotropic tadpole-improved action for SU~2! is iden-
tical in form to the SU~3! action@8#, and at tree level is given
by

S52b (
x,m.n

H 5

3

Pmn

u0
4

2
1

12

Rmn

u0
6

2
1

12

Rnm

u0
6 J , ~6!

wherePmn is one half the trace of the 131 Wilson loop in
the m3n plane, andRmn is one half the trace of the 231
rectangle in them3n plane. The notation used in Eq.~6!
differs slightly from that used in Ref.@8#, where a factor of
5/3u0

4 was absorbed into the definition ofb. The notation
used here follows that introduced in Refs.@14,15#. The lead-
ing discretization errors in this action are ofO(asa

2) and
O(a4).

We ran simulations at two lattice couplings usin
plaquette improvement,u05u0,P @Eq. ~3!#, and at one lattice
coupling using mean link improvement,u05u0,L @Eq. ~4!#.
For comparison, results were also obtained for a stand
Wilson action on a coarse lattice. The parameters of th
four lattices are given in Table I. In the following we will us
bP andbL to denote the lattice couplings for the improve
action with plaquette and mean link tadpoles respectiv
andbW for the Wilson action coupling.

Results for the static quark potentialV(R) on the lattices
with comparable spacings are shown in Fig. 1. The poten
were measured at integer separationsR/a51 – 4. Measure-
ments were also made using non-planar Wilson loops, co
sponding to separationsR/a5A2, A3, A5, andA8. Sym-
metric combinations of the shortest spatial paths connec
two lattice points were used in the non-planar Wilson lo
calculations. The data in Fig. 1 were obtained by looking
a plateau in the time-dependent effective potential

aV~R,T!52 lnF W~R,T!

W~R,T21!G , ~7!
01450
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whereW(R,T) denotes the Wilson loop. An estimate of th
systematic error in the largeT extrapolation is given by the
statistical error in the second or third time step after the on
of the plateau.

An iterative fuzzing procedure was used to construct W
son loop~and glueball! operators with a very high degree o
overlap with the lowest-lying state. Fuzzy link variable
Ui

(n)(x) at thenth step of the iteration were obtained from
linear combination of the link and surrounding staples fro
the previous step@27#

Ui
~n!~x!5Ui

~n21!~x!

1e (
j Þ6 i

U j
~n21!~x!Ui

~n21!~x1 ̂ !U j
~n21!†~x1 ı̂ !,

~8!

wherei and j are purely spatial indices, and where the lin
were normalized toU†U5I after each iteration. Wilson
loops @and glueball correlators, Eq.~12! below# were con-
structed as usual by using the fuzzy link variables in place
the original links. The optimal number of iterationsn and the
parametere typically varied from (n,e)5(10,0.04) on lat-
tices with a'0.4 fm to (n,e)5(5,0.4) on lattices witha
'0.1 fm.

A defect of the action Eq.~6! is that the gluon propagato
acquires a high energy pole with a negative residue~at least
in perturbation theory!, due to terms in the action with two
links in the time direction@14,15#. Such high energy ‘‘dou-
blers’’ appear with a negative weight in the spectral deco
position of a ‘‘diagonal’’ correlation function C(T)
5^ i uexp(2HT)ui& ~where the same trial stateu i & appears at
the initial and final times!. The presence of a negative nor
ghost state implies that the effective massm(T)5
2 log„C(T)/C(T21)… @cf. Eq. ~7!# does not decrease mono
tonically with time ~as necessarily occurs in a theory wi
only physical positive norm states!, except at largeT, where
the contribution of the high energy ghost becomes negligib

This is illustrated by a plot of the time-dependent pote
tial V(R,T) at fixedR51, shown in Fig. 2. The increase i
V(R51,T) from T51 to T52 signals the presence of
negative norm ghost state@note that the Wilson loops use
here all connect the same fuzzed trial state at initial and fi
times; an effective mass plot for the SU~3! scalar glueball,
with a similar structure, is shown in Ref.@16##.
2-3
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NORMAN H. SHAKESPEARE AND HOWARD D. TROTTIER PHYSICAL REVIEW D59 014502
FIG. 1. Static quark potentials on isotropic lattices:~a!
plaquette-improved action withbP50.730;~b! mean link-improved
action with bL50.550; and~c! Wilson action with bW51.700.
Linear plus Coulomb fits to the on-axis potentials are shown as
solid lines.
01450
The presence of ghost states in the improved action c
plicates the extraction of masses on coarse isotropic latti
given the severe suppression of the correlation function
large times. This problem can be avoided by working
anisotropic lattices with sufficiently smallat , where elimi-
nation ofO(at

2) errors in the action may be unnecessary,
described in the next section.

The solid lines in Fig. 1 show the results of a fit of th
on-axis data to a standard infrared parameterization of
continuum potential:

Vfit~R!5sR2
b

R
1c. ~9!

Infrared fluctuations of a one-dimensional string giveb
5p/12 @28#. However much better fits were obtained b
leavingb as a free parameter. We typically foundb'0.1 on
the coarsest lattices, with the string value emerging on
finest lattices analyzed in Sec. III~see also Ref.@17#!. The
lattice spacingsa were extracted by matching the fit value
for the string tension in lattice units to a physical value
As50.44 GeV.

Discretization errors in the lattice action break Loren
symmetry, which is clearly visible in the off-axis potentia
@8#. These errors are dramatically reduced when the actio
tadpole improved, as seen in Fig. 1. As a quantitative m
sure of the improvement, we compare the potential measu
in the simulation from non-planar Wilson loops with an i
terpolation to the on-axis data:

DV~R![
Vsim~R!2Vfit~R!

sR
. ~10!

Results forR5(a,a,a) are given in Table I. With tadpole
improvement the error is only a few percent even on latti
with spacings as large as 0.4 fm, compared to an erro
about 30–40 % for the Wilson action@8#. Discretization er-
e

FIG. 2. Effective potential atR5a on the isotropic tadpole-
improved lattice withbP50.730.
2-4
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rors are further reduced when tadpole improvement is d
with u0,L , compared to whenu0,P is used.

Glueball correlation functionsG(T) were also calculated

G~T!5^f~T!f~0!&2^f&2, ~11!

wheref(T) denotes a linear combination of the trace of
31 ~fuzzy! plaquettesPi j (xW ,T), summed over spatial pos
tions. We considered linear combinations which, in the c
tinuum limit, excite scalar (JP501) and tensor (JP521)
glueballs:

f01~T!5(
xW

@P12~xW ,T!1P13~xW ,T!1P23~xW ,T!#,

f21~T!5(
xW

@P12~xW ,T!2P13~xW ,T!#, ~12!

together with two other linearly independent combinations
plaquettes for the tensor channel. Effective massesm(T)
were computed in the usual way:

m~T!52 lnS G~T!

G~T21! D . ~13!

An effective mass plot for the scalar glueball on the i
proved lattice witha'0.26 fm is shown in Fig. 3. The dat
are very noisy even atT of two or three lattice units, due to
the large lattice spacing and glueball mass, despite the
that an ensemble of over 30 000 configurations was ge
ated. The data for the tensor glueball were too noisy to b
use. As with the SU~3! simulations reported in Ref.@16#, the
extraction of the glueball mass from a plateau inm(T) is
computationally demanding on coarse isotropic lattices.
shown in the next section a far more efficient approach, p
posed in Refs.@14,15#, is to simulate on anisotropic lattice
with small spacings in the time direction. On the other ha
the results in Fig. 3 compare favorably with Wilson acti

FIG. 3. Effective mass plot for the scalar glueball on the isot
pic tadpole-improved lattice withbP50.935.
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calculations on fine lattices@29#. In Ref. @30# a continuum
extrapolation of Wilson action glueball data was made, w
the resultm01 /As53.8760.12.

III. ANISOTROPIC LATTICES

The tadpole-improved SU~2! action on anisotropic lattices
is again identical in form to the SU~3! theory and, following
Refs.@14,15#, we omit corrections forO(at

2) errors by work-
ing on lattices with smallat . This has the advantage o
eliminating a negative residue high energy pole in the glu
propagator. The resulting action has rectanglesRst that ex-
tend only one lattice spacing in the time direction:

S52b (
x,s.s8

jH 5

3

Pss8

us
4

2
1

12

Rss8

us
6

2
1

12

Rs8s

us
6 J

2b(
x,s

1

j H 4

3

Pst

us
2ut

2
2

1

12

Rst

us
4ut

2J , ~14!

wherej is the bare anisotropy, Eq.~5!. ‘‘Diagonal’’ correla-
tion functions computed from this action decrease monoto
cally with time.

On an anisotropic lattice one has two mean fieldsut and
us . A natural way to determine them is to use the mean lin
in Landau gauge@5#

ut5^ 1
2 Re TrU4&, us5^ 1

2 Re TrUs&, ~15!

where a lattice version of the continuum Landau gauge c
dition ]mAm50 is obtained by maximizing the quantity

(
x,m

1

umam
2

Re TrUm~x!. ~16!

Alternatively one can define the mean fields using the m
sured values of the average plaquettes. One possibility i
first computeus from spatial plaquettes,us

45Pss8 , and then
to computeut from temporal plaquettes,ut

2us
25Pst . How-

ever, in the limit thatat /as→0, this procedure yieldsut
→1/us @31#; with mean link tadpoles Eq.~15! on the other
hand one has the more physical limitut512O((at /as)

2).
Since the lattice spacingat in our simulations is small, we
adopt the following prescription@14,15,17# for the mean
fields in ‘‘plaquette improvement’’

ut[1, us5^Pss8&
1/4. ~17!

In this connection, we note that the factorut in the action Eq.
~14! can in fact be absorbed into a redefinition ofb and of
the input anisotropy, according tob/ut→b, andjut→j. As
shown below one finds very little renormalization of the i
put anisotropyj with either of the tadpole renormalizatio
schemes Eqs.~15! or ~17!.

Simulations were performed on four lattices wi
plaquette improvement, and three lattices with mean link t
poles. In addition, we ran simulations on six lattices with t
Wilson action. The parameters of these thirteen lattices

-

2-5
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NORMAN H. SHAKESPEARE AND HOWARD D. TROTTIER PHYSICAL REVIEW D59 014502
given in Table II. The spatial spacingsas lie in the range of
about 0.1 fm to 0.4 fm, with temporal spacingsat kept near
0.1 fm.

Configurations were generated using a heat bath a
rithm. The number of updates between measurements va
from 10 on the coarsest lattices to 20 on the finest; integra
autocorrelation times were computed, and satisfiedt int&0.5
in all cases. Ensembles of about 2 000 configurations w
used to measure the static quark potential, while betw
80 000 and 160 000 configurations were generated at eab
for glueball measurements.

Tadpole improvement eliminates most of the renormali
tion of the input anisotropyj, as was first shown in Refs
@14,15#. This can be demonstrated by comparing the st
quark potential computed from Wilson loopsWxt , where the
time axis is taken in the direction of small lattice spacin
at ,

Wxt~R5n1as ,T5n2at! →
n2→`

Zxte
2n2atV~R!, ~18!

with the potential computed from Wilson loopsWxy with
both axes taken in the direction of large lattice spacingsas

Wxy~R5n1as ,T5n2as! →
n2→`

Zxye
2n2asV~R!. ~19!

The physical anisotropy is determined after an unphys
constant is removed from the potentials, by subtraction of
simulation results at two different radii:

S at

as
D

phys

5
atVxt~R2!2atVxt~R1!

asVxy~R2!2asVxy~R1!
, ~20!

whereatVxt andasVxy are the potentials in the lattice uni
relevant to the two sets of Wilson loopsWxt and Wxy , re-
spectively ~alternative methods for determining the reno
malized anisotropy are analyzed in Ref.@20#!.

TABLE II. Simulation parameters for the lattices analyzed
Sec. III. The bare anisotropiesj and the mean fieldsut andus for
tadpole improvement are shown, along with the spatial lattice sp
ings as determined from the string tension.

Action b j ut us a ~fm! Volume

Improved 0.848 0.276 1. 0.793 0.366~1! 83332
~plaquette! 0.981 0.333 1. 0.819 0.298~1! 83324

1.114 0.409 1. 0.842 0.238~1! 83320
1.214 0.500 1. 0.860 0.202~2! 103320

Improved 0.650 0.276 0.977 0.718 0.384~2! 83332
~Landau! 0.795 0.333 0.974 0.757 0.304~1! 83324

0.905 0.409 0.966 0.785 0.244~1! 83320
Wilson 1.95 0.25 0.393~2! 83332

2.0 0.25 0.355~2! 83332
2.14 0.333 0.308~2! 83324
2.243 0.4 0.232~2! 83320
2.3 0.5 0.203~1! 103320
2.4 1. 0.128~2! 124
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We computed the anisotropy twice, using two differe
radii R1 for the subtraction, with fixedR252as . We com-
pare the anisotropies determined withR15a and A2a in
Table III. Although it is advantageous to use the potentia
smallerR, where the statistical errors are smaller, it is im
portant to check that we are not sensitive to possible disc
zation errors ofO(as

4/R4) @31#. The two determinations o
the anisotropy are in fact in excellent agreement.

These results show that the input anisotropyj is renor-
malized by less than a few percent when the action is tadp
improved @14,15#, at least over the wide range of lattice
analyzed here. The renormalization is small enough that
need not measure the anisotropy in many applications. T
is to be contrasted with the Wilson action, where the m
sured value ofat /as is found to be about 20% lower thanj
on the lattices analyzed here.

Sample results for the potentials both with and witho
tadpole improvement are shown in Fig. 4. The renormali
tion of the input anisotropy in the case of the Wilson acti
is plainly visible as a difference in slope of the potentia
computed fromWxt andWxy . A significant reduction in ro-
tational symmetry breaking with the improved action is a
apparent in the off-axis potentials, as illustrated in Fig. 4

The scalar and tensor glueball correlators were calcula
on all thirteen lattices. Representative effective mass p
are shown in Fig. 5. The fuzzy correlators described in S
II @Eqs.~8! and~12!# were used. We note that the efficienc
of these calculations could be improved by using a va
tional basis of several operators, rather than just the fu
131 plaquette used here@17#.

Our final results for the masses were obtained from sin
exponential fits to the correlation functions. In most cas
acceptable fit results were obtained from the fit inter
T/at5@3,6#. Examples of our fit results for various fit inter
vals T/at5@ tmin ,tmax# are given in Table IV for a fewb

c-

TABLE III. Measured anisotropies (at /as)phys compared to the
input anisotropiesj for the three actions. Each anisotropy was me
sured twice, using two different radiiR1 for the subtraction, with
fixed Rs52as @see Eq.~20!#. The errorsDV in the off-axis potential
are also given.

(at /as)phys

Action b j (R15as) (R15A2as) DV(A3a)

Improved 0.848 0.276 0.273~4! 0.272~8! 0.08~1!

~plaquette! 0.981 0.333 0.335~5! 0.332~10! 0.05~1!

1.114 0.409 0.413~3! 0.418~8! 0.03~1!

1.214 0.500 0.502~3! 0.506~8! 0.03~1!

Improved 0.650 0.276 0.277~11! 0.269~22! 0.06~1!

~Landau! 0.795 0.333 0.335~4! 0.330~9! 0.04~1!

0.905 0.409 0.408~8! 0.402~12! 0.03~1!

Wilson 1.95 0.25 0.189~2! 0.183~7! 0.19~1!

2.0 0.25 0.200~5! 0.214~13! 0.15~1!

2.14 0.333 0.267~4! 0.271~7! 0.11~1!

2.243 0.4 0.338~6! 0.335~16! 0.07~1!

2.3 0.5 0.428~3! 0.419~9! 0.06~1!

2.4 1. 0.04~1!
2-6
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FIG. 4. Static quark potentials on anisotropic lattices, computed from Wilson loopsWxt (d) andWxy (h). The potentials in lattice units
obtained fromWxt have been rescaled by the input anisotropy, and the potentials have been shifted by additive constants in ord
asV(R5as)51. Linear plus Coulomb fits to theWxt on-axis data are shown as the solid lines. Results are shown for~a! the plaquette-
improved action atbP50.848; ~b! the mean link-improved action atbL50.650; ~c! the Wilson action, atbW51.950.
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values ~also shown in the effective mass plots in Fig. 5!.
These fit results are representative of the quality of the res
our data. Final results for the scalar and tensor glue
masses are given Table V. All errors were obtained by
jackknife method, and all results in Table V have
x2/DOF&1. The scalar and tensor glueball masses
shown as functions of lattice spacing squared in Figs. 6
7.

We note that the tensor glueball data atbP50.848 and at
bL50.795 and 0.905 turned out to be too noisy to allow
a reliable estimate of the mass, with no clear plateau vis
in the effective mass plots. These three tensor masses~which
have errors much larger than the rest of the data! are there-
fore not included in Table V, nor in Fig. 7. We note that t
tensor glueball data exhibit somewhat smaller scaling vio
tions, even for the Wilson action on the coarsest lattices s
ied here~it is important to note that the three improved te
sor glueball data points excluded from our final data set
01450
of
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re
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r
le

-
d-

o

not change this conclusion!. These results could indicate tha
the tensor glueball has a large size. It would be interestin
compare with the situation for the SU~3! tensor glueball, but
Wilson action data are not available on sufficiently coa
lattices~for a compilation see Ref.@17#!.

The SU~2! scalar glueball data exhibit a peculiar featu
that has previously been observed in SU~3! coarse lattice
simulations@17#. The scalar glueball mass first decreases
as increases, reaching a minimum atas'0.3 fm; the mass
then gradually increases withas . It has been conjectured
@17,18# that this ‘‘dip’’ may be related to the presence of
critical endpoint in a line of phase transitions in gluonic a
tions that include an adjoint coupling@25#.

We note that the SU~3! simulations in Ref.@17# were
done with plaquette improvement. The SU~3! scalar glueball
dip is more pronounced than in SU~2! with plaquette im-
provement, but Wilson action data are not available on s
ficiently coarse lattices to allow a trend to be established
2-7
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FIG. 5. Effective mass plots for the scalar glueball on two lattices@~a! bL50.795 and~b! bP50.981# and for the tensor glueball on two
lattices@~c! bL50.650 and~d! bP50.981#. The results of single exponential fits to the correlation functions are shown as solid lines
dotted lines showing the estimated error.
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the SU~3! theory. Simulations with mean link improveme
for SU~3! glueballs have not been done. One the other ha
some SU~3! simulations have been done with the addition
a term to the action that is designed to move the theory a
from the critical endpoint in the fundamental-adjoint pla
@18#; these results suggest that this mechanism does pl
role in the SU~3! scalar glueball dip.

An alternative explanation for the origin of the ‘‘dip’’ in
the scalar glueball mass, which we raised in Sec. I, is
this state might be especially sensitive to discretization er
in the gluon action. Evidence to this effect is provided
studies which show that the scalar glueball is less sensitiv
finite volume effects than the tensor@26#, and by results pre-
sented here which show somewhat larger lattice spacing
pendence in the scalar mass than in the tensor. This c
indicate that the scalar glueball is smaller in size.

The data obtained here shed new light on this behavio
particular, we find that the depth of the dip is reduced
about half when the plaquette-improved action is used, c
01450
d,
f
y

a

at
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to

e-
ld
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y
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pared to results obtained with the Wilson action. We a
find that the depth of the dip is further reduced when me
link improvement is used. This suggests that the dip may
due, at least in part, to discretization errors that are m
fully removed with mean link tadpoles. If this picture is co
rect, then one might expect the dip to be further reduced~or
even eliminated! if one accounts for the perturbative reno
malization of the action, since this renormalization wou
remove the leadingO(asa

2) discretization errors in the tree
level, tadpole-improved action.

Since the anisotropic action is only known at tree-lev
we decided to simply run one last set of simulations with
ad hoc change ofO(as) to the coefficients of the rectangl
terms. A change to these coefficients of this magnitude
expected from the one-loop renormalization of the act
~this would also generate additional ‘‘parallelogram’’ term
in the action, which we have not considered!.

In these runs, we multiplied the coefficient of the rec
angle termsRss8 andRst in Eq. ~14! by a factor of 1.2, which
2-8
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is consistent with anO(as) renormalization of these opera
tors on lattices with spacings in the range considered h
We ran atbL50.85, withj50.333~after retuning the Lan-
dau gauge mean link factors, whereut50.975 and us
50.758). The lattice spacingas50.314(1) fm is in the
middle of the dip found with the other actions. We find glu
ball masses m01 /As53.82(7), and m21 /As55.5(4)
~where a measured renormalization ofj by about 8% is in-
cluded!. These results are shown as an open triangle in F
6 and 7.

Since we do not know the precise change to the ac
due to radiative corrections, this calculation is intended o

TABLE IV. Results of single exponential fits to scalar and te
sor glueballs on four representative lattices. These results ca
compared with the four effective mass plots shown in Fig. 5.

State tmin /tmax atM x2/DOF

01 (bL50.795) 1/8 0.831~4! 3.463
2/8 0.806~9! 0.273
3/8 0.802~19! 0.311
3/7 0.801~19! 0.400
3/6 0.802~18! 0.599

01 (bP50.981) 1/8 0.792~3! 5.000
2/8 0.767~8! 0.304
3/8 0.755~16! 0.012
3/7 0.755~15! 0.008
3/6 0.756~14! 0.007

21 (bL50.650) 1/8 1.37~1! 0.843
2/8 1.34~3! 0.741
3/8 1.24~11! 0.570
3/7 1.24~11! 0.393
3/6 1.25~11! 0.373

21 (bP50.981) 1/8 1.33~1! 6.930
2/8 1.26~2! 0.981
3/8 1.24~7! 0.353
3/7 1.24~8! 0.058
3/6 1.24~8! 0.063

TABLE V. Final fit results for scalar and tensor glueball mass

Action b as ~fm! m01 /As m21 /As

Improved 0.848 0.366~1! 3.49~7!

~plaquette! 0.981 0.298~1! 3.41~6! 5.6~3!

1.114 0.238~1! 3.55~5! 5.9~1!

1.214 0.202~2! 3.59~7! 5.8~2!

Improved 0.650 0.384~2! 3.74~5! 5.7~4!

~Landau! 0.795 0.304~1! 3.58~7!

0.905 0.244~1! 3.72~8!

Wilson 1.95 0.393~2! 3.17~7! 5.0~1!

2.0 0.355~2! 3.10~5! 5.1~1!

2.14 0.308~2! 2.96~5! 5.4~1!

2.243 0.232~2! 3.05~6! 5.6~1!

2.3 0.203~1! 3.14~7! 5.8~5!

2.4 0.128~2! 3.52~11! 5.8~2!
01450
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to test for the sensitivity of the scalar glueball mass to rad
tive corrections of the expected order-of-magnitude. The
served sensitivity of the scalar glueball mass to the chan
made here does indeed raise the possibility that the dip m
be due, at least in part, to discretization errors. These res
demonstrate the need to compute the full radiative corr
tions to the action, before one can make a definitive conc
sion regarding the origin of the scalar glueball dip.

IV. SUMMARY AND OUTLOOK

Tadpole improved SU~2! lattice gauge theory was applie
to calculations of the heavy quark potential, the renormaliz

be

.

FIG. 6. Scalar glueball mass versus spatial lattice spac
squared. Data are shown for: the mean link-improved action~j!;
the plaquette-improved action (d); and from the Wilson action
simulations done here (s). The result of a simulation with an ad
hoc change to the coefficients of the rectangle terms in the
proved action, described in the text, is also shown (n). We also
include results from Wilson action simulations reported in Ref.@29#
(3). The star shows the results of ana→0 extrapolation of pub-
lished Wilson action data@30#.

FIG. 7. Tensor glueball mass versus lattice spacing squared.
plotting symbols are the same as in Fig. 7.
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lattice anisotropy, and the scalar and tensor glueball mas
We analyzed improved actions on isotropic and anisotro
lattices, and we compared simulations with mean link a
plaquette tadpole improvement. Comparisons were a
made with simulations of the Wilson action. Tadpole im
provement significantly reduces discretization errors in
static quark potential, and results in very little renormaliz
tion of the input anisotropy. We also found a ‘‘dip’’ structur
in the scalar glueball mass, analyzed as a function of lat
spacing, which has previously been observed in SU~3! simu-
lations. We found evidence that this dip may be related
discretization errors in the action that are more fully remov
when tadpole improvement is done using the mean link
Landau gauge. The possibility was also raised that furt
improvement in the scalar glueball mass may result when
coefficients of the operators which correct for discretizat
errors in the action are computed beyond tree level.

Simulations with mean link improvement~as well as of
se

.
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nd
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the Wilson action! on coarse lattices in the SU~3! theory
could help to clarify the origin of the dip in the scalar glu
ball mass. It might also be fruitful to analyze an improv
SU~2! theory with an adjoint coupling included. A calcula
tion of the scalar and tensor glueball sizes would also yi
useful information, with the reduced computational cost
simulations in the SU~2! gauge theory providing further in
centive for continued study of this system.
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