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A comprehensive analysis of tadpole-improved3Uattice gauge theory is made. Simulations are done on
isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are
employed, one using average plaquettes, the other using mean links in the Landau gauge. Simulations are done
with spatial lattice spacingg, in the range of about 0.1-0.4 fm. Results are presented for the static quark
potential, the renormalized lattice anisotro@y a, (wherea, is the “temporal” lattice spacing and for the
scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static
quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy
that is input to the action. We also find that tadpole improvement using mean links in the Landau gauge results
in smaller discretization errors in the scalar glueball m{asswell as in the static quark potenjiatompared
to when average plaquettes are used. The possibility is also raised that further improvement in the scalar
glueball mass may result when the coefficients of the operators which correct for discretization errors in the
action are computed beyond the tree ley80556-282098)00623-7

PACS numbsd(s): 11.15.Ha, 12.38.Gc

[. INTRODUCTION sign of improved lattice actions include the construction of
fixed point actiong2], and the use of nonperturbative renor-

Simulations of lattice quantum chromodynami@@CD)  malization condition$3].)
have undergone significant changes in the past few years, Tadpole improvement has helped to revitalize interest in
with a host of new actions under investigation, and with thethe Symanzik improvement prograjd], with a number of
viewpoint emerging that simulations on coarse lattice camew more complex actions currently under investigation,
yield reliable results. A major impetus for these changes wapartly with the goal of doing precision simulations on coarse
the realization that the large radiative corrections which oclattices(for a review see Ref5]). One of the earliest appli-
cur in many guantities in lattice theories have a commorcations of tadpole improvement was in the development of
origin, coming from cutoff effects due to tadpole diagramsthe nonrelativistic QCOXNRQCD) action for heavy quarks
specific to lattice actionfl]. [6]. Tadpole improvement is now widely used in large scale

Tadpole diagrams in lattice theories are induced by theimulations of many action], and plays an important role
nonlinear connection between the lattice link variablesn current efforts to extract continuum results from simula-

U,(x) and the continuum gauge fields,(x): tions on fine lattices.
The current interest in simulations on very coarse lattices
UM(x)Ee‘agAu(x). (1) was stimulated by the first study of tadpole-improved glu-

onic actions[8]. Simulations of the static quark potential,

and of the spin-average charmonium spectrum in NRQCD,
The cutoff dependence of ultraviolet divergent tadpole dia-using an improved gluonic action on lattices with spacings as
grams spoils naive power counting in the lattice spa@ng large as 0.4 fm, showed discretization errors of only a few
Higher dimension operators that are generated by lattice agercent.
tions generally induce large radiative corrections, their con- This has led to more recent efforts to further optimize
tributions being suppressed by powersaQfa), rather than tadpole-improved actions. In particular, there has been con-
of a. Fortunately, there is now considerable evidence that theiderable work to determine the optimal choice of operator to
effects of tadpole diagrams can largely be removed with aise in defining the mean field renormalization faaigf9—

simple mean field renormalization of the links]: 13]. Most previous simulations have used the fourth root of
the average plaguettg p for tadpole improvement where, in
SU(N) gauge theoryon isotropic lattices
U, (x)
U,(x)— , (2
Ug 1 1/4
uO,PE < N Re TrU p|> . (3)

where an operator dominated by short-distance fluctuations
is used to determing,. (Alternative approaches to the de- However simulations of the static quark potenfi@l, of the
quarkonium spectrum in NRQC[10,12,13, and of a rela-
tivistic fermion action[11] have demonstrated that discreti-
*Email address: nshakesp@sfu.ca. zation errors are further reduced when the mean link in Lan-
"Email address: trottier@sfu.ca. dau gaugauy, is used, where
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1 The work we present here on tadpole-improved(ZU
U =\gReTU, ), d,A,=0. (4 gluonic actions is not only of interest in reproducing the
features of the S(3B) theory, but also serves to suggest new

There has also been a rapid evolution of more complex@Venues for further development. Of particular interest are
highly improved actiongsee, e.g., Refd5,11,14,19. In new resu!ts presented here for the (8Uscalar gluebgll
particular, there has been a revival of interest in actions de?ass, which relate to a peculiar feature that has previously
fined on anisotropic lattices, where the lattice spacing in th&een observed in S8) coarse lattice simulationis7]. We
“tempora|” direction ay is kept smaller than the Spatia| spac- find that the SW2) scalar glueball mass first decreases as the
ing a5 [14,15. This enables much more efficient simulations lattice spacingas is increased, reaching a minimum ag
of hadronic systems with large masses, for example, wherez0.3 fm; the mass then gradually increases with A simi-
the exponential suppression of the correlation function belar “dip” in the SU(3) scalar glueball mass was reported in
comes prohibitive on lattices with largg. This is especially Ref.[17]. It has been conjecturdd 7,18 that this behavior
relevant for glueball simulations, where discretization erroramay be related to the presence of a critical endpoint in a line
may be acceptably small even witly as large as 0.4 fm of phase transitions in gluonic actions that include an adjoint
[16—18, but where the correlation function becomes ex-coupling[25].
tremely noisy after only a few time steps if a comparadle On the other hand, we find that the depth of the dip in the
is used. SU(2) theory with plaquette tadpole improvement is about

An impediment to the use of anisotropic lattices has beemalf of that found with the Wilson action. We also find that
the need to measure the renormalized anisotr@pyag)pnys  the depth of the dip is further reduced when mean link tad-
in 'Fhe simulation whlch, in the_case of the Wilson glluon pole improvement is usdthe SU3) simulations in Ref[17]
actlon[19,2.(],.can differ appr'eC|any from the bare anisot- \yare done with average plaquette tadpbl&his suggests
ropy ¢ that is input to the action that the dip may be due, at least in part, to discretization

errors that are more fully removed with mean link tadpoles.
(5) The tensor glueball mass exhibits somewhat smaller scaling

violations, even with the Wilson action, which could indicate

that the tensor has a larger size than the scalar. In this con-
However it has recently been shown that tadpole improvenection, we note that the scalar glueball has been found to be
ment reduces the renormalization ¢fto a few percent much less sensitive to finite volume effects than the tensor
[14,15, which is small enough to be neglected in many ap{26]. This supports the conjecture that the scalar glueball has
plications. Recent simulations of a variety of glueball statesa smaller size than the tensor, and hence is more sensitive to
with a tadpole-improved action, on anisotropic lattices withdiscretization corrections to the action.
coarsea,, have provided results that compete with much We also performed simulations after making small
larger scale simulations on fine latticiis7,18. changes to the coefficients of the operators which correct for

In this paper we present a comprehensive analysis of theiscretization errors in the action. These results raise the pos-
tadpole-improved S(2) lattice gauge theory. We do simula- sibility that the dip in the scalar glueball mass might be
tions on both isotropic and anisotropic actions, with andeliminated once the corre@(«;) renormalizations of the
without improvement. Results are obtained with two tadpolerelevant operators in the action are included.
renormalization schemes, one using average plaquettes, andThe rest of this paper is organized as follows. In Sec. Il
the other using mean links in Landau gauge. We also comae present results from an improved @Yaction on isotro-
pare with simulations of the Wilson action. Simulations arepic lattices. Two independent sets of simulations are done,
done with spatial spacings, in the range of about 0.1-0.4 using the two tadpole renormalization schemes discussed
fm. Results are presented for the static quark potential, thebove[Egs.(3) and(4)]. We simulate on lattices with spac-
renormalized anisotropy, and for the scalar and tensor glugngs of about 0.25 fm and 0.40 fm. We compare the static
ball masses. Some of our results have been reviewed in prguark potential with improvement to the results of a simula-
liminary form elsewher¢5,14,15,18. A full account of this  tion using the Wilson action. We also present results for the
work is presented here for the first tirf21]. [Simulations of  scalar glueball mass. Details of our Wilson loop and glueball
the tadpole-improved S@) gauge theory on isotropic lat- correlation functions are also discussed in Sec. Il.
tices have also recently been reported in REZ2,23.] In Sec. lll we present results from our simulations on

We note that there is a long history of simulations of anisotropic lattices. We run at several spatial lattice spacings
SU(2) gauge theory, motivated by the fact that this theoryas in the range of about 0.1 fm to 0.4 fm, where the temporal
exhibits much of the physics found in ) color, including  spacinga; is kept near 0.1 fm. We run simulations for im-
linear confinement of static quarks and a rich glueball specproved actions using the two tadpole renormalization
trum. Simulations of S{2) color have been used to shed schemes, and we also run on several lattices using the Wil-
light on the physics of confinement, and to test new algoson action. We compare bare and renormalized anisotropies,
rithms for use in more realistic simulations. The reducedstatic quark potentials, and scalar and tensor glueball masses
computational cost of simulations in &) continues to be from these actions. We also illustrate the sensitivity of the
exploited in, for example, recent large scale simulations ofcalar glueball mass to small changes in the coefficients of
the static quark potentigR4]. the operators which correct for discretization errors in the

a;

gz

as bare
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TABLE I. Simulation parameters for three isotropic tadpole-improved lattices, and one Wilson action
lattice. The mean field for plaquette improveméhtrd column and mean link improvemeittourth column)
are given. The lattice spacings were determined from the string tension,/witr0.44 GeV. The measured
errorsAV in the off-axis potential aR=(a,a,a) are also showiisee Eq.(10)].

Action B ({ReTrU )Y (LReTru )M a (fm) Volume  AV(y3a)
Improved 0.730 0.844 0.779 0.3 84 0.041)
(plaquette 0.935 0.872 0.817 0.261) 84 0.021)
Improved 0.550 0.845 0.779 0.4 84 0.01(2)
(Landay

Wilson 1.7 0.802 0.742 0.402 84 0.324)

action. We briefly summarize our results and outline possiblevhereW(R,T) denotes the Wilson loop. An estimate of the

directions for further work in Sec. IV. systematic error in the large extrapolation is given by the
statistical error in the second or third time step after the onset
of the plateau.

Il. ISOTROPIC LATTICES An iterative fuzzing procedure was used to construct Wil-
son loop(and gluebal)l operators with a very high degree of
overlap with the lowest-lying state. Fuzzy link variables
UM(x) at thenth step of the iteration were obtained from a

The isotropic tadpole-improved action for &)Y is iden-
tical in form to the SUW3) action[8], and at tree level is given

by linear combination of the link and surrounding staples from
the previous step27]
S=-B3 3E-pe g, ®  UTemutie
X, u>v UO UO Uo R R
+e 2, UM DooUM D(x+ UM YT (x+1),
j#Fxi
whereP ,, is one half the trace of theX1 Wilson loop in )

the u X v plane, andR,,, is one half the trace of the>21

rectangle in theuX v plane. The notation used in EG)  wherei andj are purely spatial indices, and where the links
differs slightly from that used in Ref8], where a factor of \ere normalized toUTU=1 after each iteration. Wilson
5/3uj was absorbed into the definition @. The notation loops [and glueball correlators, Eq12) below] were con-
used here follows that introduced in Reff$4,15. The lead-  structed as usual by using the fuzzy link variables in place of
ing discretization errors in this action are 6 «sa%) and  the original links. The optimal number of iterationsnd the
O(a%). parametere typically varied from ,e)=(10,0.04) on lat-
We ran simulations at two lattice couplings using tices witha~0.4 fm to (n,e)=(5,0.4) on lattices witha
plaquette improvementiy=uqp [EQ. (3)], and at one lattice ~0.1 fm.
coupling using mean link improvementy=uo, [Eq. (4)]. A defect of the action Eq(6) is that the gluon propagator
For comparison, results were also obtained for a standardcquires a high energy pole with a negative resigudeast
Wilson action on a coarse lattice. The parameters of thesg perturbation theorny due to terms in the action with two
four lattices are given in Table I. In the following we will use links in the time directior{14,15. Such high energy “dou-
Bp and B, to denote the lattice couplings for the improved blers” appear with a negative weight in the spectral decom-
action with plaquette and mean link tadpoles respectivelyposition of a ‘“diagonal” correlation function C(T)
and By for the Wilson action coupling. =(ilexp(~HT)|i) (where the same trial state) appears at
Results for the static quark potenti(R) on the lattices the initial and final times The presence of a negative norm
with comparable spacings are shown in Fig. 1. The potentialghost state implies that the effective mass(T)=
were measured at integer separati®tia=1-4. Measure- —|og(C(T)/C(T—1)) [cf. Eq.(7)] does not decrease mono-
ments were also made using non-planar Wilson loops, corraonically with time (as necessarily occurs in a theory with
sponding to separatiorR/a=2, \/3, /5, andy/8. Sym-  only physical positive norm statesxcept at largd’, where
metric combinations of the shortest spatial paths connectinthe contribution of the high energy ghost becomes negligible.
two lattice points were used in the non-planar Wilson loop This is illustrated by a plot of the time-dependent poten-
calculations. The data in Fig. 1 were obtained by looking fortial V(R,T) at fixedR=1, shown in Fig. 2. The increase in
a plateau in the time-dependent effective potential V(R=1,T) from T=1 to T=2 signals the presence of a
negative norm ghost stafeote that the Wilson loops used
here all connect the same fuzzed trial state at initial and final
times; an effective mass plot for the ) scalar glueball,

aV(RT)=~In with a similar structure, is shown in RdfL6]].

(@)

W(R,T)
W(R,T-1)|
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FIG. 1. Static quark potentials on isotropic lattice&)
plaquette-improved action witBp= 0.730; (b) mean link-improved
action with g, =0.550; and(c) Wilson action with 8,y,=1.700.
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FIG. 2. Effective potential aR=a on the isotropic tadpole-
improved lattice withBp=0.730.

The presence of ghost states in the improved action com-
plicates the extraction of masses on coarse isotropic lattices,
given the severe suppression of the correlation function at
large times. This problem can be avoided by working on
anisotropic lattices with sufficiently smadl,, where elimi-
nation ofO(atz) errors in the action may be unnecessary, as
described in the next section.

The solid lines in Fig. 1 show the results of a fit of the
on-axis data to a standard infrared parameterization of the
continuum potential:

Vi(R)=oR— %+c. (9

Infrared fluctuations of a one-dimensional string gike
=/12 [28]. However much better fits were obtained by
leavingb as a free parameter. We typically foube=0.1 on

the coarsest lattices, with the string value emerging on the
finest lattices analyzed in Sec. lisee also Ref[17]). The
lattice spacinga were extracted by matching the fit values
for the string tension in lattice units to a physical value of
Jo=0.44 GeV.

Discretization errors in the lattice action break Lorentz
symmetry, which is clearly visible in the off-axis potentials
[8]. These errors are dramatically reduced when the action is
tadpole improved, as seen in Fig. 1. As a quantitative mea-
sure of the improvement, we compare the potential measured
in the simulation from non-planar Wilson loops with an in-
terpolation to the on-axis data:

AV(R)= -

(10

Results forR=(a,a,a) are given in Table I. With tadpole
improvement the error is only a few percent even on lattices

Linear plus Coulomb fits to the on-axis potentials are shown as th&ith spacings as large as 0.4 fm, compared to an error of

solid lines.

about 30—40% for the Wilson actidi]. Discretization er-
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FIG. 3. Effective mass plot for the scalar glueball on the isotro-

pic tadpole-improved lattice witiBp=0.935.

rors are further reduced when tadpole improvement is don

with ug, , compared to whengp is used.
Glueball correlation function&(T) were also calculated

G(T)=((T)$(0))— ()2,

where ¢(T) denotes a linear combination of the trace of 1
X 1 (fuzzy) pIaquettesPij(i,T), summed over spatial posi-

13

PHYSICAL REVIEW D59 014502

calculations on fine latticef29]. In Ref. [30] a continuum
extrapolation of Wilson action glueball data was made, with
the resultmy /\/o=3.87+0.12.

[ll. ANISOTROPIC LATTICES

The tadpole-improved S@) action on anisotropic lattices
is again identical in form to the SB) theory and, following
Refs.[14,15, we omit corrections fo©(a?) errors by work-
ing on lattices with smalla;. This has the advantage of
eliminating a negative residue high energy pole in the gluon
propagator. The resulting action has rectandggsthat ex-
tend only one lattice spacing in the time direction:

5P 1Ry 1Ry
S=FZ, f[ﬁ?‘ﬁ?‘ﬁ?
X,S>S S S S
1{(4 Py, 1 Ry
B> E[g ] 452], (14)
*.s ugug  12ugug

@/hereg is the bare anisotropy, E¢). “Diagonal” correla-
tion functions computed from this action decrease monotoni-
cally with time.
On an anisotropic lattice one has two mean fieldand
Us. A natural way to determine them is to use the mean links
in Landau gaugé5]
u=(3 Re TrUy),

us=(3 Re TrUy), (15

tions. We considered linear combinations which, in the con-

tinuum limit, excite scalar J’=0%) and tensor {F=2%)
glueballs:

G0+ (T)=2 [P1aAX,T)+Pg(x, T)+ Pogx, T,

G2+ (T)=2 [P1a(X,T)—Pya(x,T)], (12)

where a lattice version of the continuum Landau gauge con-
dition 4,A,=0 is obtained by maximizing the quantity

2

X, (o uﬂaM

Re TrU ,(x). (16)

Alternatively one can define the mean fields using the mea-
sured values of the average plaguettes. One possibility is to
first computeug from spatial plaquettesjs= P,y , and then

together with two other linearly independent combinations ofto computeu, from temporal plaquettesj?u?=Pg,. How-

plaguettes for the tensor channel. Effective mass€s)
were computed in the usual way:

G(T)

m(T)= —In m

. (13

An effective mass plot for the scalar glueball on the im-
proved lattice witha~0.26 fm is shown in Fig. 3. The data
are very noisy even at of two or three lattice units, due to

ever, in the limit thata,/a;—0, this procedure yields
— 1/ug [31]; with mean link tadpoles Eq15) on the other
hand one has the more physical limit=1—0((a,/as)?).
Since the lattice spacing; in our simulations is small, we
adopt the following prescription14,15,17 for the mean
fields in “plaguette improvement”
U=1, Us=(Pss)"

17

the large lattice spacing and glueball mass, despite the fath this connection, we note that the factgrin the action Eq.
that an ensemble of over 30 000 configurations was genef14) can in fact be absorbed into a redefinition®fand of
ated. The data for the tensor glueball were too noisy to be dahe input anisotropy, according @'u;— 8, andéu;— &. As

use. As with the S(B) simulations reported in Ref16], the
extraction of the glueball mass from a plateaunfT) is

shown below one finds very little renormalization of the in-
put anisotropyé with either of the tadpole renormalization

computationally demanding on coarse isotropic lattices. Aschemes Eq<15) or (17).
shown in the next section a far more efficient approach, pro- Simulations were performed on four lattices with

posed in Refs[14,15, is to simulate on anisotropic lattices plaquette improvement, and three lattices with mean link tad-
with small spacings in the time direction. On the other handpoles. In addition, we ran simulations on six lattices with the
the results in Fig. 3 compare favorably with Wilson action Wilson action. The parameters of these thirteen lattices are
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TABLE II. Simulation parameters for the lattices analyzed in ~ TABLE Ill. Measured anisotropiesa(/as) ,nys compared to the
Sec. lll. The bare anisotropigsand the mean fields, andug for input anisotropieg for the three actions. Each anisotropy was mea-
tadpole improvement are shown, along with the spatial lattice spacsured twice, using two different radR, for the subtraction, with
ings a; determined from the string tension. fixed Rg=2a, [see Eq(20)]. The errorsAV in the off-axis potential
are also given.

Action B 3 Uy Ug a(fm) Volume
Improved 0.848 0.276 1. 0.793 0.386 8°x32 : (@as)onys

Acton B ¢ (Ri=a) (Ri=\2a) AV(V3a)

(plaquett¢ 0.981 0.333 1. 0.819 0.20B 8°x24
1.114 0.409 1. 0.842 0.288 8%%x20 Improved 0.848 0.276 0.2{®  0.2749) 0.081)
1.214 0500 1. 0.860 0.2® 10°%20 (plaquett¢ 0.981 0.333 0.335)  0.33210) 0.051)
Improved 0.650 0.276 0.977 0.718 0.384 8°%x32 1.114 0.409 0.413) 0.4188) 0.031)
(Landay 0.795 0.333 0974 0.757 0.303 8°x24 1.214 0500 0.508) 0.5068) 0.031)
0.905 0.409 0.966 0.785 0.244 83x20 Improved 0.650 0.276 0.2{71) 0.26922) 0.061)
Wilson  1.95 0.25 0.392) 8%°x32 (Landay 0.795 0.333 0.338)  0.3309) 0.041)
20 025 0.358) 83x32 0.905 0.409 0.408)  0.40212) 0.031)
2.14 0.333 0.30@) 83x24 Wwilson 1.95 0.25 0.182)  0.1837) 0.191)
2.243 04 0.23@) 8°x20 20 025 0.206) 0.21413 0.151)
23 05 0.2081) 10°x20 2.14 0.333 0.26@) 0.2717) 0.11(2)
2.4 1. 0.128) 12t 2.243 04 0.33®) 0.33516) 0.071)
23 05 0428) 0.4199) 0.061)
24 1. 0.041)

given in Table Il. The spatial spacings lie in the range of
about 0.1 fm to 0.4 fm, with temporal spacingskept near

0.1 fm._ ) ) We computed the anisotropy twice, using two different
_ Configurations were generated using a heat bath alg_or'adii R, for the subtraction, with fixedR,=2a,. We com-
rithm. The number of updates between measurements vari re the anisotropies determined witj=a and J2a in
from 10 on t_he coarsest lattices to 20 on the fm_es_t; integrategypie 1. Although it is advantageous to use the potential at
_autolf:orrelatlog tlme:;lweref cobmputze(é,ognd s?t|sﬁgt;dso.5 smallerR, where the statistical errors are smaller, it is im-
In all cases. Ensembles of about configurations Werg, iant 1o check that we are not sensitive to possible discreti-
used to measure the St?lt'c quark potential, while betwee ation errors ofO(a‘S‘/R“) [31]. The two determinations of
fsocio?l?e%gﬂ %nGe()a(;?J?e(;r?Qrzltg;Suratlons were generated at gach the anisotropy are in fact in excellent agreement.

19ad ole improvement eliminates most of the renormaliza- These results show that the input anisotrgpis renor-
tion ofpthe inpput anisotropy, as was first shown in Refs malized by less than a few percent when the action is tadpole

. ’ . "..improved [14,1 I ver the wide ran f latti

[14,15. This can be demonstrated by comparing the stati proved[14,19, at least over the wide range of lattices

ark potential computed from Wilson loo here the nalyzed here. The renormalization is small enough that one
quark potent 1pu om Wi W, W - need not measure the anisotropy in many applications. This
time axis is taken in the direction of small lattice spacings

is to be contrasted with the Wilson action, where the mea-
A, sured value of;/as is found to be about 20% lower than
on the lattices analyzed here.
Sample results for the potentials both with and without
tadpole improvement are shown in Fig. 4. The renormaliza-

with the potential computed from Wilson loopW,, with tion of the input anisotropy in the case of the Wilson action

both axes taken in the direction of large lattice spaciags IS plainly visible as a difference in slope of the potentials
computed fromW,; andW,, . A significant reduction in ro-

W,(R=njas, T=nzas) — Z, e naV(R) - (19)  tational symmetry breaking with the improved action is also
ny—o apparent in the off-axis potentials, as illustrated in Fig. 4.
) ) . ] . The scalar and tensor glueball correlators were calculated
The physical anisotropy is determined after an unphysicabn all thirteen lattices. Representative effective mass plots
constant is removed from the potentials, by subtraction of thgre shown in Fig. 5. The fuzzy correlators described in Sec.

W, (R=na,, T=n,a,) — Ze "V, (18)

ny—o

simulation results at two different radii: Il [Egs.(8) and(12)] were used. We note that the efficiency
of these calculations could be improved by using a varia-
& - aVxi(Re) ~aVi(Ry) (20) tional basis of several operators, rather than just the fuzzy
8s) s 8sVxy(Re) —asVyy(Ry) 1x1 plaquette used hefa7].

Our final results for the masses were obtained from single
wherea,V,; andasV,, are the potentials in the lattice units exponential fits to the correlation functions. In most cases
relevant to the two sets of Wilson loos,; andW,,, re-  acceptable fit results were obtained from the fit interval
spectively (alternative methods for determining the renor-T/a;=[3,6]. Examples of our fit results for various fit inter-
malized anisotropy are analyzed in REZ0]). vals T/a;=[tmin.tmax] @re given in Table IV for a fews
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FIG. 4. Static quark potentials on anisotropic lattices, computed from Wilson la6Qp&®) andW,, (C1). The potentials in lattice units
obtained fromW,, have been rescaled by the input anisotropy, and the potentials have been shifted by additive constants in order to set
aV(R=a)=1. Linear plus Coulomb fits to th&/,, on-axis data are shown as the solid lines. Results are show@)ftihe plaquette-
improved action ap3p=0.848; (b) the mean link-improved action &, =0.650; (c) the Wilson action, aB,=1.950.

values (also shown in the effective mass plots in Fig. 5 not change this conclusi@nThese results could indicate that
These fit results are representative of the quality of the rest dhe tensor glueball has a large size. It would be interesting to
our data. Final results for the scalar and tensor gluebakkompare with the situation for the $8) tensor glueball, but
masses are given Table V. All errors were obtained by th&Vilson action data are not available on sufficiently coarse
jackknife method, and all results in Table V have alattices(for a compilation see Ref17]).
x*/DOF=<1. The scalar and tensor glueball masses are The SUZ2) scalar glueball data exhibit a peculiar feature
shown as functions of lattice spacing squared in Figs. 6 anthat has previously been observed in (SUcoarse lattice
7. simulations[17]. The scalar glueball mass first decreases as
We note that the tensor glueball dataBat=0.848 and at a4 increases, reaching a minimum a~0.3 fm; the mass
B1L=0.795 and 0.905 turned out to be too noisy to allow forthen gradually increases with. It has been conjectured
a reliable estimate of the mass, with no clear plateau visibl§€17,18 that this “dip” may be related to the presence of a
in the effective mass plots. These three tensor magddsh  critical endpoint in a line of phase transitions in gluonic ac-
have errors much larger than the rest of the data there- tions that include an adjoint couplif@5].
fore not included in Table V, nor in Fig. 7. We note that the We note that the S(3) simulations in Ref.[17] were
tensor glueball data exhibit somewhat smaller scaling violadone with plaquette improvement. The @WUscalar glueball
tions, even for the Wilson action on the coarsest lattices studdip is more pronounced than in ) with plaguette im-
ied here(it is important to note that the three improved ten- provement, but Wilson action data are not available on suf-
sor glueball data points excluded from our final data set ddiciently coarse lattices to allow a trend to be established in
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FIG. 5. Effective mass plots for the scalar glueball on two latti¢@sB, =0.795 andb) 8,=0.981] and for the tensor glueball on two
lattices[(c) B, =0.650 andd) Bp=0.981]. The results of single exponential fits to the correlation functions are shown as solid lines, with
dotted lines showing the estimated error.

the SU3) theory. Simulations with mean link improvement pared to results obtained with the Wilson action. We also
for SU(3) glueballs have not been done. One the other handijnd that the depth of the dip is further reduced when mean
some SU3) simulations have been done with the addition oflink improvement is used. This suggests that the dip may be
a term to the action that is designed to move the theory awaglue, at least in part, to discretization errors that are more
from the critical endpoint in the fundamental-adjoint planefully removed with mean link tadpoles. If this picture is cor-
[18]; these results suggest that this mechanism does playract, then one might expect the dip to be further redueced
role in the SU3) scalar glueball dip. even eliminatedif one accounts for the perturbative renor-
An alternative explanation for the origin of the “dip” in malization of the action, since this renormalization would
the scalar glueball mass, which we raised in Sec. |, is thatemove the leadin@®(«<a?) discretization errors in the tree-
this state might be especially sensitive to discretization errorkevel, tadpole-improved action.
in the gluon action. Evidence to this effect is provided by Since the anisotropic action is only known at tree-level,
studies which show that the scalar glueball is less sensitive tave decided to simply run one last set of simulations with an
finite volume effects than the teng@6], and by results pre- ad hoc change oD(«.) to the coefficients of the rectangle
sented here which show somewhat larger lattice spacing deerms. A change to these coefficients of this magnitude is
pendence in the scalar mass than in the tensor. This coukkpected from the one-loop renormalization of the action
indicate that the scalar glueball is smaller in size. (this would also generate additional “parallelogram” terms
The data obtained here shed new light on this behavior. lin the action, which we have not considered
particular, we find that the depth of the dip is reduced by In these runs, we multiplied the coefficient of the rect-
about half when the plaquette-improved action is used, comangle termd$Rsy andRg, in Eq.(14) by a factor of 1.2, which
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TABLE IV. Results of single exponential fits to scalar and ten- 5 ; ,
sor glueballs on four representative lattices. These results can be
compared with the four effective mass plots shown in Fig. 5.
State trmin/tmax aM X%/ DOF

0* (8,=0.795) 1/8 0.83) 3.463 ! ‘f | 1 )
2/8 0.8069) 0.273 = g T3 3
3/8 0.80219) 0.311 < , ¥ K}
37 0.80119) 0.400 £ ty T
3/6 0.80218) 0.599 3l 37 3 . [ ]

0" (Bp=0.981) 1/8 0.79&8) 5.000
2/8 0.7678) 0.304
3/8 0.75%16) 0.012
3/7 0.75%15) 0.008
3/6 0.75614) 0.007 %.00 0.04 0.8 0.12 0.16

2% (B.=0.650) 1/8 1.37@) 0.843 a2 (fm?)
2/8 1.343) 0.741
3/8 1.2411) 0.570 FIG. 6. Scalar glueball mass versus spatial lattice spacing
37 1.2411) 0.393 squared. Data are shown for: the mean link-improved adiin
3/6 1.2511) 0.373 the plaquette-improved actior®(); and from the Wilson action

2% (8>=0.981) 1/8 1.38) 6.930 simulations done here(). The result of a simulation with an ad

P j ' hoc change to the coefficients of the rectangle terms in the im-

2/8 1.262) 0.981 proved action, described in the text, is also show).(We also
3/8 1.247) 0.353 include results from Wilson action simulations reported in [R29]
317 1.248) 0.058 (X). The star shows the results of ar~0 extrapolation of pub-
3/6 1.248) 0.063 lished Wilson action datf30].

to test for the sensitivity of the scalar glueball mass to radia-

tive corrections of the expected order-of-magnitude. The ob-

éerved sensitivity of the scalar glueball mass to the changes
made here does indeed raise the possibility that the dip might
be due, at least in part, to discretization errors. These results
demonstrate the need to compute the full radiative correc-
tions to the action, before one can make a definitive conclu-

sion regarding the origin of the scalar glueball dip.

is consistent with ai®(«ag) renormalization of these opera-
tors on lattices with spacings in the range considered her
We ran atB, =0.85, with £=0.333(after retuning the Lan-
dau gauge mean link factors, wherg=0.975 andug
=0.758). The lattice spacing;=0.314(1) fm is in the
middle of the dip found with the other actions. We find glue-
ball masses my:/\o=3.827), and m,:/\o=5.5(4)

(where a measured renormalizationfby about 8% is in- IV. SUMMARY AND OUTLOOK
cluded. These results are shown as an open triangle in Figs. . . .
6 andd7 P g ¢ Tadpole improved S(2) lattice gauge theory was applied

Since we do not know the precise change to the actiof® calculations of the heavy quark potential, the renormalized
due to radiative corrections, this calculation is intended only

T T

TABLE V. Final fit results for scalar and tensor glueball masses.

Action B as (fm) mo: INo  my /o 6 % i i T
Improved  0.848  0.368)  3.497) Liﬁ : l 3 &} "
(plaquett¢  0.981  0.2981)  3.416) 5.6(3) = ]F -
1114  0238)  3.555) 5.901) 25t + ] e h
1.214 0202  3.597) 5.802) £

Improved 0.650 0.382) 3.745) 5.7(4)

(Landay 0.795 0.3041) 3.587) 4l |
0.905 0.2441) 3.728)

Wilson 1.95 039®)  3.177) 5.001)
2.0 0.3562)  3.105) 5.1(1)
2.14 0.3082)  2.965) 5.41) 3 ' : :
2243 0.231) 3.056) 5.6(1) 0.00 0.04 a:o(.fcr)nsz) 0.12 0.16
2.3 0.2031) 3.147) 5.8(5)
2.4 0.1282) 3.5211) 5.8(2) FIG. 7. Tensor glueball mass versus lattice spacing squared. The

plotting symbols are the same as in Fig. 7.
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lattice anisotropy, and the scalar and tensor glueball massethe Wilson actioh on coarse lattices in the $8) theory
We analyzed improved actions on isotropic and anisotropicould help to clarify the origin of the dip in the scalar glue-
lattices, and we compared simulations with mean link andall mass. It might also be fruitful to analyze an improved
plaquette tadpole improvement. Comparisons were alsgU(2) theory with an adjoint coupling included. A calcula-
made with simulations of the Wilson action. Tadpole im-tijon of the scalar and tensor glueball sizes would also yield
provement significantly reduces discretization errors in thgseful information, with the reduced computational cost of

static quark potential, and results in very little renormaliza-simulations in the S(®) gauge theory providing further in-
tion of the input anisotropy. We also found a “dip” structure centive for continued study of this system.

in the scalar glueball mass, analyzed as a function of lattice

spacing, which has previously been observed i3 Eimu-

Ia_t|0ns._ W_e found eyldence t_hat this dip may be related to ACKNOWLEDGMENTS
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