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Bottom quark mass from Y mesons
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~Received 30 March 1998; published 11 December 1998!

The bottom quark pole massMb is determined using a sum rule which relates the masses and the electronic
decay widths of theY mesons to largen moments of the vacuum polarization function calculated from
nonrelativistic quantum chromodynamics. The complete set of next-to-next-to-leading order@i.e.,
O(as

2 ,asv,v2) wherev is the bottom quark c.m. velocity# corrections is calculated and leads to a considerable
reduction of theoretical uncertainties compared to a pure next-to-leading order analysis. However, the theoret-
ical uncertainties remain much larger than the experimental ones. For a two parameter fit forMb , and the

strong MS̄couplingas , and using the scanning method to estimate theoretical uncertainties, the next-to-next-
to-leading order analysis yields 4.74 GeV<Mb<4.87 GeV and 0.096<as(Mz)<0.124 if experimental
uncertainties are included at the 95% confidence level and if two-loop running foras is employed.Mb andas

have a sizable positive correlation. For the running MSb̄ottom quark mass this leads to 4.09 GeV
<mb(MY(1S)/2)<4.32 GeV. If as is taken as an input, the result for the bottom quark pole mass reads
4.78 GeV <Mb<4.98 GeV@4.08 GeV <mb(MY(1S)/2)<4.28 GeV# for 0.114<as(Mz)<0.122. The
discrepancies between the results of three previous analyses on the same subject by Voloshin, Jamin, and Pich
and Kühn et al. are clarified. A comprehensive review on the calculation of the heavy-quark–antiquark pair
production cross section through a vector current at next-to-next-to leading order in the nonrelativistic expan-
sion is presented.@S0556-2821~98!04123-X#

PACS number~s!: 14.65.Fy, 13.20.Gd, 13.25.Gv
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I. INTRODUCTION

Quantum chromodynamics~QCD! is the established
theory of the strong interactions. The determination of
parameters, the strong coupling and the quark masses,
continuous tests of its consistency with experimental m
surements belong to the most important tasks within part
physics. For the strong coupling an almost countless num
of determinations exists. The most precise determinati
now quote uncertainties inas(Mz) of less than 5%.1 The
remarkable feature of theas determinations, however, i
their consistency with each other~see, e.g., Ref.@1# for a
review!. The situation for the quark masses can certainly
described as much less coherent. For the bottom quark
mass, which represents an important ingredient for the th
retical description ofB meson decays and the determinati
of the corresponding Cabibbo-Kobayashi-Maskawa ma
elements, the situation is particularly confusing. In the p
few years there have been three determinations by Volo
(Mb54.82760.007 GeV)@2#, and later by Jamin and Pic
(Mb54.6060.02 GeV) @3# and Kühn et al. (Mb54.75
60.04 GeV) @4# which, although they have all been ob
tained from the same experimental data on the spectrum
the electronic decay widths of theY mesons, are contradic
tory to each other if the quoted uncertainties are taken s
ously. Further, the three analyses@2–4# were all based on the
same sum rule which relates largen moments~i.e., large
number of derivatives at zero momentum transfer! of the

*Email address: ahoang@ucsd.edu
1Throughout this paper the strong coupling is defined in the mo

fied minimal subtraction (MS̄) scheme.
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vacuum correlator of two bottom-quark–bottom-antiqua
vector currents to an integral over the total production cr
section of hadrons containing a bottom and an antibott
quark in e1e2 annihilation. In the limit of largen the mo-
ments can be calculated in a nonrelativistic expansion@5,6#
and higher order~relativistic! corrections can be imple
mented in a systematic way.

This paper contains a determination of the bottom qu
pole mass, where theoretical uncertainties are treated
conservative way. It is partly motivated by the belief tha
carefully performed analysis of theoretical uncertainties
mandatory in order to see whether the uncertainties prese
in Refs.@2–4# are realistic. In this work the method of choic
is to scan all theoretical parameters independently over
sonably large windows. We will show that this method
estimate theoretical uncertainties is more conservative t
the methods used in Refs.@2–4#. In particular, it renders the
results obtained by Voloshin and Ku¨hn et al. consistent to
each other. With the scanning method the precise result
Voloshin and Ku¨hn et al. can only be obtained if some
model-like assumptions are imposed which are beyond fi
principles QCD. The by far bigger part of the motivation f
this work, however, comes from the fact that now the te
nical and conceptual tools have been developed@7–10# to
include the next-to-next-to-leading order~NNLO! relativistic
corrections to the largen moments into the analysis. A larg
fraction of this paper is devoted to a comprehensive pres
tation and review of the concepts and calculations neces
to determine those NNLO contributions. In particular, w
use the concept of effective field theories formulated in
framework of nonrelativistic quantum chromodynami
~NRQCD! @11,12# to deal with the problems of ultraviole
divergences which arise if relativistic corrections to the e
pressions in the nonrelativistic limit are calculated. Howev

i-
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A. H. HOANG PHYSICAL REVIEW D 59 014039
we regard NRQCD merely as a technical tool and do
spend too much time on formal considerations. Whene
possible we rely on physical rather than formal argume
and use results from older literature even if they have
been derived in the framework of NRQCD. It is the ma
intention of this work to calculate the NNLO corrections
the largen moments and to analyze their impact on the d
termination of Mb . We show that the NNLO correction
lead to a considerable reduction of theoretical uncertain
in the determination ofMb .

The organization of this paper is as follows. In Sec. II w
introduce our notation and explain the ideas and concept
which our analysis and calculations are based. NRQCD
introduced and a recipe for the calculation of the moment
NNLO is presented. Because the heavy-quark–hea
antiquark cross section in the threshold regime represent
important intermediate step in the calculation of the m
ments, Sec. II also contains a comprehensive review on
basic concepts involved in the calculation of the vector c
rent induced cross section at NNLO. In Sec. III all calcu
tions are carried out explicitly and all relevant formulas a
displayed. Section IV contains a discussion on some pe
liarities of the largen moments. A detailed description of th
treatment of the experimental data, the fitting procedure,
the scanning method is given in Sec. V. In Sec. VI the n
merical results are presented and discussed. Two diffe
determinations ofMb are carried out. First,Mb and as are
fitted simultaneously and, second,Mb is fitted while as is
taken as an input. In Sec. VII, finally, we comment on t
three previous analyses in Refs.@2–4# and Sec. VIII contains
the conclusions. Attached to this paper are three append
which contain material which we found too detailed to
presented in the main body of the paper. The reader wh
mainly interested in the results for the bottom quark m
can safely skip most of Sec. II, and Secs. III and IV co
pletely.

II. THE BASIC IDEAS AND NOTATION

A. The sum rule

We start our consideration from the correlator of tw
electromagnetic currents of bottom quarks at momen
transferq

Pmn~q!52 i E dxeiq.x^0uT jm
b ~x! j n

b~0!u0&, ~1!

where

j m
b ~x!5b̄~x!gmb~x!. ~2!

The symbolb denotes the bottom quark Dirac field. We d
fine thenth momentPn of the vacuum polarization function
as

Pn[
4p2Qb

2

n!q2 S d

dq2D n

Pm
m~q!uq250 , ~3!
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whereQb521/3 is the electric charge of the bottom quar
Because of causality thenth momentPn can be written in
terms of a dispersion integration

Pn5E ds

sn11
R~s!, ~4!

where

R~s!5
s~e1e2→g*→ ‘ ‘ bb̄’ ’ !

spt ~5!

is the total photon mediated cross section of bottom-qua
bottom-antiquark production ine1e2 annihilation normal-
ized to the point cross sectionspt54pa2/3s. @We neglect
the contributions from secondary radiation of abb̄ pair off a
light-quark–light-antiquark pair through gluon splitting b
cause they are kinematically suppressed in the threshold
gime and do not contribute at NNLO in the nonrelativis
expansion~see also Sec. III B!. For reasons explained later i
this section we also neglect the effects of real radiation
gluons. In contrast to energies away from the threshold
does not give rise to infrared divergences in the total cr
section. This is the reason why we do not write ‘‘bb̄1X’’ on
the right-hand side~RHS! of Eq. ~5!.# Assuming global du-
ality, Pn can be either calculated from experimental data
the total cross section ine1e2 annihilation2 or theoretically
using quantum chromodynamics. It is the basic idea of t
sum rule to set the moments calculated from experime
dataPn

ex equal to those determined theoretically from QC
Pn

th and to use this relation to determine the bottom qu
mass~and the strong coupling! by fitting theoretical and ex-
perimental moments for various values ofn @5,6,13#.

At this point it is mandatory to discuss the range ofn for
which the theoretical moments can be calculated sufficie
accurate~using perturbative QCD! to allow for a reliable
extraction ofMb andas . From Eq.~4! it is obvious that each
moment Pn effectively corresponds to asmearingof the
cross sectionR over some energy regionDE located around
the threshold point. Thus, only if the smearing range issuf-
ficiently larger thanLQCD;O(2002300 MeV), a perturba-
tive calculation of the moments is feasible@14#. @In Ref. @14#
is was argued thatDE should be larger than 4Mbas to avoid
the complications involving a resummation of the Coulom
singularities}(as /v)m. Because this resummation is expli
itly carried out at the NNLO level in this work, we have t
take LQCD, the typical hadronic scale, as the size of t
minimal smearing range.# We therefore conclude thatn is
not allowed to be too large if perturbative QCD shall
employed. We can derive an approximate upper bound
the allowed values ofn by changing the integration variabl
in relation ~4! to the energyE[Aq222Mb . For n@1 only

2At the level of precision in this work theZ mediated cross section
can be safely neglected.
9-2
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BOTTOM QUARK MASS FROMY MESONS PHYSICAL REVIEW D 59 014039
energiesE!Mb contribute, which allows us to expand e
pression~4! for small E/Mb @while regarding (E/Mb)n of
order 1#:

Pn 5
n@1 1

~4 Mb
2!nE dE

Mb
expS 2

E

Mb
nD

3R@~2Mb1E!2#F11OS E

Mb
,

E2

Mb
2

nD G . ~6!

From Eq.~6! we see that the size of the smearing rangeDE
for largen is of orderMb /n:

DE;
Mb

n
. ~7!

Demanding thatDE is larger thanLQCD yields that the val-
ues ofn for which a perturbative calculation of the momen
can trusted should be sufficiently smaller than 15220. To
avoid systematic theoretical errors as much as possible
take

nmax510 ~8!

as the maximal value forn employed in this work. On the
other hand, it is also desirable to choosen as large as pos
sible because the experimental cross section for electron
itron annihilation intobb̄ hadrons is much better known i
theY resonance regimeAs;9.5210.5 GeV than above the
BB̄ threshold. By takingn large the lower lying resonanc
contributions in Eq.~4! are enhanced relative to the co
tinuum contributions leading effectively to a suppression
the experimental uncertainties in the continuum cross sec
@5,6,15#. For our analysis we choose

nmin54 ~9!

as the minimal value forn. It is the regime 4<n<10 which
we will refer to as ‘‘largen’’ in this work. It is a very
important fact that for 4<n<10 the bottom-quark–
antibottom-quark dynamics in the theoretical momentsPn

th is
already nonrelativistic in nature. This can be seen by o
again examining relation~6!. Because for a given value ofn
only energiesE&Mb /n contribute, the corresponding bo
tom quark velocitiesv5AE/Mb ~in the c.m. frame! are in
the rangeuvu&0.5, i.e., they are always considerably smal
than the speed of light. In particular, the velocity is alrea
as large as the typical size of the strong couplingas(Mbv)
'0.3 governing the exchange of longitudinal polarized g
ons ~in Coulomb gauge! among the bottom-quark–
antibottom-quark pair. This leads to the breakdown of
conventional multiloop perturbation expansion because
exchange ofm longitudinal gluons generates singular term
}(as /v)m, m50,1,2, . . . , ~Coulomb singularities! in the
cross section for small velocities. These singular ter
01403
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would have to be resummed3 to all orders in multiloop per-
turbation theory in order to arrive at a viable description
the bottom-quark–antibottom-quark dynamics. In oth
words, the Coulomb interaction between the bottom and
antibottom quark has to be treated exactly@6#. Because this
would be a highly cumbersome task in the framework
covariant multiloop perturbation theory, it is mandatory
calculate the cross section and the theoretical moments in
nonrelativistic approximation by solving the Schro¨dinger
equation supplemented by relativistic corrections. Both st
egies, however, lead to the same results.

B. Perturbative NRQCD and the cross section

In this paper we use NRQCD@11,12# to set up a consis-
tent framework in which the corrections to the nonrelativis
limit ~in form of the nonrelativistic Schro¨dinger equation!
can be determined in a systematic manner at NNLO. T
corresponds to corrections up to orderas

2 , asv, and v2 to
the expressions in the nonrelativistic limit. We count orde
of as as orders ofv because we treat thebb̄ system as
Coulombic. In the framework of multiloop perturbatio
theory this would correspond to a resummation of all ter
}as

mvk ~modulo logarithms ofv) with m1k51,2,3 in the
cross section for the small velocity expansion.

NRQCD is an effective field theory of QCD designed
handle nonrelativistic heavy-quark–antiquark systems to
principle arbitrary precision. NRQCD is based on the se
ration of long- and short-distance effects by reformulati
QCD in terms of a nonrenormalizable Lagrangian contain
all possible operators in accordance to the symmetries in
nonrelativistic limit. Treating all quarks of the first and se
ond generation as massless and taking into account
those terms relevant for the NNLO calculation in this wo
the NRQCD Lagrangian reads@12#

LNRQCD52
1

2
TrGmnGmn1 (

q5u,d,s,c
q̄iD” q

1c†F iD t1a1

D2

2Mb
1a2

D4

8Mb
3Gc

1•••1c†F a3g

2Mb
s•B1

a4g

8Mb
2 ~D•E2E•D!

1
a5g

8Mb
2

i s~D3E2E3D!Gc1•••

1x†x bilinear terms and

higher-dimensional operators. ~10!

The gluons and massless quarks are described by the

3In this context ‘‘resummation’’ would mean that one carries o
the resummation of singular terms in the~formal! kinematic regime
as!uvu. The resulting series would then~uniquely! define analytic
functions which could be continued to the regimeuvu&as .
9-3
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A. H. HOANG PHYSICAL REVIEW D 59 014039
ventional relativistic Lagrangian, whereGmn is the gluon
field strength tensor,q the Dirac spinor of a massless quar
andDm the gauge covariant derivative. For convenience,
color indices in Eq.~10! and throughout this work are sup
pressed. The nonrelativistic bottom and antibottom qua
are described by the Pauli spinorsc andx, respectively.Dt
andD are the time and space components of the gauge
variant derivativeD andEi5G0i andBi5 1

2 e i jkGjk the elec-
tric and magnetic components of the gluon field stren
tensor. The straightforwardx†x bilinear terms are omitted
and can be obtained using charge symmetry. The sh
distance coefficientsa1 , . . . ,a5 are normalized to 1 at the
Born level. The actual form of the higher order contributio
to the short-distance coefficientsa1 , . . . ,a5 @and also to
b1 ,b2 in Eq. ~12!# is irrelevant for this work, because we wi
later use the ‘‘direct matching’’ procedure@7,16# at the level
of the final result for the cross section.

Let us first discuss the cross sectionR in the nonrelativ-
istic regime. To formulateR in the nonrelativistic regime a
NNLO in NRQCD we start from the fully covariant expre
sion for the total cross section

R~q2!5
4pQb

2

q2
ImF2 i E dxeiq•x^0uT jm

b ~x! j bm~0!u0&G
[

4pQb
2

q2
Im@2 i ^0uT j̃m

b ~q! j̃ bm~2q!u0&#, ~11!

and expand the electromagnetic current~in momentum
space! j̃ m(6q)5(b! gmb̃)(6q) which produces/annihilates
bb̄ pair with c.m. energyAq2 in terms of 3S1 NRQCD cur-
rents up to dimension 8 (i 51,2,3)

j̃ i~q!5b1~ c̃†s i x̃ !~q!2
b2

6Mb
2 F c̃†s i S 2

i

2
DI D 2

x̃G~q!1•••,

j̃ i~2q!5b1~ x̃†s i c̃ !~2q!

2
b2

6Mb
2 F x̃†s i S 2

i

2
DI D 2

c̃ G~2q!1•••, ~12!

where the constantsb1 andb2 are short-distance coefficien
normalized to 1 at the Born level. Only the spatial comp
nents of the currents contribute at the NNLO level. Insert
expansion~12! back into Eq.~11! leads to the nonrelativistic
expansion of the cross section at the NNLO level

RNNLO
thr ~E!5

pQb
2

Mb
2

C1~mhard,m fac!Im@A1~E,msoft,m fac!#

2
4pQb

2

3Mb
4

C2~mhard,m fac!

3Im@A2~E,msoft,m fac!#1•••, ~13!

where
01403
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A1[ i ^0u~ c̃†sW x̃ !~ x̃†sW c̃ !u0&, ~14!

A2[
1

2
i ^0u~ c̃†sW x̃ !F x̃†sW S 2

i

2
DI D 2

c̃ G1H.c.u0&. ~15!

The cross section is expanded in terms of a sum of abs
tive parts of nonrelativistic current correlators, each of th
multiplied by a short-distance coefficient. In fact, the righ
hand side~RHS! of Eq. ~13! just represents an application o
the factorization formalism proposed in Ref.@12#. The sec-
ond term on the RHS of Eq.~13! is suppressed byv2, i.e., of
NNLO. This can be seen explicitly by using the equations
motion from the NRQCD Lagrangian, which relates the c
relatorA2 directly toA1 ,

A25MbEA1 . ~16!

Relation ~16! has also been used to obtain the coefficie
24/3 in front of the second term on the RHS of Eq.~13!.
The nonrelativistic current correlatorsA1 andA2 contain the
resummation of the singular terms mentioned in the previ
paragraph. They incorporate all the long-distance4 dynamics
governed by soft scales such as the relative three momen
;Mbas or the binding energy of thebb̄ system;Mbas

2 .5

The constantsC1 andC2 ~which are also normalized to 1 a
the Born level!, on the other hand, describe short-distan
effects involving hard scales of the order of the bottom qu
mass. They only represent a simple power series inas
~where the coefficients contain numbers and logarithms
Mb , m fac, andmhard) and do not contain any resummation
in as . Because we consider the totalbb̄ cross section nor-
malized to the point cross section, Eq.~5!, C1 andC2 do not
contain any dependence onq2 coming from the production
processe1e2→bb̄. In Eq. ~13! we have also indicated th
dependence of the correlators and the short-distance co
cients on the various renormalization scales: The factor
tion scalem fac essentially represents the boundary betwe
hard and soft momenta. The dependence on the factoriza
scale becomes explicit because of ultraviolet~UV! diver-
gences contained in NRQCD diagrams caused by the in
tion of NNLO interactions which correspond to higher d
mensional operators. Because, as in any effective fi
theory, this boundary is not defined unambiguously, both
correlators and the short-distance coefficients in general
pend onm fac. The soft scalemsoft and the hard scalemhard,
on the other hand, are inherent to the correlators and
short-distance constants, respectively, governing their pe
bative expansion. If we would have all orders inas andv at

4In the context of this paper ‘‘long distance’’ is not equivalent
‘‘nonperturbative.’’

5It is not clear at all whether there are even smaller energy sc
;Mbas

k , k.2, which might become relevant. However, tho
scales can only be produced by higher order effects such as
hyperfine splitting, which should be irrelevant at least for the to
cross section at NNLO.
9-4
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BOTTOM QUARK MASS FROMY MESONS PHYSICAL REVIEW D 59 014039
hand, the dependence of the cross sectionRNNLO
thr on varia-

tions of each of the three scales would vanish exactly.@To be
more explicit,msoft is the subtraction scale of the strong co
pling in the NRQCD diagrams constituting the perturbat
expansion of the Coulomb potential, see Eqs.~18!, ~19!, and
~22!. The dependence of the correlators onmsoft arises be-
cause the Coulomb potential is contained in the Schro¨dinger
equation used to calculate the correlators. Likewise,mhard is
the subtraction scale of the strong coupling in the two-lo
QCD diagrams needed for the matching calculation. In t
work the soft and the hard scale are defined in thē
scheme. The factorization scalem fac, on the other hand, is
defined in a cutoff scheme. Although it is possible, afte
redefinition of the factorization scale, to relate the thr
scales to each other using renormalization group argum
we will treat them as independent. As far as the extraction
the bottom quark mass is concerned this strategy is m
vated by our intention to carry out a conservative analys#
Unfortunately, we only perform the calculation up to NNL
in as and v which leads to a residual dependence on
three scalesm fac, msoft, andmhard. In particular~as we will
demonstrate in Sec. IV! the dependence on the soft sca
msoft is quite strong, clearly because it governs the pertur
tive expansion of the correlators where convergence of
perturbation series can be expected to be worse than fo
short-distance constants. It is therefore necessary to fi
certain window for each of the renormalization scales
which the perturbative series for the cross section shal
evaluated. At this point one can basically only rely on phy
cal intuition, which tells that the renormalization scal
should be of the same order as the physical scales gover
the particular physical situation. This means that the s
scale should be the order of the relative momentum of thebb̄
system6 ;Mbas , and that the hard scale should be of ord
Mb;5 GeV. The factorization scale, on the other han
should cover~at least partly! the soft and and hard regime
Because there is in our opinion no unique way to make
statement more quantitative, it is important to choose
corresponding windows ‘‘reasonably large.’’ In our case t
choices are as follows:

1.5 GeV<msoft<3.5 GeV,

2.5 GeV<mhard<10 GeV,

2.5 GeV<m fac<10 GeV. ~17!

We will show in Secs. V and VI that the dependence of
theoretical momentsPn

th on theses scales represents
dominant source of the uncertainties in the extraction ofMb .
Thus, it is the choice given in Eqs.~17! which determines the
size of the uncertainties.

6As explained later we treat all interactions in our NNLO analy
as instantaneous. This means that we ignore scales of the ord
the binding energy;Mbas

2 and consider as relevant only scales
the order of the relative momentum;Mbas .
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C. Instantaneous interactions and retardation effects

To calculate the correlatorsA1 andA2 we use methods
originally developed for QED bound state calculations in t
framework of NRQED@11# and transfer them~with the ap-
propriate modifications to account for the non-Abelian
fects! to the problem of heavy-quark–heavy-antiquark p
duction in the kinematic regime close to the thresho
Because the Coulomb gauge is the standard gauge in w
QED bound state calculations are carried out we also use
Coulomb gauge for the calculations in this work. The Co
lomb gauge separates the gluon propagator into a longit
nal and a transverse piece~see Fig. 1!. The longitudinal
propagator does not have an energy dependence and t
fore represents an instantaneous interaction. As a co
quence, in configuration space representation a longitud
gluon exchange can be written as an instantaneous pote
~which only depends on the spatial distance!. Through the
time derivative in the NRQCD Lagrangian the longitudin
gluon exchange leads to the Coulomb potential which is
dominant~LO! interaction between the bottom quarks in t
nonrelativistic limit. Through the 1/Mb

2 couplings of the bot-
tom quarks to the chromoelectric field the longitudinal e
change also leads to the Darwin and spin-orbit potent
which contribute at the NNLO level.@For dimensional rea-
sons each inverse power ofMb involves also one spatia
derivative in the NRQCD Lagrangian~10!. Thus each in-
verse power ofMb corresponds to one positive power ofv.#
Because these potentials are instantaneous their treatme
straightforward in the framework of a two-body Schro¨dinger
equation.

of

FIG. 1. Graphical representation of the longitudinal and
transverse gluon exchange including the corresponding Feyn

rules for the momentum exchangeq5(q0,qW ). The exchange of a
longitudinal gluon is instantaneous in time because its does
have an energy dependence. As a consequence the longitudin
change can be described by an instantaneous potential. The
change of a transverse gluon, on the other hand, is retarded in
and, in general, cannot be described in terms of an instantan
potential.
9-5
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A. H. HOANG PHYSICAL REVIEW D 59 014039
For the transverse gluon the situation is more subtle.
cause all couplings of the bottom quarks to the chromom
netic field are of order 1/Mb the exchange of a transvers
gluon between two bottom quark lines is a NNLO effe
However, in contrast to the Darwin and the spin-orbit int
action, the propagation of the transverse gluon energy ha
energy dependence, i.e., it is an interaction with a temp
retardation. Physically this means that the transverse g
can travel alongside thebb̄ pair for some time period@6,17#.
In this time period thebb̄ pair is part of a higher order Foc
bb̄-gluon state which, in principle, cannot be treated in ter
of a two-body Schro¨dinger equation. Fortunately, in our ca
we can neglect the energy dependence of the transv
gluon propagator completely. This can be easily underst
by considering a typical diagram describing the exchange
a transverse gluon between thebb̄ pair in the background o
a continuous Coulomb exchange of longitudinal gluons, s
e.g., Figs. 2 and 3~a!. If both ends of the transverse gluon en
at bottom quarks7 the typical energy carried by the gluon ca
only be of orderMbv2, the c.m. kinetic energy of the bottom
quarks. The typical three momentum of the gluon, on
other hand, can either be of orderMbv, the relative momen-
tum in thebb̄ system, or also of orderMbv2. If the three
momentum is of orderMbv2, the transverse gluon is esse
tially real and needs, in addition to thev2 suppression com
ing from the couplings to the quarks, another phase sp
factor v to exist. Thus, the transverse gluons with th
energy-momentum configuration lead to effects suppres
by v3, which is beyond the NNLO level.@This is the reason
why we can neglect the real radiation of gluons in the d
nition of the total cross section in Eq.~5!.# If the three mo-
mentum of the transverse gluon is of orderMbv, on the other
hand, it is far off shell and we can neglect the small ene
component in a first approximation.@It should be emphasize
that this argument implies the hierarchyMbas@Mbas

2 ,

which is conceivable for thebb̄ system whereas;0.3.#
From that one can see that at NNLO the transverse gl
exchange can, as with the longitudinal one, also be treate
an instantaneous interaction. This means that in Fig.~a!

7At this point we only consider the case where there are no a
tional gluon lines attached to the transvere gluon and the transv
gluon is exchangeddirectly between bottom quark lines. The fo
lowing considerations do not apply for configurations where at le
one side of the transverse gluon ends at another gluon line. S
configurations can lead to loop corrections to the Coulomb poten
and are considered in Sec.II D.

FIG. 2. Graphical representation of the resummation of C
lomb ladder diagrams to all orders. The quark-antiquark propa
tion contains the nonrelativistic kinetic energy. The resummatio
carried out explicitly by calculating the Green function of the no
relativistic Schro¨dinger equation with the Coulomb potential at th
Born level, see Eq.~27!.
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only those diagrams contribute at NNLO where the tra
verse line does not cross any longitudinal line. The diff
ences between longitudinal and transverse gluons will o
become manifest beyond the NNLO level. For the same r
son any self-energy or crossed-ladder type diagram@see Figs.
3~b!, 3~c! for typical examples# can be safely neglected at th
NNLO level. In fact, the situation is in complete analogy
the hydrogen atom or the positronium in QED, where it
well known that retardation effects lead to the ‘‘Lamb-shif
corrections which are suppressed bya3 relative to the LO
nonrelativistic contributions.@Of course, the crossed ex
change and self-energy type diagrams have to be taken
account in the two-loop calculation of the cross section
full QCD needed to determine theO(as

2) contributions to the
short-distance coefficients. Those short-distance consta
however, describe effects from high momenta of orderMb
which are not contained in the correlators.#

From the considerations above we can draw the follow
conclusions regarding the calculation of the correlatorsA1
andA2 at NNLO.

~1! We can treat the problem ofbb̄ production close to
threshold as a pure two-body problem. This means that
NRQCD Lagrangian effectively reduces to a two-bo
Schrödinger equation from which the correlators can be d
termined.

~2! All interactions between the bottom and the antib
tom quark can be written as time independent, instantane
potentials. This means that once all the instantaneous po
tials are at hand only ladder diagrams as displayed in Fig
have to be taken into account.

~3! We can use the well known analytic solutions of t
nonrelativistic Coulomb problem for positronium@18–20#
and use Rayleigh-Schro¨dinger time-independent perturbatio
theory ~TIPT! to determine the corrections caused by
higher order interactions and effects.

However, there is one remark in order: although the
fects of the transverse gluon exchange having a temp
retardation are formally beyond the NNLO level, this is no
proof that they are indeed smaller than the NNLO contrib
tions calculated in this work. It is in fact rather likely that th
retardation effects cannot be calculated at all using pertu
tive methods because the characteristic scale of the coup
governing the emission, absorption, or interaction of a glu
which has energy and momentum of orderMbas

2 would be
of the order of 0.521 GeV. This is already quite close t
the typical hadronization scaleLQCD. From this point of
view it seems that the NNLO analysis presented here can
be improved any more, at least not with perturbative me
ods. This problem might even cast doubts on the reliabi

i-
rse

st
ch
al

-
a-
is
-

FIG. 3. Typical diagrams describing the exchange of transve
gluons~in Coulomb gauge! in the background of the Coulomb ex
change of longitudinal gluons. Longitudinal lines with as represent
the summation of Coulomb ladder diagrams to all orders, see Fi
9-6
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BOTTOM QUARK MASS FROMY MESONS PHYSICAL REVIEW D 59 014039
of the NNLO corrections themselves~due to the possible
breakdown of our powercounting! and underlines the neces
sity that the preferred ranges for the renormalization sca
Eqs. ~17!, are chosen sufficiently large. We will ignore fu
ther implications of this problem for the calculations a
analyses carried out in this work.~See also Sec. II F.!

D. Instantaneous potentials

At the Born level all potentials relevant for the nonrel
tivistic cross section at NNLO can be obtained directly fro
the NRQCD Lagrangian considering~color singlet! bb̄

→bb̄ single gluont-channel exchange scattering diagram
In configuration space representation the Born level po
tials read @r[ur uW , CF54/3, CA53, T51/2, as
[as(msoft)#

Vc
~0!~rW !52

CFas

r
,

VBF~rW !5
CFasp

Mb
2 F11

8

3
SW bSW b̄Gd~3!~rW !

1
CFas

2Mb
2r

F¹W 21
1

r 2
rW~rW¹W !¹W G

2
3CFas

Mb
2r 3 F1

3
SW bSW b̄2

1

r 2
~SW brW !~SW b̄rW !G

1
3CFas

2Mb
2r 3

LW ~SW b1SW b̄!, ~18!

whereSW b and SW b̄ are the bottom and antibottom quark sp
operators andLW is the angular momentum operator.Vc

(0) is
the well known Coulomb potential. It constitutes the LO i
teraction and will~together with the nonrelativistic kineti
energy! be taken into account exactly. It arises from the e
change of a longitudinal gluon through the time derivat
coupling of the bottom quarks to the gluon field.VBF repre-
sents the Breit-Fermi potential which is known from high
order positronium calculations. It describes the Darwin a
spin-orbit interactions which are mediated by the longitu
nal gluons and also the so called hyperfine or tensor inte
tions which are mediated by the transverse gluons in
instantaneous approximation. Because of the 1/Mb

2 suppres-
sion VBF already leads to NNLO effects in the cross sect
and will be taken into account as a perturbation. For
same reason only the radiative corrections to the Coulo
exchange of longitudinal gluons have to be taken into
count. We want to emphasize that these radiative correct
are caused by the massless degrees of freedom in
NRQCD Lagrangian. We also emphasize that, because in
corresponding loops transverse gluon lines end at o
massless lines, the considerations given in the prece
paragraph cannot be applied in this case. Thus, in gen
transverse gluons~or massless quarks! in all energy-
momentum configurations~in particular configurations
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where the energy is of orderMbv @21#! have to be taken into
account to calculate the radiative corrections properly. T
calculation of these radiative corrections can be found
existing literature and we therefore just present the resul

At the one-loop level~and using the MS̄scheme for the
strong coupling! the corrections read (gE50.57721566•••
being the Euler-Mascheroni constant!

Vc
~1!~rW !5Vc

~0!~rW !S as

4p D @2b0ln~m̃r !1a1#,

m̃[egEmsoft, ~19!

where

b05
11

3
CA2

4

3
Tnl , a15

31

9
CA2

20

9
Tnl , nl54,

~20!

and

VNA~rW !52
CACFas

2

2Mbr 2
. ~21!

Vc
(1) represents the one-loop corrections to the Coulomb

tential }1/r and leads to NLO contributions in the cros
section.Vc

(1) has been calculated by Fischler@22# and Bil-
loire @23#. VNA , called non-Abelian potential for the rest o
this work, arises from the nonanalytic behavior of the ver
diagrams depicted in Fig. 4}(kW2/Mb

2)1/2, where kW is the
three momentum exchanged between the bottom and the
tibottom quark. Because the nonanalytic term causes the
havior }1/ukuW for the non-Abelian potential in momentum
space representation,VNA is proportional to 1/r 2. We would
like to point out that in Coulomb gauge such a nonanaly
behavior does not exist for Abelian diagrams. We refer
reader to Refs.@24,25# for publications, where the non
Abelian potential has been determined. Due to theas /Mb
factor VNA is a NNLO interaction and no further correction
to it have to taken into account.

At the two-loop level only the corrections to the Coulom
potential have to be considered. They have been calcul
recently by Peter@26# and read~in the MS̄scheme!

Vc
~2!~rW !5Vc

~0!~rW !S as

4p D 2Fb0
2S 4 ln2~m̃r !1

p2

3 D
12~2b0a11b1!ln~m̃r !1a2G , ~22!

FIG. 4. Vertex diagrams in Coulomb gauge responsible for
non-Abelian potentialVNA .
9-7
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where

b15
34

3
CA

22
20

3
CATnl24CFTnl ,

a25S 4343

162
16p22

p4

4
1

22

3
z3DCA

2

2S 1798

81
1

56

3
z3DCATnl2S 55

3

216z3DCFTnl1S 20

9
Tnl D 2

. ~23!

For later reference we assign the symbols in Fig. 5 to
potentials given above. We also would like to note that
do not have to consider any annihilation effects. The lead
annihilation diagram is depicted in Fig. 6. Because the an
hilation process takes place at short distances, it produ
local four-fermion operators in the NRQCD Lagrangia
which can be written as instantaneous potentials. The do
nant annihilation potential which comes from the three glu
annihilation diagram has the formV ann(rW)}(as

3/Mb
2)d (3)(rW)

and would lead to effects suppressed byv4 in the cross sec-
tion.

E. Recipe for the calculation of largen moments at NNLO

Based on the issues discussed above the calculation o
NNLO nonrelativistic cross sectionRNNLO

thr and the theoreti-
cal momentsPn

th in terms of the correlatorsA1 andA2 and
the short-distance coefficientsC1/2 proceeds in the following
three basic steps.

Step 1: Solution of the Schro¨dinger equation.The Green
function of the NNLO Schro¨dinger equation is calculate
incorporating the potentials displayed above and includ
the NNLO corrections to the kinetic energy. The correlat

FIG. 5. Symbols describing the interaction potentialsVc
(0) ,

Vc
(1) , Vc

(2) , VBF , andVNA and the kinetic energy correctiondHkin

52¹W 4/4Mb
3 .

FIG. 6. The dominant annihilation diagram relevant forbb̄

→bb̄ scattering for a bottom-antibottom quark pair in a color s
glet JPC5122, 3S1 configuration. Its dominant contribution

leads to a potentialVann(rW)}as
3/Mb

2d(rW) and to contributions in the
cross section and the moments beyond the NNLO level.
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A1 andA2 are directly related to the zero-distance Gre
function of the Schro¨dinger equation.

Step 2: Matching calculation.The short-distance constan
C1 is determined atO(as

2) by matching expression~13! di-
rectly to the cross section calculated in full QCD at the tw
loop level and including terms up to NNLO in an expansi
in v in the ~formal! limit as!v!1.

Step 3: Dispersion Integration.The integration~4! is car-
ried out.

For the rest of this section we briefly explain the strateg
and basic procedures for steps 1 and 2. The explicit calc
tions for steps 1–3 are presented in detail in Secs. II
III B, and III C, respectively.

Solution of the Schro¨dinger equation.The nonrelativistic
correlatorsA1 and A2 are calculated by determining th
Green function of the Schro¨dinger equation (E[Aq2

22Mb)

S 2
¹W 2

Mb
2

¹W 4

4Mb
3

1@Vc
~0!~rW !1Vc

~1!~rW !

1Vc
~2!~rW !1VBF~rW !1VNA~rW !#2ED

3G~rW,rW8,E!5d~3!~rW2rW8!, ~24!

whereVBF is evaluated for the3S1 configuration only. The
relation between the correlatorA1 at NNLO and the Green
function reads

A156Nc@ lim
urWu,urW8u→0

G~rW,rW8,E!#. ~25!

Equation ~25! can be quickly derived from the facts tha
G(rW,rW8,E) describes the propagation of a bottom-quar
antibottom-quark pair which is produced and annihilated
relative distancesurWu and urW8u, respectively, and that the
bottom-quark–antibottom-quark pair is produced and ann
lated through the electromagnetic current at zero distan
ThereforeA1 must be proportional to limur uW ,urW8u→0G(rW,rW8,E).
The correct proportionality constant can then be determi
by considering production of a free~i.e., as50) bottom-
quark–antibottom-quark pair in the nonrelativistic limit.~In
this case the Born cross section in full QCD can be ea
compared to the imaginary part of the Green function of
free nonrelativistic Schro¨dinger equation.! The correlatorA2
is determined fromA1 via relation ~16!. We would like to
emphasize that the zero-distance Green function on the R
of Eqs.~25! contains UV divergences which have to be reg
larized. In the actual calculations carried out in Sec. III A w
impose the explicit short-distance cutoffm fac. As mentioned
before, this is the reason why the correlators and the sh
distance constants depend explicitly on the~factorization!
scalem fac. In this work we solve Eq.~24! perturbatively by
starting from well known Green functionGc

(0) of the nonrel-
ativistic Coulomb problem@18–20#

S 2
¹2

Mb
1Vc

~0!~rW !2EDGc~rW,rW8,E!5d~3!~rW2rW8! ~26!

-
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BOTTOM QUARK MASS FROMY MESONS PHYSICAL REVIEW D 59 014039
and by incorporating all the higher order terms using TIP
Matching calculation.After the nonrelativistic correlators

A1 and A2 are calculated the determination ofC1 is
achieved by considering the~formal! limit as!v!1. In this
limit fixed order multiloop perturbation theory~i.e., an ex-
pansion inas) as well as the nonrelativistic approximatio
~i.e., a subsequent expansion inv) are feasible. This mean
that multiloop QCD~with an expansion inv after the loop
integrations have been carried out! and multiloop NRQCD
must give the same results. In our case we use this fac
determine the constantC1 up to terms of orderas

2 . For that
we expand the NNLO NRQCD expression for the cross s
tion ~13! for small as up to terms of orderas

2 and demand
equality~i.e., match! to the total cross section obtained at t
two-loop level in full QCD keeping terms up to NNLO in a
expansion inv. Because NRQCD is an effective field theo
of QCD ~i.e., it has the same infrared behavior as full QC!
for the limit v!1, C1 contains only constant coefficien
~modulo logarithms of the ratiosMb /m fac and Mb /mhard).
All the singular terms}1/v, lnv are incorporated in the cor
relatorsA1 andA2 .

F. Comment on nonperturbative effects

To conclude this section we would like to mention th
nowhere in this work nonperturbative effects in terms of p
nomenological constants like the gluon condens
^0uGmnGmnu0& @15# are taken into account. In Refs.@2,6# it
has been shown that the contribution of the most impor
condensatê0uGmnGmnu0& is at the per-mill level in the mo-
mentsPn

th for 4<n<10. As we show in Sec. IV, this effect i
completely negligible compared to the theoretical uncerta
ties coming from the large renormalization scale dep
dences of the NNLO momentsPn

th . The condensates ar
therefore irrelevant from the purely practical point of view

Nevertheless, we even think that the inclusion of the c
densates for the moments at the NNLO level would be c
ceptually unjustified. For the gluon condensate this can
seen from the fact that it provides a phenomenological
rameterization of the average long-wavelength vacuum fl
tuations of the gluon field involving scales smaller than
relative three momentum of thebb̄ system@17#. Thus, for the
theoretical momentsPn

th(4<n<10) ~and also for heavy
enough quarkonia in general! the condensates describe reta
dationlike effects@6#. As explained before, we neglect reta
dation effects because they formally contribute beyond
NNLO level. We conclude that taking into account the co
densates would only be sensible in a complete NNN
analysis. In this respect the condensate contributions m
provide some estimates for the size of some NNNLO effe
However, if the small size of the condensate effects in
momentsPn

th is compared to the large perturbative uncerta
ties contained of the NNLO theoretical moments, it see
rather doubtful whether the condensates represent the d
nant contributions at the NNNLO level.

III. CALCULATION OF THE MOMENTS

In this section the determination of the theoretical m
mentsPn

th is presented in detail. Because all conceptual
01403
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sues have been discussed is Sec. I we concentrate only o
technical aspects. The task is split into three parts which
described in the following three subsections. In Sec. III A t
nonrelativistic correlatorsA1 andA2 are calculated and Sec
III B describes the calculation of the short-distance const
C1 . In Sec. III C the dispersion integration~4! is carried out
and the final formulas for the theoretical moments are p
sented.

A. Calculation of the nonrelativistic correlators

To calculate the nonrelativistic correlatorsA1 andA2 the
Green functionG of the Schro¨dinger equation~24! has to be
determined. As explained before, we start with the Gre
function Gc

(0) of the nonrelativistic Schro¨dinger equation
~26!, called the ‘‘Coulomb Green function’’ from now on
and determine the effects from all the higher order contri
tions through TIPT. The most general form of the Coulom
Green function reads (r[ur uW , r 8[urW8u)

Gc
~0!~rW,rW8,E!52

Mb

4pG~11 ir!G~12 ir!

3E
0

1

dtE
1

`

ds

3@s~12t !# ir@ t~s21!#2 ir

3
]2

]t]sF ts

usrW2trW8u
exp$ ip~ urW8u~12t !

1urWu~s21!1usrW2trW8u!%G , r 8,r ,

~27!

where

p[Mbv5AMb~E1 i e!, r[
CFas

2v
~28!

andG is the gamma function. The caser ,r 8 is obtained by
interchangingr and r 8. Gc

(0)(rW,rW8,E) represents the ana
lytical expression for the sum of ladder diagrams depicted
Fig. 2. We refer the reader interested in the derivation
Gc

(0) to the classical papers@18–20#. The analytic form of the
Coulomb Green function shown in Eq.~27! has been taken
from Ref. @18#. Fortunately we do not need the Coulom
Green function in its most general form but only itsS-wave
component
9-9
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Gc
~0!,S~r ,r 8,E!

5
1

4pE dVGc
~0!~rW,rW8E!

52
2iM bp

4pG~11 ir!G~12 ir!

3E
0

1

dtE
1

`

ds@s~12t !# ir@ t~s21!#2 ir

3exp$ ip@r 8~122t !1r ~2s21!#%, r 8,r . ~29!

The caser ,r 8 is again obtained by interchangingr andr 8.
For r 850 the form of the Coulomb Green function is pa
ticularly simple:

Gc
~0!~0,r ,E!5Gc

~0!~0,rW,E!

52 i
Mbp

2p
eiprE

0

`

dte2iprt S 11t

t D ir

52 i
Mbp

2p
eiprG~12 ir!U~12 ir,2,22ipr !

5
Mb

4pr
G~12 ir!Wir,1/2~22ipr !, ~30!

whereU(a,b,z) is a confluent hypergeometric function an
Wk,m(z) a Whittaker function@27,28#. It is an important fact
that Gc

(0)(0,rW,E) diverges for the limitr→0 because it con-
tains power (}1/r ) and logarithmic (} lnr) divergences@16#.
As explained in Sec. II these ultraviolet~UV! divergences
are regularized by imposing the small distance cutoffm fac.
The regularized form of limr→0Gc(0,rW,E) reads

Gc
~0!,reg~0,0,E!5

Mb
2

4p H iv2CFasF lnS 2 i
Mbv
m fac

D1gE

1CS 12 i
CFas

2v D G J , ~31!

where the superscript reg indicates the cutoff regulariza
and C(z)5dlnG(z)/dz is the digamma function. For th
regularization we use the convention where all power div
gences}m fac are freely dropped and only logarithmic dive
gences} ln(mfac/Mb) are kept. Further, we definem fac such

FIG. 7. Graphical representation of the vacuum polarization l
der diagrams needed to determine the nonrelativistic cross se
and the largen moments at NNLO.
01403
n

r-

that in the expression between the brackets all constants
cept the Euler-Mascheroni constantgE are absorbed. The
same convention is also employed for the calculation of
higher order corrections to the Coulomb Green funct
which are discussed below. The results for any other re
larization scheme with suppressed power divergences~such
as the MS̄scheme! can be obtained by a redefinition of th
factorization scale. Our apparently sloppy realization of
regularization procedure is possible because in Sec. III B
will match the expression for the NNLO cross section
NRQCD directly to the corresponding two-loop expressi
in full QCD. As a consequence additional constant terms
the brackets on the RHS of Eq.~31! do not affect the final
result for the cross section at NNLO in NRQCD becau
they merely represent contributions which can be anyw
freely shifted between the nonrelativistic correlators and
short-distance coefficients. For later reference we c
Gc

(0),reg(0,0,E) ‘‘zero-distance Coulomb Green function.’’ A
graphical representation ofGc

(0),reg(0,0,E) in terms of
NRQCD Feynman diagrams is displayed in Fig. 7~a!. For
convenience we suppress the superscript reg from now
this work.

The Coulomb Green function containsbb̄ bound state
poles at the energies Asn52Mb2CF

2as
2Mb/4n2(n

51,2, . . . ,̀ ). These poles come from the digamma fun
tion in Eq.~31! and correspond to the nonrelativistic positr
nium state poles known from QED@29#. They are located
entirely below the threshold pointAsthr52Mb . This can be
seen explicitly from the cross section in the nonrelativis
limit

RLO
thr 5

pQb
2

Mb
2

Im@A1#LO

5
6pNcQb

2

Mb
2

Im@Gc
~0!~0,0,E!#

5
24p2NcQb

2

Mb
(
n51

`

uCn~0!u2d~s2sn!

1Q~E!
3

2
NcQb

2 CFasp

12exp~2CFasp/v !
, ~32!

-
ion

FIG. 8. QCD Feynman diagrams relevant for the calculation
the cross section at the two-loop level. The calculation of th
diagrams is needed for the matching calculation which leads to
determination of the short-distance coefficientC1 . Feynman dia-
grams needed for the wave function renormalization are not
played.
9-10
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whereuCn(0)u25(MbCFas)
3/8pn3 is the modulus square

of the LO nonrelativistic bound state wave functions for t
radial quantum numbern. The continuum contribution on th
RHS of Eq.~32! is sometimes called ‘‘Sommerfeld factor
of ‘‘Fermi factor’’ in the literature. The resonance contrib
tions are described by the first term in the third line of E
~32!. The corrections to the zero-distance Coulomb Gre
function calculated below lead to higher order contributio
to the bound state energy levels, the residues at the bo
state poles and the continuum. We would like to stress
all these contributions must be included in the dispers
integration~4! to arrive at reliable results for the theoretic
momentsPn

th . Nevertheless, it is worth noting that the res
nances are not necessarily equivalent to the actualY reso-
nances@5#. In particular for large radial excitations a dire
comparison would be more than suspicious. In the contex
the calculation of the moments they have to be included
mathematical rather than physical reasons.~See also the dis
cussion in Sec. IV.!

Let us now come to the determination of the correctio
to the zero-distance Coulomb Green function coming fr
the remaining terms in the Schro¨dinger equation~24!. At
NLO only the one-loop contributions to the Coulomb pote
tial, Vc

(1) @see Eq.~19!#, have to be considered. Using fir
order TIPT in configuration space representation the N
corrections toGc

(0)(0,0,E) read

Gc
~1!~0,0,E!52E d3rWGc

~0!~0,r ,E!Vc
~1!~rW !Gc

~0!~r ,0,E!.

~33!

Expression~33! is displayed graphically in Fig. 7~b!. Further
evaluation of the integration on the RHS of Eq.~33! is pos-
w
ee

in
th
re

er

01403
.
n
s
nd
at
n

of
r

s

-

sible but not presented here, because it is already in a f
suitable for the dispersion integration~4! ~see Sec. III C!. At
NNLO several contributions have to be considered. The c
rections from the two-loop contributions to the Coulomb p
tential Vc

(2) @see Eq.~22!# are calculated in analogy to th
NLO contributions using first order TIPT@Fig. 7~c!#

@Gc
~2!~0,0,E!#c

2 loop52E d3rWGc
~0!~0,r ,E!

3Vc
~2!~rW !Gc

~0!~r ,0,E!. ~34!

We also have to take into account the one-loop Coulo
potential@Fig. 7~d!# in second order TIPT:

@Gc
~2!~0,0,E!#c

1 loop5E d3rW1E d3rW2Gc
~0!~0,r 1 ,E!Vc

~1!~rW1!

3Gc
~0!,S~rW1 ,rW2 ,E!Vc

~1!~rW2!

3Gc
~0!~r 2,0,E!. ~35!

Because the Coulomb potential is angular independent, o
the S-wave components of the Coulomb Green function
the center of expression~35! are needed. Finally, we have t
determine the NNLO contributions to the zero-distan
Green function coming from the kinetic energy,dHkin

52¹W 4/4Mb
3 , the Breit-Fermi potentialVBF , and the non-

Abelian potentialVNA @see Figs. 7~e! and 7~f!#. These cor-
rections are symbolized by@Gc

(2)(0,0,E)#kin1BF1NA in the
following. A method to determine them has been presen
in an earlier publication@7#. Some details about this metho
are presented in Appendix A. The final result for@Gc

(2)

3(0,0,E)#kin1BF1NA reads
Gc
~0!~0,0,E!1@Gc

~2!~0,0,E!#kin1BF1NA5
Mb

2

4p
H ivS 11

5

8
v2D2CFas~112v2!

3F lnS 2 i
Mbv
m fac

D1gE1CS 12 i

CFasS 11
11

8
v2D

2v
D G J 1

CFasMb
2

12p S 11
3

2

CA

CF
D

3H iv2CFasF lnS 2 i
Mbv
m fac

D1gE1CS 12 i
CFas

2v D G J 2

. ~36!
u-
tic
Because @Gc
(2)(0,0,E)#kin1BF1NA also contains kinematic

corrections to the zero-distance Coulomb Green function,
found it convenient to add the zero-distance Coulomb Gr
function ~31!. The first term on the RHS of Eq.~36! repre-
sents the zero-distance Coulomb Green function includ
the NNLO kinematic corrections and the second term
remaining corrections. It is an interesting fact that these
maining corrections can be written as the square of the z
e
n

g
e
-

o-

distance Coulomb Green function. Collecting all contrib
tions the complete expression for the nonrelativis
correlatorA1 at NNLO reads

A156Nc$Gc
~0!~0,0,E!1Gc

~1!~0,0,E!1@Gc
~2!~0,0,E!#c

1 loop

1@Gc
~2!~0,0,E!#c

2 loop1@Gc
~2!~0,0,E!#kin1BF1NA%. ~37!

The calculation of the correlatorA2 , on the other hand, is
9-11
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trivial using the equation of motion for the Green functio
see Eq.~16!. BecauseA2 is multiplied by an explicit factor
v2, Eq. ~16!, its form is particularly simple,

A25v2
3NcMb

4

2p H iv2CFasF lnS 2 i
Mbv
m fac

D
1gE1CS 12 i

CFas

2v D G J . ~38!

B. Determination of the short-distance coefficients

The short-distance coefficientsC1 andC2 are determined
by matching the NNLO cross section~13! in NRQCD di-
rectly to the same cross section calculated in full QCD~in
the limit as!v!1) at the two-loop level and including
terms in the velocity expansion up to NNLO. It is convenie
to parametrize the higher order contributions toC1 in the
form @ah[as(mhard)#
01403
,

t

C1~Mb ,mhard,m fac!511S ah

p D c1
~1!

1S ah

p D 2

c1
~2!~Mb ,mhard,m fac!1•••.

~39!

Due to renormalization group invariance only theO(as
2) co-

efficient of C1 depends on the hard scalemhard. We have
already anticipated that theO(as) coefficient does not de
pend on the factorization scalem fac. For C2 , on the other
hand, no higher order contributions are needed because
correlatorA2 is already of NNLO,

C251. ~40!

The expansion of the NNLO cross section in NRQC
RNNLO

thr , Eq. ~13!, keeping terms up to orderas
2 , reads
ays

ads

lly
radiation
RNNLO
thr 5

as!1

NcQb
2S F3

2
v2

17

16
v3G1

CFah

p F3p2

4
1

3

2

c1
~1!

CF
v1

p2

2
v2G1ah

2H CF
2p2

8v
1

3

2
CFF c1

~1!

2
1CAS 2

11

24
ln

4v2Mb
2

mhard
2

1
31

72D
1TnlS 1

6
ln

4v2Mb
2

mhard
2

2
5

18D G1F49CF
2p2

192
1

3

2

c1
~2!

p2
2CFS CF1

3

2
CAD ln

Mbv
m fac

GvJ 1O~as
3!D . ~41!

where we have setmsoft5mhardbecause in the limitas!v!1 a distinction between soft and hard scale~i.e., between the strong
coupling governing the Coulomb potential and the strong coupling governing the short-distance constants! is irrelevant. We
want to emphasize that the choicemsoft5mhard is mandatory because strong coupling renormalization in this work is alw

carried out in the MS̄scheme. The corresponding expression for the two-loop cross section calculated in full QCD re8

R2 loop QCD
NNLO 5

v!1

NcQb
2S F3

2
v2

17

16
v31O~v4!G1

CFah

p F3p2

4
26v1

p2

2
v21O~v3!G

1ah
2H CF

2p2

8v
1

3

2
CFF22CF1CAS 2

11

24
ln

4v2Mb
2

mhard
2

1
31

72D 1TnlS 1

6
ln

4v2Mb
2

mhard
2

2
5

18D G
1F49CF

2p2

192
1

3

2
k1

CF

p2S 11

2
CA22Tnl D ln

Mb
2

mhard
2

2CFS CF1
3

2
CAD ln vGvJ 1O~v2!D , ~42!

8TheO(as
2) contributions from secondary radiation of abb̄ pair off a light quark-antiquark pair through gluon splitting are kinematica

suppressed and do not contribute at NNLO in the velocity expansion. The contributions to the total cross section from secondary

of a bb̄ pair have been calculated analytically in Ref.@30#.
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where

k5CF
2F 1

p2S 39

4
2z3D1

4

3
ln 22

35

18G2CACFF 1

p2S 151

36
1

13

2
z3D1

8

3
ln 22

179

72 G1CFTF4

9S 11

p2
21D G1CFTnlF 11

9p2G . ~43!
he

ns

w
ds

o
-

la

e

s
n

er-

ut

tion
e
the
of

the
s

i-
s in

the
e-
for
The Born and one-loop contributions in Eq.~42! are standard
@31,32#. The two-loop contributions are presented with t
various combinations of the SU~3! group theoretical factors
CF54/3, CA53, andT51/2. The terms proportional toCF

2

come from the QED-like, Abelian exchange of two gluo
and have been calculated analytically in Ref.@33#. The result
has been confirmed numerically in Ref.@34# and analytically
in Ref. @35,21#. The corresponding Feynman diagrams~in
the covariant gauge! are displayed in Figs. 8~a!–8~d!. The
CACF terms correspond to the non-Abelian exchange of t
gluons, i.e., involving the triple gluon vertex, ghost fiel
and topologies with crossed gluon lines@Figs. 8~b!–8~g!#.
These contributions have been determined in Ref.@35#. The
CFTnl contributions are from diagrams with a vacuum p
larization of massless quarks@Fig. 8~h!# and have been cal
culated in Ref.@36#. The contributions proportional toCFT,
finally, correspond to the diagram where the vacuum po
ization is from the bottom quarks@Fig. 8~g!# and have been
calculated in Refs.@37,36#. The virtual top quark contribu-
tions are suppressed by a factor (Mb /Mt)

2;0.001 and are
neglected.

The constantsc1
(1) andc1

(2) defined in Eq.~39! can now be
easily determined by demanding equality of expressions~41!
and ~42!. This constitutes the ‘‘direct matching’’ procedur
@7,16# and leads to

c1
~1!524CF , ~44!
nc

tio

01403
o

-

r-

c1
~2!5p2Fk1

CF

p2S 11

3
CA2

4

3
Tnl D ln

Mb
2

mhard
2

1CFS 1

3
CF1

1

2
CAD ln

Mb
2

m fac
2 G . ~45!

The constantc1
(1) is theO(as) short-distance contribution

which is well known from the single photon annihilatio
contributions to the positronium hyperfine splitting@38# and
from corrections to electromagnetic quarkonium decays@39#.
We want to mention again that in our analysis we treatmhard
andm fac are independent and that both are defined in diff
ent regularization schemes.9

To conclude this subsection we would like to point o
that the short-distance coefficientsC1 and C2 determined
above are not sufficient to determine the vacuum polariza
function @Eq. ~1!# in the threshold regime at NNLO, becaus
they have been determined via matching at the level of
cross section only, i.e., at the level of the imaginary part
the vacuum polarization function. The expressions for
correlators still contain overall UV divergence
} ln(Mb /mfac) in their real parts@17,29#, see, e.g., Eq.~31!.
For the largen moments calculated in this work these amb
guities are irrelevant because the divergent contribution
the real parts do not contribute to the largen moments. The
relation between the nonrelativistic correlators and
vacuum polarization function at NNLO in the threshold r
gime, including the proper short-distance contributions
the real part, has the form
1

3q2
Pm

m~q! ——→
q2→4Mb

2

1

12Mb
2

C1~mhard,m fac!A1~E,msoft,m fac!2
1

9Mb
4

C2~mhard,m fac!A2~E,msoft,m fac!1•••

1h11
CFah

4p F1

2
lnS Mb

m fac
D1h2G1•••. ~46!
x-
-
he
The constantsh1 and h2 can be determined via~direct!

matching to the one and two-loop vacuum polarization fu

tion in full QCD at threshold, i.e., forq2→4Mb
2 . This work

has been carried out in a previous publication@16# and leads

to h152/9p2 and h251/4p2(3221/2z3)1 11
32 2 3

4 ln2. For
the complete expression of the vacuum polarization func
-

n

in the threshold regime at NNLO in the nonrelativistic e
pansion also theO(as

2) andO(as
3) short-distance contribu

tions would have to be calculated. This would require t

9In Refs. @35,21# c1
(2) has been calculated withmhard and m fac

defined in the MS̄scheme.
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calculation of the three- and four-loop the vacuum polari
tion functions in full QCD in the threshold regime. This ta
has not been accomplished yet.10

C. The dispersion integration

After the nonrelativistic correlatorsA1 andA2 and the
short-distance constantsC1 and C2 are calculated we are
01403
-now ready to carry out the dispersion integration~4!. This
task is quite cumbersome if the complete covariant form
the integration measureds/sn11 is used. Fortunately the in
tegration can be simplified because we are only intereste
NNLO accuracy in the nonrelativistic expansion inv
5(E/Mb)1/2. Changing the integration variable to the ener
E5As22Mb and expanding up to NNLO inv, where the
combination (E/Mb)n is considered of order 1, the resultin
integration measure reads
oximation

f
,

the
ot

ticity

n

the Pade
e

t also
.

ut to be
ds

sn11
5

1

~4Mb
2!n

dE

Mb
expH 2~2 n11!lnS 11

E

2Mb
D J ——→

E!Mb 1

~4Mb
2!n

dE

Mb
expH 2

E

Mb
nJ F12

E

2Mb
1

E2

4Mb
2

n

1OS E2

Mb
2

,
E3

Mb
3

n,
E4

Mb
4

n2D G . ~47!

The dispersion integration for the theoretical momentsPn
th at NNLO then takes the form

Pn
th5

1

~4Mb
2!nEEbind

` dE

Mb
expH 2

E

Mb
nJ S 12

E

2 Mb
1

E2

4 Mb
2

nD RNNLO
thr ~E!, ~48!

whereEbind is the ~negative! binding energy of the lowest lying resonance. We would like to point out that expansion~47!
leads to an asymptotic series, which means that including more an more terms in the expansion can improve the appr
only up to a certain point beyond which the series starts diverging. We have checked that for all values ofn employed in this
work the expansion is still well inside the converging regime. It should also be noted that for increasing values on the
expansion provides better and better approximations only as long as the condition (Ebind/Mb)n,1 is satisfied. In our case
where thebb̄ system is treated as Coulombic, i.e.,Ebind5MbCF

2as
2/41•••, this condition is always satisfied.~See also the

discussion at the end of Sec. IV.! Integration~48! is carried out most efficiently by deforming the path of integration into
negative complex energy plane as shown in Fig. 9. Because the~dashed! line which closes the contour at infinity does n
contribute11 and because we takeg large enough to be safely away from the bound state poles (g@Ebind), we can rewrite
expression~48! as

Pn
th5

22iQb
2p

~4Mb
2!n11E2g2 i`

2g1 i` dE

Mb
expH 2

E

Mb
nJ S 12

E

2Mb
1

E2

4Mb
2

nD FC1A1~E!2
4

3Mb
2

C2A2~E!G
5

4Qb
2p2

~4Mb
2!n11

1

2p i Eg2 i`

g1 i` dẼ

Mb
expH Ẽ

Mb
nJ S 11

Ẽ

2Mb
1

Ẽ2

4Mb
2

nD FC1A1~2Ẽ!2
4

3Mb
2

C2A2~2Ẽ!G , ~49!

where in the second line the change of variablesE→2Ẽ has been performed. The reader should note that due to analy
also the real part of the correlatorsA1 andA2 is needed for the integration in the negative complex energy plane.12The
expression in the second line of Eq.~49! offers three advantages which make it much easier to calculate than expressio~48!

10In Ref. @40# numerical approximations for the three loop vacuum polarization valid for all energies have been obtained based on´
method. Unfortunately numerical approximations are of little use for a precise extraction theO(as

2) short-distance constants due to th
presence of singular terms} lnv and ln2v in the real part of the three loop vacuum polarization function close to the threshold.

11The statement is, strictly speaking, not true for those terms in@12E/2Mb1E2/4Mb
2n#RNNLO

thr (E) which for largeE contain positive
powers ofE. Those terms, however, are not singular forE→0 and no resummation of them is necessary. It can be easily checked tha
for those terms integration method~49! gives the same results as the original expression in Eq.~48! if the Laplace transforms given in Eqs
~53! and Appendix B are continued ton<0.

12Using the Laplace transforms given below the unknown short-distance contributions in the real parts of the correlators turn o
irrelevant, as they have to.
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~1! Because the integration path is far away from bou
state energies, the integrand can be expanded inas . This
avoids that we have to integrate over a complicated spe
function such as the digamma functionC.

~2! We do not have to integrate separately over the re

FIG. 9. Path of integration to calculate expression~48! for the
theoretical momentsPn

th . The dashed line closes the contour
infinity and does not contribute to the integration. The constantg is
chosen large enough to be safely away from the bound state p
which are indicated by the gray dots on the negative energy a
The thick gray line on the positive energy axis represents the c
tinuum.
e

fo
n

01403
d

ial

o-

nances and the continuum. Both contributions are in a c
venient way calculated at the same time.

~3! The expression in the second line of Eq.~49! is noth-
ing else than an inverse Laplace transform for which a v
number of tables exist in literature~see, e.g., Ref.@28#!. We
want to stress that the advantages described above are m
technical in nature and just simplify the calculation. The
sults of the integration are not affected.

The final result for the theoretical moments including
contributions up to NNLO in the nonrelativistic expansio
can be cast into the form

Pn
th5

3NcQb
2Ap

4~4Mb
2!nn3/2

$C1~mhard,m fac!%n,1~msoft,m fac!1C2%n,2%,

~50!

where%n,1 comes from the integration of the correlatorA1
~including LO, NLO and NNLO contributions in the nonre
ativistic expansion! and%n,2 originates from the integration
of A2 which is of NNLO only. To illustrate the technica
aspects of the integration~49! let us first present some of th
details of the calculation of the LO contribution to%n,1 . The
LO contributions to%n,1 originate from the zero-distanc
Coulomb Green function in Eq.~31!. The corresponding in-
tegration takes the form

les
is.
n-
@%n,1#
LO5

8p3/2n3/2

Mb
2

1

2p i Eg2 i`

g1 i` dẼ

Mb
expH Ẽ

Mb
nJ Gc

~0!~0,0,2Ẽ!

52Apn3/2
1

2p i Eg2 i`

g1 i` dẼ

Mb
expH Ẽ

Mb
nJ F2 ṽ2CFasln ṽ1CFas(

p52

`

zpS CFas

2ṽ
D p21G , ~51!
of
where

ṽ[A Ẽ

Mb
~52!

and zp is the Riemann zeta function for the argumentp.
BecauseuCFas/2v ũ!1 along the integration path we hav
expanded the digamma function inGc

(0)(0,0,2Ẽ) for small
as . The resulting expression is now immediately ready
the application of inverse Laplace transforms. Here, we o
need the relations

1

2p i Eg2 i`

g1 i` 1

xn
extdx5

tn21

G~n!
,

1

2p i Eg2 i`

g1 i` ln x

xn
extdx5

tn21

G~n!
@C~n!2 ln t#. ~53!

The result for@%n,1#
LO reads
r
ly

@%n,1#
LO5112Apf14Ap (

p52

`

fp
zp

G@~p21!/2#
, ~54!

where

f[
CFasAn

2
. ~55!

Expression~54! can be rewritten in the form

TABLE I. Comparison of the series for@%n,1#
LO with the sum of

Born, one-, and two-loop contributions in the series on the RHS
Eq. ~54! for the values off employed in this work.

f 0.5 0.6 0.7 0.8 0.9 1.0

@%n,1#
LO 6.38 9.44 14.07 21.16 32.10 49.12

first three
terms in Eq.~54!

4.42 5.50 6.71 8.05 9.52 11.12
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@%n,1#
LO5112Apf1

2p2

3
f2

14Ap (
p51

` S f

p D 3

expH S f

p D 2J F11erfS f

p D G ,
~56!

where erf is the error function defined as erf(z)
5(2/Ap)*0

zexp(2t2)dt. Expression~56! agrees with the re-
sult obtained by Voloshin@6#. The infinite series defined in
Eq. ~54! is absolute convergent with an infinite radius
convergence. For the values ofn employed in this work (4
<n<10), however, convergence is somewhat slow an
large number of terms have to be taken into account. T
01403
a
is

fact is illustrated in Table I where the sum of the first thr
terms ~corresponding to Born, one- and two-loop contrib
tions! in the series~54! is compared to the total sum fo
values off between 0.5 and 1.0, which represent the ran
of f values used in this work. Table I shows that the resu
mation of higher orders inas is essential to arrive at sensib
results in particular for larger values ofn. This feature re-
mains true for all contributions to%n,1 and %n,2 and shows
that a naive fixed order~multiloop! calculation for the mo-
ments is unreliable for large values ofn.

Along the lines of the calculation of@%n,1#
LO it is now

straightforward to determine%n,2 and the NLO and NNLO
contributions to%n,1 . The contributions to%n,1 coming from
the one- and two-loop corrections to the Coulomb potent
Vc

(1) andVc
(2) , have the form
@%n,1#c
NLO1NNLO5

8p3/2n3/2

Mb
2

1

2p i Eg2 i`

g1 i` dẼ

Mb
expH Ẽ

Mb
nJ $Gc

~1!~0,0,2Ẽ!1@Gc
~2!~0,0,2Ẽ!#c

1 loop1@Gc
~2!~0,0,2Ẽ!#c

2 loop%

54Apd1fH 1

2
lnS m1egE/2An

2Mb
D 1 (

p51

`

fpFwp
11wp

0clnS Mb ,n,
2

m1
,pD G J

14Apd2fH 1

2
ln2S m2egE/2An

2Mb
D 1

p2

16
1 (

p51

`

fpFwp
222wp

1clnS Mb ,n,
2

m2
,pD2wp

0cln2S Mb ,n,
2

m2
,pD G J

18Apd3
2f2(

p50

`

fpF w̃p
2csinS Mb ,n,

2

m3
,

An

Mbpf
,pD 1w̃p

1csinlnS Mb ,n,
2

m3
,

An

Mbpf
,pD

1w̃p
0csinln2S Mb ,n,

2

m3
,

An

Mbpf
,pD G , ~57!
where

d15S as

4p D2b012S as

4p D 2

~2b0a11b1!,

d25S as

4p D 2

4b0
2 , d35S as

4p D2b0 ,

m15msoftexpH 1

d1
F S as

4p Da11S as

4p D 2S p2

3
b0

21a2D G J ,

m25msoft, m35msoftexpS a1

2b0
D , ~58!

and

cln~m,n,a,p![ lnS am

An
D 1

1

2
CS p

2D , ~59!
cln2~m,n,a,p![F lnS am

An
D 1

1

2
CS p

2D G 2

2
1

4
C8S p

2D ,

~60!

csin~m,n,a,b,p![ 0F2S 3

2
,
p11

2
,2

n

~2bm!2D ,

~61!

csinln~m,n,a,b,p!

[F lnS am

An
D 1

1

2
CS p11

2 D G 0F2S 3

2
,
p11

2
,2

n

~2bm!2D
2

d

dp 0F2S 3

2
,
p11

2
,2

n

~2bm!2D , ~62!
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TABLE II. The theoretical momentsPn
th for n54,6,8,10,20 and fixedmsoft52.5 GeV andmhard5m fac

55 GeV for various values ofMb and as(Mz). The two-loop running for the strong coupling has be
employed.

Moment Mb /@GeV# as(Mz)
4.6 4.8 5.0 5.2 0.10 0.11 0.12 0.13

P4
th@1028 GeV28# 0.51 0.37 0.27 0.20 0.19 0.27 0.41 0.74

P6
th@10212 GeV212# 0.67 0.41 0.25 0.16 0.17 0.26 0.46 0.97

P8
th@10216 GeV216# 0.95 0.49 0.26 0.14 0.18 0.29 0.57 1.37

P10
th @10220 GeV220# 1.42 0.61 0.27 0.13 0.19 0.34 0.73 1.99

P20
th @10240 GeV240# 12.96 2.37 0.47 0.10 0.42 1.00 3.07 13.93

as(Mz)50.118 Mb54.8 GeV

msoft52.5 GeV, mhard5m fac55 GeV
on
n-

s

r

it-

een
csinln2~m,n,a,b,p!

[H F lnS am

An
D 1

1

2
CS p11

2 D G 2

2
1

4
C8S p11

2 D J 0F2S 3

2
,
p11

2
,2

n

~2bm!2D
22F lnS am

An
D 1

1

2
CS p11

2 D G d

dp 0F2S 3

2
,
p11

2
,

2
n

~2bm!2D 1
d2

dp2 0F2S 3

2
,
p11

2
,2

n

~2bm!2D . ~63!

The coefficients of the beta function,b0,1 and the constants
a1,2 are given in Eqs.~20! and ~23!. The functionC8 is the
f

01403
derivative of the digamma function and0F2 is a generalized
hypergeometric function@28#. The constantswp

0,1,2 andw̃p
0,1,2

are given in Appendix C. For the calculation of expressi
~57! the table of inverse Laplace transforms given in Appe
dix B has been used extensively. The term proportional tod1

in Eq. ~57! contains the NLO contributions coming fromVc
(1)

and the NNLO contributions coming from the terms}1/r
and } ln(msofteE

gr )/r in Vc
(2) in first order TIPT. The term

proportional tod2 contains the remaining NNLO correction
coming from the term} ln2(msofteE

gr )/r in Vc
(2) . The expres-

sion proportional tod3 , finally, arises from the second orde
interaction in TIPT ofVc

(1) . The NNLO contributions to%n,1
originating from the kinetic energy corrections, the Bre
Fermi potential, the non-Abelian potential@see Eq.~36! for
the corresponding corrections to the zero-distance Gr
function# and the kinematic correction factor@11Ẽ/2Mb

1(Ẽ2/4Mb
2)n# from Eq. ~48! read
@%n,1#
LO1@%n,1#kin1BF1NA

NNLO 511
9

8n
12ApfF11

2

nG14Ap (
p52

`

fp
zp

G@~p21!/2#F11
~32p!~315p!

8n G1
8

3n
f2H 2F12

gE

2

2 ln~2An!G12ApfFgE

2
1 lnAnG22Ap (

p52

`
fp

G@~p21!/2#H zpFCS p21

2 D22 lnAnG1zp11J
12Ap (

p,q52

`

fp1q21
zpzq

G@~p1q22!/2#J 2@%n,1#
LOFas

2S 1

3
CF

21
1

2
CACFD ln

Mb
2

m fac
2 G , ~64!
t
et-
where, for convenience, also the LO result from Eq.~54! has
been added. The complete expression for%n,1 has the form

%n,15@%n,1#
LO1@%n,1#c

NLO1NNLO1@%n,1#kin1BF1NA
NNLO .

~65!

Finally, the result for%n,2 coming from the integration o
A2 , Eq. ~38!, reads
%n,25
1

nF222
8

3
Apf14Ap

3 (
p52

`

fp
2~p23!

3

zp

G@~p21!/2#G . ~66!

From expression~50! for the theoretical moments a
NNLO one can easily recover the moments at NLO by s
ting
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TABLE III. The theoretical momentsPn
th for n54,6,8,10,20 and fixedas(Mz)50.118 and Mb

54.8 GeV for various choices of the renormalization scalesmsoft , mhard, andm fac. The two-loop running
for the strong coupling has been employed.

Moment msoft /@GeV# mhard/@GeV# m fac/@GeV#

1.5 2.5 3.5 2.5 5.0 10.0 2.5 5.0 10.0

P4
th@1028 GeV28# 0.94 0.37 0.27 0.31 0.37 0.43 0.45 0.37 0.2

P6
th@10212 GeV212# 1.16 0.41 0.28 0.34 0.41 0.47 0.51 0.41 0.2

P8
th@10216 GeV216# 1.53 0.49 0.33 0.41 0.49 0.56 0.62 0.49 0.3

P10
th @10220 GeV220# 2.10 0.61 0.39 0.51 0.61 0.70 0.79 0.61 0.3

P20
th @10240 GeV240# 11.89 2.37 1.28 1.98 2.37 2.72 3.17 2.37 1.4

mhard55 GeV msoft52.5 GeV msoft52.5 GeV
m fac55 GeV m fac55 GeV mhard55 GeV
n
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C1511S ah

p D c1
~1! , C250, d15S as

4p D2b0 ,

d25d350, m15msoftexpS a1

2b0
D , ~67!

and by ignoring the corrections@%n,1#kin1BF1NA
NNLO . The result-

ing expression for the NLO moments is identical to the o
obtained by Voloshin@2#.

IV. SOME COMMENTS ON THE MOMENTS

In this section we will spend some time discussing so
interesting properties of the theoretical momentsPn

th which
have been calculated in Sec. III. We will address three
sues:~i! the relation between the strong dependence of
moments onMb andas and the dependences of the mome
on the scalesmsoft, mhard, andm fac, ~ii ! the properties of the
resonance and continuum contributions, and~iii ! the quality
of the nonrelativistic expansion.

It is a characteristic feature of the moments that they
pend very strongly on the bottom quark massMb and the
strong couplingas . This is illustrated in Table II where the
momentsPn

th are displayed forn54,6,8,10,20 and for vari-
ous values ofMb and as(Mz) while the renormalization
scales are fixed tomsoft52.5 GeV and mhard5m fac

55 GeV. The dependence onMb is powerlike (Pn
th

;Mb
22n) for dimensional reasons@see definition~3!#. The

dependence onas is exponentially@see, e.g., Eq.~56!# and
comes from the resummations of the ladder diagrams c
taining the exchange of longitudinal Coulomb gluons. At th
point one might conclude that fitting the theoretical mome
to the experimental ones would allow for an extremely p
cise extraction ofMb and as , in particular if n is chosen
very large. Unfortunately this conclusion is wrong. It
wrong from the conceptual point of view because for
creasingn the effective smearing rangeDE in the integral~4!
becomes smaller and smaller, which makes the perturba
calculations for the moments become less trustworthy@14#.
In Sec. II we have used this argument to determine an up
bound on the allowed values onn. However, besides the
conceptual arguments, the perturbative series for the
01403
e

e

-
e

s
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s
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ve

er

o-

ments itself contains a mechanism which prevents an a
trarily precise determination ofMb andas for large values of
n. In Table III the theoretical momentsPn

th , n
54,6,8,10,20, are displayed for different choices f
msoft, mhard, and m fac and for as(Mz)50.118 andMb

54.8 GeV. It is obvious that the dependence of the m
ments on the renormalization scales, and in particular on
soft scale, is becoming increasingly strong for larger valu
of n. As an example, the momentP20

th (P10
th ) can change by a

factor of 10~5! if the soft scale is varied between 1.5 and 3
GeV. These huge scale dependences are mainly cause
the large NNLO contributions to the largen moments com-
ing from the two-loop corrections to the Coulomb potent
Vc

(2) , the second iteration of one-loop corrections to the C
lomb potentialVc

(1) , and the non-Abelian potentialVNA .
During the fitting procedure, when all renormalization sca
are scanned through the ranges~17!, the large scale depen
dencies effectively compensate the strong dependence o
moments onMb andas . In Sec. VI A it is shown that this
affects mostly the extraction ofas rendering the sum rule, a
least at the present stage, a rather powerless tool as fa
precision determinations of the strong coupling are c
cerned. We want to stress that this compensation represe
very delicate balance which, if at all, can only be trusted in
is not chosen too large. We believe that this balance is
under control for the values ofn used in this work (4<n
<10), although no proof for this assumption can be giv
However, it is certain that for even larger values ofn the
extracted values ofMb andas might contain sizable system
atic errors.

We also would like to make one comment on the fact t
the theoretical moments contain contributions from bel
(E,0) and above (E.0) the threshold point. As shown in
Eq. ~32!, the former contributions come from the resonan
poles whereas the latter arise from the continuum. To de
onstrate the size of the resonance and the continuum co
butions let us examine the LO contribution to%n,1 with re-
spect to this aspect. The contributions to@%n,1#

LO from E
,0 and E.0 can be calculated separately from Eq.~48!
using the LO nonrelativistic expression for the cross sect
from Eq. ~32! (f5CFasAn/2)
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TABLE IV. The resonance (E,0) and continuum (E.0) contributions to the function@%n,1#LO for
0.0<f<1.0.

f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

@%n,1#E,0
LO 0.00 0.02 0.14 0.50 1.25 2.65 5.05 9.01 15.42 25.66 42.

@%n,1#E.0
LO 1.00 1.41 1.92 2.48 3.09 3.73 4.39 5.06 5.74 6.43 7.1
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@%n,1#E,0
LO 58Ap (

p51

` S f

p D 3

expH S f

p D 2J , ~68!

@%n,1#E.0
LO 5112Apf1

2p2

3
f2

14Ap (
p51

` S f

p D 3

expH S f

p D 2J F211erfS f

p D G .
~69!

In Table IV expressions~68! and ~69! are evaluated for
0.0<f<1.0. Forf'0.5 resonance and continuum contrib
tions are approximately equal in size, whereas for larger
ues off the resonance contributions dominate. This sho
explicitly that for large values ofn ~wheren.4 can already
considered as large! the resonance effects cannot be n
glected. In particular, any sum rule analysis which is ba
on the largen moments and ignores the resonance contri
tions will lead to a bottom quark mass which is too lo
From Eqs.~68! and~69! it is also conspicuous that there a
no resonance contributions proportional toas

n with n
50,1,2. This originates from the fact that the modul
squared of the Coulomb bound states wave functions at
origin contains the third power of the strong coupling@see
Eq. ~32!#. It also indicates that in the framework of conve
tional multiloop perturbation theory~i.e., for an expansion in
the strong coupling! bound state contributions to the heav
01403
l-
s

-
d
-

he

quark–heavy-antiquark production cross section in lep
pair collisions are produced by Feynman diagrams cont
ing three and more loops. For the three loop case the re
can easily convince himself about this fact by expanding
~31! for small as and taking the term proportional toas

3 ,
2(Mb

3/16p)@CF
3as

3z3 /(E1 i e)#. At this point it is essential
to carefully take into account thei e piece because it tells u
that the imaginary part of the three loop vacuum polarizat
has a delta function located at the threshold point. It is t
delta function which leads to theO(as

3) term in Eq.~54! if
integration method~48! is used. The mechanism how mult
loop perturbation theory produces all terms with higher po
ers ofas in Eq. ~54! is similar.13

Finally, we also would like to address the question ho
well the nonrelativistic~and asymptotic! expansion at NNLO
for the cross sectionR @Eq. ~5!# and the use of the integratio
measure on the RHS of Eq.~47! in the dispersion integral~4!
can approximate a complete covariant calculation of
large n moments, where all mass and energy dependen
would be accounted for exactly. Strictly speaking, this qu
tion cannot be answered entirely because a complete co
ant calculation of the moments, Eq.~3!, for large values ofn
is certainly an impossible task.~If it were possible, we would
not use the nonrelativistic expansion and NRQCD in the fi
place.! However, a partial answer can be given by compar
the terms proportional toas

n with n50,1,2 inPn
th , Eq. ~50!,

to the corresponding contributions calculated in full QC
For simplicity we only present a comparison of the Born a
one-loop contributions in the following. The two-loop con
tributions lead to the same conclusions. The Born and
one-loop contributions fromPn

th read
d

of
Dn,NRQCD
Born [H F 3NcQb

2Ap

4~4Mb
2!nn3/2G21

Pn
thJ O~1!

512
7

8n
, ~70!

Dn,NRQCD
1 loop [H F 3NcQb

2Ap

4~4Mb
2!nn3/2S CFas

p D G21

Pn
thJ O~as!

5p3/2AnS 11
2

3nD24S 11
9

8nD . ~71!

The complete covariant versions of expressions~70! and~71! in full QCD can be determined from the well known Born an
one-loop formulas for the cross section@31,32#,

13The fact that we were able to use the Coulomb Green function expanded inas in Eq. ~49! has in fact already shown that each power
as in Eqs.~68! and ~69! corresponds to a Feynman diagram with a certain number of loops.
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RBorn~q2!5
NcQb

2

2
b~32b2!,

R1 loop~q2!5NcQb
2S CFas

p D S 3b~523b2!

8
2b~32b2!@2 ln~12p!1 ln~11p!#

2
~12b!~33239b217b217b3!

16
lnp1

~32b2!~11b2!

2

3$2 Li2~p!1Li2~p2!1 ln p@2 ln~12p!1 ln~11p!#% D , ~72!

TABLE V. The Born and one-loop contributions to the theoretical moments calculated in the nonrelativ-
istic expansion~NRQCD! at NNLO and in full QCD forn51, . . .,10.

n 1 2 3 4 5 6 7 8 9 10

Dn,NRQCD
Born 0.13 0.56 0.71 0.78 0.83 0.85 0.88 0.89 0.90 0.91

Dn,QCD
Born 0.60 0.73 0.79 0.83 0.86 0.88 0.89 0.91 0.91 0.92

Dn,NRQCD
1 loop 0.78 4.25 6.29 7.87 9.21 10.41 11.49 12.50 13.44 14.33

Dn,QCD
1 loop 2.28 4.25 5.91 7.36 8.65 9.84 10.92 11.94 12.90 13.81
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then
whereb5(124Mb
2/q2)1/2 and p5(12b)/(11b) and Li2

is the dilogarithm, and the covariant form of the dispers
relation for the moments, Eq.~3!,

Dn,QCD
Born [F 3NcQb

2Ap

4~4Mb
2!nn3/2G21E

4Mb
2

` ds

sn11
RBorn~s!, ~73!

Dn,QCD
1 loop[F 3NcQb

2Ap

4~4Mb
2!nn3/2S CFas

p D G21E
4Mb

2

` ds

sn11
R1 loop~s!.

~74!

Expressions~73! and ~74! can be easily calculated numer
cally. In Table VDn,NRQCD

Born , Dn,QCD
Born , Dn,NRQCD

1 loop , andDn,QCD
1 loop

are presented forn51, . . .,10. The difference for the Born
~one-loop! contributions amounts to 6%~7%! for n54 and
quickly decreases for larger values ofn. Thus, for the values
of n employed in this work the asymptotic expansion in t
velocity and, in particular, the use of NRQCD, lead to
sufficiently good approximation to the exact covariant resu
for the cases where a comparison can be carried out.@At this
point one has to compare the quality of the approximation
the large scale variations of the moments discussed at
beginning of this section.# This strengthens our confidenc
that our method to calculate the theoretical moments is
ficient at the level of the remaining theoretical uncertainti
In particular, we cannot confirm the claims in Ref.@3# that
the nonrelativistic expansion would behave badly and wo
represent a good approximation only forn;100.

V. EXPERIMENTAL MOMENTS AND THE FITTING
PROCEDURE

In this section we will describe how the moments a
calculated from experimental data and present our metho
01403
n
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f-
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to

fit the experimental momentsPn
ex to the theoretical onesPn

th .
The experimental moments are determined using the av
able data on theY massesMY(nS) and electronic partial
widths GY(nS)[G@Y(nS)→e1e2# for n51, . . . ,6. For a
compilation of all experimental numbers see Table VI. T
formula for the experimental moments reads

Pn
ex5

9p

ãem
2 (

k51

6
GkS

MkS
2n11

1E
AsBB̄

` ds

sn11
r cont~s!. ~75!

The first term on the RHS of Eq.~75! is obtained by using
the narrow width approximation for all the known res
nances

Rres~s!5
9p

ãem
2 (

n51

`

GnSMnSd~s2MnS
2 !. ~76!

ãem is the electromagnetic running coupling at the scale
GeV ~see Table VI! which divides out the effects of the
photonic vacuum polarization contained in the electrom
netic decay width.14 The second term describes the contrib
tion from the continuum above theBB̄ threshold. We ap-
proximate the continuum cross section by a constant wit
50% error

r cont~s!5r c~160.5!. ~77!

14To be more accurate, the electromagnetic coupling should
evaluated for each resonance individually at the corresponding r
nance mass. The resulting differences, however, are smaller

the assumed error inãem itself and therefore neglected.
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This simplifies the treatment of experimental errors in
continuum regime significantly but also represents a reas
ably good approximation because forn>4 the continuum is
already sufficiently suppressed that a more detailed des
tion of it is not necessary. During the fitting procedure w
vary the constantr c between 0.5 and 1.5 which certain
covers all the experimental uncertainties.@In fact, this pre-
scription renders the resonances 4S, 5S, and 6S, which lie
above theBB̄ threshold practically irrelevant.#

For the fit we use the standard least squares metho
described in Ref.@42#. The x2 function which has to be
minimized reads

x2~Mb ,as!5 (
$n%,$m%

~Pn
th2Pn

ex!~S21!nm~Pm
th2Pm

ex!.

~78!

$n% represents the set ofn’s for which the fit shall be carried
out andS21 is the inverse covariance matrix describing t
experimental errors and the correlation between the exp
mental moments. To construct the covariance matrix we
the errors in the electronic decay widths~where statistical
and systematic errors are added quadratically!, in the electro-
magnetic couplingãem ~see Table VI! and the error in the
continuum cross section, Eq.~77!, which we also treat as
experimental. The tiny errors in theY masses are neglecte
At this point it is important to note that the errors in th
electronic widths are certainly not uncorrelated due to co
mon sources of systematic errors in thee1e2 collider ex-
rr

he
e

r

ro
is

fo
ld
ai
-
, t
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periments~mostly CLEO! where the widths have been dete
mined. Unfortunately an analysis of these correlations can
be found in the corresponding publications~see Ref.@42#!.
We therefore assume that the correlations between
widths can be written as

dGnSdGmS5acordGnS
sysdGmS

sys, ~79!

where dGnS is the systematic error in the electronic wid
GnS as given in Table VI andacor is a parameter which
allows us to switch the correlation on and off to check
impact on the extraction ofMb and as . During the fitting
procedureacor is varied between zero~no correlation! and 1
~complete positive correlation of all systematic errors!. Col-
lecting all the quantities for which we take experimental
rors into account into the vector

yi5$G1S ,G2S ,G3S ,G4S ,G5S ,G6S ,ãem,r cont%,

i 51, . . . ,8, ~80!

and using the standard error propagation formulas~see, e.g.,
Ref. @42#! the covariance matrix reads

Snm5 (
i , j 51

8 ]Pn
ex

]yi
U

ŷ

]Pm
ex

]yj
U

ŷ

Vi j , ~81!

where
Vi j 5S ~dG1S!2 dG1SdG2S ••• dG1SdG6S 0 0

dG2SdG1S ~dG2S!2
••• dG1SdG6S 0 0

A A � A A A

dG6SdG1S dG6SdG2S ••• ~dG2S!2 0 0

0 0 ••• 0 ~dãem!2 0

0 0 ••• 0 0 ~dr c!
2

D . ~82!
is
qs.

n-
f

c-

y

om
o

za-
u ŷ indicates that the functions are evaluated at the co
sponding central values.

The fitting procedure is complicated by the fact that t
theoretical uncertainties~coming from the dependence of th
theoretical moments on the renormalization scalesmsoft,
mhard, and m fac) are much larger than the experimental e
rors, which are dominated by the errors inG1S , G2S , and
G3S . Further, while it is reasonable to assume that the er
in the experimental data can be treated as Gaussian, th
certainly not the case for the ‘‘uncertainties’’~or better
‘‘freedom’’ ! in the choices of the renormalization scales
which just a ‘‘reasonable’’ window can be given. It wou
therefore be inconsistent to include the theoretical uncert
ties into the covariance matrixS. Nevertheless, it is impor
tant to have some means to combine both types of errors
e-

-

rs
is

r

n-

he

experimental and the theoretical ones. In this work this
realized by scanning all scales over the ranges given in E
~17!. We will carry out two kind of fits. First, we fit forMb

andas simultaneously without taking into account any co
straints onas , i.e., ignoring all existing determinations o
the strong coupling~Sec. VI A!, and, second, we fit forMb
assuming thatas is a known parameter i.e., taking into a
count a constraint onas ~Sec. VI B!.

To fit for Mb andas simultaneously we employ a strateg
closely related to the one suggested by Buras@43# and
adopted by the BaBar collaboration@44# as a method to ex-
tract Cabibbo-Kobayashi-Maskawa matrix elements fr
variousB decays. Our strategy consists of the following tw
steps.

~a! We first choose the range over which the renormali
9-21
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TABLE VI. The experimental numbers for theY masses and electronic decay widths used for
calculation of the experimental momentsPn

ex. For the widths the first error is statistical and the seco
systematic. The errors forY1S andY2S are taken from Ref.@41#. All the other errors are estimated from th

numbers presented in Ref.@42#. The errors in theY masses and theBB̄ threshold (As)BB̄ are neglected.

nS 1S 2S 3S

MnS/@GeV# 9.460 10.023 10.355
GnS/@keV# 1.3260.0460.03 0.5260.0360.01 0.4860.0360.03

nS 4S 5S 6S

MnS/@GeV# 10.58 10.87 11.02
GnS/@keV# 0.2560.0360.01 0.3160.0560.07 0.1360.036 0.03

ãem
215aem

21(10 GeV)5131.8(160.005), (As)BB̄5235.279 GeV
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tion scalesmsoft, mhard, and m fac have to be scanned ind
vidually. For convenience we also count the constantr c , the
correlation parameteracor and the various sets ofn‘s for
which the fits shall be carried out as theoretical paramet
The individual ranges employed in this work are as follow

1.5 GeV <msoft<3.5 GeV,

2.5 GeV <mhard<10 GeV,

2.5 GeV <m fac<10 GeV,

0.5<r c<1.5, 0<acor<1. ~83!

The sets ofn’s for which we perform the fits are

$n%5$4,5,6,7%,$7,8,9,10%,$4,6,8,10%. ~84!

The scanning over the ranges and sets given above is ca
out by using a Monte Carlo generator.

~b! Then, for each set of theoretical parameters

M5$msoft,mhard,m fac,r c ,acor ,$n%%, ~85!

called a ‘‘model,’’ we construct thex2 function as described
before and determine the 95% confidence level~C.L.! con-
tour in the Mb-as plane by calculating the minimum
x2, xmin

2 , and drawing the contourx2(Mb ,as)5xmin
2 16.

The external envelope of the contours obtained for all m
els generated by the scan represents the ‘‘overall 95%
contour,’’ which we will refer to as the ‘‘allowed range fo
Mb andas . ’’ It should be mentioned that we do not impos
a x2-cut which would eliminate models for which the pro
ability of xmin would be smaller than 5%. We will com
back to this point in Sec. VI.

We would like to emphasize that the allowed region
Mb and as obtained by the procedure described abo
should not be understood in any statistical sense. In fact,
quite difficult to ascribe any accurately defined meaning
the allowed region at all without reference to the meth
how it has been obtained. This is a consequence of the
that the theoretical uncertainties, which cannot be app
hended statistically, dominate over the experimental one
01403
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For the fit for Mb whereas is assumed to be a know
parameter we treatas as we treat the theoretical paramete
msoft,mhard,m fac,r c ,acor , and$n%, i.e., we also scan over th
given range ofas . The fit for Mb is then carried out in the
same way as for the unconstrained fit described before.
only difference is that in this case the 95% confidence le
‘‘contour’’ for each model is determined by the equatio
x2(Mb)5xmin

2 14 because this method does represent on
one parameter fit. Some more remarks to this method ca
found in Sec. VI B.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section we present the numerical results for
bottom quark pole massMb gained from fitting the theoret
ical moments at NNLO calculated in Sec. III to the expe
mental moments obtained from experimental data. In S
VI A we discuss the result ifMb and as are fitted simulta-
neously ~‘‘unconstrained fit’’! and in Section VI B we
present the result forMb if as is taken as an input~‘‘con-
strained fit’’!.

FIG. 10. Result for the allowed region in theMb-as plane for
the unconstrained fit based on the theoretical moments at NN
The gray shaded region represents the allowed region. Experim
errors are included at the 95% C.L. level. The dots represent po
of minimal x2 for a large number of models.
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A. Determination of M b and as without constraints

The result for the allowed region forMb and as when
both parameters are fitted simultaneously and no prev
determination ofas is taken into account is displayed in Fig
10. The gray shaded region represents the allowed regio
the Mb-as plane. To illustrate that the allowed region do
not have any well defined statistical meaning we have a
shown the dots representing the best fits~i.e., the points in
theMb-as plane with the lowestx2 value for a large numbe
of models!. In fact, the region covered by the dots for th
best fits is a measure for the size of the theoretical uncert
ties inherent to our result. The latter uncertainties, wh
cannot be apprehended statistically, clearly dominate o
the experimental ones, which are contained in the g
shaded region not covered by any dots. For the convenie
of the reader we have shown the result foras at the scale
m52.5 GeV ~lower frame axis! and m5Mz ~upper frame
axis! where we have used two-loop running for the stro
coupling. From the shape and orientation of the gray sha
region in Fig. 10 it is evident thatMb andas are positively
correlated. This can be easily understood from the fact
the theoretical moments are monotonically increasing fu
tions of as but monotonically decreasing functions ofMb
~see Table II!. However, we refrain from presenting a n
merical value for the correlation because, as already m
tioned, the allowed region forMb andas does not have any
statistical meaning.

For the bottom quark pole mass and the strong coup
we obtain

4.74 GeV<Mb<4.87 GeV, ~86!

0.096<as~Mz!<0.124, ~87!

0.175<as~2.5 GeV!<0.308. ~88!

Because the uncertainties forMb andas are not Gaussian we
only present the allowed ranges obtained from Fig. 10.
would like to emphasize that in this context the inequa
sign < does not have any mathematical meaning. It is o
used to describe the bounds onMb and as which are ob-
tained from our fitting procedure. The allowed range forMb ,
which spans over 120 MeV, can be definitely called a prec
determination of the bottom quark pole mass. The allow
range obtained for the strong coupling, on the other hand
consistent with the current world average, but much wi
than the uncertainties of the latter. In addition, most of
allowed range foras is located below the current world av
erage. Taking the size of allowed ranges forMb and as as
their uncertainty we arrive at

DMb

Mb
;2.5%, ~89!

Das~Mz!

as~Mz!
;25%, ~90!

Das~2.5 GeV!

as~2.5 GeV!
;50%, ~91!
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for the relative uncertainties in our determination ofMb and
as . It is evident that the sum rule based on the largen
moments, Eq.~3!, is much more sensitive to the bottom
quark mass than to the strong coupling. At least at
present stage one can certainly conclude that this sum
does not belong to most powerful methods to determineas
as far as precision is concerned.

From Eqs.~86! and~87! we can calculate the value for th
running bottom quark mass. Using the two-loop relation b
tween the pole and running mass@45# ~see also Ref.@46#, and
references therein! and taking into account the correlatio
between the pole mass and the strong coupling we get

4.09 GeV<mb~MY~1S!/2!<4.32 GeV, ~92!

4.17 GeV<mb~mb!<4.35 GeV. ~93!

This result is in excellent agreement with a recent deter
nation of the running bottom quark mass obtained from
three-jet rate inbb̄ events at the CERNe1e2 collider LEP
experiment DELPHI @47,48#, mb(MY(1S)/2)54.16
60.14 GeV. The uncertainty in the result for the runni
quark mass, Eq.~93!, is larger than for our pole mass resu
Eq. ~86!, because of the correlation betweenMb and as ,
which has to be taken into account in the conversion f
mula.

We have checked that the allowed region forMb andas
presented in Fig. 10 is insensitive to the particular choices
the scanning ranges for the renormalization scalemhard and
the constantsacor andr c , which parameterize the correlatio
of the experimental data for the electronic widths and
continuum cross section above theBB̄ threshold, respec-
tively. However, the results depend on the choice of
ranges for the soft scalemsoft and the factorization scalem fac.
This dependence is illustrated in Fig. 11 where we have
played points for the best fits~a! for models with 1.5 GeV
<msoft<2.5 GeV and 2.5 GeV<msoft<3.5 GeV and~b!
for models with 2.5 GeV<m fac<5.0 GeV and 5.0 GeV
<m fac<10 GeV with different symbols. In both figures th
other parameters have been scanned over the ranges giv
Eqs.~83!. From Fig. 11~a! we see that the allowed range fo
Mb does not depend significantly on the choice for the s
scale, whereas the allowed range foras tends toward larger
values if the soft scale is larger. Figure 11~b!, on the other
hand, shows that the size of the allowed range forMb could
be reduced if smaller factorization scales would be chos
In that case the allowed range foras would be only mildly
affected. From this observation it might be tempting
choose the scanning range formsoft at higher scales and fo
m fac at lower scales because this would lead to a seemin
more precise determination ofMb and higher values foras .
However, we take the position that the choice of the sc
ning ranges for the renormalization scales should not dep
on such considerations to represent a ‘‘reasonable choic
In fact, we consider it inappropriate to tune or ‘‘optimize
renormalization scales in some specific way if no go
physical reason for that can be given. In our case the ch
for the scanning ranges for the soft scale was motivated
the fact that it governs the nonrelativistic correlators
9-23
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A. H. HOANG PHYSICAL REVIEW D 59 014039
which ~at NNLO! the relative momentum of the bottom
quarks~which is of orderMbas) represents the only relevan
physical scale. Our choice for the factorization scalem fac, on
the other hand, is inspired by the belief that is can take
value between the relative momentum of the bottom qua
and the hard scale which is of order of the bottom qu
mass~see Sec. II!. We will come back to this issue in Se
VII.

It is very interesting to compare the results of our NNL
analysis presented above to an analogous analysis base
the NLO moments, i.e., ignoring all the NNLO contribution
@See the end of Sec. III for a prescription how the NL
moments can be recovered from the NNLO ones.# The result
for the allowed range forMb and as based on the NLO
moments is displayed in Fig. 12. The gray shaded region
the dots have been obtained in exactly the same way as

FIG. 11. Typical distribution of points representing the best
~a! for models with 1.5 GeV<msoft<2.5 GeV and 2.5 GeV
<msoft<3.5 GeV and ~b! for models with 2.5 GeV<m fac

<5.0 GeV and 5.0 GeV<m fac<10 GeV based on the theoretic
moments at NNLO. The other parameters are scanned over
ranges given in Eqs.~83!.
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scribed for the NNLO analysis. For comparison we have a
indicated the allowed region obtained from the NNLO ana
sis by a polygon. Evidently the allowed region forMb and
as covers a much larger area for the NLO analysis than
the NNLO one. At NLO the result for the bottom quark po
mass and the strong coupling read

4.64 GeV<Mb<4.92 GeV, ~94!

0.086<as~Mz!<0.132, ~95!

0.144<as~2.5 GeV!<0.368. ~96!

From Fig. 12 and Eqs.~94! – ~96! it is evident that the
inclusion of the NNLO contributions of the moments leads
a considerable improvement upon a pure NLO analysis.
would like to point out that the uncertainties inMb and as
from our NLO analysis are much larger then the uncerta
ties quoted by Voloshin@2# and Kühn et al. @4#. For com-
parison we have also displayed the results from Refs.@2,4# in
Fig. 12. Because the theoretical moments used in Refs.@2,4#
and the NLO moments used to generate the allowed reg
for Mb andas displayed in Fig. 12 are equivalent, we co
sider the small uncertainties quoted in Refs.@2,4# as a con-
sequence of an inappropriate treatment of the large theo
cal uncertainties inherent to the perturbative calculations
the moments.~See Sec. VII for a more detailed discussion!
Another way to see that the NNLO contributions lead to

he

FIG. 12. Result for the allowed region in theMb-as plane for
the unconstrained fit based on the theoretical moments at NLO.
gray shaded region represents the allowed region. Experimenta
rors are included at the 95% C.L. level. The dots represent poin
minimal x2 for a large number of models. The star and the diamo
represent the results obtained by Voloshin@2# and Kühn et al. @4#,
respectively. The error-bars quoted by Voloshin are smaller than
symbol used to display his central value. The polygon repres
the allowed region obtained from the NNLO analysis.
300
TABLE VII. Distributions of bestx2 values for a NNLO and NLO analysis based on, in each case, 1
randomly generated models within the ranges~83!.

xmin
2 023 326 6210 10215 15220 20230 30250 502100 1002`

NNLO 28% 17% 16% 22% 8% 4% 2% 3% 0%
NLO 0% 0% 0% 0% 0% 1% 7% 35% 57%
9-24
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BOTTOM QUARK MASS FROMY MESONS PHYSICAL REVIEW D 59 014039
considerable improvement is to compare the distributions
bestx2 values which are achieved by the models based
NNLO and NLO moments, respectively. In Table VII th
fraction~in percent! of bestx2 values within certain intervals
is displayed for the NNLO and the NLO analysis based
at each case, 1300 randomly generated models within
scanning ranges in Eqs.~83!. Whereas for the NNLO analy
sis more than 60% of the models have a bestx2 value below
10, the bulk of the bestx2 values for the NLO analysis is
larger than 50. We would like to emphasize that, because
uncertainties of the analysis are dominated by theory,
distributions of bestx2 values in Table VII represent only
measure for the quality of the theoretical expression for
moments, but do not contain any statistical information. W
therefore cannot impose ax2-cut on the models, let us say
based on an assumed statistical distribution ofx2 values. As
an example, for two degrees of freedom and at the 95% C
and assuming a Gaussian distribution such ax2 cut would
eliminate all models whose bestx2 value is larger than 6
Evidently, in this case, none of the models based on the N
moments would survive and we would be forced to reject
least, the nonrelativistic expansion up to NLO as a legitim
tool to calculate the moments from QCD for the sets ofn’s
considered in this work.

B. Determination of M b with constraints on as

We now carry out the fitting procedure forMb if as is
taken as an input, e.g., from the current world average.
this point one might be tempted to simply cut out of the gr
shaded region in Fig. 10 the part for whichas is located in
the preferred range. Due to the sizable correlation betw
Mb and as this would then lead to a much smaller unce
tainty in Mb than given in Eq.~86!. However, the naive
procedure just described is not the correct way to accoun
a constraint onas . This comes from the fact that for th
unconstrained fit performed in Sec. VI A the strong coupli
is essentially a function of the model parametersM
5$msoft,mhard,m fac,r c ,acor,$n%%, i.e., as is not independen
of the choice forM. If as is taken as an input, however, w
have to treatas andM as independent, because we have
be able to freely assign values to them. Thus, if we takeas
from the world average, we can expect that for a numbe
models the allowed range forMb will be located outside the
gray shaded region in Fig. 10. As a consequence, the
strained fit will in general lead to larger uncertainties inMb
than the unconstrained one. In addition, due to the posi
correlation betweenMb andas we can also expect that th
result for the allowed region ofMb for the constrained fit
will be located at slightly larger masses than for the unc
strained fit.

We would like to point out that there are many ways
account for a constraint onas which all might lead to
slightly different results. In this work we account for a co
straint onas by treating it in the same way as the paramet
inM, i.e., we also scan over the preferred range ofas . The
allowed range ofMb is then obtained in the same way as f
the unconstrained fit carried out in Sec. VI A with the diffe
ence that now only a one-parameter fit is performed~see also
Sec. V!. It should be noted that this method treatsas on the
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same footing as the theoretical parameters inM, i.e., the
uncertainties onas are not taken into account as Gaussian
statistical errors. In Fig. 13 the allowed range forMb based
on the NNLO moments is presented as a function ofas . For
each given value foras the allowed range forMb , which is
obtained by scanning all the parameters inM over the
ranges~83!, is the projection of the gray shaded region on
theMb axis. If a region foras is given the allowed range fo
Mb is obtained by projecting the gray shaded region for
theas valued in the preferred region onto theMb axis. As an
example which is also illustrated in Fig. 13, starting from t
world average foras as given by Stirling @1#, 0.114
<as(Mz)<0.122, we arrive at

4.78 GeV<Mb<4.98 GeV ~97!

for the bottom quark pole mass. The result is consistent w
Eq. ~86! obtained from the unconstrained fit. However,
expected, the allowed range forMb is wider and, in addition,
located at slightly larger masses. In fact, the uncertainty
Mb for the constrained fit is almost a factor of 2 larger. W
have checked that the result forMb is insensitive to the par-
ticular choice of the scanning ranges formhard, m fac, acor,
andr c . However, the bottom quark mass tends toward low
values if msoft is chosen larger. We have also displayed t
result for the NLO analysis in Fig. 13 as the striped area.
for the unconstrained fit the inclusion of the NNLO cont
butions to the moments leads to a smaller uncertainty
Mb , although the improvement is not as dramatic. We w
to mention that the larger uncertainty forMb obtained from
the constrained fit is partly a consequence of the fact that
fitting procedure does not treat the error onas as Gaussian or
statistical. Therefore one might argue that the uncertaintie
Eq. ~97! are too conservative. However, from the way how
world average is gained, it is certain that the error ofas
contains a sizable systematic contribution. Because an a
rate quantitative description of such a systematic erro
quite difficult, we take the position that the error onas
should be treated in a conservative way.

FIG. 13. Result for the allowedMb values for a given value of
as . The gray shaded region corresponds to the allowed range
the NNLO analysis and the striped region for the NLO analys
Experimental errors are included at the 95% C.L. level. It is illu
trated how the allowed range forMb at NNLO is obtained if
0.114<as(Mz)<0.122 is taken as an input.
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A. H. HOANG PHYSICAL REVIEW D 59 014039
Using the result in Eq.~97! and the two-loop relation
between the running and the pole mass@45# we obtain

4.08 GeV<mb~MY~1S!/2!<4.28 GeV, ~98!

4.16 GeV<mb~mb!<4.33 GeV ~99!

for the running bottom quark mass. It is remarkable that t
result and the result for the running quark mass based on
unconstrained fit, Eq.~93!, are almost identical.

VII. COMMENTS ON PREVIOUS ANALYSES

In the past few years there have been three prev
analyses by Voloshin@2#, Jamin and Pich@3#, and Kühn,
Penin and Pivovarov@4# where the bottom quark pole mas
and the strong coupling have been extracted from data on
Y mesons and using the same sum rule as in our anal
We would like to emphasize that in Refs.@2–4# no consistent
determination of NNLO corrections has been carried out
that the results by Voloshin

Mb54.82760.007 GeV,

as~Mz!50.10960.001 ~Voloshin!, ~100!

Jamin and Pich~JP!

Mb54.6060.02 GeV,

as~Mz!50.11960.008 ~Jamin, Pich! ~101!

and Kühn, Penin and Pivovarov~KPP!

Mb54.7560.04 GeV,

as~Mz!50.11860.006 ~Kuhn et al.!
~102!

are contradictory to each other and partly to our own resu
In particular, although no NNLO contributions have be
included, all results in Refs.@2–4# are claimed to have muc
smaller uncertainties than any of the results obtained in
analyses. In this section we will explain the origin of tho
discrepancies and give some comments on the methods
in Refs. @2–4# from the point of view of the strategies fo
lowed in this work. To organize the discussion we will an
lyze the methods used in Refs.@2–4# with respect to three
aspects:~i! theoretical expression for the moments,~ii ! opti-
mization and tuning of the perturbative series for the m
ments, and~iii ! fitting procedure and error analysis. Becau
the theoretical uncertainties in the determination ofMb and
as are much larger than the experimental ones, we will n
ther focus on the treatment of experimental errors nor on
formulas used for the experimental moments. Compare
the effects caused by using different methods to handle
theoretical uncertainties, the differences in the treatmen
the experimental side of the analysis represent only a m
issue. We also would like to mention that in the analyses
Voloshin, JP, and KPP moments withn as large as 20 were
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used. According to the estimates given in Sec. II this me
that the effective smearing range contained in those mom
is already of the same size as or even smaller thanLQCD.
This leads to an additional source of systematic theoret
errors in the results of Voloshin, JP, and KPP. We ha
checked, however, that using moments with 10<n<20
causes only shifts in the results forMb ~and as) which are
small compared to the size of the theoretical uncertaintie
the NLO level as we have estimated them in our analy
Therefore we will not raise this issue in the following di
cussion. For a NNLO analysis, however, where the unc
tainties inMb are shown to be smaller, the use of values on
which are too large is an important issue and can lead
considerable errors.

A. Theoretical expressions for the moments

Voloshin’s moments are identical to ours at the NL
level. The moments used by KPP have been calculated in
same way as Voloshin’s~and ours at the NLO level! with the
difference that the dispersion relation in Eq.~4! has been
calculated numerically in terms of its covariant form, i.e
without using the asymptotic expansion~47! and the inverse
Laplace transform. We have checked that for the values
n’s considered by Voloshin, KPP, and us the difference
tween both approaches is negligible. Thus, the moments u
by KPP are equivalent to Voloshin’s and ours at the NL
level.

The moments by JP, on the other hand, were obtai
from the Born, one-loop and two-loop expressions
R(e1e2→bb̄) supplemented by a resummation of LO Co
lomb singularities in the form of the Sommerfeld factor@see
Eq. ~32!#. Further, the one-loop corrections to the Coulom
potential have been implemented by inserting them dire
into the Sommerfeld factor, i.e., without using tim
independent perturbation theory. For the dispersion integ
tion ~4! JP have only taken into account c.m., energies ab
the threshold point (s.4Mb

2). We disagree with the mo
ments used by JP in two major points. Most important,
did not take into account the bound state poles of the cr
sectionR, which are located below the threshold points
,4Mb

2). We have demonstrated in Sec. IV that the bou
states represent the dominant contribution to the mom
for large values ofn ~see Table IV!. Thus the moments use
by JP are far too small which causes the bottom quark p
mass obtained from the fits to be too low.15 In fact, one can
easily see that omitting the bound state poles for large va
of n will always lead to a bottom quark pole massMb
<MY(1S)/2'4.7 GeV regardless whetheras is determined
from the fit or taken as an input. This explains why the va
for Mb in the analysis by JP is significantly smaller than
the analyses by Voloshin, KPP and us. In addition, we do
think that the effects of the running of the coupling gover
ing the Coulomb potential have been treated properly.
simply inserted the one-loop corrections to the Coulomb
tential into the Sommerfeld factor. Whereas this is legitim
for the nonlogarithmic corrections, it is not for the logarit
mic ones because the effects arising from virtual mome

15The same conclusion has been drawn in Ref.@4#.
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BOTTOM QUARK MASS FROMY MESONS PHYSICAL REVIEW D 59 014039
below and above the scale;Mbas are not taken into ac
count correctly. This can only be achieved by using tim
independent perturbation theory~or by solving the Schro¨-
dinger equation exactly!. We therefore conclude that th
results obtained by JP contain large systematic theore
errors which are by far larger than indicated by their er
analysis. That the value foras obtained by JP still seem
reasonable is a consequence of the fact that the moment
much less sensitive toas than toMb .

B. Optimization and tuning

We have shown in Sec. IV that the perturbative corr
tions to the moments and the resulting scale dependence
quite large. This behavior is particularly obvious at t
NNLO level. However, already at NLO the corrections a
uncomfortably large. In our analysis this feature has b
fully taken into account during our fitting procedure. In fa
it is the main source of theoretical uncertainties in our
sults. In the analyses by Voloshin and KPP, however,
perturbative expansion for the theoretical moments has b
tuned to improve the convergence.

In Voloshin’s work, at each value ofn the soft scalemsoft
has been fixed such that the NLO corrections caused
Vc

(1) , Eq. ~19!, vanish exactly and the hard scalemhard has
been fixed to the BLM scale@49#. Thus, Voloshin has elimi-
nated the scale dependences of the moments. We would
to emphasize that we consider Voloshin’s prescription as
possible choice for the renormalization scales, which ess
tially corresponds to selecting one single model out of
range of models used in our analysis. We have shown in
VI ~see, e.g., Fig. 10! that the results forMb andas depend
significantly on such a choice. Because we think that
argument can be found why Voloshin’s choice should
better than others, we have the position that a scan ove
‘‘reasonable’’ models should be carried out. Because V
loshin has not carried out such a scan we consider the t
retical uncertainties quoted in his analysis as largely und
estimated.

In the analysis by KPP, at each value ofn a non-
logarithmic piece ofVc

(1) has been absorbed into the L
nonrelativistic Green function, Eq.~31!, such that the NLO
corrections caused by the nonabsorbed piece~calculated via
first order time-independent perturbation theory! vanish. This
optimization is quite similar to Voloshin’s but leaves the s
scale unfixed. It should be mentioned that KPP have exp
itly identified soft and hard scale which has eliminated
possibility to vary both scales independently. This reve
why the uncertainties quoted by KPP are much larger t
Voloshin’s, and partly explains why they are still muc
smaller than the uncertainties obtained from our NLO ana
sis where no optimization has been performed.~See Fig. 12
for a graphical comparison.!

JP have not carried out any optimization. However, due
their way to calculate the moments starting from the expr
sions of the covariant multiloop expressions for the cr
section, JP implicitly identified soft and hard scale.

C. Fitting procedure and error estimate

In the analysis by Voloshin and KPP a two parameter
was carried out to obtainMb and as for the sets$n%
01403
-

al
r

are

-
are

n

-
e
en

y

ike
e
n-
e
c.

o
e
all
-
o-
r-

t
c-
e
ls
n

-

o
s-
s

t

5$8,12,16,20% and $10,12,14,16,18,20%, respectively. Thus,
the results obtained by Voloshin and KPP should be co
pared with the results of our unconstrained fit presented
Sec. VI A. Because Voloshin has eliminated all scale dep
dences, he has estimated the theoretical uncertainties in
analysis using the assumption that the NNLO corrections
the nth moments can be parametrized by a global factor
1c/n) where c is a number of order 1. The size of th
uncertainties was obtained from the variation of the best
for Mb and as if c is first fixed to zero and then obtaine
from a three parameter fit. The theoretical uncertaint
gained by this method have been of the same size as
~small! experimental errors. We have shown in Sec. IV th
the NNLO contributions to the moments have an entir
different structure~large size, growing withn, tremendous
dependence on the soft scale! and cannot be accounted for b
the global factor (11c/n). Thus, Voloshin’s method to es
timate the theoretical error is not capable to account for
true size of theoretical uncertainties inherent to the pertur
tive calculation of the moments. In the analysis by JP
theoretical uncertainties forMb andas were essentially ob-
tained from the variation of the best fit forMb and as ~for
fixed msoft5mhard5Mb) when the two-loop corrections to th
Coulomb potential,Vc

(2) , are included and when the two
loop contributions to the high energy cross section are
moved. No additional uncertainties~e.g., from the renormal-
ization scale dependence! have been taken into accoun
based on the argument that this would lead to a dou
counting of theoretical uncertainties. We disagree with t
statement because the effects of the inclusion or remova
the two-loop corrections to the high-energy cross section
the Coulomb potential certainly depends on the value of
other parameters~such as the renormalization scales!. This
and the fact that JP have neglected the bound state p
which are the dominant source of large corrections to
moments~and their scale dependence! for large values ofn,
have lead to an underestimate of the theoretical uncertain
~besides the large systematic errors mentioned above!.

KPP, finally, have determinedMb andas separately. For
the determination ofMbas(Mz)50.118 was taken as a fixe
input. Thus, the result forMb by KPP should be compared t
the results of our constrained fit presented in Sec. VI B. T
method used by KPP to obtainMb was based on solving th
equationPn

th5Pn
ex for Mb while n and all the other param

eters are fixed to specific values. The mean value and
uncertainty forMb has then been gained by calculating t
mean and observing the spread ofMb values when this pro-
cedure was carried out, first, formsoft5mhard5Mb and n
510,12, . . . ,20and, second, for fixedn514 and 1.2 GeV
<msoft5mhard<Mb . This procedure effectively scans ove
some fraction of the range of models used in our fitting p
cedure but misses, e.g., models withnÞ14 andmsoft<Mb .
This the main reason why the uncertainties quoted by K
are much smaller than in our NLO analysis.

From the discussion presented above we come to the
lowing final conclusion about the results by Voloshin, J
and KPP in comparison to our own analysis: The theoret
moments calculated by Voloshin and KPP are equivalen
9-27
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A. H. HOANG PHYSICAL REVIEW D 59 014039
our NLO moments. We therefore consider the results
tained by Voloshin and KPP consistent with our own resu
at the NLO level~see Figs. 12 and 13!. However, the theo-
retical uncertainties are underestimated in both analy
which leads to the apparent contradiction between the res
by Voloshin and KPP. In view of the error analysis pe
formed in our analysis, where we tried to impose as less
as possible, the results by Voloshin and KPP are perfe
consistent. The apparent contradiction essentially co
sponds to a disjunct~and from our point of view biased!
choice of models used for the fitting procedure in both ana
ses. We want to emphasize that the choice by Voloshin is
less plausible than the one made by KPP which illustrates
need that the whole range of models must be scanned in
fitting procedure. The comparison between the results of
analysis, where such a scan has been performed, and
results obtained by Voloshin and KPP makes this obvio
The theoretical moments determined by JP, on the o
hand, do not take into account the bound state poles w
represent the dominant contributions to the moments
large values ofn. As a consequence theMb value obtained
by JP is too small and has to be considered inconsistent
the results by Voloshin, KPP, and us and, in particular, w
the nonrelativistic expansion of QCD, where the bound s
poles are predicted. That the value foras obtained by JP still
seems reasonable is a consequence of the fact that the
ments are much less sensitive toas than toMb .

After this work was completed we received Ref.@50# by
Penin and Pivovarov~PP! where the NNLO corrections to
the largen moments have also been included in the sum r
determination of the bottom quark pole mass. For the bot
quark pole mass PP quote the resultMb54.7860.04 GeV.
The result is consistent with ours. The uncertainty, howev
is smaller and the allowed range forMb is somewhat lower
than for our NNLO results. To obtain their result PP ha
used the same methods as in Ref.@4# ~which we have already
discussed above! with the difference that all the scales~in-
cluding the factorization scale! were varied in the range
Mb61 GeV. We consider this range too high for the s
scale. This issue and the fact the PP used values ofn for the
moments between 10 and 20 should be the main reasons
the result by PP is located at lower masses.16

VIII. CONCLUSIONS AND OUTLOOK

Based on the argument of global duality and causality
can relate the derivatives of the vacuum correlator of t
bottom-quark–antibottom-quark vector currents at zero m
mentum transfer to an integral over the total cross sectio
the production of hadrons containing a bottom and an a
bottom quark in electron-positron annihilation

Pn[
4p2Qb

2

n!q2 S d

dq2D n

Pm
m~q!uq2505E ds

sn11
Rbb̄~s!.

~103!

16In Eq. ~2! of the original version of Ref.@50# there was a sign
error in theCACF piece of theO(as

2) short-distance coefficien
which has been not been contained in the numerical codes. I t
A. Penin for correspondence about this point.
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It is therefore possible to relate a theoretical calculation
the momentsPn to experimental data for the cross secti

R(e1e2→ ‘ ‘ bb̄ hadrons’’). The limit of large values ofn
is of special interest for relation~103! because in this limit
the high-energy contributions are suppressed. For the th
retical side this means that the bottom-quark–antibotto
quark pair can be treated nonrelativistically, and for the
perimental side that data for the production ofY mesons are
already sufficient to saturate relation~103!. The requirement
that the effective range of integration is larger thanLQCD
@14# imposes an upper bound on the values ofn for which a
perturbative calculation of the moments can be trusted. D
to the large size of the bottom quark mass of order 5 GeV
are in the fortunate situation that a range of values ofn can
be found for which thebb̄ system can be treated nonrelati
istically and, at the same time, the range of integration is s
broad enough compared toLQCD. We have identified this
range of ‘‘large values ofn’’ as 4&n&10. In this work we
have used the arguments just given to determine the bo
quark pole massMb and the strong couplingas in the MS̄
scheme from experimental data on theY masses and elec
tronic decay widths.

The aim of this paper was twofold.
~1! Calculation of NNLO corrections.The complete set of

NNLO corrections in relation~103! for large values ofn has
been calculated. This includes corrections to the express
in the nonrelativistic limit or orderas

2 , asv, andv2, where
v is the velocity of the bottom quarks in the c.m. frame. T
conceptual difficulty in those calculations is that the relat
istic corrections, e.g., from the kinetic energy or from high
order interactions such as the Darwin or the Breit-Fermi
tential lead to ultraviolet divergent integrations. We ha
used the concept of effective field theories formulated
NRQCD @11,12# to deal with this problem. In NRQCD the
latter divergences appear as a natural consequence o
existence of higher-dimensional operators which lead to
renormalization of lower-dimensional ones. The exact fo
of the renormalization constants is obtained through ma
ing to full QCD. This automatically provides a separation
all relevant effects into short-distance~contained in the
renormalization constants! and long-distance ones~contained
in matrix elements!. In our case this leads to an expressi
for the moments@and the cross sectionR(e1e2→ ‘ ‘ bb̄ had-
rons’’!# which is a sum of terms each of which consists o
nonrelativistic current correlator multiplied with a shor
distance factor@see Eqs.~13! and~50!#. For the leading term
in this series we have performed matching at the two-lo
level. Although the NNLO contributions are quite large, th
lead to a considerable reduction of the theoretical uncert
ties in the extraction ofMb .

~2! Conservative approach for the error estimates.The
uncertainties in the determination ofMb ~andas) based on
sum rule~103! are dominated by theory, in particular, by th
remaining large renormalization scale dependences of
theoretical moments. These scale dependences are caus
large coefficients which arise in the perturbative calculat
of the corrections to the moments in the nonrelativistic
gime. In contrast to statistical errors, which can be treated

nk
9-28
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BOTTOM QUARK MASS FROMY MESONS PHYSICAL REVIEW D 59 014039
a standardized way, it is not an easy task to properly acco
for theoretical uncertainties, in particular, if a mode
independent~in the framework of QCD! analysis is intended
In fact, in an analysis where theoretical uncertainties do
nate, results may easily become biased depending on
sonal preferences. For the case of the determination ofMb
from sum rule~103! this has led to the paradoxical situatio
that in two earlier publications@2,4# contradictory results
were obtained although equivalent theoretical express
for the moments were used. In this paper it was attempte
include as little personal preference into the analysis as
sible by scanning all theoretical parameters independe
overreasonably largeranges which were in size and locatio
motivated fromgeneralconsiderations. For each set of p
rameters, called a ‘‘model,’’ a standard statistical fitting p
cedure was carried out using the method of least square
calculate a 95% C.L. contour. The external envelope of
contours obtained for all the scanned models was then ta
as the ‘‘overall allowed range’’ which, we want to emph
size, does not have any well defined statistical meaning
to the dominance of theoretical uncertainties. This makes
scanning method more conservative~and in our opinion also
more honest! than the methods used in Refs.@2,4#. In addi-
tion, the scanning method has the advantage that it autom
cally accounts for nonlinear dependences on the theore
parameters and prevents by construction the Gaussian
treatment of theoretical uncertainties. Of course, the res
presented in this work are not completely free from perso
preferences either because of the choice of the ranges
for the scanning.

In this paper we have performed two different analys
based on the scanning method and including the new NN
corrections. First,Mb and as were determined simulta
neously using the least squares method for two parame
We have obtained

4.74 GeV<Mb<4.87 GeV, ~104!

4.09 GeV<mb~MY~1S!/2!<4.32 GeV, ~105!

0.096<as~Mz!<0.124 ~106!

The corresponding result using the NLO expressions for
moments yielded considerably larger uncertainties@see Figs.
10 and 12 and Eqs.~86!–~88! and ~94!–~96!#. The results
show that relation~103! allows for a much more precis
determination of the bottom quark mass than for the str
coupling. Second,Mb was determined using the least squa
method for one parameter and takingas as a known param
eter. We have obtained

4.78 GeV<Mb<4.98 GeV, ~107!

4.08 GeV<mb~MY~1S!/2!<4.28 GeV ~108!

for 0.114<as(Mz)<0.122. As for the first analysis th
NNLO contributions to the theoretical moments lead to
reduction of the uncertainties~see Fig. 13!. In our opinion,
the sum rule~103! can be regarded as a quite precise too
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determine the bottom quark mass. For the determination
the strong coupling we are by far less optimistic.

In the past few years there have been three previ
analyses by Voloshin@2#, Jamin and Pich@3#, and Kühn
et al. @4# where the bottom quark pole mass has been de
mined from experimental data for the masses and the e
tronic decay widths for theY mesons using the sum rul
~103!. The results obtained in those three analyses are c
tradictory to each other, and, although NNLO correctio
have essentially not been included, quote uncertain
smaller than in our own NNLO analysis. The results o
tained by Voloshin and Ku¨hn et al. are based on moment
which are equivalent to ours at the NLO level. In view of th
uncertainties forMb ~andas) obtained from our analysis a
NLO, the results by Voloshin and Ku¨hn et al. can therefore
be regarded as consistent with each other~and us!, see Fig.
12. The small uncertainties quoted by Voloshin and Ku¨hn
et al.come from too tight, model-like bounds imposed on t
theoretical parameters. The results obtained by Jamin
Pich, on the other hand, contain a large systematic error
to the negligence of the bound state contributions in the m
ments. We consider the result by Jamin and Pich inconsis
with those by Voloshin, Ku¨hn et al., and us, and in particula
with the nonrelativistic expansion of QCD.

It is quite interesting to ask whether and how the resu
determined in this work can be further improved in order
arrive at even smaller uncertainties for the bottom quark p
mass or the strong coupling. From the technical point
view the answer would simply be to calculate the NNNL
contributions in relation~103!. Such a task, however, i
highly nontrivial. Apart from the fact that a three-loo
matching would have to be performed also the NNNLO
fects in the bottom-quark–antibottom-quark interactio
would have to be considered. This would require a consis
treatment of retardation effects which are caused by the n
instantaneous exchange of gluons and, as a prerequisi
better understanding of higher order Fock bottom-quar
antibottom-quark–gluon states. In principle a calculation
determine these effects would be the QCD analogue of
determination of the Lamb shift contributions to the positr
nium wave function. So far no technical instruments ha
been developed yet to immediately tackle this challeng
problem. We further believe that it is unlikely that this go
can be achieved entirely in the framework of perturbat
theory because it involves also the bound state ene
;Mbv2;Mbas

2 as a relevant scale. For the bottom qua
this scale is already of the same size as the typical hadr
zation scaleLQCD, which means that the bottom-quark
antibottom-quark–gluon propagation is certainly nonpert
bative. In fact, the rather uncomfortably large NNL
corrections in relation~103! might be regarded as a firs
warning sign in support of this view.

At this point it seems to be just natural to mention t
renormalon ambiguities contained in the definition of t
pole mass@51# which is defined perturbatively as the locatio
of the singularity of the renormalized quark propagator. T
ambiguity indicates that the pole mass has an intrinsic un
tainty of orderLQCD;2002300 MeV. It is caused by the
long range sensitivity of the pole mass and reflected i
9-29
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A. H. HOANG PHYSICAL REVIEW D 59 014039
factorial growth of the high order coefficients of the pertu
bation series connecting the pole mass to other mass de
tions such as MS̄which seem to be free from this problem
Our results and the rather pessimistic prospect to further
prove the results obtained in this paper certainly support
view. However, the notion of the renormalons might a
give hints toward a more precise determination of the bott
quark mass because it implies that with a different mass d
nition the perturbative series for the moments might beco
better behaved. In this work we have not attempted to m
use of this possibility, but we hope to return to this issue
the near future.
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APPENDIX A: NNLO CORRECTIONS FROM dH kin , VBF ,
AND VNA

In this appendix we present some details about the ca
lation of the NNLO corrections to the zero-distance Gre
function coming from the kinetic energydHkin(rW)
52¹W 4/4Mb

3 , the Breit-Fermi potentialVBF , Eq. ~18!, and
the non-Abelian potentialVNA , Eq. ~21!. At NNLO the cor-
rections coming fromdHkin , VBF , andVNA are determined
from first order time-independent perturbation theory:

@Gc
~2!~0,0,E!#kin1BF1NA

52E d3rWGc
~0!~0,r ,E!dH~rW !Gc

~0!~r ,0,E!, ~A1!

where

dH~rW !52
¹W 4

4Mb
3

1V BF~rW !1VNA~rW !. ~A2!

Because the zero-distance Green function only descr
bottom-quark–antibottom-quark pairs in a3S1 triplet state,
we can take the angular average and evaluate the spin o
tors for dH in expression~A1!. The form ofdH then sim-
plifies to17

17We have obtained Eq.~A3! by transformingVBF(rW) into mo-

mentum space,ṼBF(pW 1 ,pW 2)5*d3rWe2 ipW 1rWVBF(rW)eipW 2rW, taking the

spin average and the angular average with respect topW 1 andpW 2 for
those terms which are not proportional to the Coulomb poten
and transforming back to configuration space.
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dH3S152
¹W 4

4Mb
3

1
CFas

r

¹W 2

Mb
2
1

11

3

CFasp

Mb
2

d~3!~rW !2
CACFas

2

2Mbr 2
.

~A3!

Using the equation of motion for the Coulomb Green fun
tion, Eq.~26!, we can eliminate the¹W 2 terms indH3S1 . For
illustration, let us consider the corrections coming from t
term CF(as /r )(¹W 2/Mb

2) in dH3S1 . Using the equation of
motion we arrive at the relation

2E d3rWGc
~0!~0,r ,E!FCFas

r

¹W 2

Mb
2GGc

~0!~r ,0,E!

52E d3rWGc
~0!~0,r ,E!F2S CF

2as
2

Mbr 2
1

CFas

r

E

Mb
D

3Gc
~0!~r ,0,E!2

CFas

Mbr
d~3!~rW !G . ~A4!

The third term in the brackets represents a power diverge
which is dropped in our convention@see the text after Eq
~30!#. Using the same arguments for the kinetic energy te
we get

2E d3rWGc
~0!~0,r ,E!F2

¹W 4

4Mb
3GGc

~0!~r ,0,E! ~A5!

5
E

2Mb
Gc

~0!~0,0,E!2E d3rWGc
~0!~0,r ,E!

3F2
CF

2as
2

4Mbr 2
2

E

2Mb

CFas

r
2

E2

4Mb
GGc

~0!~r ,0,E!.

Collecting all terms from Eqs.~A3!–~A5! we arrive at

@Gc
~2!~0,0,E!#kin1BF1NA5

E

2Mb
Gc

~0!~0,0,E!

2E d3rWGc
~0!~0,r ,E!

3F2
E2

4Mb
2

3E

2Mb

CFas

r

1
11

3

CFasp

Mb
2

d~3!~rW !

2S 5

4
1

CA

2CF
D CF

2as
2

Mbr 2GGc
~0!~r ,0,E!.

~A6!

The first and the second term in the brackets on the RHS
Eq. ~A6! are handled by redefining the energy,E→E
1E2/4Mb

2 and the coupling,as→as@113E/2Mb#, in the
nonrelativistic Coulomb Green function. The calculation
l
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BOTTOM QUARK MASS FROMY MESONS PHYSICAL REVIEW D 59 014039
thed-function term is trivial. The treatment of the 1/r 2 term,
on the other hand, is rather awkward. However, we can in
the correction caused by the 1/r 2 term by using the facts tha
the wave functions to the Schro¨dinger equation

S 2
¹W 2

m2
2

a

r
2

b

mr2
2ED C~rW !50 ~A7!

can be determined exactly for any energyE ~see, e.g., Ref.
@52#! and that the imaginary part of the Green functionG of
Eq. ~A7! in the continuum, i.e., for any positive energyE, is
proportional to the modulus square of the scattering w
function at the energyE. From this it is straightforward to
derive for positive energies the relation

Im G~0,0,E!5 lim
r→0

@~2pr !s#
mp

4p

3expH apm

2p J UG@11s2 i ~am/2p!#

G~2s12!
U2

,

~A8!

where s(s11)52b and p5Am(E1 i e). Expanding the
RHS of Eq. ~A8! in small18 b and imposing the short
distance cutoffm fac as described in Sec. III A~i.e., we absorb
a subtraction into the factorization scale! we obtain for posi-
tive energies the relation

ImF E d3rWGc
~0!~0,r ,E!S CF

2as
2

Mbr 2D Gc
~0!~r ,0,E!G

5
4CFasp

Mb
2

Im$@Gc
~0!~0,0,E!#2%. ~A9!

Due to analyticity relation~A9! is then also valid for any rea
energy. Up to~irrelevant! constants we can therefore write
01403
r

e

E d3rWGc
~0!~0,r ,E!S CF

2as
2

Mbr 2D Gc
~0!~r ,0,E!

5
4CFasp

Mb
2 @Gc

~0!~0,0,E!#2. ~A10!

Collecting all terms the final result for the sum of the zer
distance Coulomb Green function and the NNLO correctio
caused bydHkin , VBF , andVNA reads

Gc
~0!~0,0,E,as!1@Gc

~2!~0,0,E!#kin1BF1NA

5S 11
E

2Mb
DGc

~0!S 0,0,E1
E2

4Mb
,asF11

3E

2Mb
G D

1
4

3S 11
3CA

2CF
DCFasp

Mb
2 @Gc

~0!~0,0,E,as!#
2 ~A11!

up to corrections beyond the NNLO level.Gc
(0)(0,0,E,as) is

defined as the expression on the RHS of Eq.~31!. Rewriting
the energy in terms ofv5A(E1 i e)/Mb we arrive at the
result displayed in Eq.~36!.

We do not want to leave unmentioned that for the tre
ment of the singular 1/r 2 potential we have ignored the fac
that its coefficient~mainly through the large non-Abelia
contribution! is large enough that thebb̄ system can collapse
to a point~see, e.g., Ref.@52#!. This would lead to the break
down of hermiticity. Thus, the result in Eq.~A11! has some
heuristic character. However, we strictly treat the singu
1/r 2 @and also thed (3)(rW)# potential as a ‘‘small’’ perturba-
tion to the Coulomb exchange and remove the arising
singularities through the matching procedure. No exact tre
ment of the singular potential is intended. In this sense
result in Eq.~A11! should be fine.
t NNLO.
APPENDIX B: INVERSE LAPLACE TRANSFORMS

In this appendix we present the list of inverse Laplace transforms used to the calculate the theoretical moments a
In the following we use the conventions

C~z!5
dlnG~z!

dz
, C~n!~z!5

dn

dzn
C~z!,

C8~z!5C~1!~z!, C9~z!5C~2!~z!,

0F2~a,b;z!5G~a!G~b!(
k50

`
1

G~a1k!G~b1k!

zk

k!
.

1

2p i Eg2 i`

g1 i` 1

xn
extdx5

tn21

G~n!
, ~B1!

18Because we want to treat the 1/r 2 potential as a perturbation, the limitr→0 has to be taken after the expansion inb.
9-31
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1

2p i Eg2 i`

g1 i` lnx

xn
extdx5

tn21

G~n!
@C~n!2 lnt#, ~B2!

1

2p i Eg2 i`

g1 i` ln2x

xn
extdx5

tn21

G~n!
$@C~n!2 lnt#22C8~n!%, ~B3!

1

2p i Eg2 i`

g1 i` ln3x

xn
extdx5

tn21

G~n!
$@C~n!2 lnt#323@C~n!2 lnt#C8~n!1C9~n!%, ~B4!

1

2p i Eg2 i`

g1 i` 1

xn
sinS a

Ax
D extdx5

atn21/2

G~n11/2! 0F2S 3

2
,n1

1

2
,2

a2

4
t D , ~B5!

1

2p i Eg2 i`

g1 i` lnx

xn
sinS a

Ax
D extdx5

atn21/2

G~n11/2!H FCS n1
1

2D2 lnt G 0F2S 3

2
,n1

1

2
,2

a2

4
t D2

d

dn 0F2S 3

2
,n1

1

2
,2

a2

4
t D J ,

~B6!

1

2p i Eg2 i`

g1 i` ln2x

xn
sinS a

Ax
D extdx5

atn21/2

G~n11/2!H F S CS n1
1

2D2 lnt D 2

2C8S n1
1

2D G 0F2S 3

2
,n1

1

2
,2

a2

4
t D

22FCS n1
1

2D2 lnt G d

dn 0F2S 3

2
,n1

1

2
,2

a2

4
t D1

d2

dn2 0F2S 3

2
,n1

1

2
,2

a2

4
t D J . ~B7!

APPENDIX C: THE CONSTANTS WP
0,1,2 AND W̃P

0,1,2

In this appendix the constantswp
0,1,2 and w̃p

0,1,2 from expression~57! are given. They generically parametrize the high
order contributions to the Green function of the Schro¨dinger equation~24! coming from the radiative corrections to th
Coulomb potential,Vc

(1) andVc
(2) , Eqs.~19! and~22!. For the constantswp

0,1,2 we were able to calculate analytic expressio
The results read (p51,2,3, . . . )

wp
052

1

p!G~p/2!
E

0

`

dtE
0

`

du
1

~11t1u!2
lnpS ~11t !~11u!

tu D52
~p11!zp11

G~p/2!
, ~C1!

wp
15

1

p!G~p/2!
E

0

`

dtE
0

`

du
12 ln~11t1u!

~11t1u!2
lnpS ~11t !~11u!

tu D
52H ~11p!

G~p/2!FgEzp111 (
m50

`
C~21m!

~11m!p11G1
2

G~p/2! (l 50

p21

(
m50

`

~21!p2 l
~11 l !C~p2 l !~21m!

~p2 l !! ~11m!11 l J , ~C2!

wp
25

1

p!G~p/2!
E

0

`

dtE
0

`

du
z222ln~11t1u!1 ln2~11t1u!

~11t1u!2
lnpS ~11t !~11u!

tu D
5

~11p!

G~p/2!H ~gE
212z2!z11p1 (

m50

`
1

~11m!11p
$2gEC~21m!2C8~21m!1@C~21m!#2%J

1
2

G~p/2! (m50

`

(
l 50

p21
~21!p2 l~11 l !

~p2 l !! ~11m!11 l
@2gEC~p2 l !~21m!2C~p2 l 11!~21m!12C~p2 l !~21m!C~21m!#

1
4

G~p/2! (m50

`

(
l 50

p22

(
k51

p2 l 21

~21!p2 l
~11 l !C~p2 l 2k!~21m!C~k!~21m!

~p2 l 2k!!k! ~11m!11 l
. ~C3!

The constantsw̃p
0,1,2 are calculated numerically. The corresponding integrals are (i 50,1,2)
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w̃p
i 5

1

p!G@~p11!/2#
E

0

`

dtE
0

`

duE
0

`

dvE
0

1

dsv i~ t,u,v,s!lnpS ~11t !~11u!~11v !~12s!

tuvs D , ~C4!

where

v0~ t,u,v,s!5
3x1y

x2~x1y!3
, ~C5!

v1~ t,u,v,s!5
x227xy22y2

x2y~x1y!3
1

lnx

x2y2
1

~y2x!~x214xy1y2!ln~x1y!

x2y2~x1y!3
, ~C6!

v2~ t,u,v,s!5
3x1y

x2~x1y!3
2

x13y

y2~x1y!3
z21

~x2y!~x215xy1y2!

x2y2~x1y!3
ln~x1y!1

3x1y

x2~x1y!3
ln2~x1y!

2
1

x2y2F lnx2@ lnx2 ln~x1y!# lny1Li2S x

x1yD G , ~C7!

and

x511t1u, y511v2s.
0,

.
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