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The bottom quark pole mad4,, is determined using a sum rule which relates the masses and the electronic
decay widths of théY mesons to largen moments of the vacuum polarization function calculated from
nonrelativistic quantum chromodynamics. The complete set of next-to-next-to-leading Grder
O(a§ ,aw,v?) wherev is the bottom quark c.m. velocityorrections is calculated and leads to a considerable
reduction of theoretical uncertainties compared to a pure next-to-leading order analysis. However, the theoret-
ical uncertainties remain much larger than the experimental ones. For a two parameteiMi,fand the
strong MScoupling e, and using the scanning method to estimate theoretical uncertainties, the next-to-next-
to-leading order analysis yields 4.74 Ge¥M_<4.87 GeV and 0.098 ay(M,)<0.124 if experimental
uncertainties are included at the 95% confidence level and if two-loop runnirg, isremployed M, and a
have a sizable positive correlation. For the running M&tom quark mass this leads to 4.09 GeV
<smp(My(15/2)<4.32 GeV. If ag is taken as an input, the result for the bottom quark pole mass reads
4.78 GeV =<M,<4.98 GeV[4.08 GeV =my(My(15/2)<4.28 GeV for 0.1l4<ay(M,)<0.122. The
discrepancies between the results of three previous analyses on the same subject by Voloshin, Jamin, and Pich
and Kihn et al. are clarified. A comprehensive review on the calculation of the heavy-quark—antiquark pair
production cross section through a vector current at next-to-next-to leading order in the nonrelativistic expan-
sion is presented S0556-282198)04123-X

PACS numbgs): 14.65.Fy, 13.20.Gd, 13.25.Gv

I. INTRODUCTION vacuum correlator of two bottom-quark—bottom-antiquark
vector currents to an integral over the total production cross
Quantum chromodynamic$QCD) is the established section of hadrons containing a bottom and an antibottom
theory of the strong interactions. The determination of itsquark inee™ annihilation. In the limit of largen the mo-
parameters, the strong coupling and the quark masses, afents can be calculated in a nonrelativistic expansi6]
continuous tests of its consistency with experimental mea@nd higher order(relativistic corrections can be imple-
surements belong to the most important tasks within particlénented in a systematic way.
physics. For the strong coupling an almost countless number ThiS paper contains a determination of the bottom quark
of determinations exists. The most precise determinationBCl€ Mass, where theoretical uncertainties are treated in a
now quote uncertainties ig(M,) of less than 5%. The conservative way. It is partly motivated by the belief that a

remarkable feature of thers determinations, however, is carefully pgrformed analysis of theoretical uncertainties Is
. . . mandatory in order to see whether the uncertainties presented
their consistency with each oth¢see, e.g., Ref[1] for a

review. The situation for the quark masses can certainly b in Refs.[2—4] are realistic. In this work the method of choice
e . Y D8s to scan all theoretical parameters independently over rea-
described as much less coherent. For the bottom quark po

nably large windows. We will show that this method to

mass, which represents an important ingredient for the theqQsgtimate theoretical uncertainties is more conservative than
retical description oB meson decays and the determinationi,e methods used in Ref@—4]. In particular, it renders the

of the corresponding Cabibbo-Kobayashi-Maskawa matrixesyits obtained by Voloshin and Ko et al. consistent to
elements, the situation is particularly confusing. In the pastach other. With the scanning method the precise results of
few years there have been three determinations by Voloshi{yoioshin and Kinn et al. can only be obtained if some
(M,=4.827+0.007 GeV)[2], and later by Jamin and Pich qgel-like assumptions are imposed which are beyond first-
(Mp=4.60+0.02 GeV) [3] and Kihn etal. (My=4.75  principles QCD. The by far bigger part of the motivation for
+0.04 GeV) [4] which, although they have all been ob- this work, however, comes from the fact that now the tech-
tained from the same experimental data on the spectrum arglcal and conceptual tools have been developgdld to
the electronic decay widths of the mesons, are contradic- jnclude the next-to-next-to-leading ord@&NLO) relativistic
tory to each other if the quoted uncertainties are taken seriorrections to the large moments into the analysis. A large
ously. Further, the three analyd@s-4] were all based on the fraction of this paper is devoted to a comprehensive presen-
same sum rule which relates largemoments(i.e., large  tation and review of the concepts and calculations necessary
number of derivatives at zero momentum transfef the o determine those NNLO contributions. In particular, we
use the concept of effective field theories formulated in the
framework of nonrelativistic quantum chromodynamics

*Email address: ahoang@ucsd.edu o (NRQCD) [11,12 to deal with the problems of ultraviolet
'Throughout this paper the strong coupling is defined in the modidivergences which arise if relativistic corrections to the ex-
fied minimal subtraction (MBscheme. pressions in the nonrelativistic limit are calculated. However,
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we regard NRQCD merely as a technical tool and do nowwhereQu= —1/3 is the electric charge of the bottom quark.
spend too much time on formal considerations. WheneveBecause of causality theth momentP,, can be written in
possible we rely on physical rather than formal argumentserms of a dispersion integration
and use results from older literature even if they have not
been derived in the framework of NRQCD. It is the main ds
intention of this work to calculate the NNLO corrections to pn:j R(s), (4
the largen moments and to analyze their impact on the de- shtt
termination of M. We show that the NNLO corrections
lead to a considerable reduction of theoretical uncertaintieghere
in the determination oM.

The organization of this paper is as follows. In Sec. Il we
introduce our notation and explain the ideas and concepts on R(s)=
which our analysis and calculations are based. NRQCD is Opt 6)
introduced and a recipe for the calculation of the moments at

NNLO is presented. Because the heavy-quark—heavys the total photon mediated cross section of bottom-quark—
antiquark cross section in the threshold regime represents apttom-antiquark production ie*e~ annihilation normal-
important intermediate step in the calculation of the mo-ized to the point cross sectiony,= 4ma?l3s. [We neglect

ments, Sec. Il also contains a comprehensive review on thge contributions from secondary radiation bl pair off a
basic concepts involved in the calculation of the vector Cur1ight—quark—light—antiquark pair through gluon splitting be-

rent induced cross section at NNLO. In Sec. Il all calcula-5,,qe they are kinematically suppressed in the threshold re-
tions are carried out explicitly and all relevant formulas are;ime and do not contribute at NNLO in the nonrelativistic

displayed. Section IV contains a discussion on some pecusynansior(see also Sec. Il B For reasons explained later in
liarities of the largen moments. A detailed description of the yis section we also neglect the effects of real radiation of
treatment of the experimental data, the fitting procedure, a”gluons. In contrast to energies away from the threshold this

the scanning method is given in Sec. V. In Sec. VI the nuyqeq not give rise to infrared divergences in the total cross
merical results are presented and discussed. Two different tion. This is the r 0 why we do not writeBi X on
determinations oM, are carried out. FirstM, and a5 are section. 1hiS 1S the reaso y we dono 0

fitted simultaneously and, seconid,, is fitted while «q is thg right-hand S'd.éRHS) of Eq. (5).] Assumlr_lg global du-
taken as an input. In Sec. VII, finally, we comment on theallty, P, can be either calculated from experimental data for

three previous analyses in Ref8—4] and Sec. VIII contains the total cross section ie" e~ annihilatiorf or theoretically
the conclusions. Attached to this paper are three appendixégSlng quantum chromodynamics. It is the basic idea of this
which contain material which we found too detailed to beSY™ ”e’le fo set the moments palculated fr.om experimental
presented in the main body of the paper. The reader who ig%}apn equal to 'Fhose qetermlned thgoretlcally from QCD
mainly interested in the results for the bottom quark mas$n @nd to use this relation to determine the bottom quark

can safely skip most of Sec. I, and Secs. Ill and IV com-mass(and the strong couplingdoy fitting theoretical and ex-
pletely. perimental moments for various valuesrof5,6,13.

At this point it is mandatory to discuss the rangendbr
which the theoretical moments can be calculated sufficiently
IIl. THE BASIC IDEAS AND NOTATION accurate(using perturbative QCDto allow for a reliable
A. The sum rule extraction ofM, andas. From Eq.(4) it is obvious that each
. . moment P, effectively corresponds to amearingof the
We start our consideration from the correlator of two ..oss sectiofR over some energy regiakE located around
electromagnetic currents of bottom quarks at momentumy,a threshold point. Thus, only if the smearing rangstié
transferg ficiently larger thanA ocp~ O(200-300 MeV), a perturba-
tive calculation of the moments is feasiljlid]. [In Ref.[14]
I,,(q)=—i f dx€®40|Tj5(x)j5(0)|0), (1)  is was argued thaiE should be larger thanMya; to avoid
the complications involving a resummation of the Coulomb
singularitiesx (a¢/v)™. Because this resummation is explic-
where itly carried out at the NNLO level in this work, we have to
take Aqcp, the typical hadronic scale, as the size of the
iZ<X>=b<X) y,b(x). 2) minimal smearing rangeWe t_herefore cqnclude that is
not allowed to be too large if perturbative QCD shall be
employed. We can derive an approximate upper bound for
the allowed values af by changing the integration variable
in relation (4) to the energyE=\/g?>—2M,,. Forn>1 only

(T(e+e_—>'}/*—>“bE,)

The symbolb denotes the bottom quark Dirac field. We de-
fine thenth momentP,, of the vacuum polarization function
as

n

Hﬁ(q) | =0 ®) 2At the level of precision in this work the mediated cross section

2
p 4™ d
can be safely neglected.

dg?

 nig?
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energiesE<M, contribute, which allows us to expand ex- would have to be resumme&¢b all orders in multiloop per-
pression(4) for small E/M, [while regarding E/M,)n of turbation theory in order to arrive at a viable description of
order 1I: the bottom-quark—antibottom-quark dynamics. In other
words, the Coulomb interaction between the bottom and the
el g dE E antibottom quark has to be treated exa¢8y. Because this
P, = f—exp{ - —n) would be a highly cumbersome task in the framework of
(4M3H") My My

covariant multiloop perturbation theory, it is mandatory to
calculate the cross section and the theoretical moments in the

E? nonrelativistic approximation by solving the ScHinger
2 —
XRI(2Mp+E)7]| 1+0 My’ M2 n) l 6) equation supplemented by relativistic corrections. Both strat-

egies, however, lead to the same results.

From Eq.((*}) we see that the size of the smearing range B. Perturbative NRQCD and the cross section
for largen is of orderM /n:
In this paper we use NRQC[11,17 to set up a consis-
M, tent framework in which the corrections to the nonrelativistic
AE~—. (7)  limit (in form of the nonrelativistic Schabnger equation
n can be determined in a systematic manner at NNLO. This
corresponds to corrections up to ordf:fr, aw, andv? to
Demanding that\E is larger thanA ocp yields that the val-  the expressions in the nonrelativistic limit. We count orders
ues ofn for which a perturbgtl've calculation of the moments of a as orders ofv because we treat theb system as
can trusted should be sufficiently smaller than-2%. To Coulombic. In the framework of multiloop perturbation

avoid systematic theoretical errors as much as possible Weory this would correspond to a resummation of all terms
take ocag“vk (modulo logarithms ofy) with m+k=1,2,3 in the
cross section for the small velocity expansion.
Nmax= 10 8 NRQCD is an effective field theory of QCD designed to
handle nonrelativistic heavy-quark—antiquark systems to in
as the maximal value fon employed in this work. On the principle arbitrary precision. NRQCD is based on the sepa-
other hand, it is also desirable to choasas large as pos- ration of long- and short-distance effects by reformulating
sible because the experimental cross section for electron poQCD in terms of a nonrenormalizable Lagrangian containing
itron annihilation intobb hadrons is much better known in &ll Possible operators in accordance to the symmetries in the
the Y resonance regimgs~9.5-10.5 GeV than above the nonrelativistic limit. Treating all quarks of the first and sec-

= . . ond generation as massless and taking into account only
BB threshold. By takingn large the lower lying resonance those terms relevant for the NNLO calculation in this work

c_ontributions_ in _Eq.(4) are enhanqed relative to the con- e NRQCD Lagrangian reads?]
tinuum contributions leading effectively to a suppression of

the experimental uncertainties in the continuum cross section 1 —
[5,6,19. For our analysis we choose Lnraep= ~ 5 TIGH"Gy,, + Ed qibq
g=u,d,s,c
Nmin= 4 C) +utlio.+ D? N D4
Y1 1Dy &M, a28_|\/lﬁ ¢

as the minimal value fon. It is the regime 4&n=<10 which
we will refer to as “largen” in this work. It is a very
important fact that for 4&n<=<10 the bottom-quark— +o oty
antibottom-quark dynamics in the theoretical mome®ffsis

a9 a9
—~¢-B+——(D-E—E-D)
2My, M2

already nonrelativistic in nature. This can be seen by once asg
again examining relatio(6). Because for a given value af + in o(DXE—EXD) | ¢+ -
only energiesE<M,/n contribute, the corresponding bot- 8Mj,

tom quark velocitiey = VE/My, (in the c.m. framg are in
the rangdv|=<0.5, i.e., they are always considerably smaller
than the speed of light. In particular, the velocity is already higher-dimensional operators. (10)

as large as the typical size of the strong coupkngM ,v)

~0.3 governing the exchange of longitudinal polarized glu-The gluons and massless quarks are described by the con-
ons (in Coulomb gauge among the bottom-quark—

antibottom-quark pair. This leads to the breakdown of the

conventional multiloop perturbation expansion because the3j this context “resummation” would mean that one carries out
exchange ofm longitudinal gluons generates singular termstne resummation of singular terms in tifermal) kinematic regime
*(as/v)™, m=0,1,2..., (Coulomb singularitigsin the 4 <|v|. The resulting series would thénniquely define analytic
cross section for small velocities. These singular termsunctions which could be continued to the regifpé<as.

+xTx bilinear terms and

014039-3



A. H. HOANG PHYSICAL REVIEW D 59 014039

ventional relativistic Lagrangian, wher@,,, is the gluon A1§i<o|(7ﬁ‘r(;")‘()(;(‘r(;7ﬂ)|o>, (14)
field strength tensolg the Dirac spinor of a massless quark,

andD , the gauge covariant derivative. For convenience, all

color indices in Eq(10) and throughout this work are sup- A= ~i(0|(¥ o)
pressed. The nonrelativistic bottom and antibottom quarks 2

are described by the Pauli spingpsand y, respectivelyD,

andD are the time and space components of the gauge cqrg cross section is expanded in terms of a sum of absorp-
variant derivativeD andE'=G™ andB'=3¢"“G/" the elec- e harts of nonrelativistic current correlators, each of them
tric and magnetic components of the gluon field strengthy,ilied by a short-distance coefficient. In fact, the right-
tensor. The stra|g'htforwar_9ﬂx bilinear terms are omitted 54 sidgRHS) of Eq. (13) just represents an application of
and can be obtained using charge symmetry. The shorig taciorization formalism proposed in RgL2). The sec-
distance coefficients, ... ,as are normalized to 1 at the 4,4 term on the RHS of Eq13) is suppressed by?, i.e., of
Born level. The actual form of the higher order contributions\nLO. This can be seen explicitly by using the equations of

to the short-distance coefficients,, ... as [and also t0  qtion from the NRQCD Lagrangian, which relates the cor-
b;,b, in Eq.(12)] is irrelevant for this work, because we will relator A, directly to A;

later use the “direct matching” proceduf&,16] at the level
of the final result for the cross section. A, =M EA;. (16)
Let us first discuss the cross sectiBrin the nonrelativ-
istic regime. To formulatd in the nonrelativistic regime at Relation (16) has also been used to obtain the coefficient
NNLO in NRQCD we start from the fully covariant expres- —4/3 in front of the second term on the RHS of H43).
sion for the total cross section The nonrelativistic current correlata, and.A, contain the
resummation of the singular terms mentioned in the previous

—_~ iL\2
XT0<—§D) 1

+H.c|0). (15)

47-er2, _ . b paragraph. They incorporate all the long-distdnygnamics
R(g%)= 7 ”T{ _'f dx€(0[Tjp(x)j**(0)|0) governed by soft scales such as the relative three momentum
~Myag or the binding energy of thbb system~ Mba§ S
ng The constant€; andC, (which are also normalized to 1 at

— IM[—i(0[TT2()]°(~a)|0)], (11  the Born level, on the other hand, describe short-distance
q effects involving hard scales of the order of the bottom quark
. . mass. They only represent a simple power seriesyjn
and ei(pand the: eISctromagngnc curre(m momgntum (where the coefficients contain numbers and logarithms of
spacg j ,(+q)=(by"b)(+q) which produces/annihilates & ;. andup. and do not contain any resummations
bb pair with c.m. energy/q” in terms of °S; NRQCD cur-  j, . Because we consider the totab cross section nor-
rents up to dimension 8 ¢€1,2,3) malized to the point cross section, Ef), C, andC, do not
o, contain any dep@dence o3 coming from the production
@TU_( _ '_5) ")‘(}(qH L processe”e” —bb. In Eqg. (13) we have also indicated the
N2 ’ dependence of the correlators and the short-distance coeffi-
cients on the various renormalization scales: The factoriza-
(= =b. (v o B (- tion scaleu,. essentially represents the boundary between
(=@ =bi(x o) (—q) hard and soft momenta. The dependence on the factorization

T =ba(H o) (@) - —2
i 1 iX GMg

b, [~ i\2 scale becomes explicit because of ultraviolgtv) diver-
- X'oi| - §D l(—q)+---, (12 gences contained in NRQCD diagrams caused by the inser-
6Mj tion of NNLO interactions which correspond to higher di-

. o mensional operators. Because, as in any effective field
where the constants, andb, are short-distance coefficients {heory, this boundary is not defined unambiguously, both the
normalized to 1 at the Born level. Only the spatial compo-cqrejators and the short-distance coefficients in general de-
nents of the currents contribute at the NNLO level. Insertmgpend ONfrae. The soft scaleusyy and the hard scalg g,
expansion(12) back into Eq(11) leads to the nonrelativistic o the other hand, are inherent to the correlators and the
expansion of the cross section at the NNLO level short-distance constants, respectively, governing their pertur-

2 bative expansion. If we would have all ordersdgandv at
thr T

RNNLO(E):_MZ Ca(thards ttad) IMLAL(E, ot ac) ]
b
“4In the context of this paper “long distance” is not equivalent to

4mQf “nonperturbative.”
- SMﬁ Ca hard: Hrac) SIt is not clear at all whether there are even smaller energy scales
~Mba';, k>2, which might become relevant. However, those
XIm[A>(E, softs Mfad) ] T - - - (13)  scales can only be produced by higher order effects such as the
hyperfine splitting, which should be irrelevant at least for the total
where cross section at NNLO.
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hand, the dependence of the cross secki§fy o on varia- -
tions of each of the three scales would vanish exatflg.be ql

more explicit,wsqf IS the subtraction scale of the strong cou-

pling in the NRQCD diagrams constituting the perturbative
expansion of the Coulomb potential, see Ed$), (19), and
(22). The dependence of the correlators g, arises be- >
cause the Coulomb potential is contained in the Sainiger t

equation used to calculate the correlators. Likewjisg,qis

the subtraction scale of the strong coupling in the two-loop

QCD diagrams needed for the matching calculation. In this

work the soft and the hard scale are defined in the MS i
ql

scheme. The factorization scalg,c, on the other hand, is Glans = —ZQ—(% - g:%)

defined in a cutoff scheme. Although it is possible, after a q

redefinition of the factorization scale, to relate the three

scales to each other using renormalization group arguments

we will treat them as independent. As far as the extraction of -

the bottom quark mass is concerned this strategy is moti- i

vated by our intention to carry out a conservative analysis. F|G. 1. Graphical representation of the longitudinal and the
Unfortunately, we only perform the calculation up to NNLO transverse gluon exchange including the corresponding Feynman
in as andv which leads to a residual dependence on theyjes for the momentum exchange=(q°,q). The exchange of a
three scaleirac, Msofts @Nd pnag- I particular(as we will - jongitudinal gluon is instantaneous in time because its does not
demonstrate in Sec. \the dependence on the soft scalehave an energy dependence. As a consequence the longitudinal ex-
Msoft IS quite strong, clearly because it governs the perturbachange can be described by an instantaneous potential. The ex-
tive expansion of the correlators where convergence of thehange of a transverse gluon, on the other hand, is retarded in time
perturbation series can be expected to be worse than for themd, in general, cannot be described in terms of an instantaneous
short-distance constants. It is therefore necessary to fix potential.

certain window for each of the renormalization scales for

which the pertu.rbati\./e series for th_e cross section shall pe C. Instantaneous interactions and retardation effects
evaluated. At this point one can basically only rely on physi-

cal intuition, which tells that the renormalization scales 10 calculate the correlatord; and.A, we use methods
should be of the same order as the physical scales governifijiginally developed for QED bound state calculations in the
the particular physical situation. This means that the sofframework of NRQED[11] and transfer thenfwith the ap-
scale should be the order of the relative momentum obtne Propriate modifications to account for the non-Abelian ef-
systerfi ~M a5, and that the hard scale should be of orderfects to the problem of heavy-quark—heavy-antiquark pro-
M,~5 GeV. The factorization scale, on the other hand duction in the kinematic regime close to the threshold.

should cover(at least partly the soft and and hard regime. Because the Coulomb gauge is the standard gauge in which
Because there is in our opinion no unique way to make thi€dED bound state calculations are carried out we also use the

statement more quantitative, it is important to choose thé&oulomb gauge for the calculations in this work. The Cou-
corresponding windows “reasonably large.” In our case thelomb gauge separates the gluon propagator into a longitudi-

choices are as follows: nal and a transverse piedeee Fig. 1 The longitudinal
propagator does not have an energy dependence and there-
1.5 GeVspugor=3.5 GeV, fore represents an instantaneous interaction. As a conse-
guence, in configuration space representation a longitudinal
2.5 GeVs upa =10 GeV, gluon exchange can be written as an instantaneous potential
(which only depends on the spatial distancehrough the
2.5 GeVs up<=10 GeV. (17)  time derivative in the NRQCD Lagrangian the longitudinal

gluon exchange leads to the Coulomb potential which is the
We will show in Secs. V and VI that the dependence of thedominant(LO) interaction between the bottom quarks in the
theoretical momentsPy' on theses scales represents thenonrelativistic limit. Through the M2 couplings of the bot-
dominant source of the uncertainties in the extractioMgf  tom quarks to the chromoelectric field the longitudinal ex-
Thus, it is the choice given in EqEL7) which determines the  change also leads to the Darwin and spin-orbit potential,
size of the uncertainties. which contribute at the NNLO leve[For dimensional rea-
sons each inverse power ™, involves also one spatial
derivative in the NRQCD Lagrangia(l0). Thus each in-
®As explained later we treat all interactions in our NNLO analysisVerse power oMy, corresponds to one positive powerzof]
as instantaneous. This means that we ignore scales of the order Because these potentials are instantaneous their treatment is
the binding energy- M a2 and consider as relevant only scales of straightforward in the framework of a two-body Sctirmger
the order of the relative momentumM pa. equation.
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b = + + + + ..

.
FIG. 2. Graphical representation of the resummation of Cou-(a) (b)
lomb ladder diagrams to all orders. The quark-antiquark propaga- ] ) .
tion contains the nonrelativistic kinetic energy. The resummation is F!G- 3. Typical diagrams describing the exchange of transverse
carried out explicitly by calculating the Green function of the non-9luons(in Coulomb gauggin the background of the Coulomb ex-

relativistic Schrdinger equation with the Coulomb potential at the change of longitudinal gluons. Longitudinal lines witlraepresent
Born level, see Eq27). the summation of Coulomb ladder diagrams to all orders, see Fig. 2.

--P4-

(©

For the transverse gluon the situation is more subtle. Beonly those diagrams contribute at NNLO where the trans-
cause all couplings of the bottom quarks to the chromomagverse line does not cross any longitudinal line. The differ-
netic field are of order M, the exchange of a transverse ences between longitudinal and transverse gluons will only
gluon between two bottom quark lines is a NNLO effect. become manifest beyond the NNLO level. For the same rea-
However, in contrast to the Darwin and the spin-orbit inter-son any self-energy or crossed-ladder type diadgisee Figs.
action, the propagation of the transverse gluon energy has aib), 3(c) for typical examplekcan be safely neglected at the
energy dependence, i.e., it is an interaction with a temporaliNLO level. In fact, the situation is in complete analogy to
retardation. Physically this means that the transverse gluothe hydrogen atom or the positronium in QED, where it is
can travel alongside tHerair for some time periof6,17). well known that retardation effects lead to the “Lamb-shift”

In this time period théb pair is part of a higher order Fock Corrections which are suppressed j relative to the LO

bE—quon state which, in principle, cannot be treated in termsnonrelatwlstlc contributions[Of course, the crossed ex-

of a two-body Schrdinger equation. Fortunately, in our case change and self-energy type diagrams have to be taken into

account in the two-loop calculation of the cross section in
we can neglect the energy dependence of the transverse

gluon propagator completely. This can be easily understoo Il QCD needed to determine thi&( ) contributions to the

by considering a typical diagram describing the exchange 0§hort-distance coefficients. Those short-distance constants,

i | bet b pair in the back d of however, describe effects from high momenta of oriflgy
atransverse gCuor|1 ebweerr: palfr Im € dac lgrloun O which are not contained in the correlatdrs.
a continuous Coulomb exchange of longitudinal gluons, s€e, ¢,y the considerations above we can draw the following

e.g., Figs. 2and@. If bc_)th ends of the transverse gluon end conclusions regarding the calculation of the correlatdis
at bottom quarkisthe typical energy carried by the gluon can and A, at NNLO

only be of ordeM v?, the c.m. kinetic energy of the bottom

guarks. The typical three momentum of the gluon, on the (1) We can treat the problem dfb produ.ction close to
other hand, can either be of ordéi,v, the relative momen- threshold as a pure two-body problem. This means that the

. — NRQCD Lagrangian effectively reduces to a two-body
2

tum in thebb system, or ?Iso of ordem =, If the three Schralinger equation from which the correlators can be de-

momentum is of ordeM v <, the transverse gluon is essen-

. . . . termined.
tially real and needs, in addition to thé suppression com- (2) All interactions between the bottom and the antibot-

ifng from the cpuplinrgl)s to ;]he quarks, anotlher pha§i Sf\‘f"ct%m quark can be written as time independent, instantaneous
actor v to exist. Thus, the transverse gluons with this ,aniials. This means that once all the instantaneous poten-

energy-momentum configuration lead to effects suppressegh s are at hand only ladder diagrams as displayed in Fig. 7
by v3, which is beyond the NNLO leve[This is the reason have to be taken into account.

why we can neglect the real radiation of gluons in the defi- (3) \we can use the well known analytic solutions of the
nition of the total cross section in E¢p).] If the three mo- nonrelativistic Coulomb problem for positroniufi8—20
mentum of the transverse gluon is of ordlégv, on the other 5 e Rayleigh-Schulinger time-independent perturbation
hand, it is far off shell and we can neglect the small energypeqry (TIPT) to determine the corrections caused by all
compor_1ent in a first a_pprqmmaﬂoﬁt_should be emphas;zed higher order interactions and effects.
that this argument implies the hierarchiyl,as>Myas, However, there is one remark in order: although the ef-
which is conceivable for thdb system wherex;~0.3] fects of the transverse gluon exchange having a temporal
From that one can see that at NNLO the transverse gluoretardation are formally beyond the NNLO level, this is not a
exchange can, as with the longitudinal one, also be treated @soof that they are indeed smaller than the NNLO contribu-
an instantaneous interaction. This means that in Fg) 3 tions calculated in this work. It is in fact rather likely that the
retardation effects cannot be calculated at all using perturba-
tive methods because the characteristic scale of the coupling
At this point we only consider the case where there are no addigoyernlng the emission, absorption, or Intera%tlon of a gluon
tional gluon lines attached to the transvere gluon and the transveré’g‘h'Ch has energy and moment_um of ordépag WOUId be
gluon is exchangedirectly between bottom quark lines. The fol- Of the order of 0.5-1 GeV. This is already quite close to

lowing considerations do not apply for configurations where at leasthe typical hadronization scaldqcp. From this point of
one side of the transverse gluon ends at another gluon line. Sudtiew it seems that the NNLO analysis presented here cannot

configurations can lead to loop corrections to the Coulomb potentiabe improved any more, at least not with perturbative meth-
and are considered in Sec.lI D. ods. This problem might even cast doubts on the reliability
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of the NNLO corrections themselveglue to the possible
breakdown of our powercountingind underlines the neces- i t
sity that the preferred ranges for the renormalization scales,

Egs.(17), are chosen sufficiently large. We will ignore fur- ) |

ther implications of this problem for the calculations and ! !
analyses carried out in this worlSee also Sec. Il F.

FIG. 4. Vertex diagrams in Coulomb gauge responsible for the
D. Instantaneous potentials non-Abelian potentiaV/ya -

At the Born level all potentials relevant for the nonrela- h h is of ord h be taken i
tivistic cross section at NNLO can be obtained directly from'Wnere the energy is of or ‘M‘?v .[21]) ave to be taken into
the NROCD L ) deri | inalei bb account to calculate the radiative corrections properly. The
e NRQ agrangian consideringolor singlel calculation of these radiative corrections can be found in

—bb single gluont-channel exchange scattering diagrams.existing literature and we therefore just present the results.
In configuration space representation the Born level poten- At the one-loop leveland using the M3cheme for the

tials read [r=|r], Cp=4/3, Ca=3, T=1/2, a; strong coupling the corrections readye=0.57721566 -

= as(Hson) ] being the Euler-Mascheroni constant
Cra
0 = _ ZFFs - - [ a ~
Velln=-—— vg“(r):vam(r)(ﬁ)[2ﬂoln<ur>+a1],
.. Cragm 8. . - o=
Vge(r)= ;Azs 1+ 35, }6{3)(0 n=e" s, (19)
b where
Crag| - 1. .. .
+ =2 V24 (V)Y 11 4 31 20
2|V|bl’ r ﬁ():?CA_ §Tn|, a]_:?CA_ ng“ n|:4,
e 88— (&N(&) “
=SS5 (Sr
M2r3 |3 and
3CFaS-> 2 2 CACFa
+ L(S+Sy), 18 > s
2MZrS (Sp+S) (18) Via(r) M2 (21)

whereS, and S; are the bottom and antibottom quark spin V(! represents the one-loop corrections to the Coulomb po-
operators and is the angular momentum operat(yf:o) is tential «1/r and leads to NLO contributions in the cross
the well known Coulomb potential. It constitutes the LO in- section.V(Cl) has been calculated by Fischlg2] and Bil-
teraction and will(together with the nonrelativistic kinetic loire [23]. Vya, called non-Abelian potential for the rest of
energy be taken into account exactly. It arises from the ex-this work, arises from the nonanalytic behavior of the vertex
change of a longitudinal gluon through the time derivativediagrams depicted in Fig. 4:(122/|v|k2))1/2, wherek is the
coupling of the bottom quarks to the gluon fielr repre-  three momentum exchanged between the bottom and the an-
sents the Breit-Fermi potential which is known from highertibottom quark. Because the nonanalytic term causes the be-

order positronium calculations. It describes the Darwin andnavior ocl/lﬂ for the non-Abelian potential in momentum
spin-orbit interactions which are mediated by the Iongitudi-Space representatiody, is proportional to /2. We would

fike to point out that in Coulomb gauge such a nonanalytic

tions which are mediated by the transverse gluons in thgepavior does not exist for Abelian diagrams. We refer the
instantaneous approximation. Because of thﬂﬁLsuppreS— reader to Refs[24,25 for publications, where the non-
sionVge already leads to NNLO effects in the cross sectionppelian potential has been determined. Due to @éM,

and will be taken into account as a perturbation. For thgciory, . is a NNLO interaction and no further corrections
same reason only the radiative corrections to the Coulomk, it have to taken into account.

exchange of longitudinal gluons have to be taken into ac-  a; the two-loop level only the corrections to the Coulomb

count. We want to emphasize that these radiative correctiongyential have to be considered. They have been calculated
are caused by the massless degrees of freedom in the

NRQCD Lagrangian. We also emphasize that, because in thrgcently by Petef26] and readin the MSschemg
corresponding loops transverse gluon lines end at other a

massless lines, the considerations given in the preceding V(CZ)(F)zv(C‘))(F)(—S
paragraph cannot be applied in this case. Thus, in general, 4m
transverse gluons(or massless quarksin all energy-

momentum configurations(in particular configurations +2(2Boay+ B1)IN(ur) +a,

2 2
[Bé(‘l 0P () + -

; (22)
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T —0— —X— A; and A, are directly related to the zero-distance Green
: function of the Schrdinger equation.
: —O— —X— Step 2: Matching calculationThe short-distance constant
v - - S SHL C, is determined a@(ai) by matching expressiofl3) di-

FIG. 5. Symbols describing the interaction potentisl<,
VP, Vv Ve, andVy, and the kinetic energy correctiafH g,
=—V4am3.

where

rectly to the cross section calculated in full QCD at the two-
loop level and including terms up to NNLO in an expansion
in v in the (formal) limit a<v<1.

Step 3: Dispersion IntegratiorThe integration4) is car-
ried out.

For the rest of this section we briefly explain the strategies
and basic procedures for steps 1 and 2. The explicit calcula-
tions for steps 1-3 are presented in detail in Secs. Il A,

34 20 .
=22, Tn—4C.Tn, B, and I C, respec_yvely.
P1=3 Cam 3 Caln o Solution of the Schidinger equationThe nonrelativistic
A correlators A, and A4, are calculated by determining the
4343 w22 Green function of the Schdinger equati =\q?
= —— 2, °7 2 g quation E=.q
2=\ 16 TO™ T 7 T 34| Ca “2My)
(—1798+ 56@’ )C T > v:oove )¢ D
“\Ter Tt/ — o 5 TV V()
My ami = °° ¢
1 )C Tn+ 20T )2 (23
- m+|=Tn| . - - >
Ss)CrTnr gt + V(1) + Vee(1) +Vya(1) ]~ E

For later reference we assign the symbols in Fig. 5 to the
potentials given above. We also would like to note that we
do not have to consider any annihilation effects. The leadin
annihilation diagram is depicted in Fig. 6. Because the anni-

XG(r,r",E)=83(r—-r"), (24)

%vhereVBF is evaluated for the’S; configuration only. The

hilation process takes place at short distances, it produc
local four-fermion operators in the NRQCD Lagrangian,
which can be written as instantaneous potentials. The domi-
nant annihilation potential which comes from the three gluon

annihilation diagram has the forv ,,{(r)ec(ad/M2) 53)(r)
and would lead to effects suppressedudyin the cross sec-
tion.

E. Recipe for the calculation of largen moments at NNLO

Based on the issues discussed above the calculation of tIlEI

NNLO nonrelativistic cross sectioRlll, o and the theoreti-

cal momentsF’Lh in terms of the correlatorsl; and.A, and
the short-distance coefficient,,, proceeds in the following
three basic steps.

Step 1: Solution of the Schitimger equationThe Green

function of the NNLO Schrdinger equation is calculated
incorporating the potentials displayed above and includin
the NNLO corrections to the kinetic energy. The correlatorsI

380080

1.XX11]

FIG. 6. The dominant annihilation diagram relevant fob

glation between the correlatot; at NNLO and the Green
unction reads

A;=6N,[ lim G(r,r’,E)].

Irl,[r"|—0

(29

Equation (25) can be quickly derived from the facts that

G(r,r',E) describes the propagation of a bottom-quark—
antibottom-quark pair which is produced and annihilated at

relative distancesr| and |r’|, respectively, and that the
bottom-quark—antibottom-quark pair is produced and annihi-
ed through the electromagnetic current at zero distances.
Therefored; must be proportional to lifgy 7+ _oG(r,r',E).

The correct proportionality constant can then be determined
by considering production of a fre@.e., as=0) bottom-
guark—antibottom-quark pair in the nonrelativistic lirin

this case the Born cross section in full QCD can be easily
compared to the imaginary part of the Green function of the

Yree nonrelativistic Schitinger equation.The correlatotA4,

s determined fromA; via relation(16). We would like to
emphasize that the zero-distance Green function on the RHS
of Egs.(25) contains UV divergences which have to be regu-
larized. In the actual calculations carried out in Sec. Ill A we
impose the explicit short-distance cutaif,.. As mentioned
before, this is the reason why the correlators and the short-
distance constants depend explicitly on fttfactorization
scaleu,c. In this work we solve Eq(24) perturbatively by
starting from well known Green functio8{”) of the nonrel-

—bb scattering for a bottom-antibottom quark pair in a color sin- ativistic Coulomb probleni18—20

glet JPC=1"",
leads to a potentiaV,,{r)<a/M24s(r) and to contributions in the
cross section and the moments beyond the NNLO level.

33, configuration. Its dominant contribution

& . .. ..
—M—+V(C°)(r)—E Gu(r,r' E)=89(r—r") (26
b
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and by incorporating all the higher order terms using TIPT.sues have been discussed is Sec. | we concentrate only on the
Matching calculation After the nonrelativistic correlators technical aspects. The task is split into three parts which are
A; and A, are calculated the determination @; is  described in the following three subsections. In Sec. Il A the
achieved by considering théormal) limit as<v<1.Inthis  nonrelativistic correlatorst; and.4, are calculated and Sec.
limit fixed order multiloop perturbation theorfi.e., an ex- |11 B describes the calculation of the short-distance constant
pansion inas) as well as the nonrelativistic approximation C, . In Sec. 11l C the dispersion integrati¢d) is carried out

(i.e., a subsequent expansionuh are feasible. This means ang the final formulas for the theoretical moments are pre-
that multiloop QCD(with an expansion i after the loop  gented.

integrations have been carried paind multiloop NRQCD
must give the same results. In our case we use this fact to

determine the constaf@; up to terms of ordeng. For that A. Calculation of the nonrelativistic correlators
we expand the NNLO NRQCD expression for the cross sec-
tion (13) for small a up to terms of order? and demand
equality(i.e., match to the total cross section obtained at the
two-loop level in full QCD keeping terms up to NNLO in an
expansion irv. Because NRQCD is an effective field theory

of QCD (i.e., it has the same infrared behavior as full QCD . . .
for the limit v<1, C, contains only constant coefficients and determine the effects from all the higher order contribu-

(modulo logarithms of the ratiod /e and My / tna). tions through TIPT. The most general form of the Coulomb

All the singular terms=1/v,Inv are incorporated in the cor- Green function reads E[r], r'=[r|)
relators.A; and A,.

To calculate the nonrelativistic correlatads and.A, the
Green functionG of the Schrdinger equatior{24) has to be
determined. As explained before, we start with the Green
function G{?) of the nonrelativistic Schidinger equation
(26), called the “Coulomb Green function” from now on,

F. Comment on nonperturbative effects G(O)(F r E)=— My
e 47T (1+ip)I'(1—ip)

To conclude this section we would like to mention that
nowhere in this work nonperturbative effects in terms of phe-
nomenological constants like the gluon condensate xfldtfxds
(0|G,,,G**|0) [15] are taken into account. In Refg,6] it N
has been shown that the contribution of the most important
condensatg0|G,,,G*"|0) is at the per-mill level in the mo-
mentsP!" for 4<n=10. As we show in Sec. IV, this effect is
completely negligible compared to the theoretical uncertain-
ties coming from the large renormalization scale depen- 92 {

X[s(1-t)]""[t(s—1)] 7'

ts -
dences of the NNLO moment8™. The condensates are X tas mexp{lp(|r’|(l—t)
therefore irrelevant from the purely practical point of view.

Nevertheless, we even think that the inclusion of the con-
densates for the moments at the NNLO level would be con-
ceptually unjustified. For the gluon condensate this can be
seen from the fact that it provides a phenomenological pa-
rameterization of the average long-wavelength vacuum fluc-

tuations of the gluon field involving scales smaller than the (27)

relative three momentum of thib system{17]. Thus, for the

theoretical momentsP}{‘(4sns 10) (and also for heavy

enough quarkonia in geneyahe condensates describe retar-where

dationlike effectd6]. As explained before, we neglect retar-

dation effects because they formally contribute beyond the

NNLO level. We conclude that taking into account the con-

densates would only be sensible in a complete NNNLO p=Myp=+M,(E+ie), p
analysis. In this respect the condensate contributions might 2v
provide some estimates for the size of some NNNLO effects.

However, 't:: _the small size of the condensate'effects N Fh%ndl“ is the gamma function. The caser’ is obtained by
momentsP ' is compared to the large perturbative uncertain-, ) , ©) = =1

ties contained of the NNLO theoretical moments, it seem nt.erchangmgr. andr’. Gc(r.r’,E) represents the ana-
rather doubtful whether the condensates represent the domy{ic@l €xpression for the sum of ladder diagrams depicted in

nant contributions at the NNNLO level. '

+|F|(s—1)+|sF—tF’|)}], r'<r,

Crag

(28)

Fig. 2. We refer the reader interested in the derivation of
G to the classical papef48—20. The analytic form of the
Coulomb Green function shown in E(R7) has been taken
from Ref. [18]. Fortunately we do not need the Coulomb

In this section the determination of the theoretical mo-Green function in its most general form but only &swvave
mentsP" is presented in detail. Because all conceptual iscomponent

Ill. CALCULATION OF THE MOMENTS
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(@) (b) (C) { : i i
(d) I (e l ® ;{\ § W< g

)
FIG. 7. Graphical representation of the vacuum polarization lad- FIG. 8. QCD Feynman diagrams relevant for the calculation of
der diagrams needed to determine the nonrelativistic cross sectiafe cross section at the two-loop level. The calculation of these

-en-
®

and the largen moments at NNLO. diagrams is needed for the matching calculation which leads to the
determination of the short-distance coeffici€@f. Feynman dia-
G(CO)'S(r,r’,E) grams needed for the wave function renormalization are not dis-
played.
_1 )7 o . .
—Ef dQG(r,r'E) that in the expression between the brackets all constants ex-
cept the Euler-Mascheroni constapt are absorbed. The
2iMp same convention is also employed for the calculation of the
T 4al(1+ip)[(1—ip) higher order corrections to the Coulomb Green function

which are discussed below. The results for any other regu-
larization scheme with suppressed power divergeiisash

as the MSschemeg can be obtained by a redefinition of the
] factorization scale. Our apparently sloppy realization of the
Xexplip[r'(1-2t)+r(2s=1)]}, r'<r. (29  regularization procedure is possible because in Sec. Ill B we
L. . . . . , will match the expression for the NNLO cross section in
The casa <r" is again obtained by interchangingndr”.  NRQCD directly to the corresponding two-loop expression
Forr’=0 the form of the Coulomb Green function is par- i, ;) QCD. As a consequence additional constant terms in
ticularly simple: the brackets on the RHS of E¢31) do not affect the final
0) A0 result for the cross section at NNLO in NRQCD because
Ge (0r,E)=G:7(0r,E) they merely represent contributions which can be anyway
WP - +t\ir freely shifted between the nonrelativistic correlators and the
e|prf dteZ|prt( )

S i i
xfodtL dgs(1—t)]""[t(s—1)]""°

short-distance coefficients. For later reference we call

™ G)"*40,0E) “zero-distance Coulomb Green function.” A
Myp _ _ _ graphical representation o6{""®40,0E) in terms of
=—Iﬁe'prr(l—lp)U(l—Ip,2,—2lp|’) NRQCD Feynman diagrams is displayed in Figa)7 For
convenience we suppress the superscript reg from now in
Mg _ ) this work.
= 2 L(1=1p)Wipapo(—2ipr), (30 The Coulomb Green function contairsb bound state

poles at the energies vs,=2M,—CZ2a?M/4n?(n
whereU(a,b,z) is a confluent hypergeometric function and =1,2, ... »). These poles come from the digamma func-
W, .(2) a Whittaker functior{27,28]. It is an important fact tion in Eq.(31) and correspond to the nonrelativistic positro-
that G{?(0r,E) diverges for the limir —0 because it con- Nium state poles known from QE[29]. They are located
tains power ¢ 1/r) and logarithmic ¢Inr) divergence$16].  entirely belowthe threshold point/sy,=2My,. This can be
As explained in Sec. Il these ultraviolétV) divergences seen explicitly from the cross section in the nonrelativistic
are regularized by imposing the small distance cutaff,.  limit

The regularized form of Iimﬂch(O,F, E) reads

Q
(O)re M3[ [ Moo Rib=——" Im[4;]°
Gg g(0,0E)—E iv—Cgagl In| —i e +ve b
67N Q>
Crag —__ cxb Im[G(O)(O 0E)]
+ — L]
Pl 1-i % ] (31 M2 c
where the superscript reg indicates the cutoff regularization 24772Nch2 W, (0)[25(s—s,)
and ¥ (z)=dInI'(2/dz is the digamma function. For the My n n
regularization we use the convention where all power diver-
gencesx uy,. are freely dropped and only logarithmic diver- 3 Crasm

+®(E)§N (32

gencesxIn(u,c/My,) are kept. Further, we defingg,. such Cle exp(—Cragmiv)’
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where|¥,(0)|2=(M,Cras)®/87n® is the modulus squared sible but not presented here, because it is already in a form
of the LO nonrelativistic bound state wave functions for thesuitable for the dispersion integratiof) (see Sec. lll ¢ At
radial quantum number. The continuum contribution on the NNLO several contributions have to be considered. The cor-
RHS of Eq.(32) is sometimes called “Sommerfeld factor” rections from the two-loop contributions to the Coulomb po-
of “Fermi factor” in the literature. The resonance contribu- tential fo) [see Eq.(22)] are calculated in analogy to the
tions are described by the first term in the third line of Eq.NLO contributions using first order TIP[IFig. 7(c)]
(32). The corrections to the zero-distance Coulomb Green
function calculated below lead to higher order contributions [G2(0,0F)]2 0= _f d*rc@(oy,E)
to the bound state energy levels, the residues at the bound ¢ ¢ e
state poles and the continuum. We would like to stress that -
all th(fse contributions must be included in the dispersion XV(CZ)(r)G(CO)(r’O'E)' (34)
integration(4) to arrive at reliable results for the theoretical \ye a1s0 have to take into account the one-loop Coulomb
nances are not necessarily equivalent to the adfuaéso-
nanced5]. In particular for large radial excitations a direct 2 1 loop.__ 3> 3> ~(0 1), =
comparison would be more than suspicious. In the context of [GS(0.08)]; p_f d rlj d°r,Ge (01, BV (o)
the calculation of the moments they have to be included for L. R
i i . (0),S (1)

mathematical rather than physical reasdfge also the dis- XGg " (ry,r2,E)Ve(ra)
cussion in Sec. V.

Let us now come to the determination of the corrections ><G(c°>(r2,O,E). (39
to the zero-distance Coulomb Green function coming fromgecause the Coulomb potential is angular independent, only
the remaining terms in the Scliiager equation24). At the Swave components of the Coulomb Green function in
NLO only the one-loop contributions to the Coulomb poten-the center of expressia@5) are needed. Finally, we have to
tial, VY [see Eq.(19)], have to be considered. Using first determine the NNLO contributions to the zero-distance
order TIPT in configuration space representation the NLOGreen function coming from the kinetic energyH,in

. 0 N
corrections toG{")(0,0F) read =—V*%4M3, the Breit-Fermi potentiaVgg, and the non-
Abelian potentialVy, [see Figs. #®) and 1f)]. These cor-
GM(0,0E)=— f drcL0r,E)VI(NGLO(r,0E). rections are symbolized byG{?(0,0E)]K"*BFNA in the

(33) following. A method to determine them has been presented
in an earlier publicatioi7]. Some details about this method
Expression(33) is displayed graphically in Fig.(B). Further — are presented in Appendix A. The final result fb@(cz)
evaluation of the integration on the RHS of E§3) is pos- X (0,0E)]K"*BF*NA reads

_ M3 5
GL(0,0E)+[G((0,0F)]\nBFNA~_2 iv( 1+ —v2> —Cray(1+2v?)

4 8
C 1+ 15
Mol Fas| 1T gv +CFaSMﬁ 3C,
N ) E ! 20 127 2C:
xliv—Crall 'Mbv)+ fp 1 S ]2 (36)
lv— aql In| —1 —1 .
Fds Liac YE 20

Because[G{?)(0,0E)]K"*BF*NA aiso contains kinematic distance Coulomb Green function. Collecting all contribu-
corrections to the zero-distance Coulomb Green function, wéons the complete expression for the nonrelativistic
found it convenient to add the zero-distance Coulomb Greeforrelator.A; at NNLO reads

function (31). The first term on the RHS of E{36) repre- _ 0) 1 2 1loop
sents the zero-distance Coulomb Green function including A1=6N¢{G¢(0,0E)+G.(0,0E) +[G:"(0.0B) ]

the NNLO klnem{:\tlc corrections and .the second term the +[GP(0,0E)12"°°P+[G2)(0,0F) kN +BF+NAL  (37)
remaining corrections. It is an interesting fact that these re-

maining corrections can be written as the square of the zerdrhe calculation of the correlatad,, on the other hand, is
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trivial using the equation of motion for the Green function, ap
see Eq(16). BecauseA, is multiplied by an explicit factor Cl(Mb,Mhard,Mfac)zlﬁL(;
v?, Eq.(16), its form is particularly simple,

ctV

2
2
P (Mp , ards rad) + - - -

+ J—
3NMp( Mpv
A,=v? > | 1= CeagIn| i = (39)
bt w| 1 Cras 38) Due to renormalization group invariance only kﬁéag) co-
e 2v ' efficient of C,; depends on the hard scalg,, 4. We have

already anticipated that th@(«as) coefficient does not de-
pend on the factorization scajeq,.. For C,, on the other

) o ) hand, no higher order contributions are needed because the
The short-distance coefficien®; andC, are determined correlator.4, is already of NNLO

by matching the NNLO cross sectidd3) in NRQCD di-
rectly to the same cross section calculated in full Q@D
the limit ag<v<1) at the two-loop level and including
terms in the velocity expansion up to NNLO. It is convenient
to parametrize the higher order contributions@g in the  The expansion of the NNLO cross section in NRQCD,

B. Determination of the short-distance coefficients

form [an=as(mnard | R o, Eq.(13), keeping terms up to order?, reads
as<t 17 Crap[372 3c! 72 Cim? 3 _|cV 11 4v°MZ 31
thr  _ 2|12, = 3 Fehj o  =2=1 7 2 2) DFT 2|1 e A
RNNLO NCQb( 2U 161) 4 + 2 CF v+ 2 U +ah 81) + ZCF 2 +CA 24|n Mﬁard + 72

T 1I 42MZ 5 49C27? 3¢ o e 3c | M v Olad a1

+ n g nm—l—s 192 +§?— = F+§ A anaC v+ (CYS) . ( )

where we have s@i.n= unargecause in the limig<v <1 a distinction between soft and hard sdale., between the strong
coupling governing the Coulomb potential and the strong coupling governing the short-distance cpisstaetsvant. We
want to emphasize that the choipg,«= wnarq IS Mandatory because strong coupling renormalization in this work is always

carried out in the MScheme. The corresponding expression for the two-loop cross section calculated in full QCD reads

v<l 3 17 CFah 372 2
R oop aco = NeQp 50_1_6U3+O(U4) t— T_GU+702+O(03)

2{(:%772 ol oo 1, 4p2M2 31 oL 4v2M2 5)
+ah +_ F_ |:+ A __n—+_ + n| _n - A
8v 2 24 Mﬁard 72 6 Mﬁard 18

49CZm2 3 Cgf11 M2 3

+ —k+—| =Ca—2Tn/|In —Cg| Ce+ =Cpllnv|v{ +0O®? |, (42)
192 2 w2\ 2 Mﬁard 2

8The O(aﬁ) contributions from secondary radiation obgpair off a light quark-antiquark pair through gluon splitting are kinematically
suppressed and do not contribute at NNLO in the velocity expansion. The contributions to the total cross section from secondary radiation

of abb pair have been calculated analytically in R0].
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where
_C2139 +4|2 35 C.C 1/151 13 +8|2 179+CT4111 oot 11 43
K_F;Z_g?: 32~ 1g| = CaCr| 3l 36 S 3| tzine=— Fllgl =2~ Fnlﬁ-()
|
The Born and one-loop contributions in E42) are standard C./11 4 2
[31,32. The two-loop contributions are presented with the ¢{?= 72| x+ —'; —Cp— —Tm)lnTb
various combinations of the $B8) group theoretical factors 7| 3 3 Mhard
Cr=4/3,C,=3, andT=1/2. The terms proportional t62 M2
come from the QED-like, Abelian exchange of two gluons e (EC n EC )In—b _ (45)
and have been calculated analytically in H88]. The result FlgwF 274 quzac

has been confirmed numerically in RE34] and analytically

in Ref. [35,21]. The corresponding Feynman diagragis  The constant:(ll) is the O(«g) short-distance contributions
the covariant gaugeare displayed in Figs.(@-8(d). The ~ Wwhich is well known from the single photon annihilation
CACr terms correspond to the non-Abelian exchange of twgsontributions to the positronium hyperfine splittifgg] and
gluons, i.e., involving the triple gluon vertex, ghost fields from corrections to electromagnetic quarkonium de¢ags
and topologies with crossed gluon linfigs. 8b)—8(g)]. e want to mention again that in our analysis we tiegsq
These contributions have been determined in F&8]. The  &Nd i are independent and that both are defined in differ-
CeTn, contributions are from diagrams with a vacuum po_entTregularllzztlonh_scherg@s. . d Tk .
larization of massless quarkbkig. 8h)] and have been cal- thatoth((;aorgr;}grt? ditstlzn?:l:z iﬁg%?gevr%vv:nu d CI 3;& r?r?ilr?é dOUt
culated in Ref[36]. The contributions proportional 16T, 2

finally, correspond to the diagram where the vacuum polarabove are not sufficient to determine the vacuum polarization
i ation i ; function[Eq. (1)] in the threshold regime at NNLO, because
ization is from the bottom quark$ig. 8g)] and have been [Eq. (1)] 9

) , ; they have been determined via matching at the level of the
calculated in Refs[37,36. The virtual top quark contribu- o 5qq section only, i.e., at the level of the imaginary part of
tions are suppressed by a factd{/M)“~0.001 and are o yacuum polarization function. The expressions for the
neglected. ) o correlators  still  contain  overall UV divergences

The constants(l ) andc(1 ) defined in Eq(39) can now be <In(My /a0 in their real partd17,29, see, e.g., Eq:31).
easily determined by demanding equality of expressiéis  For the largen moments calculated in this work these ambi-
and (42). This constitutes the “direct matching” procedure gjities are irrelevant because the divergent contributions in
[7,16] and leads to the real parts do not contribute to the lanyenoments. The

relation between the nonrelativistic correlators and the

D vacuum polarization function at NNLO in the threshold re-

¢y '=—4Ce, (44) gime, including the proper short-distance contributions for
the real part, has the form

q2~>4Ml_2)
1
— % (q) —— Cq( , Ay (E, , ———Cy( , A,(E, . +- .-
3C|2 «\d 12M§ 1(Mhards Htac) A1(E, tsofts Htac) 9Mﬁ 2( Mhards Mac) A2(E, tsofts Mtac)
P (Mb)+h + (46)
—_ n —_— e,
Yoarm |2 Mfac z

The constantsh; and h, can be determined viadirect in the threshold regizme at NNI§O in the nonrelativistic ex-
matching to the one and two-loop vacuum polarization func{[?a”S'On allcsjohth@( taS)band ?(Tsz 3“‘};:1'_d'5ta”‘|3§ contflbu';h

L . . ions would have to be calculated. This would require the
tion in full QCD at threshold, i.e., fog?—4MZ. This work q

has been carried out in a previous publicati@6] and leads

to h;=2/972 and h,=1/47%(3—21/2;3) + % —2In2. For %In Refs. 35,21 c{? has been calculated Witfpg and s
the complete expression of the vacuum polarization functioniefined in the MSscheme.
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calculation of the three- and four-loop the vacuum polarizanow ready to carry out the dispersion integrati@. This
tion functions in full QCD in the threshold regime. This task task is quite cumbersome if the complete covariant form of
has not been accomplished y&t. the integration measurds/s"** is used. Fortunately the in-
tegration can be simplified because we are only interested in
NNLO accuracy in the nonrelativistic expansion n
=(E/M,)*2 Changing the integration variable to the energy
E=s—2M, and expanding up to NNLO in, where the
After the nonrelativistic correlatorsl; and A, and the combination E/M)n is considered of order 1, the resulting
short-distance constants; and C, are calculated we are integration measure reads

C. The dispersion integration

ds 1 dE p[ 2ns i 14 E )} B<Mo 1 dE p{ E ’1 E | E?
= —exp —(2n n —exp——ni|l-s+-+——
s (4M2)" My, 2M,, (4M2)" My, My 2My,  4am?2
E2 E* E*
2
+0(—2,—3n,—4n ) (47)
b Mp b
The dispersion integration for the theoretical momé?ﬂ%at NNLO then takes the form
pin__ 1 fw i p{ = } - E e Rinco(E) (48)
= —exp ———n - n ,
" (aM2)M ey M M, 2Mp  4m2 ) O

whereE;,q is the (negative binding energy of the lowest lying resonance. We would like to point out that expa(ipn

leads to an asymptotic series, which means that including more an more terms in the expansion can improve the approximation
only up to a certain point beyond which the series starts diverging. We have checked that for all valeespddyed in this

work the expansion is still well inside the converging regime. It should also be noted that for increasing vatute of
expansion provides better and better approximations only as long as the conHitjgiiNl,)n<<1 is satisfied. In our case,

where thebb system is treated as Coulombic, i.Ey,q= MbC§a§/4+ -- -, this condition is always satisfiedSee also the
discussion at the end of Sec. )Mntegration(48) is carried out most efficiently by deforming the path of integration into the
negative complex energy plane as shown in Fig. 9. Becaus&#shed line which closes the contour at infinity does not

contributé! and because we take large enough to be safely away from the bound state polesHy,s), we can rewrite
expression48) as

Pr _ZiQﬁwfwde p[ ; } 1 £ +—E2 C1A1(E) I C,A5(E)

=" —exp ———nr| 1— n -

n (4Mg)n+1 7y7ioch Mb 2Mb 4M§ 1 SME 22
A 1 (ridE £ 1 E.E Cody(—B)— —— Cpy(—E 49
~am2ret 2mi o My P M, L 2 a2 | 1(—E) e =B, (49)

where in the second line the change of variatties — E has been performed. The reader should note that due to analyticity
also the real part of the correlatos$; and A, is needed for the integration in the negative complex energy pfaine.
expression in the second line of E49) offers three advantages which make it much easier to calculate than expr@sion

10n Ref.[40] numerical approximations for the three loop vacuum polarization valid for all energies have been obtained based on the Pade
method. Unfortunately numerical approximations are of little use for a precise extractidﬁ(tkﬁe) short-distance constants due to the
presence of singular termsiny and Irfv in the real part of the three loop vacuum polarization function close to the threshold.

The statement is, strictly speaking, not true for those termislinE/2M,+ E2/4M ﬁn]RH,‘,QLO(E) which for largeE contain positive
powers ofE. Those terms, however, are not singular o0 and no resummation of them is necessary. It can be easily checked that also
for those terms integration meth@4dl9) gives the same results as the original expression in48).if the Laplace transforms given in Egs.
(53) and Appendix B are continued t0<0.

2Using the Laplace transforms given below the unknown short-distance contributions in the real parts of the correlators turn out to be
irrelevant, as they have to.
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-— -] B nances and the continuum. Both contributions are in a con-
~ - E venient way calculated at the same time.
S
~ ~ (3) The expression in the second line of E49) is noth-
\ ing else than an inverse Laplace transform for which a vast
\ number of tables exist in literatulsee, e.g., Ref28]). We
£ b
< want to stress that the advantages described above are merely
/ technical in nature and just simplify the calculation. The re-
Y P 7 sults of the integration are not affected.
- The final result for the theoretical moments including all
-7 contributions up to NNLO in the nonrelativistic expansion
s can be cast into the form
FIG. 9. Path of integration to calculate expressid8) for the 2
. - ) 3NQ2\7m
theoretical moment®,'. The dashed line closes the contour at Pth:—{cl(ﬂh o Mtad) € n 1 softs tac) + Ca0n 2t
infinity and does not contribute to the integration. The consjaist n 4(4M§)”n3’2 are Ftac/ & n, LA FEsort 1a n.2f

chosen large enough to be safely away from the bound state poles (50
which are indicated by the gray dots on the negative energy axis.

The thick gray line on the positive energy axis represents the conwhere ¢, ; comes from the integration of the correlatdg
tinuum. (including LO, NLO and NNLO contributions in the nonrel-
ativistic expansionand ¢, , originates from the integration
Oof A, which is of NNLO only. To illustrate the technical
aspects of the integratidd9) let us first present some of the
Setails of the calculation of the LO contributiongg ;. The
LO contributions tog, , originate from the zero-distance
Coulomb Green function in E431). The corresponding in-
(2) We do not have to integrate separately over the resotegration takes the form

(1) Because the integration path is far away from boun
state energies, the integrand can be expandedinThis
avoids that we have to integrate over a complicated speci
function such as the digamma functidn

Lo 8m32n32 1 [y+i=dE E GO(0.0-E
[in] —M—gﬁ y—iocM_beX M—bl’] ¢ ( Y, )
1 (riedE [ E - - “ (Crag\P?
_ 32_~ i . _T_ s
2mn 5 y_inbeXr{Mbn] v CFaSInanCFaSpE2 {o 2; , (51)
T
where * Zp
O=1+2{mep+4 P57, (54
v="\/— 52
T (52

where

and ¢, is the Riemann zeta function for the argumemt

Because|Crag/2v|<1 along the integration path we have & Crasyn (55
expanded the digamma function @&®(0,0,—E) for small 2

a. The resulting expression is now immediately ready for

the application of inverse Laplace transforms. Here, we onlfExpression54) can be rewritten in the form

need the relations

TABLE I. Comparison of the series ¢, 1] L0 with the sum of

1 (y+ie]l " tv1 Born, one-, and two-loop contributions in the series on the RHS of
— —eMdx= —, in thi
2 S T (») Eq. (54) for the values ofp employed in this work.
b 05 0.6 0.7 0.8 0.9 1.0
1 [r+i=lnx v-1 s
— eldx= [¥(v)—Int]. (53)  [end] 6.38 9.44 1407 21.16 3210 49.12
2 y=ie XV I'(v) first three 442 550 6.71 8.05 952 11.12

terms in Eq.(54)

The result forf 0, 1]*© reads
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272
[en ] 0=1+2Vmep+ —— ¢

40z, (5] e 3]

1+ erf

ol

(56)

where erf is the error function defined as ejf(

PHYSICAL REVIEW D 59 014039

fact is illustrated in Table | where the sum of the first three
terms (corresponding to Born, one- and two-loop contribu-
tiong) in the series(54) is compared to the total sum for
values of¢ between 0.5 and 1.0, which represent the range
of ¢ values used in this work. Table | shows that the resum-
mation of higher orders i is essential to arrive at sensible
results in particular for larger values of This feature re-
mains true for all contributions tg,; and ¢, , and shows
that a naive fixed ordefmultiloop) calculation for the mo-

=2m) [ Zexp(—td)dt. Expression(56) agrees with the re- ments is unreliable for large values waf

sult obtained by Voloshif6]. The infinite series defined in

Along the lines of the calculation dfe,, 1]"° it is now

Eg. (54) is absolute convergent with an infinite radius of straightforward to determing,, and the NLO and NNLO

convergence. For the values wfemployed in this work (4

contributions tog,, ;. The contributions t@, ; coming from

<n=10), however, convergence is somewhat slow and &he one- and two-loop corrections to the Coulomb potential,
large number of terms have to be taken into account. Thi¥’(Y andV®, have the form

8mn32 1 [y+i=dE

Mg 2mi y—ie Mp

MleyE/Z\/ﬁ
oM,

,UvzeYE/Z\/ﬁ) N m? N
oM,

NLO+NNLO _

[On1lc

o

:4\/7_751¢[%In( +p§=:1 &P

+4\/;52¢[%an<

2

+8G6§¢220 ¢”
2

~ 2 n
+wgcsinln2(Mb,n,— yn ”

Ms'Mbmﬁ'p

where

a‘s as 2
61= ( E) 2Bg+2 E) (2Boa1+ B1),

ag\? a
52=(ﬁ) 43, 53=(ﬁ)2ﬂo,

2 2

1

B dg . ag T 2+
M1 Msor€X 5_1 in a; P ?,Bo a|l|(,
= = a 58
M2= Msofty  M3= MgofEX 25, ) (58
and
| =| am 1‘[’ P 59
cln(m,n,a,p)=In ﬁ 55 (59

o

16 ' =

Jn

~
weesin My ,n, —,——,
P r( O s My P

E - - -
—exp{M_bn}{ng(o,o,_ E)+[GP (00~ B) 1 *P+[GP(0.0-E) I
W1+WOC|n<|\/|b n 2 p”

p p i) ,/.L]_’

¢p{wz—2wlcln( My ,n,i,p) —WOC|n2( My ,n, ip”
1 P P M2 P M2

- 2 n
+wrljcsinlr<Mb,n,— )

ps Mo P

(57)

_ am| 1 p) S| ,(p)
cln2(m,n,a,p)=|In ﬁ +§‘If > —Z\I’ 5
(60)
) B 3 ptl n
csinm,n,a,b,p)= oF; E,T,—(me)z ,
(61

csinlnm,n,a,b,p)

| (am)Jrlq, p+1) c 3 p+1 n

= n— Y A AT A T

N 2 22 2 (2bm)?
. 3 pt1l n 62

_d_pozz’T'_(Zb—m)z' (62
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TABLE II. The theoretical moment@ﬁ‘ for n=4,6,8,10,20 and fixe@isoz=2.5 GeV andunad™ ttac
=5 GeV for various values oM, and as(M,). The two-loop running for the strong coupling has been

employed.
Moment M, /[GeV] as(M,)
4.6 4.8 5.0 5.2 0.10 0.11 0.12 0.13
P 1078 GeVv ?] 0.51 0.37 0.27 0.20 0.19 0.27 0.41 0.74
PI1071? Gev 7 0.67 0.41 0.25 0.16 0.17 0.26 0.46 0.97
PIT1071¢ Gev 19] 0.95 0.49 0.26 0.14 0.18 0.29 0.57 1.37
P10 Gev 2 1.42 061 027 013 019 034 073 1.99
sz,[lo*“o GeV 4] 12.96 2.37 0.47 0.10 0.42 1.00 3.07 13.93
ay(M,)=0.118 Mp=4.8 GeV
Mso=2.5 GeV, pard™ prac=5 GeV
csinlngdm,n,a,b,p) derivative of the digamma function angF, is a generalized
hypergeometric functiof28]. The constants/y-? andw) "
[ In( am 1 E are given in Appendix C. For the calculatlon of expression
Jn 2 2 (57) the table of inverse Laplace transforms given in Appen-
dix B has been used extensively. The term proportiona} to
1 p+ 1 3 ptl n in Eq. (57) contains the NLO contributions coming fro
- Z‘I’ T T (2bm)?2 and the NNLO contributions coming from the termd/r
and = In(userelr)/r in Vf) in first order TIPT. The term
proportional tod, contains the remaining NNLO corrections
-2 In(ﬁ) Ly(Prt)|d 3 E coming from the termIn?(usredr)/r in V2. The expres-
Jn 2712 dp 2 sion proportional tad;, finally, arises from the second order
5 interaction in TIPT oV{". The NNLO contributions t@, ;
__n +d_ § E __n (63) originating from the kinetic energy corrections, the Breit-
(2bm)2)  dp? 22" 2 " (2pm)?) Fermi potential, the non-Abelian potentfaee Eq.(36) for

The coefficients of the beta functioB, ; and the constants
a,  are given in Eqs(20) and(23). The function¥’ is the

the corresponding corrections to the zero-distance Green
function] and the kinematic correction factdtl +E/2M,
+ (E?/4M2)n] from Eq. (48) read

b [,, B-P@E+5p)] 8 Ye
LO NNLO 2] _ =
[Qn,]J +[Qn l]k|n+BF+NA 1+ +2\/—¢ 1+ +4\/—2 d) I‘[ p 1)/2][1+ 8n 3n 1 2
p_
“In2yn) |+ 2 me E +In\/_ 2(2 . FT(p= 1)/2][ [«P( 5 ) 2Inyn +gp+1]
- £l 1 1 M2
+2 pra-1____ °P°4 i _ Lol a2 s C2+ - CC )I — | 64
\/;p,qEZZ(ﬁ F[(p+q_2)/2] [Qn,l] as 3 F 2 AvF anzaC ( )
where, for convenience, also the LO result from Exfl) has 1 )
been added. The complete expressiondgy has the form QHYZZE —-2- 5\/;¢+4\/;
2na=[@n1l 0+ [n b0 N0+ [0 TN Dr na - LS 2P G 66
65 25 te-vm

From expression(50) for the theoretical moments at

Finally, the result forg,, coming from the integration of NNLO one can easily recover the moments at NLO by set-

A,, Eq.(38), reads

ting
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TABLE lll. The theoretical momentsPLh for n=4,6,8,10,20 and fixedxs(M,)=0.118 and My
=4.8 GeV for various choices of the renormalization scalgs, hard» @Ndutac. The two-loop running
for the strong coupling has been employed.

Moment Msort/[GeV] Mhara/[GEV] Miac/[GeV]
1.5 25 3.5 25 50 10.0 25 50 10.0
P 1078 GeVv ?] 094 0.37 0.27 031 037 043 0.45 037 025
P 10712 Gev 7 1.16 041 0.28 0.34 041 047 051 041 027
Pg‘[lof16 GeV 1] 153 049 0.33 0.41 0.49 0.56 0.62 049 0.32
PM10°% Gev 2] 210 061 0.39 051 0.61 0.70 079 0.61 0.39
PW[10°%° Gev %]  11.89 2.37 1.28 198 237 272 3.17 237 147
Hhai=5 GeV Hsoi=2.5 GeV Hsoi=2.5 GeV
Hiac=5 GeV Miac=5 GeV Mhar=o GeV
ap ag ments itself contains a mechanism which prevents an arbi-
Ci=1+ ( —lcf?, C,=0, &= (—) 2pBo, trarily precise determination ofl, anda for large values of
T 4 b s
n. In Table Ill the theoretical momentsP™, n
a, =4,6,8,10,20, are displayed for different choices for
6,=063=0, MlzﬂsoﬂeXF(Z_ﬁo ’ (67) Msofts  Mhards and uge and for ag(M;)=0.118 andM,,

=4.8 GeV. It is obvious that the dependence of the mo-
ments on the renormalization scales, and in particular on the

and by ignoring the correctio NNLO . na- The result-
v 19 g 120 1lkin 8 oSoft scale, is becoming increasingly strong for larger values

ing expression for the NLO moments is identical to the on

obtained by Voloshiri2]. of n. As an example, the momeR&y(P) can change by a
factor of 10(5) if the soft scale is varied between 1.5 and 3.5
IV. SOME COMMENTS ON THE MOMENTS GeV. These huge scale dependences are mainly caused by

the large NNLO contributions to the largemoments com-
In this section we will spend some time discussing soméng from the two-loop corrections to the Coulomb potential

interesting properties of the theoretical momeRfS which v | the second iteration of one-loop corrections to the Cou-
have been calculated in Sec. lll. We will address three isiomp potential V(" and the non-Abelian potentiafys .

sues:(i) the relation between the strong dependence of the ing the fitting procedure, when all renormalization scales

moments oMy, anda and the depe.z.ndences of the MOmMeNts, e scanned through the rangdg), the large scale depen-

on the scalegsor, Mnara: ANdpec, (i) the properties of the o, ijeg effectively compensate the strong dependence of the

resonance and continuum contributions, &iiid the quality moments oM, and a. In Sec. VIA it is shown that this

L ) s .

of }?ies r;ozaifgxlgr:gtixfp;ﬁ;n& the moments that they de._—;\ffects mostly the extraction @i rendering the sum rule, at

pend very strongly on the bottom quark mads and the least at the present stage, a rather powerless tool as far as
precision determinations of the strong coupling are con-

strong couplinga. This is illustrated in Table Il where the i s
momentsP" are displayed fon=4,6,8,10,20 and for vari- cerned. We want to stress that this compensation represents a
oUS valuesn ofM, and ay(M,) whilé t,he,renormalization very delicate balance which, if at all, can only be trusted if
scales are fixed to MS :ZZ 5 GeV and =g is not chosen too large. We believe that this balance is still
_5 GeV. The dependsef)::ce oM, is powerTiircé_ (Ff,?ﬁ under control for the values af used in this work (4n
NM*Zn) for dimensional reasonisee definition(3)]. Thne =<10), although no proof for this assumption can be given.

b However, it is certain that for even larger valuesrothe

dependence o is exponentially{see, e.g., Eq(56)] and . 2
comes from the resummations of the ladder diagrams corfXtracted values di, andas might contain sizable system-

taining the exchange of longitudinal Coulomb gluons. At thisatiC €rrors. _

point one might conclude that fitting the theoretical moments e also would like to make one comment on the fact that
to the experimental ones would allow for an extremely prethe theoretical moments contain contributions from below
cise extraction oM, and ag, in particular ifn is chosen (E<0) and above£>0) the threshold point. As shown in
very large. Unfortunately this conclusion is wrong. It is Ed. (32), the former contributions come from the resonance
wrong from the conceptual point of view because for in-poles whereas the latter arise from the continuum. To dem-
creasingn the effective smearing rangeE in the integral4) ~ onstrate the size of the resonance and the continuum contri-
becomes smaller and smaller, which makes the perturbativieutions let us examine the LO contribution ¢g ; with re-
calculations for the moments become less trustwofil}. spect to this aspect. The contributions['@n’ﬂLO from E

In Sec. Il we have used this argument to determine an uppet0 andE>0 can be calculated separately from E48)
bound on the allowed values am However, besides the using the LO nonrelativistic expression for the cross section
conceptual arguments, the perturbative series for the mdrom Eq.(32) (¢=Cras\/n/2)
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TABLE IV. The resonance E<0) and continuum E>0) contributions to the functiofg, ,], o for
0.0s¢=<1.0.

¢ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

[0n]2, 000 002 014 050 125 265 505 901 1542 2566 42.00
[0n1]%, 100 141 192 248 309 373 439 506 574 643 7.3

b\2 quark—heavy-antiquark production cross section in lepton
—) ] (68) pair collisions are produced by Feynman diagrams contain-
P ing three and more loops. For the three loop case the reader
9r2 can easily convince himself about this fact by expand?ing Eq.
Lo _ T 2 (31 for small @5 and taking the term proportional teg,
=142 +— s s
[@nalezo Vo 3 ¢ —(M216m)[C2adss/(E+ie)]. At this point it is essential
to carefully take into account the piece because it tells us
3 b2 & that the imaginary part of the three loop vacuum polarization
exp{(—) H—1+erf(—”.

*© 3
(ente-8vrS, |2 e
p=1 1P

has a delta function located at the threshold point. It is this

delta function which leads to th®(a?) term in Eq.(54) if

integration method48) is used. The mechanism how multi-
(69 loop perturbation theory produces all terms with higher pow-

ers ofag in Eq. (54) is similar!®

Finally, we also would like to address the question how
In Table IV expression$68) and (69) are evaluated for well the nonrelativistidand asymptoticexpansion at NNLO

0.0=< ¢=<1.0. For¢p=0.5 resonance and continuum contribu- for the cross sectioR[Eq. (5)] and the use of the integration
tions are approximately equal in size, whereas for larger valmeasure on the RHS of E417) in the dispersion integrd#)
ues of ¢ the resonance contributions dominate. This showsan approximate a complete covariant calculation of the
explicitly that for large values ofi (wheren>4 can already large n moments, where all mass and energy dependences
considered as largethe resonance effects cannot be ne-would be accounted for exactly. Strictly speaking, this ques-
glected. In particular, any sum rule analysis which is basedion cannot be answered entirely because a complete covari-
on the largen moments and ignores the resonance contribuant calculation of the moments, E@), for large values of
tions will lead to a bottom quark mass which is too low. is certainly an impossible tasif it were possible, we would
From Eqgs.(68) and(69) it is also conspicuous that there are not use the nonrelativistic expansion and NRQCD in the first
no resonance contributions proportional te with n place) However, a partial answer can be given by comparing
=0,1,2. This originates from the fact that the modulusthe terms proportional teg with n=0,1,2 inP}]h, Eq. (50),
squared of the Coulomb bound states wave functions at th® the corresponding contributions calculated in full QCD.
origin contains the third power of the strong couplirege  For simplicity we only present a comparison of the Born and
Eq. (32)]. It also indicates that in the framework of conven- one-loop contributions in the following. The two-loop con-
tional multiloop perturbation theor.e., for an expansion in tributions lead to the same conclusions. The Born and the
the strong couplingbound state contributions to the heavy- one-loop contributions fronlfP}]h read

S

-1 oO(1)
3NQoT |l 7
2 n =1-3 (70)
4(4Mp)"n%2

Born —
An,NFlQCD= [

1 9 71
tanl (71)

1 loop —
An,NRQCD_

2 -1 O(ag)
3N0Q2b\/; /CFaS) PE.lh :WS/Z\/H( 1+ i) _4
4(4M2)n¥2 3n

The complete covariant versions of expressioi® and(71) in full QCD can be determined from the well known Born and
one-loop formulas for the cross secti#il,37,

13The fact that we were able to use the Coulomb Green function expandednnEq. (49) has in fact already shown that each power of
ag in Egs.(68) and(69) corresponds to a Feynman diagram with a certain number of loops.
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TABLE V. The Born and one-loop contributions to the theoretical moments calculated in the nonrelativ-
istic expansiofNRQCD) at NNLO and in full QCD forn=1, .. .,10.

n 1 2 3 4 5 6 7 8 9 10
AR koco 013 056 071 078 083 085 0.88 0.89 0.90 0.91
AE%”CD 0.60 0.73 0.79 0.83 0.86 0.88 0.89 0.91 0.91 0.92
AL o 078 425 629 7.87 921 1041 1149 1250 1344 1433
A} SE, 228 425 591 736 865 984 1092 11.94 1290 1381
N.Q2
RE™(q?) =—5 = B(3~ B2),
Cras)(3B(5-38°
R1'°°"(q2)=NcQﬁ( ;S)( d 8 B)—B(3—ﬁ2)[2In(l—p)+ln(1+p)]
(1—13)(33—39,6’—17132+7/5’3)I (3-85(1+ %
- 16 np 2
X{2 Liz(p)+Liz(p?) +Inp[2 In(1—p)+In(1+p)]}], (72)

where B=(1-4Mp/q?)¥* and p=(1-B)/(1+p) and Li, fit the experimental momen®:*to the theoretical oneB".

is the dilogarithm, and the covariant form of the dispersionThe experimental moments are determined using the avail-
relation for the moments, Eq3), able data on théf massesMy,s and electronic partial
widths I'y(,g=I[Y(nS—e"e"] for n=1,...,6. For a

3N.Q%\m 1o ¢ o :
Born _ c<bVT S RBom 73 compilation of all experimental numbers see Table VI. The
n,QCh™ 2\n3/2 2an+1 (s), (73 f la for th ' I d

4(4Mp)"n aM;S ormula for the experimental moments reads

2 -1 6 o
1iop _| 3NeQEVT CF“S) j 95 Ruong) L f 8 s, (79
n,QCD 4(4M§)nn3/2\ T 4Mt2)sn+1 ) Qem k=1 M§g+1 \§BE Sn+1
(74)

) ) _ The first term on the RHS of Eq75) is obtained by using
Expressiong73) and (74) can be easily calculated numeri- the nparrow width approximation for all the known reso-

cally. In Table VAE,OI\rJrF]QQCD' AE,O(SnCDv A%,Iﬁ%%co! andA%,'%%pD nances

are presented fon=1, . ..,10. The difference for the Born

(one-loop contributions amounts to 6%/ %) for n=4 and T >

quickly decreases for larger valuesrofThus, for the values RredS)==5 nZl I'sM,s6(s—M ﬁs). (76)
2 e

of n employed in this work the asymptotic expansion in the em

velocity and, in particular, the use of NRQCD, lead to a_

sufficiently good approximation to the exact covariant resultsem is the electromagnetic running coupling at the scale 10
for the cases where a comparison can be carried Atthis ~ GeV (see Table VI which divides out the effects of the
point one has to compare the quality of the approximation td®hotonic vacuum polarization contained in the electromag-
the large scale variations of the moments discussed at tHeetic decay width The second term describes the contribu-
beginning of this sectioh.This strengthens our confidence tion from the continuum above thBB threshold. We ap-
that our method to calculate the theoretical moments is sufproximate the continuum cross section by a constant with a
ficient at the level of the remaining theoretical uncertainties50% error

In particular, we cannot confirm the claims in RE3] that

the nonrelativistic expansion would behave badly and would leonfS)=rc(1£0.5). (77)
represent a good approximation only for-100.

V. EXPERIMENTAL MOMENTS AND THE FITTING . .
*To be more accurate, the electromagnetic coupling should be

PROCEDURE o .

OCEDU evaluated for each resonance individually at the corresponding reso-

In this section we will describe how the moments arenance mass. The resulting differences, however, are smaller then
calculated from experimental data and present our method tihe assumed error iar, itself and therefore neglected.
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This simplifies the treatment of experimental errors in theperimentgmostly CLEQ where the widths have been deter-
continuum regime significantly but also represents a reasomined. Unfortunately an analysis of these correlations cannot
ably good approximation because for4 the continuum is  be found in the corresponding publicatiotsee Ref[42]).
already sufficiently suppressed that a more detailed descriWe therefore assume that the correlations between two
tion of it is not necessary. During the fitting procedure wewidths can be written as

vary the constant, between 0.5 and 1.5 which certainly

covers all the experimental uncertainti€e fact, th?s pre- 1o) ) acorgrﬁggrﬁny;, (79
scription renders the resonanceS, 4S, and 65, which lie
above theBB threshold practically irrelevarit. where I, is the systematic error in the electronic width

For the fit we use the standard least squares method d%s as given in Table VI anda,, is a parameter which
described in Ref[42]. The x? function which has to be allows us to switch the correlation on and off to check its
minimized reads impact on the extraction o1, and a5. During the fitting
procedurea.,, is varied between zermo correlation and 1
(complete positive correlation of all systematic erjofSol-
lecting all the guantities for which we take experimental er-

x2<Mb,aS>={ % } (PR—=PF)(S™ Ham(Pm—Pa).
ng,am
(78) rors into account into the vector

{n} represents the set afs for which the fit shall be carried

out andS™! is the inverse covariance matrix describing the
experimental errors and the correlation between the experi-
mental moments. To construct the covariance matrix we use
the errors in the electronic decay widthishere statistical
and systematic errors are added quadratigaliythe electro-

magnetic couplingren, (see Table V) and the error in the

yi:{F181F281F351r45!F551FGS!Eem!rC0n}1
i=1,....8, (80)

and using the standard error propagation form(ga®, e.g.,
Ref.[42]) the covariance matrix reads

continuum cross section, E@77), which we also treat as 8 ex ex
_ _ f aPx Py
experimental. The tiny errors in tié masses are neglected. Shm= — 1V, (81)
At this point it is important to note that the errors in the =1 il Yl
electronic widths are certainly not uncorrelated due to com-
mon sources of systematic errors in thée~ collider ex-  where
|
(0T19%  oT1s0Tps -+ 1501 6s
5F235F13 (5F23)2 te 5F135F65 0 0
V” _ : : H : 82
17| GTeedlrs oTesdlos - (T2 O O (®2
0 0 0 (Saem? O
0 0 0 0 (8r¢)?

|§, indicates that the functions are evaluated at the correexperimental and the theoretical ones. In this work this is
sponding central values. realized by scanning all scales over the ranges given in Egs.
The fitting procedure is complicated by the fact that the(17). We will carry out two kind of fits. First, we fit foM,,
theoretical uncertaintieg€oming from the dependence of the and a5 simultaneously without taking into account any con-
theoretical moments on the renormalization scalegy, straints onasg, i.e., ignoring all existing determinations of
Mhards @Nd usd) are much larger than the experimental er-the strong couplingSec. VI A), and, second, we fit foM,
rors, which are dominated by the errorsliRg, I'»g, and  assuming thateg is a known parameter i.e., taking into ac-
I'5s. Further, while it is reasonable to assume that the errorsount a constraint o (Sec. VI B).
in the experimental data can be treated as Gaussian, this is To fit for M, and a5 simultaneously we employ a strategy
certainly not the case for the ‘“uncertaintiestor better closely related to the one suggested by Bufd3] and
“freedom”) in the choices of the renormalization scales foradopted by the BaBar collaboratip44] as a method to ex-
which just a “reasonable” window can be given. It would tract Cabibbo-Kobayashi-Maskawa matrix elements from
therefore be inconsistent to include the theoretical uncertainvariousB decays. Our strategy consists of the following two
ties into the covariance matri® Nevertheless, it is impor- steps.
tant to have some means to combine both types of errors, the (a) We first choose the range over which the renormaliza-
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TABLE VI. The experimental numbers for th¥ masses and electronic decay widths used for the
calculation of the experimental momer®*. For the widths the first error is statistical and the second
systematic. The errors fof ;g andY ,g are taken from Ref.41]. All the other errors are estimated from the

numbers presented in R¢#2]. The errors in thé& masses and thB B threshold (/s)sg are neglected.

ns 1S 2S 3s
Mas/[GeV] 9.460 10.023 10.355
T,s/[keV] 1.32+0.04+0.03 0.52-0.03+0.01 0.48-0.03+0.03
ns 4s 5S 6S
M,s/[GeV] 10.58 10.87 11.02
T,s/[keV] 0.25+0.03+0.01 0.31-0.05+0.07 0.13-0.03+ 0.03

a,t=a. (10 GeV)=131.8(1+0.005), (/s)sg=2x5.279 GeV

tion scalesuso, narg» aNd wise have to be scanned indi- For the fit for M, where a is assumed to be a known
vidually. For convenience we also count the constantthe  parameter we treat, as we treat the theoretical parameters
correlation parametea., and the various sets af‘s for Mesofts M hards Miac, T ¢ »8cor» @nd{n}, i.e., we also scan over the
which the fits shall be carried out as theoretical parametergiiven range ofag. The fit for My, is then carried out in the
The individual ranges employed in this work are as follows:same way as for the unconstrained fit described before. The
only difference is that in this case the 95% confidence level
1.5 GeV <pusof<3.5 GeV, “contour” for each model is determined by the equation

2.5 GeV <pup,<10 GeV x*(My) = x2;,+4 because this method does represent only a
' hard™= ’ one parameter fit. Some more remarks to this method can be
2.5 GeV < <10 GeV, found in Sec. VIB.
0.5sr.=<15, O0<a.=1. (83

) ) VI. NUMERICAL RESULTS AND DISCUSSION
The sets of’s for which we perform the fits are

In this section we present the numerical results for the
{n}={4,5,6,%,{7,8,9,10,{4,6,8,10. (84)  bottom quark pole masil, gained from fitting the theoret-
ical moments at NNLO calculated in Sec. lll to the experi-
?ﬁental moments obtained from experimental data. In Sec.
VIA we discuss the result iM,, and «, are fitted simulta-
neously (“unconstrained fit) and in Section VIB we

M={ tesorts Mnards btacs ¢ »@cor NI (85)  bresent the result foM, if a5 is taken as an input‘con-
strained fit").

called a “model,” we construct thg? function as described

The scanning over the ranges and sets given above is carri
out by using a Monte Carlo generator.
(b) Then, for each set of theoretical parameters

before and determine the 95% confidence lgL.) con- as(My)

tour in the My-as plane by calculating the minimum 190 0% 010 0.11 0.12 013
2 2 . 2 2 . AURRRAN LA AL IJLLELE ILALAL L BRI B SR -

X, Xmin,» @nd drawing the contouy“(My, as) = Xmint 6- i

The external envelope of the contours obtained for all mod- 185 _ 1 sas

els generated by the scan represents the “overall 95% C.L. Tt ‘

contour,” which we will refer to as the “allowed range for 5 C 1

M, and as.” It should be mentioned that we do not impose S 480 - 7 480

a x2-cut which would eliminate models for which the prob- = i g ; ]

ability of xmi, would be smaller than 5%. We will come a5 I 475

back to this point in Sec. VI. : ]

We would like to emphasize that the allowed region for Py N R R

. . . ————J 4.70
M, and as obtained by the procedure described above 0.15 0.20 0.25 0.30 0.35

should not be understood in any statistical sense. In fact, it is os(2.5 Gev)

quite difficult to ascribe any accurately defined meaning to  FiG. 10. Result for the allowed region in ti,-a, plane for

the allowed region at all without reference to the methodihe unconstrained fit based on the theoretical moments at NNLO.
how it has been obtained. This is a consequence of the faghe gray shaded region represents the allowed region. Experimental

that the theoretical uncertainties, which cannot be appreerrors are included at the 95% C.L. level. The dots represent points
hended statistically, dominate over the experimental ones. of minimal y? for a large number of models.
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A. Determination of My, and a, without constraints for the relative uncertainties in our determination\df and

The result for the allowed region favl, and as when ~ @s- It is evident that the sum rule based on the large
both parameters are fitted simultaneously and no previou®oments, Eq.(3), is much more sensitive to the bottom
determination ofx, is taken into account is displayed in Fig. 9uark mass than to the strong coupling. At least at the
10. The gray shaded region represents the allowed region present stage one can certainly conclude that this sum rule
the My-a,, plane. To illustrate that the allowed region doest0€S not belong to most powerful methods to deternaige

not have any well defined statistical meaning we have als@S far s precision is concerned.
shown the dots representing the best fits., the points in From Eqs(86) and(87) we can calculate the value for the

the M ,-a, plane with the lowesg? value for a large number running bottom quark mass. Using the two-loop relation be-

of model3. In fact, the region covered by the dots for the [WeenN the pole and running mgeis] (see also Ref46], and
eferences therejnand taking into account the correlation

best fits is a measure for the size of the theoretical uncerta% .
ties inherent to our result. The latter uncertainties, whichP€tween the pole mass and the strong coupling we get

cannot be apprehended statistically, clearly dominate over -
the experimental ones, which are contained in the gray 4.09 Gev=my(My(15/2)<4.32 GeV, (92)
shaded region not covered by any dots. For the convenience 4.17 GeVemy(m,)<4.35 GeV (93)

of the reader we have shown the result oy at the scale

u=2.5 GeV (lower frame axis and u=M, (upper frame  This result is in excellent agreement with a recent determi-
axis) where we have used two-loop running for the strongnation of the running bottom quark mass obtained from the
coupling. From the shape and orientation of the gray Shadeﬂllree-jet rate irbb events at the CERNM e~ collider LEP
region in Fig. 10 it is evident thd¥l,, and a4 are positively : _
correlated. This can be easily understood from the fact tha; xperiment - DELPHI [47,48, —my(Myqs)/2)=4.16

the theoretical moments are monotonically increasing fun +0.14 GeV. The uncertainty in the result for the running
ne theoretical moments are monotonically increasing fu Ciquark mass, Eq993), is larger than for our pole mass result,
tions of ag but monotonically decreasing functions bf,

(see Table ). However, we refrain from presenting a nu- Eq. (86), because of the correlation betwedh, and a,

. : which has to be taken into account in the conversion for-
merical value for the correlation because, as already mens ia

tioned, the allowed region favl,, and 5 does not have any We have checked that the allowed region kg, and

Stagitr'ctﬁggi?tg':]g' uark pole mass and the strona counlin resented in Fig. 10 is insensitive to the particular choices of
q P 9 PINGhe scanning ranges for the renormalization sgalg4 and

we obtain the constanta.,, andr ., which parameterize the correlation
4.74 Ge\V=M,<4.87 GeV, (8e)  of the experimental data for the electronic widths and the
continuum cross section above tlBB threshold, respec-
0.096< a(M,)=<0.124, (87)  tively. However, the results depend on the choice of the
ranges for the soft scajes,; and the factorization scaje;,..
0.175<a4(2.5 GeV)=<0.308. (88)  This dependence is illustrated in Fig. 11 where we have dis-

. i played points for the best fit@) for models with 1.5 GeV
Because the uncertainties figk, and a; are not Gaussian we <peor<2.5 GeV and 2.5 Ge¥u<3.5 GeV and(b)

only present the allowed ranges ot_)tained from Fi_g. 10. W%r models with 2.5 Gew . <5.0 GeV and 5.0 GeV
would like to emphasize that in th|s.context the mequalltyslufacg 10 GeV with different symbols. In both figures the
sign < does not have any mathematical meaning. It is only,iher narameters have been scanned over the ranges given in
used to describe the bounds oh, and a5 which are ob- gqq (83). From Fig. 11a) we see that the allowed range for
tained from our fitting procedure. The allowed rangeNby,  \1 does not depend significantly on the choice for the soft

which spans over 120 MeV, can be definitely called a precisscale, whereas the allowed range fartends toward larger
determination of the bottom quark pole mass. The alloweq, 5 es if the soft scale is larger. Figure(hl on the other

Rand, shows that the size of the allowed rangeMgrcould

‘be reduced if smaller factorization scales would be chosen.
8n that case the allowed range fat would be only mildly
affected. From this observation it might be tempting to
choose the scanning range fat. at higher scales and for
Miac At lower scales because this would lead to a seemingly
more precise determination &, and higher values fos.

consistent with the current world average, but much wide
than the uncertainties of the latter. In addition, most of th
allowed range forwg is located below the current world av-
erage. Taking the size of allowed ranges b and o as
their uncertainty we arrive at

I\/lt’~2_5%, (89 However, we take the position that the choice of the scan-

Mp ning ranges for the renormalization scales should not depend

Aag(M,) on such conside.ratio.ns. to repre:_sent a “reasonable.choice.”

= 2 250, (90)  In fact, we consider it inappropriate to tune or “optimize”

ag(M;) renormalization scales in some specific way if no good

physical reason for that can be given. In our case the choice

Aag(25 GeV —50% (91) for the scanning ranges for the soft scale was motivated by
al(2.5 GeV) ' the fact that it governs the nonrelativistic correlators for
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As(Mz) as(My)

009 010 0.11 0.12 0.13 0.070.08 0.09 010 011 = 0.2 0.13
4.90 _lllv|llll|vlll|llvl|rrrrllrlt|-uu- T -_4,90 500 b I | AL ULRLLEAARY RARRARRRAN I B E 500
: (a)] 495 & 5 Voloshin [2] 349
4.85 [ h 4.85 4.90 ;— & Kuhnetal [4] e —; 4.90
~ . ] o 485 F 3 485
S ook 1480 Sk 14
§ ' ! i ' T 475 :— : _f 4.75
- <§> ] a0 E ‘ 3470
475 F O 15 GeVptoore<2.s Gevl] 475 465 3 465
. * 2.5 GeV<iore<3.5 GeV| ] P TP I EEN BN B I B
470 v v o1 P N ——— 010 0I5 020 025 030 035 040
0.15 0.20 025 0.30 0.35 05(2.5 GeV)
Us(2.5 GeV) L
FIG. 12. Result for the allowed region in thé,-« plane for
009 010 0 ”(ls(Mz) 0.1 0.13 the unconstrained fit based on the theoretical moments at NLO. The
4.90 prerrreee e 4.90 gray shaded region represents the allowed region. Experimental er-
[ (b )I rors are included at the 95% C.L. level. The dots represent points of
[ ] minimal x? for a large number of models. The star and the diamond
4.8 r 148 represent the results obtained by Volosf@hand Kihn et al. [4],
N 5 ] respectively. The error-bars quoted by Voloshin are smaller than the
) 480 L J 450 symbol used to display his central value. The polygon represents
$ r ] the allowed region obtained from the NNLO analysis.
475 © H 2.5 GeV<pirao<5.0 GeV [1 475 scribed for the NNLO analysis. For comparison we have also
[ & 5.0 GeV<Yrac<l0 GeV | ] indicated the allowed region obtained from the NNLO analy-
470 L o1 PR o ———— PP sis by a polygon. Evidently the allowed region fgr, and
0.15 0.20 a0(~§55 Gev) 0.30 035 as covers a much larger area for the NLO analysis than for
s{<. €

the NNLO one. At NLO the result for the bottom quark pole

FIG. 11. Typical distribution of points representing the best fitsMass and the strong coupling read
(@ for models with 1.5 Ge¥ u,<=2.5 GeV and 2.5 GeV

<pe=3.5 GeV and (b) for models with 2.5 Ge¥t 4.64 Ge\sM<4.92 GeV, (94)
<b5.0 GeV and 5.0 Ge¥ u:,<10 GeV based on the theoretical
moments at NNLO. The other parameters are scanned over the 0.086=a¢{(M,)=<0.132, (95

ranges given in Eq¥83).
0.144< (2.5 GeV)=<0.368. (96)

which (at NNLO) the relative momentum of the bottom
quarks(which is of orderfM a) represents the only relevant From Fig. 12 and Eqs(94) — (96) it is evident that the
physical scale. Our choice for the factorization sqajg, on  inclusion of the NNLO contributions of the moments leads to
the other hand, is inspired by the belief that is can take ang considerable improvement upon a pure NLO analysis. We
value between the relative momentum of the bottom quarksvould like to point out that the uncertainties My and g
and the hard scale which is of order of the bottom quarkirom our NLO analysis are much larger then the uncertain-
mass(see Sec. )l We will come back to this issue in Sec. ties quoted by Voloshin2] and Kthn et al. [4]. For com-
VII. parison we have also displayed the results from R&fd] in

It is very interesting to compare the results of our NNLO Fig. 12. Because the theoretical moments used in R2#4]
analysis presented above to an analogous analysis based amd the NLO moments used to generate the allowed region
the NLO moments, i.e., ignoring all the NNLO contributions. for M, and «, displayed in Fig. 12 are equivalent, we con-
[See the end of Sec. Il for a prescription how the NLOsider the small uncertainties quoted in Ré4] as a con-
moments can be recovered from the NNLO oh&$e result sequence of an inappropriate treatment of the large theoreti-
for the allowed range foM, and as based on the NLO cal uncertainties inherent to the perturbative calculations of
moments is displayed in Fig. 12. The gray shaded region anthe moments(See Sec. VIl for a more detailed discussjon.
the dots have been obtained in exactly the same way as dénother way to see that the NNLO contributions lead to a

TABLE VII. Distributions of besty? values for a NNLO and NLO analysis based on, in each case, 1300
randomly generated models within the range3).

Xin 0-3 3-6 6-10 10-15 15-20 20-30 30-50 50-100 100-
NNLO  28%  17%  16%  22% 8% 4% 2% 3% 0%
NLO 0% 0% 0% 0% 0% 1% 7% 35% 57%
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considerable improvement is to compare the distributions of (M)

best y? values which are achieved by the models based on 5.20 0,09,0,10,0,” e sz T (.)':135.20
NNLO and NLO moments, respectively. In Table VIl the 515 F SRR
fraction (in percent of besty? values within certain intervals W P g'ég
is displayed for the NNLO and the NLO analysis based on, s00 E 13500
at each case, 1300 randomly generated models within the 5 495 E T4 4.95
scanning ranges in Eqé33). Whereas for the NNLO analy- S 490 F 3490
sis more than 60% of the models have a h€gsvalue below = ;"gz 3 R
10, the bulk of the best? values for the NLO analysis is 475 E 3475
larger than 50. We would like to emphasize that, because the 470 E 5 470
uncertainties of the analysis are dominated by theory, the sl I I T jgg
distributions of besy? values in Table VII represent only a 4'600,15 0.20 0.25 0.30 035
measure for the quality of the theoretical expression for the as(2.5 GeV)

moments, but do not contain any statistical information. We o 13 Result for the alloweM , values for a given value of
therefore cannot impose yf-cut on the models, let us say, ,_ The gray shaded region corresponds to the allowed ranges for
based on an assumed statistical distributiodf/alues. As  the NNLO analysis and the striped region for the NLO analysis.
an example, for two degrees of freedom and at the 95% C.Lgxperimental errors are included at the 95% C.L. level. It is illus-
and assuming a Gaussian distribution sucf?acut would  trated how the allowed range fdvi, at NNLO is obtained if
eliminate all models whose begf value is larger than 6. 0.114<a (M,)<0.122 is taken as an input.

Evidently, in this case, none of the models based on the NLO

moments would survive and we would be forced to reject, akame footing as the theoretical parametersuif) i.e., the

least, the nonrelativistic expansion up to NLO as a legitimatgycertainties omr, are not taken into account as Gaussian or
tool to calculate the moments from QCD for the set\sf  giatistical errors. In Fig. 13 the allowed range fdy, based
considered in this work. on the NNLO moments is presented as a functioaof For
each given value fotg the allowed range foM,, which is
obtained by scanning all the parameters i over the
We now carry out the fitting procedure fdf, if agis  ranges(83), is the projection of the gray shaded region onto
taken as an input, e.g., from the current world average. Athe M, axis. If a region fora, is given the allowed range for
this point one might be tempted to simply cut out of the graym,, is obtained by projecting the gray shaded region for all
shaded region in Fig. 10 the part for whiely is located in  the ag valued in the preferred region onto thg, axis. As an
the preferred range. Due to the sizable correlation betweegxample which is also illustrated in Fig. 13, starting from the
My and «4 this would then lead to a much smaller uncer-world average forag as given by Stirling[1], 0.114
tainty in My, than given in Eq.(86). However, the naive <a(M,)<0.122, we arrive at
procedure just described is not the correct way to account for
a constraint oneg. This comes from the fact that for the 4.78 Ge\sM,<4.98 GeV (97)
unconstrained fit performed in Sec. VI A the strong coupling
is essentially a function of the model parametetd  for the bottom quark pole mass. The result is consistent with
={ tsoft» Mhards Mfacs T ¢ »@cor 1N} 1.€., g iS not independent  Eg. (86) obtained from the unconstrained fit. However, as
of the choice forM. If a4 is taken as an input, however, we expected, the allowed range it is wider and, in addition,
have to treatxs and M as independent, because we have tdocated at slightly larger masses. In fact, the uncertainty on
be able to freely assign values to them. Thus, if we take M, for the constrained fit is almost a factor of 2 larger. We
from the world average, we can expect that for a number ohave checked that the result fidt, is insensitive to the par-
models the allowed range fod,, will be located outside the ticular choice of the scanning ranges @hards Mfacr @cors
gray shaded region in Fig. 10. As a consequence, the comndr.. However, the bottom quark mass tends toward lower
strained fit will in general lead to larger uncertaintiesMy, ~ values if uso is chosen larger. We have also displayed the
than the unconstrained one. In addition, due to the positiveesult for the NLO analysis in Fig. 13 as the striped area. As
correlation betweeiM, and as we can also expect that the for the unconstrained fit the inclusion of the NNLO contri-
result for the allowed region oM, for the constrained fit butions to the moments leads to a smaller uncertainty for
will be located at slightly larger masses than for the unconMy, although the improvement is not as dramatic. We want
strained fit. to mention that the larger uncertainty fvt, obtained from
We would like to point out that there are many ways tothe constrained fit is partly a consequence of the fact that our
account for a constraint omg which all might lead to fitting procedure does not treat the error@pas Gaussian or
slightly different results. In this work we account for a con- statistical. Therefore one might argue that the uncertainties in
straint onag by treating it in the same way as the parametersEq. (97) are too conservative. However, from the way how a
in M, i.e., we also scan over the preferred rangecof The  world average is gained, it is certain that the erroraqf
allowed range oM, is then obtained in the same way as for contains a sizable systematic contribution. Because an accu-
the unconstrained fit carried out in Sec. VI A with the differ- rate quantitative description of such a systematic error is
ence that now only a one-parameter fit is perforrtemk also  quite difficult, we take the position that the error en
Sec. V). It should be noted that this method treatson the  should be treated in a conservative way.

B. Determination of My, with constraints on ag
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Using the result in Eq(97) and the two-loop relation used. According to the estimates given in Sec. Il this means
between the running and the pole mf45] we obtain that the effective smearing range contained in those moments
is already of the same size as or even smaller thagp.
4.08 Ge\=my(My(15/2)<4.28 GeV, (98)  This leads to an additional source of systematic theoretical
errors in the results of Voloshin, JP, and KPP. We have
4.16 Ge\=my(m,)<4.33 GeV (99 checked, however, that using moments with<iG<20
causes only shifts in the results fdt, (and ) which are
for the running bottom quark mass. It is remarkable that thismall compared to the size of the theoretical uncertainties at
result and the result for the running quark mass based on thde NLO level as we have estimated them in our analysis.

unconstrained fit, EQ.93), are almost identical. Therefore we will not raise this issue in the following dis-
cussion. For a NNLO analysis, however, where the uncer-
VIl. COMMENTS ON PREVIOUS ANALYSES tainties inM, are shown to be smaller, the use of values of

_ which are too large is an important issue and can lead to
In the past few years there have been three previougonsiderable errors.

analyses by Voloshin2], Jamin and Pict3], and Kihn,
Penin and Pivovaroj4] where the bottom quark pole mass A. Theoretical expressions for the moments
and the strong coupling have been extracted from data on the \/510shin’s moments are identical to ours at the NLO

Y mesons and using the same sum rule as in our analysig,e|. The moments used by KPP have been calculated in the
We would like to emphasize that in Ref—4] no consistent  same way as Voloshin@nd ours at the NLO leveivith the
determination of NNLO corrections has been carried out andifference that the dispersion relation in Ed) has been

that the results by Voloshin calculated numerically in terms of its covariant form, i.e.,
without using the asymptotic expansittir) and the inverse
M,=4.827+0.007 GeV, Laplace transform. We have checked that for the values of
n’'s considered by Voloshin, KPP, and us the difference be-
as(M,)=0.109:0.001 (Voloshin), (100  tween both approaches is negligible. Thus, the moments used
by KPP are equivalent to Voloshin's and ours at the NLO
Jamin and PiclJP level.
The moments by JP, on the other hand, were obtained
Mp=4.60£0.02 GeV, from the Born, one-loop and two-loop expressions for
R(e"e” —bb) supplemented by a resummation of LO Cou-
ag(M,)=0.119+0.008 (Jamin, Pich (101  lomb singularities in the form of the Sommerfeld facfeee
Eq. (32)]. Further, the one-loop corrections to the Coulomb
and Kthn, Penin and PivovarofKPP) potential have been implemented by inserting them directly
into the Sommerfeld factor, i.e., without using time-
Mp=4.75+£0.04 GeV, independent perturbation theory. For the dispersion integra-

tion (4) JP have only taken into account c.m., energies above

the threshold point s(>4M§). We disagree with the mo-
(102 ments used by JP in two major points. Most important, JP

did not take into account the bound state poles of the cross
are contradictory to each other and partly to our own results3¢Ction R, which are located below the threshold poisst (
In particular, although no NNLO contributions have been<4Mp). We have demonstrated in Sec. IV that the bound
included, all results in Ref§2—4] are claimed to have much states represent the dominant contribution to the moments
smaller uncertainties than any of the results obtained in oufCr l2rge values ofi (see Table IV. Thus the moments used
analyses. In this section we will explain the origin of thosePY JP are far too small which causes the bottom quark pole

discrepancies and give some comments on the methods usBSS obtained from the fits to be too I8n fact, one can
in Refs.[2—4] from the point of view of the strategies fol- easily see that omitting the bound state poles for large values
lowed in this work. To organize the discussion we will ana-Of n will always lead to a bottom quark pole mad;

lyze the methods used in Ref2—4] with respect to three sMY(lS)/,ZN‘L7 GeV reggrdless vv_hethars _is determined
aspects(i) theoretical expression for the momerti) opti- from the fit or taken as an input. This explains why the value

mization and tuning of the perturbative series for the moJ0r Mp in the analysis by JP is significantly smaller than in
ments, andiii) fitting procedure and error analysis. BecausetN€ analyses by Voloshin, KPP and us. In addition, we do not
the theoretical uncertainties in the determinatiorvgf and  think that the effects of the running of the coupling govern-
a, are much larger than the experimental ones, we will neii9 the Coulomb potential have been treated properly. JP
ther focus on the treatment of experimental errors nor on theMPly inserted the one-loop corrections to the Coulomb po-
formulas used for the experimental moments. Compared ti£ntial into the Sommerfeld factor. Whereas this is legitimate
the effects caused by using different methods to handle thf" the nonlogarithmic corrections, it is not for the logarith-
theoretical uncertainties, the differences in the treatment offiC Ones because the effects arising from virtual momenta
the experimental side of the analysis represent only a minor

issue. We also would like to mention that in the analyses of

Voloshin, JP, and KPP moments withas large as 20 were  5The same conclusion has been drawn in R&f.

ag(M,)=0.118+0.006 (Kuhnet al.)
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below and above the scale Myag are not taken into ac- ={8,12,16,29 and{10,12,14,16,18,20 respectively. Thus,
count correctly. This can only be achieve_d by using_.time-the results obtained by Voloshin and KPP should be com-
independent perturbation theofgr by solving the Schro  pared with the results of our unconstrained fit presented in
dinger equation exactly We therefore conclude that the gsec. v A. Because Voloshin has eliminated all scale depen-
results obtained by JP contain large systematic theoreticlences, he has estimated the theoretical uncertainties in his
errors .Wh'Ch are by far larger thar) indicated by.thelr erroranalysis using the assumption that the NNLO corrections to
analysis. That the value fowg obtained by JP still seems nth moments can be parametrized by a global factor (1
reasonable is a consequence of the fact that the moments éﬂ? i P 'z Y a giob
much less sensitive tag than toM, . +c/n) \_/vh_erec is a ngmber of order 1 _The size of the_
uncertainties was obtained from the variation of the best fits
for My, and «y if c is first fixed to zero and then obtained

. ) from a three parameter fit. The theoretical uncertainties
We have shown in Sec. IV that the perturbative correc-

i o th i d1h i le d d ained by this method have been of the same size as the
lons fo the moments and the resufting scale dependences E?rs(?nalb experimental errors. We have shown in Sec. IV that
quite large. This behavior is particularly obvious at the

NNLO level. However, already at NLO the corrections arethe NNLO contributions Fo the m(_)ment_s have an entirely
uncomfortably large. In our analysis this feature has beefifferent structure(large size, growing wittn, tremendous
fully taken into account during our fitting procedure. In fact, dependence on the soft scated cannot be accounted for by
it is the main source of theoretical uncertainties in our rethe global factor (}c/n). Thus, Voloshin’s method to es-
sults. In the analyses by Voloshin and KPP, however, thdimate the theoretical error is not capable to account for the
perturbative expansion for the theoretical moments has bedrue size of theoretical uncertainties inherent to the perturba-
tuned to improve the convergence. tive calculation of the moments. In the analysis by JP the
In Voloshin's work, at each value afthe soft scalguson  theoretical uncertainties favl,, and a5 were essentially ob-
has been fixed such that the NLO corrections caused bigined from the variation of the best fit o, and e (for
VY, Eq. (19), vanish exactly and the hard scalgaahas fixed uqy= unag=Mp) When the two-loop corrections to the
been fixed to the BLM scale49]. Thus, Voloshin has elimi- _Coulomb potential,\/gz), are included and when the two-
nated the scale dependences of the moments. We would likg, ) - ntrinutions to the high energy cross section are re-

to emphasize that we consider Voloshin’s prescription as ONg ved. No additional uncertaintiés.g., from the renormal-

possible choice for the renormalization scales, which essen; v o scale de endenchiave been taken into account
tially corresponds to selecting one single model out of th P

range of models used in our analysis. We have shown in Se _ased_ on the argument that _th|§ would I_ead to a_doub_le
VI (see, e.g., Fig. Jthat the results foM, and a, depend counting of theoretical uncertainties. We dl_sagree with this
significantly on such a choice. Because we think that notatement because t_he effects of the inclusion or remo_val of
argument can be found why Voloshin’s choice should pdhe two-loop corrections to t.he high-energy cross section or
better than others, we have the position that a scan over dffeé Coulomb potential certainly depends on the value of the
“reasonable” models should be carried out. Because VoOther parameterésuch as the renormalization scaleShis
loshin has not carried out such a scan we consider the the@nd the fact that JP have neglected the bound state poles,
retical uncertainties quoted in his analysis as largely undemwhich are the dominant source of large corrections to the
estimated. moments(and their scale dependender large values of,

In the analysis by KPP, at each value nfa non- have lead to an underestimate of the theoretical uncertainties
logarithmic piece of\/(cl) has been absorbed into the LO (besides the large systematic errors mentioned gbove
nonrelativistic Green function, E¢31), such that the NLO KPP, finally, have determinelll,, and a¢ separately. For
corrections caused by the nonabsorbed pieetculated via the determination oM,a(M,)=0.118 was taken as a fixed
first order time-independent perturbation thgargnish. This  input. Thus, the result fav,, by KPP should be compared to
optimization is quite similar to Voloshin’s but leaves the softthe results of our constrained fit presented in Sec. VIB. The
scal_e unfixed. It should be mentioned_ that KPP_ h<_’;1ve EXp"Cmethod used by KPP to ObtaMb was based on So|ving the
itly identified soft and hard scale which has eliminated theequationP;h= P for M, while n and all the other param-

possibility to vary both scales independently. This revealgyeg are fixed to specific values. The mean value and the
why the uncertainties quoted by KPP are much larger tharﬂmcertainty forM, has then been gained by calculating the

Voloshin’s, and partly explains why they are still much : : )
smaller than the uncertainties obtained from our NLO analy-mean and observing the spread\, values when this pro

sis where no optimization has been perform@ee Fig. 12 (ief(l;rlez was 2C0a;rr:?jd s%lj:t(;nftljrsﬁbrfcf’f;gz:—ﬂlhzrd;ngﬂbl gng 2\/
for a graphical comparison. =10,12 ..., , , — _

JP have not carried out any optimization. However, due to~ Msot™ Mhard<Mp . This procedure effectively scans over

. . some fraction of the range of models used in our fitting pro-
heir w Icul he momen rting from the expres- . .
their way to calculate the moments starting from the expres edure but misses, e.g., models with 14 andu =My .

T et ot s s e mai reason iy he uncrantes e by KPP
are much smaller than in our NLO analysis.
From the discussion presented above we come to the fol-
lowing final conclusion about the results by Voloshin, JP,
In the analysis by Voloshin and KPP a two parameter fitand KPP in comparison to our own analysis: The theoretical
was carried out to obtaiM, and ag for the sets{n} = moments calculated by Voloshin and KPP are equivalent to

B. Optimization and tuning

C. Fitting procedure and error estimate
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our NLO moments. We therefore consider the results obit is therefore possible to relate a theoretical calculation of
tained by Voloshin and KPP consistent with our own resultshe momentsP,, to experimental data for the cross section
at the NLO level(see Figs. 12 and }13However, the theo- R(ete —* bb hadrons). The limit of large values ofn

retical uncertainties are underestimated in both analyse o . L
which leads to the apparent contradiction between the resulE of §peC|aI Interest fpr r_elatloﬁlOS) because in this limit
e high-energy contributions are suppressed. For the theo-

by Voloshin and KPP. In view of the error analysis per- """ . 4 )
formed in our analysis, where we tried to impose as less bigketical side this means that the bottom-quark—antibottom-

as possible, the results by Voloshin and KPP are perfecﬂguark pair can be treated nonrelativistically, and for the ex-
consistent. The apparent contradiction essentially corrererimental side that data for the productiomoinesons are
sponds to a disjunctand from our point of view biasg@d already sufficient to saturate relati¢h03). The requirement
choice of models used for the fitting procedure in both analythat the effective range of integration is larger th&gcp

ses. We want to emphasize that the choice by Voloshin is ndtl4] imposes an upper bound on the values ébr which a
less plausible than the one made by KPP which illustrates thperturbative calculation of the moments can be trusted. Due
need that the whole range of models must be scanned in the the large size of the bottom quark mass of order 5 GeV we
fitting procedure. The comparison between the results of ougre in the fortunate situation that a range of values ofn
anal?/5|s,bwher((aj E”Ch ? src]:.an hgs been pErforr;]w_ed, bar)d 8 found for which théob system can be treated nonrelativ-
results obtained by Voloshin and KPP makes this o V'ousi'stically and, at the same time, the range of integration is still

The theoretical moments determined by JP, on the oth Froad enouah compared b We have identified this
hand, do not take into account the bound state poles whic . 9 P ., QCD- .
ange of “large values of” as 4<n=<10. In this work we

represent the dominant contributions to the moments fo . , >

large values of. As a consequence thé,, value obtained Nave used the arguments just given to determine the bottom
by JP is too small and has to be considered inconsistent witguark pole mas#/,, and the strong couplings in the MS

the results by Voloshin, KPP, and us and, in particular, withscheme from experimental data on fifemasses and elec-
the nonrelativistic expansion of QCD, where the bound statéronic decay widths.

poles are predicted. That the value teyobtained by JP still The aim of this paper was twofold.
seems reasonable is a consequence of the fact that the mo-(1) Calculation of NNLO correctionsThe complete set of
ments are much less sensitivedg than toM, . NNLO corrections in relatiori103) for large values ofi has

After this work was completed we received RES0] by  been calculated. This includes corrections to the expressions
Penin and PivovarovPP) where the NNLO corrections to in the nonrelativistic limit or order?, ag, andv?, where

the largen moments have also been included in the sum rulg, ;s the velocity of the bottom quarks in the c.m. frame. The

determination of the bottom quark pole mass. For the bottom . e ; ; ; ;
= ptual difficulty in those calculations is that the relativ-
quark pole mass PP quote the reddi{=4.78:0.04 GeV. jq4q corrections, e.g., from the kinetic energy or from higher

The result is consistent with ours. The_uncertamty, hOweverorder interactions such as the Darwin or the Breit-Fermi po-
is smaller and the allowed range fiot, is somewhat lower

than for our NNLO results. To obtain their result PP havetennal lead to ultraviolet divergent integrations. We have

. : d the concept of effective field theories formulated in
used the same methods as in Réf.(which we have already use . .
discussed aboyawith the difference that all the scalém- ~ NRQCD[11,13 to deal with this problem. In NRQCD the

cluding the factorization scalewere varied in the range l2ttér divergences appear as a natural consequence of the
My+1 GeV. We consider this range too high for the soft existence of_h|gher-d|men_5|onal Operators which lead to the
scale. This issue and the fact the PP used valuesfafthe  renormalization of lower-dimensional ones. The exact form
moments between 10 and 20 should be the main reasons wij the renormalization constants is obtained through match-

the result by PP is located at lower mas¥es. ing to full QCD. This automatically provides a separation of
all relevant effects into short-distandgontained in the
VIIl. CONCLUSIONS AND OUTLOOK renormalization constantand long-distance onésontained

in matrix elements In our case this leads to an expression
Based on the argument of global duality and causality ong,; he moments$and the cross sectidR(e*e™— bb had-

can relate the derivatives of the vacuum correlator of tWOrons”)] which is a sum of terms each of which consists of a
bottom-quark—antibottom-quark vector currents at ero mog o [ativistic current correlator multiplied with a short-

mentum transfer to an integral over the total cross section of. .

the production of hadrons containing a bottom and an anti: |sta_nce fa_lcto[see Eqs(13) and(50)]. For f[he leading term
. . S in this series we have performed matching at the two-loop

bottom quark in electron-positron annihilation

level. Although the NNLO contributions are quite large, they

472Q% d \" ds — lead to a considerable reduction of the theoretical uncertain-
- b _ bb iag i i
= Hﬁ(q)|qz=0—f — R™(s). ties in the extraction oM, .

nig® \d S (2) Conservative approach for the error estimatd$e

(103 uncertainties in the determination bf, (and as) based on
sum rule(103 are dominated by theory, in particular, by the
remaining large renormalization scale dependences of the
¥In Eq. (2) of the original version of Ref{50] there was a sign theoretical moments. These scale dependences are caused by
error in the C,Cr piece of theO(a?) short-distance coefficient large coefficients which arise in the perturbative calculation
which has been not been contained in the numerical codes. | thar®f the corrections to the moments in the nonrelativistic re-
A. Penin for correspondence about this point. gime. In contrast to statistical errors, which can be treated in
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a standardized way, it is not an easy task to properly accoumtetermine the bottom quark mass. For the determination of
for theoretical uncertainties, in particular, if a model- the strong coupling we are by far less optimistic.
independentin the framework of QCDanalysis is intended. In the past few years there have been three previous
In fact, in an analysis where theoretical uncertainties domianalyses by Voloshif2], Jamin and PicH3], and Kihn
nate, results may easily become biased depending on pest al. [4] where the bottom quark pole mass has been deter-
sonal preferences. For the case of the determinatiodpf mined from experimental data for the masses and the elec-
from sum rule(103) this has led to the paradoxical situation tronic decay widths for th& mesons using the sum rule
that in two earlier publication$2,4] contradictory results (103). The results obtained in those three analyses are con-
were obtained although equivalent theoretical expressiongadictory to each other, and, although NNLO corrections
for the moments were used. In this paper it was attempted thave essentially not been included, quote uncertainties
include as little personal preference into the analysis as posmaller than in our own NNLO analysis. The results ob-
sible by scanning all theoretical parameters independentlyained by Voloshin and Kun et al. are based on moments
overreasonably largeanges which were in size and location which are equivalent to ours at the NLO level. In view of the
motivated fromgeneralconsiderations. For each set of pa- yncertainties foM,, (and «s) obtained from our analysis at
rameters, called a “model,” a standard statistical fitting pro-NLO, the results by Voloshin and Hm et al. can therefore
cedure was carried out using the method of least squares i regarded as consistent with each otfaerd u3, see Fig.
calculate a 95% C.L. contour. The external envelope of tha2 The small uncertainties quoted by Voloshin anchKu
contours obtained for all the scanned models was then takest al.come from too tight, model-like bounds imposed on the
as the “overall allowed range” which, we want to empha- theoretical parameters. The results obtained by Jamin and
size, does not have any well defined statistical meaning dupich, on the other hand, contain a large systematic error due
to the dominance of theoretical uncertainties. This makes thg the negligence of the bound state contributions in the mo-
scanning method more conservati@ad in our opinion also  ments. We consider the result by Jamin and Pich inconsistent
more honestthan the methods used in Ref&,4]. In addi-  with those by Voloshin, Khnet al, and us, and in particular
tion, the scanning method has the advantage that it automatjsith the nonrelativistic expansion of QCD.
cally accounts for nonlinear dependences on the theoretical |t i quite interesting to ask whether and how the results
parameters and prevents by construction the Gaussian-lik§etermined in this work can be further improved in order to
treatment of theoretical uncertainties. Of course, the resultgrrive at even smaller uncertainties for the bottom quark pole
presented in this work are not completely free from personaiass or the strong coupling. From the technical point of
preferences either because of the choice of the ranges usggw the answer would simply be to calculate the NNNLO
for the scanning. contributions in relation(103. Such a task, however, is

In this paper we have performed two different analysesighly nontrivial. Apart from the fact that a three-loop
based on the scanning method and including the new NNLGnatching would have to be performed also the NNNLO ef-
corrections. FirstM, and a5 were determined simulta- fects in the bottom-quark—antibottom-quark interactions
neously using the least squares method for two parametergould have to be considered. This would require a consistent

We have obtained treatment of retardation effects which are caused by the non-
instantaneous exchange of gluons and, as a prerequisite, a
4.74 Ge\sM,<4.87 GeV, (104 petter understanding of higher order Fock bottom-gquark—
antibottom-quark—gluon states. In principle a calculation to
4.09 Ge\=mp(My(15/2)<4.32 GeV, (109  determine these effects would be the QCD analogue of the
determination of the Lamb shift contributions to the positro-
0.096=a((M,)=<0.124 (106 nium wave function. So far no technical instruments have

been developed yet to immediately tackle this challenging
The corresponding result using the NLO expressions for th@roblem. We further believe that it is unlikely that this goal
moments yielded considerably larger uncertainfiee Figs. can be achieved entirely in the framework of perturbation
10 and 12 and Eq986)—(88) and (94)—(96)]. The results theory because it involves also the bound state energy
show that relation(103 allows for a much more precise ~Mbv2~Mba§ as a relevant scale. For the bottom quark
determination of the bottom quark mass than for the stronghis scale is already of the same size as the typical hadroni-
coupling. Secondyl, was determined using the least squareszation scaleAqcp, Which means that the bottom-quark—
method for one parameter and takiag as a known param- antibottom-quark—gluon propagation is certainly nonpertur-

eter. We have obtained bative. In fact, the rather uncomfortably large NNLO
corrections in relation(103) might be regarded as a first
4.78 Ge\sM,<4.98 GeV, (107 warning sign in support of this view.
At this point it seems to be just natural to mention the
4.08 Ge\=my(My (15/2)<4.28 GeV (108 renormalon ambiguities contained in the definition of the

pole mas$51] which is defined perturbatively as the location
for 0.114<a¢{(M,)<0.122. As for the first analysis the of the singularity of the renormalized quark propagator. This
NNLO contributions to the theoretical moments lead to aambiguity indicates that the pole mass has an intrinsic uncer-
reduction of the uncertaintisee Fig. 18 In our opinion, tainty of orderAocp~200-300 MeV. It is caused by the
the sum rulg(103) can be regarded as a quite precise tool tolong range sensitivity of the pole mass and reflected in a
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factorial growth of the high order coefficients of the pertur- V4 Cra, V2 11Cragm o - CaCra?
bation series connecting the pole mass to other mass definsH o, = — —3+T —2+§ >—o(r)— >
tions such as MSvhich seem to be free from this problem. 4Mp Mb Mb ZMb(rAg)

Our results and the rather pessimistic prospect to further im-
prove the results obtained in this paper certainly support thigygjng the equation of motion for the Coulomb Green func-
view. However, the notion of the renormalons might also_. e =5 .
give hints toward a more precise determination of the botto flon, Eq.(26), we can eliminate th¥~ terms indHg, . For
quark mass because it implies that with a different mass deff_lustratlon, let us COQS"?'er the correc't|ons coming from the
nition the perturbative series for the moments might becomérm Ce(as/r)(VZ/Mg) in 6Hsq. Using the equation of
better behaved. In this work we have not attempted to makgotion we arrive at the relation

use of this possibility, but we hope to return to this issue in

the near future. Crag V
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which is dropped in our conventigrsee the text after Eq.

(30)]. Using the same arguments for the kinetic energy term
APPENDIX A: NNLO CORRECTIONS FROM 8H i, Ve, we get

AND Vya
= 4
In this appendix we present some details about the calcu- [ ¢3rg @ (0r,E)| — —|G(r,0E) (A5)
lation of the NNLO corrections to the zero-distance Green 3
function coming from the Kkinetic energyéHkin(F) £
__v 3 ; ; ; -
=—V44Mm ,.the Bre|t-.Ferm| potentiaVge, Eq. (18), and Z—G(CO)(O,OE)—f d3rcO(0r,E)
the non-Abelian potentiaVy,, Eq.(21). At NNLO the cor- 2My,

rections coming fromsH,;,, Vgr, andVy, are determined

2,2 2
from first order time-independent perturbation theory: Cras E CFaS_ E

x| = _
4Mbr2 2Mb r 4Mb

GO(r,0E).

[GS:Z)(O,OE)]kin+BF+NA - -
Collecting all terms from Eq9A3)—(A5) we arrive at

=— | &*rGL(0r,E)sH(NGY(r,0E), Al
| @ieor B ramHEr 0) L P

2M,,

where R
—f drGc2o0r,E)

- -)4 - -
SH(N== 5 Ve +Via(n). (A2) B 3E cea,
b AM, 2M, r

Because the zero-distance Green function only describes 11 Cea.r

bottom-quark—antibottom-quark pairs in8, triplet state, + = F_;5<3>(F )

we can take the angular average and evaluate the spin opera- 3 Mg

tors for SH in expression(Al). The form of H then sim- -

plifies to” (5 Ca)Cras GO(r,0E)

4 2CF Mbr2 C 1 i) .

R (AB)
"We have obtained EqA3) by transformingVg(r) into mo-

mentum spaceVg(p1,p,) =fd3re P1'Vy(r)elP?, taking the  The first and the second term in the brackets on the RHS of
spin average and the angular average with respegt andp, for Eq.z(AG)z are handled by redefining the energy—E
those terms which are not proportional to the Coulomb potentiat E/4My and the couplingas—ag1+3E/2My], in the

and transforming back to configuration space. nonrelativistic Coulomb Green function. The calculation of
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the S-function term is trivial. The treatment of therZ/fterm,

on the other hand, is rather awkward. However, we can infer
the correction caused by theriterm by using the facts that

the wave functions to the Schdimger equation

(A7)

can be determined exactly for any enefgysee, e.g., Ref.
[52]) and that the imaginary part of the Green funct®rof
Eq. (A7) in the continuum, i.e., for any positive energyis

proportional to the modulus square of the scattering wave

function at the energf¥. From this it is straightforward to
derive for positive energies the relation

Im G(O, OE)—llm[(pr)S]—
r—0

amm| [[[1+s—i(am/2p)]|?

XeXP 3p [(2s+2)

(A8)

where s(s+1)=—b and p=ym(E+ie). Expanding the
RHS of Eq. (A8) in smalt® b and imposing the short-
distance cutoffus,. as described in Sec. Il A.e., we absorb
a subtraction into the factorization scrlge obtain for posi-
tive energies the relation

C2a
fd3rG°>(0r E)( F
b

2
S)G(o)(r 0F)

4C|:aS7T

Im{[G”(0,0E)]?}. (A9)

b

Due to analyticity relatiofA9) is then also valid for any real
energy. Up ta(irrelevan} constants we can therefore write
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C2a?
F ; GO(r,0E)

J drcP(oyr, E)(

Myr

_ A4Crasm

———[G(0,0E)]°. (A10)

b

Collecting all terms the final result for the sum of the zero-
distance Coulomb Green function and the NNLO corrections
caused bysH,;,, Vgr, andVy, reads

GE;O)(O.OE.aS) + [GE:Z)(O,OE)]kin+BF+NA

1 3E
ag +—2Mb

———[G”(0,0E,a)]?

E 2
— c® —_—
1+ 2Mb)G° <0,0E+ VR

4
+ o 1+

3 (A11)

3Ca) Ceagm
2Ce) M2

up to corrections beyond the NNLO lev&{®)(0,0E,a,) is
defined as the expression on the RHS of 84). Rewriting
the energy in terms ob = (E+ie)/My we arrive at the
result displayed in Eq(36).

We do not want to leave unmentioned that for the treat-
ment of the singular t# potential we have ignored the fact
that its coefficient(mainly through the large non-Abelian

contribution is large enough that theb system can collapse
to a point(see, e.g., Ref52]). This would lead to the break-
down of hermiticity. Thus, the result in E¢A11) has some
heuristic character. However, we strictly treat the singular

1/r? [and also thes®)(r)] potential as a “small” perturba-
tion to the Coulomb exchange and remove the arising UV
singularities through the matching procedure. No exact treat-
ment of the singular potential is intended. In this sense the
result in Eq.(A11l) should be fine.

APPENDIX B: INVERSE LAPLACE TRANSFORMS

In this appendix we present the list of inverse Laplace transforms used to the calculate the theoretical moments at NNLO.

In the following we use the conventions

_dinl'(2) (Vo d"
V' (2)=vY(z), W'(2)=v?(2),
1 z

oF2(a,b;z)=I(a)l’

b)E o T(a+KT(b+k) kI

(B1)

8Because we want to treat therdpotential as a perturbation, the limit=0 has to be taken after the expansiorbin
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1 (r+i=Inx _t”‘1 |

ﬁLix x” e dx—r(v)[\lf(v)— nt], (B2
1 (rri=in®> 71 -
i), e dx—r(v){[\lf(v)—lnt] —W'(v)}, (B3)
1 (r+i=in®x 7t 3 , "
i), e dx—r(v){[‘lf(v)—lnt] —3[¥(v)—Int]¥'(v)+¥"(v)}, (B4)

1 (ri=1l [ a gy at’~ 12 - 3 +1 a? 5
2t )y o™ )€ PTG o2 (59
1 (r+izlnx [ a o~ at’~ 1?2 v +1 ntl 3 +1 azt d c 3 +1 a?

=g Il By ~d Ee vev-)) | R B i PR S A PRCE PR S R
(B6)
1 (r+i=ln’>x [ a g at’— 1?2 v 1 I 2 v 1 - 3 1 a?
2 )y 0 M )€ DT vig) Tt XA S]] okl 5 vt 5 T gt
2|¥| v+ Int F3 + a2t+d2 F3 o1 & B7
Tt PR R AU E PR T B

APPENDIX C: THE CONSTANTS W3!? AND W92

In this appendix the constants)"* andwy"? from expressior(57) are given. They generically parametrize the higher
order contributions to the Green function of the Sclinger equation24) coming from the radiative corrections to the
Coulomb potentialy{” andV{?, Egs.(19) and(22). For the constantwo™? we were able to calculate analytic expressions.
The results readg=1,2,3 . ..)

1 S (1+t)(1+u) (P+1)¢pr1
= I P I
W P!F(p/2)fo dtfodu(l+t+u)2n tu Fp2) “
1 1 o o .1—In(1+t+u) o (1+t)(1+u)
Wp_p!F(p/Z)fo dtfod“ (1+t+u)? n tu
| @a+p) “ W(2+m) - e (D)W CPD(24+m)
[F(plz) 7E§p+1+rn220 (1+m)p+l p/2)|20 mzo( ) (p—|)|(1+m)l+| ’ (C2)
2 2|n(1+t+u)+|n2(1+t+u) (1+t)(1+u))
W P!F(p/z)fo dtjod (1+t+u)? tu
_a+p (v24+28,)¢ i ;{2 W(2+m)—¥'(2+m)+[¥(2+m)]3}
F(plz) ’),E 2 l+p o (1+m)l+p Ye
2 I P (—1pla+D
[ (p—1) _app—I+1) (p—1)
+F(p/2)m20|zo( —I)!(1+m)1*'[27E\Pp (2+m)—w® (24+m)+2¥PD(2+m)¥(2+m)]
© p-2p-I-1 -k k
(A+DH) PP+ m)P R (2+m)
p—I
F(plz)mZOIZ 2 (-1) (p—1—K)'k! (1+m)t+! €3
o&,0,1,2

The constantsvy™“ are calculated numerically. The corresponding integrals iaré(1,2)
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W e —
P~ I (pr 2] Jo @) U] I Jp Ase bt S)in tuos ’ (4
where
3x+y
wo(t,u,v,s)=ﬁ, (CH
X“(X+Yy)
2 2 2 2
1 XS TXy—2y Inx  (y—X)(X*+4xy+y9)In(x+vy)
@ (tu,v,8)=— s T a2 2,2 3 ’ (CH)
Xy (x+y) X7y Xy (x+y)
3x+ x+3 (Xx—y)(X?+5xy+y?) 3x+
®?(t,u,0,8)=— Y TS Y TTha yz 5 y3 Y In(x+y)+ Z—ylnz(x+y)
XA(X+y)®  yA(x+y) X7y (x+y) x*(x+y)?
! I I I I Li C
- — — — + +
X2y nX—[Inx—In(x+y)]iny +Li, xty) |’ (Cn
and
x=1+t+u, y=14+v-s.
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