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Two-loop QCD corrections to semileptonicb decays at an intermediate recoil
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We present completeO(as
2) corrections to the decayb→cln l at the point where the invariant mass of the

leptonsAq2 equals thec quark mass. We use this result, together with previously obtained corrections at the
ends of theq2 spectrum, to estimate the total width of the semileptonicb→c decay withO(as

2) accuracy,
essential for theuVcbu determination.@S0556-2821~99!06501-7#

PACS number~s!: 13.20.He, 12.15.Hh, 12.38.Bx
hi
ls

O
th

-

T
le

pe

ic
h
or

-
he
in

i
ce

n

b
at
e
ll
n

o
ru

ts

b

nly

ften
with

be

r
c-
e

-
ic
ues
le.
oil
-

der
si-
e
ely

e-

y

of

re-
de-

he

can
r of
ely
e

Precise determination of the Cabibbo-Kobayas
Maskawa~CKM! matrix parameters is one of the main goa
of the present and upcoming high energy experiments.
of the three parameters which can be measured with
highest accuracy isuVcbu, for which there are two comple
mentary methods~for a recent review, see e.g.@1,2#!. The
first one is based on studying the exclusive decayB→D!

1 leptons near the zero recoil end of the phase space.
other, so-called inclusive method examines the total semi
tonic width of theB meson,Gsl(B→Xcln l). For both deter-
minations the experimental precision has reached a few
cent level and will be further improved in futureB factories.
To fully exploit those measurements, the theoretical pred
tion for theb quark semileptonic width must be known wit
comparable precision. This requires a study of both sh
distance~perturbative! and long-distance~non-perturbative!
QCD effects. For the exclusive method theO(as

2) correc-
tions were calculated in@3#. Technically, the most challeng
ing part of that calculation was the QCD correction to t
axial b→c current normalization at zero recoil, obtained
@4,5# and confirmed in a recent study@6#. The theoretical
accuracy of the exclusive method is limited by the errors
the non-perturbative matrix elements which are enhan
due to the not so large mass of thec quark.

In the inclusive method the non–perturbative correctio
are somewhat smaller, with suppression by 1/mb

2 . They are
estimated@7# to decrease the meson semileptonic width
approximately 5% compared to the free quark decay r
With the non-perturbative corrections under control, the p
turbative corrections should be carefully analyzed. Idea
one would like to know the two loop QCD correction for a
arbitrary invariant mass squared of the leptons (q2) in the
decayb→cln l . This has been achieved for only a subset
corrections, enhanced by a large factor describing the
ning of the strong coupling constant@8#; these so-called
Brodsky-Lepage-Mackenzie~BLM ! corrections @9# have
been even resummed to all orders@10#. However, in the ab-
sence of a complete calculation of the two-loop QCD effec
the related uncertainty inuVcbu determined from the inclusive
method had to be guessed and various estimates have
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given in the literature. It is clear that the problem can be o
solved by an explicit calculation of the completeO(as

2) ef-
fects and therefore the need for such a calculation was o
emphasized. In the present paper we demonstrate that,
the new result presented here, perturbative effects can
estimated with sufficient accuracy.

For an arbitrary value ofq2 ~and, by the same token, fo
the total width!, the calculation of the second order corre
tions is a very difficult technical task. In earlier works w
presented such results for the two extreme points,q250 @11#
and q25(mb2mc)

2 @4,5#. While at both points the non
BLM corrections were below 1% of the total semilepton
width, it was not clear what happens at intermediate val
of q2, where a complete calculation appeared infeasib
Nevertheless, from the results in zero and maximal rec
points it was conjectured in@11# that the second order non
BLM corrections to the semileptonic decay widthb→cln l
do not exceed 1%.

Since then, we have found another kinematical point,q2

5mc
2 , where the complete calculation of the second or

QCD corrections is possible. It is fortunate that for the phy
cal value ofmc this roughly corresponds to the middle of th
q range, so that together with the end points we have nic
distributed information~see Fig. 1!.

Thus, the purpose of this paper is twofold. We first d
scribe a calculation of theO(as

2) correction to the differen-
tial semileptonic width of theb quark forq25mc

2 . We then
use the results obtained in this paper, as well as in@4,5,11#,
to estimate theO(as

2) correction to the semileptonic deca
width of theb quark.

We start with a short description of the new calculation
theO(as

2) correction forq25mc
2 . A complete description of

the technical details of the present calculation will be p
sented elsewhere. The basic idea is the expansion of the
cay amplitude in the velocity of the massive quark in t
final state.

The Feynman diagrams which describe this process
be divided up into three classes according to the numbe
real gluons emitted. In the first group there are the pur
virtual two-loop corrections. Their value is known at th
©1998 The American Physical Society36-1
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point mc5q5mb/2 from our previous study on the zero r
coil line @5#. Since the actual value ofmc is not equalmb/2,
we expand the diagrams in the parameterb, related to the
difference of these two quantities~see below!. The coeffi-
cients of this expansion are given by diagrams with hig
powers of propagators. By solving a system of recurre
relations, obtained by integration by parts, we found an
gorithm with which all these Feynman integrals can be
pressed in terms of four non-trivial functions, given below
Eq. ~4!, and some simpler~single-scale! Feynman integrals
This is the most challenging part of this calculation and
limits the number of terms we have been able to obtain us
the present computing facilities.

In the other two groups there are diagrams with two r
gluons or one real gluon and a virtual loop. It is relative
easy to perform calculations in these cases using~slightly
modified! computational techniques described in detail
@12#. This possibility is related to the fact that forq25mc

2 the
three- and four-particle phase space integrals can be
pressed in terms of the EulerG function.

We write the differential semileptonic decay width of th
decayb→cln at q25mc

2 as

FdGsl

dq2 G
q25m

c
2
5

GF
2mb

3

96p3 uVcbu2

3FDBorn1
as

p
CFD11S as

p D 2

CFD2G , ~1!

where DBorn,1,2 describe themc /mb dependence in variou
orders in the strong coupling constant. BothDBorn5(1
01403
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2mc
2/mb

2)A124mc
2/mb

2 and D1 are known in a closed ana
lytical form @13,14#. D2 is calculated in the present pape
For the purpose of presentation we divide it up into fo
contributions according to the color factors:

D25A124mc
2/mb

2

3@~CF2CA/2!DF1CADA1TRNLDL1TRDH#.

~2!

The last term,DH , describes the contributions of the massi
b and c quark loops. The top quark contribution is su
pressed by a factor;mb

2/mt
2 and has been neglected. For th

SU~3! group the color factors areCA53, CF54/3, TR

51/2. HereNL53 is the number of the quark flavors whos
masses have been neglected~u, d, ands!.

We have computed 5 terms of the expansion inb[(1
24mc

2/mb
2) of DF,A,L,H . In order to save space, in the fo

mulas presented here we give only numerical values of
coefficients of the second and higher powers ofb @these
coefficients contain ln(b); we useb50.64 to evaluate them#.
We use the modified minimal subtraction (MS) scheme for
the strong coupling constant and normalize it at the sc
Ambmc, which has been proposed as optimal for the se
leptonic b→c transitions, in view of the proximity of the
small velocity limit @15#. Using the pole mass of theb andc
quarks and expressing the one-loop corrections in term
as(Ambmc) we find
DA5
49

96
2

19

96
p2 ln~2!1

121

384
p22

591

128
ln~2!1

179

64
ln2~2!2

51

64
z3

1bF2
89669

6912
2

17

288
p2 ln~2!2

1

12
p2 ln~b!1

43

96
p22

7

6
ln~2!ln~b!1

10225

1152
ln~2!

1
523

192
ln2~2!1

89

64
z31

253

72
ln~b!2

11

24
ln2~b!G22.2631b221.1747b320.3171b4,

DF5
117

16
2

19

128
f 12

3

8
f 32

5

64
f 41

13

12
p2 ln~2!2

173

384
p22

957

64
ln~2!1

409

64
ln2~2!2

57

32
z32

291

32
R2

1bF313

128
2

37

192
f 12

1

16
f 31

7

96
f 41

55

144
p2 ln~2!2

6071

27648
p21

9

4
ln~2!ln~b!

2
1825

144
ln~2!1

179813

13824
ln2~2!1

25

32
z31

465

256
R222 ln~b!G10.11065b210.54858b310.78239b4,

DL5
11

12
2

15

16
ln~2!1bF2699

864
2

1

9
p21

5

6
ln~2!ln~b!2

517

144
ln~2!1 ln2~2!2

13

9
ln~b!1

1

6
ln2~b!G

10.72295b210.62301b310.26442b4,
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DH5
1379

96
1

355

3072
p21

195

64
ln~2!1

3317

512
ln2~2!1

7371

256
R21bF1579

216
1

1891

1024
p21

299

192
ln~2!

1
6343

512
ln2~2!1

11385

256
R2G20.14557b220.075047b320.061437b4. ~3!
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In the above formulas we use the notationf 1,3,4 andR2 for
the values atv51/2 of the so-denoted functions, for whic
analytical formulas are given in@5#. Numerically they give

f 1'3.24460, f 3'12.3201,

f 4'7.83195, R2'20.72946. ~4!

We now would like to estimate the uncalculated rema
der of the series given in Eqs.~3! and the error in the fina
result. In a series(anbn the remainder is less than the la
known term multiplied byb/(12b), provided thatan is a
decreasing sequence, which we assume here. Therefor
estimate the final result by adding to the known terms hal
b/(12b) times the last term. This additional term also giv
a conservative estimate of the error. This procedure does
apply directly toDF , where the coefficients appear to gro
From previous experience with similar calculations we th
that this is because the series describingDF has not yet
achieved its asymptotic behavior;1/n. For example, in the
maximal recoil case@12# the first five terms of the expansio
for DF behave rather wildly; nevertheless, they approxim
the final result with an accuracy of about 25%~fortunately,

FIG. 1. Status of the two-loop QCD corrections to the decab
→c1 leptons. The dashed line denotes the physical region for
actual c quark. Points where the full corrections are known a
circled. An analytical formula is known along the whole zero rec
line @5,6#. The other two points are found from expansions from
base points of the two arrows: at maximal recoil@11# and at the
intersection with the diagonal~present work!.
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the final result forD2 is rather insensitive to this error!. We
assign a similar error bar toDF . For b50.64 we find

DA522.37~5!, DF51.78~50!,

DL51.09~4!, DH520.29~1!. ~5!

Finally, we get, for the correction defined in Eq.~2! ~we add
the errors in quadrature!,

D2524.72~14!. ~6!

We now summarize the information about perturbative c
rections tob→c transitions and estimate theO(as

2) correc-
tion to the total semileptonic decay width of theb quark. We
use the results presented in this paper, as well as in
previous papers@4,5,11#. For arbitraryq2, we define

dGsl

dq2 5
GF

2mb
3

96p3 uVcbu2

3FABorn1
as~Ambmc!

p
CFA11S as

p D 2

CFA2G ~7!

wheremb refers to the pole mass of theb quark.
The BLM part ofA2 was obtained in@8#. The difference

between the completeA2 and A2
BLM is called a non-BLM

correction. We introduce a quantityj,

j~q2!5
A2~q2!2A2

BLM~q2!

ABorn~q2!
, ~8!

which describes the size of the non-BLM correction relat
to the Born term as a function ofq2. The values ofj(q2) for
q250 @11#, q25mc

2 ~this paper! and q25qmax
2 [(mb2mc)

2

@4,5# are, respectively, 0.65, 1.0, and 0.06~for mc /mb50.3!.
These three numbers permit us to estimate theO(as

2) cor-
rection to the semileptonic decay width. For this purpose,
interpolate the non-BLM corrections with the functio
j(q2)5a2q41a1q21a0 , where the coefficientsai are deter-
mined from the above values ofj~0!, j(mc

2), j(qmax
2 ). The

function j(q2) is then integrated overq2, using the Born
differential rate as the weight. As the result one gets an
timate of the non-BLM correction for the total semilepton
decay rate:

*0
~mb2mc!2

dq2ABorn~q2!j~q2!

*0
~mb2mc!2

dq2ABorn~q2!
.1.1. ~9!
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The validity of this estimate can be checked by using
same procedure to obtain an estimate of the BLM correc
for the total decay rate using the known results atq2

50,mc
2 ,(mb2mc)

2 as an input.
Such a fit results in the value of the BLM correctio

28.6(as /p)2, to be compared with the exact result@8#
29.8(as /p)2.1 We conclude that the accuracy of our simp
fit is not worse than 30%, which also includes the errors
the three input data points. We therefore obtain the follow
formula for the total semileptonic decay rateGsl(b→cln l):

Gsl5
GF

2mb
5

192p3 uVcbu2FS mc
2

mb
2D

3F121.67
as~Ambmc!

p
1~29.811.460.4!S as

p D 2G ,
~10!

where F(x)5128x212x2 ln(x)18x32x4 and we used
mc /mb50.3. For the sake of clarity we separated the BL
and the non-BLM parts of the second order corrections.
also explicitly indicated the uncertainty in our estimate of t
second order non-BLM correction.

In principle, Eq.~10! provides the result for the semilep
tonic decay widthb→cln l , when expressed through th
poleb andc quark masses, valid toO(as

2). One notices that
Eq. ~10! contains a large second order correction due to
BLM effects. For a long time this observation seemed
seriously limit the precision inuVcbu, as obtained from the
inclusive method. It was, however, noticed@16,17# that the
large value of the second order BLM corrections is cor
lated with the fact that the pole quark masses were use
Eq. ~10!. It is well established that the pole quark mass
cannot be defined when nonperturbative corrections are
dressed. A hint that this is really the case is given by the
behavior of the perturbation series itself. In the case of
semileptonicb decays the problem is enhanced, since
decay width is proportional to the fifth power of theb-quark
mass.

It was suggested in@16# and then further elaborated i
@15# that the most appropriate masses, to be used in the
pression for the decay width, are the so-called low-scale r
ning quark masses normalized at a scalem;122 GeV. On
the one hand, such masses can be defined on the
perturbative level, on the other~and this is related to the firs
point! their use is expected to minimize the perturbative c
rections to the semileptonic decay width. ToO(as

2) a ~per-
turbative! relation between the pole and the low–scale qu
masses was obtained in@18# and reads

mpole5m~m!1@L~m!#pert1
1

2m~m!
@mp

2 ~m!#pert, ~11!

1Actually, Ref. @8# gives 215.1(as /p)2. We modify that value
by using 4, rather than 3, massless flavors for theas evolution, and
by usingAmbmc, rather thanmb , as its normalization point.
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where

@L~m!#pert5
4

3
CFm

as~m0!

p H 11
as

p F S 4

3
2

1

2
ln

2m

m0
Db0

2CAS p2

6
2

13

12D G J ,

@mp
2 ~m!#pert5CFm2

as~m0!

p H 11
as

p F S 13

12
2

1

2
ln

2m

m0
Db0

2CAS p2

6
2

13

12D G J .

It is important that, in contrast to the pole masses,
low-scale masses do not have any significant numerical
biguity. We use Eq.~11! to rewrite the expression for th
semileptonic decay width~10! through the low-scale masse
normalized atm51 GeV. In the BLM approximation such a
calculation was performed in@16#. As a result, we find that
the perturbative coefficients decrease noticeably:

Gsl~b→cln l !5
GF

2m̃b
5uVcbu2

192p3 FS m̃c
2

m̃b
2D

3F121.14
as~Am̃bm̃c!

p

2~2.6560.40!S as

p D 2G , ~12!

where we have used the values of the low scale runn
quark massesm̃b54.64(5) GeV andm̃c51.25(10) GeV, as
suggested in@1#. Though in@1# the errors assigned to theb
andc quark low scale running mass were considered con
vative, in our opinion this issue is not completely clear an
dedicated analysis is required. It is, however, rather cer
that in contrast to the pole mass, the accuracy ofm̃Q can in
principle be reliably estimated.

We see that the perturbative series for the inclusive wi
appears to behave better when the low scale masses are
in accordance with the theoretical arguments@16,15,1#.

To sum, we have estimated the second order QCD cor
tions to the width of the semileptonicb→c decay. The small
value of these corrections shows that the perturbative se
is not likely to cause any significant uncertainty in theuVcbu
extracted using the inclusive method, provided that the de
width is calculated using the low scale mass definition. F
ther improvement in the theoretical predictions forGsl(B
→Xcln l) will be possible when more precise quark ma
values and the non-perturbative matrix elements have b
determined.
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grals. This work was supported in part by DOE contra
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