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Two-loop QCD corrections to semileptonicb decays at an intermediate recoil
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We present complet@(aﬁ) corrections to the decady—clv, at the point where the invariant mass of the
leptons+/g2 equals thec quark mass. We use this result, together with previously obtained corrections at the
ends of theg? spectrum, to estimate the total width of the semileptdniec decay Wi’[hO(ag) accuracy,
essential for th¢V,| determination[S0556-282(099)06501-7

PACS numbse(s): 13.20.He, 12.15.Hh, 12.38.Bx

Precise determination of the Cabibbo-Kobayashi-given in the literature. It is clear that the problem can be only
Maskawa(CKM) matrix parameters is one of the main goalssolved by an explicit calculation of the complef¥ «?) ef-
of the present and upcoming high energy experiments. Onfects and therefore the need for such a calculation was often
of the three parameters which can be measured with themphasized. In the present paper we demonstrate that, with
highest accuracy ifV.p|, for which there are two comple- the new result presented here, perturbative effects can be
mentary methodsfor a recent review, see e.fl,2]). The estimated with sufficient accuracy.
first one is based on studying the exclusive deBayD* For an arbitrary value off?> (and, by the same token, for
+leptons near the zero recoil end of the phase space. Thhe total width, the calculation of the second order correc-
other, so-called inclusive method examines the total semileptions is a very difficult technical task. In earlier works we
tonic width of theB meson,I's(B— Xl v|). For both deter- presented such results for the two extreme poiits; 0 [11]
minations the experimental precision has reached a few peand g%=(m,—m.)? [4,5]. While at both points the non-
cent level and will be further improved in futuBfactories. BLM corrections were below 1% of the total semileptonic
To fully exploit those measurements, the theoretical predicwidth, it was not clear what happens at intermediate values
tion for theb quark semileptonic width must be known with of g, where a complete calculation appeared infeasible.
comparable precision. This requires a study of both shortNevertheless, from the results in zero and maximal recoil
distance(perturbativé and long-distancénon-perturbative  points it was conjectured ifiL1] that the second order non-
QCD effects. For the exclusive method thi¥a?) correc- BLM corrections to the semileptonic decay widbh-clv,
tions were calculated if8]. Technically, the most challeng- do not exceed 1%. _ _ _
ing part of that calculation was the QCD correction to the ~Since then, we have found another kinematical pajft,
axial b—c current normalization at zero recoil, obtained in =M, Where the complete calculation of the second order
[4,5] and confirmed in a recent studg]. The theoretical QCD corrections is possible. It is fortunate that for the physi-
accuracy of the exclusive method is limited by the errors incal value ofm this roughly corresponds to the middie of the
the non-perturbative matrix elements which are enhancefl range, so that together with the end points we have nicely
due to the not so large mass of tbeuark. distributed information(see Fig. 1

In the inclusive method the non—perturbative corrections Thus, the purpose of this paper is twofold. We first de-
are somewhat smaller, with suppression by2l/ They are scribe a calculation of thé&(«g) correction to the differen-
estimated7] to decrease the meson semileptonic width bytial semileptonic width of thé quark forg?=mZ. We then
approximately 5% compared to the free quark decay rateuse the results obtained in this paper, as well gg}j,11,
With the non-perturbative corrections under control, the perto estimate the)(a?) correction to the semileptonic decay
turbative corrections should be carefully analyzed. Ideallywidth of theb quark.
one would like to know the two loop QCD correction for an ~ We start with a short description of the new calculation of
arbitrary invariant mass squared of the leptogd)(in the  the O(a?) correction forg>=m?2. A complete description of
decayb—cly,. This has been achieved for only a subset ofthe technical details of the present calculation will be pre-
corrections, enhanced by a large factor describing the rursented elsewhere. The basic idea is the expansion of the de-
ning of the strong coupling constaf8]; these so-called cay amplitude in the velocity of the massive quark in the
Brodsky-Lepage-MackenzigBLM) corrections [9] have final state.
been even resummed to all ord¢t®]. However, in the ab- The Feynman diagrams which describe this process can
sence of a complete calculation of the two-loop QCD effectspe divided up into three classes according to the number of
the related uncertainty iV, determined from the inclusive real gluons emitted. In the first group there are the purely
method had to be guessed and various estimates have bedrtual two-loop corrections. Their value is known at the
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point m,=q=my/2 from our previous study on the zero re- —m2/m2)\/1—4mZ/m? andA, are known in a closed ana-
coil line [5]. Since the actual value @fi; is not equaim,/2,  |ytical form [13,14). A, is calculated in the present paper.
we expand the diagrams in the paramegerelated to the  For the purpose of presentation we divide it up into four
difference of these two quantitigsee below. The coeffi-  contributions according to the color factors:

cients of this expansion are given by diagrams with higher

powers of propagators. By solving a system of recurrence

relations, obtained by integration by parts, we found an al- N e ]

gorithm with which all these Feynman integrals can be ex- A= V1= 4mc/m;

pressed in terms of four non-trivial functions, given below in X[(Ce—Cal2)Ap+CaAp+TrN A +TrAR].

Eqg. (4), and some simplefsingle-scalg Feynman integrals.

This is the most challenging part of this calculation and it 2)
limits the number of terms we have been able to obtain using

the present computing facilities.

In the other two groups there are diagrams with two real’he last termA, , describes the contributions of the massive
gluons or one real gluon and a virtual loop. It is relatively 0 and ¢ quark loops. The top quark contribution is sup-
easy to perform calculations in these cases ugglightly — pressed by a factor m2/m? and has been neglected. For the
modified computational techniques described in detall inSU(3) group the color factors ar€,=3, Cr=4/3, Ty

[12]. This possibility is related to the fact that fqf = m the  =1/2. HereN =3 is the number of the quark flavors whose
three- and four-particle phase space integrals can be exaasses have been neglectedd, ands).
pressed in terms of the Eulé&rfunction. We have computed 5 terms of the expansionGax(1
We write the dlfferentlal semileptonic decay width of the —4m?/m?2) of Ag AL p- In order to save space, in the for-
decayb—clv atg®= m as mulas presented here we give only numerical values of the
coefficients of the second and higher powers@fthese
& G | 2 coefficients contain Inf); we use=0.64 to evaluate thein
dg? 9673 ! P We use the modified minimal subtractioM$) scheme for

the strong coupling constant and normalize it at the scale

vmpm;, which has been proposed as optimal for the semi-
(1) leptonic b—c transitions, in view of the proximity of the

small velocity limit[15]. Using the pole mass of theandc
where Ag,m 1 2 describe them./m, dependence in various quarks and expressing the one-loop corrections in terms of
orders in the strong coupling constant. Bofty,,,=(1 as(\Vmyme) we find

2
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In the above formulas we use the notatitig 4 andR, for  the final result forA, is rather insensitive to this erpoiwWe
the values ato=1/2 of the so-denoted functions, for which assign a similar error bar tag. For 3=0.64 we find
analytical formulas are given ir5]. Numerically they give

Ap=—-2.375), A=1.7850),

f,~3.24460, f,~12.3201,
A =1.094), Ay=-0.291). (5)

f4~7.83195, Rp~—0.72946. ) Finally, we get, for the correction defined in E) (we add

We now would like to estimate the uncalculated remain—the errors in quadratuye

der of the series given in Eq€3) and the error in the final Ay=—4.7214). (6)
result. In a serie¥a,B" the remainder is less than the last

known term multiplied byg/(1— ), provided thata, is a
decreasing sequence, which we assume here. Therefore
estimate the final result by adding to the known terms half of . . i )
BI(1— B) times the last term. This additional term also givestion 10 the total semileptonic decay width of theguark. We

a conservative estimate of the error. This procedure does nis€ the results presented in this paper, as well as in our
apply directly toAr, where the coefficients appear to grow. Previous paperga,5,11. For arbitraryq®, we define

From previous experience with similar calculations we think

that this is because the series describihg has not yet dry GZmd

_>x_ B D 2
achieved its asymptotic behavierl/n. For example, in the dg? ~ 967° Vel

ag(\mpmc) c
o

\)Oée now summarize the information about perturbative cor-
]rections tob— c transitions and estimate th®( ag) correc-

maximal recoil cas§l2] the first five terms of the expansion
for Ar behave rather wildly; nevertheless, they approximate

the final result with an accuracy of about 25%6rtunately, X| AgomT

ag\?
FA1+(?) CFAZ} (7)

0 wherem, refers to the pole mass of tiequark.

The BLM part of A, was obtained if8]. The difference
between the completd, and A3*M is called a non-BLM

correction. We introduce a quantity

Ax(9*)—AZM(g?)
% L T N ®

8

which describes the size of the non-BLM correction relative
(/2,«@ to the Born term as a function of. The values of(qg?) for
q?=0 [11], g>=m; (this papey and q*= g} ,=(m,—m)?
[4,5] are, respectively, 0.65, 1.0, and 0.06r m./m,=0.3).
These three numbers permit us to estimate@hei) cor-
rection to the semileptonic decay width. For this purpose, we
interpolate the non-BLM corrections with the function
) £(g?) =a,q*+a,0%+a,, where the coefficients; are deter-
0 e m, c-quark mined from the above values @f0), £(m?), £(q3,,). The
Maximal Recoil Line mass function £(q?) is then integrated oveg?, using the Born
differential rate as the weight. As the result one gets an es-
fimate of the non-BLM correction for the total semileptonic
decay rate:

Leptons invariant mass q

&
$

FIG. 1. Status of the two-loop QCD corrections to the delsay
—c+leptons. The dashed line denotes the physical region for th
actual ¢ quark. Points where the full corrections are known are
circled. An analytical formula is known along the whole zero recoil

_ 2
line [5,6]. The other two points are found from expansions from the fémb me) do?Agom(a?)€(9?)
base points of the two arrows: at maximal reddil] and at the (My—mo)2y 2 > = 9
intersection with the diagon@present work J 0 dg*Agorn(9°)
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The validity of this estimate can be checked by using thevhere
same procedure to obtain an estimate of the BLM correction

for the total decay rate using the known results cgt (AT 4 S(MO)( as (f—lln Z_M)

=0,m2,(m,—my)? as an input. ) Jper™ 3 -FH 3 2 w)T°
Such a fit results in the value of the BLM correction 2

—8.6(as/7)?, to be compared with the exact res(i] -C (Tr__l_s)”

—9.8(as/ )21 We conclude that the accuracy of our simple AMe  12/))

fit is not worse than 30%, which also includes the errors in
the three input data points. We therefore obtain the following
formula for the total semileptonic decay rdig(b—cly)):

as( o) a
(45 11) Jper= Crpa® —— [1+ :

|

N — 2 It is important that, in contrast to the pole masses, the
%|1-1.67 as(VMpMe) +(—9.8+ 1'4i0'4)(%> } low-scale masses do not have any significant numerical am-

™ ™ biguity. We use Eq(11) to rewrite the expression for the
(10) semileptonic decay widtfiL0) through the low-scale masses
normalized afu=1 GeV. In the BLM approximation such a
calculation was performed if16]. As a result, we find that
the perturbative coefficients decrease noticeably:

6 12

2 13)

GZmp m§ —Cp
FSl 192773 |VCb| Fl = b

where F(x)=1-8x—12x? In(x)+8—x* and we used
m./m,=0.3. For the sake of clarity we separated the BLM
and the non-BLM parts of the second order corrections. We |Vcb|2 2
also explicitly indicated the uncertainty in our estimate of thel’ (b—clv,) = —3 ( )
second order non-BLM correction. 192m

In principle, Eq.(10) provides the result for the semilep-
tonic decay widthb—cly,, when expressed through the
poleb andc quark masses, valid ©9(«2). One notices that
Eqg. (10) contains a large second order correction due to the
BLM effects. For a long time this observation seemed to
seriously limit the precision ifV.y|, as obtained from the —(2.65+0.40
inclusive method. It was, however, noticEtb,17] that the
large value of the second order BLM corrections is correwhere we have used the values of the low scale running
lated with the fact that the pole quark masses were used iguark masseg,=4.64(5) GeV andn.=1.25(10) GeV, as
Eqg. (10). It is well established that the pole quark massessuggested ifil]. Though in[1] the errors assigned to tle
cannot be defined when nonperturbative corrections are adndc quark low scale running mass were considered conser-
dressed. A hint that this is really the case is given by the bagative, in our opinion this issue is not completely clear and a
behavior of the perturbation series itself. In the case of thejedicated analysis is required. It is, however, rather certain
semileptonicb decays the problem is enhanced, since thehat in contrast to the pole mass, the accuracjhgfcanin
decay width is proportional to the fifth power of thequark  principle be reliably estimated.
mass. We see that the perturbative series for the inclusive width

It was suggested if16] and then further elaborated in appears to behave better when the low scale masses are used,
[15] that the most appropriate masses, to be used in the exn accordance with the theoretical argumelrits, 15, 1.
pression for the decay width, are the so-called low-scale run- To sum, we have estimated the second order QCD correc-
ning quark masses normalized at a sqale1—2 GeV. On tions to the width of the semileptonic— ¢ decay. The small
the one hand, such masses can be defined on the nowalue of these corrections shows that the perturbative series
perturbative level, on the othéand this is related to the first is not likely to cause any significant uncertainty in {he,|
point) their use is expected to minimize the perturbatwe corextracted using the inclusive method, provided that the decay
rections to the semileptonic decay width. @{a?) a (per-  width is calculated using the low scale mass definition. Fur-
turbative relation between the pole and the low—scale quarkher improvement in the theoretical predictions fog(B
masses was obtained [it8] and reads —Xclv) will be possible when more precise quark mass
values and the non-perturbative matrix elements have been
determined.

i

ag( VM)
o

X|1-1.14

s 2}
— | (12
v

1
Mpole™ m(/v‘)+[A(//«)]pert+ m[ﬂi(#)]perta (11 )
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