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Nonrelativistic pion interactions and the pionium lifetime
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We construct an effective Lagrangian for interacting pions with non-relativistic energies. The coupling
constants can be expressed in terms of the different scattering lengths and slopes. When used in the calculation
of the pionium decay rate, the scattering slope contribution gives a correction of about 8% compared with the
lowest order contribution coming from the scattering lengths alone.@S0556-2821~98!07623-1#

PACS number~s!: 12.39.Fe, 03.65.Nk, 11.10.St, 36.10.Gv
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Pionium is a hadronic atom ofp1 andp2 bound by the
Coulomb force. It is highly unstable via the strong dec
p11p2→p01p0 which probes the low-energy interac
tions of the pions. As such it can be used to test more ac
rately the predictions of chiral perturbation theory which
an effective theory for QCD at low energies@1,2#. It was first
constructed by Weinberg who used it at the tree level
calculate thepp scattering amplitudes in agreement wi
current algebra results@3#. Since then the results have be
improved with one-loop corrections by Gasser and Le
wyler @4# and are now carried to two-loop order@5#. On the
other hand, the experimental values of these scattering
plitudes are still very uncertain. For instance, the isosp
zeroS-wave scattering length is known with only 20% acc
racy @6#.

Recently a lot of interest has been generated by the
sibility of a more accurate determination of scatteri
lengths from measurements of the hadronic decay of
onium @7,8#. In order for this to succeed, one must have
complete understanding of the different effects acting in
decay process. Since the pions in this hadronic atom
non-relativistic, they can be described by an effective the
expanded in terms of operators of increasing dimensions
volving pion fields and their derivatives. By matching it
relativistic chiral perturbation theory or experiments, thea
priori unknown coupling constants can be determined. It w
be done in the following to orderp2 wherep is the momen-
tum of the pions. To this order the different scattering a
plitudes are characterized by a scattering lengtha and a scat-
tering slopeb which then determine the coupling constan

The same, effective Lagrangian also determines the
namics of the bound pions in the pionium atom. Since
have a strictly non-relativistic system, we can use the o
nary Schro¨dinger equation to calculate the wavefunctio
and there is no need for covariant formalisms like the Bet
Salpeter equation or others. This is in the very spirit of no
relativistic QED ~NRQED! established by Caswell and Le
page@9,10# and used with great success for muonium@11#
and positronium@12#. In this non-relativistic framework one
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can then systematically calculate corrections to the differ
energy levels. In particular, a complex contributionDE sig-
nals that the corresponding state is unstable with a decay
given byG522 Im DE and thus with lifetimet51/G.

The dominant part of the pionium decay comes from
constant part of the amplitude forp11p2→p01p0, i.e.
from the scattering length. In the following we will show th
the energy dependence of the amplitude, or the scatte
slope, gives an additional contribution which is around 8
of the leading term. It is an important correction and larg
than typical electromagnetic corrections which have be
considered until now@7,8#.

Non-relativistic pions are described by the compl
Schrödinger fieldsp5(p1 ,p0 ,p2) wherep1 annihilates a
p1, p2* creates ap2 and so on. The free fields are de
scribed by the Lagrangian

L0~p i !5p i* S i
]

]t
1

1

2mi
¹2Dp i . ~1!

The masses ofp1 andp2 are the same and will be denote
by m1 while p0 has a slightly lower mass denoted bym0 .
We could also include here the relativistic propagator corr
tion }p i* ¹4p i , but we will ignore such small corrections i
the following. In the same vein, we will not consider ele
tromagnetic effects although they are in general importan
the problem under consideration.

For the interacting partLint we will assume exact isospin
invariance and onlyS-wave interactions. We then find tha
the lowest order interaction can only involve two possib
couplings:

Lint~p!5G0~p* •p!~p* •p!1H0~p* •p* !~p•p!. ~2!

Thus, we have the full LagrangianL5L0(p1)1L0(p0)
1L0(p2)1Lint(p). The interaction has dimension six an
is thus not renormalizable in the ordinary sense. But con
ered as an effective theory, it can be renormalized to ev
order in the expansion ofLint in higher-dimensional opera
tors. It has essentially the same form as a correspond
effective theory proposed for non-relativistic nucleons
-
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Weinberg@13# and recently improved by Kaplan, Savage a
Wise for np scattering@14# and the deuteron@15#. The di-
vergent loop integrals can be regularized by a momen
cutoff, but as for most effective theories, it is much mo
efficient to use dimensional regularization with minimal su
traction. We will use this method in the following.

For dimensional reasons we know that the coupling c
stantsG0 andH0 must be}1/m2 where the ‘‘heavy mass’’
m in our case is the pion mass. They can be obtained
matching to relativistic chiral perturbation theory or direc
to experiments. Performing the matching in the first way,
find to lowest order in the expansion of the chiral Lagrang
the effective couplingsG0521/8f p

2 andH0513/16f p
2 with

the pion decay constantf p592.5 MeV. The resulting cou
plings between pions in different isospin channels can n
be deduced from Eq.~2! which takes the form

Lint~p!5
1

4
A0~p0* p0* p0p0!1B0~p1* p2* p1p2!

1
1

2
C0~p1* p2* p0p01p0* p0* p1p2!

1
1

4
D0~p1* p1* p1p11p2* p2* p2p2

12p1* p0* p1p012p2* p0* p2p0! ~3!

when written out. With the above tree-level values for t
two fundamental coupling constants, we now haveA0

5B0/25C0/352D0/251/4f p
2 .

In order to compare with experiments, we calculate
S-wave scattering amplitudeT(p) wherep is the c.m. mo-
mentum of the pions. The real part is usually defined by

Re T~p!5
8p

mp
2 S a1b

p2

mp
2 D ~4!

in terms of the scattering lengtha and the slope parameterb
which gives the energy dependence of the amplitude to l
est order@6#. With the above values for the coupling co
stants, it is now straightforward to read off Weinberg’s sc
tering lengths in the different isospin channels@3# from the
Lagrangian Eq.~3!.

Instead of using these results from chiral perturbat
theory at tree level, we can instead match the coupling c
stants to the measured cross sections, i.e. to the obse
S-wave scattering lengthsa0 anda2 for isospinI 50 andI
52 respectively and the corresponding scattering slopes
connection with pionium we will be especially interested
the processp11p2→p01p0. To lowest order in pertur-
bation theory the scattering amplitude is given by the Fe
man diagram in Fig. 1 which gives

T~0!~p11p2→p01p0!5
8p

3mp
2 ~a02a2!5C0 . ~5!
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We thus haveC0 directly expressed in terms of measur
scattering lengths. Considering related processes, we
similarly obtain the other coupling constants,

A05
8p

3mp
2 ~a012a2!, B05

8p

3mp
2 ~a01a2/2!, D05

8p

mp
2 a2

~6!

when we combine scattering amplitudes with definite is
pin.

So far these relations are only valid at tree level of t
effective theory. The scattering amplitudes are real and u
tarity is thus not satisfied. This can be achieved by going
higher orders in perturbation theory. Again consideringp1

1p2→p01p0, we have two one-loop diagrams of th
form shown in Fig. 2. One containsp1p2 and the other
p0p0 in the intermediate state. Ignoring here the mass
ferences, they give the correction

T~1!~p11p2→p01p0!52S B0C01
1

2
A0C0D I ~p!

~7!

where the factor of 1/2 is due to the two identical particles
the p0p0 intermediate state.

The integral over intermediate momenta

I ~p!5E d3k

~2p!3

1

E2k2/mp1 i e
~8!

whereE5p2/mp is the total c.m. energy, is seen to be li
early divergent. Using now dimensional regularization w

FIG. 1. Tree-level contribution to the scattering process due
the contact termC0 .

FIG. 2. One-loop contributions to the scattering amplitude
1-2
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NONRELATIVISTIC PION INTERACTIONS AND THE . . . PHYSICAL REVIEW D 59 014031
minimal subtraction@14#, it is simply given by I (p)5
2 i upump/4p. Using instead a momentum cutoffL, it would
contain a term proportional withL. This could then be ab
sorbed by renormalization of the coupling constantC0 . The
net result is either way a purely imaginary result which ari
from the unitarity requirement, but does not contribute to
scattering length or slope parameter in Eq.~4!.

However, going to two loops as in Fig. 3 we will obta
corrections to the tree-level results. The two intermedi
bubbles can again contain ap1p2 or ap0p0 pair. Summing
up the four contributions from combinations of differe
bubbles, we then have the next order correction

T~2!~p11p2→p01p0!

5S 1

2
C0

31
1

2
A0B0C01

1

4
A0

2C01B0
2C0D I 2~p!

52
8p

3mp
4 ~a02a2!~a0

21a0a21a2
2!p2 ~9!

after regularization. It is seen to give an energy depende
of the scattering amplitude proportional top2 and thus con-
tribute to the slope parameter in Eq.~4!. But such an energy
dependence at two-loop level can also result at tree le
from an operator in the Lagrangian containing two deriv
tives. More specifically, for thep11p2→p01p0 channel
we consider here, we must include higher dimensional
erators in the expansion of the effective Lagrangian.
S-wave interactions there is only one such possible oper
to lowest order in the derivative expansion,

Lint~p1p2p0p0!

5
1

2
C0~p1* p2* p0p0!

1
1

4
C2~p1* p2* p0“

J
2p01p1* “J

2p2* p0p0!1H.c.

~10!

Here the gradient is defined as“J51/2(¹W 2¹J ). It corre-
sponds to the vertexV̂2 in Fig. 4 with the valuê puV̂2uq&
5 1

2 C2(p21q2) in the c.m. reference frame.
Adding this contribution to the two-loop result Eq.~9! and

matching to the definition of the full scattering amplitude
Eq. ~4!, we have

FIG. 3. Two-loop contributions to the scattering amplitude
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T~2!2C2p25
8p

3mp
2

p2

mp
2 ~b02b2!

which gives

C252
8p

3mp
4 @~b02b2!1~a02a2!~a0

21a0a21a2
2!#.

~11!

Since this is a coupling constant in the effective Lagrangi
it can also be used for bound state problems. There are
‘‘off-shell’’ problems in this approach.

We are now in the position to consider decay of pioniu
The ground state with wave functionC(r ) has the energy
E52m1(12a2/8). It will be perturbed by the different had
ronic contact interactions in Eq.~3!. For instance, at tree
level we get a real energy shift from the elastic couplingB0 .
Its magnitude is simply2B0uC(0)u2 where the wave func-
tion at the origin isuC(0)u25g3/p with g5am1/2. It is
proportional to the scattering lengtha01a2/2. This is the
hadronic energy level shift discussed first by Deser, Go
berger, Baumann and Thirring@16#.

At next order in perturbation theory we must evaluate
diagram in Fig. 5 with ap1p2 in the intermediate state. I
gives also a real, but smaller contribution proportional
(a01a2/2)2. However, the same diagram, but now with
p0p0 in the intermediate state, is purely imaginary. In t
bound state picture it is given by the matrix element

DE5
1

2 E d3p

~2p!3 E d3k

~2p!3 E d3q

~2p!3 C* ~p!

3C0

1

2Dm2k2/m01 i e
C0C~q! ~12!

FIG. 4. Vertex due to the double-derivative couplingC2 .

FIG. 5. One-loop correction to the ground state energy le
which gives the decay rate.
1-3
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XINWEI KONG AND FINN RAVNDAL PHYSICAL REVIEW D 59 014031
as first shown by Labelle@8# using non-relativistic effective
field theory. HereDm5m12m0 gives the energy of the
intermediate state and

C~p!5
8p1/2g5/2

~p21g2!2 ~13!

is the Fourier transform of the ground-state wave function
gives the probability to find the momentump in this state.
Using the regularized value of the integral Eq.~8!, we obtain

DE52 i
m0

8p
C0

2A2Dmm0uC~0!u2. ~14!

This imaginary result signals that the ground state is unst
and will decay with a rateG522 Im DE induced by the
hadronic couplingC0 . With the value given in Eq.~5! it
becomes

G5
16p

9mp
2 uC~0!u2

m0
2

mp
2 A2Dm

m0
~a02a2!2 ~15!

which is the standard result.
However, there is some implicit uncertainty here in wh

value to use for the pion massmp . It comes from the defi-
nition of the scattering lengths for both charged and neu
pions. Taking it to be the charged massm1 for both of them,
we can write the rate asG5G0(123Dm/2m1) where

G05
16p

9m1
2 uC~0!u2A2Dm

m1
~a02a2!2. ~16!

SinceDm/m150.033, the last factor represents a 5% red
tion of the main decay rate Eq.~16!. Such kinematic correc
tions will be important in a future experimental determin
tions of the scattering lengths from the measured pion
decay rate.

Evaluating the two-loop correction to the ground-state
ergy, we find a purely real result since each bubble gives
imaginary contribution. Therefore in the order we are wo
ing at, the two-loop correction to the decay rate is zero.

The above standard result for the decay rate is due to
constant part of thep11p2→p01p0 amplitude, i.e. the
corresponding scattering length. But it has also an ene
dependent component parameterized by the scattering s
b in Eq. ~4!. We can now easily calculate this effect to low
est order in the corresponding derivative couplingC2 in the
Lagrangian Eq.~10!. It results from evaluating the same di
gram in Fig. 5 but with one of theC0 vertices replaced with
the C2 vertex from Fig. 4. This gives the additional contr
bution

DE~2!52E d3p

~2p!3 E d3k

~2p!3 E d3q

~2p!3 C* ~p!

3C0

1

2Dm2k2/m01 i e

1

2
C2~k21q2!C~q!

~17!
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to the ground-state level shift Eq.~12!. The integrations over
momentak andq are now even more divergent than in th
first contribution. But again we invoke dimensional regula
ization. We then find that the part coming from theq2 can be
neglected since it is smaller by a factora2m0 /Dm. Thus the
integral overq just givesC~0!. Writing the integral overk as

E d3k

~2p!3

k2

2Dmm02k21 i e

5E d3k

~2p!3 F 2Dmm0

2Dmm02k21 i e
21G , ~18!

we see that the last term is zero with dimensional regular
tion while the first part is just the previous integral Eq.~8!,
used in the calculation of the main level shift. In this way w
obtain the finite result

DE~2!5 i
m0

4p
C0C2Dmm0A2Dmm0uC~0!u2. ~19!

Using now Eq.~11! for the coupling constantC2 , we thus
obtain the corresponding correctionDG (2) to the decay rate.
It can be written as

DG~2!

G0
52

Dm

m1
Fb02b2

a02a2
1~a0

21a0a21a2
2!G ~20!

when we writem05m1 to leading order in the mass differ
ence. The experimental values@6# of scattering lengths and
slopes area050.2660.05, a2520.02860.012 and b0
50.2560.03, b2520.08260.008. Using these, we find
that the first term is more than an order of magnitude lar
than the last. Combined, this amount to a 7.6%10.4%
58.0% correction to the main decay rate. On the other ha
using just the tree-level values@6#, we obtain the very similar
result 8.6%10.1%58.7%. With values from higher orde
chiral perturbation theory, the result is again not much d
ferent. The overall hadronic correction is sizable and lar
than other known corrections of electromagnetic origin@7,8#.

As a rough check of this rather large correction, we c
try to estimate the decay rate directly from the matrix e
ment Eq. ~4! for p11p2→p01p0 with a5(a02a2)/3
andb5(b02b2)/3. TakingG}uTu2, we obtain to lowest or-
der in the scattering slope the correction factor 112(b/
a)(^p2&/mp

2 ) to the standard result Eq.~15!. Dividing the
average momentum̂p2& equally between the initial stat
where it isg2 and can thus be neglected and the final st
where it is 2Dmmp , we have exactly the dominant term i
the more accurate result Eq.~20!.
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