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Nonrelativistic pion interactions and the pionium lifetime
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We construct an effective Lagrangian for interacting pions with non-relativistic energies. The coupling
constants can be expressed in terms of the different scattering lengths and slopes. When used in the calculation
of the pionium decay rate, the scattering slope contribution gives a correction of about 8% compared with the
lowest order contribution coming from the scattering lengths alpp@556-282(198)07623-1

PACS numbgs): 12.39.Fe, 03.65.Nk, 11.10.St, 36.10.Gv

Pionium is a hadronic atom af* and 7~ bound by the can then systematically calculate corrections to the different
Coulomb force. It is highly unstable via the strong decayenergy levels. In particular, a complex contributidi sig-
7"+ 7 —a%+ 7% which probes the low-energy interac- nals that the corresponding state is unstable with a decay rate
tions of the pions. As such it can be used to test more accugiven byl’=—2 Im AE and thus with lifetimer=1/T".
rately the predictions of chiral perturbation theory which is  The dominant part of the pionium decay comes from the
an effective theory for QCD at low energis2]. It was first ~ constant part of the amplitude far™+ 7~ — 7%+ 7, i.e.
constructed by Weinberg who used it at the tree level tdrom the scattering length. In the following we will show that
calculate thews scattering amplitudes in agreement with the energy dependence of the amplitude, or the scattering
current algebra resul{8]. Since then the results have beenslope, gives an additional contribution which is around 8%
improved with one-loop corrections by Gasser and Leutof the leading term. It is an important correction and larger
wyler [4] and are now carried to two-loop ordgF]. On the  than typical electromagnetic corrections which have been
other hand, the experimental values of these scattering angonsidered until nov7,8].
plitudes are still very uncertain. For instance, the isospin- Non-relativistic pions are described by the complex
zeroS-wave scattering length is known with only 20% accu- Schralinger fieldsm= (7., ,mo,7_) wherew . annihilates a
racy [6]. «*, w* creates ar~ and so on. The free fields are de-
Recently a lot of interest has been generated by the poscribed by the Lagrangian
sibility of a more accurate determination of scattering
lengths from measurements of the hadronic decay of pi- P 1
onium [7,8]. In order for this to succeed, one must have a [,0(77i)=77'i*(i—+ P VZ) . (1)
complete understanding of the different effects acting in the
decay process. Since the pions in this hadronic atom are
non-relativistic, they can be described by an effective theoryThe masses ofr, and«_ are the same and will be denoted
expanded in terms of operators of increasing dimensions iney m_, while 7 has a slightly lower mass denoted by.
volving pion fields and their derivatives. By matching it to We could also include here the relativistic propagator correc-
relativistic chiral perturbation theory or experiments, #e tion o« V47, but we will ignore such small corrections in
priori unknown coupling constants can be determined. It willthe following. In the same vein, we will not consider elec-
be done in the following to ordgs” wherep is the momen-  tromagnetic effects although they are in general important in
tum of the pions. To this order the different scattering am-the problem under consideration.
plitudes are characterized by a scattering lergéind a scat- For the interacting part;,, we will assume exact isospin
tering slopeb which then determine the coupling constants.invariance and onlys-wave interactions. We then find that
The same, effective Lagrangian also determines the dythe lowest order interaction can only involve two possible
namics of the bound pions in the pionium atom. Since wecouplings:
have a strictly non-relativistic system, we can use the ordi-
nary Schrdinger equation to calculate the wavefunctions
and there is no need for covariant formalisms like the Bethe-
Salpeter equation or others. This is in the very spirit of non-
relativistic QED (NRQED) established by Caswell and Le- Thus, we have the full Lagrangiad=Ly(7,)+ Lo(7g)
page[9,10] and used with great success for muoni{i] + Lo(7_) + Lin(7). The interaction has dimension six and
and positroniun12]. In this non-relativistic framework one is thus not renormalizable in the ordinary sense. But consid-
ered as an effective theory, it can be renormalized to every
order in the expansion of;,; in higher-dimensional opera-
*Permanent address: Institute of Physics, University of Oslo, Ntors. It has essentially the same form as a corresponding
0316 Oslo, Norway. effective theory proposed for non-relativistic nucleons by

Lint(m)=Go(a* - @) (7" - ) +Ho(w" - ) (- 1). (2)

0556-2821/98/5d)/0140315)/$15.00 59014031-1 ©1998 The American Physical Society



XINWEI KONG AND FINN RAVNDAL PHYSICAL REVIEW D 59 014031

Weinberg[13] and recently improved by Kaplan, Savage and + 0
Wise for np scattering[14] and the deuterofl5]. The di- T T
vergent loop integrals can be regularized by a momentum
cutoff, but as for most effective theories, it is much more
efficient to use dimensional regularization with minimal sub-
traction. We will use this method in the following.
For dimensional reasons we know that the coupling con-
stantsG, andH, must bex1/m? where the “heavy mass”
m in our case is the pion mass. They can be obtained by
matching to relativistic chiral perturbation theory or directly
to experiments. Performing the matching in the first way, we T 7.{.O
find to lowest order in the expansion of the chiral Lagrangian
the effective coupling&y= — l/8f,2T andH,= +3/16ff, with FIG. 1. Tree-level contribution to the scattering process due to
the pion decay constarit,=92.5 MeV. The resulting cou- the contact ternC,.
plings between pions in different isospin channels can now

be deduced from Ed2) which takes the form
We thus haveC, directly expressed in terms of measured

scattering lengths. Considering related processes, we can

Lin(m) = ZAo(WS 7k mome) + Bo(mt s m_) similarly obtain the other coupling constants,

8 8 8
AOZW(aOJanz), BO:W(aO"_ a,/2), Do=—7a,

+§C0(7Ti77’f770770+ Y M T T_) W(G)

when we combine scattering amplitudes with definite isos-
pin.

So far these relations are only valid at tree level of the
effective theory. The scattering amplitudes are real and uni-
tarity is thus not satisfied. This can be achieved by going to
when written out. With the above tree-level values for thehigher orders in perturbation theory. Again considering
two fundamental coupling constants, we now hatg +7 —a°+7° we have two one-loop diagrams of the
=Bo/2=C/3=—D,/2= ]_/4ffr_ form shown in Fig. 2. One contains® 7~ and the other

In order to compare with experiments, we calculate them’7° in the intermediate state. Ignoring here the mass dif-
S-wave scattering amplitud&(p) wherep is the c.m. mo- ferences, they give the correction
mentum of the pions. The real part is usually defined by

+ZD0(7Ti7Ti7T+7T++7T’i7T’i7T,7T,

+2m mymy mo+ 2wt my ) (3)

1
T(7 + 7 -7+ 7% =— ( BoCo+ EAoco) 1(p)
2
L @)
a+bm2) (4)

ko

8
ReT(p)zW

where the factor of 1/2 is due to the two identical particles in
the 7970 intermediate state.

in terms of the scattering lengthand the slope parametir The integral over intermediate momenta

which gives the energy dependence of the amplitude to low-

est order[6]. With the above values for the coupling con- d3k 1

stants, it is now straightforward to read off Weinberg’s scat- |(P)=f (2m) E-KIm_+ie (8)
tering lengths in the different isospin channg$ from the ”

Lagrangian Eq(3). whereE=p?/m,, is the total c.m. energy, is seen to be lin-

Instead of using these results from chiral perturbationearly divergent. Using now dimensional regularization with
theory at tree level, we can instead match the coupling con-

stants to the measured cross sections, i.e. to the observed + 0
S-wave scattering lengtha, anda, for isospinl =0 and| Q T
=2 respectively and the corresponding scattering slopes. In
connection with pionium we will be especially interested in
the processr™ + 7~ — 7%+ #%. To lowest order in pertur-
bation theory the scattering amplitude is given by the Feyn-
man diagram in Fig. 1 which gives
8 i 7TO
TO(r + 7" -7+ 7%= —5(ag—a,)=Cy. (5
3m7 FIG. 2. One-loop contributions to the scattering amplitude.
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™ 9

FIG. 3. Two-loop contributions to the scattering amplitude.

T 0
minimal subtraction[14], it is simply given by I(p)= o .
—i|p|m, /4. Using instead a momentum cutoff it would FIG. 4. Vertex due to the double-derivative coupli@g.

contain a term proportional witih. This could then be ab-

sorbed by renormalization of the coupling const@gt The ,
net result is either way a purely imaginary result which arises T _c.p2= 87 P_(b —b,)
from the unitarity requirement, but does not contribute to the 2P T3z mz P02

scattering length or slope parameter in E4).
However, going to two loops as in Fig. 3 we will obtain which gives
corrections to the tree-level results. The two intermediate

bubbles can again containma 7~ or a’#° pair. Summing 8 , ,
up the four contributions from combinations of different ~ Co=— 27 [(bo—b2)+ (80— az)(as+a¢a,+a3)].
bubbles, we then have the next order correction g (11)
T (m + 7 —a'+a) Since this is a coupling constant in the effective Lagrangian,
1,1 1, , , it can also be used for bound state problems. There are no
= §C0+ EAOBOCO+ ZA0C0+ BoCo|l°(p) “off-shell” problems in this approach.

We are now in the position to consider decay of pionium.
8 ) . The ground stzate with_wave functiokr(r) has _the energy
=- 3W(ao— ay)(agtagay+az)p (9  E=2m,(1-a?8). It will be perturbed by the different had-
™ ronic contact interactions in Ed3). For instance, at tree
o . . level we get a real energy shift from the elastic couplhg
after regularization. It is seen to give an energy dependencﬁs magnitude is simply-B,| ¥ (0)|2 where the wave func-
of the scattering amplitude proportional p8 and thus con- tion at the origin is| ¥ (0)|2= y3/7 with y=am./2. It is
tribute to the slope parameter in He). But such an energy roportional to the scattering lengty+a,/2. Tﬁis is the
dependence at two—loop level can also rgs_ult at tree !ev‘ﬁadronic energy level shift discussed first by Deser, Gold-
from an operator in the Lagrangian containing two der'va'berger, Baumann and Thirririd6].

i i +4.— .04, 0
tives. More specifically, for ther + 7" — s+ o~ channel At next order in perturbation theory we must evaluate the
we consider here, we must include higher dimensional OPgiagram in Fig. 5 with ar* 7 in the intermediate state. It

erators in the expansion .Of the effective Lagrangian. Fok; eq 5150 a real, but smaller contribution proportional to
S-wave interactions there is only one such possible operat ao+a,/2)%. However, the same diagram, but now with a
to lowest order in the derivative expansion, w70 in the intermediate state, is purely imaginary. In the

+ - 0.0 bound state picture it is given by the matrix element
Lin(m™ 7 mom)

= 5 Co(m} m* momo) AE:E

1 f d3p d3k d3q
2 (

271_)3 (277)3 (277)3\P*(p)

1 - -
+ ZCZ(W:Wt moV 2o+ X V2t mamg) + H.C. X Co 2Am—kImgtie Co¥(q) (12

(10

Here the gradient is defined £=1/2(€—€). It corre-

sponds to the verte¥, in Fig. 4 with the value(p|V,|q)
=1 C,(p?+q?) in the c.m. reference frame.

Adding this contribution to the two-loop result E§) and
matching to the definition of the full scattering amplitude in  FIG. 5. One-loop correction to the ground state energy level
Eqg. (4), we have which gives the decay rate.
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as first shown by Labellg8] using non-relativistic effective to the ground-state level shift E(L2). The integrations over
field theory. HereAm=m, —mg gives the energy of the momentak andqg are now even more divergent than in the

intermediate state and first contribution. But again we invoke dimensional regular-
12 512 ization. We then find that the part coming from tiffecan be
W(p)= 8%y (13 neglected since it is smaller by a faciefm,/Am. Thus the
P (p%+v°)? integral overg just gives¥(0). Writing the integral ovek as
is the Fourier transform of the ground-state wave function. It d3k K2
gives the probability to find the momentumin this state. f 3 —
Using the regularized value of the integral E8), we obtain (2m)° 2Ammy—k+ie
m B d3k 2Ammy, 1 18
AE=—i8—;C§\/2Amnb|\P(O)|2. (14) ) @m)3|2Amm—KZ+ie | (18

This imaginary result signals that the ground state is unstabl@€ see that the last term is zero with dimensional regulariza-

and will decay with a ratd’=—2 Im AE induced by the tion while the first part is just the previous integral &),
hadronic couplingC,. With the value given in Eq(5) it used in the calculation of the main level shift. In this way we

becomes obtain the finite result
167 m;  [2Am AE@=i 0 ¢ c,AmmyZAmmy| ¥(0))2. (19
r= gmi|\1f(0)|2m—i m—o(ao—az)z (15) i 7 CoCoAmmy2Ammy| W (0)[%. (19
which is the standard result. Using now Eq.(11) for the coupling constant,, we thus

However, there is some implicit uncertainty here in whatobtain the corresponding correctiad® to the decay rate.
value to use for the pion mass, . It comes from the defi- It can be written as
nition of the scattering lengths for both charged and neutral

pions. Taking it to be the charged mams for both of them, AT®  Am[by—b,
we can write the rate aB=I"y(1—3Am/2m,) where =2— +(aj+apay+aj) (20
FO my |apg—as
167 ) 2Am 5
F0=9m2 |w(0)] o (ag—ay)”. (16  when we writemg=m, to leading order in the mass differ-
+ +

ence. The experimental valug8] of scattering lengths and

SinceAm/m, =0.033, the last factor represents a 5% reducSIOPes area,=0.26+0.05, a,=—0.028-0.012 and b,

tion of the main decay rate EL6). Such kinematic correc- - 0-25=0.03, b,=—0.08220.008. Using these, we find
tions will be important in a future experimental determina-that the first term is more than an order of magnitude larger

tions of the scattering lengths from the measured pioniunthan the last. Combined, this amount to a 7:6%4%
decay rate. =8.0% correction to the main decay rate. On the other hand,

Evaluating the two-loop correction to the ground-state enYSing just the tree-level valugg], we obtain the very similar
ergy, we find a purely real result since each bubble gives afgSult 8.6%t0.1%=8.7%. With values from higher order
imaginary contribution. Therefore in the order we are work-chiral perturbation theory, the result is again not much dif-
ing at, the two-loop correction to the decay rate is zero. ferent. The overall hadronic correction is sizable and larger

The above standard result for the decay rate is due to thi@n other known corrections of electromagnetic or(gi8].
constant part of ther" + 7~ — %+ #° amplitude, i.e. the As a rough check of this rather large correction, we can
corresponding scattering length. But it has also an energyly 0 estimate the decay rate directly from the matrix ele-
dependent component parameterized by the scattering slopeent EQ.(4) for ="+ 7" —m o with a=(a,—az)/3
b in Eq. (4). We can now easily calculate this effect to low- andb=(bg—b,)/3. TakingI'=|T|*, we obtain to lowest or-
est order in the corresponding derivative couplgin the ~ der n the scattering slope the correction factor 2(b/
Lagrangian Eq(10). It results from evaluating the same dia- &) ((p“)/m7) to the st?ndard result Eq15). Dividing the
gram in Fig. 5 but with one of th€, vertices replaced with average momentunip) equally between the initial state

the C, vertex from Fig. 4. This gives the additional contri- Where it isy* and can thus be neglected and the final state
bution where it is 2Amm_, we have exactly the dominant term in

the more accurate result E@O).
d3p d3k d3q

(2)— _
AET="] @] @) 2w
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