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Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive meson electro-
production processes require a generalization of usual parton distributions for the case when long-distance
information is accumulated in nonforward matrix elemefgs|O(0,z)|p) of quark and gluon light-cone
operators. In our previous papers we used two types of nonperturbative functions parametrizing such matrix
elements: double distributiorfs(x,y;t) and nonforward distribution function&,(X;t). Here we discuss in
more detail the double distributiof®D’s) and evolution equations which they satisfy. We propose simple
models forF(x,y;t=0) DD’s with correct spectral and symmetry properties which also satisfy the reduction
relations connecting them to the usual parton densifigs. In this way, we obtain self-consistent models for
the ¢ dependence of nonforward distributions. We show that, for sfhatine can easily obtain nonforward
distributions(in the X>¢ region from the parton densitiesF,(X;t=0)~f(X—/2).
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PACS numbd(s): 12.38.Bx, 13.60.Fz, 13.60.Le

I. INTRODUCTION cussed by Collins, Frankfurt, and Strikm@n| essentially
coincide with F;_y 4 (X1;t=0) (see Ref[5] for details.
Applications of perturbative QCD to deeply virtual The pasic distinction between our approach and those of
Compton scattenng.and hard ex_clus_|ve electroproductiofpats. [1,3,7 is that we treat the double distributions
processeqg 1-7] require a generalization of usual parton F(x,y;t) as the primary objects of the QCD analysis produc-
_distributions for th(_a case when Iong—dis_tance informationing the nonforward distributions,(X;t) (and other types of
|fr|gccc:)uzmlula|ted '? n?l?forr]vcxj/arld anI]?trr]',[X (nelemenrt(s?r distributiong after an appropriate integration.
As ar(u,ezi f)rz ZRZ;E’S[OZ guﬂa sua(fh rﬁal{[?ix e?en;gﬁtsec%%ebaeo ;; The formalism of double distributions provides a rather
9 o P& effective tool for studying some genefalg., spectralprop-

rametrized by two basic types of nonperturbative functions.” . 4 . . .
With z taken iyn the Iight-co):w% “minus” E)jirection the double €'ties of NFPD's and it allows us us to find analytic solutions

distributions(DD’s) F(x,y;t) specify the light-cone “plus” of e’voluti_on equation$2,4,5). Incorpqrgting symme_tri_es of
fractionsxp® andyr* of the initial hadron momentumpand DD’s [9] imposes rather strong restrictions on reallst|c_mod-
the momentum transfer carried by the initial parton. €IS Of NFPD's. A possible strategy for a self-consistent
Thoughz s an integration variable, only one direction on the Model building is to use nonperturbative or phenomenologi-
light cone (specified by external momentss important for ~ cal approachegMIT bag, quark models, QCD sum rule
the light-cone-dominated processes. In other words, only thiléas, eto.to construct double distributions at low normal-
light-cone plus direction of the hadrqnandr momenta is ization point and then evolve them to high@f values.
essential for such processes. By definition, the DD’'s The evolution equation for the nonsinglet quark double
F(x,y;t) do not depend on the/p™ ratio. On the other distribution was derived in Ref2], where its analytic solu-
hand, treating the proportionality coefficient as an indepention was also given. Evolution of the gluon distribution in
dent parameter *=¢p™*, one can introduce an alternative pure gluodynamics was discussed in R¢#s5]. In this pa-
description in terms of the nonforward parton distributionsper, we also present a full set of evolution equations for the
F(X;t) with X=x+y{ being the total fraction of the initial flavor-singlet case and derive a solution following the
hadron momentum taken by the initial parton. The shape ofnethod of Refs[2,4,5. An independent study of singlet
the functions?,(X;t) explicitly depends on the parametgr evolution based on our approach was performed in Réj.
characterizing the skewedness of the relevant nonforwarfvolution equations for various versions of nonforward dis-
matrix element. This parametrization of nonforward matrixtributions can be found in Ref$§3,5,11-13. A convenient
elements byF,(X;t) is similar to that proposed originally by way to obtain the relevant evolution kernels is to use the
Ji [1,3] who introduced off-forward parton distributions universal light-ray evolution kerne[42—15. The evolution
(OFPD’9 H(x,§;t). The latter are close to functions consid- of nonforward distributions was studied numerically in Refs.
ered earlier in Ref[8]. The functionsH(x,¢;t) have a [11,16,9,17,18
simple relation to nonforward distribution§NFPD’s) In the present paper, we incorporate the spectral and sym-
F¢(X;t), while the nondiagonal distributiors(x;,x,) dis-  metry properties of double distributions to construct some
simple models for DD’s. Using the relations between DD’s
and NFPD’s or OFPD’s, we derive models for the latter and
*Also Laboratory of Theoretical Physics, JINR, Dubna, Russianshow that using the formalism of double distributions we can
Federation. easily explain characteristic qualitative and quantitative fea-
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tures of the evolution of nonforward distributions observed
in Refs.[11,17).

xp+yr xp-yr
Il. BASIC DEFINITIONS
The kinematics of the amplitudes of the deeply virtual
Compton  scattering (DVCS) process y*(q)N(p) p p-r
—v(q’)N(p’) and hard electroproductiony* (q)N(p)
—M(q")N(p’) can be specified by the initial nucleon mo- FIG. 1. Parton picture for double distributions.

mentump, the momentum transfar=p—p’, and the mo-
mentumq’ of the final photon or meson. To get a Bjorken- redefinex— —x andy—1—y for the negativex component.
type scaling limit, one should also keep the invariantAfter that, thex variable is always positive arxlandy are
momentum transfet=r? small compared to the virtuality ~ further constrained by inequality<Ox+y<1 [2,5]. These
—Q?=(q—r)? of the initial photon and the energy invariant spectral conditions can be summarized by the following rep-
p-g=m,v. The essential features of the hard electroproducresentation:
tion processe$DVCS included can be most easily demon-
strated if we set|’2=0, p?=0, r?=0, and us®, q’ asthe (P—rle(0)¢(2)|p)
basic light-condSudakoy four-vectors. It is easy to see that - 171
the requiremenp’?=(p+r)?=p? reduces in this limit to :f dVe—iV(zz—ie)j f [eMPD- V(2 (x . 1)
the conditionp-r =0 which can be satisfied only if the two 0 0J0
lightlike momentap andr are proportional to each othar: : i —
=¢{p, where{ coincides with the Bjorken variablg=xg; +eXPATIEIIND(x,y, v ]0(x +y=<1)dx dy,
=Q?2(p-q). The latter satisfies the constrains@g;<1. (2.2
For small but finitet andm,, the momentum transferstill
must have a non-zero plus componeht=/p™. It also may
have a transverse component.

In the perturbative QCOPQCD) factorization treatment o ,
of hard eI%ctroproduction processes, the nonperturbative if2réted as the quark distribution while(x,y, »;t) as the an-
formation is accumulated in the nonforward matrix elementiduark one(a more detailed discussion is given in the next

_ ; ; tion. Similarly, y and (1-y) can be interpreted as the
(p—r|@(0)e(2)|p) [we use here as a generic notation for SECUON. simiia :
quark () or gluonic (G) fields]. It depends on the relative fractions in which the momentum transfeis shared among

coordinatez through three invariant variablep%),(rz), and the two f.iEIdS of the composite operat_p(OM(z). Fi_nally,
2. In the forward case, when=0, one gets the usual parton the v variable characterizes the virtuality of these fields. For

distributions by Fourier transforming the light-cone pro- a "92"00”‘? d_ominated process, the Iee_lding term is_ given by
jected(i.e., 2= 0) matrix element with respect t@g). In the z2—0 limit of the nonforward matrix element, i.e., by

the nonforward case, we can try to start with the generaf€"oth moment ofb(x,y, »;t) with respect tov:
Fourier representation

in which ®(x,y,v;t) and(f(x,y,v;t) result from positivex
and negativec components op(X,y,v;t), respectively. In
particular, for quark operatorsp(x,y,v;t) can be inter-

F(x,y;t)zf D(x,y,v;t)dv, (2.3
(p—1l¢(0)@(2)|p)=ML(p2),(r2),2%t,m7] °
- " " whereF(x,y;t) is thedouble distribution(see Fig. L
:j dxf dyf e~ X(p29)—iy(rz) For a lightlike intervalz?=0, one can treat as having
—o —o —o only light-cone “minus” component, and then the scalar

products 02),(rz) project out the “plus” components of
general(nonlightlikel momentap andr. This allows us to
give a parton interpretation ¢f(x,y;t) as a probability am-
with respect to all three-dependent invariants. The Fourier plitude for the active parton to carry fractiorg™ andyr™
transformp(x,y, v;t) can be called &iple distribution. Note  of the plus components of the external momentand p.
that the generouso,») limits for all three variables,y,»  Though the momenta* andr* can be treated as propor-
serve for a most general function afff), (zr), andz?. How-  tional to each other*=¢p*, p*, andr* specify the “+”
ever, incorporating information that the Fourier transforma-momentum flow in two different channels. Fof =0, the
tion is written for a functionM given by Feynman integrals net “+” momentum flows only in thes-channel and the
having specific causality properties, one arrives at more natotal “+"” momentum entering into the composite operator
row limits: v runs from 0 to, x is between—1 and 1 vertex is zero. In this case, the matrix element is analogous
while y is between 0 and lthis was proven in Ref5] for  to a distribution function. The partons entering the composite
any Feynman diagram using the approach of RE9]). To  vertex then carry the fractiongp™® of the initial proton mo-
interpret thex variable as the fraction of the initial momen- mentum 1<x;<1). Whenx; is negative, we interpret the
tum p carried by the relevant parton, it makes sense to sepgarton as belonging to the final state to secure that the inte-
rate integration over positive and negatiweomponents and gral always runs over the segmen&@<1. In this parton

X p(x,y,vit)e 1 Zrdy (2.2
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picture, the spectators take the remaining momentum (forward matrix element which is parametrized by the usual
—X)p". On the other hand, if the total +” momentum parton distributionsf(x). This gives reduction relations
flowing through the composite vertexiis, the matrix ele- [2,4,5 connecting double distributions with the usual ones
ment has the structure of a distribution amplitude in which[see Eqs(3.4),(3.5 below].

the momentumr™ splits into the fractionsyr* and (1

—y)r*=yr* carried by the two fields that appear in the
vertex. In a combined situation, when bagthi andr* are
nonzero, the initial parton takegp” +yr™, while the final For quark operators, the double distributions are defined
one carries the momenturp® —yr*. Forr=0, we get the by the following representatiof2]:

IIl. QUARK AND GLUON DISTRIBUTIONS

(p',S'|#a(0)ZE(0Z;A) ha(2)| P, S)| 2= 0=U(p’,S")zu(p,S) folfol[e"X<pz)“y“z)Fa(x.y;t)—e‘x“’z)“y_“”Fz(xyy:t)]

1 An An 111 . .
><6(x+y$1)dxdy+mu(p’,s’)(zr—rz)u(p,s)J f [e X(PD=IY(IDK_(x,y;t)
oJo

= eXPITY DK, y;0)] 6(x +y=1)dx dy 3.9

for parton helicity-averaged ones and by

_ N _ n 111 . X . —
(p',S'|¥a(0)2ysE(0,Z;A) ha(2)|P,S)| 20 =U(P’,S) ZysU(P,S) fofo [e”XPA=NIAG (x,y;t) +X(PD- VDG (x,y;1)]

X O(x+y=1)dx dy+( )u(p s’)ysu(p, s)f f [e X(PD=IV(IDp_(x y:t)

+eX(PD=IYp(y v )]0(x+y=<1)dx dy (3.2

in the parton helicity-sensitive case. Here and in what fol-with momentumxp goes out of this point To get the rela-

lows we adhere to the “bar” conventlon 1-y, x=1 tive signs with which quark and antiquark distributions ap-
—x, etc., for momentum fractions and use the “RussianP€ar in these definitions, we should take into account that
hat” notation y,z*=2. As usual, u(p s),u(p,s) are the anthuark creation and annihilation operators appear in

Dirac spinors for the nucleon. In this definition, we explicitly #(0)- - - 4(2) in the opposite order. Comparing the expres-
separate quark and antiquark components of the double di§ion (3.3 with ther =0 limit of the definitions for DD’s, we
tribution. Note that such a separation is unambiguous: in th@btain “reduction formulas” relating the two components of
Fourier representation, it is completely determined by the¢he double distributions to the quark and antiquark parton
sign of thex term in the exponential. densities, respectively,

To clarify the physical meaning of separating the DD’s
into two components, it is instructive to consider the forward 1-x
limit r=0 in which the matrix element is parametrized by fo Fa(X,y;t=0)dy="a(x),
usual parton densities, e.g., in the helicity averaged case,

(plYa(0)ZE(0.2;A) a(2)| )] 120 Jol_xlz;(x,y;t=0)dy=f;(x), (3.9

- . o .
—U(p)zu(p) [ T~ P10 ~ PR 0 Tax.
0 and similarly for the helicity-sensitive case

(3.3

1-x
The exponential factors accompanying the quark and anti- fo Ga(X,y;t=0)dy=Af4(x),
quark distributions_reflect the fact that the fieldz) appear-
ing in the operatogs(0)- - - (z) consists of the quark anni- 1
hilation operatorquark with momentunxp comes into this f Ga(x,y:t=0)dy=Afz(x). (3.5
point) and the antiquark creation operatfre., antiquark a 2
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The reduction formulas tell us that integrating the doubler "= ¢/p*>0. Requiring that the plus component of the final
distributionF 4(x,y;t=0) over a vertical linex=const in the hadron momentum is also positive, we conclude th&t{0
(x,y) plane, one gets the quark densityx) while integrat- <1. Hence, Gx+y{<1 (since Os/{<1 and Osx+y

ing its counterparE3(x,y;t=0) gives the antiquark density <1), i.e., the plus component of the momentum carried by
f2(x). This is an illustration of our statement th&g(x,y) spectators is also positive. On the other hand, the parton
and F4(x,y) are independent functions. In particular, “90ing back” has the momentum whose plus component
F.(x,y) contains the valence componefiteducing to xp"—yr*=(x—y{) may be either positive or negative, de-
f¥3(x)] absent inF3(x,y). pending on the relationship between y, and¢. When &

Our definitions (3.1, (3.2) reflect the results of the —y{) is negative, one may wish to interpret such a parton as
a-representation analysj$] that the plus component of the an antiparton leaving the hadron together with the initial par-
momentum of the particléeither quark or antiquajkgoing  ton. One should remember, however, that the double distri-
out of the hadronic blob can be written ap*™+yr* with  butionsF(x,y;t) “know nothing” about the magnitude of
bothx andy positive andk+y=<1. This is in full compliance the skewednesg: they are universal functions describing
with the parton model based expectation that the initial hadflux of p* andr* independently of what the ratio™/p™*
ron splits into an active parton and spectators which bothmight be. As we explained above, the quark DD’s are unam-
carry positive fractions of its plus momentum. To show thebiguously divided into two separate componeRtgx,y;t)
positivity of the plus momentum component for spectatorsand F;(x,y;t), but there is no further subdivision inside
we should explicitly take into account that, in the kinematicsthem based on interrelation between the values andy.
of DVCS and hard electroproduction processes, the plus In a similar way, we can introduce double distributions
component of the momentum transfer p—p’ is positive  for the gluons:

_ . S N
<|0’,S’IZMZVGZQ(O)Eab(O,Z;A)GE’W(Z)|p,S>|zz=o=U(p’,S’)ZU(p,s)(z'p)jf S (e pam
0JO
+e‘x(pz>*‘?('z))0(x+ys1)Fg(x,y;t)xdx dy+K, term, (3.6
_ _ . 101 ) _
<|0’,S’IZMZVGZa(O)Eab(O,Z:A)GEiV(Z)Ip,S>|22=o=U(p’,S’)Z%U(p,s)(zp)ff S (e P
0JO

— eX(PD=1Y(12)) iy y< 1)Gy(x,y;t)xdx dy+ Py term. (3.7)

There are no “antigluons,” so the positiveand negativee ~ symmetric combination of the initial and final momenta. The
parts are described by the same function. Note that our defiatter choice(made in Ref[9]) is more convenient for the
nition of the gluon double distributions here differs from that studies of symmetry properties of the gluon DD’s. Our
used in our earlier papefd,5,13 by an extra factor ok in choice made in Eq93.6) and (3.7) simplifies the expres-
its right-hand sidéRHS). This form is more convenient for sions for off-diagonal QG andGQ) evolution kernelgsee
applications of the method of Reff,4,5] to solve evolution Eg. (4.12 below.

equations for double distributions in the singlet case. The The flavor-singlet quark operators

choice made above corresponds also to the simplest form of

the reduction formulas: Ne o R
OQ(uz,Uz)=Zl§[¢a(uz)zE(uz,vz;A)tlfa(vz)
| R gyit=0iay=100. S U(0DEOZUZA D] (39
and
1-x
Gy(x,y;t=0)dy=Af(x). 3.8 A
J; o(Xy )dy g(X) (3.9 AOQ(UZ,UZ):Zl E[z/fa(uz)ZysE(uz,vz;A)wa(vz)

Another ambiguity in the definition of the gluon double — .
distribution is related to the overall factoz-(p) in the RHS + a(vZ)2ysE(vZ,UZ A) o(uz)] (3.10
of Egs. (3.6) and (3.7). Instead of it, we could take, e.g.,
(z-p’) or (z-r) (such a choice is utterly inconvenient for are expressed in terms of double distributions
taking the forward limit or (z- P) whereP=(p+p’)/2isa Fq(x,y;t), Go(X,y;t), etc., specified by
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— ~ 101 . ) ) —
(p',S’|OQ(UZ,vZ)|p,S)|22=O=u(p’,s’)zu(p,s)jJ E(e—lxv(pz)—|yu(rz)+|><u(pz)—|yu(rz)
0Jo
—eixv(pz)‘iy”(”)‘ixu(pz)““(’z))FQ(x,y;t)6(x+ys1)dxdy+KQterm, (3.11)
— - 111 : : ) —
<p’,S’IAOo(uz,UZ)Ip,S>|22=o=U(p’,S’)Z%U(p,S)fJ 5 (e PRyl bz hyue)
0J0

+ eixv(pz)‘iy_”“z)_ixu(pz)‘“‘“Z))GQ(x,y;t) O(x+y<1)dx dy+Pgoterm.  (3.12

They are given by the sum ofd4a” distributions: scribed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
. (DGLAP) equation§ 2022
f
FoOxyit)= 2 [Fa(xyit) +Falxy;t)], d 1d¢
& a patai= | S PuIE o EnrdE, 42
M x &
N¢

Go(x,y:t)= 2 [Gax,y; ) +Ga(x,y;1)].  (3.13 the kernelsR3°(x,y: &, 7;g) must satisfy the reduction rela-
a=1 tion

IV. EVOLUTION EQUATIONS 1-x 1
Q fo Ra”(x,y;f,n;g)dy=EPab(x/§;g). 4.3

The QCD perturbative expansion for the matrix element
in Eq. (2.1) generates Iz terms. As a result, limiz?>—0 is
singular and the distributionB(x,y;t), etc., contain loga-
rithmic ultraviolet divergences which require an additioRal
operation characterized by some subtraction scal
o F(xy;t)—=F(x,y;tjw). The u dependence of
F(x,y;t|u) is governed by the evolution equation

Alternatively, integration ovex convertsF,(x,y;t=0|u)
into an object similar to a meson distribution amplitude
DA), so one may expect that the result of integration of

ab(x,y; £, 7;9) overx should be related to the kernels gov-
erning the DA evolutiori23,24). For the diagonal kernels the
relations are rather simple,

1-y
p L (yit )= f ' f 'S Re(xy £ ) f ROO(x,y;&,7:9)dx=Vo0y, 7:9) (4.4
du 0Jo b 0
XFp(&mitlp)0(E+ p<1)dédy, for the quark kernel and a slightly more complicated expres-
sion for the gluon kernel,
(4.2
wherea,b=G,Q. A similar set of equations, with kernels flfy X RCC(x v: £ ma)dx=VCE(y - 4
denoted byAR®®(x,y;&,7) prescribes the evolution of the 3 (xy:& mg)dx v.79). (49

parton helicity sensitive distributior@?(x,y;t|u). Since the
evolution kernels do not depend onfrom now on we will  The x/¢ factor appears because of the extravhich was
drop thet variable from the arguments &%(x,y;t|«) in all  added in the definition of the gluon DD by analogy with the
cases when this dependence is inessefiildwise, the u definition for the usual gluon densities. The nondiagonal ker-
variable will be ignored in our notation when it is not impor- nelsR®®? and R® obey more complicated reduction formu-
tant. las (see the Appendijx

Since integration ovey convertsF 5(X,y;t=0|u) into the The reduction properties of the diagonal evolution kernels
parton distribution functiorf,(x|x), whose evolution is de- can be illustrated using the explicit form of tigQ kernel

1
3

_ 1 B(0=x/E<1)x/¢] 1
0(0<x/§<m|n{y/n,y/n})—55(1—x/§)5(y—77)+ 1-x/?) {;5(X/§—y/77)

o
RO9(x,y;£,7:9)=—Cr

1 - 1
+=86(xI&=YIn)|—28(1—Xx/&)S(y— n)f édz]. (4.6)
i 0
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Here the lastformally divergent term, as usual, provides
the regularization for the ¥ &) singularities present in the
kernel. This singularity can be also written_asjf(y) for
the term containiﬂgi(xlg—y/n) and as 1/g—vy) for the
term with 8(x/¢—y/ n). Depending on the chosen form of
the singularity, incorporating the 1/(1z) term inE_a plus-
type distribution, one should treatisx/&, y/»n ory/ 5. One
can check that integratif@®2(x,y: £, 7:9) overy or x, gives
the DGLAP splitting functionP®9(x/¢;g) and the DA evo-
lution kernelVRR(y, »;9), respectively,

o 1+7?
QQ(7-q)= —
POz o)=""Crl 17 - .7
1o y 1
VOQy, 7;9)=—C (— 1+—}0 <
v, m9)=""Ce) | 5 a—y|fy=m
y 1
+ =1+ ——|6(y=17n) (4.9
7 y—mn .

1 (1
rab<x,y;5,n;g>=ffa(x—f(l—u—v))a(y—u—n(l—u—
0Jo

to the light-ray evolution kernelB2°(u,v). The second step
is to get theR kernels using the relations

ROQ(X,y; & 7:9)=rX,Y; & 7:9),

RGG(x,y;f,n;g)=ngG(x,y;é,n;g), (4.10)

J
5(xRGQ(x,y; £79)=—r°AxX,y;&7,9),

J
ROC(x,y; &, 7;9)=— fgrQG(x,y;a 79). (412

Hence, to obtainR®%(x,y;¢,7;9), we should integrate
réQ(x,y; &, 1;9) with respect tox. We fix the integration
ambiguity by the requirement thRC(x,y: £, 7;g) vanishes
for x>1. Then

101 -
RGQ(x,y:é,n:g)=;JxrGQ(x,y:an;g)dX- (4.13

This convention guarantees a simple relati@n3) to the

DGLAP kernels. Explicit expressions for the evolution ker-

PHYSICAL REVIEW D 59 014030

Here, “+" denotes the standard “plus” regularizatid@1].

A convenient way to get explicit expressions for
R3%(x,y;&,7:9) is to extract them from the kernels
B2P(u,v) describing the evolution equations for the light-ray
operator§14,15,12,13

d _ 111 ab

X Op(Uz,vz)8(u+v<1)dudv. (4.9

Since the definitions of the gluon distributions
F9(x,y;t), G9(x,y;t) contain an extraz) factor on the
right-hand side, which results in the differentiatiofvx of
the relevant kernel, it is convenient to proceed in two steps.
First, we introduce the auxiliary kernet§®(x,y; &, 7;g) di-
rectly related by

v))B22(u,v)B(u+v=<1)du dv= %Bab(y— Xl €,y — pxl €)
(4.10

V. PARTON INTERPRETATION
AND MODELS FOR DOUBLE DISTRIBUTIONS

The structure of the integrals relating double distributions
with the usual ones

1-x
fa,g,g(x): fo Fa,;g(XvY)dy (5.9

[whereF(x,y)=F(x,y;t=0)] has a simple graphical illus-
tration[see Fig. 2a)]. The DD'sF(x,y) live on the triangle
defined by G=x,y,x+y=<1. IntegratingF(x,y) over a line
parallel to they axis, we getf(x). The reduction formulas

y

1 1

1/2

(a)

(b)

FIG. 2. (a) Integration lines in thexX,y) plane giving reduction

nels and discussion of evolution equations in the singlet casef double distributiong=(x,y;t=0) to usual parton densiti€gx,)

is given in the AppendiXsee also Ref.10]).

andf(x,). (b) Symmetry liney=(1—x)/2 for double distributions.
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and the interpretation of the variable of F(x,y) as a frac-
tion of thep* momentum suggests that the profileFqi,y)

in thex direction is basically driven by the shapefgk). On
the other hand, the profile in thedirection characterizes the
spread of momentum induced by the momentum transfer
Hence, they dependence oF(x,y) for fixed x should be
similar to that of a distribution amplitude(y). By analogy
with, e.g., the pion distribution amplitude,(y), which is
symmetric with respect to the change->1—y, one may
expect that the distribution of themomentum between the
two partons described by the same field should also ha

some symmetry. However, the symmetry cannot be a

simple asy—1—y since the initial p and the final

PHYSICAL REVIEW D59 014030

(asymptotic shape of gluon distribution amplitugestc. In
our original variablex,y, the factorized ansatz can be writ-
ten as

h(x,y)
h(x)

F(x,y)= f(x), (5.5

where h(x,y) is a function symmetric with respect to the
interchangey«—1—x—y. A trivial observation is that the
Vgariablex itself is given by a combinatiofl—(1—x—y)
—Yy] symmetric with respect to thg— 1—x—y transforma-
?lon. The normalization functioh(x) is specified by

p’=p—r momenta are not treated symmetrically in our de-

scription: the variablex specifies the fraction of thanitial
momentump both for the outgoingXp+yr) and incoming
[xp—(1—y)r] partons. To tregpb andp’ symmetrically, we
should interpreik for the returning parton as the fraction of
the final hadron momentump’=p—r, i.e., rewrite its mo-
mentumxp—(1—y)r asx(p—r)—(1—x—y)r. Hence, the
symmetry of a double distributioR(x,y) may be only with
respect to the interchange—1—x—y [9].

1-x
h(x)= fo h(x,y)dy. (5.6

For the three simple choices mentioned above, the model
(5.5 gives

FO(x,y) = 8(y—x/2)f(X),

Another way to make the symmetry between the initial

and final hadrons more explicit is to ude=(p+p’)/2
andr as the basic momenta rather tharandr (see Refs.

[1,3,9) writing the momenta of the partons &®+yr and
xP—(1-Yy)r. Then they«1—x—y symmetry corresponds
toy«< 1—y symmetry. The variabig changes in the interval
X[2<y<(1-x/2). Writing y as y=(1+a)/2, we intro-
duce a new variablex satisfying a symmetric constraint
—X<as<X, where x=1—x. The y—1—-x—y symmetry
now converts intax« — @ symmetry. Finally, rescaling as

a=;,8 produces the variabl@ with x-independent limits:
—1=<p=<1. Written in terms ofx and 8, a modified double

distribution F(x, 8) obeys the reduction formula

d

2)_

1

1T:(x,ﬁ)dﬁ:f(x). (5.2)

It is instructive to study some simple models allowing to

satisfy this relation. Namely, let us assume that the profile
the B direction is a universal functiog(g) for all x, i.e.,
take the factorized\nsatz

~ 2
Fx.8)= 1= f(09(B), (5.3
with g(8) normalized by
1
f _ 9(pdp=1. (5.4

Possible simple choices fg(8) may bed(B8) (no spread in

B-direction, 2(1— 8?) (characteristic shape for asymptotic

limit of quark distribution amplitudes 2(1—2)?

6y(1—x—-y)
(1) -2 = 77
F(x,y) (1—x)? f(x),
30y%(1—x—y)?
(2) _-_ - - 77
Fox.y) (1—x) f(x). (5.7)

In a similar way, one can construéinsaze for functions
F(x,y;t) involving nonzerat values.

VI. RELATION TO NONFORWARD DISTRIBUTIONS

The nonforward matrix elements accumulate process-
independent information and, hence, have a quite general
nature. The coefficient of proportionality betwegh andr *
characterizes the skewedness of matrix elements. The char-
acteristic feature implied by representations for double dis-
tributions[see, e.g., Eqg3.1), (3.2)] is the absence of the
dependence in the DDB(X,y) andG(x,y). An alternative
nWay to parametrize nonforward matrix elements of light-
cone operators is to use the raffe=r */p* and the total
momentum fractionX=x+y{ as independent variables.
Taking into account that for a light-cone dominated process
only one direction forz gives the leading contribution, one
can do the change®)={(p2) directly in our definitions of
double distributions. As a result, the varialglevould appear
there only in thex+y{=X combination, whereX can be
treated as theotal fraction of the initial hadron momentum
carried by the active quark. If we require that the light-cone
plus component of the final hadron momentyire., p*
—r*) is positive, then 8 ¢=<1. Using the spectral property
0=x+y=1 of double distributions we obtain that the vari-
able X satisfies a similar “parton” constraint9X<1. Inte-
grating each particular double distributi¢n, ; o(X—Yy{,y)
overy gives the nonforward parton distributions

014030-7



A. V. RADYUSHKIN

Xp X-0)p Xp=1Tr (¢-Xp=0-Vr

P a-pp P a=9r

@ ®)

FIG. 3. Parton interpretation of nonforward distributiora)
RegionX>¢. (b) RegionX<{.

F2000=00¢=0) [ “Fuzgx-yeydy+ ox=0)

X/
X fo Faag(X—yZy)dy, (6.1
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0}‘(,%X,1"’0X—C ‘CXI" 9 x, x 1 *
(@ (b) (0]

FIG. 4. Relation between double distributiof$x,y) and non-
forward parton distributions,(X). (a) Integration lines for three
casesX;>¢, X=¢ andX,</{. (b),(c) Comparison of integration
lines for the nonforward parton distributidf,(X) and usual parton
densitiesf(X), f(X’) [shown in Fig. Zb)] and f(X), f(X,) with
X,=X"I{ [shown in Fig. Zc)].

where{=1-{. The two components of NFPD's correspond ysual parton densitie$(x) are produced by integrating

to positive X>¢) and negative X<<{) values of the frac-

F(x,y) along the vertical linex=const(see Fig. 2. In the

tion X'=X-{ associated with the returning parton. As ex- case wherX>¢, looking at the integration line for the non-
plained in Refs[4,5], the second component can be inter-forward parton distribution,(X) one can seéFig. 4(b)]
preted as the probability amplitude for the initial hadron withthat it is inside the space between the integration lines giving

momentump to split into the final hadron with momentum

(1—-9)p and the two-parton state with total momentum
={p shared by the partons in fractionsr and (1-Y)r,
whereY=X/{ (see Fig. 3

For the gluon DD’s, they<—1—x—y symmetry holds

the usual parton densitiggX) and f(X') corresponding to
the momentum fraction¥, X'=X-¢ of the initial and fi-

nal parton. Assuming a monotonic decrease of the double
distribution F(x,y) in the x direction and a universal profile

in they direction, one may expect tha,(X) is larger than

only if, instead of ¢-p), one uses the symmetric overall
factor (z- P) in the definition$ (3.6),(3.7). The use of such a
definition of the gluon DD’s is implied in this section. Fur-
thermore, the nonforward gluon distributidﬁg(x) is ob-
tained by integratingcFy(X,y)|x=x—y;. To simplify nota-
tions, it will be also implied below that, for the gluons,
F(X—-y{y) in Eq. (6.1 corresponds to X—y{)Fy(X
—yZ.y).
The basic distinction between double distributiér(x,y)

and nonforward distributiong;(X) is that NFPD’s explic-
itly depend on the skewedness paraméterhey form fami-

lies of functionsF3*9(X) whose shape changes whéiis
changed. The fact that the functiof#$(X) corresponding to
different {’s are obtained by integrating the same double
distributionF (x,y) imposes essential restrictions on possible
shapes ofF;(X) and on how they change with changidg
The relation between NFPD’s and DD’s has a simple graphi-
cal illustration on the “DD-life” triangle defined by
0=x,y,x+y=1 (see Fig. 4 To getF,(X), one should in-
tegrateF(x,y) overy along a straight line specified by
=X—{¢y. Fixing some value of, one deals with a set of

parallel lines corresponding to different values Xf EVi-  the hadron with momenturp converts into a parton with
dently, each such line intersects theaxis atx=X. The  momentumXp and spectator§ The forward matrix ele-

upper limit of they integration is determined by intersection ments are identified with the usual parton densities
of this line either with the linex+y=1 (this happens iX

>{) or with they axis (if X<¢). The line corresponding to
X={ separates the triangle into two parts generating two
components of the nonforward parton distribution. In the for-
ward case, whef=0, there is only one component, and the
Notice that the hadron momentum in the second forward

matrix element isp’:Zp, hence the argument of the rel-
1] am grateful to G. Piller for attracting my attention to this point. evant parton density iX’//, and one has

f(X) but smaller tharf(X'). Inequalities between forward
and nonforward distributions were recently discussed in
Refs.[17,25,26. They are based on the application of the
Cauchy-Schwartz inequality

|2 (H(p):X'p,SIH(P);Xp.S) 2
=X (H(p).Xp,SH(p):Xp,S)
XZ (HP)X'p.SIHE)XPS), 62
to the nonforward distributiong,(X) written generically as
Fi(X)= 2 (H(p")iX'p,SH(P);XP.S),

where|H(p);Xp,S) describes the probability amplitude that

ES<H<p);x|o,sH<p>;Xp,S>=f<><). 6.3
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% (H(p");X'p,SIH(p");X"p,S)
=§<Hmwmm7Zﬂwaxmvz$

=f(X"1{)I¢.

(6.9

As a result, we obtaiicompare 25,26])

FIX)=VIO)FX' D)=

[f(X)+f(X'1)].
(6.5

1
2y1—¢

In other words, the functions involved in the bound for

Fy(X) aref(X) and f(X,) where the fractioX,=X'/{ is
larger thanX’ [25,26]. One can see tha&{, is given exactly

PHYSICAL REVIEW D59 014030

region X>¢ for any function f(x|Qg) of the f(x|Qg)
=Ax 3(1—x)® type provided thaa=0 andb>0. Using the
relations

X— {12

X4 £
1-¢/2

2-¢
(6.

H(x, &0 =(1— U FAX;t), X= .

8)
between our nonforward distributions and Ji's off-forward
parton distributiong OFPD’s H(x,&;t) [1,3], one can see

that the delta-function Ansatz gives the simplest
&-independent model

HO(x,&t=0)="f(x)

for OFPD’S at t=0. It is worth noting that the MIT bag
model calculatior{27] did produce a set of OFPD’s which

by thex value of the intersection point in which the integra- are almost independent éf An evident interpretation is that

tion line x=X— ¢y giving the nonforward distributiotF,(X)
crosses the boundary linety=1 [see Fig. 4c)]. For the

the model constructed in Ref27] strongly suppresses the
redistribution of the momentum transfer among the constitu-

gluon nonforward distributions, the form of the inequality ents which results in a very narrow spread=¢k,y) in they

depends on whether one uses the p’ symmetric combi-
nation (z-P) or (z-p) as the overall factor in the RHS of
their definitions[see Eqs(3.6), (3.7)]. In the (zP) case,

VEX)F(X'1?)

g (symm
Fi (X)Sl—glz

[fX)+f(X'10)]. (6.6

_ 1
T 2(1-¢(12)

direction. Even if such a picture is physically correct for a
low normalization poinQy~500 MeV, evolution to higher
values Q=1 GeV widens they profile of F(x,y) and
evolved OFPD’s would change their shape withas was
explicitly demonstrated through a numerical calculation by
Belitsky et al. [16].

The evolution ofnonforwarddistributions 7,(X|Q) was
recently studied in Ref$11,17,18. As a starting condition,
the authors assume that, at some low s€gle the nonfor-
ward distributions7,(X|Q) for all £ have the same universal

It is clear that the whole construction makes sense only ifhape coinciding with that of the usudbrward) densities

X'>0 (or X>¢). If X’ <0, the nonforward distribution cor-
responds to matrix elementéH(p’);Xp,X’p,S|H(p),S)

f(X,Qg). This assumption corresponds to th&nsatz
F(x,y|Qo)=8(y)f(x|Qp) with double distribution being

which have no obvious relation to the usual parton densitieg?0nzero on thex axis only. ThisAnsatzs not realistic, since

Furthermore, in our graph of Fig(a&, the left end of the line
x=X—{¢y in this case corresponds k=0, where the usual

it has no symmetry with respect to tlye-(1—x—vy) inter-
change. However, evolution equations are applicable to any

parton densities are infinite, and the inequalities becom@istribution and, just due to its asymmetric profile, this un-

trivial. In fact, they are trivial even for the border poiKt

realistic double distribution has a very distinctive evolution

=¢. Another deficiency of the Cauchy-Schwartz-type in-pattern reflecting the restoration of the-1—x—y symme-
equalities is that they do not give the lower bound for non-try. Namely, the asymptotic function(x,y|Q—¢) are
forward distributions though our graphical interpretationY < (1—X—y) symmetric. In particular, both in pure gluo-

suggests thafF,(X) for X>{ is larger thanf(X) if the x
dependence of the double distributiB(x,y) along the lines

y=kx is monotonic.

dynamics and in QCD, we havgy(x,y|Q—)~y*(1—x
—y)? (see Ref[4] and the Appendix Hence, one may ex-
pect that the evolition oF 4(x,y|Q) shifts its crest towards

To develop intuition about possible shapes of nonforwardhe y=x/2 line and also makes thgshape of the double
distributions, it is instructive to derive the NFPD’s corre- distribution wider. To see whether the results of Refs.
sponding to three simple models specified in the previou§l1,17 reflect this expectation, we introduce a general model

section. In particular, for the(©(x,y) = 8(y—x/2)f(x) An-
satzwe get

O(X={12) [ X—¢I2
( 5)( €), 6.7

(0) —
Fo=—17 1=

i.e., NFPD’s for nonzera are obtained from the forward

with a narrowy dependenceE(?(x,y)= 8(y—kx)f(x) (in
what follows, it will be referred to as thek*delta ansatz).

This double distribution is concentrated on the kx line
and gives

2Since hadrons are massives 0 is outside the physical region;

distribution f (X)= F,(X) by a shift and rescaling. Note that hence, theé— 0 limit should be understood in the sense of analytic

the model(6.7) satisfies the inequalities.5), (6.6) in the

continuation.
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FIG. 5. Nonforward parton distribution& {"(X) for different
values of the skewednegs=0.05 (thin line), {=0.1 (dashed ling
£=0.2 (dash-dotted ling and {=0.4 (full line) in the “valence
quark oriented” model specified by E¢6.11) for a=0.5.

|

1

1—k¢

X—k¢

(0)(k) 2
1—k¢

Fy

(X)= (6.9

for nonforward distributions. In case of two other models,

PHYSICAL REVIEW D 59 014030

nonforward distributions at the border point. It is easy to
calculate that for thé&=1/2 delta ansatg(®)(x,y) this ratio
is given by

f(Z1(2-0)
(1=228(0)

Itis larger than 1 for any monotonically descreasing function
f(x), i.e., the nonforward distributiotF({) in this case is
larger thanf(£). In the small¢ limit, R(O)(¢) is completely
determined by the smaX-behavior off (x), and the expres-
sion for ROO)(¢{) simplifies to

ROO)=F(0I1(0)= 6.12

f(£/2)
f(0) -

Hence, iff(x) has a purely powerlike behavid(x)~x"2
for small x, thenR(®O({—0)=23(1+0(¢)), i.e., for small
¢, the ratio of the nonforward distributiosf,({) and the
usual parton density(¢) is practically constant, deviating
from the =0 limiting value byO(¢) terms only. The lim-

RO <1~ (6.13

simple analytic results can be obtained only if we specify dlting value in this case is 1.41 far=0.5 and 1.231.15 for

model for f(x). For the “valence quark’-oriented\nsatz
F()(x,y), the following choice of a normalized distribution:

I'(5—a)

“eTia) 10’

fH(x) (6.10

is (a) close to phenomenological valence quark distributions

and (b) produces a simple expression for the double distri
bution since the denominator £ix)? factor in Eq.(6.10 is
canceled. As a result, the integral in E.1) is easily per-
formed and we get

4— .
FHX0= ?a[ X2~ faX-2(X~ 0)]

X=¢

2—a
1_5) (gax+2xg)].

+ G(ng)(
(6.11

The resuling curves forF$(X) with a=0.5 and

£=0.05,0.1,0.2,0.4 are shown in Fig. 5. A characteristic fea-
ture of each curve is a maximum located close to the relevant

border pointX={¢ and slightly shifted to the left from it.
Note that both the functiong"(X) and their derivatives
(d/dX) F(X) are continuous aX=¢. The latter property
is secured by the fact tha&(*)(x,y) vanishes at the upper
cornerx=0, y=1. The (1-x)° denominator factor for the
“gluon-oriented” Ansatz E?)(x,y) is canceled if one takes
the modelf (x) ~x~3(1—x)® which, fortunately, is also con-
sistent with thex—1 behavior of the phenomenological
gluon distributions. It is well know2,4] that the values of
nonforward distributions7,(X) taken at the border point

a=0.3 (@=0.2). However, iff(x) is a sum of two different
powerlike termsAx 2+ Bx P or if it contains logarithms,
e.g.,f(x)~x"2n(1/) for smallx, then the dependence is
more pronounced. In the latter case

“and there is a visible deviation from the limitidg— 0 value
for all accessiblg: on the In(1f) scale, thel dependence of
the ratioR(®)(¢) cannot be neglected even for105.

For a generak-delta modelF{”)(x,y) = 8(y—kx)f(x),
the ratio F,({)/f(¢) for small { can be approximated by
f(Z(1—Kk))/f() which again gives d-independent constant
(1—k) ™2 for a purely powerlike functiorf(x)~x"2 while
the In(1k) factor would modify the constant byl+In(1
—k)/InZ].

If one uses the ‘“valence-quark-oriented”’Ansatz
FM(x,y) with a simple powerlike behaviof(x)~x"2 for
small x, the ratio is given by

In2
i

RO(g)~2? (6.14

RY()=FI()If(0)= :
(O=F (DI - 0P1-a2)(1—a/3

(6.19

Just like in the previous example, the nonforward distribu-
tion F,({) is larger tharf({) for all positivea. For smallZ,

the ratio tends to 1/(2a/2)(1—a/3), e.g., to 1.6 fom=0.5
which is the usual choice for valence quark distributiffios
comparison, takingpg=0.3 (a=0.4) gives 1.3(1.44 for
R(M)(7—0)]. For small a, this result can be translated into
RO)({—0)~e56~f(e557)/f({), which coincides with the
ratio R ({—0) for the modified narrowAnsatz K (x,y)

8(y—kx)f(x) with k=0.56. Hence, fotF,({) the widen-

X={ determine imaginary parts of DVCS and hard electro-= ) with .
production amplitudes. An interesting question is the relatioring of they distribution can be approximated by a narrow

between the usual distributiorié,) and the valuesF,({) of  distribution shifted fromy=;/2 upwards to theywk?line.
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FIG. 6. Ratio FJ(X)/Xfy(X) vs logio(X/{) as obtained from the model given by E@.16 for (a) (=102, (b) (=103, (0) ¢
=10"* and(d) {=10"% with k=0.48 (solid lineg, k=0.4 (long-dashed linés andk=0.30 (short-dashed lings

Again, a logarithm In({) in f(x) at smallx would induce a  since the Glak-Reya-Vogt(GRV) gluon distribution[28]
visible ¢ dependence for th&1)(¢) ratio even for very Which they use can be rather well approximatedQét=4
small . Ge\ by a simple formula
Switching to the “gluon-oriented’Ansatz F?)(x,y) with
a pyrely power'behaV|dr(x)~x a for smallx, we obtain a xfORV(x,Q?=4 Ge\R)~ Ex‘°-3|n(1/x)
similar expression 9 4
R@(H)=FP(If() which works with 10% accuracy fot ranging from 10 to
10" °. In the pure gluodynamics approximation used in Ref.
_ 1 6.16 [17], its shape does not drastically change when evolved ei-
(1-0)3(1—a3)(1—ald)(1—a/5) ther toQ?=1.5 GeV or to Q*=20 and 100 Ge¥
As discussed above, the assumption that the nonforward
which is close to (2.17) for small a. To approximate this distributions FJ(X|Qo) have a universalZ-independent
result by the delta ansatE{®)(x,y), one should takek shape corresponds to theAnsatz  K”(x,y|Q)
~0.54. The effective shift upward is smaller in this case=(y)f(x|Qy), i.e., to thek-deltaAnsatzwith the vanishing
becauseF(?)(x,y) is more narrow in they direction than slopek=0. Modeling the evolved double distributions by a
FAO(x,y). k-delta Ansatzwith nonzerok, we expect that, due to the
Choosinga, we should take into account that the nonfor- restoration of they— 1—x—y symmetry, the effective slope
ward gluon distribution?—'g(x) reduces toXfy(X) in the parametek should increase wittp?. Namely, for thek-delta
{—0 limit [4,5]. Hence,f(¢) in the above formulas should Ansatz the ratio of the nonforward distributioﬁ‘g(X) and
be understood a&f 4(¢). Now, if we make an old-fashioned the forward parton distributiofi(x) =Xf4(X) is given by
assumption thakKfy(X) tends to a constant a—0, then o
a=0 andR®)(¢) tends to 1 at smal, i.e., the nonforward FUX)  f[X—=k¢L(1-kY)]
distribution F%(¢) coincides in the smal- limit with its RXD=55.0 = A=kDfX) (6.17
forward counterparfy({). To get a more realistic gluon
distribution Xfy(X) growing at smallX one should use a Taking f(x)=21x"%3n(1/x) and the Q?-dependent slope
positive parameten. Taking a=0.3, we getR?((—0)  Kk(Q?)=0.3, 0.4, 0.48 forQ?=4, 20 and 100 Ge¥ re-
~1.27, andR?({—0)~1.17(1.39 for a=0.2 (@=0.4).  spectively, we were able to reproduce the results of R,
These estimates for the rati&?(X|Q)/Xfy(X|Q) are  for a wide range off parameters¢=10"2,10 3,10 4 and
close to those obtained in Refd1,17 where the nonfor- 1075, The relevant curves, coinciding with those of R&f7]
ward distributions:’-‘?(XlQ) at high normalization poin€Q within a few per cent accuracy, are shown in Fig. 6. Hence,
were constructed by applying evolution equations to an inithe increase of the ratiB(X,Z) with Q? observed in Refs.
tial low normalization poinQg ansatzf%(X|Qo) whichwas  [17,1]] basically reflects the shift of the gluon double distri-
assumed to have a univergalndependent shape coinciding bution from thex axis y=0 towards the symmetry line
with the usual distributiorXf4(X| Qo). In particular, Martin  y=x/2. This effect, being an artifact of the initial conditions,
and Ryskin, considered the evolution of the gluon NFPD inp|ays the dominant role up t@2~100 Ge\t. As argued
pure gluodynamics. They tooR3=1.5 Ge\? (two other  above, the’ dependence of the ratio may be traced to the fact
choicesQ3=0.4 GeV andQj=4 GeV? were also consid- that the gluon distributionfSRY(x) differs from a simple
ered and then evolvedF¥(X|Q) to higher Q valuesQ®  powerx 2.
=4, 20, and 100 Ge¥ They found thaR(10~°)~1.3 for Since the assumptioff,(X|Qo) = f(X|Qo) is equivalent
Q?=100 GeV?, which corresponds ta~0.3 in ourF(?  to the Ansatz Kx,y|Qo)= 6(y)f(x|Qo) which is not sym-
model. This value is close to those used in phenomenologicahetric with respect to thg—(1—x—y) interchange, one
parametrizations of the gluon distributions. It should be alsashould avoid using it as a starting condition for evolution. As
noted that the results fdR(¢{) obtained in Ref[17] have a  explained earlier, a more realistic set of nonforward distribu-
non-negligiblel dependence. This feature can be expectedions
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< Prlra)r2 £ P(l-a) 2 ()P )P The parton momenta are now < £)P and 61— &P. In the
regionx>¢, the OFPD’s are obtained from(x,«) by the
integral
P4rl2 Pz (+D)P (1-§)P -
~ (1-/(1~§) ~ ~
@ (b) H(X;§)|;>§=f - F(Xx—éa,a)da. (6.20
—(1=-x)/(1+§)
FIG. 7. Parton picture in terms ¢&) modified double distribu- _ ~ o
tions and(b) off-forward parton distribution$i (x, £). Using thea— —a symmetry ofF(x,a), it is easy to see
from this expression that the off-forward parton distributions
o O(X=(12) [X— 12 H(x; &) are even functions of:
¢ £ H(X; ) =H(x; — &) (6.21)

This result was originally obtained by [R5] with the help of
a different technique. Expanding the RHS of Ef.20 in
powers ofé, we get

is generated by thE(©)(x,y|Qq) = &8(y — x/2)f(x) Ansatzfor

the double distribution corresponding to skewedness
independent set of Ji's off-forward distributions. Comparing
these two sets, one may be tempted to argue that for ex-

tremely small{ considered in Ref[17], /2 terms in Eq. H(x; &)= f(x)+ &2
(6.18 are inessential. Of coursé/2 can be neglected when

subtracted from 1. However, for thé values close to the ~ ~
border pointX= ¢, the shift by/2 produces visible changes % ( JIF (X, a) _2‘7':({'“))

1 (a-% °F ;(,a ~
EJ( X ¥a2da+(l—x)2

—(1-%  gx?

+ ...

for functions having thex™? behavior witha~0.3. In the da IX 15k

case of the Ansatz (6.18, the ratio R(X,Z|Q) 6.2
=FYX|Q)/Xf4(X|Q) differs from 1 for allQ. For smallZ, (6.22
the difference is significant only foX close to(. Hence, for smalk, the corrections are formall@(¢£?),

_\Nhen a narrow double distribution has its crest onyhe i.e., they look very small. However, (X, «) has a singular
=x/2 line from the very start, there are no effects due to thesehavior likex 2, then

shift of the crest, and th@ evolution of R(X,{|Q) in the
region X>¢ reflects only the widening of the double distri- PE(X,a) a(l+a) -~
bution in they direction and the change of its profile in tke ~ X, a
direction. As we have seen, the widening of the double dis-
tribution changes the effective slopeby a small amount
only. Hence, for small one can use the approximate for-
mula

ax? X2
and the relative suppression of the first correction is
O(&2/x?), i.e., the corrections are tiny for allexcept for the
region X~ ¢ where the correction has no parametric small-
o ness. Nevertheless, even in this region it is suppressed nu-
FUX[Q) ;1= (X= 82 T4(X={121Q)  (6.19  merically, because the? moment is rather small for a dis-
tribution concentrated in the small+egion. This discussion
for evolved distributions as well. In other words, the ratio Shows that the forrT21u|a§6.19) IS not just an automatic con-
R(X,£|Q) for X>¢ and smallf can be estimated from ex- Seduence of th®(&“) nature of the first nonvanishing cor-
isting results for the usual gluon densitgX)=Xf,(X|Q) rection. It is easy to write explicitly all the terms which are
g . y e
Comparing the formuld6.19 with the relation(6.8) be- "ot suppressed in the~£—0 limit
tween our nonforward and Ji's off-forward distributions, one K e
can conclude that Eq6.19 is equivalent to a statement that H(X: &)= E § J(lfx) ITF (X, )
at small¢ andx> ¢ one can neglect thé dependence of the k=0 (2K ) 1% gx?
off-forward distributionsH(x; £). Again, such a statement is (6.23
only nontrivial if x~§. To analyze the accuracy of Ed. The numerical suppression of higher terms is even stronger,

(6.19, we will construct an expansion &f(x; &) in powers — and the series converges rather fast.
of £. To this end, it is convenient to use the parton picture In terms of the off-forward distributions, the inequality

based on modified double distributid(x,@) in which the (6.5 reads
plus component of the parton momenta is measured in units

a®da+---.

01_‘ that of the average hadron momentins (p+p’')/2 (see H(x, £)< \/ 1 ¢ X+ & x—§)

Fig. 7). The parton momenta then axé+(1+«)r/2 and ’ 1-¢2 \1+¢)'\1-¢
XP—(1—a)r/2 with a changing between-x andx. Defin-

ing r*/P*=2¢ andx=x+ £a, one obtains the description < 1 f( xX+§ +f(x—§” 6.24
in terms of the off-forward parton distributiom$(x; £) [1,3]. 2y1-& | \1+§ 1-¢)
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or (I-y) r Note that if the meson DAp(y) does not vanish at the
end-points, the nonforward distribution does not vanish at
X=0 [the off-forward parton distributionsi(x;£) in this

case are discontinuousat + £.] As explained in Ref[5],

PQCD factorization for DVCS and other hard electroproduc-
}.\ tion processes fails in such a situation, because of the 1/
P e factors[1/(x=+ £) factors if OFPD formalism is usédton-

tained in hard amplitudes. It should be mentioned that a

nearly discontinuous behavior of OFPD’s far +¢ was
For the gluons, one should use the inequalBy), which  obtained in the chiral soliton modg29]. Formally, the evo-

ri

FIG. 8. Mesonlike contribution.

leads to lution to sufficiently highu results in the functions vanish-
ing at the end poinK= 0. A nontrivial question, however, is
g \/ X+E&\ [x—§&\ 1] [x+¢€ X—¢ whether evolution starts at all in a situation when PQCD
H9x, &)< \/f 1+é f 1-¢ <5 1+é +f 1-¢)|°  factorization fails.
(6.25

Expanding the RHS of these inequalities in powerg,obne VIl. SUMMARY
can easily check that the explicitly displayed first terms of
the expansion(6.23 satisfy Eqs.(6.24 and (6.25 for any In this paper, we duscussed the formalism of double dis-

function f(x) with a negative first derivative. Again, the in- tributions. We treated them as the starting objects in param-
equalities(6.24) and(6.25 are valid for any functiorf(x) of ~ etrization of nonforward matrix elements. An alternative de-
X~3(1—x)° type witha=0,>0. scription in terms of nonforward or off-forward parton
So far we assumed in our models that DD’s are finitedistributions was obtained by an appropriate integration of
everywhere on the ‘“life triangle.” Consider, however, a the relevant DD's. Incorporating spectral and symmetry
situation when the partons emerge from a mesonlike ¢ate Properties of double distributions, we proposed simple mod-
glueball/pomeron in the gluon casexchanged in thechan-  €ls producing self-consistent sets of nonforward distributions
nel (see Fig. 8 In this case, the partons just share the plus/;(X) and discussed theirdependence and relation to usual
component of the momentum transfer information about ~ (forward) parton densities. Using a qualitative picture of the
the magnitude of the initial hadron momentum is lost if the€volution of double distributions, we were able to explain
exchanged particle can be described by a pole propagaténd mode_l th_e bf'iSiC features of_ the evoll_Jtion pattern of non-
~1/(t—mZ). Hence, the meson-exchange contribution to dorward distributions observed in numerical evolution stud-
double distribution is proportional t6(x) or its derivatives, €S [17]. In the Appendix, we present the set of evolution
e.g. equations for double distributions in the singlet case and dis-
cuss their analytic solution. Work on numerical evolution of
om(y) the nonforvx_/ar_d distributions corresponding to realigkic-
T (6.26  saze(6.18 is in progresg30]. Another interesting problem
m—t for a future investigation is a numerical evolution of double
distributions.

FM(x,y)~a(x)

where ¢ (y) is the distribution amplitude of the mesdh
This contribution to the nonforward distribution is nonzero
only in the 0<X<{ region:
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At the beginning, we described the nonforward matrix ele-
ment of a quark operator by two functios’(x,y) and

F?(x,y) corresponding to positive-and negativec parts of
the general Fourier representation. Siee0 for a meson-
exchange contribution, it makes sense to treat it as a third
independent component, i.e., to parametrize the nonforward

matrix element by the surR?@ F23aFM. All three compo-
nents contribute to the nonforward distributions in the 0
< X</ region. However, thé(x) terms do not contribute to As described in Sec. 1V, the evolution kernels for double
the nonforward distributions in th¥=/ region and to the distributions can be conveniently obtained from the light-ray
usual parton densitief(x). For this reason, thé(x) terms,  evolution kernel82°(u,v). For the parton helicity averaged
if they exist, would lead to violation of sum ruledike  case, the latter were originally obtained in Ref$4,15.
energy-momentum sum ryléor the usual parton densities. Here we present them in the form given in Ref]:

APPENDIX: EVOLUTION EQUATIONS
FOR THE SINGLET CASE

014030-13
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as _ _ As usual,Bo=11— 5Ny is the lowest coefficient of the QCD
BY9(u,v)= ?CF( 1+ o(u)vlv]y +6(v)[u/u] B function. Evolution kernels for the parton helicity-
sensitive case are given p$2,13

—%8(u)5(v)), (A1) ABQ®u,v)=B(u,v) (A5)
GQ _%s _
BGQ(u,v)=%CF(Z-H?(U)&(U)), (A2) ABTUY) = T CrloW ) =2), (A%
o ABOS(U,0) = =Ny(1-u—v), (A7)
BQG(U,U)=?Nf(1+4Uv—U—U), (A3) m
. 5 ABGG(u,v):BGG(u,v)—lz%NcuU. (A8)
BGG(u,u)zfNC(4(1+3uv—u—v)+ 2,\? S(u)d(v)

At one loop, AR®Q(x,y; &,7;0) =R2Q(x,y; &,7;0), and
this kernel was already displayed in E¢.6). Other kernels,
+{u<—>v}]). (A4) including theR®C(x,y; &, 7;g) kernel originally obtained in

v2 1dv
—= 5(v)f =
v 0v Ref.[4], are given by

+{5(U)

s 1 ) — 0(0<x/£<1)(X/§)
ARGG(x.y;f,n;g)=%NCE[40(0$x/§smm{y/7;,y/n})+5(1—x/g)5(y—n)zﬁ—l\j’c+ X5
1 1 S 1 dp
X| =o(XIE=yln)+=0(XIE=yln) | —25(1—x/§)(y— ﬂ)f —~] (A9)
K Y 0l—v
GG . Ce GG . . as 1 — — ) _
R®E(Xy; &, 7,9)=AR (X,y.§,7l.g)+12;Nc;(y— X1 §)(y— pxl€) 0(0<x/E<min{y/ 5,y n}), (A10)
s 1 X y—y
ARGQ(X,yif,ﬁ;g):%CF;[—Z (%—E a(xlgsy/ns1)+[ _] +5(77—y)0(0<xs§)], (A11)
n—7n
s~ 1 y—>y
RGQ(x,y;é,n;g)=a;CF;[2 (X—g) 0(x/§<y/nsl)+[ _] +5(77—y)6(0<x<g)}, (A12)
7 n—n

5 1 —— p—
ARRC(x,y: £, mig) = %Nfglgw(x/g—y/m B(y=n)+ S(xI £yl ) 6(y=7))~ 0<osx/§smm{y/n,y/n})],
(A13)

QG(v vt oy _ A DQG e as 1 y,y X - -
R¥=(x,y;€,7:9)=AR (X,y,é,n.g)+4?NfEm; ;+:—ZE O(0<x/E<min{y/ ,y/ n}). (A14)
7

To find a formal solution of the evolution equations for whereF3(y|u) is thenth x moment ofF3(x,y|u)
double distributions, we proposed in Reffg,4] to combine
the standard methods used to solve the evolution equations L
for parton densities and distribution amplitudes. Hence, let Fﬁ(y|M)=f XMFA(x,y| w)dx. (A16)
us start with taking the moments with respecitdJtilizing 0
the propertyR**(x,y; &, 7;:9) = R*(x/ £,y 1,7:9)/ & we get

q . The kernels Rﬁb(y,n;g) and analogous Kkernels

ab . ; : a i

M@Fﬁ(yW):Eb fo Rﬁb(y’ n;g)Fg(ﬂM)dﬂ, (A15) ﬁan (y,7;9) governing the evolution oB3(y|«) are given
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RQQ ARQQ Fscl Y "L ! y)\" ! 5
- = . = — _— _ _ = — = —
n Q) =ARTY, @) ="2Cr | ) g Ty |fys )t = B s v y—7 0= =50y~
1z
—25(y— U)joﬁdz , (Al?)
- as ()41 =y ﬁ_ flﬁ
ARZC(y, 7:9) = N[(,}) T U I R 2| || (A18)
1 [(y\™ Yy ynp y—y
GG . _ GG i . __Z
Rn (Y, 7,9)=ARy (yng)+12 N n+1[ ) 0 ni2) fysm+ el | (A19)
ARSS(y, 7:g) = “EN— [ >n+lo<y< )+ ﬂma(w )] (A20)
1Y) =N/ | st = =)
n T n+l|\7gy 7
y\""Ymy oy y—y
QG QG _s b A A
RY°(Y, 7;9)=AR; (yng)+4Wan+1|( ) (n — 0(y<n)+{n_>;”, (A21)
0 ag 1 n+1 y n+1
ARYN(Y, 7,9)=—Cg—y o(y—n)— —— —) oysn+|= oy=n) |, (A22)
n TN n+1/\ 7y 7
o 2 [ y n+1 y n+1
RSy, 7,9)=—Cp~ 5(y—77)+—<—) oysm+|=| oy=n||. (A23)
n T n+1\» 7

From Egs.(A20), (A22) one can derive the following re- see Refs[24,31] and Refs[32-35 where the general algo-
duction formulas for the nondiagonal kernels: rithm was applied to the evolution of flavor-singlet distribu-
tion amplitudes.
Expanding the moment functlon'sn(y|,u) over the Ge-

—ARQG(y 7,9)=—AV?C(y, 7,0), (A24) Er 3y —y)

ay genbauer polynomial

limnARSC(y, 7: g)___AVeo(y 79).  (A25) Fa(ylw)=(yy) ““E Fadm)CR ¥ y-y) (A26)
n—0 y

we get the evolution equation for the expansion coefficients
The same relations connect the nondiagonal kernels
RCQRPC with the BL-type kernels VE9(y,7;0) d as
1 1 1 1 _ b b

VOC(y, ;9) given in Ref[5]. To understand their structure, MaFﬁk(,U«)— 7%: TRF ), (A27)
one should realize that constructing the nondiag@@land
GQ kernels, one faces mismatchingp) factors which in
the pure BL case are converted into derivatives with respect
toy.

It is straightforward to check that all the kernels
R2P(y,7;9) [andAR®®(y, 7;0)] have the property

where Fa are the eigenvalues of the kernél:%b(y 7:9)
felated to the elementg” of the usual flavor-singlet anoma-
lous dimension matrix

n
) ) FSKQ:'yn+k- F”"_n+k 7nQ+Gk’
R3°(Y, 7:9)Wn(7) =R3%(7,y;9)Wn(y), (A28)
_ n+k
wherew,(y)=(yy)""1. FSKQ:T Yask: Toe=rvesc

Hence, the eigenfunctions of the evolution equations are

orthogonal with the weightv,(y)=(yy)"**, i.e., they are and similarly for the helicity-sensitive quantitie§T'2.
proportional to the Gegenbauer polynomis+3/2(y—y), Namely,

014030-15



A. V. RADYUSHKIN

e R

1 1 N+1 1

2 (NT1)(N+2) +2,-22 i

PHYSICAL REVIEW D 59 014030

Bo=11N./3. Note that the lowest local operator in this case
corresponds tan=1. Furthermore, in pure gluodynamics,
¥$€ vanishes whileyS®<0 if N=>1. This means that in the

(A29) pm—oo limit we have
1 G 2
GG_ _ - XFZ(X,y|u—)=308(x)(yy)
We==2Nd ~ YT D ylu yy
N+ 1 for the double distribution which results in
1 Bo
TINt2)(N+3) T J-Zl 1Tz (AS0) FE(X| p—00) =30X2(1— X/ )% 3
N+1 8 for the nonforward distribution. In the formulas above, the
AySC=—2N| - ———+ > S|+ _0, total momentum carried by the gluofis pure gluodynam-
N T (N+2)(N+3) =1 j| 2 ics) was normalized to unity.
(A31) In QCD, we should take into account the effects due to
5 quark gluon mixing. Diagonalizing EqA27), we obtain two
48R=C N"+3N+4 multiplicatively renormalizable combinations
N FN(N+1)(N+2)’
F k= F okt andF i, (A35)
0G N2+3N+4
4N :Nf(N+1)(N+2)(N+3)v (A32)  where(omitting thenk indiceg
(N+3) 1 GG_ .QQ GG_ Q02 GO.QG
GQ_ _ a = - * - +4 .
AR =Ce TN ) 2yGQ[y YORE J(y8C— yR9)2+4,C9RC]
(A36)
1
QG_ . . . . .
Avyy Nf—(N+ (NT2)" (A33)  Their evolution is governed by the anomalous dimensions

Let us consider first two simplified situations. In the quark
nonsinglet case, the evolution is governéd helicity-
averaged cageoy Y3, alone:

L1
YE =570+ y9% (40— 092+ 455900,
(A37)

In particular, y;,=0 and aj,=1 which means thaf,
=F%+F§ does not evolve: the total momentum carried by
the partons is conserved. Another multiplicatively renormal-
izable combination involving$, andF$, is

?E'S(ylu)=(yV)“+1kZO ATKCR 32y — )

X [log( w/ A ) 2775/ o, (A34)

- N
F1o=F~ 7o Fio-

Sincey$?=0 while all the anomalous dimensiong < with ac
F

N=1 are negative, onlyF§yy|ux) survives in the
asymptotic limit u—o while all the momentsF)>(y|u)

with n=1 evolve to zero values. Hence, in the formal
—oo limit, we have

It vanishes in theu— o limit, and we have

G 4Ce
10(,u~>oo)~> m

(A38)

N
_ F?O(MHOO)H—APC -{-N ,
FNS(X,y|u—)~ 8(x)yy PO

i;'f\‘-é in each of its v%riabfl]es, the  limiting fu_nc]t(ion Since all the combinationE ., with n+k=2 vanish in the
(x,y|u—2<) acquires the characteristic asymptotic form ™ =i e opain

dictated by the nature of the variabl&(x) is specific for the

distribution functions[36,37], while the yy form is the
asymptotic shape for the lowest-twist two-body distribution
amplitudeg23,24]. For the nonforward distribution of a va-
lence quarkqg this gives

XFS(x y|,u—><><>)—>30i S(X)(yy)?;
' 4C-+N; ’

Q N 2
XFR(X,y|u—)— 30— 8(X)(yy)?,

. (A39)
F X p—0) = 6NgX(1=XI )/ £, 4Ce+ Ny
whereN, is the number of the valenagquarks in the had- or
ron.
Another example is the evolution of the gluon distribution FO(x,y|u—%)— —30 N 5" (X)(yy)2. (A40)

in pure gluodynamics which is governed by’’S, with 4Cg+ Ny
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In terms of nonforward distributions this is equivalent to

FX 60L X1-X)(Z g
o0 J— —_ _
(Xu=2) =80 2 2/l Y
_)w — C A - L . . . .

A 4Ce+ Ny 3 ¢ Note that both72(£) and FZ(£) vanish in thep— o limit.
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