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Double distributions and evolution equations
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Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive meson electro-
production processes require a generalization of usual parton distributions for the case when long-distance
information is accumulated in nonforward matrix elements^p8uO(0,z)up& of quark and gluon light-cone
operators. In our previous papers we used two types of nonperturbative functions parametrizing such matrix
elements: double distributionsF(x,y;t) and nonforward distribution functionsFz(X;t). Here we discuss in
more detail the double distributions~DD’s! and evolution equations which they satisfy. We propose simple
models forF(x,y;t50) DD’s with correct spectral and symmetry properties which also satisfy the reduction
relations connecting them to the usual parton densitiesf (x). In this way, we obtain self-consistent models for
the z dependence of nonforward distributions. We show that, for smallz, one can easily obtain nonforward
distributions~in the X.z region! from the parton densities:Fz(X;t50)' f (X2z/2).
@S0556-2821~98!04223-4#

PACS number~s!: 12.38.Bx, 13.60.Fz, 13.60.Le
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I. INTRODUCTION

Applications of perturbative QCD to deeply virtua
Compton scattering and hard exclusive electroproduc
processes@1–7# require a generalization of usual parto
distributions for the case when long-distance informat
is accumulated in nonforward matrix elementŝp
2r uO(0,z)up&uz250 of quark and gluon light-cone operator
As argued in Refs.@2,4,5#, such matrix elements can be p
rametrized by two basic types of nonperturbative functio
With z taken in the light-cone ‘‘minus’’ direction, the doubl
distributions~DD’s! F(x,y;t) specify the light-cone ‘‘plus’’
fractionsxp1 andyr1 of the initial hadron momentump and
the momentum transferr carried by the initial parton.
Thoughz is an integration variable, only one direction on t
light cone~specified by external momenta! is important for
the light-cone-dominated processes. In other words, only
light-cone plus direction of the hadronp and r momenta is
essential for such processes. By definition, the DD
F(x,y;t) do not depend on ther 1/p1 ratio. On the other
hand, treating the proportionality coefficient as an indep
dent parameterr 1[zp1, one can introduce an alternativ
description in terms of the nonforward parton distributio
Fz(X;t) with X5x1yz being the total fraction of the initia
hadron momentum taken by the initial parton. The shape
the functionsFz(X;t) explicitly depends on the parameterz
characterizing the skewedness of the relevant nonforw
matrix element. This parametrization of nonforward mat
elements byFz(X;t) is similar to that proposed originally b
Ji @1,3# who introduced off-forward parton distribution
~OFPD’s! H(x,j;t). The latter are close to functions consi
ered earlier in Ref.@8#. The functionsH(x,j;t) have a
simple relation to nonforward distributions~NFPD’s!
Fz(X;t), while the nondiagonal distributionsF(x1 ,x2) dis-
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cussed by Collins, Frankfurt, and Strikman@7# essentially
coincide withFz5x12x2

(x1 ;t50) ~see Ref.@5# for details!.

The basic distinction between our approach and those
Refs. @1,3,7# is that we treat the double distribution
F(x,y;t) as the primary objects of the QCD analysis produ
ing the nonforward distributionsFz(X;t) ~and other types of
distributions! after an appropriate integration.

The formalism of double distributions provides a rath
effective tool for studying some general~e.g., spectral! prop-
erties of NFPD’s and it allows us us to find analytic solutio
of evolution equations@2,4,5#. Incorporating symmetries o
DD’s @9# imposes rather strong restrictions on realistic mo
els of NFPD’s. A possible strategy for a self-consiste
model building is to use nonperturbative or phenomenolo
cal approaches~MIT bag, quark models, QCD sum rul
ideas, etc.! to construct double distributions at low norma
ization point and then evolve them to higherQ2 values.

The evolution equation for the nonsinglet quark doub
distribution was derived in Ref.@2#, where its analytic solu-
tion was also given. Evolution of the gluon distribution
pure gluodynamics was discussed in Refs.@4,5#. In this pa-
per, we also present a full set of evolution equations for
flavor-singlet case and derive a solution following t
method of Refs.@2,4,5#. An independent study of single
evolution based on our approach was performed in Ref.@10#.
Evolution equations for various versions of nonforward d
tributions can be found in Refs.@3,5,11–13#. A convenient
way to obtain the relevant evolution kernels is to use
universal light-ray evolution kernels@12–15#. The evolution
of nonforward distributions was studied numerically in Re
@11,16,9,17,18#.

In the present paper, we incorporate the spectral and s
metry properties of double distributions to construct so
simple models for DD’s. Using the relations between DD
and NFPD’s or OFPD’s, we derive models for the latter a
show that using the formalism of double distributions we c
easily explain characteristic qualitative and quantitative f

n
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A. V. RADYUSHKIN PHYSICAL REVIEW D 59 014030
tures of the evolution of nonforward distributions observ
in Refs.@11,17#.

II. BASIC DEFINITIONS

The kinematics of the amplitudes of the deeply virtu
Compton scattering ~DVCS! process g* (q)N(p)
→g(q8)N(p8) and hard electroproductiong* (q)N(p)
→M (q8)N(p8) can be specified by the initial nucleon m
mentump, the momentum transferr 5p2p8, and the mo-
mentumq8 of the final photon or meson. To get a Bjorke
type scaling limit, one should also keep the invaria
momentum transfert[r 2 small compared to the virtuality
2Q2[(q2r )2 of the initial photon and the energy invaria
p•q[mpn. The essential features of the hard electroprod
tion processes~DVCS included! can be most easily demon
strated if we setq8250, p250, r 250, and usep, q8 as the
basic light-cone~Sudakov! four-vectors. It is easy to see tha
the requirementp82[(p1r )25p2 reduces in this limit to
the conditionp•r 50 which can be satisfied only if the tw
lightlike momentap and r are proportional to each other:r
5zp, wherez coincides with the Bjorken variablez5xB j
[Q2/2(p•q). The latter satisfies the constraint 0<xB j<1.
For small but finitet andmp , the momentum transferr still
must have a non-zero plus componentr 15zp1. It also may
have a transverse componentr' .

In the perturbative QCD~PQCD! factorization treatmen
of hard electroproduction processes, the nonperturbative
formation is accumulated in the nonforward matrix elem
^p2r uw(0)w(z)up& @we use herew as a generic notation fo
quark (c) or gluonic ~G! fields#. It depends on the relative
coordinatez through three invariant variables (pz),(rz), and
z2. In the forward case, whenr 50, one gets the usual parto
distributions by Fourier transforming the light-cone pr
jected~i.e., z250) matrix element with respect to (pz). In
the nonforward case, we can try to start with the gene
Fourier representation

^p2r uw~0!w~z!up&[M@~pz!,~rz!,z2;t,mp
2#

5E
2`

`

dxE
2`

`

dy E
2`

`

e2 ix~pz!2 iy~rz!

3r~x,y,n;t !e2 iz2ndn ~2.1!

with respect to all threez-dependent invariants. The Fourie
transformr(x,y,n;t) can be called atriple distribution. Note
that the generous (2`,`) limits for all three variablesx,y,n
serve for a most general function of (zp),(zr), andz2. How-
ever, incorporating information that the Fourier transform
tion is written for a functionM given by Feynman integral
having specific causality properties, one arrives at more
row limits: n runs from 0 to`, x is between21 and 1
while y is between 0 and 1~this was proven in Ref.@5# for
any Feynman diagram using the approach of Ref.@19#!. To
interpret thex variable as the fraction of the initial momen
tum p carried by the relevant parton, it makes sense to se
rate integration over positive and negativex components and
01403
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redefinex→2x andy→12y for the negativex component.
After that, thex variable is always positive andx andy are
further constrained by inequality 0<x1y<1 @2,5#. These
spectral conditions can be summarized by the following r
resentation:

^p2r uw~0!w~z!up&

5E
0

`

dne2in~z22ie!E
0

1E
0

1

@e2 ix~pz!2 iy~rz!F~x,y,n;t !

1eix~pz!2 i ~12y!~rz!F̄~x,y,n;t !#u~x1y<1!dx dy,
~2.2!

in which F(x,y,n;t) andF̄(x,y,n;t) result from positive-x
and negative-x components ofr(x,y,n;t), respectively. In
particular, for quark operators,F(x,y,n;t) can be inter-
preted as the quark distribution whileF̄(x,y,n;t) as the an-
tiquark one~a more detailed discussion is given in the ne
section!. Similarly, y and (12y) can be interpreted as th
fractions in which the momentum transferr is shared among
the two fields of the composite operatorw(0)w(z). Finally,
the n variable characterizes the virtuality of these fields. F
a light-cone dominated process, the leading term is given
the z2→0 limit of the nonforward matrix element, i.e., b
zeroth moment ofF(x,y,n;t) with respect ton:

F~x,y;t !5E
0

`

F~x,y,n;t !dn, ~2.3!

whereF(x,y;t) is thedouble distribution~see Fig. 1!.
For a lightlike intervalz250, one can treatz as having

only light-cone ‘‘minus’’ component, and then the scal
products (pz),(rz) project out the ‘‘plus’’ components o
general~nonlightlike! momentap and r. This allows us to
give a parton interpretation ofF(x,y;t) as a probability am-
plitude for the active parton to carry fractionsxp1 andyr1

of the plus components of the external momentar and p.
Though the momentap1 and r 1 can be treated as propo
tional to each otherr 15zp1, p1, andr 1 specify the ‘‘1’’
momentum flow in two different channels. Forr 150, the
net ‘‘1’’ momentum flows only in thes-channel and the
total ‘‘1’’ momentum entering into the composite operat
vertex is zero. In this case, the matrix element is analog
to a distribution function. The partons entering the compos
vertex then carry the fractionsxip

1 of the initial proton mo-
mentum (21,xi,1). Whenxi is negative, we interpret the
parton as belonging to the final state to secure that the i
gral always runs over the segment 0<x<1. In this parton

FIG. 1. Parton picture for double distributions.
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picture, the spectators take the remaining momentum
2x)p1. On the other hand, if the total ‘‘1’’ momentum
flowing through the composite vertex isr 1, the matrix ele-
ment has the structure of a distribution amplitude in wh
the momentumr 1 splits into the fractionsyr1 and (1
2y)r 1[ ȳr 1 carried by the two fields that appear in th
vertex. In a combined situation, when bothp1 and r 1 are
nonzero, the initial parton takesxp11yr1, while the final
one carries the momentumxp12 ȳr 1. For r 50, we get the
o

ia

ly
d
th
th

’s
rd

by
,

n

-
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1forward matrix element which is parametrized by the us
parton distributionsf (x). This gives reduction relations
@2,4,5# connecting double distributions with the usual on
@see Eqs.~3.4!,~3.5! below#.

III. QUARK AND GLUON DISTRIBUTIONS

For quark operators, the double distributions are defin
by the following representation@2#:
^p8,s8uc̄a~0!ẑE~0,z;A!ca~z!up,s&uz2505ū~p8,s8!ẑu~p,s!E
0

1E
0

1

@e2 ix~pz!2 iy~rz!Fa~x,y;t !2eix~pz!2 i ȳ~rz!Fā~x,y;t !#

3u~x1y<1!dx dy1
1

4M
ū~p8,s8!( ẑr̂ 2 r̂ ẑ)u~p,s!E

0

1E
0

1

@e2 ix~pz!2 iy~rz!Ka~x,y;t !

2eix~pz!2 i ȳ~rz!Kā~x,y;t !]u~x1y<1!dx dy ~3.1!

for parton helicity-averaged ones and by

^p8,s8uc̄a~0!ẑg5E~0,z;A!ca~z!up,s&uz2505ū~p8,s8!ẑg5u~p,s!E
0

1E
0

1

@e2 ix~pz!2 iy~rz!Ga~x,y;t !1eix~pz!2 i ȳ~rz!Gā~x,y;t !#

3u~x1y<1!dx dy1
~rz!

2M
ū~p8,s8!g5u~p,s!E

0

1E
0

1

@e2 ix~pz!2 iy~rz!Pa~x,y;t !

1eix~pz!2 i ȳ~rz!Pā~x,y;t !#u~x1y<1!dx dy ~3.2!
p-
hat
in

s-

of
ton
in the parton helicity-sensitive case. Here and in what f
lows we adhere to the ‘‘bar’’ conventionȳ512y,x̄51
2x, etc., for momentum fractions and use the ‘‘Russ
hat’’ notation gaza[ ẑ. As usual,ū(p8,s8),u(p,s) are the
Dirac spinors for the nucleon. In this definition, we explicit
separate quark and antiquark components of the double
tribution. Note that such a separation is unambiguous: in
Fourier representation, it is completely determined by
sign of thex term in the exponential.

To clarify the physical meaning of separating the DD
into two components, it is instructive to consider the forwa
limit r 50 in which the matrix element is parametrized
usual parton densities, e.g., in the helicity averaged case

^puc̄a~0!ẑE~0,z;A!ca~z!up&uz250

5ū~p!ẑu~p!E
0

1

@e2 ix~pz! f a~x!2eix~pz! f ā~x!#dx.

~3.3!

The exponential factors accompanying the quark and a
quark distributions reflect the fact that the fieldc(z) appear-
ing in the operatorc̄(0)•••c(z) consists of the quark anni
hilation operator~quark with momentumxp comes into this
point! and the antiquark creation operator~i.e., antiquark
l-

n

is-
e
e

ti-

with momentumxp goes out of this point!. To get the rela-
tive signs with which quark and antiquark distributions a
pear in these definitions, we should take into account t
antiquark creation and annihilation operators appear
c̄(0)•••c(z) in the opposite order. Comparing the expre
sion ~3.3! with the r 50 limit of the definitions for DD’s, we
obtain ‘‘reduction formulas’’ relating the two components
the double distributions to the quark and antiquark par
densities, respectively,

E
0

12x

Fa~x,y;t50!dy5 f a~x!,

E
0

12x

Fā~x,y;t50!dy5 f ā~x!, ~3.4!

and similarly for the helicity-sensitive case

E
0

12x

Ga~x,y;t50!dy5D f a~x!,

E
0

12x

Gā~x,y;t50!dy5D f ā~x!. ~3.5!
0-3



bl

y

r,

e

ad
ot
he
rs

ic
lu

al

by
rton
nt
-

as
ar-
tri-

g

m-

e

ns

A. V. RADYUSHKIN PHYSICAL REVIEW D 59 014030
The reduction formulas tell us that integrating the dou
distributionFa(x,y;t50) over a vertical linex5const in the
(x,y) plane, one gets the quark densityf a(x) while integrat-
ing its counterpartFā(x,y;t50) gives the antiquark densit
f ā(x). This is an illustration of our statement thatFa(x,y)
and Fā(x,y) are independent functions. In particula
Fa(x,y) contains the valence component@reducing to
f a

val(x)] absent inFā(x,y).
Our definitions ~3.1!, ~3.2! reflect the results of the

a-representation analysis@5# that the plus component of th
momentum of the particle~either quark or antiquark! going
out of the hadronic blob can be written asxp11yr1 with
bothx andy positive andx1y<1. This is in full compliance
with the parton model based expectation that the initial h
ron splits into an active parton and spectators which b
carry positive fractions of its plus momentum. To show t
positivity of the plus momentum component for spectato
we should explicitly take into account that, in the kinemat
of DVCS and hard electroproduction processes, the p
component of the momentum transferr 5p2p8 is positive
e
a

r

h

le

.,
r

01403
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r 15zp1.0. Requiring that the plus component of the fin
hadron momentum is also positive, we conclude that 0<z
<1. Hence, 0<x1yz<1 ~since 0<z<1 and 0<x1y
<1), i.e., the plus component of the momentum carried
spectators is also positive. On the other hand, the pa
‘‘going back’’ has the momentum whose plus compone
xp12 ȳr 15(x2 ȳz) may be either positive or negative, de
pending on the relationship betweenx, y, andz. When (x
2 ȳz) is negative, one may wish to interpret such a parton
an antiparton leaving the hadron together with the initial p
ton. One should remember, however, that the double dis
butionsF(x,y;t) ‘‘know nothing’’ about the magnitude of
the skewednessz: they are universal functions describin
flux of p1 and r 1 independently of what the ratior 1/p1

might be. As we explained above, the quark DD’s are una
biguously divided into two separate componentsFa(x,y;t)
and Fā(x,y;t), but there is no further subdivision insid
them based on interrelation between the values ofx andy.

In a similar way, we can introduce double distributio
for the gluons:
^p8,s8uzmznGma
a ~0!Eab~0,z;A!Gan

b ~z!up,s&uz2505ū~p8,s8!ẑu~p,s!~z•p!E
0

1E
0

1 1

2
~e2 ix~pz!2 iy~rz!

1eix~pz!2 i ȳ~rz!!u~x1y<1!Fg~x,y;t !xdx dy1Kg term, ~3.6!

^p8,s8uzmznGma
a ~0!Eab~0,z;A!G̃an

b ~z!up,s&uz2505ū~p8,s8!ẑg5u~p,s!~z•p!E
0

1E
0

1 i

2
~e2 ix~pz!2 iy~rz!

2eix~pz!2 i ȳ~rz!!u~x1y<1!Gg~x,y;t !xdx dy1Pg term. ~3.7!
he

ur

ns
There are no ‘‘antigluons,’’ so the positive-x and negative-x
parts are described by the same function. Note that our d
nition of the gluon double distributions here differs from th
used in our earlier papers@4,5,13# by an extra factor ofx in
its right-hand side~RHS!. This form is more convenient fo
applications of the method of Refs.@2,4,5# to solve evolution
equations for double distributions in the singlet case. T
choice made above corresponds also to the simplest form
the reduction formulas:

E
0

12x

Fg~x,y;t50!dy5 f g~x!,

E
0

12x

Gg~x,y;t50!dy5D f g~x!. ~3.8!

Another ambiguity in the definition of the gluon doub
distribution is related to the overall factor (z•p) in the RHS
of Eqs. ~3.6! and ~3.7!. Instead of it, we could take, e.g
(z•p8) or (z•r ) ~such a choice is utterly inconvenient fo
taking the forward limit! or (z•P) whereP5(p1p8)/2 is a
fi-
t

e
of

symmetric combination of the initial and final momenta. T
latter choice~made in Ref.@9#! is more convenient for the
studies of symmetry properties of the gluon DD’s. O
choice made in Eqs.~3.6! and ~3.7! simplifies the expres-
sions for off-diagonal (QG andGQ) evolution kernels@see
Eq. ~4.12! below#.

The flavor-singlet quark operators

OQ~uz,vz!5 (
a51

Nf i

2
@c̄a~uz!ẑE~uz,vz;A!ca~vz!

2c̄a~vz!ẑE~vz,uz;A!ca~uz!# ~3.9!

and

DOQ~uz,vz!5 (
a51

Nf 1

2
@c̄a~uz!ẑg5E~uz,vz;A!ca~vz!

1c̄a~vz!ẑg5E~vz,uz;A!ca~uz!# ~3.10!

are expressed in terms of double distributio
FQ(x,y;t), GQ(x,y;t), etc., specified by
0-4
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^p8,s8uOQ~uz,vz!up,s&uz2505ū~p8,s8!ẑu~p,s!E
0

1E
0

1 i

2
~e2 ixv~pz!2 iyv~rz!1 ixu~pz!2 i ȳu~rz!

2eixv~pz!2 i ȳv~rz!2 ixu~pz!2 iu~rz!!FQ~x,y;t !u~x1y<1!dx dy1KQ term, ~3.11!

^p8,s8uDOQ~uz,vz!up,s&uz2505ū~p8,s8!ẑg5u~p,s!E
0

1E
0

1 1

2
~e2 ixv~pz!2 iyv~rz!1 ixu~pz!2 i ȳu~rz!

1eixv~pz!2 i ȳv~rz!2 ixu~pz!2 iu~rz!!GQ~x,y;t !u~x1y<1!dx dy1PQ term. ~3.12!
en
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They are given by the sum of ‘‘a1ā’’ distributions:

FQ~x,y;t !5 (
a51

Nf

@Fa~x,y;t !1Fā~x,y;t !#,

GQ~x,y;t !5 (
a51

Nf

@Ga~x,y;t !1Gā~x,y;t !#. ~3.13!

IV. EVOLUTION EQUATIONS

The QCD perturbative expansion for the matrix elem
in Eq. ~2.1! generates lnz2 terms. As a result, limitz2→0 is
singular and the distributionsF(x,y;t), etc., contain loga-
rithmic ultraviolet divergences which require an additionaR
operation characterized by some subtraction sc
m: F(x,y;t)→F(x,y;tum). The m dependence o
F(x,y;tum) is governed by the evolution equation

m
d

dm
Fa~x,y;tum!5E

0

1E
0

1

(
b

Rab~x,y;j,h!

3Fb~j,h;tum!u~j1h<1!dj dh,

~4.1!

wherea,b5G,Q. A similar set of equations, with kernel
denoted byDRab(x,y;j,h) prescribes the evolution of th
parton helicity sensitive distributionsGa(x,y;tum). Since the
evolution kernels do not depend ont, from now on we will
drop thet variable from the arguments ofF(x,y;tum) in all
cases when this dependence is inessential~likewise, them
variable will be ignored in our notation when it is not impo
tant!.

Since integration overy convertsFa(x,y;t50um) into the
parton distribution functionf a(xum), whose evolution is de-
01403
t

le

scribed by the Dokshitzer-Gribov-Lipatov-Altarelli-Pari
~DGLAP! equations@20–22#

m
d

dm
f a~xum!5E

x

1dj

j
Pab~x/j;g! f b~jum!dj, ~4.2!

the kernelsRab(x,y;j,h;g) must satisfy the reduction rela
tion

E
0

12x

Rab~x,y;j,h;g!dy5
1

j
Pab~x/j;g!. ~4.3!

Alternatively, integration overx convertsFa(x,y;t50um)
into an object similar to a meson distribution amplitu
~DA!, so one may expect that the result of integration
Rab(x,y;j,h;g) overx should be related to the kernels go
erning the DA evolution@23,24#. For the diagonal kernels th
relations are rather simple,

E
0

12y

RQQ~x,y;j,h;g!dx5VQQ~y,h;g! ~4.4!

for the quark kernel and a slightly more complicated expr
sion for the gluon kernel,

E
0

12y x

j
RGG~x,y;j,h;g!dx5VGG~y,h;g!. ~4.5!

The x/j factor appears because of the extrax which was
added in the definition of the gluon DD by analogy with th
definition for the usual gluon densities. The nondiagonal k
nelsRGQ andRQG obey more complicated reduction formu
las ~see the Appendix!.

The reduction properties of the diagonal evolution kern
can be illustrated using the explicit form of theQQ kernel
RQQ~x,y;j,h;g!5
as

p
CF

1

j H u~0<x/j<min$y/h,ȳ/h̄%!2
1

2
d~12x/j!d~y2h!1

u~0<x/j<1!x/j

~12x/j! F 1

h
d~x/j2y/h!

1
1

h̄
d~x/j2 ȳ/h̄ !G22d~12x/j!d~y2h!E

0

1 z

12z
dzJ . ~4.6!
0-5
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Here the last~formally divergent! term, as usual, provide
the regularization for the 1/(x2j) singularities present in the
kernel. This singularity can be also written as 1/(h2y) for
the term containingd(x/j2y/h) and as 1/(h̄2 ȳ) for the
term with d(x/j2 ȳ/h̄). Depending on the chosen form o
the singularity, incorporating the 1/(12z) term into a plus-
type distribution, one should treatz asx/j, y/h or ȳ/h̄. One
can check that integratingRQQ(x,y;j,h;g) overy or x, gives
the DGLAP splitting functionPQQ(x/j;g) and the DA evo-
lution kernelVQQ(y,h;g), respectively,

PQQ~z;g!5
as

p
CFS 11z2

12z D
1

, ~4.7!

VQQ~y,h;g!5
as

p
CFH S y

h D F11
1

h2yGu~y<h!

1S ȳ

h̄
D F11

1

y2hGu~y>h!J
1

. ~4.8!
r-
a

01403
Here, ‘‘1’’ denotes the standard ‘‘plus’’ regularization@21#.
A convenient way to get explicit expressions f

Rab(x,y;j,h;g) is to extract them from the kernel
Bab(u,v) describing the evolution equations for the light-ra
operators@14,15,12,13#

m
d

dm
Oa~0,z!5E

0

1E
0

1

(
b

Bab~u,v !

3Ob~uz,v̄z!u~u1v<1!du dv. ~4.9!

Since the definitions of the gluon distribution
Fg(x,y;t), Gg(x,y;t) contain an extra (pz) factor on the
right-hand side, which results in the differentiation]/]x of
the relevant kernel, it is convenient to proceed in two ste
First, we introduce the auxiliary kernelsr ab(x,y;j,h;g) di-
rectly related by
r ab~x,y;j,h;g!5E
0

1E
0

1

d„x2j~12u2v !…d„y2u2h~12u2v !…Bab~u,v !u~u1v<1!du dv5
1

j
Bab~y2hx/j,ȳ2h̄x/j!

~4.10!
ns

-

to the light-ray evolution kernelsBab(u,v). The second step
is to get theR kernels using the relations

RQQ~x,y;j,h;g!5r QQ~x,y;j,h;g!,

RGG~x,y;j,h;g!5
j

x
r GG~x,y;j,h;g!, ~4.11!

]

]x
„xRGQ~x,y;j,h;g!…52r GQ~x,y;j,h;g!,

RQG~x,y;j,h;g!52j
]

]x
r QG~x,y;j,h;g!. ~4.12!

Hence, to obtainRGQ(x,y;j,h;g), we should integrate
r GQ(x,y;j,h;g) with respect tox. We fix the integration
ambiguity by the requirement thatRGQ(x,y;j,h;g) vanishes
for x.1. Then

RGQ~x,y;j,h;g!5
1

xEx

1

r GQ~ x̃,y;j,h;g!dx̃. ~4.13!

This convention guarantees a simple relation~4.3! to the
DGLAP kernels. Explicit expressions for the evolution ke
nels and discussion of evolution equations in the singlet c
is given in the Appendix~see also Ref.@10#!.
se

V. PARTON INTERPRETATION
AND MODELS FOR DOUBLE DISTRIBUTIONS

The structure of the integrals relating double distributio
with the usual ones

f a,ā,g~x!5E
0

12x

Fa,ā,g~x,y!dy ~5.1!

@whereF(x,y)[F(x,y;t50)] has a simple graphical illus
tration @see Fig. 2~a!#. The DD’sF(x,y) live on the triangle
defined by 0<x,y,x1y<1. IntegratingF(x,y) over a line
parallel to they axis, we getf (x). The reduction formulas

FIG. 2. ~a! Integration lines in the (x,y) plane giving reduction
of double distributionsF(x,y;t50) to usual parton densitiesf (x1)
and f (x2). ~b! Symmetry liney5(12x)/2 for double distributions.
0-6
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and the interpretation of thex variable ofF(x,y) as a frac-
tion of thep1 momentum suggests that the profile ofF(x,y)
in thex direction is basically driven by the shape off (x). On
the other hand, the profile in they direction characterizes th
spread of momentum induced by the momentum transferr 1.
Hence, they dependence ofF(x,y) for fixed x should be
similar to that of a distribution amplitudew(y). By analogy
with, e.g., the pion distribution amplitudewp(y), which is
symmetric with respect to the changey↔12y, one may
expect that the distribution of ther momentum between th
two partons described by the same field should also h
some symmetry. However, the symmetry cannot be
simple as y↔12y since the initial p and the final
p8[p2r momenta are not treated symmetrically in our d
scription: the variablex specifies the fraction of theinitial
momentump both for the outgoing (xp1yr) and incoming
@xp2(12y)r # partons. To treatp andp8 symmetrically, we
should interpretx for the returning parton as the fraction o
the final hadron momentump85p2r , i.e., rewrite its mo-
mentumxp2(12y)r asx(p2r )2(12x2y)r . Hence, the
symmetry of a double distributionF(x,y) may be only with
respect to the interchangey↔12x2y @9#.

Another way to make the symmetry between the init
and final hadrons more explicit is to useP[(p1p8)/2
and r as the basic momenta rather thanp and r ~see Refs.
@1,3,9#! writing the momenta of the partons asxP1 ỹr and
xP2(12 ỹ)r . Then they↔12x2y symmetry correspond
to ỹ↔12 ỹ symmetry. The variableỹ changes in the interva
x/2< ỹ<(12x/2). Writing ỹ as ỹ5(11a)/2, we intro-
duce a new variablea satisfying a symmetric constrain
2 x̄<a< x̄, where x̄[12x. The y↔12x2y symmetry
now converts intoa↔2a symmetry. Finally, rescalinga as
a5 x̄b produces the variableb with x-independent limits:
21<b<1. Written in terms ofx andb, a modified double
distribution F̃(x,b) obeys the reduction formula

x̄

2E21

1

F̃~x,b!db5 f ~x!. ~5.2!

It is instructive to study some simple models allowing
satisfy this relation. Namely, let us assume that the profile
the b direction is a universal functiong(b) for all x, i.e.,
take the factorizedAnsatz

F̃~x,b!5
2

12x
f ~x!g~b!, ~5.3!

with g(b) normalized by

E
21

1

g~b!db51. ~5.4!

Possible simple choices forg(b) may bed(b) ~no spread in
b-direction!, 3

4 (12b2) ~characteristic shape for asymptot
limit of quark distribution amplitudes!, 15

16 (12b2)2
01403
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~asymptotic shape of gluon distribution amplitudes!, etc. In
our original variablesx,y, the factorized ansatz can be wri
ten as

F~x,y!5
h~x,y!

h~x!
f ~x!, ~5.5!

where h(x,y) is a function symmetric with respect to th
interchangey↔12x2y. A trivial observation is that the
variable x itself is given by a combination@12(12x2y)
2y# symmetric with respect to they↔12x2y transforma-
tion. The normalization functionh(x) is specified by

h~x!5E
0

12x

h~x,y!dy. ~5.6!

For the three simple choices mentioned above, the mo
~5.5! gives

F ~0!~x,y!5d~y2 x̄/2! f ~x!,

F ~1!~x,y!5
6y~12x2y!

~12x!3
f ~x!,

F ~2!~x,y!5
30y2~12x2y!2

~12x!5
f ~x!. ~5.7!

In a similar way, one can constructAnsätze for functions
F(x,y;t) involving nonzerot values.

VI. RELATION TO NONFORWARD DISTRIBUTIONS

The nonforward matrix elements accumulate proce
independent information and, hence, have a quite gen
nature. The coefficient of proportionality betweenp1 andr 1

characterizes the skewedness of matrix elements. The c
acteristic feature implied by representations for double d
tributions@see, e.g., Eqs.~3.1!, ~3.2!# is the absence of thez
dependence in the DD’sF(x,y) andG(x,y). An alternative
way to parametrize nonforward matrix elements of ligh
cone operators is to use the ratioz5r 1/p1 and the total
momentum fractionX[x1yz as independent variables
Taking into account that for a light-cone dominated proc
only one direction forz gives the leading contribution, on
can do the change (rz)5z(pz) directly in our definitions of
double distributions. As a result, the variabley would appear
there only in thex1yz[X combination, whereX can be
treated as thetotal fraction of the initial hadron momentump
carried by the active quark. If we require that the light-co
plus component of the final hadron momentum~i.e., p1

2r 1) is positive, then 0<z<1. Using the spectral propert
0<x1y<1 of double distributions we obtain that the var
ableX satisfies a similar ‘‘parton’’ constraint 0<X<1. Inte-
grating each particular double distributionFa,ā,g(X2yz,y)
over y gives the nonforward parton distributions
0-7
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F z
a,ā,g~X!5u~X>z!E

0

X̄/ z̄
Fa,ā,g~X2yz,y!dy1u~X<z!

3E
0

X/z

Fa,ā,g~X2yz,y!dy, ~6.1!

wherez̄[12z. The two components of NFPD’s correspon
to positive (X.z) and negative (X,z) values of the frac-
tion X8[X2z associated with the returning parton. As e
plained in Refs.@4,5#, the second component can be inte
preted as the probability amplitude for the initial hadron w
momentump to split into the final hadron with momentum
(12z)p and the two-parton state with total momentumr
5zp shared by the partons in fractionsYr and (12Y)r ,
whereY5X/z ~see Fig. 3!.

For the gluon DD’s, they↔12x2y symmetry holds
only if, instead of (z•p), one uses the symmetric overa
factor (z•P) in the definitions1 ~3.6!,~3.7!. The use of such a
definition of the gluon DD’s is implied in this section. Fu
thermore, the nonforward gluon distributionF z

g(X) is ob-
tained by integratingxFg(x,y)ux5X2yz . To simplify nota-
tions, it will be also implied below that, for the gluon
F(X2yz,y) in Eq. ~6.1! corresponds to (X2yz)Fg(X
2yz,y).

The basic distinction between double distributionsF(x,y)
and nonforward distributionsFz(X) is that NFPD’s explic-
itly depend on the skewedness parameterz. They form fami-

lies of functionsF z
a,ā,g(X) whose shape changes whenz is

changed. The fact that the functionsFz(X) corresponding to
different z ’s are obtained by integrating the same dou
distributionF(x,y) imposes essential restrictions on possi
shapes ofFz(X) and on how they change with changingz.
The relation between NFPD’s and DD’s has a simple grap
cal illustration on the ‘‘DD-life’’ triangle defined by
0<x,y,x1y<1 ~see Fig. 4!. To getFz(X), one should in-
tegrateF(x,y) over y along a straight line specified byx
5X2zy. Fixing some value ofz, one deals with a set o
parallel lines corresponding to different values ofX. Evi-
dently, each such line intersects thex axis at x5X. The
upper limit of they integration is determined by intersectio
of this line either with the linex1y51 ~this happens ifX
.z) or with they axis ~if X,z). The line corresponding to
X5z separates the triangle into two parts generating
components of the nonforward parton distribution. In the f
ward case, whenz50, there is only one component, and t

1I am grateful to G. Piller for attracting my attention to this poin

FIG. 3. Parton interpretation of nonforward distributions.~a!
RegionX.z. ~b! RegionX,z.
01403
-
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o
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usual parton densitiesf (x) are produced by integrating
F(x,y) along the vertical linesx5const~see Fig. 2!. In the
case whenX.z, looking at the integration line for the non
forward parton distributionFz(X) one can see@Fig. 4~b!#
that it is inside the space between the integration lines giv
the usual parton densitiesf (X) and f (X8) corresponding to
the momentum fractionsX, X8[X2z of the initial and fi-
nal parton. Assuming a monotonic decrease of the dou
distributionF(x,y) in the x direction and a universal profile
in the y direction, one may expect thatFz(X) is larger than
f (X) but smaller thanf (X8). Inequalities between forward
and nonforward distributions were recently discussed
Refs. @17,25,26#. They are based on the application of th
Cauchy-Schwartz inequality

u(
S

^H~p8!;X8p,SuH~p!;Xp,S&u2

<(
S

^H~p!,Xp,SuH~p!;Xp,S&

3(
S8

^H~p8!;X8p,S8uH~p8!;X8p,S8&, ~6.2!

to the nonforward distributionsFz(X) written generically as

Fz~X!5(
S

^H~p8!;X8p,SuH~p!;Xp,S&,

whereuH(p);Xp,S& describes the probability amplitude th
the hadron with momentump converts into a parton with
momentumXp and spectatorsS. The forward matrix ele-
ments are identified with the usual parton densities

(
S

^H~p!;Xp,SuH~p!;Xp,S&5 f ~X!. ~6.3!

Notice that the hadron momentum in the second forw
matrix element isp85 z̄p, hence the argument of the re
evant parton density isX8/ z̄, and one has

FIG. 4. Relation between double distributionsF(x,y) and non-
forward parton distributionsFz(X). ~a! Integration lines for three
cases:X1.z, X5z andX2,z. ~b!,~c! Comparison of integration
lines for the nonforward parton distributionFz(X) and usual parton
densitiesf (X), f (X8) @shown in Fig. 2~b!# and f (X), f (X2) with

X25X8/ z̄ @shown in Fig. 2~c!#.
0-8
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(
S

^H~p8!;X8p,SuH~p8!;X8p,S&

5(
S

^H~p8!;X8p8/ z̄,SuH~p8!;X8p8/ z̄,S&

5 f ~X8/ z̄ !/ z̄. ~6.4!

As a result, we obtain~compare@25,26#!

F z
q~X!<Af ~X! f ~X8/ z̄ !/ z̄<

1

2A12z
@ f ~X!1 f ~X8/ z̄ !#.

~6.5!

In other words, the functions involved in the bound f
Fz(X) are f (X) and f (X2) where the fractionX2[X8/ z̄ is
larger thanX8 @25,26#. One can see thatX2 is given exactly
by thex value of the intersection point in which the integr
tion line x5X2zy giving the nonforward distributionFz(X)
crosses the boundary linex1y51 @see Fig. 4~c!#. For the
gluon nonforward distributions, the form of the inequali
depends on whether one uses thep↔p8 symmetric combi-
nation (z•P) or (z•p) as the overall factor in the RHS o
their definitions@see Eqs.~3.6!, ~3.7!#. In the (zP) case,

F z
g ~symm!~X!<

1

12z/2
Af ~X! f ~X8/ z̄ !

<
1

2~12z/2!
@ f ~X!1 f ~X8/ z̄ !#. ~6.6!

It is clear that the whole construction makes sense onl
X8.0 ~or X.z). If X8,0, the nonforward distribution cor
responds to matrix elementŝH(p8);Xp,X8p,SuH(p),S&
which have no obvious relation to the usual parton densit
Furthermore, in our graph of Fig. 4~a!, the left end of the line
x5X2zy in this case corresponds tox50, where the usua
parton densities are infinite, and the inequalities beco
trivial. In fact, they are trivial even for the border pointX
5z. Another deficiency of the Cauchy-Schwartz-type
equalities is that they do not give the lower bound for no
forward distributions though our graphical interpretati
suggests thatFz(X) for X.z is larger thanf (X) if the x
dependence of the double distributionF(x,y) along the lines
y5kx̄ is monotonic.

To develop intuition about possible shapes of nonforw
distributions, it is instructive to derive the NFPD’s corr
sponding to three simple models specified in the previ
section. In particular, for theF (0)(x,y)5d(y2 x̄/2) f (x) An-
satzwe get

F z
~0!~X!5

u~X>z/2!

12z/2
f S X2z/2

12z/2D , ~6.7!

i.e., NFPD’s for nonzeroz are obtained from the forward
distribution f (X)[Fz(X) by a shift and rescaling. Note tha
the model~6.7! satisfies the inequalities~6.5!, ~6.6! in the
01403
if
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s

region X.z for any function f (xuQ0) of the f (xuQ0)
5Ax2a(12x)b type provided thata>0 andb.0. Using the
relations

H~x,j;t !5~12z/2!Fz~X;t !, x̃5
X2z/2

12z/2
, j5

z

22z
~6.8!

between our nonforward distributions and Ji’s off-forwa
parton distributions~OFPD’s! H(x,j;t) @1,3#, one can see
that the delta-function Ansatz gives the simplest
j-independent model

H ~0!~x,j;t50!5 f ~x!

for OFPD’s2 at t50. It is worth noting that the MIT bag
model calculation@27# did produce a set of OFPD’s whic
are almost independent ofj. An evident interpretation is tha
the model constructed in Ref.@27# strongly suppresses th
redistribution of the momentum transfer among the const
ents which results in a very narrow spread ofF(x,y) in they
direction. Even if such a picture is physically correct for
low normalization pointQ0;500 MeV, evolution to higher
values Q*1 GeV widens they profile of F(x,y) and
evolved OFPD’s would change their shape withj, as was
explicitly demonstrated through a numerical calculation
Belitsky et al. @16#.

The evolution ofnonforwarddistributionsFz(XuQ) was
recently studied in Refs.@11,17,18#. As a starting condition,
the authors assume that, at some low scaleQ0 , the nonfor-
ward distributionsFz(XuQ) for all z have the same universa
shape coinciding with that of the usual~forward! densities
f (X,Q0). This assumption corresponds to theAnsatz
F(x,yuQ0)5d(y) f (xuQ0) with double distribution being
nonzero on thex axis only. ThisAnsatzis not realistic, since
it has no symmetry with respect to they↔(12x2y) inter-
change. However, evolution equations are applicable to
distribution and, just due to its asymmetric profile, this u
realistic double distribution has a very distinctive evoluti
pattern reflecting the restoration of they↔12x2y symme-
try. Namely, the asymptotic functionsF(x,yuQ→`) are
y↔(12x2y) symmetric. In particular, both in pure gluo
dynamics and in QCD, we haveFg(x,yuQ→`);y2(12x
2y)2 ~see Ref.@4# and the Appendix!. Hence, one may ex
pect that the evolition ofFg(x,yuQ) shifts its crest towards
the y5 x̄/2 line and also makes they-shape of the double
distribution wider. To see whether the results of Re
@11,17# reflect this expectation, we introduce a general mo
with a narrowy dependence:Fk

(0)(x,y)5d(y2kx̄) f (x) ~in
what follows, it will be referred to as the ‘‘k-delta ansatz’’!.
This double distribution is concentrated on they5kx̄ line
and gives

2Since hadrons are massive,t50 is outside the physical region
hence, thet→0 limit should be understood in the sense of analy
continuation.
0-9
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F z
~0!~k!~X!5

1

12kz
f S X2kz

12kz D ~6.9!

for nonforward distributions. In case of two other mode
simple analytic results can be obtained only if we specif
model for f (x). For the ‘‘valence quark’’-orientedAnsatz
F (1)(x,y), the following choice of a normalized distribution

f ~1!~x!5
G~52a!

6G~12a!
x2a~12x!3 ~6.10!

is ~a! close to phenomenological valence quark distributio
and ~b! produces a simple expression for the double dis
bution since the denominator (12x)3 factor in Eq.~6.10! is
canceled. As a result, the integral in Eq.~6.1! is easily per-
formed and we get

F z
~1!~X!5

42a

z3 H X22a@zāX̄22~X2z!#

1u~X>z!S X2z

12z D 22a

~zāX̄12Xz̄ !J .

~6.11!

The resulting curves forF z
(1)(X) with a50.5 and

z50.05,0.1,0.2,0.4 are shown in Fig. 5. A characteristic f
ture of each curve is a maximum located close to the relev
border pointX5z and slightly shifted to the left from it.
Note that both the functionsF z

(1)(X) and their derivatives
(d/dX)F z

(1)(X) are continuous atX5z. The latter property
is secured by the fact thatF (1)(x,y) vanishes at the uppe
cornerx50, y51. The (12x)5 denominator factor for the
‘‘gluon-oriented’’ Ansatz F(2)(x,y) is canceled if one take
the modelf (x);x2a(12x)5 which, fortunately, is also con
sistent with thex→1 behavior of the phenomenologic
gluon distributions. It is well known@2,4# that the values of
nonforward distributionsFz(X) taken at the border poin
X5z determine imaginary parts of DVCS and hard elect
production amplitudes. An interesting question is the relat
between the usual distributionsf (z) and the valuesFz(z) of

FIG. 5. Nonforward parton distributionsF z
(1)(X) for different

values of the skewednessz50.05 ~thin line!, z50.1 ~dashed line!,
z50.2 ~dash-dotted line!, and z50.4 ~full line! in the ‘‘valence
quark oriented’’ model specified by Eq.~6.11! for a50.5.
01403
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nonforward distributions at the border point. It is easy
calculate that for thek51/2 delta ansatzF (0)(x,y) this ratio
is given by

R~0!~z ![F z
~0!~z !/ f ~z!5

f „z/~22z!…

~12z/2! f ~z!
. ~6.12!

It is larger than 1 for any monotonically descreasing funct
f (x), i.e., the nonforward distributionFz(z) in this case is

larger thanf (z). In the small-z limit, R(0)(z) is completely
determined by the small-x behavior off (x), and the expres-
sion for R(0)(z) simplifies to

R~0!~z !uz!1'
f ~z/2!

f ~z!
. ~6.13!

Hence, if f (x) has a purely powerlike behaviorf (x);x2a

for small x, thenR(0)(z→0)52a(11O(z)), i.e., for small
z, the ratio of the nonforward distributionFz(z) and the
usual parton densityf (z) is practically constant, deviating
from thez50 limiting value byO(z) terms only. The lim-
iting value in this case is 1.41 fora50.5 and 1.23~1.15! for
a50.3 (a50.2). However, iff (x) is a sum of two different
powerlike termsAx2a1Bx2b or if it contains logarithms,
e.g., f (x);x2aln(1/x) for small x, then thez dependence is
more pronounced. In the latter case

R~0!~z !'2aS 11
ln 2

ln~1/z! D , ~6.14!

and there is a visible deviation from the limitingz→0 value
for all accessiblez: on the ln(1/z) scale, thez dependence of
the ratioR(0)(z) cannot be neglected even forz;1025.

For a generalk-delta modelFk
(0)(x,y)5d(y2kx̄) f (x),

the ratioFz(z)/ f (z) for small z can be approximated by
f „z(12k)…/ f (z) which again gives az-independent constan
(12k)2a for a purely powerlike functionf (x);x2a while
the ln(1/x) factor would modify the constant by@11 ln(1
2k)/lnz#.

If one uses the ‘‘valence-quark-oriented’’Ansatz
F (1)(x,y) with a simple powerlike behaviorf (x);x2a for
small x, the ratio is given by

R~1!~z ![F z
~1!~z !/ f ~z!5

1

~12z!2~12a/2!~12a/3!
.

~6.15!

Just like in the previous example, the nonforward distrib
tion Fz(z) is larger thanf (z) for all positivea. For smallz,
the ratio tends to 1/(12a/2)(12a/3), e.g., to 1.6 fora50.5
which is the usual choice for valence quark distributions@for
comparison, takinga50.3 (a50.4) gives 1.3~1.44! for
R(1)(z→0)]. For small a, this result can be translated int
R(0)(z→0)'e5a/6' f (e5/6z)/ f (z), which coincides with the
ratio R(0)(z→0) for the modified narrowAnsatz Fk

(0)(x,y)

5d(y2kx̄) f (x) with k'0.56. Hence, forFz(z) the widen-
ing of the y distribution can be approximated by a narro
distribution shifted fromy5 x̄/2 upwards to they'kx̄ line.
0-10
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FIG. 6. RatioF z
g(X)/X fg(X) vs log10(X/z) as obtained from the model given by Eq.~6.16! for ~a! z51022, ~b! z51023, ~c! z

51024 and ~d! z51025 with k50.48 ~solid lines!, k50.4 ~long-dashed lines!, andk50.30 ~short-dashed lines!.
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Again, a logarithm ln(1/x) in f (x) at smallx would induce a
visible z dependence for theR(1)(z) ratio even for very
small z.

Switching to the ‘‘gluon-oriented’’Ansatz F(2)(x,y) with
a purely power behaviorf (x);x2a for small x, we obtain a
similar expression

R~2!~z ![F z
~2!~z !/ f ~z!

5
1

~12z!3~12a/3!~12a/4!~12a/5!
, ~6.16!

which is close to (2.17)a for small a. To approximate this
result by the delta ansatzFk

(0)(x,y), one should takek
'0.54. The effective shift upward is smaller in this ca
becauseF (2)(x,y) is more narrow in they direction than
F (1)(x,y).

Choosinga, we should take into account that the nonfo
ward gluon distributionF z

g(X) reduces toX fg(X) in the
z→0 limit @4,5#. Hence,f (z) in the above formulas shoul
be understood asz f g(z). Now, if we make an old-fashione
assumption thatX fg(X) tends to a constant asX→0, then
a50 andR(2)(z) tends to 1 at smallz, i.e., the nonforward
distribution F z

g(z) coincides in the small-z limit with its
forward counterpartz f g(z). To get a more realistic gluon
distribution X fg(X) growing at smallX one should use a
positive parametera. Taking a50.3, we getR(2)(z→0)
'1.27, andR(2)(z→0)'1.17 ~1.39! for a50.2 (a50.4).

These estimates for the ratioF z
g(XuQ)/X fg(XuQ) are

close to those obtained in Refs.@11,17# where the nonfor-
ward distributionsF z

g(XuQ) at high normalization pointQ
were constructed by applying evolution equations to an
tial low normalization pointQ0 ansatzF z

g(XuQ0) which was
assumed to have a universalz-independent shape coincidin
with the usual distributionX fg(XuQ0). In particular, Martin
and Ryskin, considered the evolution of the gluon NFPD
pure gluodynamics. They tookQ0

251.5 GeV2 ~two other
choicesQ0

250.4 GeV2 andQ0
254 GeV2 were also consid-

ered! and then evolvedF z
g(XuQ) to higher Q2 valuesQ2

54, 20, and 100 GeV2. They found thatR(1025)'1.3 for
Q25100 GeV2, which corresponds toa'0.3 in our F (2)

model. This value is close to those used in phenomenolog
parametrizations of the gluon distributions. It should be a
noted that the results forR(z) obtained in Ref.@17# have a
non-negligiblez dependence. This feature can be expec
01403
i-

n
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since the Glu¨ck-Reya-Vogt~GRV! gluon distribution@28#
which they use can be rather well approximated atQ254
GeV2 by a simple formula

x fg
GRV~x,Q254 GeV2!'

1

4
x20.3ln~1/x!

which works with 10% accuracy forx ranging from 1021 to
1025. In the pure gluodynamics approximation used in R
@17#, its shape does not drastically change when evolved
ther toQ251.5 GeV2 or to Q2520 and 100 GeV2.

As discussed above, the assumption that the nonforw
distributions F z

g(XuQ0) have a universalz-independent
shape corresponds to the Ansatz Fk

(0)(x,yuQ0)
5d(y) f (xuQ0), i.e., to thek-deltaAnsatzwith the vanishing
slopek50. Modeling the evolved double distributions by
k-delta Ansatzwith nonzerok, we expect that, due to th
restoration of they→12x2y symmetry, the effective slope
parameterk should increase withQ2. Namely, for thek-delta
Ansatz, the ratio of the nonforward distributionF z

g(X) and
the forward parton distributionf (x)[X fg(X) is given by

R~X,z![
F z

g~X!

X fg~X!
5

f @X2kzz̄/~12kz!#

~12kz! f ~X!
. ~6.17!

Taking f (x)5 1
4 x20.3ln(1/x) and the Q2-dependent slope

k(Q2)50.3, 0.4, 0.48 forQ254, 20 and 100 GeV2, re-
spectively, we were able to reproduce the results of Ref.@17#
for a wide range ofz parameters:z51022,1023,1024 and
1025. The relevant curves, coinciding with those of Ref.@17#
within a few per cent accuracy, are shown in Fig. 6. Hen
the increase of the ratioR(X,z) with Q2 observed in Refs.
@17,11# basically reflects the shift of the gluon double dist
bution from the x axis y50 towards the symmetry line
y5 x̄/2. This effect, being an artifact of the initial condition
plays the dominant role up toQ2;100 GeV2. As argued
above, thez dependence of the ratio may be traced to the f
that the gluon distributionx fg

GRV(x) differs from a simple
powerx2a.

Since the assumptionFz(XuQ0)5 f (XuQ0) is equivalent
to the Ansatz F(x,yuQ0)5d(y) f (xuQ0) which is not sym-
metric with respect to they→(12x2y) interchange, one
should avoid using it as a starting condition for evolution.
explained earlier, a more realistic set of nonforward distrib
tions
0-11
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A. V. RADYUSHKIN PHYSICAL REVIEW D 59 014030
F z
~0!~XuQ0!5

u~X>z/2!

12z/2
f S X2z/2

12z/2D ~6.18!

is generated by theF (0)(x,yuQ0)5d(y2 x̄/2) f (x) Ansatzfor
the double distribution corresponding to skewedne
independent set of Ji’s off-forward distributions. Compari
these two sets, one may be tempted to argue that for
tremely smallz considered in Ref.@17#, z/2 terms in Eq.
~6.18! are inessential. Of course,z/2 can be neglected whe
subtracted from 1. However, for theX values close to the
border pointX5z, the shift byz/2 produces visible change
for functions having theX2a behavior witha;0.3. In the
case of the Ansatz ~6.18!, the ratio R(X,zuQ)
[F z

g(XuQ)/X fg(XuQ) differs from 1 for allQ. For smallz,
the difference is significant only forX close toz.

When a narrow double distribution has its crest on thy

5 x̄/2 line from the very start, there are no effects due to
shift of the crest, and theQ evolution of R(X,zuQ) in the
regionX.z reflects only the widening of the double distr
bution in they direction and the change of its profile in thex
direction. As we have seen, the widening of the double d
tribution changes the effective slopek by a small amount
only. Hence, for smallz one can use the approximate fo
mula

F z
g~XuQ!uz!1'~X2z/2! f g~X2z/2uQ! ~6.19!

for evolved distributions as well. In other words, the ra
R(X,zuQ) for X.z and smallz can be estimated from ex
isting results for the usual gluon densityf (X)[X fg(XuQ).

Comparing the formula~6.19! with the relation~6.8! be-
tween our nonforward and Ji’s off-forward distributions, o
can conclude that Eq.~6.19! is equivalent to a statement th
at smallj andx̃.j one can neglect thej dependence of the
off-forward distributionsH( x̃;j). Again, such a statement i
only nontrivial if x̃;j. To analyze the accuracy of Eq
~6.19!, we will construct an expansion ofH( x̃;j) in powers
of j. To this end, it is convenient to use the parton pictu
based on modified double distributionF̃(x,a) in which the
plus component of the parton momenta is measured in u
of that of the average hadron momentumP5(p1p8)/2 ~see
Fig. 7!. The parton momenta then arexP1(11a)r /2 and
xP2(12a)r /2 with a changing between2 x̄ and x̄. Defin-
ing r 1/P152j and x̃5x1ja, one obtains the descriptio
in terms of the off-forward parton distributionsH( x̃;j) @1,3#.

FIG. 7. Parton picture in terms of~a! modified double distribu-

tions and~b! off-forward parton distributionsH( x̃,j).
01403
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The parton momenta are now (x̃1j)P and (x̃2j)P. In the
region x̃.j, the OFPD’s are obtained fromF̃(x,a) by the
integral

H~ x̃;j!u x̃.j5E
2~12 x̃!/~11j!

~12 x̃!/~12j!
F̃~ x̃2ja,a!da. ~6.20!

Using thea→2a symmetry of F̃(x,a), it is easy to see
from this expression that the off-forward parton distributio
H( x̃;j) are even functions ofj:

H~ x̃;j!5H~ x̃;2j!. ~6.21!

This result was originally obtained by Ji@25# with the help of
a different technique. Expanding the RHS of Eq.~6.20! in
powers ofj, we get

H~ x̃;j!5 f ~ x̃!1j2 F1

2E2~12 x̃!

~12 x̃! ]2F̃~ x̃,a!

] x̃2
a2da1~12 x̃!2

3S ]F̃~ x̃,a!

]a
22

]F̃~ x̃,a!

] x̃ D U
a512 x̃

G1•••.

~6.22!

Hence, for smallj, the corrections are formallyO(j2),
i.e., they look very small. However, ifF̃( x̃,a) has a singular
behavior likex̃2a, then

]2F̃~ x̃,a!

] x̃2
;

a~11a!

x̃2
F~ x̃,a!

and the relative suppression of the first correction
O(j2/ x̃2), i.e., the corrections are tiny for allx̃ except for the
region x̃;j where the correction has no parametric sma
ness. Nevertheless, even in this region it is suppressed
merically, because thea2 moment is rather small for a dis
tribution concentrated in the small-a region. This discussion
shows that the formula~6.19! is not just an automatic con
sequence of theO(j2) nature of the first nonvanishing cor
rection. It is easy to write explicitly all the terms which a
not suppressed in thex̃;j→0 limit

H~ x̃;j!5 (
k50

`
j2k

~2k!! E2~12 x̃!

~12 x̃! ]2kF̃~ x̃,a!

] x̃2k
a2kda1•••.

~6.23!

The numerical suppression of higher terms is even stron
and the series converges rather fast.

In terms of the off-forward distributions, the inequalit
~6.5! reads

Hq~x,j!<A 1

12j2
f S x1j

11j D f S x2j

12j D
<

1

2A12j2 F f S x1j

11j D1 f S x2j

12j D G . ~6.24!
0-12
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DOUBLE DISTRIBUTIONS AND EVOLUTION EQUATIONS PHYSICAL REVIEW D59 014030
For the gluons, one should use the inequality~6.6!, which
leads to

Hg~x,j!<Af S x1j

11j D f S x2j

12j D<
1

2F f S x1j

11j D1 f S x2j

12j D G .
~6.25!

Expanding the RHS of these inequalities in powers ofj, one
can easily check that the explicitly displayed first terms
the expansion~6.23! satisfy Eqs.~6.24! and ~6.25! for any
function f (x) with a negative first derivative. Again, the in
equalities~6.24! and~6.25! are valid for any functionf (x) of
x2a(12x)b type with a>0,b.0.

So far we assumed in our models that DD’s are fin
everywhere on the ‘‘life triangle.’’ Consider, however,
situation when the partons emerge from a mesonlike state~or
glueball/pomeron in the gluon case! exchanged in thet chan-
nel ~see Fig. 8!. In this case, the partons just share the p
component of the momentum transferr : information about
the magnitude of the initial hadron momentum is lost if t
exchanged particle can be described by a pole propag
;1/(t2mM

2 ). Hence, the meson-exchange contribution to
double distribution is proportional tod(x) or its derivatives,
e.g.

FM~x,y!;d~x!
wM~y!

mM
2 2t

, ~6.26!

wherewM(y) is the distribution amplitude of the mesonM.
This contribution to the nonforward distribution is nonze
only in the 0,X,z region:

F z
M~X!;

wM~X/z!

z~mM
2 2t !

u~0<X<z!. ~6.27!

At the beginning, we described the nonforward matrix e
ment of a quark operator by two functionsFa(x,y) and
Fā(x,y) corresponding to positive-x and negative-x parts of
the general Fourier representation. Sincex50 for a meson-
exchange contribution, it makes sense to treat it as a t
independent component, i.e., to parametrize the nonforw
matrix element by the sumFa

% Fā
% FM. All three compo-

nents contribute to the nonforward distributions in the
<X<z region. However, thed(x) terms do not contribute to
the nonforward distributions in theX>z region and to the
usual parton densitiesf (x). For this reason, thed(x) terms,
if they exist, would lead to violation of sum rules~like
energy-momentum sum rule! for the usual parton densities

FIG. 8. Mesonlike contribution.
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Note that if the meson DAw(y) does not vanish at the
end-points, the nonforward distribution does not vanish

X50 @the off-forward parton distributionsH( x̃;j) in this
case are discontinuous atx56j.] As explained in Ref.@5#,
PQCD factorization for DVCS and other hard electroprodu
tion processes fails in such a situation, because of theX

factors @1/(x̃6j) factors if OFPD formalism is used# con-
tained in hard amplitudes. It should be mentioned tha
nearly discontinuous behavior of OFPD’s forx̃56j was
obtained in the chiral soliton model@29#. Formally, the evo-
lution to sufficiently highm results in the functions vanish
ing at the end pointX50. A nontrivial question, however, is
whether evolution starts at all in a situation when PQC
factorization fails.

VII. SUMMARY

In this paper, we duscussed the formalism of double d
tributions. We treated them as the starting objects in par
etrization of nonforward matrix elements. An alternative d
scription in terms of nonforward or off-forward parto
distributions was obtained by an appropriate integration
the relevant DD’s. Incorporating spectral and symme
properties of double distributions, we proposed simple m
els producing self-consistent sets of nonforward distributio
Fz(X) and discussed theirz dependence and relation to usu
~forward! parton densities. Using a qualitative picture of t
evolution of double distributions, we were able to expla
and model the basic features of the evolution pattern of n
forward distributions observed in numerical evolution stu
ies @17#. In the Appendix, we present the set of evolutio
equations for double distributions in the singlet case and
cuss their analytic solution. Work on numerical evolution
the nonforward distributions corresponding to realisticAn-
sätze ~6.18! is in progress@30#. Another interesting problem
for a future investigation is a numerical evolution of doub
distributions.
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APPENDIX: EVOLUTION EQUATIONS
FOR THE SINGLET CASE

As described in Sec. IV, the evolution kernels for doub
distributions can be conveniently obtained from the light-r
evolution kernelsBab(u,v). For the parton helicity average
case, the latter were originally obtained in Refs.@14,15#.
Here we present them in the form given in Ref.@4#:
0-13
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BQQ~u,v !5
as

p
CFS 11d~u!@ v̄/v#11d~v !@ ū/u#1

2
1

2
d~u!d~v ! D , ~A1!

BGQ~u,v !5
as

p
CF„21d~u!d~v !…, ~A2!

BQG~u,v !5
as

p
Nf~114uv2u2v !, ~A3!

BGG~u,v !5
as

p
NcS 4~113uv2u2v !1

b0

2Nc
d~u!d~v !

1Hd~u!F v̄2

v
2d~v!E

0

1dṽ

ṽ
G1$u↔v%JD . ~A4!
or

tio
le

01403
As usual,b05112 2
3 Nf is the lowest coefficient of the QCD

b function. Evolution kernels for the parton helicity
sensitive case are given by@12,13#

DBQQ~u,v !5BQQ~u,v ! ~A5!

DBGQ~u,v !5
as

p
CF„d~u!d~v !22…, ~A6!

DBQG~u,v !5
as

p
Nf~12u2v !, ~A7!

DBGG~u,v !5BGG~u,v !212
as

p
Ncuv. ~A8!

At one loop,DRQQ(x,y;j,h;g)5RQQ(x,y;j,h;g), and
this kernel was already displayed in Eq.~4.6!. Other kernels,
including theRGG(x,y;j,h;g) kernel originally obtained in
Ref. @4#, are given by
DRGG~x,y;j,h;g!5
as

p
Nc

1

j H 4u~0<x/j<min$y/h,ȳ/h̄%!1d~12x/j!d~y2h!
b0

2Nc
1

u~0<x/j<1!~x/j!

~12x/j!

3F 1

h
d~x/j2y/h!1

1

h̄
d~x/j2 ȳ/h̄ !G22d~12x/j!d~y2h!E

0

1 dṽ

12 ṽ
J , ~A9!

RGG~x,y;j,h;g!5DRGG~x,y;j,h;g!112
as

p
Nc

1

x
~y2hx/j!~ ȳ2h̄x/j!u~0<x/j<min$y/h,ȳ/h̄%!, ~A10!

DRGQ~x,y;j,h;g!5
as

p
CF

1

xH 22F S y

h
2

x

j D u~x/j<y/h<1!1H y→ ȳ

h→h̄
J G1d~h2y!u~0<x<j!J , ~A11!

RGQ~x,y;j,h;g!5
as

p
CF

1

xH 2F S y

h
2

x

j D u~x/j<y/h<1!1H y→ ȳ

h→h̄
J G1d~h2y!u~0<x<j!J , ~A12!

DRQG~x,y;j,h;g!5
as

p
Nf

1

j H x

j
~d~x/j2y/h!u~y<h!1d~x/j2 ȳ/h̄ !u~y>h!!2u~0<x/j<min$y/h,ȳ/h̄%!J ,

~A13!

RQG~x,y;j,h;g!5DRQG~x,y;j,h;g!14
as

p
Nf

1

j
hh̄S y

h
1

ȳ

h̄
22

x

j D u~0<x/j<min$y/h,ȳ/h̄%!. ~A14!
s

To find a formal solution of the evolution equations f
double distributions, we proposed in Refs.@2,4# to combine
the standard methods used to solve the evolution equa
for parton densities and distribution amplitudes. Hence,
us start with taking the moments with respect tox. Utilizing
the propertyRab(x,y;j,h;g)5Rab(x/j,y;1,h;g)/j we get

m
d

dm
Fn

a~yum!5(
b
E

0

1

Rn
ab~y,h;g!Fn

b~hum!dh, ~A15!
ns
t

whereFn
a(yum) is thenth x moment ofFa(x,yum)

Fn
a~yum!5E

0

1

xnFa~x,yum!dx. ~A16!

The kernels Rn
ab(y,h;g) and analogous kernel

DRn
ab(y,h;g) governing the evolution ofGn

a(yum) are given
by
0-14
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Rn
QQ~y,h;g!5DRn

QQ~y,h;g!5
as

p
CFH S y

h D n11F 1

n11
1

1

h2yGu~y<h!1S ȳ

h̄
D n11F 1

n11
1

1

y2h Gu~y>h!2
1

2
d~y2h!

22d~y2h!E
0

1 z

12z
dzJ , ~A17!

DRn
GG~y,h;g!5

as

p
NcH S y

h D n11S 4

n11
1

1

h2yD u~y<h!1H y→ ȳ

h→h̄
J 1d~y2h!F b0

2Nc
22E

0

1 dz

12zG J , ~A18!

Rn
GG~y,h;g!5DRn

GG~y,h;g!112
as

p
Nc

1

n11H S y

h D n11S h ȳ

n
2

yh̄

n12
D u~y<h!1H y→ ȳ

h→h̄
J J , ~A19!

DRn
QG~y,h;g!5

as

p
Nf

n

n11H S y

h D n11

u~y<h!1S ȳ

h̄
D n11

u~y>h!J , ~A20!

Rn
QG~y,h;g!5DRn

QG~y,h;g!14
as

p
Nf

n

n11H S y

h D n11S h ȳ

n
2

yh̄

n12
D u~y<h!1H y→ ȳ

h→h̄
J J , ~A21!

DRn
GQ~y,h;g!5

as

p
CF

1

nH d~y2h!2
2

n11F S y

h D n11

u~y<h!1S ȳ

h̄
D n11

u~y>h!G J , ~A22!

Rn
GQ~y,h;g!5

as

p
CF

1

nH d~y2h!1
2

n11F S y

h D n11

u~y<h!1S ȳ

h̄
D n11

u~y>h!G J . ~A23!
-

e

,

e

ls

a

-
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-

From Eqs.~A20!, ~A22! one can derive the following re
duction formulas for the nondiagonal kernels:

]

]y
DR1

QG~y,h;g!52DVQG~y,h;g!, ~A24!

lim
n→0

nDRn
GQ~y,h;g!52

]

]y
DVGQ~y,h;g!. ~A25!

The same relations connect the nondiagonal kern
RGQ,RQG with the BL-type kernels VGQ(y,h;g),
VQG(y,h;g) given in Ref.@5#. To understand their structure
one should realize that constructing the nondiagonalQG and
GQ kernels, one faces mismatching (zp) factors which in
the pure BL case are converted into derivatives with resp
to y.

It is straightforward to check that all the kerne
Rn

a,b(y,h;g) @andDRn
a,b(y,h;g)] have the property

Rn
ab~y,h;g!wn~h!5Rn

ab~h,y;g!wn~y!,

wherewn(y)5(yȳ)n11.
Hence, the eigenfunctions of the evolution equations

orthogonal with the weightwn(y)5(yȳ)n11, i.e., they are
proportional to the Gegenbauer polynomialsCk

n13/2(y2 ȳ),
01403
ls

ct

re

see Refs.@24,31# and Refs.@32–35# where the general algo
rithm was applied to the evolution of flavor-singlet distrib
tion amplitudes.

Expanding the moment functionsFn
a(yum) over the Ge-

genbauer polynomialsCk
n13/2(y2 ȳ)

Fn
a~yum!5~yȳ!n11(

k50

`

Fnk
a ~m!Ck

n13/2~y2 ȳ! ~A26!

we get the evolution equation for the expansion coefficie

m
d

dm
Fnk

a ~m!5
as

p (
b

Gnk
abFnk

b ~m!, ~A27!

where Gnk
ab are the eigenvalues of the kernelsRn

ab(y,h;g)
related to the elementsgN

ab of the usual flavor-singlet anoma
lous dimension matrix

Gnk
QQ5gn1k

QQ , Gnk
QG5

n

n1k
gn1k

QG ,

~A28!

Gnk
GQ5

n1k

n
gn1k

GQ , Gnk
GG5gn1k

GG ;

and similarly for the helicity-sensitive quantitiesDGnk
ab .

Namely,
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gN
QQ5DgN

QQ52CFF1

2
2

1

~N11!~N12!
12 (

j 52

N11
1

j G ,

~A29!

gN
GG522NcF2

1

N~N11!

2
1

~N12!~N13!
1 (

j 51

N11
1

j G1
b0

2
, ~A30!

DgN
GG522NcF2

2

~N12!~N13!
1 (

j 51

N11
1

j G1
b0

2
,

~A31!

gN
GQ5CF

N213N14

N~N11!~N12!
,

gN
QG5Nf

N213N14

~N11!~N12!~N13!
, ~A32!

DgN
GQ5CF

~N13!

~N11!~N12!
,

DgN
QG5Nf

1

~N11!~N12!
. ~A33!

Let us consider first two simplified situations. In the qua
nonsinglet case, the evolution is governed~in helicity-
averaged case! by gn1k

QQ alone:

F̃n
NS~yum!5~yȳ!n11(

k50

`

AnkCk
n13/2~y2 ȳ!

3@ log~m/L!#2gn1k
QQ /b0. ~A34!

Sinceg0
QQ50 while all the anomalous dimensionsgN

QQ with
N>1 are negative, only F0

NS(yum) survives in the
asymptotic limit m→` while all the momentsFn

NS(yum)
with n>1 evolve to zero values. Hence, in the formalm
→` limit, we have

FNS~x,yum→`!;d~x!yȳ

i.e., in each of its variables, the limiting functio
FNS(x,yum→`) acquires the characteristic asymptotic for
dictated by the nature of the variable:d(x) is specific for the
distribution functions@36,37#, while the yȳ form is the
asymptotic shape for the lowest-twist two-body distributi
amplitudes@23,24#. For the nonforward distribution of a va
lence quarkq this gives

F z
val;q~Xum→`!56NqX~12X/z!/z2,

whereNq is the number of the valenceq quarks in the had-
ron.

Another example is the evolution of the gluon distributi
in pure gluodynamics which is governed bygn1k

GG with
01403
b0511Nc/3. Note that the lowest local operator in this ca
corresponds ton51. Furthermore, in pure gluodynamic
g1

GG vanishes whilegN
GG,0 if N>1. This means that in the

m→` limit we have

xFG~x,yum→`!530d~x!~yȳ!2

for the double distribution which results in

F z
G~Xum→`!530X2~12X/z!2/z3

for the nonforward distribution. In the formulas above, t
total momentum carried by the gluons~in pure gluodynam-
ics! was normalized to unity.

In QCD, we should take into account the effects due
quark gluon mixing. Diagonalizing Eq.~A27!, we obtain two
multiplicatively renormalizable combinations

Fnk
6 5Fnk

Q 1ank
6 Fnk

G , ~A35!

where~omitting thenk indices!

a65
1

2gGQ
@gGG2gQQ6A~gGG2gQQ!214gGQgQG#.

~A36!

Their evolution is governed by the anomalous dimension

g65
1

2
@gGG1gQQ6A~gGG2gQQ!214gGQgQG#.

~A37!

In particular, g10
1 50 and a10

1 51 which means thatF10
1

[F10
Q 1F10

G does not evolve: the total momentum carried
the partons is conserved. Another multiplicatively renorm
izable combination involvingF10

Q andF10
G is

F10
2 5F10

Q 2
Nf

4CF
F10

G .

It vanishes in them→` limit, and we have

F10
Q ~m→`!→

Nf

4CF1Nf
, F10

G ~m→`!→
4CF

4CF1Nf
.

~A38!

Since all the combinationsFnk
6 with n1k>2 vanish in the

m→` limit, we obtain

xFG~x,yum→`!→30
4CF

4CF1Nf
d~x!~yȳ!2;

xFQ~x,yum→`!→30
Nf

4CF1Nf
d~x!~yȳ!2, ~A39!

or

FQ~x,yum→`!→230
Nf

4CF1Nf
d8~x!~yȳ!2. ~A40!
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In terms of nonforward distributions this is equivalent to

F z
G~Xum→`!→30

4CF

4CF1Nf

X2

z3 S 12
X

z D 2

, ~A41!
.

9

s.

ys

01403
F z
Q~Xum→`!→60

Nf

4CF1Nf

X

z2S 12
X

z D S 2X

z
21D .

~A42!

Note that bothF z
Q(z) andF z

G(z) vanish in them→` limit.
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