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Off-diagonal parton distributions and their evolution
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We construct off-diagonal parton distributions defined on the interval 0<X<1 starting from the off-forward
distributions defined by Ji. We emphasize the particular role played by the symmetry relations in the ‘‘ERBL-
like’’ region. We find the evolution equations for the off-diagonal distributions which conserve these symme-
tries. We present numerical results of the evolution, and verify that the analytic asymptotic forms of the parton
distributions are reproduced. We also compare the constructed off-diagonal distributions with the non-forward
distributions defined by Radyushkin and comment on the singularity structure of the basic amplitude written in
terms of the off-diagonal distributions.@S0556-2821~99!08001-7#

PACS number~s!: 13.60.Hb, 13.88.1e, 14.20.Dh
ing
o

s-
ro
C

ib
-
n-

m
e

is
iv
u

tic
er
in
on

v-

ff-

l-
g
Fo
a

-
n

nd
ff-

ns,

he
f

t
ire-
the

a-
ific
tri-
u-

n.

s

glet
t

e

BL-
or

dis-
I. INTRODUCTION

It is well known that the cross section of hard scatter
processes~such as deep inelastic scattering, the production
large pT jets, etc.! can be written as the sum of parton di
tributions multiplied by the cross sections of hard subp
cesses calculated at the parton level using perturbative Q
That is we can factor off the long distance~non-perturbative!
effects into universal, process independent, parton distr
tions @f i(X,m2) with i 5q,q̄,g# specific to the incoming had
rons.X is the longitudinal fraction of the hadron’s mome
tum that is carried by the parton andm is a scale typical of
the hard subprocess. The parton distributions are given

the matrix elementŝPuÔuP& whereÔ is a twist-2 quark or
gluon operator, andP represents the full set of quantu
numbers of the hadron. To be specific we will be concern
with a proton taking part in unpolarized reactions. ThusP
will represent the 4-momentum of the proton.

Calculating the parton distributions from first principles
one of the most challenging problems in non-perturbat
QCD. The most promising approach is lattice QCD, b
much remains to be done. On the other hand, from a prac
viewpoint, the parton distributions of the proton are det
mined with good precision from global analyses of deep
elastic and related hard scattering data. The distributi
f i(X,m2) are parametrized as a function ofX at some start-
ing scalem0

2 and then evolved using the Dokshitzer-Gribo
Lipatov-Altarelli-Parı`si ~DGLAP! equations of perturbative
QCD to higherm2 values relevant to the data to be fitted.

Recently @1–9# there has been much interest in o
diagonal~also called off-forward by Ji@1# or non-forward by
Radyushkin@4#! distributions which are given by matrix e
ements^P8uÔuP& in which the momentum of the outgoin
proton is not the same as that of the incoming proton.
example, theamplitudesfor processes such as deeply virtu
Compton scattering (g* p→gp) or vector particle electro-
production (g* p→Zp or J/cp! depend on off-diagonal dis
tributions. SincePÞP8 the parton returning to the proto
0556-2821/98/59~1!/014029~10!/$15.00 59 0140
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has a different momentum to the one which is outgoing, a
so we need two momentum variables to specify the o
diagonal distributions. The Ji and Radyushkin distributio
which are denoted byH(x,j) andFz(X) respectively, differ
in their choice of the defining four vector. Ji chooses t
momentum fractionsx and j with respect to the average o

the incoming and outgoing proton momentaP̄5 1
2 (P1P8),

whereas Radyushkin definesX andz with respect to the in-
coming proton momentumP. The former has the importan
advantage that it is easier to impose the symmetry requ
ments, while the latter has the advantage that it is close to
definition used for the conventional~diagonal! distributions.
Our aim is to clarify the relation between the two formul
tions. We find that they are not equivalent unless spec
conditions are imposed on Radyushkin’s non-forward dis
butions. We show this by a direct construction of distrib
tions defined in the range 0<X<1 which are equivalent to
Ji’s off-forward distributions.

Let us neglect, for the moment, the gluon distributio
The quark distributionHq(x,j), defined by Ji, covers the
interval 21<x<1 and generates two distinct distribution
which we denote1 by F̂q(X,z) and F̂q̄(X,z) with 0<X<1.
Over the regionX.z the two functionsF̂q andF̂q̄ are inde-
pendent. On the other hand in the regionX,z they are re-
lated to each other, with the consequence that the non-sin
and singlet combinations possess a symmetry abouX

5z/2. We obtain evolution equations forF̂ starting from the
evolution equations for the off-forward distributionsH. We
find that they differ from the evolution equations for th
non-forward distributions@5,9# by additional terms which are
essential to preserve the symmetry properties in the ER
like region. We also found that the basic amplitude f

1For the reasons given below we must use a notation which

tinguishes between the distributionsF̂(X,z) constructed fromH
and the non-forward distributionsFz(X) defined by Radyushkin.
©1998 The American Physical Society29-1
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K. J. GOLEC-BIERNAT AND A. D. MARTIN PHYSICAL REVIEW D59 014029
deeply virtual Compton scattering~DVCS! has a different
singularity structure to that given by the non-forward dist
butionsF.

The outline of the paper is as follows. To establish no
tion we quickly review in Sec. II the salient features of t
conventional~diagonal! parton distributionsH(x) with sup-
port 21<x<1. Section III reviews the extension of thes
ideas to the off-diagonal distributionsH(x,j) that were in-
troduced by Ji@1#. In Sec. IV we transform the distribution
H(x,j) into distributionsF̂(X,z) with 0<X<1, and dem-
onstrate thatF̂ must satisfy symmetry relations forX,z. In
Sec. V we give the evolution equations for theF̂(X,z) and
present numerical solutions. The complete form of the e
lution equations is given in the Appendix. In Sec. VI w
discuss the relation between the distributionsF̂ and the non-
forward distributionsF of Radyushkin. In the same spirit w
discuss the differences in the singularity structure of
DVCS amplitude. Finally Sec. VII contains our conclusion

II. CONVENTIONAL PARTON DISTRIBUTIONS

In order to introduce off-diagonal distributions it is mo
convenient to first recall the definition of the convention
~diagonal! parton distributions in terms of light-cone coord
nates„x65(x06x3)/&,x1,x2

… and in the light-cone gaug
(A150) @10#. For instance the quark distributionHq(x) is
given in terms of the matrix element of a light-cone biloc
operator

Hq~x!5
1

2 E dy2

2p
e2 ixP1y2

^Puc̄q~0,y2/2,0!

3g1cq~0,2y2/2,0!uP&. ~1!

Note that the matrix element is diagonal in the four mom
tum P of the proton. For simplicity we do not show eithe
here, or throughout the paper, the renormalization scale
pendence ofHq and of the other parton distributions that w
discuss.

To see the parton content of the distributionHq we make
a Fourier expansion of~the light-cone-plus or ‘‘good’’ com-
ponent! c1 of the quark field, in terms of the quark annih
lation operatorb and the antiquark creation operatord†.
Similarly c̄1 is expanded in terms ofb† andd, and then the
integration overy2 in Eq. ~1! is performed. It is found tha
Hq is only non-vanishing in the interval21<x<1 with the
term b†b contributing forx.0 anddd† contributing forx
,0 @11#:

Hq~x!5
1

2P1 E d2kT

2x~2p!3 (
l

@^Publ
†~xP1,kT!

3bl~xP1,kT!uP&u~x!2^Pudl
†~2xP1,kT!

3dl~2xP1,kT!uP&u~2x!#, ~2!

wherel is the helicity of the quarks. Theb†b term corre-
sponds to the emission of a quark~carrying a fractionx of
the proton’s momentum! and its subsequent reabsorptio
01402
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within the proton. Similarly thed†d contribution describes
the emission and subsequent reabsorption of an antiqu
The two possibilities are sketched in Fig. 1. Thus the sin
distribution Hq with support in the interval21<x<1 em-
bodies both the familiarq andq̄ distributions, defined on the
interval 0<x<1, which thus are identified with the two
terms accompanying the theta functions in Eq.~2! in the
following way:

Hq~x!5H q~x! for x.0

2q̄~2x! for x,0.
~3!

We may form the valence and singlet quark distributions
terms ofHq :

q~x!2q̄~x!5Hq~x!1Hq~2x![Hq
V~x!

~4!

(
q

@q~x!1q̄~x!#5(
q

@Hq~x!2Hq~2x!#[HS~x!,

where the sum is over the quark flavors. Clearly over the
interval 21<x<1 the valence and singlet quark distrib
tions satisfy the symmetry relations

Hq
V~x!5Hq

V~2x!

HS~x!52HS~2x!. ~5!

In a similar way we may introduceHg(x)[xg(x) where
g(x) is the familiar gluon distribution. The additionalx fac-
tor is due to the gauge invariant definition ofHg given in
terms of the gluon field strength; see also the comment at
end of Sec. III. In the light-cone gauge

Hg~x!5
1

P1 E dy2

2p
e2 ixP1y2

3^PuF1n~0,y2/2,0!Fn
1~0,2y2/2,0!uP&, ~6!

whereFmn is the gluon field strength tensor and where t
summation over the color label has been suppressed.
cause of Bose symmetry we have

Hg~x!5Hg~2x!. ~7!

FIG. 1. Schematic diagrams showing the contributions toHq(x)
with x.0 andx,0, respectively, which can be identified with th
familiar quark and antiquark distributions.b,b† are the quark anni-
hilation and creation operators andd,d† are those for the antiquark
The momentum fractions refer to the plus light-cone componen
the incoming proton momentumP.
9-2
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III. OFF-DIAGONAL DISTRIBUTIONS

The distributionsHq introduced in Eq.~1! may be gener-
alized to allow for matrix elements which are off-diagonal
the four momentum of the proton@1–3#

Hq~x,j,t !5
1

2 E dy2

2p
e2 ix P̄1y2

^P8uc̄q~0,y2/2,0!

3g1cq~0,2y2/2,0!uP&, ~8!

where we consider only the distributions which conserve
proton helicity and which describe unpolarized quarks. Si
D[P2P8Þ0 the distributionHq(x,j,t) now contains two
extra scalar variables, in addition to the Bjorkenx variable.
The variablet is the usualt-channel invariant,t5D2, and
the variablej is defined by

1

2
D15j P̄1, ~9!
q
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where P̄5 1
2 (P1P8). This choice of variables2 is due to Ji

@1–3# and enables symmetry to be imposed between the
coming and outgoing proton. That is Ji uses the symme
combinationP̄ of their momenta as the defining directio
and calls theHq off-forward distributions. The distributions
Hq are real, and the symmetric choice of variables has
considerable advantage that, due to time-reversal invaria
and hermiticity, the distributions are even functions ofj @3#

Hq~x,j,t !5Hq~x,2j,t !. ~10!

Since we will perform our analysis for fixedt, concentrating
on thex andj dependence, we shall omit thet dependence
from now on.

To see the physical content of the off-diagonal distrib
tions Hq we again Fourier expandc and c̄ in terms of the
quark creation and annihilation operators. Since the distri
tions are even inj we may takej.0. In this way we obtain
the generalization of Eq.~2! @3#
Hq~x,j!5
1

2P̄1 E d2kT

2Aux22j2u~2p!3 (
l

@^P8ubl
†
„~x2j!P̄1,kT2DT…bl„~x1j!P̄1,kT…uP&u~x>j!

1^P8udl„~2x1j!P̄1,2kT1DT…b2l„~x1j!P̄1,kT…uP&u~2j,x,j!

2^P8udl
†
„~2x2j!P̄1,kT2DT…dl„~2x1j!P̄1,kT…uP&u~x<2j!#. ~11!
d

ns
l

ing
Figure 2 gives a pictorial description of the content of E
~11!. Diagrams~a! and~c!, which arise from theb†b andd†d

terms inc̄c, generalize Figs. 1~a! and 1~b! respectively. For
example the first diagram corresponds to the emission
quark of momentumk from the proton followed by its ab
sorption with momentumk2D. Thus forx.j and x,2j
the off-diagonal distributionHq generalizes the familia
quark and antiquark distributions and will evolve accordi
to modified DGLAP equations. Diagram~b!, corresponding
to the middle region,2j,x,j, does not have a counterpa
in Fig. 1. This diagram, which arises from thedb term in
c̄c, corresponds to the emission of a quark-antiquark p
In this regionHq is a generalization of the proton form facto
and will evolve according to modified Efremov-Radyushk
Brodsky-Lepage~ERBL! equations@12#. Thus in this do-
main Hq may be regarded as a generalization of the pr
ability distribution amplitude which occurs in hard exclusi
processes.

Just as for the diagonal case, we introduce valence
singlet quark distributions analogous to Eq.~4!

Hq
V~x,j![Hq~x,j!1Hq~2x,j!5Hq

V~2x,j!, ~12!

HS~x,j![(
q

@Hq~x,j!2Hq~2x,j!#52HS~2x,j!.

~13!
.

a

r.

-

nd

Thus in addition to the symmetry underj→2j, the distri-
butions have symmetry or antisymmetry underx→2x.
Also, in analogy to Eq.~7!, the off-diagonal gluon distribu-
tion satisfies

Hg~x,j!5Hg~2x,j!. ~14!

The distributions~12!–~14! are identical to those introduce
by Ji @2,3# 3 except that

Hg~x,j!5xHg
Ji~x,j!. ~15!

On account of the extra factorx, the gluon distribution~15!
is not required to be zero atx50, unlike the situation forHg

Ji

~see also@5# for a relevant discussion!.

IV. OFF-DIAGONAL DISTRIBUTIONS
ON THE INTERVAL †0,1‡

So far we have considered the off-diagonal distributio
Hq(x,j), introduced by Ji@1,2#, and defined on the interva
21<x<1. As noted aboveP1P8 is taken as the defining
direction, so that symmetry is imposed between the incom

2Note that Ji definesD5P82P.
3Note that in going from Ref.@2# to Ref. @3# Ji has redefinedj/2

by j.
9-3
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K. J. GOLEC-BIERNAT AND A. D. MARTIN PHYSICAL REVIEW D59 014029
(P) and outgoing (P8) proton momenta. This variablej was
defined in Eq.~9! by

D[~P2P8!5j~P1P8!, ~16!

where for simplicity we have omitted the light-cone pl
superscript@see Eq.~9!#.

To make direct contact with conventional partons we m
introduce alternative off-diagonal distributionsF̂q(X,z) de-
fined on the interval 0<X<1 such that the initial parton
carries a positive fractionX of the proton’s longitudinal mo-
mentum. That is we takeP as the defining direction. Thu
the counterpart to Eq.~16! is

D5zP ~17!

with 0<z<1. This is exactly analogous to the approach
troduced by Radyushkin@4,5# in the construction of the non
forward distributionsFz(X). However our construction o
the distributionsF̂q(X,z) presented below is different to tha
of @4,5#. From Eqs.~16! and ~17! it follows that

FIG. 2. Schematic diagrams of the off-diagonal distributi
Hq(x,j), in the three distinct kinematic regions. The proton a

quark momentum fractions refer toP̄1, whereP̄ is the average of
the incoming and outgoing proton four momentum. Note that

four momentum transfer satisfiesD152j P̄1 and thatx covers the
interval @21,1#.
01402
y
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j5
z

22z
. ~18!

A. The relation between the distributionsH and F̂

In this subsection we first define the off-diagonal distrib
tions F̂q(X,z) with X in the interval@0,1# starting from Ji’s
distributionsHq(x,j) with x in the range@21,1#. Then we
explore the symmetry relations satisfied by theF̂q(X,z).

If we compare the momentum fraction carried by t
emitted parton in Fig. 3 with those in Figs. 2~a! and 2~c!,
then we see that two different transformations are relevan
reducing the interval21<x<1 covered byHq(x,j) to the
interval 0<X<1 covered byF̂q(X,z). First, from Fig. 2~a!,
we have the transformation

X15
x11j

11j
, ~19!

which takes the intervalx1P@2j,1# into X1P@0,1#. Simul-
taneouslyj is transformed intoz. Secondly, from Fig. 2~c!,
we have the transformation

X25
j2x2

11j
, ~20!

which takesx2P@21,j# into X2P@0,1#. Now, 2j is trans-
formed into z. In this way we introduce two distinct off-
diagonal distributionsF̂q and

F̂q~X1 ,z!5
1

12z/2
Hq~x1 ,j!

F̂q̄~X2 ,z!5
21

12z/2
Hq~x2 ,j!, ~21!

wherej5z/(22z) and the inverse relations

x15
X12z/2

12z/2
, x25

z/22X2

12z/2
~22!

follow from Eqs.~18!–~20!. We stress that asX1,2 cover the
range@0,1#, the correspondingx1 and x2 cover respectively
the ranges@2j,1# and @21,j#, as shown schematically in
Fig. 4. The factors6(12z/2)21 in Eq. ~21! arise from the
translation of the measuredx to dX.

In the limit thatz (andj)→0 we have, from Eq.~3!,

e

FIG. 3. The proton and quark momentum fractions with resp
to the initial proton momentumP corresponding to the off-diagona

distributionsF̂(X,z) defined in the domain 0<X<1. The four mo-
mentum transfer satisfiesD15zP1.
9-4
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OFF-DIAGONAL PARTON DISTRIBUTIONS AND THEIR . . . PHYSICAL REVIEW D 59 014029
F̂q~X,0!5Hq~X,0!5q~X!

F̂q̄~X,0!52Hq~2X,0!5q̄~X!, ~23!

which is an additional motivation for using the quark a
antiquark subscripts to differentiate between the two fu
tions F̂q and F̂q̄ .

Finally, due to the symmetry relation~14!, the gluon dis-
tribution may be defined in the range 0<X<1 by either of
the transformations~22!. That is we have

F̂g~X,z!5
1

12z/2
HgS X2z/2

12z/2
,j D5

1

12z/2
HgS z/22X

12z/2
,j D .

~24!

B. Symmetry relations

From Fig. 4 we see that in the DGLAP-type regionsx
.j or x,2j! Hq is transformed respectively intoindepen-

dent functions F̂q(X) and F̂q̄(X) with X.z. On the other
hand in the ERBL-type region (2j,x,j) the distribution
Hq generates functionsF̂q(X) and F̂q̄(X) with X,z which
are no longer independent. Indeed forX,z we have

F̂q~z2X!5
1

12z/2
HqS z2X2z/2

12z/2 D5
1

12z/2
HqS z/22X

12z/2D
52F̂q̄~X!, ~25!

where for simplicity we do not indicate the additional e
plicit z or j dependence of the distributions.

Equation~25! is the basic symmetry relation for the of
diagonal quark distributions which indicates that in t
ERBL-like region the quark and antiquark distributions a
not independent, unlike the case in the DGLAP-like regi
The physical reason for this can easily be understood
looking at Fig. 2b. In the ERBL-like region we can define t
off-diagonal distributions with respect to the first emitt
parton being either the quark with momentumx1j or the
antiquark with momentumj2x. The latter possibility corre-
sponds to the exchange of the annihilation operators in
~11!, which is the origin of the2 sign in relation~25!.

We may form the non-singlet and singlet combinations
the quark and antiquark distributions. From Eq.~12! we have

FIG. 4. A sketch showing how the support21<x<1 of the
off-diagonal distributionHq is translated into the regions 0<X

<1 of the two functionsF̂q andF̂q̄ . The translations are given b
Eqs.~19! and ~20!, or by the inverse relations~22!.
01402
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F̂q
V~X!5

1

12z/2
Hq

VS X2z/2

12z/2D5F̂q~X!2F̂q̄~X!,

F̂S~X!5
1

12z/2
HSS X2z/2

12z/2D5(
q

@F̂q~X!1F̂q̄~X!#,

~26!

which in the regionX,z satisfy symmetry relations result
ing from Eq.~25!

F̂q
V~z2X!5F̂q

V~X!,

F̂S~z2X!52F̂S~X!. ~27!

It is straightforward to show forX,z that the gluon distri-
bution ~24! satisfies a similar relation

F̂g~z2X!5F̂g~X!. ~28!

These properties are well illustrated by Fig. 5. The upper p
shows an example of the off-diagonal distributionHq(x,j)
for j50.5. The middle plot shows the transformation of th

FIG. 5. ~a! An example of the off-diagonal distributionHq(x,j)

with j50.5; ~b! the distributionsF̂q(X,z) and F̂q̄(X,z) generated

from Hq(x,j), and~c! the resulting non-singletF̂q
V and singletF̂S

distributions showing their symmetry and antisymmetry in t
ERBL-like regionX,z.
9-5
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K. J. GOLEC-BIERNAT AND A. D. MARTIN PHYSICAL REVIEW D59 014029
distribution into the two functionsF̂q(X,z) and F̂q̄(X,z) of
Eq. ~21!. Their behavior shows that the symmetry relati
~25! is clearly satisfied in the region 0<X<z. Finally, the
lower plot shows the behavior of the non-singletF̂q

V and the

singletF̂S combinations. The symmetry ofF̂q
V and antisym-

metry of F̂S, about the pointX5z/2, are clearly evident in
the region 0<X<z.

V. EVOLUTION EQUATIONS

Just as we constructedF̂ directly from the off-forward
distributionsH of Ji, so we start with the evolution equation
@2# for H(x,j) with 21<x<1 and use transformations~21!

and~24! to rewrite them in terms of the distributionsF̂(X,z)
with 0<X<1.

In the DGLAP-like regionX.z the equations that we
obtain for F̂ are equivalent to those given for the no
forward distributions of Radyushkin@5,9#. Their full form
can be found in the Appendix. Moreover in the limitz→0
they reduce to the familiar DGLAP evolution equations.

However in the ERBL-like regionX,z the equations ob-
tained for F̂ are different to those given in@5,9# for the
non-forward distributions. They have the following forms

m
]

]m
F̂q

V~X,z!5PQQ^ F̂q
V1

aSCF

p

3E
z

1 dZ

Z F Z

X2z1Z
2

X

z GF̂q
V~Z,z!

~29!

m
]

]m
F̂S~X,z!5PQQ^ F̂S1PQG^ F̂g2

aSCF

p

3E
z

1 dZ

Z F Z

X2z1Z
2

X

z GF̂S~Z,z!

1
aSNf

p E
z

1 dZ

Z

~12z/2!~z2X!

z2

3F4X

z
1

2X2z

Z GF̂g~Z,z! ~30!

m
]

]m
F̂g~X,z!5PGQ^ F̂S1PGG^ F̂g2

aSCF

p

3E
z

1 dZ

Z

~z2X!2

z~12z/2!
F̂S~Z,z!

1
aSNc

p E
z

1 dZ

Z

~z2X!2

Z F 1

X2z1Z

1
2Z

z2 S 11
2X

z
1

X

ZD GF̂g~Z,z!, ~31!
01402
where the scalem is implicit in the distributionsF̂. The full
forms of the equations are given in the Appendix. Here it
sufficient to note that the convolutions shown symbolica
as P^ F̂ are identical to those given in@5,9#. However the
new evolution equations contain several additional term
each being a convolution integral over the range@z,1#. These
extra terms are essential to preserve the symmetry prope
~27! and~28! of F̂ during the evolution. We note that in th
limit z→1 the additional terms are equal to zero and t
Eqs.~29!–~30! reduce to the ERBL evolution equations@12#
for the distribution amplitudes.

A. Numerical results of the evolution

To illustrate how the off-diagonal distributionsF̂ evolve
with increasing renormalization scalem we constructed a
computer program based on the equations given in the
pendix. For the initial input at the starting scalem51 GeV
we adopt the following strategy. We start with given inp
forms for the off-forward distributionsH (q,g)(x,j), which
are even inj. An example for the quark distribution is show
in Fig. 5~a!. Then using prescriptions~21! and~24! we trans-
form H (q,g)(x,j) into the distributionsF̂(q,q̄,g)(X,z) which
satisfy the symmetry relations~27! and~28!. The initial dis-
tribution Hq(x,j) shown in Fig. 5~a! is only meant to illus-
trate the general features of the adopted strategy. The
tailed properties of more realistic initial distributions will b
discussed in a separate paper.

The results that are obtained by evolvingF̂V, F̂S and F̂g
to higher scales are shown in the three plots of Fig. 6. In e
plot the dashed curve is the input atm51 GeV, while the
dot-dashed curve shows the effect of evolution up tom
510 GeV. It is evident that evolution does indeed prese
the symmetry properties in the ERBL-like region,X,z.

The continuous curves in Fig. 6 are the results of evolv
F̂ all the way up tom→`. These asymptotic forms ar
identical with the analytic asymptotic solutions@5,6#, which
are entirely contained in the ERBL-like region withX,z,

F̂q
V~X,z!;

X

z S 12
X

z D
F̂S~X,z!;

X

z S 12
X

z D S 2X

z
21D

~32!

F̂g~X,z!;S X

z D 2S 12
X

z D 2

.

This remarkable property is evident from Fig. 6. The dist
butions are swept from the DGLAP-like to the ERBL-lik
region asm increases.

VI. RELATION TO THE NON-FORWARD
DISTRIBUTIONS

The off-diagonal distributionsF̂(X,z), constructed in the
previous section, are equivalent to the off-forward distrib
9-6
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tions H(x,j) defined by Ji. They are also closely related
but not the same as, the non-forward distributionsFz(X)
introduced by Radyushkin.4 The difference between them
occurs in the ERBL-like region (X,z).

The non-forward distributionsF z
(q,q̄)(X) are related to the

off-forward distributionsHq(x,j) in the following way~see
Sec. IX of Ref.@5# for a detailed discussion!

~11j!Hq~x,j!5H F z
q~X! if x.j

F z
q~X!2F z

q̄~z2X! if 2j,x,j

2F z
q̄~z2X! if x,2j,

~33!

where X5(x1j)/(11j) and z52j/(11j). Notice that
while in the DGLAP-like regions (x.j or x,2j! there is a
one-to-one correspondence between the two distribution
the ERBL-like region (2j,x,j) Ji’s distributionHq only

4We thank A. V. Radyushkin for helpful comments on the subj
of this section.

FIG. 6. Evolution of the non-singletF̂q
V , singletF̂S, and gluon

F̂g distributions defined in the range@0,1# from initial input at m
51 GeV ~dashed curves!. The asymmetry parameterz50.5. The
dotted and continuous curves correspond tom510 GeV andm
→` respectively. The latter curves are identical to the analy
asymptotic solutions given in Eq.~32!.
01402
,
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determines a specific combination of Radyushkin’s distrib
tionsF z

(q,q̄) . This is in contrast to the distributions define
by Eqs. ~21! which are in one-to-one correspondence w
Hq .

Comparing Eqs.~33! with Eqs.~21! we see that our off-
diagonal distributionsF̂(X,z) are identical to the non-
forward distributionsFz(X) in the DGLAP-like region,X
.z. However in the ERBL-like region there are differe
since forX,z we have

F̂q~X,z!5F z
q~X!2F z

q̄~z2X!

~34!
F̂q̄~X,z!5F z

q̄~X!2F z
q~z2X!.

The main difference between our distributionsF̂ and the
non-forward distributionsFz of Radyushkin is that the latte
do not obey the symmetry properties~25! and ~27!, ~28!.
These properties are essential for our distributions and re
from the construction which ensures their equivalence to
distributionsH. The physical reason for the symmetries w
discussed in Sec. IV B. An important consequence of
symmetry relations is that in the ERBL-like region the qua
and antiquark off-diagonal distributions are not independe
see relation~25!.

This should be contrasted to the case of the non-forw
distributions of Radyushkin. They are obtained through
integration of ‘‘double distributions’’F which are universal
z-independent functions. The double distributions are se
rated into two independent components~which are denoted
by Fq andFq̄! according to the sign ofx in the exponential.
As a result the corresponding non-forward distributionsF z

q

andF z
q̄ are also independent in the ERBL-like region; see@6#

for more details. Thus there are twice as many quark ‘‘d
grees of freedom’’ in the ERBL-like region as in our case

A similar comparison can be done for the non-singl
singlet and gluon distributions. As a result we find the fo
lowing relations forX,z:

F̂V~X,z!5F z
V~X!1F z

V~z2X!

F̂S~X,z!5F z
S~X!2F z

S~z2X! ~35!

F̂g~X,z!5F z
g~X!1F z

g~z2X!.

Thus we see that our distributionsF̂ are equal to symmetric
or antisymmetric combinations of the corresponding no
forward distributionsFz in the ERBL-like region.

A. Comparison of the two sets of evolution equations

The evolution equations for the non-forward distributio
F z

(q,q̄,g) of Ref. @5#, see also@9# for detailed form, do not
obey the symmetry properties~27! and~28! in the ERBL-like
region. One may try, however, to write down the evoluti
equations for the combinations given in Eqs.~35!, starting
from the evolution equations@5# for the full non-forward
distributions in the ERBL region

t

c

9-7
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Fz~X![
1

2
F z

~sym!~X!1
1

2
F z

~asym!~X!

5
1

2
@Fz~X!1Fz~z2X!#1

1

2
@Fz~X!

2Fz~z2X!#. ~36!

The symmetrized evolution equations are almost identica
the evolution equations~29!–~31! for our distributionsF̂.
The integrals over@z,1#, indicated explicitly in Eqs.~29!–
~31!, appear in the symmetrized equations of Radyushkin
a result of the symmetrization procedure. The only differen
appears in the symmetrized gluon equation which additi
ally contains a term proportional to the integral over the f
non-forward singlet distribution

E
0

1

dZF z
S~Z!5E

0

z

dZ
1

2
F z

S~sym!~Z!1E
z

1

dZF z
S~Z!.

~37!

Since the symmetrized gluon equation should contain o
the asymmetric singlet combinationF z

S(asym), the above term
mixes the symmetric and antisymmetric components of
singlet distribution. The only case when it does not happe
if the integral~37! is equal to zero due to initial conditions
The value of this integral is conserved by the evolution eq
tions @5# for the full non-forward distributions.

Subsequently to the above observation we were inform
by Radyushkin that the integral~37! does not appear in th
symmetrized equation for the gluon distribution if one us
the kernelPGQ in the evolution equations of Ref.@5# in the
form originally obtained by Chase@13# and later confirmed
in @14,15#. We present the form of the Chase kernel for r
erence

PGQ~X,Z!

5S 2X2
X2

Z DQ~X,Z!2$X→~12X!,Z→~12Z!%,

~38!

for z51. For other values ofz the arguments should b
additionally rescaled (X,Z)→(X/z,Z/z). The method used
in Ref. @5# does not unambiguously fix the kernelPGQ .
However the formulation of Radyushkin can be ma
equivalent to the formulation of Ji, independently of the in
tial conditions, if the Chase form of the kernelPGQ is used in
Ref. @5#. Finally the equivalence can be obtained by taki
only one of the two parts in the decomposition~36!—namely
the symmetric combination for the non-singlet and gluo
and the antisymmetric combination for the singlet, distrib
tions. We have confirmed this result using our numeri
program for the evolution of the full non-forward distribu
tions ~36! with the Chase kernel.
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B. The singularity structure of the basic amplitude

For the purpose of illustration we may consider the clas
process of deeply virtual Compton scattering. The invari
amplitude for the process has the generic form@2#

T;E
21

1

dxF 1

x2j1 i«
1

1

x1j2 i« GHq~x,j!. ~39!

If the amplitude is translated into a form involving our di
tributions F̂(X,z), then Eq.~39! becomes

T;E
0

1

dX
F̂q~X,z!1F̂q̄~X,z!

X2z1 i«

1E
z

1 dX

X
@F̂q~X,z!1F̂q̄~X,z!#. ~40!

We see that Eq.~40! contains only one singularity atX5z,
which results from the quark propagator, and is regulariz
by the 1 i« prescription and assuming thatF̂q,q̄(X,z) are
continuous atX5z. Note that there is no singularity atX
50 since the second integral is bounded byz.0 from be-
low.

This is in contrast to the amplitude derived in Refs.@4,5#
using the non-forward distributionsFz :

T;E
0

1

dXS 1

X2z1 i«
1

1

XD „F z
q~X!1F z

q̄~X!…. ~41!

This form can also be obtained substituting relations~34!
into ~40!. ThusT contains now the second, end-point, sing
larity at X50. The additional singularity is removed in@5#
by assuming that the non-forward distributionsF z

(q,q̄)(X)
vanish asX→0. Looking at Eq.~33! we see that this assump
tion is equivalent to the continuity ofH(x,j) at x56j @or
F̂(X,z) at X5z#. Such additional assumption is not require
for our off-diagonal distributionsF̂(X,z). Indeed, if present,
it would clearly violate their continuity atX5z, or their
symmetry aboutX5z/2; see Fig. 5. We finish the discussio
by observation that since the expression in the first bracke
Eq. ~41! is antisymmetric in the ERBL-like region only th
antisymmetric componentF z

(asym) of the combination of the
non-forward distributions in the second bracket gives a c
tribution to T. Thus the remaining symmetric componen
which is present in the formulation of Radyushkin, does n
influence the amplitude.

VII. CONCLUSIONS

In this paper we have transformed the off-forward part
distributionsH(x,j) defined by Ji, in which the defining di
rection is the average between the incoming and outgo
proton momenta and21<x<1, into off-diagonal distribu-
tionsF̂(X,z), in which the defining direction is the incomin
proton momentum and 0<X<1. These off-diagonal distri-
butions F̂(X,z) therefore have a close identification wit
9-8
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conventional ~diagonal! distributions. Moreover, by con
struction, they are fully equivalent to the off-forward distr
butions of Ji.

In the ERBL-like domain (X,z) they satisfy the symme
try relations

F̂~z2X,z!56F̂~X,z! ~42!

where the1 sign applies to the gluon and quark non-sing
distributions, and the2 sign applies to the quark singlet. W
presented the evolution equations satisfied by theF̂(X,z)
and gave numerical results~Figs. 5 and 6! to illustrate the
properties of the distributions. We found that asymptotica
(m→`) the distributions evolve to the known analyt
asymptotic forms. Indeed asm increases the distributions ar
swept from the DGLAP-like domain to lie entirely within th
ERBL-like region, as illustrated by the example shown
Fig. 6. The symmetry relations~42! are preserved at eac
stage of the evolution.

The distributionsF̂(X,z) are analogous to, but not th
same as, the non-forward distributionsFz(X) introduced by
Radyushkin@4#. The difference lies in the ERBL-like region
since the non-forward distributions do not obey the symm
try relations~42!. As a result the non-forward distribution
Fz(X) are not in general equivalent to the off-forward dist
butionsH(x,j) of Ji. We stressed that this happens only
the ERBL-like region. We discussed conditions under wh
Fz(X) would become equivalent toH(x,j) ~and F̂(X,z)!.
We also commented on the singularity atX50 of the basic
01402
t

y

-

h

DVCS amplitude at tree level when written in terms
Fz(X), which requiresFz(X) to vanish asX→0. The distri-
butionsF̂(X,z), which we defined, have the advantage th
they do not lead to such a singularity.
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APPENDIX

Here we present for reference the full form of the evo
tion equations for our non-singletF̂q

V(X,z,m), singlet

F̂S(X,z,m) and gluonF̂g(X,z,m) distributions defined in the
range 0<X<1 by Eqs.~26! and ~24!. The asymmetry pa-
rameterz lies in the range@0,1#.

We use the following notationX8[X2z and Z8[Z2z
and suppress the renormalization scalem among the argu-
ments of our distributions. In the DGLAP-like regionX.z
we have the following evolution equations:
iar

s in
m
]

]m
F̂q

V~X,z,m!5
aS

p
CFH E

X

1 dZ

X2Z F S X

Z
1

X8

Z8 D F̂q
V~X,z!2S 11

XX8

ZZ8 D F̂q
V~Z,z!G1F̂q

V~X,z!F3

2
1 ln

~12X!2

12z G J ,

m
]

]m
F̂S~X,z,m!5

aS

p
CFH E

X

1 dZ

X2Z F S X

Z
1

X8

Z8 D F̂S~X,z!2S 11
XX8

ZZ8 D F̂S~Z,z!G1F̂S~X,z!F3

2
1 ln

~12X!2

12z G J
1

aS

p
NfE

X

1 dZ

ZZ8 S 12
z

2D F S 12
X

ZD S 12
X8

Z8 D1
XX8

ZZ8 GF̂g~Z,z!,

m
]

]m
F̂g~X,z,m!5

aS

p
CFE

X

1

dZF S 12
X

ZD S 12
X8

Z8 D11G F̂S~Z,z!

12z/2
1

aS

p
NcH E

X

1

dZF 2

Z S 11
XX8

ZZ8 D S 12
X8

Z8 D F̂g~Z,z!

1
@~X/Z!1~X8/Z8!#F̂g~X,z!2@~X/Z!21~X8/Z8!2#F̂g~Z,z!

X2Z
G

1F̂g~X,z!F112~2Nf !/3

2Nc
1 ln

~12X!2

12z G J , ~A1!

whereCF54/3 andNc53, andNf is the number of active flavors. In the limitz50 the above equations become the famil
DGLAP evolution equations.

The equations in the ERBL-like regionX,z are more complicated since they involve integration with different kernel
the intervals@0,X# and @X,1#. We have
9-9
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m
]

]m
F̂q

V~X,z,m!5
aS

p
CFH E

0

X

dZS X8

Z8 D F F̂q
V~Z,z!

z
1
F̂q

V~Z,z!2F̂V~X,z!

X2Z
G1E

X

1

dZS X

ZD F F̂q
V~Z,z!

z
1
F̂q

V~Z,z!2F̂V~X,z!

Z2X
G

1F̂q
V~X,z,m!F3

2
1 ln

X~12X!

z G1E
z

1 dZ

Z F Z

X2z1Z
2

X

z GF̃q
V~Z,z!J

m
]

]m
F̂S~X,z,m!5

aS

p
CFH E

0

X

dZS X8

Z8 D F F̂S~Z,z!

z
1
F̂S~Z,z!2F̂S~X,z!

X2Z
G1E

X

1

dZS X

ZD F F̂S~Z,z!

z
1
F̂S~Z,z!2F̂S~X,z!

Z2X
G

1F̂S~X,z!F3

2
1 ln

X~12X!

z G2E
z

1 dZ

Z F Z

X2z1Z
2

X

z GF̃S~Z,z!J 1
aS

p
Nf H E

0

X dZ

z2 S 12
z

2D S X8

Z8 D F4
X

z

1
2X2z

z2Z GF̂g~Z,z!2E
X

1 dZ

z2 S 12
z

2D S X

ZD F4S 12
X

z D1
z22X

Z GF̂g~Z,z!

1E
z

1 dZ

Z

~12z/2!~z2X!

z2 F4X

z
1

2X2z

Z GF̃g~Z,z!J
m

]

]m
F̂g~X,z,m!5

aS

p
CFH E

0

X

dZS X8

Z8 D S 12
X

z D F̂S~Z,z!

12z/2
1E

X

1

dZS 22
X2

Zz D F̂S~Z,z!

12z/2
2E

z

1 dZ

Z

~z2X!2

z~12z/2!
F̂S~Z,z!J

1
aS

p
NcH E

0

X

dZS X8

Z8 D F2

z S 12
X

z D S 112
X

z
1

X

z2ZD F̂g~Z,z!1
~X8/Z8!F̂g~Z,z!2F̂g~X,z!

X2Z
G

1E
X

1

dZS X

ZD F2X

z2 S 322
X

z
1

z2X

Z D F̂g~Z,z!1
~X/Z!F̂g~Z,z!2F̂g~X,z!

Z2X
G1F̂g~X,z!

3F112~2Nf !/3

2Nc
1 ln

X~12X!

z G1E
z

1 dZ

Z

~z2X!2

Z F 1

X2z1Z
1

2Z

z2 S 11
2X

z
1

X

ZD GF̂g~Z,z!J . ~A2!

For z51 the above equations reduce to the ERBL evolution equations for the distribution amplitudes. It is also instru
check that both set of equations,~A1! and ~A2!, lead to the same limiting set of equations whenX→z from both sides.

The equations for the singletF̂S and the gluonF̂g distributions form a coupled set of equations which, in general, nee
be solved simultaneously in both the ERBL- and DGLAP-like regions. However forX.z it is sufficient to solve the equation
only in the DGLAP-like region since the integration in Eq.~A1! involves only parton distributions for values ofZ.X ~as is
true for the DGLAP equations in the limitz50!. This is not the case ifX,z. Then the solutions depend on the values of
parton distributions in the full interval@0,1#, and so both the set of equations,~A1! and~A2!, have to be solved simultaneousl
-
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