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We construct off-diagonal parton distributions defined on the intersaX&: 1 starting from the off-forward
distributions defined by Ji. We emphasize the particular role played by the symmetry relations in the “ERBL-
like” region. We find the evolution equations for the off-diagonal distributions which conserve these symme-
tries. We present numerical results of the evolution, and verify that the analytic asymptotic forms of the parton
distributions are reproduced. We also compare the constructed off-diagonal distributions with the non-forward
distributions defined by Radyushkin and comment on the singularity structure of the basic amplitude written in
terms of the off-diagonal distributionS0556-282(199)08001-7

PACS numbe(s): 13.60.Hb, 13.88te, 14.20.Dh

I. INTRODUCTION has a different momentum to the one which is outgoing, and
so we need two momentum variables to specify the off-
It is well known that the cross section of hard scatteringdiagonal distributions. The Ji and Radyushkin distributions,
processegsuch as deep inelastic scattering, the production ofvhich are denoted b (x,£) and F,(X) respectively, differ
large pt jets, etc) can be written as the sum of parton dis- in their choice of the defining four vector. Ji chooses the
tributions multiplied by the cross sections of hard subpro-momentum fractions and ¢ with respect to the average of

cesses calculated at the parton level using perturbative QClhe incoming and outgoing proton momerRa: L(P+P),
That is we can factor off the long distang®n-perturbative  \yhereas Radyushkin defindsand ¢ with respect to the in-
effects into universal, process independent, parton distribt)(-;()ming proton momentur®. The former has the important
tions[f;(X,?) with i =0,q,g] specific to the incoming had- advantage that it is easier to impose the symmetry require-
rons. X is the longitudinal fraction of the hadron’s momen- ments, while the latter has the advantage that it is close to the
tum that is carried by the parton andis a scale typical of  gefinition used for the conventionédiagona) distributions.
the hard subprocess. The parton distributions are given bigyr aim is to clarify the relation between the two formula-
the matrix eIement$P|©|P> whereO is a twist-2 quark or tions. We find that they are not equivalent unless specific
gluon operator, and® represents the full set of quantum conditions are imposed on Radyushkin’s non-forward distri-
numbers of the hadron. To be specific we will be concernedutions. We show this by a direct construction of distribu-
with a proton taking part in unpolarized reactions. TS tions defined in the rangesOX<1 which are equivalent to
will represent the 4-momentum of the proton. Ji’s off-forward distributions.

Calculating the parton distributions from first principles is et us neglect, for the moment, the gluon distribution.
one of the most challenging problems in non-perturbativerpe quark distributionH,(x,£), defined by Ji, covers the
QCD. The most promising approach is lattice QCD, butinterval —1<x<1 and generates two distinct distributions

much remains to be done. On the other hand, from a practical,. 5 5 :
viewpoint, the parton distributions of the proton are deter—%\lhICh we denoteby Fq(X,£) and Fq(X,¢) with O=X<1.

mined with good precision from global analyses of deep in-OVer the regiork>¢ the two functions?, and g are inde-

elastic and related hard scattering data. The distributionB€ndent. On the other hand in the regiinc ¢ they are re-
f.(X,2) are parametrized as a function Xfat some start- lated to each other, with the consequence that the non-singlet

ing scale,u(z) and then evolved using the Dokshitzer-Gribov- and singlet combinations possess a symmetry about
Lipatov-Altarelli-Parsi (DGLAP) equations of perturbative =¢/2. We obtain evolution equations fdf starting from the
QCD to higheru? values relevant to the data to be fitted. evolution equations for the off-forward distributiohk We
Recently [1-9] there has been much interest in off- find that they differ from the evolution equations for the
diagona|(a|so called off-forward by \1]1] or non-forward by non-forward distributi0n§5,9] by additional terms which are
Radyushkin[4]) distributions which are given by matrix el- €ssential to preserve the symmetry properties in the ERBL-

ements(P’lf)|P> in which the momentum of the outgoing like region. We also found that the basic amplitude for
proton is not the same as that of the incoming proton. For

example, themplitudesfor processes such as deeply virtual

Compton scattering * p— yp) or vector particle electro-  For the reasons given below we must use a notation which dis-
production ¢/* p—Zp or J/¢p) depend on off-diagonal dis- tinguishes between the distributiod¥X,?) constructed fromH
tributions. SinceP# P’ the parton returning to the proton and the non-forward distribution®,(X) defined by Radyushkin.
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deeply virtual Compton scatterindVCS) has a different (@) x>0 g(x) = Ho(x) (b) x<0: 7(-x) = -Hy(x)
singularity structure to that given by the non-forward distri- .
butions F. b b

The outline of the paper is as follows. To establish nota-
tion we quickly review in Sec. Il the salient features of the
conventional(diagona) parton distributiondH(x) with sup-
port —1<x=<1. Section Il reviews the extension of these
It?jc?jcteodtgj Jo[f{]d'ﬁ] gggil :j\l/s\t/\r/lgl:rt;)nn;(()):;g)tr:g%i;\tlfi:l;itlirc])ns FIG. 1. Schematic diagrams showing the contributioni §6x)

) N with x>0 andx<0, respectively, which can be identified with the
H(x,§) into distributions7(X,{) with 0O<X=<1, and dem-  familiar quark and antiquark distributions,b" are the quark anni-
onstrate thafF must satisfy symmetry relations fot<<{. In hilation and creation operators adgd™ are those for the antiquark.

Sec. V we give the evolution equations for rﬁex ¢) and The momentum fractions refer to the plus light-cone component of
present numerical solutions. The complete form of the evot® incoming proton momentur.
lution equations is given in the Appendix. In Sec. VI we

?|scus§, ghet(ilat§|onsget¥vseg thehil_strllbuttﬁ]ﬁand the .”Fi”' the emission and subsequent reabsorption of an antiquark.
dqrwar tlhs ”d%f'on otha t)f/]us an. In 'te s?me:[ spin 1:Nteh The two possibilities are sketched in Fig. 1. Thus the single
iscuss the differences in the singularity structure of the with support in the interval- 1<x<1 em-

. . : . distributionH
q
DVCS amplitude. Finally Sec. VIl contains our conclusmns.bodies both the familiag andq distributions, defined on the

interval 0<x<1, which thus are identified with the two
Il. CONVENTIONAL PARTON DISTRIBUTIONS terms accompanying the theta functions in E2). in the

In order to introduce off-diagonal distributions it is most following way:
convenient to first recall the definition of the conventional
(diagona) parton distributions in terms of light-cone coordi- Hy(X)=
nates(x™ = (x°+x%)/v2,x},x?) and in the light-cone gauge a
(A"=0) [10]. For instance the quark distributidti,(x) is
given in terms of the matrix element of a light-cone bilocal We may form the valence and singlet quark distributions in
operator terms ofH:

within the proton. Similarly thed'd contribution describes

q(x) for x>0
—-q(—x) for x<O0.

()

LAy ety o —q(¥)=Hg(X)+Hy(—x)=HY
Hq(x)zif%ef'xpuplt/fq(o,y*/z,m 400 = 800 =Hq(x)+ Ho(=x)=Hq(x) @)

X y* q(0,—y~120)|P). (1) ; [q<x>+a<x>]=§ [Ha(¥)—Hg(—=x)]1=HS(x),

Note that the matrix element is diagonal in the four momen- .
tum P of the proton. For simplicity we do not show either Where the sum is over the quark flavors. Clearly over the full

here, or throughout the paper, the renormalization scale dddterval —1<x=<1 the valence and singlet quark distribu-
pendence oH, and of the other parton distributions that we tONS satisfy the symmetry relations
discuss.

\% gV
To see the parton content of the distributidy we make Hq(x)=Hg(=x)
a Fourier expansion dthe light-cone-plus or “good” com-
ponenj ¢, of the quark field, in terms of the quark annihi- HS(x)=—H%(—Xx). )

lation operatorb and the antiquark creation operatdf.

Similarly ¢ is expanded in terms df' andd, and then the
integration overy~ in Eq. (1) is performed. It is found that
Hyq is only non-vanishing in the intervat 1<x<1 with the
term b'b contributing forx>0 anddd' contributing forx

In a similar way we may introduck 4(x)=xg(x) where
g(x) is the familiar gluon distribution. The additionalfac-
tor is due to the gauge invariant definition if; given in
terms of the gluon field strength; see also the comment at the

<0 [11]: end of Sec. Ill. In the light-cone gauge
1 d%ky _ LAY ey
Ho(0=2p7 f 2xzmy? 2 [PIBLOP e Mo~ f 2

><b)\(XP+,kT)|P>0(X)_<P|d1(_xp+'k_r) ><<P|F+”(O,y_/Z,O)F:(O,—y_/2,0)|P), (6)
X dy(=xP* kp)|P)O(—x)], (20  whereF*” is the gluon field strength tensor and where the
summation over the color label has been suppressed. Be-
where\ is the helicity of the quarks. Thb'b term corre- cause of Bose symmetry we have
sponds to the emission of a quararrying a fractionx of
the proton’s momentuimand its subsequent reabsorption Hg(X)=Hg(=X). @)
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IIl. OFF-DIAGONAL DISTRIBUTIONS whereP=21(P+P’). This choice of variablésis due to Ji
The distributionsH,, introduced in Eq(1) may be gener- [1—3] and enables symmetry to be imposed between the in-
alized to allow for matrix elements which are off-diagonal in ©°Ming and outgoing proton. That is Ji uses the symmetric
the four momentum of the protdi—3| combinationP of their momenta as the defining direction,
and calls theH, off-forward distributions. The distributions

1 dy” - — H, are real, and the symmetric choice of variables has the
=_ | e xPTy (ps - q '
Ho(x.&.1) 2 f 27 (P"[g(0y~120) considerable advantage that, due to time-reversal invariance
. B and hermiticity, the distributions are even functionsédB]
Xy hg(0,—y~/120)[P), (8

where we consider only the distributions which conserve the

proton helicity and which describe unpolarized quarks. Sincésince we will perform our analysis for fixed concentrating
A=P—P’#0 the distributionH(x,£,t) now contains two 0N thex and ¢ dependence, we shall omit thedlependence
extra scalar variables, in addition to the Bjorkewariable. ~ from now on.

The variablet is the usualt-channel invariantf=A?, and To see the physical content of the off-diagonal distribu-
the variable is defined by tions H, we again Fourier expang and ¢ in terms of the
quark creation and annihilation operators. Since the distribu-
EA+=§E+ 9) tions are even it we may take£>0. In this way we obtain
2 ' the generalization of Eq2) [3]

’ 1 J' d%k+
8= 2p7 22— (2m)
+(P'|dy((—x+ &P, —kp+ Apb_, (x+ )P k)| P) 6( — E<x< &)
—(P'[d](—x=&)P* kr— ADd\((—x+ &P kp)|PYo(x<—¢)]. (12)

5 2 [(P'Bl(x= P k= Ay (x+ P kn)|P) 6(x=)

Figure 2 gives a pictorial description of the content of Eq.Thus in addition to the symmetry undér — ¢, the distri-
(12). Diagrams(a) and(c), which arise from thé'b andd’d butions have symmetry or antisymmetry unders —x.

terms inygy, generalize Figs.(8) and Xb) respectively. For Also, in analogy to Eq(7), the off-diagonal gluon distribu-
example the first diagram corresponds to the emission of Hon satisfies

quark of momentunk from the proton followed by its ab-

sorption with momentunk—A. Thus forx>¢ andx<—¢ Hg(X,§) =Hg(—X%,8). (14
the off-diagonal distributionH, generalizes the familiar
qguark and antiquark distributions and will evolve according
to modified DGLAP equations. Diagraii), corresponding
to the middle region;- é<x<<¢, does not have a counterpart 3
in Fig. 1. This diagram, which arises from tla term in Hg(X,€) =xHy(x,8). (19

Y, corresponds to the emission of a quark-antiquark pairon gccount of the extra factor, the gluon distributior(15)

In this_regioan isa ggneralization_ of the proton form factpr is not required to be zero at=0, unlike the situation foHJi
and will evolve according to modified Efremov-Radyushkin- (see alsd5] for a relevant discussion g

Brodsky-Lepage(ERBL) equations[12]. Thus in this do-
main Hy may be regarded as a generalization of the prob-
ability distribution amplitude which occurs in hard exclusive

The distributiong12)—(14) are identical to those introduced
by Ji[2,3] ® except that

IV. OFF-DIAGONAL DISTRIBUTIONS
ON THE INTERVAL [0,1]

processes.
~Just as for the diagonal case, we introduce valence and So far we have considered the off-diagonal distributions
singlet quark distributions analogous to E4) Hq(x,€), introduced by J[1,2], and defined on the interval

—1=<x=<1. As noted abovd®>+ P’ is taken as the defining
Hg(xlg)EHq(x,g)Jr Ho(—X,6)= Hg(—x,g), (12)  direction, so that symmetry is imposed between the incoming

HS(x, &)= Ho(X,&) —Hg(—X,€)]=—HS(—x,&). 2Note that Ji defined =P’ —P.
k) % [ q( 2 q( 8] ( 8 3Note that in going from Ref[2] to Ref.[3] Ji has redefined/2
(13)  bye
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(a) x>&: DGLAP-type region for
the quark distribution

FIG. 3. The proton and quark momentum fractions with respect
to the initial proton momentur® corresponding to the off-diagonal
distributions(X, ) defined in the domain€X=<1. The four mo-
mentum transfer satisfies*=(P*.

(b) -§<x<€: ERBL-type probability
amplitude
b d
E-x A. The relation between the distributionsH and F

4
=5 (18)

x+&
In this subsection we first define the off-diagonal distribu-
14& 1-¢ tions ﬁq(x,g) with X in the interval[0,1] starting from Ji's
distributionsH(x,§) with x in the rangd —1,1]. Then we
explore the symmetry relations satisfied by l‘ﬁg(X,g“).
If we compare the momentum fraction carried by the
emitted parton in Fig. 3 with those in Figs(a2 and Zc),

(¢) x<-&: DGLAP-type region for then we see that two different transformations are relevant in
the antiquark distribution reducing the interval-1<x<1 covered byHy(x,¢) to the
d d interval 0<X<1 covered bﬁq(x,g). First, from Fig. 2a),

we have the transformation

X1+ §

l prey (19

which takes the intervat; e[ — ¢,1] into X; €[0,1]. Simul-

y FIG. 2. Shchekr]naticd.diqgrarll(w_s of tl_we off_—diagopﬁl diStribmiogtaneouslyg is transformed inta’. Secondly, from Fig. @),
q(x,€), in the three distinct kinematic regions. The proton an we have the transformation

quark momentum fractions refer ®", whereP is the average of
the incoming and outgoing proton four momentum. Note that the E—Xy
four momentum transfer satisfias" =2¢P* and thatx covers the 2= 17 ¢’ (20)
interval[ —1,1].
) ) ) _ which takesx, e[ —1,£] into X,&[0,1]. Now, — £ is trans-
(P) and outgoing P') proton momenta. This variablewas  formed into 7. In this way we introduce two distinct off-
defined in Eq.9) by diagonal distributions?, and
A=(P—-P")=¢(P+P'), (16 1
Fo(X1,0)= 7= Hy(xXq,
where for simplicity we have omitted the light-cone plus alX1:d) 1-¢/2 alX1:8)
superscripfsee Eq.(9)].
To make direct contact with conventional partons we may A -1
. . . S Fq(X5,0)= 7—7Hy(X,€), 21
introduce alternative off-diagonal distributiot,(X,¢) de- X2:4) 1-¢/2 a(X2:¢) @Y
fined on the interval & X=<1 such that the initial parton _ .
carries a positive fractioX of the proton’s longitudinal mo- Where&={/(2-{) and the inverse relations
mentum. That is we tak® as the defining direction. Thus
the counterpart to Eq16) is X :X1—§/2 X, = §l2=X,
Y12 TP 102

A=(P a7
follow from Egs.(18)—(20). We stress that aX, , cover the
with 0<{<1. This is exactly analogous to the approach in-range[0,1], the corresponding; andx, cover respectively
troduced by Radyushkif#,5] in the construction of the non-  the rangeq§ — ¢,1] and[—1,£], as shown schematically in
forward distributionsF,(X). However our construction of Fig. 4. The factorst(1—¢/2)" ! in Eq. (21) arise from the
the distributionsﬁ—'q(x,g) presented below is different to that translation of the measuix to d X.
of [4,5]. From Egs.(16) and(17) it follows that In the limit that{ (and £)—0 we have, from Eq(3),

(22
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A H H
? XL ZI; Il X 1t Hx8)
: : Hq(X,E_,) T T X 0
S g 1 —
Vool x4 )
Xt : HXY | (@)
1 £ 0 ] : 0 " \]

FIG. 4. A sketch showing how the supportl=x<1 of the
off-diagonal distributionH,, is translated into the regions<0X
<1 of the two functionsF, and 7. The translations are given by PO
Egs.(19) and(20), or by the inverse relation@2). 20

Fo(X,00=Hy(X,00=q(X)

Fo(X,00= —Hq(—X,0=1(X), (23

which is an additional motivation for using the quark and
antiquark subscripts to differentiate between the two func-
tions 7, and 7.

Finally, due to the symmetry relatidi4), the gluon dis- L
tribution may be defined in the rangesX<1 by either of e o
the transformation$22). That is we have

) 1 (x—g/z )_ 1 (4/2—>< ) P .
=1 p e 1=t " 1= Mel 1=z ¢ R ©

(29)

0 y2 ¢ ‘
B. Symmetry relations . o
FIG. 5. (@) An example of the off-diagonal distributidfig(x, &)
From Fig. 4 we see that in the DGLAP-type regions (  yith ¢=0.5; (b) the distributionsF,(X,¢) and F(X,¢) generated
>gorx<—¢ l:Iq IS transtormed respectively intadepen- from Hy(x,£), and(c) the resulting non-singlei:;’ and singlet?®
dent functions F,(X) and 75(X) with X>{. On the other distributions showing their symmetry and antisymmetry in the
hand in the ERBL-type region< {<x<§) the distribution  ERBL-like regionX</¢.

H, generates functiong,(X) and F7(X) with X< ¢ which

are no longer independent. Indeed ¥+ ¢ we have A 1 X=¢2\ . A
N 1 {—X=(12 1 {12—X
]-'q(g—X)zl_ Hq< — )= —5 Hgl 7 )
L2 1-¢/2 1-¢/2 1-¢/2 . 1 S X—(12 . .
) FX)= 1= zH (1_&2)—% [Fo(X)+ F4(X)],

=—Fq(X), (295 (26)
where for simplicity we do not indicate the additional ex- which in the regionX<¢ satisfy symmetry relations result-
plicit £ or £ dependence of the distributions. ing from Eq.(25)

Equation(25) is the basic symmetry relation for the off- R R

diagonal quark distributions which indicates that in the fX({—X)zJ’-Z(X),
ERBL-like region the quark and antiquark distributions are
not independent, unlike the case in the DGLAP-like region. F(¢—X)=—FX). (27)

The physical reason for this can easily be understood by

looking at Fig. 2b. In the ERBL-like region we can define thelt is straightforward to show foX<{ that the gluon distri-
off-diagonal distributions with respect to the first emitted bution (24) satisfies a similar relation

parton being either the quark with momentws ¢ or the

antiquark with momentun§—x. The latter possibility corre- Fo(£=X)=Fy(X). (28)
sponds to the exchange of the annihilation operators in Eq.
(11), which is the origin of the- sign in relation(25). These properties are well illustrated by Fig. 5. The upper plot

We may form the non-singlet and singlet combinations ofshows an example of the off-diagonal distributibig(x, £)
the quark and antiquark distributions. From EtR) we have for §=0.5. The middle plot shows the transformation of this
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distribution into the two functions, q(X,0) and]—‘—(X ) of

PHYSICAL REVIEW D59 014029

where the scalg: is implicit in the distributionsF. The full

Eq. (21). Their behavior shows that the symmetry relationforms of the equations are given in the Appendix. Here it is

(25) is clearly satisfied in the region9X</{. Finally, the
lower plot shows the behavior of the non-singféft and the
singlet 7° combinations. The symmetry (ﬁ’;’ and antisym-
metry of 75, about the poinX= ¢/2, are clearly evident in

the region G=X</(.

V. EVOLUTION EQUATIONS

Just as we constructed directly from the off-forward
distributionsH of Ji, so we start with the evolution equations

[2] for H(x,£) with —1<x<1 and use transformatiorf2l)
and(24) to rewrite them in terms of the distributiod& X, £)

with 0sX<1.

In the DGLAP-like regionX>{ the equations that we

obtain for 7 are equivalent to those given for the non-
forward distributions of Radyushkif,9]. Their full form

can be found in the Appendix. Moreover in the lingit>0

they reduce to the familiar DGLAP evolution equations.
However in the ERBL-like regioiX< ¢ the equations ob-

tained for 7 are different to those given if6,9] for the

non-forward distributions. They have the following forms:

Jd . - aSCF
Ko FaX8)=Pog® Fyt — =

dz[ z
XL X—{+Z va(zg)
(29
) ) . aC
#ﬁf‘s(x,é'): PQQ®fS+ PQG®]:9_ il
1dZ Z X .
S
asN; [1dZ (1-£2)({~X)
T
4X  2X—{].
x| 7+ 7720 (30
) ) . agC
Mﬁfg(xig):PGQ®fs+PGG®fg_ e
1dZ ({—X)?
“|, 7 a0
agNg (1dZ({-X)2[ 1
22 2 .
7 1+?+ Fo(Z,0),  (3)

sufficient to note that the convolutions shown symbolically

asP® F are identical to those given ir5,9]. However the
new evolution equations contain several additional terms,
each being a convolution integral over the rapgé]. These
extra terms are essential to preserve the symmetry properties

(27) and (28) of ﬁ:during the evolution. We note that in the
limit {—1 the additional terms are equal to zero and that
Egs.(29—(30) reduce to the ERBL evolution equatioff?]

for the distribution amplitudes.

A. Numerical results of the evolution

To illustrate how the off-diagonal distributiors evolve
with increasing renormalization scaje we constructed a
computer program based on the equations given in the Ap-
pendix. For the initial input at the starting scale=1 GeV
we adopt the following strategy. We start with given input
forms for the off-forward distribution$d 4 ¢)(x,§), which
are even ir€. An example for the quark distribution is shown
in Fig. 5(@). Then using prescription®1) and(24) we trans-

form H g g)(X,€) into the d|str|but|ons7-" 0.9.9)(X,£) which
satisfy the symmetry relation27) and(28) The initial dis-
tribution Hy(x,£€) shown in Fig. %a) is only meant to illus-
trate the general features of the adopted strategy. The de-
tailed properties of more realistic initial distributions will be
discussed in a separate paper.

The results that are obtained by evolvidf, 7° and 7,
to higher scales are shown in the three plots of Fig. 6. In each
plot the dashed curve is the input at=1 GeV, while the
dot-dashed curve shows the effect of evolution uputo
=10 GeV. It is evident that evolution does indeed preserve
the symmetry properties in the ERBL-like regiof< ¢.

The continuous curves in Fig. 6 are the results of evolving
F all the way up tou—oo. These asymptotic forms are

identical with the analytic asymptotic solutioffs,6], which
are entirely contained in the ERBL-like region wix ¢,

X X
x4

2X
ﬁ““Nf@‘ﬁ@?‘ﬁ
(32

. xX\2  X\?
Ao~ (3 (-7

This remarkable property is evident from Fig. 6. The distri-
butions are swept from the DGLAP-like to the ERBL-like
region asu increases.

VI. RELATION TO THE NON-FORWARD
DISTRIBUTIONS

The off-diagonal distributioné—'(x,g), constructed in the
previous section, are equivalent to the off-forward distribu-
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ERBL-like DGLAP-like determines a specific combination of Radyushkin’s distribu-
tions 799 | This is in contrast to the distributions defined

by Egs.(21) which are in one-to-one correspondence with
H

qumparing Eqs(33) with Egs.(21) we see that our off-
diagonal distributionsﬁ-’(x,g) are identical to the non-
forward distributionsF,(X) in the DGLAP-like region,X
>({. However in the ERBL-like region there are different
since forX<{ we have

10] ] FoX ) =FUX) =~ FU(-X)
ol _ ) - (34)
o N s FoX,0=FUX) ~ FUL{-X).

S5 ] The main difference between our distributiofsand the
non-forward distributionsF; of Radyushkin is that the latter
do not obey the symmetry properti€®5) and (27), (28).
0 &2 g 1 These properties are essential for our distributions and result
from the construction which ensures their equivalence to Ji's
distributionsH. The physical reason for the symmetries was
discussed in Sec. IV B. An important consequence of the
symmetry relations is that in the ERBL-like region the quark
and antiquark off-diagonal distributions are not independent;
see relation25).
This should be contrasted to the case of the non-forward
i : distributions of Radyushkin. They are obtained through the
0 ¢2 ¢ 1 integration of “double distributions’F which are universal
X {-independent functions. The double distributions are sepa-
. . rated into two independent componefighich are denoted
~ FIG. 6. Evolution of the non-singlefy , singlet7S, and gluon by Fq andFy) according to the sign of in the exponential.
Fgq distributions defined in the rand®,1] from initial input at u As a result the corresponding non-forward distributidﬁ%

=1 GeV (dashed curves The asymmetry parametg-0.5. The andF{ are also independent in the ERBL-like region; g
dotted and continuous curves correspondute 10 GeV andu for more details. Thus there are twice as many quark “de-
—oo respectively. The latter curves are identical to the analyticgrees of freedorﬁ” in the ERBL-like region as in our case
asymptotic solutions given in E432). . . ) o

ymp g w2 A similar comparison can be done for the non-singlet,
singlet and gluon distributions. As a result we find the fol-
lowing relations forX<¢:

tions H(x, £) defined by Ji. They are also closely related to,
but not the same as, the non-forward distributighg X)
introduced by Radyushkih.The difference between them

T _ Vv V
occurs in the ERBL-like regionX<¢). fV(x,g)—}'g(X)ﬁL}'g(g—X)
The non-forward distributionﬁfgq"‘)(X) are related to the R < <
off-forward distributionsH,(x,£€) in the following way(see FAX,)=FAX) = FUL—X) (35

Sec. IX of Ref.[5] for a detailed discussion
FIXO=FUX)+FUL—X).

FUX) if x>§&
(1+&Hy(x,6)= J—"j(X)—J—'?(g—X) if —&<x<é Thus we see that our distributiodsare equal to symmetric
oy TN or antisymmetric combinations of the corresponding non-
—FE=X) it x<-¢, 33 forward distributions?, in the ERBL-like region.
where X=(x+&)/(1+ &) and {=2&/(1+&). Notice that A. Comparison of the two sets of evolution equations
while in the DGLAP-like regionsX> ¢ or x< —¢) there is a The evolution equations for the non-forward distributions

one-to-one correspondence between the two distributions, iyr(gq,ag) of Ref. [5], see alsd9] for detailed form, do not

the ERBL-like region ¢ £<x<¢) Ji's distributionHg only 550y the symmetry properti€g7) and(28) in the ERBL-like
region. One may try, however, to write down the evolution
equations for the combinations given in E35), starting
“We thank A. V. Radyushkin for helpful comments on the subjectfrom the evolution equationg5] for the full non-forward
of this section. distributions in the ERBL region
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B. The singularity structure of the basic amplitude

1 1
= _ r(sym — r(asym
FeX) 2 For0+ 2 ForX) For the purpose of illustration we may consider the classic

process of deeply virtual Compton scattering. The invariant
amplitude for the process has the generic f¢gh

1
T~J dx
-1

If the amplitude is translated into a form involving our dis-
The symmetrized evolution equations are almost identical t&ributions (X, ), then Eq.(39) becomes
the evolution equation$29)—(31) for our distributionsF.
The integrals ovef,1], indicated explicitly in Eqs(29)— . fl Fo X, )+ F(X,0)

1

1 1
= S[F0+FLL= X1+ S[F(X)
—+ -
Xx—&+ie XxXté—ie

Ho(x,8). (39
~FlE=X)1. (36)

(31), appear in the symmetrized equations of Radyushkin as 0 dX X—{+is
a result of the symmetrization procedure. The only difference

appears in the symmetrized gluon equation which addition- 1dX . R

ally contains a term proportional to the integral over the full +J > [FaX )+ Fq(X, D] (40)
non-forward singlet distribution ¢

We see that Eq40) contains only one singularity a€={¢,
which results from the quark propagator, and is regularized

by the +ie prescription and assuming théfq,a(x,g) are
(37)  continuous atX=¢. Note that there is no singularity at
=0 since the second integral is bounded$y0 from be-

. . . . low.
Since the symmetrized gluon equation should contain only This is in contrast to the amplitude derived in Ré#5]

. : ; - g=S(asym)
th_e asymmetric smglet comb|n'at|dﬁ{ s the above term using the non-forward distributions; :
mixes the symmetric and antisymmetric components of the
singlet distribution. The only case when it does not happen is 1
T~f dX
0

1 ¢ 1 1
dZF(2z)=| dZ5 FZ¥™(2)+ | dZF3(2).
0 o 2 ¢

1 _
(FIX)+FEUX). (4D

if the integral(37) is equal to zero due to initial conditions. —+ —
gral(37) is eq X—C+ie X

The value of this integral is conserved by the evolution equa-
tions[5] for the full non-forward distributions. ) ) o )
Subsequently to the above observation we were informed Nis form can also be obtained substituting relati¢g4)
by Radyushkin that the integré87) does not appear in the N0 (40). ThusT contains now the second, end-point, singu-

symmetrized equation for the gluon distribution if one usedarity at X=0. The additional singularity is removed [8]
the kemelPgq in the evolution equations of Ref5] in the by assuming that the non-forward distributiof&g™¥(X)
form originally obtained by Chasil3] and later confirmed Vanish as<— 0. Looking at Eq(33) we see that this assump-
in [14,15. We present the form of the Chase kernel for ref-tion is equivalent to the continuity dfi(x,£) atx=*¢ [or

erence F(X,£) atX={]. Such additional assumption is not required
for our off-diagonal distributions7(X, ¢). Indeed, if present,
Pso(X,2) it would clearly violate their continuity ak={¢, or their

symmetry abouK=¢{/2; see Fig. 5. We finish the discussion
by observation that since the expression in the first bracket in
Eq. (41) is antisymmetric in the ERBL-like region only the
39) antisymmetric componers® (j‘sym) of the combination of the
non-forward distributions in the second bracket gives a con-
tribution to T. Thus the remaining symmetric component,

for {=1. For other values of the arguments should be which is present in the formulation of Radyushkin, does not
additionally rescaledX,Z)— (X/{,Z/{). The method used influence the amplitude.

in Ref. [5] does not unambiguously fix the kernBlq.
However the formulation of Radyushkin can be made
equivalent to the formulation of Ji, independently of the ini-
tial conditions, if the Chase form of the kerrfeg g is used in
Ref. [5]. Finally the equivalence can be obtained by taking
only one of the two parts in the decompositi@®)—namely

2
=<2x— x?)@(X<Z)—{X—>(1—X),Z—>(1—Z)},

VII. CONCLUSIONS

In this paper we have transformed the off-forward parton
distributionsH(x, &) defined by Ji, in which the defining di-

rection is the average between the incoming and outgoing

the symmetric combination for the non-singlet and gluon, i ¢ & 1<x<1. into off-di [ distrib
and the antisymmetric combination for the singlet, distribu—Pro on momenta aner L<x<1, Into ofi-diagonal distribu-

tions. We have confirmed this result using our numericafionsF(X,¢), in which the defining direction is the incoming
program for the evolution of the full non-forward distribu- Proton momentum and9X<1. These off-diagonal distri-
tions (36) with the Chase kernel. butions F(X,{) therefore have a close identification with
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conventional (diagonal distributions. Moreover, by con- DVCS amplitude at tree level when written in terms of
struction, they are fully equivalent to the off-forward distri- F,(X), which requiresF,(X) to vanish asx—0. The distri-

butions of Ji. butions F(X, ), which we defined, have the advantage that

In the ERBL-like domain X<{) they satisfy the symme-  they do not lead to such a singularity.
try relations

FE-X0)=+FX.0) (42) ACKNOWLEDGMENTS

. . ) We thank Xiangdong Ji and Anatoly Radyushkin for dis-
where the+ sign applies to the gluon and quark non-singletessions. K.G-B. thanks the Royal Society/NATO and the
distributions, and the- sign applies to the quark singlet. We i particle Physics and Astronomy Research Council for
presented the evolution equations satisfied by H{X,{)  financial support. This research has also been supported in
and gave numerical result&igs. 5 and B to illustrate the part by the Polish State Committee for Scientific Research
properties of the distributions. We found that asymptoticallygrant No. 2 PO3B 089 13 and by the EU Fourth Framework
(u—0) the distributions evolve to the known analytic Programme “Training and Mobility of Researchers” Net-
asymptotic forms. Indeed asincreases the distributions are work, “Quantum Chromodynamics and the Deep Structure
swept from the DGLAP-like domain to lie entirely within the of Elementary Particles,” contract FMRX-CT98-019BG
ERBL-like region, as illustrated by the example shown in12-MIHT).

Fig. 6. The symmetry relation&2) are preserved at each

stage of the evolutiqn. APPENDIX
The distributionsF(X,{) are analogous to, but not the
same as, the non-forward distributioffs(X) introduced by Here we present for reference the full form of the evolu-

Radyushkir{4]. The difference lies in the ERBL-like region, tion equations for our non-singlel?—';’(x,g,ﬂ), singlet
since the non-forward distributions do not obey the symmeZ#S(x, ¢, 1) and gluorﬁ-‘g(x,{,,u) distributions defined in the

try relations(42). As a result the non-forward distributions range GsX<1 by Egs.(26) and (24). The asymmetry pa-
F(X) are not in general equivalent to the off-forward distri- rametery lies in the rangd0,1].

butionsH(x,£) of Ji. We stressed that this happens only in  \we use the following notatioX’=X—¢ andZ'=Z—¢
the ERBL-like region. We discussed conditions under Wth"hnd suppress the renormalization Scﬁjamong the argu-
F¢(X) would become equivalent tBl(x,&) (and F(X,0)). ments of our distributions. In the DGLAP-like regiot>/
We also commented on the singularity>ét0 of the basic we have the following evolution equations:

d as 1 dz X"\ . XX\ . R 3 (1—X)?
M@fX(XLMF?CF[ Y X—7| Z+?)fg(x,z>— 1+ﬁ)fg(z,z) FFD| 3+ H
J . _as 1.dz [(X X'\. XX\ . . 3 (1—X)?
ﬂ%ﬁ(x,g,m_?cF[ y ﬁ_(zjuf ﬁ(X,g)—(Hﬁ)P‘(z,g) + F5(X,{) E+|n 17 H

as (1 dZ g)( x) X’) XX' .
+7fox ﬁ(l‘z 1=z (1‘? T 777|540,

J . Cas (1 x) X’) Fz,0) as 1|2

XX’)( X’) .
1+ oo || 1= 57| (2,0

[(XIZ)+ (X'1Z") ] Fo(X, ) —[(XIZ)?+ (X' 1Z")2] F4(Z,{)

* X—7

(A1)

R 11— (2N)/3 1—-X)?
+fg(x,g){ ;ch +|n(1_g }

whereCg=4/3 andN;= 3, andN; is the number of active flavors. In the limjt=0 the above equations become the familiar
DGLAP evolution equations.

The equations in the ERBL-like regioX<<{ are more complicated since they involve integration with different kernels in
the intervalq 0,X] and[ X,1]. We have
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—fm)_ [lal % )fﬁ 20 Bz Foe], [y X|[Hizo , Fies 7o

M%ﬂx,z,m:“fcpu dz( ) ﬁ(gz §)+ﬁ€(z,§))(js(x,z> +fxldz(§) ﬁﬂ?,;)j*s(z,zztf(x,o
e M=o AN (R
= } o[ g5l 5] o7 e
+L1 dZZ(l 5/222(5 X){4§x+2x g}f(z g)}

“%ﬁg(x’g’“):%&{foxdz(;i:)(l 5) et g ff(zé/? L“’?Z%ﬁz,@]
v [l £ e e KRG T
fdz( ){2;2((3 2); ix)ﬁg(z,gw(X/Z)%g(i’f;_%g(x'g)}+ﬁg(x,g)

_z(iljf)/3+nx(lgx)%f:d?z(g_zx)z x—§+z+2g_§ L+ ]fg(z,g)J. (A2)

For =1 the above equations reduce to the ERBL evolution equations for the distribution amplitudes. It is also instructive to
check that both set of equatior®1) and(A2), lead to the same limiting set of equations whér-{ from both sides.

The equations for the singléfs and the quonAﬁg distributions form a coupled set of equations which, in general, need to
be solved simultaneously in both the ERBL- and DGLAP-like regions. Howevexfef it is sufficient to solve the equations
only in the DGLAP-like region since the integration in HE&1) involves only parton distributions for values @f>X (as is
true for the DGLAP equations in the limit=0). This is not the case X< {. Then the solutions depend on the values of the
parton distributions in the full intervdD, 1], and so both the set of equatiof&l) and(A2), have to be solved simultaneously.
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