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We examine in non-Abelian gauge theory the heavy quark limit in the presence d¢artigself-dual
homogeneous background field and see that a confining potential emerges, consistent with the Wilson criterion,
although the potential is quadratic and not linear in the quark separation. This builds upon the well-known
feature that propagators in such a background field are entire functions. The way in which deconfinement can
occur at finite temperature is then studied in the static temporal gauge by calculation of the effective potential
at high temperature. Finally we discuss the problems to be surmounted in setting up the calculation of the
effective potential nonperturbatively on the lattif€0556-282(199)00801-3
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I. INTRODUCTION

BL(X) 7%= 5n%r%B,, X, D
Over the years, various characterizations have been pro-
posed for “confinement,” the property that colored degrees 1
of freedom are undetectable at present-day collider energies. B,,=>€,,mBa=%B,, )
Certainly, the Wilson criterion that static color sources can- w2 a
not be separated arbitrarily far ap4tf] has lead to many
insights both into lattice simulations and into analytical cal- B,..B,,=B%3,,, B=const,
culations. In particular, based on the Wilson criterion lattice
simulations have established a confinement-deconfinement Bij= — €jkBk, Bja==B;. ©)

phase transition at finite temperature. There are however al-
ternate characterizations for confinement which may be mor&he positive and negative signs in Edqg),(3) correspond,
directly relevant for dynamical quarks and gluons, and whichrespectively, to the self-dual and anti-self-dual cases. The
are based on the analytic properties of the nonperturbativeolor vectorn? points in some fixed direction which can be
quark or gluon propagators. In this paper, we shall focus omhosen such that®7? is diagonal;n? picks out the Cartan
the suggestion that the absence of poles in the complex esubalgebra of the color group. Various properties of this field
ergy plane of field propagators is consistent with confinein SU(2) gauge theory were investigated originally[i,3].
ment of quarks and gluons, in other words that propagatorfor example, in contradistinction to the chromomagnetic
are entire functions. That this can be correctly described asackground field[4] the self-dual background is stable.
“confinement” is easy to see: the absence of poles meankloreover, it was observed that this field leads to entire func-
that no colored degrees of freedom can appear in physicaions for the charged scalar field propagator. In the sense
asymptotic states. This characterization of confinement is natescribed above, then, this field can provide for confinement
necessarily in conflict with the Wilson criterion. Indeed, oneof quarks and gluons. Diagonal components of the gluon
of our aims will be to show that, in the static quark limit, field [such as S(N) algebra elementsare not confined at
entire quark propagators lead to the Wilson criterion. least at the level of the lowest order propagator in the back-
A quite simple mechanism for rendering quark and gluonground field. A self-dual homogeneous field is at least then a
propagators entire in the complex energy plane is to apply possible source for confinement in QCD if it can be shown
homogeneous background gluon field which satisfies the kethat such a field is a dominant configuration in the QCD
property that it be either self-dual or anti-self-dual. Such aunctional integral.
background gauge field is characterized by This verification can come from a computation of the ef-
fective potential for the candidate background field and the
demonstration that the potential has a minimum at a nonzero

*Email address: efimovg@thsundl.jinr.ru value for the background field. The effective potential was
"Email address: ack@theorie3.physik.uni-erlangen.de calculated to one-loop if2,5]. These results however were
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potential were as large as the zeroth order classical term. Tassumes the inclusion of domain structures in the vacuum. In
our knowledge, despite several attempts to study the effea given domain the vacuum field has a specific direction and
tive potential for the Savvidy chromomagnetic backgroundis either self-dual or anti-self-dual, but this is uncorrelated
[4] on the latticd 6—10], an analogous nonperturbative com- with the specific realization of Eq.l) in another domain
putation for the self-dual homogeneous background has naonfiguration. The idea of domains in the QCD vacuum was
been attempted. Nonetheless, with the assumption that thdiscussed in application to various homogeneous fields
effective potential for a self-dual homogeneous background2,13,14. In the effective meson Lagrangian|[df2] this idea
field has a nontrivial minimum and using just those quarkwas realized as the prescription that different quark loops
and gluon propagators which exhibit confinement in the(namely, those separated by the meson )inesa diagram
sense of entire functions, some successful phenomenologicalust be averaged over different configurations of the
investigations for S(B) have been carried oufll1,12.  vacuum field(1) independently of each other. In the present
Quantitatively, experimental data for the spectrum of light,paper we do not consider this problem, and only wish to note
heavy-light and heavy quarkonium systems can be reprahat the above formula for the contribution of stationary tra-

duced to within 10% in this effective description. jectories does not depend on directions and is the same for
In this work we concentrate on the problem of confine-both self-dual and anti-self-dual homogeneous fields.
ment and the effective potential for the @Jgauge theory. In the second instance, although we cannot compute the

Our goal is first to describe the confining properties of theeffective potential nonperturbatively, we nonetheless seek to
self-dual background field in the more familiar terms of theshow that at high temperature, where asymptotic freedom
Wilson picture[1]. Second, we seek to show that, even if weshould set in, the effective potential does actually acquire a
cannot prove the existence of a nontrivial minimum in theminimum at zero external field consistent with deconfine-
effective potential for this background field at zero temperaiment. This is not just a trivial consequence of perturbation
ture and strong coupling, nonetheless deconfinemehigat  theory. Lattice simulations have confirmed the picture that
temperaturecan occur. Namely, we will show that at high high-temperature Yang-Mills theory, though deconfined,
temperature the effective potential for a self-dual backgroundghows significant signals of nonperturbative structrs).
field acquires a minimum at zero field value. In order to account for some of these properties we have
In the first instance we illustrate the confining propertiesused the recent developments in temporal and axial type
of the self-dual homogeneous background by studying thgauges at finite extension or temperature by Lenz and co-
problem of heavy particles and anti-particles in this back-workers [16,17. Here a complete gauge fixing of Yang-
ground field. We thus examine the nonrelativistic limit. We Mills theory was formulated, accompanied by an integration
indeed find that a confining potential for static chargesout of certain zero mode fields which themselves are related
emerges: the stationary trajectories of particles and antintimately to the Polyakov loop order paramef&8] for the
particles in the background field) separated by distance confinement-deconfinement phase transition in pure Yang-
|X| and held apart for tim& are suppressed by a factor Mills theory. The integration out of these variables generates
for off-diagonal gluon fields a temperature dependent mass
_B? - M(T) which diverges with increasing temperatui, In
exr{ —'T@ X ) [16] it was checked that, despite the gluon mass, renormal-
ization at the one-loop order was standard, leading to the
wherey is the reduced mass of the two-particle system. Thi$Orrect one-loop beta function for $2) consistent with
result differs from that seen in most lattice simulations be-gauge invariance. Moreover, this mass was shown to be re-
cause of the different long-range properties of the field conlated to the string constant in a linearly confining potential.
sidered here as compared to those normally implemented ifough the actual mechanism for confinement in our study is
lattice gauge theory. The oscillator binding potential arisegluite independent of that ifi6], this gluon mass generation
here effectively due to an interaction of the charges with thdS Of crucial importance for us. It defines a scMe=M(T)
background field, but not by virtue of quantum gluon ex-In the running coupling constagi(M) so that at high tem-
change between these charges. The self-duality and homoge€rature the coupling is small. We are thus able to perform a
neity of the background field are of crucial importance. Thecontrolled calculation and find that at high temperature the
oscillator nonrelativistic potential is not inconsistent with the ffective potential takes the form
phenomenology of Regge trajectories in the hadronic spec-

trum since the latter is a feature of light quark systems. In the U(B?) = 2 n 2 ¢ +OBIME(T))
approach to the relativistic bound state problerild based eff ga(M) 52572 M*(T)

on the bosonization of the one-gluon exchange interaction

between quark currents in the presence of the vacuum field +O(g&(M))

(1) it is seen that the property that quark and gluon propaga-

tors be entire precisely gives rise to Regge behavior in lightwhich has a minimum at zero fieB=0. If non-zeroB can

quark systems. generate confinement at zero and low temperatures, then our
It is appropriate to mention here the evident fact that aresult shows that deconfinement at high temperature can oc-

vacuum field such as E@l) would lead to a breaking of the cur.

range of symmetries such &P, color and @3). A satisfac- In the following section we demonstrate that the self-dual

tory restoration of these symmetries at the hadronic scalbomogeneous field provides simultaneously for the Wilson
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confinement criterion and the property that propagators oblsing the proper time method the propagator can be repre-
off-diagonal (charged fields in a self-dual homogeneous sented in the form of a path integral over a one-dimensional
gauge field are entire functions. Following that we consideffield £ [19],

the high temperature limit in the effective potential. The pa- 5

per concludes with a summary of results and a discussion of i,y ~afzm’i2

the problem of computing the effective potential on the lat- S(x,y|B) = "Bty fo d“m f D¢

tice. Much of the detail of explicit calculations is relegated to

four appendixes.

@ 1. .
XeXP' - fo dT§[§2(T)+IS,L(T)BMSV(T)])
Il. SELF-DUAL HOMOGENEOUS FIELD

AND THE WILSON CRITERION (6)
To illustrate the relationship between confinement and thavith the boundary conditiong(0)=—(x—)/2, £&(a)=(x
property that Green's functions in gantiJself-dual back- —Y)/2, and the normalization
ground field are entire functions it suffices to consider a 2(r)
simple charged scalar field of masscoupled to the back- f D _ f‘“ L L (x—v)2/2
ground gauge fiel@,=B,,,x, defined by Eqs(1)—(3). The ¢exp — | dr—o—r=exp{—(x=y)"2a}.

relationship between this and the original Yang-Mills theory

can be understood as follows: by assumption, the effectivéet us first review the confining properties of these fields in
potential for the configuration, Eqé&l)—(3), exhibits a mini-  terms of the analytical properties of the propagator. It is in-
mum atB?#0 which itself is proportional to the fundamen- structive to consider first the case of arbitrary consiyy.

tal scale of the theory\ vy . By shifting the fields, we study ~Since the vectorsi + E (H;= €;;Bj/2, E;=B;,) are rotated
the coupling of small fluctuations to this non-vanishing back-independently of each other under Euclidea#)Qransfor-
ground. Thus thep-fields are those components of the gluonmations, the tensoB,,, can be put into the configuration
field which couple in the leading order to the background.Bg,=E, B;,=H, B;3=B;,=B,3=B,,=0, andH>0, —H

We are thus lead to the effective Lagrangian <E=H [2]. The path integral in Eq6) can be easily per-
" ) __— formed with the result
L(X)== ¢ (x){~[3,+iB,(X)]*+m7F(x), ,
1 Sxy|B =B blE] [*_dee
BIL:EBMVXV’ 24 1672 Jo sinHa)sinh|E|a)
- . . 1 2 2
and work, initially at least, in Euclidean space. Because we xexp — 7 H[(x1=y1) "+ (xa—y2)"]cotHa)
seek to approach the Wilson criterion, we consider the analo-
gous Green'’s function describing a particle-antiparticle loop. 1 ) )
Thus the object we are interested in is the four-point function - Z|E|[(X3—Y3) +(X4—Yya)?]coth(|E|a) .
G(x.yIB)=(:¢" () ¢(x)::0"(¥)b(y):)s This leads to a Fourier transform of the translation invariant
=S(x,y|B)S(y,XB). (4 Part
—m2a
The normal ordering is taken to exclude the disconnected ~S(p|B)=fx dae”"
diagram. The two-point functioB(x,y|B) is itself a solution o cosh{Ha)cosh|E|a)
to the equation L
2 2
{=[0,+1B,(x) ]2+ m2}S(x,y|B) = 5(x—y). XeXF’[ ~(Prtpo)tantHa)
The propagator in the external field transforms under trans- 2 9
lations (x—x+a, y—y+a) as B E(p3+p4)tanr(|E|a) ' @)
S(x,y|B)=€"*uBu/2S(x + a,y +a|B)e” "YeBpo2 2, When E is nonzero this function is finite for any complex

(5  p3+p2 andp3+p3 and thus is an entire analytical function.
WhenE =0 this representation exhibits a pole in the physical
region pﬁz—(p§+ m?+H), which corresponds to a free
propagation along the third axis with the energy equal to the
lowest Landau level of spinless particle. In ttle2) plane
the particle is confined.

Thus, forE+# 0, no physical particle corresponding to the
field ¢(x) can appear in the spectrum. The charged particles
=G((x—y)/2(y—x)/2|B)=W(x—y|B). are, in other words, confined. However, as has been shown in

The Green’s function(4) is gauge invariant and, hence,
translation invariant. By means of transformati() with
a=—(x+y)/2 we rewrite the functior(4) in a manifestly
translation invariant form

G(x,y|B)=G(x+a,y+a|B)
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[2], such an Abelian constant field is unstable against smaltonsequence of the translation invariance of the fundtibn
quantum fluctuationsxcept in the case that it is self-dual or After continuation to physical timér=iT,B=it) the result
antiself-dual H=B, E=*B. In the following, we concen- for W is

trate precisely on this configuration. In this case &g takes

the simple form t=tanhB«)] W()?—)?,TlB)oce*Z‘mTf oF exp[idetL(r”(t))],
0

1 (1 [1—t\m728 p2
S n2R)= — - .
S(p7B) Bfodt 1+t eXp[ Bt] ® pi2 1. .1
L—T+Zr[rXB]—@(rB) ,

which represents an entire function in the comgiéxplane.
A special case is that oh=0: the Fourier transform of the WhereM:m/Z is the reduced mass of the tWO_partide sys-

massless propagator turns out to be tem. One sees that the conjugate momentum and the Hamil-
_— 2B tonian are
S(p?IB)|m—o=(1—€"P"®)/p~. ©)
.1 N
This is manifestly an entire analytical function in the com- p=ur+ 4 [FXB]

plex p?-plane: the apparent massless polg%t0 simply

cancels out, illustrating most cleanly the confinement prop- 21 1
erty. As a matter of fact, entire propagators mean that the H=_-———-—— §[FxB]+ =—[2B2+3(B)?],
guantum field theory is nonlocal. It should be noted here that 2p A 32

at the axiomatic level nonlocal quantum field theory was (12)

successfully constructed some time 4§6-23. In particu- g that the functiohV can be reexpressed as a phase-space

lar, causality and unitarity of th&matrix were proved, a ,nctional integral,

procedure for canonical quantization of nonlocal field theo-

ries was constructed and, recently, Froissart type bounds ay(x—y,T|B)

cross-sections at high energy were obtaifad]. But to ;

summarize this brief review of known results for constant —oimT N . N

fields, we can say that confinement in the sense of entire *€ J Drbp exp[ _'Jo dt[H(r,p)—p~r]}. (12)

propagators is a property of any Euclidean Abelian constant

field configuration with non-zero magnetindelectric com-  Equations(11) and (12) show that the massive charged par-

ponents, but théanti-)self-dual case is distinguished by be- ticle and anti-particle in the external self-dual field are

ing stable against quantum fluctuations. bounded by an oscillator potential. Now, consistent with
To see how this property can relate to the Wilson crite-Wilson[1], we extract from the path integral the contribution

rion, we now approach the problem of static charges. Weo the phase space of the stationary traject@ry 0, =X

consider heavy particles, witn>>B. In this limit Eq. (6) —vy|). Equation(11) indicates that this trajectory corresponds
can be represented in the form of a quantum mechanical patb uniform circular movement of the particle-antiparticle pair
integral (see Appendix A on a circle with radiugx—y]| in the plane perpendicular to

T the direction of fieldB. We find that the contribution is
S(X’y|B)OcefmTf D7 exp[ — J'O dBL(ﬂ(ﬁ))], (100  exponentially suppressed,

_ B 2)
where ex;{ iT 32M(X Nk (13

L_m_772_'_ Bl 7 9]+i( 5 E)2 The Wilson criterion for confinement is indeed satisfied.

2 2 CLIR T o VR However, here we have a “volume law” rather than an area

law. The relationship between this result and that in standard

T=X4—VY4, 7(0)=—(X—Y)/2, lattice gauge theory will be discussed in the final section. For
now, we stress that the confining potential has appeared due

7(T)=(X—Yy)/2. to the background field, and not due to an interaction be-

tween particles via gauge boson exchange. Such effects will

Here, E;=B,; is the electric component of the tend8,,,  generate additional potential terms to the Hamiltonian, and
and B;=— %GijkBjk is the magnetic component. We will Wwill thus affect the energy spectrum of the system. But gauge

implement the(anti-self-duality conditionE; = = B; below. ~boson exchange will not change the basic confining proper-

For the present, we insert the representatidh into Eq.(4),  ties of the background field. .

introduce the center of mass coordinakes (7;+ 7,)/2, F _ Thl_s picture of bound state forr_natlon seems strange at
.. = - N N N, _’ first sight. However, an analogy with the quantum d@s

=7~ 72, R(O)=R(T)=0,7(0)=-r(T)=y—X, and inte-  ,nificial atoms of solid state physics can be recogniZed].

grate out the center of mass coordinReThe integral over  Quantum dots are quasi-zero-dimensional electron systems

R obviously does not depend enandy, which is simply a  in semiconductor nanostructures in which three-dimensional
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confinement of small numbers of electrons is achieved by a 94A%(Xx)=0 (14)
combination of band offsets and electrostatic means. The
simplest model Hamiltonian for the few-electron quantumfollowed by a diagonalization of the surviving zero mode
dot was obtained by solving the Schinger and Poisson a3(x)72=(1/8) [5A3(x) 72dx,. This gauge is a special case
equations self-consistently within the Hartree approximatiorof the static temporal gauge. Here one encounters the prob-
[25]. It was found that the oscillator confining potential haslem of the nontrivial Haar measure in the functional integral
nearly circular symmetry. The difference in our case is thequantization of the theor§27]. Concomitantly, the diagonal-
origin of the confining potential. The Hamiltonidd1) has jzed variablead®Yx) is compact. The functional integral over
appeared due to the background gauge field which may arisgjs variable is thus non-Gaussian. Progress on the computa-
in the vacuum as a result of gluon self-interactions. tion of this integral for SWR2) Yang-Mills theory was made

In QCD, this picture of confinement and bound state for-recently in[16] wherein, using a lattice regularization, it was
mation in the static quark limit will be basically the same. ghown that the integration out aﬂiag(i) leads to an effective
Thus Egs.(11),(12) give illustrative insight into the basic ation for the remaining degrees of freedom. In the absence
nature of confinement provided for by the self-dual field. Buty¢ external fields, the key features of this effective theory
as Eq.(9) indicates, the significance of the property of en-\are that off-diagonal, namely charged, components of the
tireness of Green’s functions as a characterization of confine@uon fields acquired a temperature dependent Va&E).

ment app_ligs to dynamical fields and thus is relevant to t,h%econd, the boundary conditions xg of these fields were
fully relativistic bound state spectrum of QCD, the phys"changed from periodic to antiperiodic.

cally relevant problem. Thus the qualitative basis for inves-  \ye rederive this effective theory in Appendix B, and
tigation into the impact of confinement on the relativistic g,q\y that the presence of the self-dual background field does
bound state spectrum are equations like E8sand(9), 8t force major modifications. In particular, a rigorous result
has been carried out {112]. Here an effective meson theory ¢, ihe mass, expected to be valid at low but non-zero tem-

based on the bosonization of nonlocal quark currents h eratureg16,17), is reproduced even in the presence of the

been developgd. The background field has been f[algen iNmogeneous field, namely,
account both in quark and gluon propagators. Within this
effective theory the ground and excited state spectra of light, M(T)=+(72/3-2)T. (15)
heavy-light mesons and heavy quarkonia have been calcu-
lated, with the only parameters being quark masses, thim [17] it was argued that stability with respect to chromo-
background field strength and the gauge coupling constantnagnetic fluctuations means that the mass term in the decon-
Agreement with experimental data is obtained to withinfined phase should take the form
10%. Regge behavior within this approach is recovered pre-
cisely by the fact that gluon and quark propagators are entire
functions. The relationship between this mechanism of con-
finement and flavor chiral symmetry breaking is analyzed in
[11]. where g(T) is the perturbative running coupling constant.
Having explored again the confining properties of theThe important consequence of this result is that at high tem-
self-dual homogeneous background field in QCD, we nowperature the mass itself diverges but the r&fi¢T)/T van-
turn to the problem of the effective potential for this field atishes in this limit. This latter property is sufficient to guar-
finite temperature and the question of deconfinement. antee the recovery of the Stefan-Boltzmann law in the high-
temperature regime.
Now we consider the self-dual external field and choose it
IIl. SELF-DUAL FIELD AND FINITE TEMPERATURE to point in the same color direction a§+®. It is important to

In this section we compute the one-loop effective poteni10te that this corresponds to a distinct physical choice since
tial for the self-dual background field at finite temperature ingauge freedom does not allow boBj,7* and a37* to be
SU(2) Yang-Mills theory. This enables us to study its pres-Simultaneously diagonal.
ence or absence at high temperatures where perturbation We come to the question of the gluonic boundary condi-
theory should become reliable. tions. Here care is required as, unlike the chromomagnetic

Since we are already in Euclidean space in order to definghoice [4,26,17, the self-dual field involves a component
the self-dual field, it is convenient to introduce finite tem- pointing in the, now compact, time direction. We are there-
peratureT by working in the imaginary time formalism. The fore no longer free to impose the usual periodic boundary
X, direction is now a finite interval of lengtig=1/T and  condition. Instead, the choice must be consistent now with
boundary conditions must be imposed on the gluon fieldsparallel transport in the presence of an external field. Specifi-
which we shall come to below. We work in a completely cally, the appropriate boundary condition in the spatial direc-
gauge-fixed formalism within which we will introduce the tionsX is the usual vanishing one. For the directionwhich
external field. At zero temperature, the background gauge i finite, x,€[0,8], one usually chooses periodic boundary
most convenient. However, in the present case, the breakirgpnditions in the absence of external fields. This can be rep-
of manifest Lorentz invariancéy the heat bathsuggests resented in the form
that the temporalaxial) gauge is a natural gauge choice. 3,58 . a .

Specifically, we choose eP AL (X4, X) = AL (X4,X). (17)

11
M(T)= ETgZ(T), T—o0, (16)
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In the presence of an external fielB:}} the natural generali- one-loop after the normalization at zero fiell=0. Drop-
zation of this for the fluctuating gauge fiel@¥, is obtained ~ ping terms in the Lagrangian higher than quadratic in the
via parallel transport, namely, fluctuating fieIdsQiA, we can extract fronCy,, the follow-
ing piece relevant for the one-loop effective potential:
(e#P4)30QP (x4,%) = Q3 (X4, X)

1
DaP= 5207, — £320B, . L=~ EQEA(X)[_ (VHABS,; +MA(T) 5B+ (D;D;)"P
1
1o +2B;;6*1QF(x) (23
This boundary condition will, in the simplest way, preserve
the periodicity of observable, gauge invariant quantities. WevhereV2=D2+D?2. The quadratic operator in E(23) has
shall refer to this position-dependent twisted boundary conzero modes for the cadd =0 which are called chromons
dition asquasiperiodic When the considerations of Appen- [2]. A correct calculation of the chromon contribution to the
dix B are carried out and the zero mode of flectuating  effective potential at zero temperature requires an extension

gauge field,qiiag, is integrated out, Eq(18) becomes a of the one-loop approximation: an interacti¢or mixing)

guasiantiperiodic boundary condition between zero modes and normal modes has to be taken into
account. However, we take the temperature to be sufficiently
(ePP4)3QP (x4,%) = — Q%(X4,X). (190 large so thaM?(T) is correspondingly large comparedBo

LargeM means that the contribution of chromons is regular
To summarize what will be important then for the following at one-loop order so that the mixing between them and nor-
calculation, there are two key features: first, that boundarynal modes can be neglected. The one-loop effective poten-
conditions are modified to being quasi-antiperiodic, and sectial is thus given by
ond that the off-diagonal gluon components have a tempera-
ture dependent ma$4(T) which diverges a3 increases. It B | —V25,;+D;D;—2iB;; + M*(T) §;
is precisely this which gives us a well-controlled high tem- eﬁ_g_g+ VB Trin — 3?8+ 9d + M?(T) 8y
perature regime specified B> A gy () and B<TZ2. (24)
To calculate the effective potential now, it is convenient
to bring the field-strength tensor to the foftaking the field Here B%/g3 comes from the classical action wit is the
B to be directed along the third spatial axis bare coupling constant. The effective potential can be rewrit-
ten in the form

82

0O -B O 0 ) .

B 0 0 0 U B J' d x (B dx,

eff =2 EVE X

(Buw)pv=12,34 0 o 0 +B|" (20 9% JvV Jo B
0 0 ¥B © ><jMZ(T)dmZ[Dﬁ(X,X|B,m)—Dﬁ(x,x|0,m)]_ (25)

where the uppe(lower) sign corresponds to the self-dual
(anti-self-dual field. The effective potential is defined in the W& have to calculate the ftrace of the propagator

usual way using the functional integral: Df(x,y|B,m) satisfying quasi-antiperiodic boundary condi-
tions, Eq.(19):
Z=NJ DQ exp{ f d*XLe Q' Q7 BL] Dfj(xs+ B.%1y|B,m) =~ Dff (x4 %1y|B,m)exd —i BB4(X)].
=exp{—BVUex(B,8,9)} (2D DE(xys+B.Y|B.m)=—DE(x;ys,Y]B,mexdi BB4(Y)].
(26)

where i,j,k,1=1,2,3, A,B=1,2 denote spatial and off-
diagonal field components for gluons respectivélyis the ~ This can be implemented by first solving for the Green's
three-dimensional spatial volume, and, as derived in Appenfunction A;;(x|B,m) relevant to the zero temperature or in-
dix B, the effective Lagrangian can be written as finite volume and then building up the Green’s function sat-
isfying the finite temperature boundary condition \=ee
A 3 03 1, AA also[28] and references thergin
Ler Qi ,Q; !Bu]ZEYM[QMvBM]|Q4:0_§M (MQIQy,

(22

o

Dﬁ(x:le,m>=nZ (—1)"Aj;(X4— Y4+ NB;X—y|B,m)

with Ly, the standard Yang-Mills action. The functional

integral is defined on the space of quasi-antiperiodic fields i [ L.
satisfying Eq.(19). The normalization in Eq(21) is chosen xex%zxMBwyﬁ >NBBA(X+Y) |. (27)
so thatU¢4(0,8,9)=0. To the action, a gauge-fixing term

involving the neutral zero mode quons,QiS(i) It should be stressed that H&7) implies the existence of an
=(1/,8)fgdx4Qi3(x), can be added, but which decouples atorthogonal complete set of eigenfunctions of the oper&for

014026-6
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satisfying the quasi-antiperiodic boundary conditions. The

existence of such a set of functions is demonstrated in ApU>= —

pendix C.
The infinite volume or zero temperature Green’s function
Ajj is a solution to the equation

[(_V2+ m2)5”+D|D1_2|B|J]A]k(x|8,m):5lk5(x)
(2

A complete solution of this system of equations is quite
involved, but the trace of the propagator is tractable as |s
shown in Appendix D. One comment is in order though: theYs=
summation oven in the space-time trace of E(R7) is sup-
pressed in the infinite volume limit—c due to the electric
field component of the self-dual field. So in fact the only
relevant contribution of Eq(27) to the effective potential
(25) is that fromn=0. Using this fact and resul{®©5) and
(D2) derived in Appendix D, we arrive at the relation

PHYSICAL REVIEW D 59 014026

B2 jfw dsdt M? "
272 ) ), Fern SR T B stY
{ s> 2 sinh(2s)—coths[1+ 2 costi2s)]

sink s Ji+t coths

3 ts?
i Vs(s+t) - 2(s+1)\s(s+t) ] ’

JJJ (Si(:ftt) "(_MFZ(S“H)

X{[sinh(s+r)] ¥ sinn(s+r)+1t costis—r)] 17

—(s+r) " ¥(s+r+t)" Y2, (32

The functionsJ;, U, andU 5 correspond to ultraviolet finite
contributions of the three terms in ER9). The renormal-

ized coupling constarg3 runs with the scale defined by the
A;i(0[B,m) massM =M(T) and is

=2 |F

k(X x)—J d*zF(z,X)DE(X)A4(x,2)

+2sz d4zJ’ d*z'Fo(x,2)A4(2,2" )Fo(Z',X), (29)

1 1

9

9i

= ds
1—b0f —eMZS), (33)
s S

where we have use@auge invariantSchwinger regulariza-
tion. The renormalization procedure we use corresponds to

the zero momentum subtraction scheme. Taking the param-
where eters,— 0 generates the ultraviolet divergence. The constant
by is nothing but the coefficient of the beta function to low-

i
Fk(X,y):eXp(EXMBHVyV) 1672 J sint(Br)

1
xex;{ —m2r+2B&r — Z(x—y)zB Cotr(Br)},

the three terms in Eq29) which give forU", Ug¥ andug”

B2 JOC dr est order. Its value arises as a sum of the divergent parts of
contributions 3/16, 1/48 and 1/4, respectively, so that

bo=11/24

correctly arises. That we get this is another check on the
1 = dt consistency of our formalism. In particular, by renormalizing
Ay(x,2)= _5<3>()z_z)f _ in this way we have combined th@&(B?) quantum correc-
2\m tions with the classical term, so that the next corrections

24— Xg)% i _
xexp{—mzt——( 44t4 —5(Za=xa)ByX!|.

(30

According to Egs(25), (29) and(30), the effective poten-
tial can be expressed as the combination

BZ

eit(B%) = gR(M)+U1(B)+Uz(52)+U3(BZ) 31)

Uei(B?) =

begin atO(B%).
We thus obtain our final result for the effective potential
at high temperature:

2 2 4

&M + 5552 MA(T) +O(B8/ME(T))

+O(ga(M)). (34)

Since asT—», M(T)—o, we havegr(M)<1, and our
calculation is reliable in this regime. So the effective poten-

tial acquires a minimum at zero value of the external field.
where The background field switches off at high temperature, and
we can characterize the high temperature phase as exhibiting

U B? Jocds M?2
17 16m2 o PR

2
x( sinsh? [1+2 coshj25)]—352—3},
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IV. DISCUSSION

The central results of this work are expressed in Egs.
(13),(34). From these we understand that if confinement is



EFIMOV, KALLONIATIS, AND NEDELKO PHYSICAL REVIEW D 59 014026

due to fields in the QCD vacuum which are long-rarilge- Un,M:eXp[iaAM(a“)} eSU(2), Vn,u, (36)
mogeneous in our cagand satisfy self-duality or anti-self-

duality, then this is in conflict neither with the Wilson crite- the link variable, andU is a functional Haar measure. The
rion for static quark systems nor with the natural expectationattice spacing is.. Link variables are functions af and are
that with increasing temperature there is a transition fromsubject to some boundary conditions. They thus belong to
confinement to deconfinement. It will be immediately no-some functional spack. Usually, with N representing the
ticed that we have not obtained a linear heavy quark potersize of the lattice in a given direction, periodic boundary
tial as has been observed in lattice simulations. The reasafonditions

for this discrepancy is straightforward: lattice calculations

normally implement periodic boundary conditions from the Uning=Un

very outset. As shall be repeatedly seen in the following, the

existence of fields non-vanishing at infinity entails significantare imposed in order to implement the translation invariance
problems for incorporation on the lattice due to the quasi-of the theory in the thermodynamic limit. However, the field
periodic boundary conditions. It seems that there is stron@®,(an)=aB,,n, is evidently not translation-invariant. In
evidence that lattice calculations of the heavy quark potentigbrinciple, there are two ways to proceed, both of which have
have quite correctlynot seen a quadratic potential becausebeen used in applications to the Savvidy chromomagnetic
the effects of the vacuum field we consider have not beeackground4]. The first choice is to force the long range
built in. How to build these effects in is a problem we dis- modes to be simply periodic on the lattice. This can be done
cuss below. by “quantization” of the field strengti6—§]

On the other hand, the self-dual field, at least at the level
of the lowest order propagators in this background, does not
immediately account for all aspects of confinement: diagonal
gluons in SUWY2) have poles in the propagator and this is a

consequence of the fact that they do not couple directly tquhere the matrix elements,, are integers. This certainly
the diagonal background configuration. As mentioned in thgyrovides for periodicity of the corresponding link variable,
Introduction, the simple self-dual homogeneous configurapyt rewriting Eq.(37) as

tion is not the entire story, and there is room for local effects

which can complete the picture of confinement. The vacuum v

field breaks spontaneoustyP, color and @3) symmetries. Bu,=2m_» L=aN,

There is a continuum of degenerate vacua corresponding to

different directions of the vacuum field. This implig209] the 4 going to the thermodynamid {>%) continuum &
existence of soliton-like field configurations under the homo-_, oy Jjimit one obtains

geneous background field, which could play the role of to-

pologically nontrivial local defects in the QCD vacuum such B =27b. /C. 0<C<o

as domain walls. In the absence of explicit solutions we can r ro ’

only speculate on the robustness of our results against inCligp that the field strength is discretized into multiples of
sion of such effects. But insofar as the confining propertie® /c even in the continuum thermodynamic linore-
of the self-dual homogeneous field depend only on theyer, the constart itself depends on our choice of limiting
strength of the field and not the directiin real and internal  prescription. These outcomes render this approach rather un-
spacg, it seems plausible that domains distinguished only byappealing. A second approach is to change boundary condi-
changes in direction will not disrupt the confinement we ob-tjons. Free boundary conditions have been advocated in the
serve. . ) approach of the authors $10] who apply it to the lattice
However, all of this rests on the assumption that at zerqajculation of the effective potential for the chromomagnetic
and low temperatures the effective potential for this back+ie|d in three-dimensional S@) theory.
groun_d has a minimum at non-zero fleld_value and there ISNO |n our case, Eq(18) suggests the following generalization
substitute for a genuine nonperturbative calculation. Th&gy |ink variables. We decompose the general fiéjdin Eq.

only realistic choice for this is the formalism of lattice QCD. (36) into a long range parB, and the fluctuationQ,, :

We thus discuss now in some detail the problems to be cor (an)=Q,(an)+aB,n,7f%2,2=1.  Quasi-periodic
o I uvi v ’ :

fronted with setting up the calculation on the lattice andyoyndary conditions for the fieldd can be generalized from
some insights our preliminary investigation into this offers. Eg. (18) to all directions now,

The essential question we need to answer is what the con-
tribution of the homogeneous field configuration, EY, is Q,(a(n+N))=e"MQ (n)e~ WM
i ; : . " Iz ’
to the partition function of lattice S(2) gauge theory:

Dy
azBW=27T |<IL , (37)

w(n)=a®N,B,gngr2f2/2. (39
Z=J DU exp —S U]} (35 ) . . . .
u Thus the following transformation of link variables is gener-
ated:
Here, S is now the standard Wilson action attlis short- _ _
hand for Unsn,=eYMU, e Wnewm, (39

014026-8
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This has the structure of a gauge transformation. Thusrastic difference in the results $10] (some evidence of

gauge-invariant quantities such as the action are invarianhontrivial minimum with free boundary conditions and con-
An integral in Eq.(35) includes an integration over all pos- tinuous field and[6,7] (minimum at zero field strength with

sible values of the strength tend®y,, and, hence, all values periodic boundary conditions and “quantized” field
of w(n); thus, the boundary condition88) and (39) are  strength seems unsurprising.

actually free, consistent with0]. It would be instructive to give an example illustrating that
The most direct step next is to formulate the effectiveinclusion of the homogeneous fields into the lattice integral
potential as the lattice functional integral allows the existence of an order parameter that is not gauge

invariant. Let us consider the integral ovgrand G which
includes now homogeneous fields and gauge functions of the

JuQDU e —SU-V]} form (38). If we put

with V denoting a link variable generated by the background F(U9)=Im U} .
field, . .
whereU, ,, is a plaquette variable, and choose the source
V, M=exp{iazBM,,n,,rbfb/2}, term in the form
and wherell, is now the space of quasiperiodic functions. 3119 _
HereB,, andf? are external and particular directions in the n%,, Jup THIM 7Un sy =coNSt,

color and Euclidean space can be fixed. The actual problem

is to find an appropriate representation of the measure of thiéen the inequality41) is not uniform inN for all field and

integral such that the exclusion of the given background fieldjauge functions: ifU, ,, contains the long range fields

is manifest. a?B,,,n,f°7°/2 and the gauge transformation corresponds to
The consequence of the gauge functimin) in Egs. w(n)=a2NaB;Bnﬁf’brb/2, then one gets, for the source

(38),(39) being nonzero over the whole lattice is that all de-term,

grees of freedom are affected by the gauge transformation.

Thus inclusion of covariantly constant field configurations in Cio(n) _3io(n _ b b

the space of integratial in Eq. (35) means actually that the n%:V o Trim e e expf —ia®B,,, f* 7%}

space of allowed gauge functions cannot be restricted to the

class of functions with local support. A significant conse- :_22 3 sin(azBW)

guence of this is that Elitzur’'s theorem which forbids spon- ey
taneous breakdown of local gauge symme89@] does not 5 aeberh <3 )
apply to this situation. This theorem concerns the integral X[£3—2(f'3t°F'P—13)sinP(a®N B, sn4/2)].
Let for simplicity B;3=B;,=Bj;=B,,=0, B;,=B3,=B’,
J'"’T:) ’\|I'm <F(U)>N,J_J“mo h'j'm ZN,JLDULDQF(UQ) andN;=N,=Nz;=N,=N. Using the summation formulas
N
_ g
xexp{— S U]+ IV, (40 > sirA(nx)=N/2—cogN+1)x sin Nx/2 sinx,

where F(U) is gauge noninvariant, and is an external "
source which breaks gauge invariance. The order of limits is N
important. The theorem states that if gauge transformations 2 cog(nx)=N/2+cogN+1)x sin Nx/2 sinXx,
are local—namely that they act on a finiiedependent of n=1
N) number of degrees of freedom—then for sufficiently

N
small sourcedJ||< e the following inequality holds:

2 ) e N+1 = Nx X
P sin(nx)=sin 5 X sin 5 cosecz,

|exp{JUT}—1|<7(e), (41)

one gets, in the limiN ,
with 7(e) being independent dff and vanishing as goes to g -

zero. Periodicity of the functions i/ is implicit. N
As has been argued above, both conditions exclude cova- >, sirf[a?B’'N(n;—n,+nNnz—ny,)/2]
riantly constant field configurations which are long range" "2:"3:N4=0
modes that can produce symmetry breaking. Periodic bound- N
ary conditions and locality of gauge functions are in conflict = _— > (sir?[a?B'N(nz—n,—n,)/2]

with a self-consistent incorporation of these modes in the 2 ny,ng.ns=0

lattice functional integral. The choice of free boundary con- 20 o 3
ditions for i/ and, in particular, the presence ¢hof gauge +cosa’B/N(ng—na—ny)/2]}+O(N?)
transformations which can act on all degrees of freedom re-  =N4/2+ O(N3).

sults in nonuniformity in the functiory in lattice sizeN, so

that JU becomes an extensive quantity. In view of this, theThus for the source term we arrive at the result

014026-9
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4 res J3eberb o 5 Then the propagator takes the form
— N*(4f3—2 f'3fbf )% J,, sinaB,,)+O(N?),

S(X,y| B)oc dese—mT/Z(s+l/S)/2jDﬁ

which shows that the gauge dependent part of the source 0

term JU is an extensive quantity, and the order of limits
—0 andN—« cannot be interchanged. (T
: . . Xex dg
It should be stressed that this example in no way violates 0
Elitzur's theorem, but just underlines that its conditions are

too restrictive for a self-consistent incorporation of homoge- N 1 ()
Sma2\E7

P

= " ome BL7X 7]
neous field configurations into the lattice functional integral 2(ms)? ? ]
(as mentioned also in the last referencd 3d]).

We repeat that the picture of confinement with a self-dualvhere we have omitted the phase factor and a constant in
homogeneous field can become reliable only with the inclufront of the integraL One can see that for~ or more
sion of domain structures in the vacuum such that the symprecisely for
metries broken by this field are restored at the hadronic level.

The boundaries of the domains should be describable by [X—V|
some solitonic classical configurations. As far as we are
aware, appropriate solutions are unknown. It thus remains a

problem to verify our considerations of the Wilson criterion and|B| ~ |E|<m? the integral oves can be evaluated using

and Elitzur's theorem in the presence of domains, though wg saddle-point approximation. The saddle-pointsis1;
have given plausibility arguments why our results might bepence we arrive at

unaffected. The conclusion is thus that there are two inter-

esting unsolved problems to be confronted which may be L B . T
significant for understanding QCD vacuum structure: a cal- S(X,y,T|B)=e mTJ’ D7 exp[ - fo dg
culation of the effective potential for the field, E@), in the

strong coupling limit, and a search for topologically non- i 1 .

trivial classical configurations in the background of a homo- — 5 Blaxn]+ ﬁ(EU)ZH- (A1)
geneous self-dual field.

<1

m .
)
277

Inserting this result into EqAL), we arrive at the represen-
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where the energy of the particle is
APPENDIX A: HEAVY MASS LIMIT mo?2
Below we derive Eq(10) starting with Eq.(6). In the E=m+ 2
integrand of Eq(6) let us integrate oveé,,
N -52( 7) APPENDIX B: STATIC TEMPORAL GAUGE
f D&, expl—f dr{ 42 +ig (T[EE(T)] ] AND SELF-DUAL FIELDS
0

Consider a fixed direction in color space such that the
129 e 1 .. phase of the gauge invariant Polyakov loop,
=e ex _fo d75[E&(7)] Tr P expig/Bdx,A57/2), is in the 7° direction. The back-
ground self-dual field is also chosen to point in the same
whereT=x,—Y, and we have changed variables color direction. Gauge transformations now used to fix the
gauge further may not change color axes.
An arbitrary gauge transformation on the gauge f'félg

Jms’ =A%7%/2 takes the form

-

a=T/ms, 7=8/ms i=

014026-10



CONFINING PROPERTIES OF THE HOMOGENEG. . . PHYSICAL REVIEW D 59 014026

~ ~ i pendent of the background fiel, (unlike in the back-
A,—UA, U+ aUﬂﬂUTEAM- (B1)  ground field gauge Inserting unity into the generating func-
tional we obtain

Under the decomposition ok, into backgroundB, and ,
fluctuating(s# parts we choose the separate pieces to trans-21B ]ZNJ DQ, DY FIQIIAF[Qlexp(—S[B+Q]).
form under “quantum’” gauge transformations: (B6)

B =UB u't Now we perform a gauge transformation of tyf82) to

" " bring Q9— Q. The measure and determinant are invariant, as
stated. To recover the same action, a corresponding rotation
of the background field must take place, as in BR). Be-
causeZ is ultimately a functional only of the gauge invariant
combinationB?, we recover again the sani& We may now
Since we have specified the direction of the backgroundabsorb the integratiof Dg into the normalization in the
BM:E,U«' usual way and obtain

We use the typéB2) to achieve a fixing of the gauge on
é#. These fields satisfy quasiperiodic boundary conditions, 2[82]sz DQ,JF[Q]]AL[Qlexp—§ B+Q]).

~ i
QM=UQMUT+§U<9MUT. (B2)

(e3D4)abQZ(x4,i)=QZ(X4,>?) The form of the determinant for the static temporal gauget is
well known. Using a lattice regularization for spaceit can
Dab— saby, — £3abp, (B3)  be written as
which must not be changed under gauge-fixing. THus, A[Q1=]T sirf{gBqs(%)/2]. (B8)
must be quasiperiodic. The tempor@xial) gaugeQ,=0 %

cannot be achieved with such a group element. The stat
temporal gaugé€14) followed by diagonalization of the zero
mode is however possible. Explicitly theé bringing an ar-

bitrary Q,, into this gauge is

L?he Jacobian is independent of the background component
B,. The zeros of the Jacobian indicate the appropriate range
of integration forq,, which in turn is seen in the symmetry
under transformationg/ at the classical level. The appropri-

s ate functional integral after implementing the delta func-

U[b]=e—igx4Q4T3/2 P ex;{igf dtb4(t,>€)) (B4) tionalis then
0

- | wep .
with q4=(1/,8)f§dtQ4. Since'QM is quasiperiodic, so too is B ]_NJ bRk fo Daa(R)sirt{9A0s(X)/2]

U. Thus are also quasiperiodic:eP4Q  (x4,X
:QM(X4,)3)_Q“ duasip Qulxe ) xexp—S[B+Qlrq-0)- (B9)
There are still two classes of gauge symmetry remaining
(1) TransformationsV(x)=exgigw’(x)7/2] with »3(x)
strictly periodic inx, can be fixed by introducing an extra
Lorentz-Coulomb gauge condition on the zero modes of th

This is still symmetric under th¥ transformation. Perform-
ing the Faddeev-Popov trick again with the Lorentz-
Coulomb gauge condition on the neutral zero mode fields

remaining neutral fields. As it is Abelian, this gauge fixing%nables fac.:torl'ng out gf this redundant gauge volumg. With
does not introduce Faddeev-Popov ghos:ts. The one-loop egje n_ormahzatlon/\_/ bemg_ done_ aB=0, t_he neutral field
fective potential considered in the main body receives ng ontributions to this fgnchonal mtggral will anyway cancel

oo ) . out. TheW symmetry is however fixed by restriction of the
contributions from these neutral field®) Transformations

- . . ; range of integration of|, .
W(x) —exp{(2|n7-rx4//5')73/2]_ cause a shift of @/g/3 in the We now show how the integral ovey can be performed.
zero mode of the fluctuating fielg, . These are relevant for :
We consider
what follows.
We now implement these considerations in the quantum
theory, using the Faddeev-Popov trick in the functional inte- f DQ,Dq, sinz(gﬁq4/2)exp{ —S+f d4xJQ].
gral. The Faddeev-Popov determinant is defined by (B10)

PP We integrate oveg, in a diagrammatic expansion in order to
Ar [Q]_f DgalF[Q]] (BS) derive an effective theory fa@; . Thus the field®Q; andB,,
appear only in external lines of the diagrams. This is a strong
with Q9 all configurations related by gauge transformationsyestriction on the allowed diagrams. The zero magle
Eq. (B2), to a representative configurati@h which satisfies couples only to charged gluons via the three- and four-point
F[Q]=0. The functionalF that selects this gauge is inde- vertices, and never to itself. The three-gluon vertex leads to a

014026-11
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04— two-charged-gluon vertex, while the four-point vertex The result, Eq(B15), guarantees that the mass term for the
gives (q4)%—charged-anticharged spatial gluons. Thischarged gluons is as derived pi6], namely Eq.(15).

means that the perturbation series in this functional integral We are thus led to an effective action after integration out
stops at one loop. Only three topologically distinct classes off g, which contains charged gluon fiel@g"? with a mass
diagrams are present and of these only one specific diagragiverging with increasing temperature but, in the presence of
gives a non-vanishing contribution as the lattice spacing is¢he self-dual field, quasi-antiperiodic boundary conditions.
taken zero after subtraction out of a pure infinite constantMoreover, the background field componeBj(x) is still
This leaves a mass term in the off-diagonal fields. Its form igpresent in the action in the usual terms where the orighjal
determined by the propagator for two fluctuating fieldswas located, but the field, has been successfully integrated

d4(X), namely, out.
(0[T(94(X)q4(¥))|0) APPENDIX C:  ORTHOGONALITY

_ fDQifDQ4(2)Sinz[g,Bq4(2)/2]e*50[B+Q]q4()-(’)q4(y>) AND COMPLETENESS RELATIONS

B IDQ,[Dq4(Z)sirP[gBq4(Z)/2]e SlBFQl In this section we derive the orthogonality and complete-

(B11) ness relations for the eigenfunctions of the Laplace operator
in the presence of the self-dual homogeneous field and the

with S, representing the action with the couplings betweerformulas for the propagator subject to quasi-antiperiodic

q4 and the remaining fields dropped. The unregularized fomp_oundary conditions. Let us recall first the solution to the
for this is eigenvalue problem at zero temperat[2¢5]:

L | = V20900 =N g(x),
SIB+Q1=5 | d%(BA(0+ (01T B+ 0u()] 1
5 V4(x)=[d,—iB,(X)]? B“:EB’”X”’
-2 | exavam | ST
2 in the space of functions vanishing at infinity. The operator

—V?2 can be represented in the form

=S[Q] (B12)
i -V?=2B(a},Q,,a,+1)
becauseV?B,=d;9;B4jX;=3diB,=0 and g,(X)—0 as|X|

—. We see that the arguments [df6] go through un- 1 /1 .11
changied: we sﬂn‘t, by half the fundamentz_al domais(X) aM:E<§BXM+&M , aﬂzﬁ<58x#—&ﬂ>,
—04(X)—m/gB=0qu(X) so that the Jacobian becomes a
cosine-squared and the boundary conditionsxjnof the [a,,al]=6
charged gluons acquire an extra term: they go from being prme e
quasi-periodic to quasntiperiodic. Next we discretizel Q= =(5,,+ib, )2
=1, with directional unit vector&, and dimensionless field pmy py ey
©7=080q,(X). We obtain, for the action, Q*Q*=Q*, Q"Q*=0, b,,=B,,/B.
I The matrix (b ,,) can be diagonalized by means of an ap-
(1) — N PR .. R MV
S 1el= 29°B 2ﬁ: g eil eivae™ 2¢+et @il propriate unitary transformatiod:

(B13) . ) .
UlibU=diag1,-1,1,-1), U'a=a, [a,,a]]=6,,,
Thus the weight factor appearing in the functional integral is
a1=(al+ia2)/\/2, a2=(al—iaz)/\f2,
o] I r
e %= cr(ﬁ) : (B14) az=(ag+iay)/v2, a,=(az—ia,)/v2.
r=0
) ) o ) The eigenvalue problem then takes the form
The functional integration in EqB11) can be done explic-

itly: 2B(ajar+ alas+ 1) P(xX)=Ni(x),
e 1 (a? | ith the soluti
(OT(@(X)8:(9))|0)= 5252 (;—2)5mx,my+o W)‘ Wi The soton
(B15) Mgk, = 2B(Kitka+1),

So also in the presence of the self-dual background field, the
correlator of the fluctuating part of Polyakov loops is ultralo-
cal, being proportional té¢®)(x—y) in the continuum limit.

1
P ook, = W(az)kl(al)k2¢0w3k4(x)
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B 1 1 Pi,k,(2,X)
- Tyka( kg —ZBx?|. A — _12 7
‘pOOkgkA 2 m(‘ll) (a3) eXF{ 2 X ) (z,X) k%:'z )\ilkz ,
(Cy
The_ orthogonality and completeness relations have the fol- Pklkz(Z,X): fw d4y¢k1k2(21y)¢|11k2(x.)/)
lowing form: —o
= Pie k(27— X)€2uBur/2, (C3

f_md4x ¢llk2k3k4(x) Pk, () = B k! Bicyk, Okgk, Sicyi . . o '
The completeness, for instance, is derived in the following
way:
> Bl X Pigioigh, () =(x—y).  (C2)
k1k2k3k4 17273% 1727374 o0 . +
[ a3 ooy dugey)
One sees from Eq$C1) that the spectrum d¥? is infinitely e kke

degenerate which is a consequence of the homogeneity of the B2
background field. To proceed further, it is advantageous to = 7— > Dk ) i ek (2)
introduce the eigenfunctiong, i (x,y): Kikaoksks
o (Blz)k3+k4 o
PRI (C RS xf_ Y i YiTY2) yay e P
koY) =572 & kgl Kyl
X(Va—iV)K3(Va—iv,)Ka = 2 ! (x) (2)=46(z—x) (CH
(Y1—iy2)"(y3—iya) B Pk ) Pk :
1%2R3R4
1
X exF( - ZBVZ) Pk (X) Then at finite the function
B 1 DA(xy)= X (—1)"A(Xe—YyatnBiX—Yy)
Tk Tk , 4 4 )
a,)"ay)™? =
_ﬂ_z m( 2) ( 4) n

i
1 i Xexp sx,B +inBB(X+Y C5
XEX[<—ZB(X—y)2+ EXMBwa ) p[z m ,uvyv :8 4( Y) ( )

is a solution to the equation
Now the degeneracy is parametrized by the continuous vari- a

abley. The functionggg(X,y) can be seen as a matrix ele- —V(x)DA(X,y) = 84(X,y)
ment of the projector onto the subspace spanned by the low-
est mode k;=k,=0). o
Making use of Eqs(C2), we arrive at the following equa- Sp(X,y)= 2 (—1)"8(X4— Y4+ nB)S(X—Y)
tions for the case of infinitg (zero temperatuje n=-—c

~VE0AY) = 8(x-y), xexp{ IEXMBWyV4—inBB4(>?+)7) :

= V2(X) i 1, (% Y) = Nk, Bre gk (X0 Y).
satisfying the boundary conditions
i : .
¢klk2(X:Y) = d’klkz(x_)’)eXp[ EXMB,uvyv} ’ DB(X4+,81X;V) = DB(X4 ,XQY)eXp{_ IIBB4(X)}1

© DA(X;y4+ B.Y) = —DP(x:y,,Y)expfi BB,4(Y)}
> | Ayl (6Y) i (2,Y) = (2= X),

kiky J —eo Here 5(x,y) is the &function on the linear spacé ; of
functionsf 4(x) obeying the boundary condition
4y, 4t —
fﬁxd X ik, (X:Y) Picricr (X,2) = 8y k! Sicykt Pool Y 2) - f (X4t B,X) = — f 5(X4,%)€XE —i BB4(X)}.

Together with Eq(C3), these define respectively the Green’s One can check that completeness is satisfied:
function and eigenfunctions for the operafef as well as p

completeness and orthogonality relations for the eigenfunc- fw RE f AV, 8.(x. V) f =f.(x
tions. The propagator can be decomposed into a sum over 0 | dYads(y)Ta(y) =150
projectors onto the subspaces corresponding to the different

eigen-numbers Moreover, the functions
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o then give
B, (%Y) = n;w (= 1)"¢ 1, (Xa— YatNBX—Y)

* + oo ﬁ
klgzo . d3yfo dy4¢ffk2(x,y) ¢/k31k2(z’y): 55(2,%),

i
Xexp[zxMBWvarinﬁBA()HV)
being the eigenfunctions Af%(x),

+wd3x de Bl (X,¥) P, (X,2)= 8.1 St DELY, 2)
V2006 (y) = A S () . . 4Pk, (X Y) 11, (X, 2) = i1, Syt B0l Y
N kqk\ M YT kg ko Pk kA Y

and satisfying the boundary condition so that they define an orthogonal complete basis for the
.. . _ R space® ;. The propagatob” can be decomposed over pro-
¢€1k2(x4+ ,B,ny) == ¢Elk2(x4 ,X)eXp{_ I IBB4(X)}’ jectors F
Pi.(2,X)
DA(zX)= 2>, —5—,
Kk Mok,

P (2= oy [“dysdrzy) bl 0y)
koo %0 L8, YAl BY) P, (XY

. i : s
:n;x (—1)n7?k1k2(z4—x4+ n,B,Z—i)exp[ EZMBWXV+|mﬁB4(z+x) .
(Co)

Taking into account the representation of the zero temperature propagator in terms of the projector operators WE€Sget Eq.
Let us show how the completeness of the set can be derived. We have to evaluate the integral

o0 oo

+ oo ﬂ + o B
3 Bt B _ 3
2. | ey [Caviatigon ot en= 3 | ay | oy,

ko=

X 2 (=D)L (Xa=Yat NBX=Y) by k(24— Yat MB,Z-Y)

n,m=—o

i i ) o o
xexp{ — §Xquyv+ EZMBWyV—|nBB4(x+y)+|m,BB4(z+y) .

After the change of integration variabjg=y,—ng we get, for the right hand side of this equation,

n,m=-—o -nB

* +oo * (1-n)g
PR f dy X (-pnm J dYabi i, (Xa= Y4, %= ¥) b, (Za— Y4+ (M=1)B,Z-)
1%2= -

[ i : -
><exp< — 5XuBu¥ it 52,Bu.y, +1(M=n) BBy(Z+Y)

Finally, shifting the variablen’=m—n in the sum and denoting,=z,+m’ 8 we arrive at

% 3

o o B I
S ey [lavstlonetgen- 3 com 3

kik,=0 J - m=-—o kikp=0

x| oy [ avidligon dgz iexsiim 88,2

= > (—1)m5(24—x4+mﬁ)5(2—>2)exp{I—z B, X, +imBB,(Z+X)

me 27KrTmy

=65(2,X).
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The orthogonality and decomposition of the propagator ovekVe now show that, for the calculation of the space-time trace
the projectors can be obtained in a similar way. of the propagator, we only need to know the functibhsL,
N andP in the neighborhood ak=0. Consider the integral

APPENDIX D: GLUON PROPAGATOR IN A SELF-DUAL 5
BACKGROUND FIELD IN THE TEMPORAL GAUGE 7}k: Jvdngo dx4Djﬁk(x,x|B,m),

We start with the function

i Which is con'gaine.d in Eq(24). With L3 the length of the
Dij(X,y|B,m)=Aij(X4—y4;i—)7|B.m)eXF<EXMBWYV) third space direction and using Eq&7),(20) we get
which is a solution of the equation Tj= fvd3xf:dx4nz_oc (—1)”Ajk(n,8;0|B,m)
[(—V?+M?)§;+D;D;—2iB;;]Dk(x,y|B,m) i

= 5, 8(x—Y) ><exp<1§nﬂBx3

in the limit of infinite 8. The functionA is then a solution to
the equation

[(—V2+M2)8;+ DD~ 2iB;; JA (X B,m) = 8, 5(x). =VPB| A(0:0/B,m)+4 lim

Lg—o

The matrixiBj; can be diagonalized by an appropriate uni- *
tary transformatiorl, so that we arrive at X 21 (—1)"Aj(nB;0[B,m)

i

[(=V2+m?) s+ DDy~ 2B8s&s]As(X|B,m) =5 8(x) (1
(D1) sin EnBLS,B
X—
with r,s,t{0,1,— 1} and ¢,=s the gluon spin projections nBL;B
onto the third spatial axis. Moreover,
=VB[Aj(0;0[B,m)+O(L3 '8 H)]. (D4)

r

V2=D;+D;D,, Ds=U{D;, D.=D;Uj.
Equation(D4) leads to the result that the terms witk: 0 do

We next decompose the propagator as not contribute to the effective potential. Further calculations
~ ~ ~, D=, can be simplified due to this property of the external field
Ars= 61sFs+DDgHs+i 60D gL +i 859D N+ 8,0 ¢oP. (1). The solution of Eqs(D3) depends on?, and the first

(D2)  order derivatives are proportional I«azugjxj or X,. If we
need the propagator only for—0, we can omit all terms
which contain the first order derivatives. Thus, in the limit
x—0, we have to solve the equations

Using this and the relations

[DZ.Ds]1=2iBoxDs, [D,,DiDs]=2B54Dy,
~ ~ - ~ (_VZ_ZB§s+mZ)Fs(X):5(X)y

[D4,Ds]=[D4,D¢]=iBds, [Do,Ds]=0,
(_D421+m2)Hs(X)+Fs(X):Oy

-D2 DD — D=
2 [~D?6,5+D/Bs~2B54,1D,=0, (= V2= 2Bé+ mP)L(X) =0,

we can rewrite Eq(D1) as a system of differential equations (— D§+ m?)N(x) =0,
for the functionsF, H, L, N, P:

_yv2 2 2 —
(_VZ_ZB§S+m2)FS(X):5(X), ( Ve+m )PS(X)+ZB HS(X) 0.

One can check the positive-definiteness of the spectrum of

iDoLs(X)+(—D3+m?)Hy(x) +Fs(x)=0, the operators £ D3+m?) and (—V?—2B&s+m?) in the
space of functions vanishing at infinity. This means that
—2iBD4Hy(x) + (= VZ=2B&+m?)Lg(x) =0, Ly(x)—0 and Ng(x)—0 for x—0. Finally one gets, for
small x?,

—iD{Ps(x)—2iBD4H¢(X)— (— D5+ m?)Ng(x) =0, F 0 =(— V2 2BE.4 mP)-L60),

; _ 2 U2 2 _
2iBD4[Lg(X) = Ng(X)]+2B“H(x)+(—=V +m)PS(X)(D% HS(X)=—(—D§+m2)‘1FS(X),
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P(x)=—2B2(—V2+m?) H{(x), the delta-function into the equations fél; and P and to
represent these functions as convolutions of the propagators
Fy, Fo and A4, where the latter is the Green’s function

corresponding to€ D2+ m?). These lead to the expressions
Using Egs.(D5) and (D2), we arrive at the relation29) Eq ?30) gto{Di+m) P

given in the main body of the paper. We have only to insert

L{(x)=0, Ng(x)=0. (D5)
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