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Confining properties of the homogeneous self-dual field and the effective potential
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Garii V. Efimov*
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia

Alex C. Kalloniatis†

Institut für Theoretische Physik III Universita¨t Erlangen–Nürnberg, Staudtstrasse 7 D-91058 Erlangen, Germany

Sergey N. Nedelko‡

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
and Institut für Theoretische Physik III Universita¨t Erlangen–Nürnberg, Staudtstrasse 7 D-91058 Erlangen, Germany

~Received 19 June 1998; published 3 December 1998!

We examine in non-Abelian gauge theory the heavy quark limit in the presence of the~anti-!self-dual
homogeneous background field and see that a confining potential emerges, consistent with the Wilson criterion,
although the potential is quadratic and not linear in the quark separation. This builds upon the well-known
feature that propagators in such a background field are entire functions. The way in which deconfinement can
occur at finite temperature is then studied in the static temporal gauge by calculation of the effective potential
at high temperature. Finally we discuss the problems to be surmounted in setting up the calculation of the
effective potential nonperturbatively on the lattice.@S0556-2821~99!00801-2#
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I. INTRODUCTION

Over the years, various characterizations have been
posed for ‘‘confinement,’’ the property that colored degre
of freedom are undetectable at present-day collider energ
Certainly, the Wilson criterion that static color sources ca
not be separated arbitrarily far apart@1# has lead to many
insights both into lattice simulations and into analytical c
culations. In particular, based on the Wilson criterion latt
simulations have established a confinement-deconfinem
phase transition at finite temperature. There are howeve
ternate characterizations for confinement which may be m
directly relevant for dynamical quarks and gluons, and wh
are based on the analytic properties of the nonperturba
quark or gluon propagators. In this paper, we shall focus
the suggestion that the absence of poles in the complex
ergy plane of field propagators is consistent with confi
ment of quarks and gluons, in other words that propaga
are entire functions. That this can be correctly described
‘‘confinement’’ is easy to see: the absence of poles me
that no colored degrees of freedom can appear in phys
asymptotic states. This characterization of confinement is
necessarily in conflict with the Wilson criterion. Indeed, o
of our aims will be to show that, in the static quark lim
entire quark propagators lead to the Wilson criterion.

A quite simple mechanism for rendering quark and glu
propagators entire in the complex energy plane is to app
homogeneous background gluon field which satisfies the
property that it be either self-dual or anti-self-dual. Such
background gauge field is characterized by
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Bm
a ~x!ta[

1

2
nataBmnxn ~1!

B̃mn5
1

2
emnrlBrl56Bmn ~2!

BmnBmr5B2dnr , B5const,

Bi j 52e i jkBk , Bj 456Bj . ~3!

The positive and negative signs in Eqs.~2!,~3! correspond,
respectively, to the self-dual and anti-self-dual cases.
color vectorna points in some fixed direction which can b
chosen such thatnata is diagonal;na picks out the Cartan
subalgebra of the color group. Various properties of this fi
in SU~2! gauge theory were investigated originally in@2,3#.
For example, in contradistinction to the chromomagne
background field@4# the self-dual background is stable
Moreover, it was observed that this field leads to entire fu
tions for the charged scalar field propagator. In the se
described above, then, this field can provide for confinem
of quarks and gluons. Diagonal components of the glu
field @such as SU~N! algebra elements# are not confined at
least at the level of the lowest order propagator in the ba
ground field. A self-dual homogeneous field is at least the
possible source for confinement in QCD if it can be sho
that such a field is a dominant configuration in the QC
functional integral.

This verification can come from a computation of the e
fective potential for the candidate background field and
demonstration that the potential has a minimum at a nonz
value for the background field. The effective potential w
calculated to one-loop in@2,5#. These results however wer
inconclusive in the sense that the quantum corrections to
©1998 The American Physical Society26-1
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potential were as large as the zeroth order classical term
our knowledge, despite several attempts to study the ef
tive potential for the Savvidy chromomagnetic backgrou
@4# on the lattice@6–10#, an analogous nonperturbative com
putation for the self-dual homogeneous background has
been attempted. Nonetheless, with the assumption tha
effective potential for a self-dual homogeneous backgro
field has a nontrivial minimum and using just those qua
and gluon propagators which exhibit confinement in
sense of entire functions, some successful phenomenolo
investigations for SU~3! have been carried out@11,12#.
Quantitatively, experimental data for the spectrum of lig
heavy-light and heavy quarkonium systems can be re
duced to within 10% in this effective description.

In this work we concentrate on the problem of confin
ment and the effective potential for the SU~2! gauge theory.
Our goal is first to describe the confining properties of
self-dual background field in the more familiar terms of t
Wilson picture@1#. Second, we seek to show that, even if w
cannot prove the existence of a nontrivial minimum in t
effective potential for this background field at zero tempe
ture and strong coupling, nonetheless deconfinement athigh
temperaturecan occur. Namely, we will show that at hig
temperature the effective potential for a self-dual backgro
field acquires a minimum at zero field value.

In the first instance we illustrate the confining propert
of the self-dual homogeneous background by studying
problem of heavy particles and anti-particles in this ba
ground field. We thus examine the nonrelativistic limit. W
indeed find that a confining potential for static charg
emerges: the stationary trajectories of particles and a
particles in the background field~1! separated by distanc
uXW u and held apart for timeT are suppressed by a factor

expS 2 iT
B2

32m
XW 2D ,

wherem is the reduced mass of the two-particle system. T
result differs from that seen in most lattice simulations b
cause of the different long-range properties of the field c
sidered here as compared to those normally implemente
lattice gauge theory. The oscillator binding potential aris
here effectively due to an interaction of the charges with
background field, but not by virtue of quantum gluon e
change between these charges. The self-duality and hom
neity of the background field are of crucial importance. T
oscillator nonrelativistic potential is not inconsistent with t
phenomenology of Regge trajectories in the hadronic sp
trum since the latter is a feature of light quark systems. In
approach to the relativistic bound state problem of@12# based
on the bosonization of the one-gluon exchange interac
between quark currents in the presence of the vacuum
~1! it is seen that the property that quark and gluon propa
tors be entire precisely gives rise to Regge behavior in lig
quark systems.

It is appropriate to mention here the evident fact tha
vacuum field such as Eq.~1! would lead to a breaking of the
range of symmetries such asCP, color and O~3!. A satisfac-
tory restoration of these symmetries at the hadronic s
01402
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assumes the inclusion of domain structures in the vacuum
a given domain the vacuum field has a specific direction
is either self-dual or anti-self-dual, but this is uncorrelat
with the specific realization of Eq.~1! in another domain
configuration. The idea of domains in the QCD vacuum w
discussed in application to various homogeneous fie
@2,13,14#. In the effective meson Lagrangian of@12# this idea
was realized as the prescription that different quark loo
~namely, those separated by the meson lines! in a diagram
must be averaged over different configurations of
vacuum field~1! independently of each other. In the prese
paper we do not consider this problem, and only wish to n
that the above formula for the contribution of stationary t
jectories does not depend on directions and is the same
both self-dual and anti-self-dual homogeneous fields.

In the second instance, although we cannot compute
effective potential nonperturbatively, we nonetheless see
show that at high temperature, where asymptotic freed
should set in, the effective potential does actually acquir
minimum at zero external field consistent with deconfin
ment. This is not just a trivial consequence of perturbat
theory. Lattice simulations have confirmed the picture t
high-temperature Yang-Mills theory, though deconfine
shows significant signals of nonperturbative structure@15#.
In order to account for some of these properties we h
used the recent developments in temporal and axial t
gauges at finite extension or temperature by Lenz and
workers @16,17#. Here a complete gauge fixing of Yang
Mills theory was formulated, accompanied by an integrat
out of certain zero mode fields which themselves are rela
intimately to the Polyakov loop order parameter@18# for the
confinement-deconfinement phase transition in pure Ya
Mills theory. The integration out of these variables genera
for off-diagonal gluon fields a temperature dependent m
M (T) which diverges with increasing temperature,T. In
@16# it was checked that, despite the gluon mass, renorm
ization at the one-loop order was standard, leading to
correct one-loop beta function for SU~2! consistent with
gauge invariance. Moreover, this mass was shown to be
lated to the string constant in a linearly confining potenti
Though the actual mechanism for confinement in our stud
quite independent of that in@16#, this gluon mass generatio
is of crucial importance for us. It defines a scaleM5M (T)
in the running coupling constantgR(M ) so that at high tem-
perature the coupling is small. We are thus able to perfor
controlled calculation and find that at high temperature
effective potential takes the form

Ueff~B2!5
B2

gR
2~M !

1
29

525p2

B4

M4~T!
1O„B6/M8~T!…

1O„gR
2~M !…

which has a minimum at zero fieldB50. If non-zeroB can
generate confinement at zero and low temperatures, then
result shows that deconfinement at high temperature can
cur.

In the following section we demonstrate that the self-d
homogeneous field provides simultaneously for the Wils
6-2
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CONFINING PROPERTIES OF THE HOMOGENEOUS . . . PHYSICAL REVIEW D 59 014026
confinement criterion and the property that propagators
off-diagonal ~charged! fields in a self-dual homogeneou
gauge field are entire functions. Following that we consi
the high temperature limit in the effective potential. The p
per concludes with a summary of results and a discussio
the problem of computing the effective potential on the l
tice. Much of the detail of explicit calculations is relegated
four appendixes.

II. SELF-DUAL HOMOGENEOUS FIELD
AND THE WILSON CRITERION

To illustrate the relationship between confinement and
property that Green’s functions in an~anti-!self-dual back-
ground field are entire functions it suffices to conside
simple charged scalar field of massm coupled to the back-
ground gauge fieldBm5Bmnxn defined by Eqs.~1!–~3!. The
relationship between this and the original Yang-Mills theo
can be understood as follows: by assumption, the effec
potential for the configuration, Eqs.~1!–~3!, exhibits a mini-
mum atB2Þ0 which itself is proportional to the fundamen
tal scale of the theory,LYM . By shifting the fields, we study
the coupling of small fluctuations to this non-vanishing ba
ground. Thus thef-fields are those components of the glu
field which couple in the leading order to the backgroun
We are thus lead to the effective Lagrangian

L~x!52f†~x!$2@]m1 iBm~x!#21m2%f~x!,

Bm5
1

2
Bmnxn ,

and work, initially at least, in Euclidean space. Because
seek to approach the Wilson criterion, we consider the an
gous Green’s function describing a particle-antiparticle lo
Thus the object we are interested in is the four-point funct

G~x,yuB!5^:f†~x!f~x!::f†~y!f~y!:&B

5S~x,yuB!S~y,xuB!. ~4!

The normal ordering is taken to exclude the disconnec
diagram. The two-point functionS(x,yuB) is itself a solution
to the equation

$2@]m1 iBm~x!#21m2%S~x,yuB!5d~x2y!.

The propagator in the external field transforms under tra
lations ~x→x1a, y→y1a! as

S~x,yuB!5ei /2xmBmnan/2S~x1a,y1auB!e2 i /2yrBrsas/2.
~5!

The Green’s function~4! is gauge invariant and, henc
translation invariant. By means of transformation~5! with
a52(x1y)/2 we rewrite the function~4! in a manifestly
translation invariant form

G~x,yuB!5G~x1a,y1auB!

5G„~x2y!/2,~y2x!/2uB…5W~x2yuB!.
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Using the proper time method the propagator can be re
sented in the form of a path integral over a one-dimensio
field j @19#,

S~x,yuB!5ei /2xmBmnyn/2E
0

`

da
e2a/2m2/2

8p2a2 E Dj

3expH 2E
0

a

dt
1

2
@ j̇2~t!1 i j̇m~t!Bmnjn~t!#J

~6!

with the boundary conditionsj(0)52(x2y)/2, j(a)5(x
2y)/2, and the normalization

E Dj expH 2E
0

a

dt
j̇2~t!

2 J 5exp$2~x2y!2/2a%.

Let us first review the confining properties of these fields
terms of the analytical properties of the propagator. It is
structive to consider first the case of arbitrary constantBmn .
Since the vectorsHW 6EW ~Hi5e ik jBk j/2, Ei5Bi4! are rotated
independently of each other under Euclidean O~4! transfor-
mations, the tensorBmn can be put into the configuratio
B345E, B125H, B135B145B235B2450, and H.0, 2H
<E<H @2#. The path integral in Eq.~6! can be easily per-
formed with the result

S~x,yuB!5ei /2xmBmnyn/2
HuEu
16p2 E

0

` dae2m2a

sinh~Ha!sinh~ uEua!

3expH 2
1

4
H@~x12y1!21~x22y2!2#coth~Ha!

2
1

4
uEu@~x32y3!21~x42y4!2#coth~ uEua!J .

This leads to a Fourier transform of the translation invari
part:

S̃~puB!5E
0

` dae2m2a

cosh~Ha!cosh~ uEua!

3expH 2
1

H
~p1

21p2
2!tanh~Ha!

2
1

uEu ~p3
21p4

2!tanh~ uEua!J . ~7!

When E is nonzero this function is finite for any comple
p1

21p2
2 andp3

21p4
2 and thus is an entire analytical function

WhenE50 this representation exhibits a pole in the physi
region p4

252(p3
21m21H), which corresponds to a fre

propagation along the third axis with the energy equal to
lowest Landau level of spinless particle. In the~1-2! plane
the particle is confined.

Thus, forEÞ0, no physical particle corresponding to th
field f(x) can appear in the spectrum. The charged partic
are, in other words, confined. However, as has been show
6-3
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EFIMOV, KALLONIATIS, AND NEDELKO PHYSICAL REVIEW D 59 014026
@2#, such an Abelian constant field is unstable against sm
quantum fluctuationsexcept in the case that it is self-dual o
antiself-dual: H5B, E56B. In the following, we concen-
trate precisely on this configuration. In this case Eq.~7! takes
the simple form@ t5tanh(Ba)#

S̃~p2uB!5
1

B E
0

1

dtS 12t

11t D
m2/2B

expH 2
p2

B
tJ ~8!

which represents an entire function in the complexp2 plane.
A special case is that ofm50: the Fourier transform of the
massless propagator turns out to be

S̃~p2uB!um505~12e2p2/B!/p2. ~9!

This is manifestly an entire analytical function in the com
plex p2-plane: the apparent massless pole atp250 simply
cancels out, illustrating most cleanly the confinement pr
erty. As a matter of fact, entire propagators mean that
quantum field theory is nonlocal. It should be noted here t
at the axiomatic level nonlocal quantum field theory w
successfully constructed some time ago@20–22#. In particu-
lar, causality and unitarity of theS-matrix were proved, a
procedure for canonical quantization of nonlocal field the
ries was constructed and, recently, Froissart type bound
cross-sections at high energy were obtained@23#. But to
summarize this brief review of known results for consta
fields, we can say that confinement in the sense of en
propagators is a property of any Euclidean Abelian cons
field configuration with non-zero magneticandelectric com-
ponents, but the~anti-!self-dual case is distinguished by b
ing stable against quantum fluctuations.

To see how this property can relate to the Wilson cri
rion, we now approach the problem of static charges.
consider heavy particles, withm2@B. In this limit Eq. ~6!
can be represented in the form of a quantum mechanical
integral ~see Appendix A!

S~x,yuB!}e2mTE DhW expH 2E
0

T

dbL„h~b!…J , ~10!

where

L5
mhẆ 2

2
2

i

2
BW @hẆ 3hW #1

1

2m
~hW •EW !2,

T5x42y4 , hW ~0!52~xW2yW !/2,

hW ~T!5~xW2yW !/2.

Here,Ej5B4 j is the electric component of the tensorBmn ,

and Bi52 1
2 e i jkBjk is the magnetic component. We wi

implement the~anti-!self-duality conditionEj56Bj below.
For the present, we insert the representation~10! into Eq.~4!,
introduce the center of mass coordinatesRW 5(hW 11hW 2)/2, rW
5hW 12hW 2 , RW (0)5RW (T)50, rW(0)52rW(T)5yW2xW , and inte-
grate out the center of mass coordinateRW . The integral over
RW obviously does not depend onxW andyW , which is simply a
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consequence of the translation invariance of the functionW.
After continuation to physical time~T5 iT,b5 i t ! the result
for W is

W~xW2yW ,TuB!}e22imTE DrW expH i E
0

T

dtL„rW~ t !…J ,

L5
mrẆ2

2
1

1

4
rẆ@rW3BW #2

1

8m
~rWBW !2,

wherem5m/2 is the reduced mass of the two-particle sy
tem. One sees that the conjugate momentum and the Ha
tonian are

pW 5mrẆ1
1

4
@rW3BW #

H5
pW 2

2m
2

1

4m
pW @rW3BW #1

1

32m
@rW2BW 213~rWBW !2#,

~11!

and that the functionW can be reexpressed as a phase-sp
functional integral,

W~xW2yW ,TuB!

}e22imTE DrWDpW expH 2 i E
0

T

dt@H~rW,pW !2pW •rẆ#J . ~12!

Equations~11! and ~12! show that the massive charged pa
ticle and anti-particle in the external self-dual field a
bounded by an oscillator potential. Now, consistent w
Wilson @1#, we extract from the path integral the contributio
to the phase space of the stationary trajectory~pW 50,urWu5uxW
2yW u!. Equation~11! indicates that this trajectory correspon
to uniform circular movement of the particle-antiparticle pa
on a circle with radiusuxW2yW u in the plane perpendicular to
the direction of fieldBW . We find that the contribution is
exponentially suppressed,

expS 2 iT
B2

32m
~xW2yW !2D . ~13!

The Wilson criterion for confinement is indeed satisfie
However, here we have a ‘‘volume law’’ rather than an ar
law. The relationship between this result and that in stand
lattice gauge theory will be discussed in the final section.
now, we stress that the confining potential has appeared
to the background field, and not due to an interaction
tween particles via gauge boson exchange. Such effects
generate additional potential terms to the Hamiltonian, a
will thus affect the energy spectrum of the system. But gau
boson exchange will not change the basic confining prop
ties of the background field.

This picture of bound state formation seems strange
first sight. However, an analogy with the quantum dots~or
artificial atoms! of solid state physics can be recognized@24#.
Quantum dots are quasi-zero-dimensional electron syst
in semiconductor nanostructures in which three-dimensio
6-4
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CONFINING PROPERTIES OF THE HOMOGENEOUS . . . PHYSICAL REVIEW D 59 014026
confinement of small numbers of electrons is achieved b
combination of band offsets and electrostatic means.
simplest model Hamiltonian for the few-electron quantu
dot was obtained by solving the Schro¨dinger and Poisson
equations self-consistently within the Hartree approximat
@25#. It was found that the oscillator confining potential h
nearly circular symmetry. The difference in our case is
origin of the confining potential. The Hamiltonian~11! has
appeared due to the background gauge field which may a
in the vacuum as a result of gluon self-interactions.

In QCD, this picture of confinement and bound state f
mation in the static quark limit will be basically the sam
Thus Eqs.~11!,~12! give illustrative insight into the basic
nature of confinement provided for by the self-dual field. B
as Eq.~9! indicates, the significance of the property of e
tireness of Green’s functions as a characterization of confi
ment applies to dynamical fields and thus is relevant to
fully relativistic bound state spectrum of QCD, the phy
cally relevant problem. Thus the qualitative basis for inv
tigation into the impact of confinement on the relativis
bound state spectrum are equations like Eqs.~8! and ~9!, as
has been carried out in@12#. Here an effective meson theor
based on the bosonization of nonlocal quark currents
been developed. The background field has been taken
account both in quark and gluon propagators. Within t
effective theory the ground and excited state spectra of li
heavy-light mesons and heavy quarkonia have been ca
lated, with the only parameters being quark masses,
background field strength and the gauge coupling const
Agreement with experimental data is obtained to with
10%. Regge behavior within this approach is recovered p
cisely by the fact that gluon and quark propagators are en
functions. The relationship between this mechanism of c
finement and flavor chiral symmetry breaking is analyzed
@11#.

Having explored again the confining properties of t
self-dual homogeneous background field in QCD, we n
turn to the problem of the effective potential for this field
finite temperature and the question of deconfinement.

III. SELF-DUAL FIELD AND FINITE TEMPERATURE

In this section we compute the one-loop effective pot
tial for the self-dual background field at finite temperature
SU~2! Yang-Mills theory. This enables us to study its pre
ence or absence at high temperatures where perturb
theory should become reliable.

Since we are already in Euclidean space in order to de
the self-dual field, it is convenient to introduce finite tem
peratureT by working in the imaginary time formalism. Th
x4 direction is now a finite interval of lengthb51/T and
boundary conditions must be imposed on the gluon fie
which we shall come to below. We work in a complete
gauge-fixed formalism within which we will introduce th
external field. At zero temperature, the background gaug
most convenient. However, in the present case, the brea
of manifest Lorentz invariance~by the heat bath! suggests
that the temporal~axial! gauge is a natural gauge choic
Specifically, we choose
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]4A4
a~x!50 ~14!

followed by a diagonalization of the surviving zero mod
a4

a(xW )ta5(1/b)*0
bA4

a(x)tadx4 . This gauge is a special cas
of the static temporal gauge. Here one encounters the p
lem of the nontrivial Haar measure in the functional integ
quantization of the theory@27#. Concomitantly, the diagonal
ized variablea4

diag(xW) is compact. The functional integral ove
this variable is thus non-Gaussian. Progress on the comp
tion of this integral for SU~2! Yang-Mills theory was made
recently in@16# wherein, using a lattice regularization, it wa
shown that the integration out ofa4

diag(xW) leads to an effective
action for the remaining degrees of freedom. In the abse
of external fields, the key features of this effective theo
were that off-diagonal, namely charged, components of
gluon fields acquired a temperature dependent massM (T).
Second, the boundary conditions inx4 of these fields were
changed from periodic to antiperiodic.

We rederive this effective theory in Appendix B, an
show that the presence of the self-dual background field d
not force major modifications. In particular, a rigorous res
for the mass, expected to be valid at low but non-zero te
peratures@16,17#, is reproduced even in the presence of t
homogeneous field, namely,

M ~T!5A~p2/322!T. ~15!

In @17# it was argued that stability with respect to chrom
magnetic fluctuations means that the mass term in the de
fined phase should take the form

M ~T!5
11

12p
Tg2~T!, T→`, ~16!

where g(T) is the perturbative running coupling constan
The important consequence of this result is that at high te
perature the mass itself diverges but the ratioM (T)/T van-
ishes in this limit. This latter property is sufficient to gua
antee the recovery of the Stefan-Boltzmann law in the hi
temperature regime.

Now we consider the self-dual external field and choos
to point in the same color direction asa4

ata. It is important to
note that this corresponds to a distinct physical choice si
gauge freedom does not allow bothBm

a ta and a4
ata to be

simultaneously diagonal.
We come to the question of the gluonic boundary con

tions. Here care is required as, unlike the chromomagn
choice @4,26,17#, the self-dual field involves a componen
pointing in the, now compact, time direction. We are the
fore no longer free to impose the usual periodic bound
condition. Instead, the choice must be consistent now w
parallel transport in the presence of an external field. Spe
cally, the appropriate boundary condition in the spatial dir
tionsxW is the usual vanishing one. For the directionx4 which
is finite, x4P@0,b#, one usually chooses periodic bounda
conditions in the absence of external fields. This can be r
resented in the form

eb]4Am
a ~x4 ,xW !5Am

a ~x4 ,xW !. ~17!
6-5
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In the presence of an external fieldBm
a the natural generali-

zation of this for the fluctuating gauge fieldsQm
a is obtained

via parallel transport, namely,

~ebD4!abQm
b ~x4 ,xW !5Qm

a ~x4 ,xW !

D4
ab5dab]42e3abB4 .

~18!

This boundary condition will, in the simplest way, preser
the periodicity of observable, gauge invariant quantities.
shall refer to this position-dependent twisted boundary c
dition asquasiperiodic. When the considerations of Appen
dix B are carried out and the zero mode of thefluctuating
gauge field,q4

diag, is integrated out, Eq.~18! becomes a
quasi-antiperiodic boundary condition

~ebD4!abQm
b ~x4 ,xW !52Qm

a ~x4 ,xW !. ~19!

To summarize what will be important then for the followin
calculation, there are two key features: first, that bound
conditions are modified to being quasi-antiperiodic, and s
ond that the off-diagonal gluon components have a temp
ture dependent massM (T) which diverges asT increases. It
is precisely this which gives us a well-controlled high te
perature regime specified byT@LSU(2) andB,T2.

To calculate the effective potential now, it is convenie
to bring the field-strength tensor to the form~taking the field
BW to be directed along the third spatial axis!

~Bmn!m,n51,2,3,45S 0 2B 0 0

B 0 0 0

0 0 0 6B

0 0 7B 0

D , ~20!

where the upper~lower! sign corresponds to the self-du
~anti-self-dual! field. The effective potential is defined in th
usual way using the functional integral:

Z5NE DQ expH E d4xLeff@Qi
A ,Qi

3 ,Bm
3 #J

5exp$2bVUeff~B,b,g!% ~21!

where i , j ,k,l 51,2,3, A,B51,2 denote spatial and off
diagonal field components for gluons respectively,V is the
three-dimensional spatial volume, and, as derived in App
dix B, the effective Lagrangian can be written as

Leff@Qi
A ,Qi

3 ,Bm
3 #5LYM@Qm ,Bm#uQ4502

1

2
M2~T!Qi

AQi
A ,

~22!

with LYM the standard Yang-Mills action. The function
integral is defined on the space of quasi-antiperiodic fie
satisfying Eq.~19!. The normalization in Eq.~21! is chosen
so thatUeff(0,b,g)50. To the action, a gauge-fixing term
involving the neutral zero mode gluons,Qi

3(xW )
5(1/b)*0

bdx4Qi
3(x), can be added, but which decouples
01402
e
-

y
c-
a-

-

t
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t

one-loop after the normalization at zero field,B50. Drop-
ping terms in the Lagrangian higher than quadratic in
fluctuating fieldsQi

A , we can extract fromLYM the follow-
ing piece relevant for the one-loop effective potential:

L52
1

2
Qi

A~x!@2~¹2!ABd i j 1M2~T!dABd i j 1~DiD j !
AB

12Bi j «
3AB#Qj

B~x! ~23!

where¹25D4
21Di

2 . The quadratic operator in Eq.~23! has
zero modes for the caseM50 which are called chromon
@2#. A correct calculation of the chromon contribution to th
effective potential at zero temperature requires an exten
of the one-loop approximation: an interaction~or mixing!
between zero modes and normal modes has to be taken
account. However, we take the temperature to be sufficie
large so thatM2(T) is correspondingly large compared toB.
LargeM means that the contribution of chromons is regu
at one-loop order so that the mixing between them and n
mal modes can be neglected. The one-loop effective po
tial is thus given by

Ueff5
B2

g0
2 1

1

Vb
Tr lnF2¹2d i j 1DiD j22iBi j 1M2~T!d i j

2]2dkl1]k] l1M2~T!dkl
G .

~24!

Here B2/g0
2 comes from the classical action withg0 is the

bare coupling constant. The effective potential can be rew
ten in the form

Ueff5
B2

g0
2 2E

V

d3x

V E
0

b dx4

b

3E
M2~T!

`

dm2@Dii
b~x,xuB,m!2Dii

b~x,xu0,m!#. ~25!

We have to calculate the trace of the propaga
Di j

b (x,yuB,m) satisfying quasi-antiperiodic boundary cond
tions, Eq.~19!:

Di j
b~x41b,xW ;yuB,m!52Di j

b~x4 ,xW ;yuB,m!exp@2 ibB4~xW !#,

Di j
b~x;y41b,yW uB,m!52Di j

b~x;y4 ,yW uB,m!exp@ ibB4~yW !#.
~26!

This can be implemented by first solving for the Green
function D i j (xuB,m) relevant to the zero temperature or i
finite volume and then building up the Green’s function s
isfying the finite temperature boundary condition via~see
also @28# and references therein!

Di j
b~x;yuB,m!5 (

n52`

`

~21!nD i j ~x42y41nb;xW2yW uB,m!

3expS i

2
xmBmnyn1

i

2
nbB4~xW1yW ! D . ~27!

It should be stressed that Eq.~27! implies the existence of an
orthogonal complete set of eigenfunctions of the operator¹2
6-6
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satisfying the quasi-antiperiodic boundary conditions. T
existence of such a set of functions is demonstrated in
pendix C.

The infinite volume or zero temperature Green’s funct
D i j is a solution to the equation

@~2¹21m2!d i j 1DiD j22iBi j #D jk~xuB,m!5d ikd~x!.
~28!

A complete solution of this system of equations is qu
involved, but the trace of the propagator is tractable as
shown in Appendix D. One comment is in order though: t
summation overn in the space-time trace of Eq.~27! is sup-
pressed in the infinite volume limitV→` due to the electric
field component of the self-dual field. So in fact the on
relevant contribution of Eq.~27! to the effective potentia
~25! is that fromn50. Using this fact and results~D5! and
~D2! derived in Appendix D, we arrive at the relation

D i i ~0uB,m!

5(
k

FFk~x,x!2E d4zFk~z,x!D̃k
2~x!D4~x,z!G

12B2E d4zE d4z8F0~x,z!D4~z,z8!F0~z8,x!, ~29!

where

Fk~x,y!5expS i

2
xmBmnynD B2

16p2 E
0

` dr

sinh2~Br !

3expF2m2r 12Bjkr 2
1

4
~x2y!2B coth~Br !G ,

D4~x,z!5
1

2Ap
d~3!~xW2zW !E

0

` dt

At

3expF2m2t2
~z42x4!2

4t
2

i

2
~z42x4!B4 j x

j G .
~30!

According to Eqs.~25!, ~29! and~30!, the effective poten-
tial can be expressed as the combination

Ueff~B2!5
B2

gR
2~M !

1U1~B2!1U2~B2!1U3~B2!, ~31!

where

U152
B2

16p2 E
0

` ds

s3 expS 2
M2

B
sD

3H s2

sinh2 s
@112 cosh~2s!#23s223J ,
01402
e
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e

U252
B2

32p2 E E
0

` dsdt

s2~s1t !
expS 2

M2

B
~s1t ! D

3H s2

sinh2 s

2 sinh~2s!2coth s@112 cosh~2s!#

A11t coth s

1
3

As~s1t !
2

ts2

2~s1t !As~s1t !
J ,

U352
B2

8p2 E E E
0

` dsdrdt

~s1r 1t !
expS 2

M2

B
~s1r 1t ! D

3$@sinh~s1r !#23/2@sinh~s1r !1t cosh~s2r !#21/2

2~s1r !23/2~s1r 1t !21/2%. ~32!

The functionsU1 , U2 andU3 correspond to ultraviolet finite
contributions of the three terms in Eq.~29!. The renormal-
ized coupling constantgR

2 runs with the scale defined by th
massM5M (T) and is

1

gR
2 5

1

g0
2 S 12b0E

s0

` ds

s
e2M2sD , ~33!

where we have used~gauge invariant! Schwinger regulariza-
tion. The renormalization procedure we use correspond
the zero momentum subtraction scheme. Taking the par
eters0→0 generates the ultraviolet divergence. The const
b0 is nothing but the coefficient of the beta function to low
est order. Its value arises as a sum of the divergent part
the three terms in Eq.~29! which give forU1

div , U2
div andU3

div

contributions 3/16, 1/48 and 1/4, respectively, so that

b0511/24

correctly arises. That we get this is another check on
consistency of our formalism. In particular, by renormalizi
in this way we have combined theO(B2) quantum correc-
tions with the classical term, so that the next correctio
begin atO(B4).

We thus obtain our final result for the effective potent
at high temperature:

Ueff~B2!5
B2

gR
2~M !

1
29

525p2

B4

M4~T!
1O„B6/M8~T!…

1O„gR
2~M !…. ~34!

Since asT→`, M (T)→`, we havegR(M )!1, and our
calculation is reliable in this regime. So the effective pote
tial acquires a minimum at zero value of the external fie
The background field switches off at high temperature, a
we can characterize the high temperature phase as exhib
deconfinement.

IV. DISCUSSION

The central results of this work are expressed in E
~13!,~34!. From these we understand that if confinement
6-7
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EFIMOV, KALLONIATIS, AND NEDELKO PHYSICAL REVIEW D 59 014026
due to fields in the QCD vacuum which are long-range~ho-
mogeneous in our case! and satisfy self-duality or anti-self
duality, then this is in conflict neither with the Wilson crite
rion for static quark systems nor with the natural expectat
that with increasing temperature there is a transition fr
confinement to deconfinement. It will be immediately n
ticed that we have not obtained a linear heavy quark po
tial as has been observed in lattice simulations. The rea
for this discrepancy is straightforward: lattice calculatio
normally implement periodic boundary conditions from t
very outset. As shall be repeatedly seen in the following,
existence of fields non-vanishing at infinity entails significa
problems for incorporation on the lattice due to the qua
periodic boundary conditions. It seems that there is str
evidence that lattice calculations of the heavy quark poten
havequite correctlynot seen a quadratic potential becau
the effects of the vacuum field we consider have not b
built in. How to build these effects in is a problem we di
cuss below.

On the other hand, the self-dual field, at least at the le
of the lowest order propagators in this background, does
immediately account for all aspects of confinement: diago
gluons in SU~2! have poles in the propagator and this is
consequence of the fact that they do not couple directly
the diagonal background configuration. As mentioned in
Introduction, the simple self-dual homogeneous configu
tion is not the entire story, and there is room for local effe
which can complete the picture of confinement. The vacu
field breaks spontaneouslyCP, color and O~3! symmetries.
There is a continuum of degenerate vacua correspondin
different directions of the vacuum field. This implies@29# the
existence of soliton-like field configurations under the hom
geneous background field, which could play the role of
pologically nontrivial local defects in the QCD vacuum su
as domain walls. In the absence of explicit solutions we
only speculate on the robustness of our results against in
sion of such effects. But insofar as the confining proper
of the self-dual homogeneous field depend only on
strength of the field and not the direction~in real and internal
space!, it seems plausible that domains distinguished only
changes in direction will not disrupt the confinement we o
serve.

However, all of this rests on the assumption that at z
and low temperatures the effective potential for this ba
ground has a minimum at non-zero field value and there is
substitute for a genuine nonperturbative calculation. T
only realistic choice for this is the formalism of lattice QCD
We thus discuss now in some detail the problems to be c
fronted with setting up the calculation on the lattice a
some insights our preliminary investigation into this offer

The essential question we need to answer is what the
tribution of the homogeneous field configuration, Eq.~1!, is
to the partition function of lattice SU~2! gauge theory:

Z5E
U
DU exp$2S@U#%. ~35!

Here,S is now the standard Wilson action andU is short-
hand for
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Un,m5exp$ iaAm~an!%PSU~2!, ;n,m, ~36!

the link variable, andDU is a functional Haar measure. Th
lattice spacing isa. Link variables are functions ofn and are
subject to some boundary conditions. They thus belong
some functional spaceU. Usually, with N representing the
size of the lattice in a given direction, periodic bounda
conditions

Un1N,m5Un,m

are imposed in order to implement the translation invaria
of the theory in the thermodynamic limit. However, the fie
Bm(an)5aBmnnn is evidently not translation-invariant. In
principle, there are two ways to proceed, both of which ha
been used in applications to the Savvidy chromomagn
background@4#. The first choice is to force the long rang
modes to be simply periodic on the lattice. This can be do
by ‘‘quantization’’ of the field strength@6–8#

a2Bmn52p
bmn

N
, ~37!

where the matrix elementsbmn are integers. This certainly
provides for periodicity of the corresponding link variabl
but rewriting Eq.~37! as

Bmn52p
bmn

aL
, L5aN,

and going to the thermodynamic (L→`) continuum (a
→0) limit one obtains

Bmn52pbmn /C, 0<C<`,

so that the field strength is discretized into multiples
2p/C even in the continuum thermodynamic limit. More-
over, the constantC itself depends on our choice of limiting
prescription. These outcomes render this approach rathe
appealing. A second approach is to change boundary co
tions. Free boundary conditions have been advocated in
approach of the authors of@10# who apply it to the lattice
calculation of the effective potential for the chromomagne
field in three-dimensional SU~2! theory.

In our case, Eq.~18! suggests the following generalizatio
for link variables. We decompose the general fieldAm in Eq.
~36! into a long range partBm and the fluctuationQm :
Am(an)5Qm(an)1aBmnnntaf a/2,f 251. Quasi-periodic
boundary conditions for the fieldsQ can be generalized from
Eq. ~18! to all directions now,

Qm„a~n1N!…5eiw~n!Qm~n!e2 iw~n!,

w~n!5a2NaBabnbtaf a/2. ~38!

Thus the following transformation of link variables is gene
ated:

Un1N,m5eiw~n!Un,me2 iw~n1m!. ~39!
6-8
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This has the structure of a gauge transformation. T
gauge-invariant quantities such as the action are invari
An integral in Eq.~35! includes an integration over all pos
sible values of the strength tensorBmn and, hence, all value
of w(n); thus, the boundary conditions~38! and ~39! are
actually free, consistent with@10#.

The most direct step next is to formulate the effect
potential as the lattice functional integral

E
UQ

DU exp$2S@U•V#%

with V denoting a link variable generated by the backgrou
field,

Vn,m5exp$ ia2Bmnnntbf b/2%,

and whereUQ is now the space of quasiperiodic function
HereBmn and f a are external and particular directions in th
color and Euclidean space can be fixed. The actual prob
is to find an appropriate representation of the measure of
integral such that the exclusion of the given background fi
is manifest.

The consequence of the gauge functionw(n) in Eqs.
~38!,~39! being nonzero over the whole lattice is that all d
grees of freedom are affected by the gauge transforma
Thus inclusion of covariantly constant field configurations
the space of integrationU in Eq. ~35! means actually that the
space of allowed gauge functions cannot be restricted to
class of functions with local support. A significant cons
quence of this is that Elitzur’s theorem which forbids spo
taneous breakdown of local gauge symmetry@30# does not
apply to this situation. This theorem concerns the integra

lim
J→0

lim
N→`

^F~U !&N,J5 lim
J→0

lim
N→`

ZN,J
21E

U
DUE

G
DgF~Ug!

3exp$2S@U#1JUg%, ~40!

where F(U) is gauge noninvariant, andJ is an external
source which breaks gauge invariance. The order of limit
important. The theorem states that if gauge transformationG
are local—namely that they act on a finite~independent of
N! number of degrees of freedom—then for sufficien
small sourcesiJi,e the following inequality holds:

uexp$JUg%21u<h~e!, ~41!

with h~e! being independent ofN and vanishing ase goes to
zero. Periodicity of the functions inU is implicit.

As has been argued above, both conditions exclude c
riantly constant field configurations which are long ran
modes that can produce symmetry breaking. Periodic bou
ary conditions and locality of gauge functions are in confl
with a self-consistent incorporation of these modes in
lattice functional integral. The choice of free boundary co
ditions for U and, in particular, the presence inG of gauge
transformations which can act on all degrees of freedom
sults in nonuniformity in the functionh in lattice sizeN, so
that JU becomes an extensive quantity. In view of this, t
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drastic difference in the results of@10# ~some evidence of
nontrivial minimum with free boundary conditions and co
tinuous field! and@6,7# ~minimum at zero field strength with
periodic boundary conditions and ‘‘quantized’’ fiel
strength! seems unsurprising.

It would be instructive to give an example illustrating th
inclusion of the homogeneous fields into the lattice integ
allows the existence of an order parameter that is not ga
invariant. Let us consider the integral overU andG which
includes now homogeneous fields and gauge functions of
form ~38!. If we put

F~Ug!5Im Un,mn
g ,

whereUn,mn is a plaquette variable, and choose the sou
term in the form

(
n,mn

Jmn Tr Im t3Un,mn
g , Jmn5const,

then the inequality~41! is not uniform inN for all field and
gauge functions: ifUn,mn contains the long range field
a2Bmnnn f btb/2 and the gauge transformation corresponds
v(n)5a2NaBab8 nb f 8btb/2, then one gets, for the sourc
term,

(
n,mn

Jmn Tr Im e2 iv~n!t3eiv~n! exp$2 ia2Bmn f btb%

522 (
n,mn

Jmn sin~a2Bmn!

3@ f 322~ f 83f bf 8b2 f 3!sin2~a2NaBab8 nb/2!#.

Let for simplicity B138 5B148 5B238 5B248 50, B128 5B348 5B8,
andN15N25N35N45N. Using the summation formulas

(
n51

N

sin2~nx!5N/22cos~N11!x sin Nx/2 sin x,

(
n51

N

cos2~nx!5N/21cos~N11!x sin Nx/2 sin x,

(
n51

N

sin~nx!5sin
N11

2
x sin

Nx

2
cosec

x

2
,

one gets, in the limitN→`,

(
n1 ,n2 ,n3 ,n450

N

sin2@a2B8N~n12n21n32n4!/2#

5
N

2 (
n2 ,n3 ,n450

N

$sin2@a2B8N~n32n22n4!/2#

1cos2@a2B8N~n32n22n4!/2#%1O~N3!

5N4/21O~N3!.

Thus for the source term we arrive at the result
6-9
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2N4~4 f 322 f 83f bf 8b!(
mn

Jmn sin~a2Bmn!1O~N3!,

which shows that the gauge dependent part of the so
term JU is an extensive quantity, and the order of limitsJ
→0 andN→` cannot be interchanged.

It should be stressed that this example in no way viola
Elitzur’s theorem, but just underlines that its conditions a
too restrictive for a self-consistent incorporation of homog
neous field configurations into the lattice functional integ
~as mentioned also in the last reference of@30#!.

We repeat that the picture of confinement with a self-d
homogeneous field can become reliable only with the inc
sion of domain structures in the vacuum such that the s
metries broken by this field are restored at the hadronic le
The boundaries of the domains should be describable
some solitonic classical configurations. As far as we
aware, appropriate solutions are unknown. It thus remain
problem to verify our considerations of the Wilson criterio
and Elitzur’s theorem in the presence of domains, though
have given plausibility arguments why our results might
unaffected. The conclusion is thus that there are two in
esting unsolved problems to be confronted which may
significant for understanding QCD vacuum structure: a c
culation of the effective potential for the field, Eq.~1!, in the
strong coupling limit, and a search for topologically no
trivial classical configurations in the background of a hom
geneous self-dual field.
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APPENDIX A: HEAVY MASS LIMIT

Below we derive Eq.~10! starting with Eq.~6!. In the
integrand of Eq.~6! let us integrate overj4 ,

E Dj4 expH 2E
0

a

dtF j̇4
2~t!

2
1 i j̇4~t!@EW jW~t!#G J

5e2T2/2a expH 2E
0

a

dt
1

2
@EW jW~t!#2J

whereT5x42y4 and we have changed variables

a5T/ms, t5b/ms, jW5
hW

Ams
.

01402
ce

s
e
-
l

l
-
-
l.
y

e
a

e
e
r-
e
l-

-

ve
e
.

.
o-
h

Then the propagator takes the form

S~x,yuB!}E
0

`

dse2mT/2~s11/s!/2EDhW

3expH 2E
0

T

dbFhẆ 2

2
2

i

2ms
BW @hẆ 3hW #

1
1

2~ms!2 ~EW hW !2G J ,

where we have omitted the phase factor and a constan
front of the integral. One can see that forT→` or more
precisely for

uxW2yW u
T

!1

anduBW u;uEW u!m2 the integral overs can be evaluated usin
a saddle-point approximation. The saddle-point iss51;
hence we arrive at

S~xW ,yW ,TuB!}e2mTE DhW expH 2E
0

T

dbFm

2
hẆ 2

2
i

2
BW @hẆ 3hW #1

1

2m
~EW hW !2G J . ~A1!

Inserting this result into Eq.~A1!, we arrive at the represen
tation Eq.~10!.

At zero fieldEW 5BW 50 we arrive at the correct nonrelativ
istic limit

S~xW ,yW ,TuB!}expH 2mT2
m

2

uxW2yW u2

T J
5expH 2S m1

mv2

2 DTJ , ~A2!

v5
uxW2yW u

T
!1, ~A3!

where the energy of the particle is

E5m1
mv2

2
.

APPENDIX B: STATIC TEMPORAL GAUGE
AND SELF-DUAL FIELDS

Consider a fixed direction in color space such that
phase of the gauge invariant Polyakov loo
Tr P exp(ig*0

bdx4A4
ata/2), is in the t3 direction. The back-

ground self-dual field is also chosen to point in the sa
color direction. Gauge transformations now used to fix
gauge further may not change color axes.

An arbitrary gauge transformation on the gauge fieldÃm

5Ãm
a ta/2 takes the form
6-10
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Ãm→UÃmU†1
i

g
U]mU†[Am . ~B1!

Under the decomposition ofÃm into backgroundB̃m and
fluctuatingQ̃m parts we choose the separate pieces to tra
form under ‘‘quantum’’ gauge transformations:

Bm5UB̃mU†

Qm5UQ̃mU†1
i

g
U]mU†. ~B2!

Since we have specified the direction of the backgrou
Bm5B̃m .

We use the type~B2! to achieve a fixing of the gauge o
Q̃m . These fields satisfy quasiperiodic boundary conditio
Eq. ~18!,

~ebD4!abQ̃m
b ~x4 ,xW !5Q̃m

a ~x4 ,xW !

D4
ab5dab]42e3abB4 ~B3!

which must not be changed under gauge-fixing. Thus,U
must be quasiperiodic. The temporal~axial! gaugeQ450
cannot be achieved with such a group element. The s
temporal gauge~14! followed by diagonalization of the zer
mode is however possible. Explicitly theU bringing an ar-
bitrary Q̃m into this gauge is

U@Q̃#5e2 igx4q4t3/2 P expS igE
0

x4
dtQ̃4~ t,xW ! D ~B4!

with q45(1/b)*0
bdtQ4 . SinceQ̃m is quasiperiodic, so too is

U. Thus Qm are also quasiperiodic:ebD4Qm(x4 ,xW )
5Qm(x4 ,xW ).

There are still two classes of gauge symmetry remain
~1! TransformationsV(x)5exp@igv3(x)t3/2# with v3(x)
strictly periodic inx4 can be fixed by introducing an extr
Lorentz-Coulomb gauge condition on the zero modes of
remaining neutral fields. As it is Abelian, this gauge fixin
does not introduce Faddeev-Popov ghosts. The one-loop
fective potential considered in the main body receives
contributions from these neutral fields.~2! Transformations
W(x)5exp@(2inpx4 /b)t3/2# cause a shift of 2np/gb in the
zero mode of the fluctuating fieldq4 . These are relevant fo
what follows.

We now implement these considerations in the quan
theory, using the Faddeev-Popov trick in the functional in
gral. The Faddeev-Popov determinant is defined by

DF
21@Q#5E Dgd@F@Qg## ~B5!

with Qg all configurations related by gauge transformatio
Eq. ~B2!, to a representative configurationQ which satisfies
F@Q#50. The functionalF that selects this gauge is inde
01402
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pendent of the background fieldBm ~unlike in the back-
ground field gauge!. Inserting unity into the generating func
tional we obtain

Z@B2#5NE DQmDgd@F@Qg##DF@Q#exp~2S@B1Q# !.

~B6!

Now we perform a gauge transformation of type~B2! to
bring Qg→Q. The measure and determinant are invariant
stated. To recover the same action, a corresponding rota
of the background field must take place, as in Eq.~B2!. Be-
causeZ is ultimately a functional only of the gauge invaria
combinationB2, we recover again the sameZ. We may now
absorb the integration*Dg into the normalization in the
usual way and obtain

Z@B2#5NE DQmd@F@Q##DF@Q#exp~2S@B1Q# !.

~B7!

The form of the determinant for the static temporal gauge
well known. Using a lattice regularization for spacexW , it can
be written as

DF@Q#5)
xW

sin2@gbq4~xW !/2#. ~B8!

The Jacobian is independent of the background compo
B4 . The zeros of the Jacobian indicate the appropriate ra
of integration forq4 , which in turn is seen in the symmetr
under transformationsW at the classical level. The appropr
ate functional integral after implementing the delta fun
tional is then

Z@B2#5NE DQi~x!E
0

p/gb

Dq4~xW !sin2@gbq4~xW !/2#

3exp~2S@B1Q#F@Q#50!. ~B9!

This is still symmetric under theV transformation. Perform-
ing the Faddeev-Popov trick again with the Loren
Coulomb gauge condition on the neutral zero mode fie
enables factoring out of this redundant gauge volume. W
the normalizationN being done atB50, the neutral field
contributions to this functional integral will anyway canc
out. TheW symmetry is however fixed by restriction of th
range of integration ofq4 .

We now show how the integral overq4 can be performed.
We consider

E DQiDq4 sin2~gbq4/2!expH 2S1E d4xJQJ .

~B10!

We integrate overq4 in a diagrammatic expansion in order
derive an effective theory forQi . Thus the fieldsQi andBm
appear only in external lines of the diagrams. This is a stro
restriction on the allowed diagrams. The zero modeq4
couples only to charged gluons via the three- and four-po
vertices, and never to itself. The three-gluon vertex leads
6-11
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q4→two-charged-gluon vertex, while the four-point verte
gives (q4)2→charged-anticharged spatial gluons. Th
means that the perturbation series in this functional inte
stops at one loop. Only three topologically distinct classes
diagrams are present and of these only one specific diag
gives a non-vanishing contribution as the lattice spacing
taken zero after subtraction out of a pure infinite consta
This leaves a mass term in the off-diagonal fields. Its form
determined by the propagator for two fluctuating fiel
q4(xW ), namely,

^0uT„q4~xW !q4~yW !…u0&

5
*DQi*Dq4~zW !sin2@gbq4~zW !/2#e2S0@B1Q#q4~xW !q4~yW !

*DQi*Dq4~zW !sin2@gbq4~zW !/2#e2S0@B1Q#

~B11!

with S0 representing the action with the couplings betwe
q4 and the remaining fields dropped. The unregularized fo
for this is

S0@B1Q#5
L

2 E d3x@B4~xW !1q4~xW !#¹W 2@B4~xW !1q4~xW !#

5
b

2 E d3xq4~xW !¹W 2q4~xW !

5S0@Q# ~B12!

because¹W 2B45] i] iB4 j xj5] iB4i50 and q4(xW )→0 as uxW u
→`. We see that the arguments of@16# go through un-
changed: we shift by half the fundamental domainq4(xW )
→q4(xW )2p/gb5q48(xW ) so that the Jacobian becomes
cosine-squared and the boundary conditions inx4 of the
charged gluons acquire an extra term: they go from be
quasi-periodic to quasi-antiperiodic. Next we discretizexW
5 lnW , with directional unit vectorsê, and dimensionless field
wnW[gbq48(xW ). We obtain, for the action,

S0
~ l !@Q#5

l

2g2b (
nW

(
ê

wnW@wnW 12ê22wnW 1ê1wnW #.

~B13!

Thus the weight factor appearing in the functional integra

e2S0
~ l !

@Q#5(
r 50

`

Cr S l

g2b D r

. ~B14!

The functional integration in Eq.~B11! can be done explic-
itly:

^0uT„q4~xW !q4~yW !…u0&5
1

4g2b2 S p2

3
22D dmW x,mW y1OS l

g4b3D .

~B15!

So also in the presence of the self-dual background field,
correlator of the fluctuating part of Polyakov loops is ultra
cal, being proportional tod (3)(xW2yW ) in the continuum limit.
01402
al
f
m

is
t.
s

n

g

s

e

The result, Eq.~B15!, guarantees that the mass term for t
charged gluons is as derived by@16#, namely Eq.~15!.

We are thus led to an effective action after integration
of q4 which contains charged gluon fieldsQi

1,2 with a mass
diverging with increasing temperature but, in the presence
the self-dual field, quasi-antiperiodic boundary conditio
Moreover, the background field componentB4(x) is still
present in the action in the usual terms where the originalA4
was located, but the fieldq4 has been successfully integrate
out.

APPENDIX C: ORTHOGONALITY
AND COMPLETENESS RELATIONS

In this section we derive the orthogonality and comple
ness relations for the eigenfunctions of the Laplace oper
in the presence of the self-dual homogeneous field and
formulas for the propagator subject to quasi-antiperio
boundary conditions. Let us recall first the solution to t
eigenvalue problem at zero temperature@2,5#:

2¹2~x!c~x!5lc~x!,

¹2~x!5@]m2 iBm~x!#2, Bm5
1

2
Bmnxn ,

in the space of functions vanishing at infinity. The opera
2¹2 can be represented in the form

2¹252B~am
† Qmn

2 an11!

am5
1

AB
S 1

2
Bxm1]mD , am

† 5
1

AB
S 1

2
Bxm2]mD ,

@am ,an
†#5dmn ,

Qmn
6 5~dmn6 ibmn!/2,

Q6Q65Q6, Q7Q650, bmn5Bmn /B.

The matrix (ibmn) can be diagonalized by means of an a
propriate unitary transformationU:

U†ibU5diag~1,21,1,21!, U†a5a, @am ,an
†#5dmn ,

a15~a11 ia2!/&, a25~a12 ia2!/&,

a35~a31 ia4!/&, a45~a32 ia4!/&.

The eigenvalue problem then takes the form

2B~a2
†a21a4

†a411!c~x!5lc~x!,

with the solution

lk1k2
52B~k11k211!,

ck1k2k3k4
5

1

Ak1!k2!
~a2

†!k1~a4
†!k2c00k3k4

~x!
6-12
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c00k3k4
5

B

2p

1

Ak3!k4!
~a1

†!k3~a3
†!k4 expS 2

1

4
Bx2D .

~C1!

The orthogonality and completeness relations have the
lowing form:

E
2`

`

d4xck1k2k3k4

† ~x!ck
18k

28k
38k

48
~x!5dk1k

18
dk2k

28
dk3k

38
dk4k

48
,

(
k1k2k3k4

ck1k2k3k4

† ~x!ck1k2k3k4
~y!5d~x2y!. ~C2!

One sees from Eqs.~C1! that the spectrum of¹2 is infinitely
degenerate which is a consequence of the homogeneity o
background field. To proceed further, it is advantageous
introduce the eigenfunctionsfk1k2

(x,y):

fk1k2
~x,y!5

B2

4p2 (
k3k4

A~B/2!k31k4

k3!k4!

3~y12 iy2!k3~y32 iy4!k4

3expS 2
1

4
By2Dck1k2k3k4

~x!

5
B2

4p2

1

Ak1!k2!
~a2

†!k1~a4
†!k2

3expS 2
1

4
B~x2y!21

i

2
xmBmnynD .

Now the degeneracy is parametrized by the continuous v
able y. The functionf00(x,y) can be seen as a matrix el
ment of the projector onto the subspace spanned by the
est mode (k15k250).

Making use of Eqs.~C2!, we arrive at the following equa
tions for the case of infiniteb ~zero temperature!:

2¹2~x!D~x,y!5d~x2y!,

2¹2~x!fk1k2
~x,y!5lk1k2

fk1k2
~x,y!,

fk1k2
~x,y!5fk1k2

~x2y!expH i

2
xmBmnynJ ,

(
k1k2

E
2`

`

d4yfk1k2

† ~x,y!fk1k2
~z,y!5d~z2x!,

E
2`

`

d4xfk1k2

† ~x,y!fk
18k

28
~x,z!5dk1k

18
dk2k

28
f00~y,z!.

Together with Eq.~C3!, these define respectively the Green
function and eigenfunctions for the operator¹2 as well as
completeness and orthogonality relations for the eigenfu
tions. The propagator can be decomposed into a sum
projectors onto the subspaces corresponding to the diffe
eigen-numbers
01402
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D~z,x!5 (
k1k2

Pk1k2
~z,x!

lk1k2

2 ,

Pk1k2
~z,x!5E

2`

`

d4yfk1k2
~z,y!fk1k2

† ~x,y!

5Pk1k2
~z2x!eizmBmnxn/2. ~C3!

The completeness, for instance, is derived in the follow
way:

E
2`

`

d4y(
k1k2

fk1k2

† ~x,y!fk1k2
~z,y!

5
B2

4p2 (
k1k2k3k4

ck1k2k3k4

† ~x!ck1k2k3k4
~z!

3E
2`

`

d4y
~B/2!k31k4

k3!k4!
~y1

21y2
2!k3~y3

21y4
2!k4e2By2/2

5 (
k1k2k3k4

ck1k2k3k4

† ~x!ck1k2k3k4
~z!5d~z2x!. ~C4!

Then at finiteb the function

Db~x,y!5 (
n52`

`

~21!nD~x42y41nb;xW2yW !

3expH i

2
xmBmnyn1 inbB4~xW1yW !J ~C5!

is a solution to the equation

2¹2~x!Db~x,y!5db~x,y!,

db~x,y!5 (
n52`

`

~21!nd~x42y41nb!d~xW2yW !

3expH i

2
xmBmnyn1 inbB4~xW1yW !J ,

satisfying the boundary conditions

Db~x41b,xW ;y!52Db~x4 ,xW ;y!exp$2 ibB4~xW !%,

Db~x;y41b,yW !52Db~x:y4 ,yW !exp$ ibB4~yW !%.

Here db(x,y) is the d-function on the linear spaceFb of
functions f b(x) obeying the boundary condition

f b~x41b,xW !52 f b~x4 ,xW !exp$2 ibB4~xW !%.

One can check that completeness is satisfied:

E
2`

`

d3yE
0

b

dy4db~x,y! f b~y!5 f b~x!.

Moreover, the functions
6-13
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fk1k2

b ~x,y!5 (
n52`

`

~21!nfk1k2
~x42y41nb,xW2yW !

3expH i

2
xmBmnyn1 inbB4~xW1yW !J

being the eigenfunctions of¹2(x),

2¹2~x!fk1k2

b ~x,y!5lk1k2
fk1k2

b ~x,y!,

and satisfying the boundary condition

fk1k2

b ~x41b,xW ;y!52fk1k2

b ~x4 ,xW !exp$2 ibB4~xW !%,
01402
then give

(
k1k250

` E
2`

1`

d3yE
0

b

dy4fk1k2

b† ~x,y!fk1k2

b ~z,y!5db~z,x!,

E
2`

1`

d3xE
0

b

dx4fk1k2

b† ~x,y!f l 1l 2
b ~x,z!5dk1l 1

dk2l 2
f00

b ~y,z!

so that they define an orthogonal complete basis for
spaceFb . The propagatorDb can be decomposed over pro
jectors
Eq.
Db~z,x!5 (
k1k2

P k1k2

b ~z,x!

lk1k2

2 ,

Pk1k2

b ~z,x!5E
2`

`

d3yE
0

b

dy4fk1k2
~z,y!fk1k2

† ~x,y!

5 (
n52`

`

~21!nPk1k2
~z42x41nb,zW2xW !expH i

2
zmBmnxn1 imbB4~zW1xW !J .

~C6!

Taking into account the representation of the zero temperature propagator in terms of the projector operators we get~C5!.
Let us show how the completeness of the set can be derived. We have to evaluate the integral

(
k1k250

` E
2`

1`

d3yE
0

b

dy4fk1k2

b† ~x,y!fk1k2

b ~z,y!5 (
k1k250

` E
2`

1`

d3yE
0

b

dy4

3 (
n,m52`

`

~21!n1mfk1k2

† ~x42y41nb,xW2yW !fk1k2
~z42y41mb,zW2yW !

3expH 2
i

2
xmBmnyn1

i

2
zmBmnyn2 inbB4~xW1yW !1 imbB4~zW1yW !J .

After the change of integration variabley485y42nb we get, for the right hand side of this equation,

(
k1k250

` E
2`

1`

d3y (
n,m52`

`

~21!n1mE
2nb

~12n!b
dy48fk1k2

† ~x42y48 ,xW2yW !fk1k2
„z42y481~m2n!b,zW2yW …

3expH 2
i

2
xmBmnyn81

i

2
zmBmnyn81 i ~m2n!bB4~zW1yW !J .

Finally, shifting the variablem85m2n in the sum and denotingz485z41m8b we arrive at

(
k1k250

` E
2`

1`

d3yE
0

b

dy4fk1k2

b† ~x,y!fk1k2

b ~z,y!5 (
m852`

`

~21!m8 (
k1k250

`

3E
2`

1`

d3yE
2`

`

dy4fk1k2

† ~x,y!fk1k2
~z8,y!exp$ im8bB4~zW !%

5 (
m52`

`

~21!md~z42x41mb!d~zW2xW !expH i

2
zmBmnxn1 imbB4~zW1xW !J

5db~z,x!.
6-14
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The orthogonality and decomposition of the propagator o
the projectors can be obtained in a similar way.

APPENDIX D: GLUON PROPAGATOR IN A SELF-DUAL
BACKGROUND FIELD IN THE TEMPORAL GAUGE

We start with the function

Di j ~x,yuB,m!5D i j ~x42y4 ;xW2yW uB,m!expS i

2
xmBmnynD

which is a solution of the equation

@~2¹21M2!d i j 1DiD j22iBi j #D jk~x,yuB,m!

5d ikd~x2y!

in the limit of infinite b. The functionD is then a solution to
the equation

@~2¹21M2!d i j 1DiD j22iBi j #D jk~xuB,m!5d ikd~x!.

The matrix iBi j can be diagonalized by an appropriate u
tary transformationU, so that we arrive at

@~2¹21m2!d rs1D̃rD̃s822Bd rsjs#D̃st~xuB,m!5d rtd~x!
~D1!

with r ,s,tP$0,1,21% and js5s the gluon spin projections
onto the third spatial axis. Moreover,

¹25D4
21D̃r8D̃r , D̃s5Us j

† D j , D̃s85D jU js .

We next decompose the propagator as

D̃ rs5d rsFs1D̃rD̃s8Hs1 id r0D̃s8L1 ids0D̃rN1d r0ds0P.
~D2!

Using this and the relations

@D4
2 ,D̃s#52iBds0D4 , @D̃r ,D̃s8D̃s#52Bd rtj tD̃ t ,

@D4 ,D̃s#5@D4 ,D̃s8#5 iBds0 , @D̃0 ,D̃s#50,

(
j

@2D̃2d rs1D̃rD̃s822Bd rsjs#D̃s[0,

we can rewrite Eq.~D1! as a system of differential equation
for the functionsF, H, L, N, P:

~2¹222Bjs1m2!Fs~x!5d~x!,

iD̃ 0Ls~x!1~2D4
21m2!Hs~x!1Fs~x!50,

22iBD4Hs~x!1~2¹222Bjs1m2!Ls~x!50,

2 iD̃ 08Ps~x!22iBD4Hs~x!2~2D4
21m2!Ns~x!50,

2iBD4@Ls~x!2Ns~x!#12B2Hs~x!1~2¹21m2!Ps~x!50.
~D3!
01402
r
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We now show that, for the calculation of the space-time tra
of the propagator, we only need to know the functionsH, L,
N andP in the neighborhood ofx50. Consider the integra

Tjk5E
V
d3xE

0

b

dx4D jk
b ~x,xuB,m!,

which is contained in Eq.~24!. With L3 the length of the
third space direction and using Eqs.~27!,~20! we get

Tjk5E
V
d3xE

0

b

dx4 (
n52`

`

~21!nD jk~nb;0uB,m!

3expS 7
i

2
nbBx3D

5VbF D jk~0;0uB,m!14 lim
L3→`

3 (
n51

`

~21!nD jk~nb;0uB,m!

3

sinS 1

2
nBL3b D

nBL3b
G

5Vb@D jk~0;0uB,m!1O~L3
21b21!#. ~D4!

Equation~D4! leads to the result that the terms withnÞ0 do
not contribute to the effective potential. Further calculatio
can be simplified due to this property of the external fie
~1!. The solution of Eqs.~D3! depends onx2, and the first
order derivatives are proportional tox05U0 j

† xj or x4 . If we
need the propagator only forx→0, we can omit all terms
which contain the first order derivatives. Thus, in the lim
x→0, we have to solve the equations

~2¹222Bjs1m2!Fs~x!5d~x!,

~2D4
21m2!Hs~x!1Fs~x!50,

~2¹222Bjs1m2!Ls~x!50,

~2D4
21m2!Ns~x!50,

~2¹21m2!Ps~x!12B2Hs~x!50.

One can check the positive-definiteness of the spectrum
the operators (2D4

21m2) and (2¹222Bjs1m2) in the
space of functions vanishing at infinity. This means th
Ls(x)→0 and Ns(x)→0 for x→0. Finally one gets, for
small x2,

Fs~x!5~2¹222Bjs1m2!21d~x!,

Hs~x!52~2D4
21m2!21Fs~x!,
6-15
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Ps~x!522B2~2¹21m2!21Hs~x!,

Ls~x!50, Ns~x!50. ~D5!

Using Eqs.~D5! and ~D2!, we arrive at the relation~29!
given in the main body of the paper. We have only to ins
.

A.

, Z
.
o

s.

01402
rt

the delta-function into the equations forHs and Ps and to
represent these functions as convolutions of the propaga
Fk , F0 and D4 , where the latter is the Green’s functio
corresponding to (2D4

21m2). These lead to the expression
in Eq. ~30!.
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s
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