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Next-to-leading order calculation of four-jet observables in electron-positron annihilation
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The production of four jets in electron-positron annihilation allows for measuring the strong coupling and
the underlying group structure of the strong interaction simultaneously. This requires a next-to-leading order
perturbative prediction for four-jet observables. In this paper we describe the theoretical formalism of such a
calculation with sufficient details. We use the dipole method to construct a Monte Carlo program that can be
used for calculating any four-jet observable at the next-to-leading order accuracy. As new results, we present
the next-to-leading order prediction for the thrust minor,y4 and C parameter~at C>0.75) four-jet shape
variables and the four-jet rates with the Cambridge jet clustering algorithm.@S0556-2821~98!01723-8#

PACS number~s!: 12.38.Bx, 13.38.Dg, 13.65.1i, 13.87.Ce
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I. INTRODUCTION

Electron-positron annihilation into hadrons is the clean
process to test quantum chromodynamics~QCD! @1# in high
energy elementary particle reactions. In this process the
tial state is completely known and there is a lot of quantiti
for instance the total cross section and jet related corr
tions, that depend on the long distance properties of
theory very little. These quantities can be calculated in p
turbative QCD as a function of a single parameter, the str
coupling. For this reason the various QCD tests at electr
positron colliders@2–7# can be regarded as experiments
determiningas .

The other ingredient of QCD, that is in principle free,
the underlying gauge group. Although by now nobody qu
tions that QCD is based upon SU~3! gauge theory, the ‘‘full’’
measurement of QCD, that is the simultaneous measurem
of the strong coupling and the eigenvalues of the quadr
Casimir coefficients of the underlying gauge theory, theCF
andCA color charges, is not a purely academic exercise.
possible existence of light gluinos@8# influences both the
value ofas and the measured value of the color charges„or,
assuming SU(3)c , the value of the light fermionic degrees o
freedomNf…. Thus the only consistent framework to che
whether the data favor or exclude the additional degree
freedom is a simultaneous fit of these parameters to dat

In principle any observable depends on these basic pa
eters. The sensitivity of a given observable on the co
charges however, is influenced by the fact that in pertur
tion theory the three gluon coupling appears at tree level
for four-jet final states. In the total cross section and
three-jet like quantities the adjoint color charge appears o
in the radiative corrections. Therefore, four-jet observab
seem to be the best candidates to measure the color fac
Indeed, during the first phase of operation of the CER
Large Electron Positron Collider~LEP! four-jet events were
primarily used for measuringCF andCA @9#. These measure
ments however, were not complete in the sense mentio
above. The lack of knowledge about the perturbative pre
0556-2821/98/59~1!/014020~21!/$15.00 59 0140
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tion for four-jet observables at O(as
3) prevented the experi

mental collaborations from fixing the absolute normalizati
of the perturbative prediction, therefore,as could not be
measured using the same observables.

Recently the next-to-leading order corrections to vario
four-jet observables have been calculated@10–16#. In this
article we give sufficient details of our work@13–15# and
present several new results for next-to-leading order pre
tions of four-jet observables that were not published befo
The important development that made possible these ca
lations was that the one-loop amplitudes for the relev
QCD subprocesses, i.e., fore1e2→4 partons, became avail
able. In Refs.@17,18# Campbell, Glover and Miller intro-
ducedFORTRAN programs that calculate the next-to-leadi
order squared matrix elements of thee1e2→g*→q̄qQ̄Q

andq̄qgg processes. In Refs.@19,20# Bern, Dixon, Kosower
and Wienzierl gave analytic formulas for the helicity amp
tudes of the same processes with thee1e2→Z0→ 4 partons
channel included as well. For the sake of completeness
our work we use the amplitudes of Refs.@20# for the loop
corrections. Although the tree-level helicity amplitudes f
thee1e2→5 partons subprocesses had been known@21#, we
calculated them anew and present the results in this artic
terms of Weyl spinors conforming with the notation used
describing the one-loop helicity amplitudes@20#. We also
present the previously unpublished color linked helicity d
pendent Born matrix elements for thee1e2→4 partons pro-
cesses, which are needed also for the next-to-leading o
calculation of the three-jet production in deep inelastic sc
tering and for vector boson plus two-jet production in hadr
collisions.

In Sec. II we give details of the analytical and numeric
calculation and describe how we parametrize our results
Sec. III we present the complete O(as

3) predictions for the
four-jet rates using the Durham algorithm@22# and the Cam-
bridge algorithm proposed recently@23# and make a com-
parison of these algorithms from the perturbation the
point of view. We show the next-to-leading order results
©1998 The American Physical Society20-1
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ZOLTÁN NAGY AND ZOLTÁ N TRÓCSÁNYI PHYSICAL REVIEW D 59 014020
the shape variables thrust minor andy4 often used in experi-
mental analyses and for the C parameter distribution a
>0.75. Section IV contains our conclusions. We present a
lytic results for the four- and five-parton tree-level helici
amplitudes in Appendix A, and perform the color summati
in Appendix B.

II. DETAILS OF THE CALCULATION

A. Cancellation of infrared divergences

It is well known that the next-to-leading order correctio
is a sum of two integrals,

sNLO[E dsNLO5E
5
dsR1E

4
dsV, ~1!

where dsR is an exclusive cross section of five partons in t
final state:

E
5
dsR5E dG~5!^uM 5

treeu2&J5 , ~2!

and dsV is the one-loop correction to the process with fo
partons in the final state:

E
4
dsV5E dG~4!^uM 4

1-loopu2&J4 , ~3!

—the real and virtual corrections. Although we specify o
formulas to the case of four-jet calculation, one can use
formulas of this section to obtain them-jet cross section by
simply changing 4~5! to m(m11).

The two integrals on the right-hand side of Eq.~1! are
separately divergent ind54 dimensions, but their sum i
finite provided the jet functionJn defines an infrared saf
quantity, which formally means that

J5→J4 ~4!

in any case, where the five-parton and the four-parton c
figurations are kinematically degenerate. The presence
singularities means that the separate pieces have to be
larized, and the divergences have to be cancelled. We
dimensional regularization ind5422« dimensions@24#, in
which case the divergences are replaced by double and s
poles in«. We assume that ultraviolet renormalization of
Green functions to one-loop order has been carried out
the poles are of infrared origin. In order to obtain the fin
sum, we use a slightly modified version of the dipole meth
of Catani and Seymour@25# that exposes the cancellation
the infrared singularities directly at the integrand level.

The reason for modifying the original dipole formalism
numerical. The essence of the dipole method is to defin
single subtraction term dsA, the dipole subtraction, tha
regularizes the real correction in all of its singular~soft and
collinear! limits. Thus, the two singular integrals in Eq.~1!
are substituted by two finite ones:
01402
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sNLO5E
5
ds5

NLO1E
4
ds4

NLO, ~5!

where

E
5
ds5

NLO5E
5
@dsR2dsA# ~6!

and

E
4
ds4

NLO5E
4
FdsV1E

1
dsAG . ~7!

There are many ways to define the subtraction term, bu
must lead to the same finite next-to-leading order correct
Since the virtual correction is not positive definite, then d
pending on the size of the subtraction term it may happ
that either ds5

NLO or ds4
NLO is not positive definite. From

numerical point of view the best situation is when both a
positive definite, so that numerical cancellation of terms w
opposite sign does not occur. We define the subtraction t
as a function of a parameteraP(0,1# which essentially con-
trols the region of the five-parton phase space over which
subtraction is nonzero such thata51 means the full dipole
subtraction~see Sec. II B!. By tuning the value ofa, we can
achieve that we add two positive definite integrals for alm
all values of the observable to obtain the full correction. W
use ana.0.1, which is advantageous also for saving CP
time: The large number of dipole terms and their somew
complicated analytic structure makes the evaluation of
subtraction term rather time consuming. Constraining
phase space over which the subtraction is zero we can s
up the program.

In spite that the five-parton integral in Eq.~6! is finite, we
introduce a very small cutoff in the phase space around
singular regions. Such a cutoff does not alter the value of
integral, but helps avoiding the cancellation of very lar
numbers that could lead to arbitrary values close to the
gularity due to the finite machine precision. This cutoff
useful, but is also dangerous: if the subtraction is not corr
the five-parton integral becomes finite, but incorrect. T
third advantage of using the parametera is that such errors
can be spotted by varying the value ofa and checking
whether the full correction is independent of this parame

B. Dipole formulas for final state singularities

In this subsection we recall those dipole factorization f
mulas that are relevant to our calculation. We do this only
the extent that we can define the simple modification to
original formalism and the explicit cross section formulas
our calculation unambiguously. For further details we re
to the original work of Catani and Seymour@25#.

In the dipole method the subtraction term is a sum
several dipole terms,

E
5
dsA5 (

kÞ i , j
E dG~5!Di j ,k J4 , ~8!
0-2
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where the dipoleDi j ,k is a function of the final state mo
mentapl and is given by

Di j ,k~p1 , . . . ,p5!

52
1

2pi•pj
4^ . . . ,i j̃ , . . . ,k̃, . . . u

Tk•Ti j

Ti j
2

Vi j ,k

3u . . . ,i j̃ , . . . ,k̃, . . . &4 . ~9!

In Eq. ~9! u . . . ,i j̃ , . . . ,k̃, . . . &4 is a vector in color1 he-
licity space defining the four-parton amplitude obtained fro
the original five-parton Born amplitude by replacing~a! the
partonsi and j with a single partoni j̃ ~the emitter! and ~b!

the partonk with the partonk̃ ~the spectator!. The momenta
of the spectator and the emitter are given in terms of a
mensionless variable

yi j ,k5
pipj

pipj1pj pk1pkpi
, ~10!

as

p̃k
m5

1

12yi j ,k
pk

m , p̃i j
m5pi

m1pj
m2

yi j ,k

12yi j ,k
pk

m . ~11!

Tk and Ti j are the color charges of the spectator and
emitter. These color charges are defined by their action o
the color space: If particlei emits a gluon with color indexc
then the color-charge operatorTi has the following matrix
element in color space

^c1 , . . . ,ci , . . . ,c4 ,cuTi ub1 , . . . ,bi , . . . ,b4&

5dc1b1
. . . Tcibi

c . . . dc4b4
, ~12!

whereTcibi

c [Fcibi

c 52 i f ccibi
~color-charge matrix in the ad

joint representation! if the emitting particlei is a gluon and
Tcibi

c [tcibi

c ~color-charge matrix in the fundamental represe

tation! if the emitting particlei is a quark~in the case of an
antiquark emitterTcibi

c [ t̄ cibi

c 52tbici

c ).

In Eq. ~9! the splitting matrices,Vi j ,k are matrices in the
helicity space of the emitter. They depend on the kinem
variablesyi j ,k and

z̃i5
pi p̃k

p̃i j p̃k

~13!

and take different forms for the splitting of different parto
†see Eqs.~5.7!–~5.9! in Ref. @25##.

The definition of the dipole momenta makes possible
exact factorization of the five-particle phase space int
four-particle and a one-particle phase space

dG~5!~p1 , . . . ,p5!5dG~4!~ . . . ,p̃i j , . . . ,p̃k , . . . !

3@dpi~ p̃i j ,p̃k!#, ~14!
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where

@dpi~ p̃i j ,p̃k!#5
ddpi

~2p!d21
d1~pi

2!J~pi ; p̃i j ,p̃k!, ~15!

and the Jacobian factor is

J~pi ; p̃i j ,p̃k!5Q~12 z̃i !Q~12yi j ,k!
~12yi j ,k!

d23

12 z̃i

.

~16!

As mentioned before, we modify the original formalism su
that we constrain the phase space over which the dipoles
subtracted:

E
5
dsA~a!5 (

kÞ i , j
E dG~5!Di j ,kQ~yi j ,k,a!J4 , ~17!

with aP(0,1#. The jet function in Eq.~17! is a four-parton
jet function that depends on the momentap̃i j andp̃k , but not
on pi , therefore, the integral over the one-parton phase sp
can be performed analytically. It can be shown that af
integration of the dipole Di j ,k(p1 , . . . ,p5) over

@dpi( p̃i j ,p̃k)#, only color correlations survive@25#, in the
form

E @dpi~ p̃i j ,p̃k!#Di j ,k~p1 , . . . ,p5!

3Q~yi j ,k,a!

52Vi j ,k~a!
1

Ti j
2

uM 4
i j ,k~ . . . ,i j̃ , . . . ,k̃, . . . !u2, ~18!

where

uM 4
i , j~1, . . . ,4!u25 4^1, . . . ,4u Ti•Tj u1, . . . ,4&4 ~19!

are the color-correlated four-parton tree matrix elemen
Their explicit expressions are given in Appendix B. In E
~18!,

Vi j ,k~a!5E @dpi~ p̃i j ,p̃k!#Q~yi j ,k,a!

3
1

2pi•pj
^Vi j ,k&

[
as

2p

1

G~12«!S 4pm2

2p̃i j p̃k
D «

Vi j ~«,a!, ~20!

where^Vi j ,k& denotes the average ofVi j ,k over the polariza-
tions of the emitter partoni j̃ . The functionsVi j («,a) depend
only on the flavor indicesi and j. Rewriting the one-particle
phase space in terms of the kinematic variablesz̃i and y,
from the definition ofVi j («,a) in Eq. ~20! we obtain
0-3
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Vi j ~«,a!5E
0

1

dz̃i„z̃i~12 z̃i !…
2«E

0

a

dy y212«~12y!122«

3
^Vi j ,k~ z̃i ;y!&

8pasm
2«

, ~21!

where the spin-averaged splitting functions are given in E
~5.29!–~5.31! of Ref. @25#. Performing the integration in Eq
~21!, we find

Vqg~«,a!5CFH S 1

«2
2 log2a D 1

3

2S 1

«
211a2 loga D

152
p2

2
1O~«!J , ~22!

Vqq̄~«,a!5TRH 2
2

3S 1

«
211a2 loga D2

16

9
1O~«!J ,

~23!

Vgg~«,a!52CAH S 1

«2
2 log2a D 1

11

6 S 1

«
211a2 loga D

1
50

9
2

p2

2
1O~«!J . ~24!

It was shown in Ref.@25# that after integrating over the
factorized one-particle phase space, the subtraction term
be recast in the form

E
5
dsA5E

4
dG~4!

4^1, . . . ,4uI ~«,a!u1, . . . ,4&4J4 , ~25!

where the insertion operatorI («,a) depends on the colo
charges and momenta of the four final-state partons
u1, . . . ,4&4 :

I ~p1 ,p2 ,p3 ,p4 ;«,a!52
as

2p

1

G~12«!(i 51

4
1

Ti
2
Vi~«,a!

3(
kÞ i

Ti•TkS 4pm2

2pi•pk
D «

. ~26!

The singular factorsVi(«,a), are defined as

Vq~ q̄!~«,a![Vqg~«,a!, ~27!

Vg~«,a![
1

2
Vgg~«,a!1NfVqq̄~«,a!. ~28!

Using Eqs.~22!–~24! they can be written in the following
explicit form:
01402
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Vi~«,a!5Ti
2S 1

«2
2

p2

3
2 log2a D

1g i S 1

«
1a2 loga D1Ki1O~«!, ~29!

where theg i andKi constants are defined by

gq~ q̄!5
3

2
CF , Kq~ q̄!5S 7

2
2

p2

6 DCF , ~30!

gg5
11

6
CA2

2

3
TRNf ,

Kg5S 67

18
2

p2

6 DCA2
10

9
TRNf .

The formal result of the cancellation mechanism d
cussed in this subsection is that the next-to-leading or
correction is a sum of two finite integrals as given in Eq.~5!.
We would like to mention that although both integrals a
finite, the integrand of the five-parton integral is in fact d
vergent, it contains integrable square-root singularities in
kinematically degenerate region of the five-parton ph
space. The efficient way to integrate such a function is
apply important sampling. We apply multichannel Mon
Carlo integration for this purpose, but do not consider
details of this technical point in this article.

C. The general structure of the results

Once the phase space integrations in Eq.~5! are carried
out, the next-to-leading order differential cross section
the four-jet observableO4 at a fixed scaleQ takes the gen-
eral form

1

s0

ds

dO4
~O4!5h2BO4

~O4!1h3CO4
~O4!, ~31!

whereh[as(Q) CF / 2p. The renormalization scale depen
dence of the cross section is obtained by the substitutioh
→h(m) (11b0 /CFlnxm), with h(m)[as(m) CF / 2p,
which yields

1

s0

ds

dO4
~O4!5h~m!2BO4

~O4!1h~m!3FBO4
~O4!

b0

CF
lnxm

2

1CO4
~O4!G . ~32!

In Eq. ~32! s0 denotes the Born cross section for the proc
e1e2→q̄q, m is the renormalization scale,xm5m/As is the
renormalization scale divided by the total c.m. energy a
BO4

and CO4
are scale independent functions,BO4

is the

Born approximation andCO4
is the radiative correction. We

use the two-loop expression for the running coupling:
0-4
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as~m!5
as~MZ!

w~m,MZ!S 12
b1

b0

as~MZ!

2p

ln„w~m,MZ!…

w~m,MZ! D ,

~33!

with

w~q,q0!512b0

as~q0!

2p
lnS q0

q D , ~34!

b05
11

3
CA2

4

3
TRNf , ~35!

b15
17

3
CA

222CFTRNf2
10

3
CATRNf , ~36!

with the normalizationTR51/2 in Tr(TaT†B)5TRdab. The
numerical values presented in this letter were obtained a
Z0 peak with MZ591.187 GeV,GZ52.49 GeV, sin2uW
50.23, as(MZ)50.118 andNf55 light quark flavors.

In order to make possible the measurement of the c
factors, we write both the Born approximation and the hig
order correction as linear and quadratic forms of ratios of
color charges@26#:

B45B01Bxx1Byy, ~37!

and

C45C01Cxx1Cyy1Czz1Cxxx
21Cxyxy1Cyyy

2,
~38!

where

x5
CA

CF
, y5

TR

CF
. ~39!

At next-to-leading order the ratioz appears that is related t
the square of a cubic Casimir,

C35 (
a,b,c51

NA

Tr~TaTbT†c!Tr~T†cTbTa!, ~40!

via z5C3 /NcCF
3 . The Born and correction functionsBi and

Ci are independent of the underlying gauge group. In
next section we present theB4 andC4 functions for various
four-jet observables.

III. RESULTS

Four-jet observables can be classified into three m
groups:~i! four-jet rates;~ii ! four-jet event shapes;~iii ! four-
jet angular correlations. Detailed results for observables f
ing into all three classes were already presented in the lit
ture. Dixon and Signer gave full account of the next-
leading order four-jet rates with three different~E0, Durham
and Geneva! jet algorithms@11#. In Ref. @13# we confirmed
their results. Among the four-jet event shapes the D par
eter, acoplanarity, and the Fox-Wolfram momentsP1 and
P4 were calculated at O(as

3) in Refs. @13# and @14#. The
results for the D parameter were confirmed@27#. As for an-
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gular correlations Signer presented the leading color cor
tions in Ref.@12#, and we added the full corrections in Re
@15#. In this section we would like to add the four-jet ra
obtained using the Cambridge clustering and several e
shape variables to the list of four-jet observables that
calculated at the next-to-leading order accuracy. We do
consider the four-jet angular correlations here.

A. Four-jet rates

The most important multijet observables that are used
determining the underlying parton structure of hadro
events are the multijet rates. Ine1e2 annihilation the widely
known Durham@22# algorithm have become indispensab
for this purpose. Recently a new jet clustering, the Ca
bridge algorithm was proposed as an improved version of
Durham scheme@23#. This scheme is designed to minimiz
the formation of ‘‘junk jets’’ — jets formed from hadrons o
low transverse momenta, unconnected to the underlying
ton structure. As a result, the hadronization corrections to
mean jet multiplicities were found smaller when the Ca
bridge algorithm is employed than for the Durham cluster
@23#. However, it was shown in Ref.@28# that the small had-
ronization corrections found for the Cambridge algorithm
the study of the mean jet rate are due to cancellations am
corrections for the individual jet production rates. Apart fro
the very small values of the resolution parameter,ycut
,1023.2, for the individual rates the Durham clusterin
shows comparably small~for ycut.1022), or even much
smaller hadronization corrections. In this subsection
present the next-to-leading order production rates for f
jets using both algorithms and compare the size of the ra
tive corrections.

The four-jet rates are defined as the ratio of the four
cross section to the total hadronic cross section:

R45
s4-jet

s tot
~ycut!

5h2B4~ycut!1h3S C4~ycut!2
3

2
B4~ycut! D , ~41!

where we useds tot5s0(11 3
2 h). Setting the color charge

to the SU~3! values, we plot the scale independentB4(ycut)
andC4(ycut) functions in Figs. 1 and 2 and tabulate the va
ues forC4(ycut) in Table I.

Comparing the values for the two Born functions, we s
that at leading order the Cambridge algorithm gives sligh
higher rates and the difference increases with decrea
ycut. On the other hand, the correction functions beco
smaller for Cambridge clustering with decreasingycut. The
result of these opposite trends is that theK factors, defined as

K~ycut!511h~As!
C4~ycut!

B4~ycut!
, ~42!

are smaller for the Cambridge algorithm for small values
ycut, which is demonstrated in Fig. 3.

The smallerK factors also mean smaller renormalizatio
scheme dependence, which can be seen from compa
0-5
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Figs. 4 and 5. The usual interpretation of the smaller sc
dependence is that the effect of the uncalculated higher
ders are expected to be smaller in the case of Cambr
clustering. It is interesting to note that in the middleycut
region (1023.2,ycut,1022), where the hadronization cor
rections for the Cambridge clustering were found sign
cantly larger than for the Durham algorithm, the theoretic
uncertainty due to the renormalization scale ambiguity
smaller for the Cambridge than that for the Durham clust
ing. Of course, one has to keep in mind that t
m-dependence bands are not upper bounds on errors
arise from truncation of the perturbation series, just sugg
tions. In particular, if there is an artificial narrowing of th
m-dependence bands, e.g., at a crossover point, they al
certainly do not represent the size of the truncation erro
that point.

Four-jet fractions decrease very rapidly with increas
resolution parameterycut. As a result, most of the availabl
four-jet data are belowycut50.01. It is well known that for

FIG. 1. The Born functionB4 for the four-jet rate as a function
of the resolution variableycut with Durham~solid! and Cambridge
~dashed! algorithms.

FIG. 2. The correction functionC4 for the four-jet rate as a
function of the resolution variableycut with Durham ~solid! and
Cambridge~dashed! algorithms.
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small values ofycut the fixed order perturbative prediction
not reliable, because the expansion parameterasln

2ycut loga-
rithmically enhances the higher order corrections. One ha
perform the all order resummation of the leading and ne
to-leading logarithmic~NLL ! contributions. This resumma
tion is possible for the Durham algorithm using the coher
branching formalism@29# and the procedure is the same f
the Cambridge algorithm@23#. The four-jet rate in the next-
to-leading logarithmic approximation is given by@29#

TABLE I. Correction functions to the four-jet rates for Durha
and Cambridge algorithms.

log10(ycut) Cycut

D Cycut

C

20.9 (4.20960.655)31022 (4.37560.655)31022

21.0 (9.44960.220)31021 (9.49960.230)31021

21.1 (5.41160.055)3100 (5.30060.057)3100

21.2 (1.76960.011)3101 (1.70060.012)3101

21.3 (4.32160.032)3101 (4.04460.033)3101

21.4 (8.89360.034)3101 (8.14260.038)3101

21.5 (1.61960.005)3102 (1.45960.006)3102

21.6 (2.70560.009)3102 (2.40060.010)3102

21.7 (4.20160.012)3102 (3.68360.014)3102

21.8 (6.22160.020)3102 (5.40360.021)3102

21.9 (8.73060.029)3102 (7.49060.032)3102

22.0 (1.19160.004)3103 (1.00960.005)3103

22.1 (1.56360.006)3103 (1.30860.007)3103

22.2 (2.00060.010)3103 (1.65360.010)3103

22.3 (2.47860.011)3103 (2.02360.012)3103

22.4 (3.00760.024)3103 (2.40260.025)3103

22.5 (3.54260.023)3103 (2.74960.027)3103

22.6 (4.02960.033)3103 (3.02060.036)3103

22.7 (4.46960.052)3103 (3.19860.063)3103

22.8 (4.79760.067)3103 (3.22060.077)3103

22.9 (4.86960.099)3103 (2.99960.108)3103

23.0 (4.87860.120)3103 (2.60860.132)3103

23.1 (4.48260.166)3103 (1.67860.178)3103

23.2 (3.43060.256)3103 (23.254627.6)3101

23.3 (1.78360.300)3103 (22.09360.32)3103

FIG. 3. K factors as a function of the resolution variableycut for
Durham~solid! and Cambridge~dashed! algorithms.
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R4
NLL52@Dq~Q!#2

3F S E
Q0

Q

dq Gq~Q,q! Dg~q,Q0! D 2

1E
Q0

Q

dq Gq~Q,q! Dg~q,Q0!

3E
Q0

q

dq8„Gg~q,q8! Dg~q8,Q0!

1G f~q8!D f~q8,Q0!…G . ~43!

In Eq. ~43! the functionsDa(Q,Q0) are the Sudakov form
factors which express the probability of parton branch
evolution from scaleQ05QAycut to scaleQ without resolv-
able branching. The Sudakov factors are defined in term
the Pab„as(q),z… vertex probabilities as follows:

Da~Q,Q0!5expS 2(
b
E

Q0

Q dq

q E dz
as~q!

2p
Pab„as~q!,z…D .

~44!

It was shown in Ref.@30# that one can obtain an improve
theoretical prediction for the differential two-jet rate if th
vertex probabilities are taken at next-to-leading order@31#,
which we also consider in our analysis:

FIG. 4. The QCD prediction for the four-jet rate with Durha
clustering at Born level~light gray band! and at next-to-leading
order ~dark band!. The two narrow bands show the four-jet rate
the NLL approximation (K50, lower band! and in improved NLL
approximation~upper band! as explained in the text. The band
indicate the theoretical uncertainty due to the variation of the ren
malization scalexm between 0.5 and 2.
01402
g

of

Pqq~as ,z!5CFS 11z2

12z
1

as

2p
K

2

12zD , ~45!

Pgg~as ,z!52CAS z

12z
1

12z

z
1z~12z!1

as

2p
K

2

z~12z! D ,

Pgq~as ,z!5TRNf„z
21~12z!2

….

TheK coefficient is renormalization scheme dependent
the MS scheme it is given by@32#

K5CAS 67

18
2

p2

6 D2
10

9
TRNf . ~46!

Performing thez integral in Eq.~44!, one obtains the Suda
kov factors as integrals of the emission probabiliti
Ga(Q,q) in the following form:

Dq~Q,Q0!5expS 2E
Q0

Q

dq Gq~Q,q! D , ~47!

Dg~Q,Q0!5expS 2E
Q0

Q

dq @Gg~Q,q!1G f~q!# D ,

~48!

D f~Q,Q0!5
@Dq~Q,Q0!#2

Dg~Q,Q0!
, ~49!

and the NLL emission probabilities are

Gq~Q,q!5
2CF

p

as~q!

q F S 11
as~q!

2p
K D ln

Q

q
2

3

4G , ~50!

FIG. 5. The QCD prediction for the four-jet rate with Cam
bridge clustering at Born level~light gray band! and at next-to-
leading order~dark band!. The two narrow bands show the four-je
rate in the NLL approximation (K50, lower band! and in improved
NLL approximation ~upper band! as explained in the text. The
bands indicate the theoretical uncertainty due to the variation of
renormalization scalexm between 0.5 and 2.
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Gg~Q,q!5
2CA

p

as~q!

q F S 11
as~q!

2p
K D ln

Q

q
2

11

12G ,
~51!

G f~Q,q!5
Nf

3p

as~q!

q
. ~52!

We relate theas(q) strong coupling appearing in the emi
sion probabilities to the strong coupling at the relevant ren
malization scale,as(m), according to the one-loop formula

as~q!5
as~m!

w~q,m!
, ~53!

wherew(q,q0) was defined in Eq.~34!, and we use Eq.~33!
for expressingas(m) in terms ofas(MZ)50.118. We could
also use a two-loop formula foras(q), but the result would
differ only in subleading logarithms.

The result of this resummation together with its renorm
ization scale dependence is also shown in Figs. 4 and 5~nar-
row bands!. The lower band corresponds to the usual N
approximation (K50), and the upper band is the result
the improved resummation. We can see clearly from the
ures that the fixed-order and the NLL approximations dif
significantly. One expects that for large values ofycut the
former, and for small values ofycut the latter is the reliable
description, therefore, the two results have to matched.

The Durham and Cambridge four-jet rates can be
summed at leading and next-to-leading logarithmic ord
but they do not satisfy a simple exponentiation@33#. For
observables that do not exponentiate the viable match
schemes are the R matching or the modified R match
@29,4#. We use R matching according to the following fo
mula:

R4
R-match5R4

NLL1Fh2~B42B4
NLL !1h3S C42C4

NLL

2
3

2
~B42B4

NLL ! D G , ~54!

whereB4
NLL andC4

NLL are the coefficients in the expansion
R4

NLL as in Eq.~41!.
In Fig. 6 we show the theoretical prediction at the vario

levels of approximation: in fixed order perturbation theory
Born level ~LO!, at next-to-leading order~NLO!, resummed
and R-matched prediction~NLO1NLL ! and improved re-
summed and R-matched prediction~NLO1NLL1K!. Also
shown is the four-jet rate measured by the ALEPH Colla
ration at theZ0 peak@34# corrected to parton level using th
PYTHIA Monte Carlo program@35#. We used bin-by-bin cor-
rection and the consistency of the correction was checke
using theHERWIG Monte Carlo program@36#. The two pro-
grams gave the same correction factor within statistical er
The errors of the data are the scaled errors of the publis
hadron level data, and we did not include any system
error due to the hadron to parton correction. In the inset
indicated the renormalization scale dependence of the ‘‘N
1NLL1K’’ prediction.
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Figure 6 deserves several remarks. First of all, we see
the inclusion of the radiative corrections improves the fix
order description of the data using the natural scalexm51
for larger values ofycut. Secondly, the importance of resum
mation in the smallycut region is clearly seen, but it is stil
not sufficient to describe the data at the natural scale,
glected subleading terms are still important.1 On the other
hand, the improved resummation seems to take into acc
just the right amount of subleading terms and it makes
agreement between data and theory almost perfect ove
whole ycut region as can be seen from the lower plot. A
though forycut.1021.7 d4 falls outside the65 % band, one
should keep in mind that in this region the error of the ha
ron to parton correction is very large. Also, for the ‘‘NLO
1NLL1K’’ prediction we found remarkably small scale de
pendence forycut.1023. This feature, however, should b
taken with care. The improvement, obtained by including
two-loop coefficient K, affects NNLL terms, but there a
other contributions of the same order that are not taken
account~e.g., next-to-leading order running ofas and other
dynamical effects!, which is not the case for the 2-jet rat

1Our ‘‘NLO1NLL’’ results differ from those in Ref.@11#, where
as(q) in calculatingR4

NLL was kept at the fixedas(MZ) value@27#.

FIG. 6. The QCD prediction for the four-jet rate with Durha
clustering in fixed order perturbation theory at leading~dotted! and
next-to-leading order~dashed!, and fixed order matched with re
summed~dashed-dotted! and improved resummed~solid! calcula-
tion compared to ALEPH data obtained at theZ0 peak and cor-
rected to parton level~error bars!. The renormalization scale is se
to xm51. The lower plot shows the relative differenced45 ~data–
theory!/theory, where theory means the next-to-leading order p
diction matched with improved resummed calculation atxm51. The
inset shows the renormalization scale dependence of the ‘‘theo
prediction with scale variation 0.5,xm,2.
0-8
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The scale dependence of the ‘‘NLO1NLL1K’’ result would
consistently be under control only after the inclusion of t
complete set of NNLL terms.

Finally it is worth noting that forycut51022.6 bothPYTHIA

andHERWIG yield less than 2 % hadronization correction.
the same value of the resolution parameter the theore
prediction is insensitive to corrections beyond next-
leading order~the NLO, NLO1NLL, NLO1NLL1K curves
cross, the renormalization scale dependence is small!, there-
fore, at this accidental value ofycut the next-to-leading orde
prediction agrees perfectly with the hadron level data.

B. Four-jet event shapes

Four-jet event shapes were used extensively by the L
Collaborations for QCD studies@34,37#. In this subsection
we consider four shape variables, they4 distributions for the
Durham and Cambridge algorithms, the thrust minor (Tmin)
and the C parameter for C values above 0.75, which are o
used in the experimental analyses.

In the case of event shape distributions we multiply
normalized cross section with the value of the event sh
parameter, so we use the parametrization

S~O4![O4

1

s0

ds

dO4
~O4!

5h~m!2B~O4!1h~m!3FB~O4!
b0

CF

3 lnxm
2 1C~O4!G ~55!

instead of Eq.~32!, in which case the average value of th
shape variable is easily obtained from the differential dis
bution:

^O4&d5E
d

1

dO4 S~O4!. ~56!

Using this parametrization we define theK factors of the
differential distribution as

K~O4!511h~As!
C~O4!

B~O4!
. ~57!

In the following we plot the physical cross sectionsS(O4),
the K(O4) factors and tabulate the correction functio
C(O4) for O45y4 , Tmin and C.

They4 value denotes the transition value forycut at which,
when decreasingycut, the classification of a given even
changes from three jets to four jets. The advantage of
variable over the differential four-jet rate is that this variab
can be defined on an event by event basis. Depending on
actual resolution variable one obtains they4

D distribution for
the Durham clustering and they4

C distribution for the Cam-
bridge clustering. We calculated theB(y4) andC(y4) func-
tions for both algorithms. TheB(y4) values equal the
ycutB(ycut) values wheny45ycut, therefore, we tabulate onl
the C(y4) functions for the two algorithms in Table II.
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We show the next-to-leading order perturbative predict
in QCD for S(y4) in Fig. 7. In the same figure, the inse
shows theK(y4) factors of the distributions. The physica
cross sections for the two algorithms are very similar. T
K(y4) factors are quite large, but much smaller than in t
case of other four-jet event shape distributions. They dep
weakly on they4 value fory4.0.1 and decrease rapidly wit
decreasingy4 below y450.1. In the case of the Cambridg
algorithm the radiative corrections are 15–30 % smaller th
those for the Durham algorithm.

In order to defineTmin , we first have to define the thrus
and thrust major axes@38#. The thrust axisnW T is the direction
nW which maximizes the expression

T5max
nW T
S (

a
upW a•nW u

(
a

upW au
D , ~58!

where the sum runs over all final state hadrons~or partons!.
The thrust major axis is a three-vectornW Tmaj

for which the
expression in Eq.~58! is maximal with the constraint tha
nW Tmaj

is perpendicular tonW T , nW Tmaj
•nW T50. In order to obtain

TABLE II. Correction functions to the differential distribution
of the y4 variables for the Durham and Cambridge algorithm. T
parameter values are at the lower edge of the corresponding h
gram bin.

y4 Cy4

D Cy4

C

0.000 (2.52360.425)3103 (1.06460.350)3103

0.005 (2.21260.017)3103 (1.85760.019)3103

0.010 (1.37660.009)3103 (1.16660.011)3103

0.015 (9.42960.071)3102 (8.14460.080)3102

0.020 (6.79960.070)3102 (5.85560.062)3102

0.025 (4.93060.063)3102 (4.34660.051)3102

0.030 (3.76060.042)3102 (3.29360.043)3102

0.035 (2.88560.037)3102 (2.55360.039)3102

0.040 (2.16460.033)3102 (1.94760.034)3102

0.045 (1.75460.026)3102 (1.58060.027)3102

0.050 (1.31460.025)3102 (1.20260.025)3102

0.055 (1.02460.021)3102 (9.50860.213)3101

0.060 (8.29360.292)3101 (7.69260.296)3101

0.065 (6.30760.300)3101 (5.94560.304)3101

0.070 (4.63660.180)3101 (4.44560.184)3101

0.075 (3.51660.117)3101 (3.43060.114)3101

0.080 (2.67360.115)3101 (2.56060.110)3101

0.085 (2.27160.216)3101 (2.21460.217)3101

0.090 (1.41260.204)3101 (1.39560.206)3101

0.095 (1.08560.057)3101 (1.05660.059)3101

0.100 (7.41260.584)3100 (7.37760.588)3100

0.105 (5.06960.537)3100 (5.12160.529)3100

0.110 (2.81760.400)3100 (2.91460.399)3100

0.115 (2.65260.329)3100 (2.42860.301)3100

0.120 (1.35360.221)3100 (1.51660.183)3100
0-9
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the value ofTmin , one evaluates the expression in the par
theses for a vector perpendicular to bothnW Tmaj

andnW T .
The C parameter@39# is derived from the eigenvalues o

the infrared safe momentum tensor

u i j 5(
a

pa
i pa

j

upW au
Y(

a
upW au, ~59!

where the sum ona runs over all final state hadrons andpa
i is

the i th component of the three-momentumpW a of hadrona in
the c.m. system. The tensoru is normalized to have uni
trace. In terms of the eigenvaluesl i of the 333 matrix u,
the global shape parameter C is defined as

C53 ~l1l21l2l31l3l1!. ~60!

The kinematical limit of the C parameter for three-part
processes is C5 0.75. Therefore, in the region CP@0.75,1#
the four-parton processes contribute to the leading order
diction, and our program is capable to calculate the radia
correction to the distribution. The results of such a calcu
tion for the Born functionsBTmin

and BC agree with the

known results~see e.g.,@40#! The CTmin
and CC correction

functions are given in Table III.
In the case of event shape differential distributions

next-to-leading order corrections should logarithmically
verge at the edge of the phase space. This divergence o
at zero for they4 andTmin distributions and is regularized b
the multiplication with the value of the variable@see Eq.
~55!#. This is not the case for the C parameter, becaus
diverges at C50.75. Nevertheless, we obtained a finite a
positive contribution in the first bin owing to bin smearing
we have checked explicitly by refining the bin width.

FIG. 7. The next-to-leading order QCD prediction for they4
D

~solid! andy4
C ~dashed! differential distributions with renormaliza

tion scalexm51. The inset shows theK factors of the distributions.
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Figures 8 and 9 show the leading and next-to-leading
der QCD prediction for theTmin and C parameter differentia
distributions atxm51. The insets show theK factors which
are large in both cases indicating 100 % or larger radia
corrections. As a result, the renormalization scale dep
dence remains large, only the absolute normalization of
distributions increases with a factor of more than 2 with t
inclusion of the radiative corrections. This feature is demo
strated in Fig. 10, where we show the scale dependenc
the leading and next-to-leading order prediction for the
erage value of the thrust minor~aboveTmin50.02) and C
parameter~above C50.75!. The leading and next-to-leadin
order curves run almost parallel down toxm.0.2, only the
latter is shifted to larger values.

C. Radiative corrections to four-jet observables: Summary

In this subsection we summarize the results of our rad
tive correction calculations for the various four-jet like di
tributions presented in previous publications and in this
ticle.

The QCD prediction at tree level~with renormalization
scalexm51) in general falls significantly below the mea
sured values for unnormalized distributions of four-jet o
servables. Consequently, the calculation of the next
leading order corrections to these cross sections

TABLE III. Correction functions to the differential distribution
of the Tmin and C parameter event shape variables. The param
values are at the lower edge of the corresponding histogram b

Tmin CTmin
C CC

0.00 0.75 (4.77561.100)3103

0.02 (3.31960.270)3104 0.76 (6.08260.160)3103

0.04 (2.38160.082)3104 0.77 (4.61060.089)3103

0.06 (1.65260.038)3104 0.78 (3.66360.063)3103

0.08 (1.17260.025)3104 0.79 (2.90460.042)3103

0.10 (8.60060.130)3103 0.80 (2.40660.031)3103

0.12 (6.48860.100)3103 0.81 (1.94860.026)3103

0.14 (4.69560.077)3103 0.82 (1.62560.024)3103

0.16 (3.49960.042)3103 0.83 (1.36560.023)3103

0.18 (2.68460.027)3103 0.84 (1.13560.019)3103

0.20 (2.01060.021)3103 0.85 (9.19460.130)3102

0.22 (1.49860.017)3103 0.86 (7.90660.110)3102

0.24 (1.12260.013)3103 0.87 (6.29360.092)3102

0.26 (8.24760.100)3102 0.88 (5.21760.084)3102

0.28 (6.09360.074)3102 0.89 (4.29660.066)3102

0.30 (4.50160.180)3102 0.90 (3.39160.052)3102

0.32 (3.02660.057)3102 0.91 (2.81560.061)3102

0.34 (2.22960.050)3102 0.92 (2.07560.057)3102

0.36 (1.54960.046)3102 0.93 (1.62660.032)3102

0.38 (1.09560.028)3102 0.94 (1.22160.026)3102

0.40 (7.10060.210)3101 0.95 (8.15460.260)3101

0.42 (4.43760.180)3101 0.96 (5.19360.190)3101

0.44 (2.68460.190)3101 0.97 (3.16560.130)3101

0.46 (1.43960.150)3101 0.98 (1.31260.094)3101

0.48 (6.44760.560)3100 0.99 (2.76960.260)3100
0-10
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NEXT-TO-LEADING ORDER CALCULATION OF FOUR- . . . PHYSICAL REVIEW D59 014020
indispensable for attempting a serious comparison betw
data and theory. Our calculations show that the correcti
are very large and the agreement in the comparison impro
considerably with the inclusion of the radiative correction
In particular, we found the following features.

~1! In the case of four-jet rates, the radiative correctio
are about 100 % for JADE-type clustering algorithm
@11,13#, while for the Durham algorithm it is less than 60

FIG. 8. The leading-order~dashed! and the next-to-leading orde
~solid! QCD prediction for theTmin variable with renormalization
scalexm51. The inset shows theK factor of the distribution.

FIG. 9. The leading-order~dashed! and the next-to-leading orde
~solid! QCD prediction for the C parameter with renormalizati
scalexm51. The inset shows theK factor of the distribution.
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and even smaller for the Cambridge algorithm. The sc
dependence for the latter algorithms is substantially reduc
The agreement between data and theory for the Durham c
tering is very good and extends to small values ofycut when
one matches the fixed order prediction with improved
summed next-to-leading logarithmic approximation.

~2! In the case of event shape variables the corrections
usually more than 100 %~the K factors are larger than 2!.
The residual renormalization scale dependence is large i
cating that even higher orders are important. One may c
clude that, with the exception of the jet-relatedy4 distribu-
tions, these distributions cannot be reliably calculated
fixed order perturbation theory and cannot be used for pr
sion tests of QCD.

~3! In the case of normalized angular distributions t
corrections are small as expected~the K factors are close to
1! @12,15#. The renormalization scale dependence is sm
which however, does not mean that the effect of the radia
corrections on the measurement of the QCD color charge
negligible. According to Ref.@15#, the measured value of th
TR /CF ratio may differ up to 25 % when leading, or next-to
leading order QCD predictions are used in the color cha
fits.

IV. CONCLUSIONS

This paper dealt with the next-to-leading order calculat
of four-jet observables in electron-positron annihilation. W
gave details of the analytical calculation that lead to the c
struction of a Monte Carlo program@41# which can be used
to calculate the differential distribution of any four-jet ob
servable at the O(as

3) accuracy. The dipole method was us
for achieving the analytical cancellation of infrared dive
gences. We described that modification of the algorit
which we found useful from numerical point of view. How

FIG. 10. The renormalization scale dependence of the ave
values of̂ Tmin&0.02 and^C&0.75 at leading and next-to-leading orde
0-11
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ZOLTÁN NAGY AND ZOLTÁ N TRÓCSÁNYI PHYSICAL REVIEW D 59 014020
ever, the modification is not essential as far as the theor
concerned.

Compact formulas were presented for the Born-level fi
parton helicity amplitudes and for the Born-level four-part
color-correlated matrix elements which are necessary
other next-to-leading order calculations, such as the nex
leading order cross section of three-jet production in d
inelastic scattering and that of vector boson plus two-jet p
duction in hadron collisions. We also gave a group indep
dent decomposition of the Born-level five-parton matrix e
ments.

We calculated the next-to-leading order corrections to
four-jet rates with the Durham and Cambridge jet cluster
algorithms and to the differential distributions of they4 ,
thrust minor and C parameter~at C>0.75) four-jet shape
variables. In the case of four-jet rates the radiative corr
tions were found to be large, but just acceptable. The re
malization scale dependence decreased significantly and
fixed order result matched with the next-to-leading logari
mic approximation gave remarkably good agreement w
LEP data over a wide range of the resolution variable. T
high level of agreement implies that the QCD four-jet bac
ground toW6 pair production at higher center of mass e
ergies can be predicted in perturbation theory reliably. In
case of event shape variables the radiative corrections
the renormalization scale dependence are unacceptably
suggesting that the next-to-leading order prediction is
reliable and even higher orders are important.
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APPENDIX A: HELICITY AMPLITUDES

In this appendix we present analytic formulas for the fo
and five-parton tree-level helicity amplitudes of the relev
subprocesses. These amplitudes were first calculated in
@21#. The reason for presenting our results here is twofo
On one hand we express the relevant color subamplitude
terms of Weyl spinorsuk6&, which were also employed in
the case of the one-loop four-parton amplitudes@20#, while
on the other we found that our expressions in the case o
four-quark processes are more compact and the corresp
ing computer code is faster than earlier ones. Another n
feature of the amplitudes in this appendix is that we allow
the existence of light fermionic degrees of freedom in
adjoint representation of the gauge group~light gluinos!. In
calculating the amplitudes, we used quark and gluon curr
@42,44# and standard helicity techniques@43,44#.

We consider three subprocesses, each involving a ve
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bosonV(Q) carrying total four-momentumQ and n QCD
partons (n54, or 5 here!. The first subprocess is the produ
tion of a quark-antiquark pair andn22 gluons. The second
one is the production of two quark-antiquark pairs~of equal,
or unequal flavor! andn24 gluons. Finally, the third proces
is the production of a quark-antiquark pair, a light-gluin
pair andn24 gluons:

l 1~2pl !1 l 2~2pl̄ !→V~Q!→q~p1!1g1~p2!1•••

1gn22~pn21!1q̄~pn!, ~A1!

l 1~2pl !1 l 2~2pl̄ !→V~Q!→q~p1!1q̄~p2!1Q~p3!

1Q̄~p4!1g1~p5!1•••1gn24~pn!,

~A2!

l 1~2pl !1 l 2~2pl̄ !→V~Q!→q~p1!1q̄~p2!1g̃~p3!

1g̃~p4!1g1~p5!1•••1gn24~pn!.

~A3!

We have chosen the crossing invariant all particle outgo
kinematics with corresponding particle-antiparticle assig
ment, therefore, momentum conservation means

pl1pl̄ 1p11p21p31p41p51•••1pn50. ~A4!

We shall express the amplitudes in terms of color subam
tudes. In the case of process~A1!, the color basis is chosen t
be product of generators in the fundamental representa
~in this appendix we use the normalizationTR51 in
Tr(tatb)5TR dab for the generators of the symmetry group!,
therefore, the helicity amplitudes have the decomposition

u1 f
h1,2g

h2 , . . . ,n
f̄

hn&n5 (
$2, . . . ,n21%

~ ta2
• . . . •tan21! i 1 ī n

3m~1 f
h1 , . . . ,n

f̄

hn!, ~A5!

where $2, . . . ,n21% denotes all permutations of the labe
(2, . . . ,n21) andm(1, . . . ,n) are the color subamplitudes. I
Eq. ~A5! and in the following formulas the lepton labels a
suppressed.

In the case of the four-fermion subprocesses@processes
~A2! and ~A3!# we decompose the helicity amplitudes
follows:

u1 f 1

h1,2f 2

h2,3f 3

h3,4f 4

h4,5g
h5 , . . . ,ng

hn&n

5 (
$5, . . . ,n%

(
$1,3%

~21!P

3 (
$2,4%

~21!PAn~1,2,3,4,5, . . . ,n!, ~A6!

whereP50 if the elements are in the canonical order@~1,3!,
or ~2,4!# and P51 if the elements are permuted@~3,1!, or
0-12
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~4,2!#. The partial amplitudesAn can be decomposed furthe
in color space. In the case of four-quark production,

A4~1q,2q̄,3Q,4Q̄!5T~1,2,3,4! M ~1 f 1

h1,2f 2

h2,3f 3

h3,4f 4

h4!,

~A7!

where M (1 f 1

h1,2f 2

h2,3f 3

h3,4f 4

h4) are the color subamplitudes an

T(1,2,3,4) is defined by

T~1,2,3,4!5 (
b51

NA

t i 1 ī 2

b
t i 3 ī 4

b . ~A8!

In the case of four-quark plus one-gluon production, th
are four independent basis vectors in color space:

A5~1q,2q̄,3Q,4Q̄,5g!5(
i 51

4

Ti~1,2,3,4,5!

3Mi~1 f 1

h1,2f 2

h2,3f 3

h3,4f 4

h4,5h5!, ~A9!

whereTi(1,2,3,4,5) are the color basis vectors:

T1~1,2,3,4,5!5 (
b51

NA

~ ta5tb! i 1 ī 2
t i 3 ī 4

b , ~A10!

T2~1,2,3,4,5!5 (
b51

NA

~ tbta5! i 1 ī 2
t i 3 ī 4

b , ~A11!

T3~1,2,3,4,5!5 (
b51

NA

t i 1 ī 2

b
~ ta5tb! i 3 ī 4

, ~A12!

T4~1,2,3,4,5!5 (
b51

NA

t i 1 ī 2

b
~ tbta5! i 3 ī 4

. ~A13!

The partial amplitudes for the process~A3! can be written
in terms of the color subamplitudes of the process~A2!, only
the color basis differs. Whenn54,

A4~1q ,2q̄ ,3g̃ ,4g̃!5T̃~1,2,3,4!M̃ ~1 f 1

h1,2f 2

h2,3h3,4h4!,

~A14!

where

T̃~1,2,3,4!5 (
b51

NA

t i 1 ī 2

b
Fa3a4

b . ~A15!

Finally, for n55 we have

A5~1q ,2q̄ ,3g̃ ,4g̃,5g!

5(
i 51

4

T̃i~1,2,3,4,5!M̃ i~1 f 1

h1,2f 2

h2,3h3,4h4,5h5!, ~A16!

where
01402
e

T̃1~1,2,3,4,5!5 (
b51

NA

~ ta5tb! i 1 ī 2
Fa3a4

b , ~A17!

T̃2~1,2,3,4,5!5 (
b51

NA

~ tbta5! i 1 ī 2
Fa3a4

b , ~A18!

T̃3~1,2,3,4,5!5 (
b51

NA

t i 1 ī 2

b
~Fa5Fb!a3a4

, ~A19!

T̃4~1,2,3,4,5!5 (
b51

NA

t i 1 ī 2

b
~FbFa5!a3a4

. ~A20!

In the following subsections we give explicit formulas fo
the color subamplitudes with a common coefficient facto
out:

m~1 f 1

h1, . . . ,nf n

hn!52e2g~n22!Cf 1f n

hl ,h1
i

s
A~1h1, . . . ,nhn!,

~A21!

M ~1 f 1

h1,2f 2

2h1,3f 3

h3,4f 4

2h4!52e2g2Cf 1f 2

hl ,h1d f 3f 4

i

s

3A~1h1,22h1,3h3,42h3!,

~A22!

Mi~1 f 1

h1,2f 2

2h1,3f 3

h3,4f 4

2h3,5h5!52e2g3Cf 1f 2

hl ,h1d f 3f 4

i

s

3Ai~1h1,22h1,3h3,42h3,5h5!,

~A23!

M̃ ~1 f 1

h1,2f 2

2h1,3h3,42h4!52e2g2Cf 1f 2

hl ,h1
i

s
A~1h1,22h1,3h3,42h3!,

~A24!

M̃ i~1 f 1

h1,2f 2

2h1,3h3,42h3,5h5!52e2g3Cf 1f 2

hl ,h1
i

s

3Ai~1h1,22h1,3h3,42h3,5h5!,

~A25!

with s5Q25(pl1pl̄ )
2. TheC coefficients contain the elec

troweak couplings. If the vector bosonV is g or Z0 this
coefficient is defined by

C
f 1f 2

hl ,hf 15„2Qf 11v l
hlv

f 1

hf 1PZ~s!…d f 1f 2
, ~A26!

where f 1 , f 2 are the flavor indices of the quark antiqua
pair that couples to the vector boson and

v l
25

2112sin2uW

sin2uW
, v l

15
2sin2uW

sin2uW
, ~A27!
0-13
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v f
25

6122Qfsin2uW

sin2uW
, v f

152
2Qfsin2uW

sin2uW

~A28!

are the left- and right-handed couplings of leptons a
quarks to neutral gauge bosons. In Eqs.~A27!,~A28! uW de-
notes the Weinberg angle,Qf is the electric charge of the
quark of flavorf in units ofe and the two signs in Eq.~A28!
correspond to up~1! and down (2) type quarks. The cou
pling C contains the ratio of theZ0 and photon propagators

PZ~s!5
s

s2MZ
21 iGZ MZ

, ~A29!

whereMZ andGZ are the mass and width of theZ0.
If the vector bosonV is aW1 or aW2, then the couplings

take the form

C
f 1f 2

hl ,hf 15v l
hlv

f 1

hf 1PW~s!d f̃ 1f 2
, ~A30!

where f̃ 1 denotes the partner of quarkf 1 in the SU(2)L dou-
blet and, for the sake of simplicity, we set the Kobayas
Maskawa mixing matrix to unity. In Eq.~A30! the left- and
right-handed couplings differ from the corresponding expr
sions in Eqs.~A27!,~A28!:

v l
25v f

25
1

2A2sinuW

, v l
15v f

150. ~A31!

In this casePW(s) denotes the ratio of theW6 and photon
propagators,

PW~s!5
s

s2MW
2 1 iGW MW

, ~A32!

whereMW andGW are the mass and width of theW6.

1. Four-parton color subamplitudes

In this subsection, we present all four-parton color su
amplitudes for the helicity configurationhq51 and hl5
1. The amplitudes for the reversed helicity configuratio
can be obtained from these amplitudes by applying pa
operation P, which amounts to making the substitution
^ i j &[^ki

2ukj
1&↔@ j i #[^kj

1uki
2&. The amplitudes when only

the lepton helicities are reversed can be obtained simply
exchanging the lepton labels and flipping the lepton helic

in the coupling factorsC
f 1f 2

hl ,hf 1. We use the notation

^ i u lm . . . u j &[kl
mkm

n ^ki
2ugmgn . . . ukj

6&, ~A33!

@ i u lm . . . u j #[kl
mkm

n ^ki
1ugmgn . . . ukj

6&,
~A34!

^ i u~ l 1m! . . . u j &[~kl
m1km

m! . . . ^ki
2u gm . . . ukj

6&,
~A35!
01402
d

-

-

-

s
y

y
y

@ i u~ l 1m! . . . u j #[~kl
m1km

m! . . . ^ki
1u gm . . . ukj

6&,
~A36!

and the two- and three-particle invariantssi j [(ki1kj )
2 and

t i j l [(ki1kj1kl)
2. Labels 5 and 6 refer to the positron an

electron respectively.
The two-quark two-gluon amplitudes are as follows:

A~1q
1,2g

1,3g
1,4q̄

2
!52

^45&2@56#

^12&^23&^34&
, ~A37!

A~1q
1,2g

2,3g
2,4q̄

2
!52

@16#2^56&
@12#@23#@34#

, ~A38!

A~1q
1,2g

1,3g
2,4q̄

2
!52

^31&@12#^45&^3u~112!u6&

^12&s23t123

1
^34&@42#@16#^5u~314!u2&

@34#s23t234

1
^5u~314!u2&^3u~112!u6&

^12&@34#s23
, ~A39!

A~1q
1,2g

2,3g
1,4q̄

2
!5

@13#2^45&^2u~113!u6&
@12#s23t123

2
^24&2@16#^5u~214!u3&

^34&s23t234

2
@13#^24&@16#^45&

@12#^34&s23
. ~A40!

The four-quark amplitudes are as follows:

A~1q
1,2q̄

2,3Q
1,4Q̄

2
!52

@13#^52&^4u~113!u6&
t134s34

1
^42&@61#^5u~214!u3&

t234s34
, ~A41!

A~1q
1,2q̄

2,3Q
2,4Q̄

1
!5A~1q

1,2q̄
2,4Q

1,3Q̄
2

!. ~A42!

2. Five-parton color subamplitudes

In this subsection, we present all five-parton color suba
plitudes for the helicity configurationhq51 and hl51.
The amplitudes for the remaining helicity configurations c
be obtained from these amplitudes as in then54 case. La-
bels 6 and 7 refer to the positron and electron respective

First we list the two-quark three-gluon amplitudes:
0-14
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A~1q
1,2g

1,3g
1,4g

1,5q̄
2

!52
^65&2@67#

^12&^23&^34&^45&
, ~A43!

A~1q
1,2g

1,3g
1,4g

2,5q̄
2

!5
^65&^4u~516!u7&

^23&^34&@34#t567
S @23#^4u~213!u1&

t234
1

^4u~112!u3&

^12& D1
^4u~516!u7&^6u~514!u3&

^12&^23&^34&@34#@45#

2
^4u~112!u7&^6u~514!u3&^45&@53#

^12&^24&@45#s34t345
2

@17#^6u~117!u2&^45&2@53#2

@45#^42&s34t345t167

1
@17#^45&@53#

^23&@34#@45#t167
S ^6u~117!u2&

^34&
1

^6u~117!u3&

^24& D2
@17#^45&@23#

^23&@34#t234t167

3S ^6u~117!u2&^24&

^34&
1^6u~117!u3& D , ~A44!

A~1q
1,2g

1,3g
2,4g

1,5q̄
2

!51
^31&@12#^3u~112!u4&^3u~516!u7&^65&

^12&^34&s23t123t567
1

^31&@12#^3u~112!u7&^65&^35&

^12&^34&^45&s23t123

2
^3u~112!u7&^6u~117!u2&^35&2

^12&^23&^34&^45&@23#t345
1

^3u~112!u7&^6u~513!u4&^35&@42#

@23#^12&^23&s34t345

2
@42#2@17#^6u~117!~214!u3&^35&

s23s34t234t167

@42#^3u~516!u7&^65&
s23s34t567

S @42#^3u~214!u1&
t234

2
^3u~112!u4&

^12& D
1

@17#^6u~117!u2&^35&2

s23t345t167
S ^3u~514!u2&

^34&^45&
1

@42#@54#

s34
D , ~A45!

A~1q
1,2g

2,3g
1,4g

1,5q̄
2

!5
@43#2^2u~314!u1&^2u~516!u7&^65&

s23s34t234t567
1

@13#^2u~314!u1&^2u~516!u7&^65&
@12#^34&^42&s23t567

2
@13#2^2u~113!u4&^2u~516!u7&^65&

@12#^24&s23t123t567
2

@13#2^2u~113!u7&^65&^25&
@12#^24&^45&s23t123

2
@17#^25&@43#2^6u~117!~314!u2&

s23s34t234t167
1

@13#@17#^25&
@12#s23̂ 24&t345

S ^6u~514!u3&S ^25&

^45&
2

^32&

^34& D
2^6u~513!u4&

^42&

^34& D1
@17#^6u~117!u3&^25&

^24&s23t345t167
S ^2u~514!u3&S ^25&

^45&
2

^32&

^34&
2^2u~513!u4&

^42&

^34& D ,

~A46!

A~1q
1,2g

1,3g
2,4g

2,5q̄
2

!5
@12#@2u~314!~516!u7#^65&

s23t567
S ^43&2

s34t234
2

^31&
@34#@42#^12& D2

^31&2@12#2^4u~516!u7&^65&

^12&@24#s23t123t567

1
^31&@12#^3u~112!u7&^6u~514!u2&

^12&@24#@45#s23t123
1

^3u~112!u7&^6u~117!u2&

^12&@34#@45#s23

1
@17#^6u~117!u2&^3u~514!u2&

@34#@45#s23t167
2

@17#^6u~117!u2&^5u~314!u2&^43&2

s23s34t234t167
, ~A47!
014020-15
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A~1q
1,2g

2,3g
2,4g

1,5q̄
2

!5
^23&2@14#@4u~213!~516!u7#^65&

s23s34t234t567

2
@14#^3u~516!u7&^65&

@42#s34t123t567
S @42#^2u~113!u4&1@43#^3u~112!u4&

@23#
2

@14#^3u~112!u4&
@12# D

2
@14#^65&^35&

@42#^45&s34t123
S @42#^2u~113!u7&1@43#^3u~112!u7&

@23#
2

@14#^3u~112!u7&
@12# D

1
@14#@17#^6u~513!u4&^35&2

@12#@24#^45&s34t345
2

@17#^6u~117!u4&^2u~513!u4&^35&2

@42#^45&s34t345t167

2
@17#^6u~117!u4&^5u~213!u4&^35&

^45&@42#@23#s34t167
2

@17#^6u~117!u4&^5u~213!u4&^23&2

s23s34t234t167
, ~A48!

A~1q
1,2g

2,3g
1,4g

2,5q̄
2

!5P A~5q
1,4g

1,3g
2,2g

1,1q̄
2

!u6↔7 , A~1q
1,2g

2,3g
2,4g

2,5q̄
2

!5P A~5q
1,4g

1,3g
1,2g

1,1q̄
2

!u6↔7 . ~A49!

The four-quark one-gluon amplitudes have the form:

A1~1q
1,2q̄

2,3Q
1,4Q̄

2,5g
1!52

@15#^4u~115!u3&^4u~216!u7&^62&

^45&s15s34t267
2

@17#^6u~117!u5&^42&2@23#

^45&s34t234t167

2
^4u~115!u7&^6u~214!u3&^42&

^15&^54&s34t234
1

@53#^4u~315!u1&^4u~216!u7&^62&

^45&s34t345t267

1
@17#^6u~117!~315!u4&@35#^42&

^45&s34t345t167
, ~A50!

A1~1q
1,2q̄

2,3Q
1,4Q̄

2,5g
2!5

@13#2^51&^4u~216!u7&^62&
@35#s15s34t267

1
@17#^6u~117!u3&^5u~214!u3&^42&

@35#s34t234t167

2
@13#@17#^6u~214!u3&^42&

@15#@53#s34t234
1

@13#^54&@3u~415!~216!u7#^62&
@35#s34t345t267

2
@17#^6u~117!u3&^54&^2u~415!u3&

@35#s34t345t167
, ~A51!

A1~1q
1,2q̄

2,3Q
2,4Q̄

1,5g
1!5A1~1q

1,2q̄
2,4Q

1,3Q̄
2,5g

1!, A1~1q
1,2q̄

2,3Q
2,4Q̄

1,5g
2!5A1~1q

1,2q̄
2,4Q

1,3Q̄
2,5g

2!, ~A52!

A2~1q
1,2q̄

2,3Q
1,4Q̄

2,5g
1!52

@53#^4u~315!u1&^4u~216!u7&^62&

^45&s34t345t267
2

@17#^6u~117!u3&@25#^42&2

^45&s25s34t167

2
@13#^4u~113!u5&^4u~216!u7&^62&

^45&s34t134t267
2

@13#^4u~113!u7&^62&2

^45&^52&s34t134

2
@17#^6u~117!~315!u4&@35#^42&

^45&s34t345t167
, ~A53!

A2~1q
1,2q̄

2,3Q
1,4Q̄

2,5g
2!52

@13#^54&@3u~415!~216!u7#^62&
@35#s34t345t267

1
@13#2^41&^5u~216!u7&^62&

@35#s34t134t267

1
@17#^6u~117!u3&^54&^2u~415!u3&

@35#s34t345t167
2

@13#^4u~113!u7&^6u~215!u3&
@35#@52#s34t134

1
@17#^6u~117!u3&^52&^4u~215!u3&

@35#s25s34t167
, ~A54!

A2~1q
1,2q̄

2,3Q
2,4Q̄

1,5g
1!5A2~1q

1,2q̄
2,4Q

1,3Q̄
2,5g

1!, A2~1q
1,2q̄

2,3Q
2,4Q̄

1,5g
2!5A2~1q

1,2q̄
2,4Q

1,3Q̄
2,5g

2!, ~A55!
014020-16
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A3~1q
1,2q̄

2,3Q
1,4Q̄

2,5g
1!52

@53#^4u~315!u1&^4u~216!u7&^62&

^45&s35t345t267
2

@17#^6u~117!~315!u4&@35#^42&

^45&s35t345t167
,

~A56!

A3~1q
1,2q̄

2,3Q
2,4Q̄

1,5g
2!52

@14#^53&@4u~315!~216!u7#^62&
@45#s35t435t267

1
@17#^6u~117!u4&^53&^2u~315!u4&

@45#s35t435t167
,

~A57!

A4~1q
1,2q̄

2,3Q
1,4Q̄

2,5g
2!5

@13#^54&@3u~415!~216!u7#^62&
@35#s45t345t267

2
@17#^6u~117!u3&^54&^2u~415!u3&

@35#s45t345t167
,

~A58!

A4~1q
1,2q̄

2,3Q
2,4Q̄

1,5g
1!5

@54#^3u~415!u1&^3u~216!u7&^62&

^35&s45t345t267
1

@17#^6u~117!~415!u3&@45#^32&

^35&s45t345t167
.

~A59!
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APPENDIX B: MATRIX ELEMENTS

In this appendix we present analytic formulas for t
color-correlated four-parton Born-level matrix elements a
for the four-, five-parton Born-level matrix elements. T
calculation of the color-correlated four-parton amplitudes
a straightforward application of color algebra and the fo
parton helicity amplitudes. However, to our knowledge the
results were not published previously. The uncorrelated c
sum was first calculated in Ref.@21#. We present our result
in terms of the color subamplitudes of Appendix A. It is
new feature of the matrix elements in this appendix that t
are given in terms of group independent functions and eig
values of the quadratic Casimir operators of the underly
gauge group.

Having the helicity amplitudes at our disposal, we calc
late the squared matrix elements summed over final s
colors without and with color-correlation:

uMn~1, . . . ,n!u25 n^1, . . . ,nuu1, . . . ,n&n , n54,5,
~B1!

uM 4
i , j~1, . . . ,4!u25 4^1

h1, . . . ,4h4uTi•Tj u1h18, . . . ,4h48&4 ,
~B2!

where in the latter case we leave the helicity indices exp
so that both correlated and uncorrelated helicity summa
is possible.~Although we did not show the flavor indices, th
flavor summation is also left out, as will become clear late!
In the correlated case we have to insert the helicity ma
@see Eq.~9!#

H i , j
hh85dh1h

18
. . . ^hi uVi , j uhi8& . . . dhnh

n8
, ~B3!

and in the uncorrelated case

H i , j
hh85dh1h

18
. . . dhihi8

. . . dhnh
n8
. ~B4!

We evaluate the color sum in such a way that the ma
elements are given as polynomial expressions of the Cas
invariants of the gauge group with group independent ki
01402
d

s
-
e
or

y
n-
g

-
te

it
n

x

x
ir
-

matical coefficients. In addition to the usual quadratic C
simirsCF andCA , we shall also use a cubic CasimirC3 that
is defined as

C35 (
a,b,c51

NA

Tr~ tatbtc!Tr~ tctbta!. ~B5!

In the following subsections we list the explicit formulas f
uM 4u2, uM 4

i j u2 and uM 5u2.

1. Four-parton color-summed matrix elements

In this subsection, we give explicit formulas for the colo
summed Born matrix elements for four final state parto
There are four different cases: the two-quark two-gluon p
cess and three four-fermion processes~two unequal flavor
quark pairs, two equal flavor quark pairs and the two-qu
two-gluino production!. The color summation is straightfor
ward in each cases, we simply list the results:

uM4~1q ,2g ,3g ,4q̄!u2

5NcCF
2$um~1 f 1

,2,3,4f 4
!1m~1 f 1

,3,2,4f 4
!u2

12 Re„m~1 f 1
,2,3,4f 4

!m~1 f 1
,3,2,4f 4

!* …

2x Re„m~1 f 1
,2,3,4f 4

!m~1 f 1
,3,2,4f 4

!* …%, ~B6!

uM4~1q ,2q̄ ,3Q ,4Q̄!u2

5NcCF
2$22 Re„M̄ ~1 f 1

,2f 2
,3f 3

,4f 4
!

3M̄ ~1 f 1
,4f 4

,3f 3
,2f 2

!* …1x Re„M̄ ~1 f 1
,2f 2

,3f 3
,4f 4

!

3M̄ ~1 f 1
,4f 4

,3f 3
,2f 2

!* …1y„uM̄ ~1 f 1
,2f 2

,3f 3
,4f 4

!u2

1uM̄ ~1 f 1
,4f 4

,3f 3
,2f 2

!u2
…%, ~B7!

uM4~1q ,2q̄ ,3g̃ ,4g̃!u25NcCF
2 xuM̃ ~1 f 1

,2f 2
,3,4!u2,

~B8!
0-17
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wherex and y are ratios of the quadratic Casimirs@see Eq.
~39!# andM̄ (1 f 1

,2f 2
,3f 3

,4f 4
) is defined by

M̄ ~1 f 1
,2f 2

,3f 3
,4f 4

!5M ~1 f 1
,2f 2

,3f 3
,4f 4

!1M ~3 f 3
,4f 4

,1f 1
,2f 2

!.
~B9!

2. Four-parton color-correlated, color-summed matrix
elements

In this subsection, we give explicit formulas for the colo
correlated, color-summed Born matrix elements for four fi
state partons. We consider those four cases as in the pre
subsection. The color summation is again fairly straightf
ward, therefore, we only record the results.

For theV→qq̄gg subprocess

uM 4
ik~1q ,2g ,3g ,4q̄!u252

NcCF
3

2
$M0

ik1xMx
ik1x2Mxx

ik %,

~B10!

where the nonvanishing elements of the matric
M0

ik , Mx
ik , Mxx

ik are given by

M0
1452~S11S21S3!, ~B11!

Mx
14522S122S223S3 , ~B12!

Mx
125Mx

135Mx
245Mx

345S11S21S3 ,

Mxx
145

1

2
~S11S212S3!, ~B13!

Mxx
125Mxx

3452
1

2
~S21S3!,

Mxx
135Mxx

2452
1

2
~S11S3!,

Mxx
335

1

2
~S11S2!

and theSi functions are defined by

S15m~1 f 1

h1,2h2,3h3,4f 4

h4!* m~1
f 1

h18,2h28,3h38,4
f 4

h48!, ~B14!

S25m~1 f 1

h1,3h3,2h2,4f 4

h4!* m~1
f 1

h18,3h38,2h28,4
f 4

h48!, ~B15!

S35m~1 f 1

h1,2h2,3h3,4f 4

h4!* m~1
f 1

h18,3h38,2h28,4
f 4

h48!

1m~1 f 1

h1,3h3,2h2,4f 4

h4!* m~1
f 1

h18,2h28,3h38,4
f 4

h48!. ~B16!

In the case of four-quark production
01402
l
us

-

s

uM 4
ik~1q ,2q̄ ,3Q ,4Q̄!u252

NcCF
3

2
$M0

ik1xMx
ik

1yMy
ik1zMz

ik1x2Mxx
ik 1xyMxy

ik %,

~B17!

where the nonzero element of the matric
M0

ik , Mx
ik , M y

ik , Mz
ik , Mxx

ik , Mxy
ik are the following ones:

M0
125M0

145M0
235M0

34522S3 , ~B18!

M0
135M0

2452S3 ,

Mx
125Mx

145Mx
235Mx

3452S3 , ~B19!

Mx
135Mx

24523S3 ,

M y
125M y

3452S1 , M y
145M y

2352S2 ,
~B20!

Mz
125Mz

3452S2 , Mz
145Mz

2352S1 ,
~B21!

Mz
135Mz

24522~S11S2!,

Mxx
125Mxx

145Mxx
235Mxx

3452
1

2
S3,

~B22!

Mxx
135Mxx

245S3 ,

Mxy
125Mxy

3452S1 , Mxy
145Mxy

2352S2 ,
~B23!

Mxy
135Mxy

245S11S2 .

For this case theSi functions are defined as follows:

S15M̄ ~1 f 1

h1,2f 2

h2,3f 3

h3,4f 4

h4!* M̄ ~1
f 1

h18,2
f 2

h28,3
f 3

h38,4
f 4

h48!, ~B24!

S25M̄ ~1 f 1

h1,4f 4

h4,3f 3

h3,2f 2

h2!* M̄ ~1
f 1

h18,4
f 4

h48,3
f 3

h38,2
f 2

h28!, ~B25!

S35M̄ ~1 f 1

h1,2f 2

h2,3f 3

h3,4f 4

h4!* M̄ ~1
f 1

h18,4
f 4

h48,3
f 3

h38,2
f 2

h28!

1M̄ ~1 f 1

h1,4f 4

h4,3f 3

h3,2f 2

h2!* M̄ ~1
f 1

h18,2
f 2

h28,3
f 3

h38,4
f 4

h48!,

~B26!

where M̄ (1 f 1
,2f 2

,3f 3
,4f 4

) is given by Eq.~B9!. Finally, for

the V→qq̄g̃g̃ subprocess

uM 4
ik~1q ,2q̄ ,3g̃ ,4g̃!u252

NcCF
3

2
$xM̃x

ik1x2M̃ xx
ik %,

~B27!
0-18
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where the nonvanishing elements of the matricesM̃ x
ik and

M̃xx
ik are given by

M̃x
1252uM̃ ~1 f 1

,2f 2
,3f 3

,4f 4
!u2, ~B28!

M̃ xx
1252M̃ xx

3452uM̃ ~1 f 1
,2f 2

,3f 3
,4f 4

!u2,
~B29!

M̃xx
135M̃ xx

145M̃ xx
235M̃ xx

24

5
1

2
uM̃ ~1 f 1

,2f 2
,3f 3

,4f 4
!u2.

3. Five-parton color-summed matrix elements

In this subsection, we give explicit formulas for the colo
summed Born matrix elements for five final state parto
There are again four different cases: the two-quark thr
gluon process, the production of two equal, or unequal fla
quark pairs plus a gluon and the two-quark two-gluino o
gluon production.

In the case of the two-quark three-gluon process the c
summation is straightforward and leads to the following e
pression:

uM5~1q ,2g ,3g ,4g ,5q̄!u25NcCF
3 H M02

x

2
~M112M0!

1
x2

4
~M01M11M2!J ,

~B30!

where

M05U (
$2,3,4%

m~1 f 1
,2,3,4,5f 5

!U2

, ~B31!

M25 (
$2,3,4%

um~1 f 1
,2,3,4,5f 5

!u2, ~B32!

and

M1522 M222 Re (
$2,3,4%8

$m~1 f 1
,2,3,4,5f 5

!*

3„m~1 f 1
,2,4,3,5f 5

!1m~1 f 1
,3,2,4,5f 5

!

2m~1 f 1
,4,3,2,5f 5

!…%, ~B33!

with $2,3,4%8 denoting the cyclic permutations of the thre
labels 2, 3 and 4.

In the case of the four-quark one-gluon subprocesses
have to evaluate the following color sums:

T1
†T15T2

†T25NcCF
2TR , ~B34!
01402
.
e-
r
-

or
-

e

T1
†T1~2↔4!5T2

†T2~1↔3!5NcCF
2 S CF2

1

2
CAD ,

~B35!

T1
†T1~1↔3!5T2

†T2~2↔4!5NcCFS CF2
1

2
CAD ~CF2CA!,

~B36!

T1
†T1~1↔3,2↔4!5T2

†T2~1↔3,2↔4!5C32NcCFTR

CA

2
,

~B37!

T1
†T25NcCFTRS CF2

1

2
CAD ,

~B38!

T1
†T2~1↔3!5T1

†T2~2↔4!5NcCFS CF2
1

2
CAD 2

, ~B39!

T1
†T2~1↔3,2↔4!5C3 . ~B40!

Using these results, the square of the matrix element for
flavor configuration can be written in the form:

uM5~1q ,2q̄ ,3Q ,4Q̄ ,5g!u2

5NcCF
3$M01xMx1yMy

1zMz1x2Mxx1xyMxy%, ~B41!

where we have introduced the ratio

z5
C3

NcCF
3

~B42!

and the following abbreviations:

M05B1C1E, ~B43!

Mx52
1

2
~3C12E1B!, ~B44!

M y5A1D, ~B45!

Mz5F1G, ~B46!

Mxx5
1

4
~2C1E!, ~B47!

Mxy52
1

2
~F1D !, ~B48!

with the functionsA, B, C, D, E, F defined as

A5 (
$1,3%

(
$2,4%

(
i 51

2

uM̄ i u2, ~B49!
0-19
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B522Re„M̄1M̄1~2↔4!*

1M̄2M̄2~1↔3!* 1~1↔3,2↔4!…, ~B50!

C522Re„M̄1M̄1~1↔3!* 1M̄2M̄2~2↔4!*

1~1↔3,2↔4!…, ~B51!

D52ReS (
$1,3%

(
$2,4%

M̄1M̄2* D , ~B52!

E522Re„~M̄11M̄1~1↔3,2↔4!!

3„M̄2~1↔3!1M̄2~2↔4!…* 1~M̄1↔M̄2!…,

~B53!

F52Re„M̄1M̄1~1↔3,2↔4!*

1M̄1~1↔3!M̄1~2↔4!* 1~M̄1↔M̄2!…, ~B54!

G52Re„M̄1M̄2~1↔3,2↔4!*

1M̄1~1↔3!M̄2~2↔4!* 1~M̄1↔M̄2!…, ~B55!

where

M̄1~1 f 1
,2f 2

,3f 3
,4f 4

,5g!5M1~1 f 1
,2f 2

,3f 3
,4f 4

,5g!

1M3~3 f 3
,4f 4

,1f 1
,2f 2

,5g!,

~B56!

M̄2~1 f 1
,2f 2

,3f 3
,4f 4

,5g!5M2~1 f 1
,2f 2

,3f 3
,4f 4

,5g!

1M4~3 f 3
,4f 4

,1f 1
,2f 2

,5g!.

For theV→qq̄g̃g̃g process we have to calculate the fo
lowing products of theT̃i color factors:
n-
y

s.
-

01402
T̃1
†T̃15T̃2

†T̃25NcCF
2CA , ~B57!

T̃3
†T̃35T̃4

†T̃45NcCFCA
2 , ~B58!

T̃1
†T̃25NcCFCAS CF2

1

2
CAD ,

~B59!

T̃1
†T̃35T̃2

†T̃452NcCF

CA
2

4
, ~B60!

T̃1
†T̃45T̃2

†T̃35NcCF

CA
2

4
, ~B61!

T̃3
†T̃45NcCF

CA
2

2
. ~B62!

Using these identities the square of the matrix element
be written in the form:

uM5~1q ,2q̄ ,3g̃ ,4g̃ ,5g!u25NcCF
3$xM̃x1x2M̃ xx%,

~B63!

where

M̃x5uM̃11M̃2u2, ~B64!

M̃ xx5uM̃31M̃4u21
1

2
Re„~M̃11M̃2!~M̃31M̃4* …

2Re„~M̃11M̃4!~M̃21M̃3!* …. ~B65!
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@14# Z. Nagy and Z. Tro´csányi, Nucl. Phys. B~Proc. Suppl.! 64, 63

~1998!.
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