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Next-to-leading order calculation of four-jet observables in electron-positron annihilation
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The production of four jets in electron-positron annihilation allows for measuring the strong coupling and
the underlying group structure of the strong interaction simultaneously. This requires a next-to-leading order
perturbative prediction for four-jet observables. In this paper we describe the theoretical formalism of such a
calculation with sufficient details. We use the dipole method to construct a Monte Carlo program that can be
used for calculating any four-jet observable at the next-to-leading order accuracy. As new results, we present
the next-to-leading order prediction for the thrust mingy,and C parametetat C=0.75) four-jet shape
variables and the four-jet rates with the Cambridge jet clustering algor[tBéb56-282(98)01723-9

PACS numbds): 12.38.Bx, 13.38.Dg, 13.6%., 13.87.Ce

. INTRODUCTION tion for four-jet observables at @f) prevented the experi-
_ S _ mental collaborations from fixing the absolute normalization

Electron-positron annihilation into hadrons is the cleanespf the perturbative prediction, therefore, could not be
process to test quantum chromodynami@€D) [1] in high  measured using the same observables.
energy elementary particle reactions. In this process the ini- Recently the next-to-leading order corrections to various
tial state is completely known and there is a lot of quantitieS¢qr-jet observables have been calculaf@d—16. In this
for instance the total cross section and jet related correlasyicle we give sufficient details of our wofk3—15 and
tions, that d_epend on the Iong distance propertles_of thf)resent several new results for next-to-leading order predic-
theory very little. These quantities can be calculated in P€Mions of four-jet observables that were not published before.

$he important development that made possible these calcu-

coupling. Fo.r this reason the various QCD tests at eIec'[ronl:ations was that the one-loop amplitudes for the relevant
positron colliderd2—7] can be regarded as experiments forQCD subprocesses, i.e., fet e~ —4 partons, became avail-

determiningas . able. In Refs.[17,18 Campbell, Glover and Miller intro-

The other ingredient of QCD, that is in principle free, is .
the underlying gauge group. Although by now nobody ques_ducedFORTRAN programs that calculate the next-to-leading

tions that QCD is based upon &) gauge theory, the “full” ~ Order squared matrix elements of teée™ —y*—qqQQ
measurement of QCD, that is the simultaneous measuremeandqggg processes. In Ref§19,20 Bern, Dixon, Kosower
of the strong coupling and the eigenvalues of the quadratiand Wienzierl gave analytic formulas for the helicity ampli-
Casimir coefficients of the underlying gauge theory, Ge  tudes of the same processes with i@~ —Z°— 4 partons
andC, color charges, is not a purely academic exercise. Thehannel included as well. For the sake of completeness, in
possible existence of light gluind8] influences both the our work we use the amplitudes of Ref&0] for the loop
value of e, and the measured value of the color char@es  corrections. Although the tree-level helicity amplitudes for
assuming SU(3), the value of the light fermionic degrees of thee”e™—5 partons subprocesses had been kn@th we
freedomNy). Thus the only consistent framework to check calculated them anew and present the results in this article in
whether the data favor or exclude the additional degrees derms of Weyl spinors conforming with the notation used for
freedom is a simultaneous fit of these parameters to data. describing the one-loop helicity amplitud¢20]. We also

In principle any observable depends on these basic paranpresent the previously unpublished color linked helicity de-
eters. The sensitivity of a given observable on the colopendent Born matrix elements for teée™—4 partons pro-
charges however, is influenced by the fact that in perturbacesses, which are needed also for the next-to-leading order
tion theory the three gluon coupling appears at tree level firstalculation of the three-jet production in deep inelastic scat-
for four-jet final states. In the total cross section and fortering and for vector boson plus two-jet production in hadron
three-jet like quantities the adjoint color charge appears onlgollisions.
in the radiative corrections. Therefore, four-jet observables In Sec. Il we give details of the analytical and numerical
seem to be the best candidates to measure the color factogglculation and describe how we parametrize our results. In
Indeed, during the first phase of operation of the CERNSec. lll we present the complete &) predictions for the
Large Electron Positron Collidét.EP) four-jet events were four-jet rates using the Durham algoritH22] and the Cam-
primarily used for measurinGg andC, [9]. These measure- bridge algorithm proposed recentf23] and make a com-
ments however, were not complete in the sense mentionggarison of these algorithms from the perturbation theory
above. The lack of knowledge about the perturbative predicpoint of view. We show the next-to-leading order results for
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the shape variables thrust minor apgdoften used in experi- NLO NLO NLO

mental analyses and for the C parameter distribution at C o :J dos +fd04 ' 5
. . . 5 4

=0.75. Section IV contains our conclusions. We present ana-

lytic results for the four- and five-parton tree-level helicity

amplitudes in Appendix A, and perform the color summation

in Appendix B.

where

f dodO= f [doR—do?] (6)
Il. DETAILS OF THE CALCULATION ° °
A. Cancellation of infrared divergences and
It is well known that the next-to-leading order correction
is a sum of two integrals, fdgzlw:f dUV+f do?|. (7)
4 4 1

NLO_ NLO _ R V
7 _f dor Lda * Ldg ' @ There are many ways to define the subtraction term, but all

must lead to the same finite next-to-leading order correction.
where @ is an exclusive cross section of five partons in theSINce the virtual correction is not positive definite, then de-
final state: pending on the size of the subtraction term it may happen
H NLO NLO ; g t A
that either d5 - or do, - is not positive definite. From
numerical point of view the best situation is when both are
f doR= f dr®(| M Ee92)Js, (2)  positive definite, so that numerical cancellation of terms with
5 opposite sign does not occur. We define the subtraction term
as a function of a parametere (0,1] which essentially con-
and & is the one-loop correction to the process with fourtrols the region of the five-parton phase space over which the
partons in the final state: subtraction is nonzero such that=1 means the full dipole
subtraction(see Sec. Il B By tuning the value ofr, we can
fd V_J’ dr (| M HoR2) g 3 achieve that we add two positive definite integrals for almost
4 o= 4 4 all values of the observable to obtain the full correction. We
use ana=0.1, which is advantageous also for saving CPU
time: The large number of dipole terms and their somewhat

—the real and virtual corrections. Although we specify our : . ;
: . complicated analytic structure makes the evaluation of the
formulas to the case of four-jet calculation, one can use the

formulas of this section to obtain thre-jet cross section by subtraction term rath_er time consuming. Constraining the
X . phase space over which the subtraction is zero we can speed
simply changing 45) to m(m+1).

; . . up the program.
The two integrals on the right-hand side of Hq) are X o . . e
separately divergent ill=4 dimensions, but their sum is In spite that the five-parton integral in E@) is finite, we

e . . . ; . introduce a very small cutoff in the phase space around the
finite _prowd_ed the jet functionl, defines an infrared safe singular regions. Such a cutoff does not alter the value of the
guantity, which formally means that

integral, but helps avoiding the cancellation of very large
numbers that could lead to arbitrary values close to the sin-
gularity due to the finite machine precision. This cutoff is
useful, but is also dangerous: if the subtraction is not correct,
in any case, where the five-parton and the four-parton conthe five-parton integral becomes finite, but incorrect. The
figurations are kinematically degenerate. The presence ahird advantage of using the parameteis that such errors
singularities means that the separate pieces have to be regian be spotted by varying the value af and checking

larized, and the divergences have to be cancelled. We usghether the full correction is independent of this parameter.
dimensional regularization id=4—2¢ dimensiong24], in

which case the divergences are replaced by double and single

poles ine. We assume that ultraviolet renormalization of all

Green functions to one-loop order has been carried out, so In this subsection we recall those dipole factorization for-

the poles are of infrared origin. In order to obtain the finitemulas that are relevant to our calculation. We do this only to

sum, we use a slightly modified version of the dipole methodthe extent that we can define the simple modification to the

of Catani and Seymou®5] that exposes the cancellation of original formalism and the explicit cross section formulas of

the infrared singularities directly at the integrand level. our calculation unambiguously. For further details we refer
The reason for modifying the original dipole formalism is to the original work of Catani and Seymol#5].

numerical. The essence of the dipole method is to define a In the dipole method the subtraction term is a sum of

single subtraction term «ef*, the dipole subtraction, that several dipole terms,

regularizes the real correction in all of its singu{aoft and

collineap limits. Thus, the two singular integrals in E€l) deA: D f dr® Dij Ja ®)

are substituted by two finite ones: 5 K#1,j '

\]5—>\]4 (4)

B. Dipole formulas for final state singularities
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where the dipoleD;;  is a function of the final state mo- where
mentap, and is given by

- - dp; - -
Dij(P1, - - - Ps) Ldpi(pij . P)]1= W&(p?)ﬂpi PP, (15)
! Moo Ty d the Jacobian factor i
=_2pwp4<' _,”,___,k,__ | VIJk and the Jacobian factor Is
i"Mj IJ
- - -~ o~ - (1-yi0°°
AT A (9) JPi;Pij P =O(1=Z)O(1—yjj )———=
i
INEQ.(9) |....i],... Kk ...)sIis a vector in color+ he- (16)

licity space defining the four-parton amplitude obtained from
the original five-parton Born amplitude by replacita) the
partonsi andj with a single partonT (the emittey and (b)
the partork with the partork (the spectator The momenta

As mentioned before, we modify the original formalism such
that we constrain the phase space over which the dipoles are
subtracted:

of the spectator and the emitter are given in terms of a di- A .
mensionless variable J;)do (a)ZKZ,j fdl“( D O (yij k<a)ds, (17)
Pip; . . . .
Yij k= (100  with a€(0,1]. The jet function in Eq(17) is a four-parton

D+ DL+ ! ~ ~
PiP; ¥ PjPic™ PP jet function that depends on the momeptaandpy, but not

as onp;, therefore, the integral over the one-parton phase space
can be performed analytically. It can be shown that after
~ 1 P integiaticln of the dipole Djj(psi,....,ps) over
Pk T1oy; P PR TP 1_—yijkpk - (1D [dpi(pi; ,pK) ], only color correlations survivg25], in the
’ ’ form

Ty and T;; are the color charges of the spectator and the

emitter. These color charges are defined by their action onto Ao (B T
the color space: If particleemits a gluon with color indeg Ldpi(pij . P15 k(P2 - - - Ps)
then the color-charge operatdy has the following matrix
element in color space XO(yjj k<)
<Cl R o7 ...C4C|Ti|b1 b, b4> 1 ij,k ~ T 2
' i 4 ' i ' =—Vij,k(a)—2|/\/l4’(...,|J,...,k,...)| , (18
= 5clbl PP Tgibi PP 5C4b4! (12) g
¢ _pc¢ : - where

whereTcp, =Fcp = —ifccp, (color-charge matrix in the ad-
joint representationif the emitting particlei is a gluon and IMU, ... 412=41,... 4 T -Til1,....4, (19

Te b, Etﬁ b, (color-charge matrix in the fundamental represen-
tatlon) |f the emitting particlel is a quark(in the case of an are the color-correlated four-parton tree matrix elements.

antiquark emltteﬂ'c_b__tc_b_ —t£.). Their explicit expressions are given in Appendix B. In Eq.
In Eq. (9) the splitting matricesY;; , are matrices in the (18),

helicity space of the emitter. They depend on the kinematic
variablesy;; x and Vij,k(a):f [dpi(pij P 1O (Yij k< a)

~ PPk

7= (13 ! 5——(Vij

Pij Px “2prp

and take different forms for the splitting of different partons _as 1 47 p?
[see Eqs(5.7)—(5.9) in Ref.[25]]. 2. T(1-5) m Vu(s @), (20

The definition of the dipole momenta makes possible the
exact factorization of the five-particle phase space into a

four-particle and a one-particle phase space where(V;; ) denotes the ° average uf; « over the polariza-

tions of the emitter partor] The functions)jj(e,«) depend

S)(py, ... ,p5)=dl"(4>( o aBij o ,E)k, ) only on the flayor indices andj. Rewrltlhg the. oDe particle
o phase space in terms of the kinematic varialdesndy,
X[ dpi(pij .Pi)], (14)  from the definition ofV;(e,a) in Eq. (20) we obtain
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V(e a>=jld~z-(~z-<1—~z->>—sfady yLe(1-y)t2e
ijl&, o a4 i 0

X<Vij,k(~zi Y))

, (21
8magu’®
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where the spin-averaged splitting functions are given in Eqswhere they; andK; constants are defined by

(5.29—(5.31) of Ref.[25]. Performing the integration in Eq.
(21), we find

1 ) 3/1
Vag(€,@)=Cp ;—Iog a +§ g—1+a—loga

2

T
+5——+0(¢e)¢,

5 (22

2(1 16
an(s,a)=TR( —§(g—1+a—|oga)—§+0(s)],

(23
1 ) 11/ 1
Vogle,a@)=2Cp ;—Iog a +€ ;—1+a—|oga
PP 24
9~ 5 TOe);. (29

It was shown in Ref[25] that after integrating over the

factorized one-particle phase space, the subtraction term can

be recast in the form

f dO'A: J' dr(4)4<1, P
5 4

where the insertion operatdfe,«) depends on the color

,4'(8,a)|1, e ,44\]4, (25)

charges and momenta of the four final-state partons in

[1,...,9.:
|(P1,P2.Ps Paie @) == 5 - g — 8)2 V(e @)
477/-‘“2 )s

X2, Ti-T 26
g. k(ZPi'pk 29

The singular factord’,(e,«), are defined as
Vq(a)(sva)zvqg(sva)l (27)
Vy(e,a)= EVgg(s,a)-i-Nquqis,a). (28

Using EQgs.(22)—(24) they can be written in the following
explicit form:

1 72
Vi(e,a)= T ——?"096“
e
1
+7i g+a—|0gaf +Ki+o(8), (29)
3 (7 2
Yq(q)ZECFa K@= 2 6 Cr. (20
11 2
Yo~ ECA_ §TRNf’

‘ = 67 WZC 10
9118 6, A 9

The formal result of the cancellation mechanism dis-
cussed in this subsection is that the next-to-leading order
correction is a sum of two finite integrals as given in E).

We would like to mention that although both integrals are

finite, the integrand of the five-parton integral is in fact di-

vergent, it contains integrable square-root singularities in the
kinematically degenerate region of the five-parton phase
space. The efficient way to integrate such a function is to
apply important sampling. We apply multichannel Monte

Carlo integration for this purpose, but do not consider the
details of this technical point in this article.

TrNs.

C. The general structure of the results

Once the phase space integrations in &j.are carried
out, the next-to-leading order differential cross section for
the four-jet observabl®, at a fixed scal&) takes the gen-
eral form

1 do

(To dO (31)

—=(0y)= 772504(04) + 773Co4(o4),

where = a4(Q) Cr/ 2. The renormalization scale depen-
dence of the cross section is obtained by the substitution
—n(u) (1+Bo/Celnx,),  with  n(u)=as(u) Cg/ 2,
which yields

1

0o

Bo
B°4(O4)C_F Inx2,

do ) 3
40, (0= ()80 (00 + n()

+ co4<o4>} . (32

In Eq. (32) oo denotes the Born cross section for the process

e"e”—qg, u isthe renormalization scalg —,u/\/§|s the
renormalization scale divided by the total c.m. energy and
Bo, and Co, are scale independent functiorBg, is the

Born approximation and:o4 is the radiative correction. We
use the two-loop expression for the running coupling:
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as(Mz) ( B1 as(Mz) |n(W(M,Mz))) gular correlations Signer presented the leading color correc-
as( ) )

=————1- % tions in Ref.[12], and we added the full corrections in Ref.
W(p,Mz) Bo 2m  wW(p,Mz) (33  [15]. In this section we would like to add the four-jet rate
obtained using the Cambridge clustering and several event
with shape variables to the list of four-jet observables that are
calculated at the next-to-leading order accuracy. We do not

as(do) , (o consider the four-jet angular correlations here.
W(d,00) =1~ Bo— '”(H)’ (34 e and
A. Four-jet rates
,30=1§1CA— gTRva (35) The most important multijet observables that are used for

determining the underlying parton structure of hadronic
events are the multijet rates. &f e~ annihilation the widely
3121—7Ci—2CFTRNf— 1_0CATRva (36) knowrj Durham[22] algorithm have'become i'ndispensable
3 3 for this purpose. Recently a new jet clustering, the Cam-
, L _ , artBy b bridge algorithm was proposed as an improved version of the
with the normalizationTg=1/2 in Tr(T*T")=Tgré®. The  pyrham schem§23]. This scheme is designed to minimize
numerical values presented in this letter were obtained at thg,q formation of “junk jets” — jets formed from hadrons of
Z° peak with M;=91.187 GeV,I';=2.49 GeV, sifily oy transverse momenta, unconnected to the underlying par-
=0.23, ay(Mz)=0.118 and\¢=5 light quark flavors. ton structure. As a result, the hadronization corrections to the
In order to make possible the measurement of the colopean jet multiplicities were found smaller when the Cam-
factors, we write both the Born approximation and the h'gherbridge algorithm is employed than for the Durham clustering

order correction as linear and quadratic forms of ratios of theE23]_ However, it was shown in Ref28] that the small had-
color charge$26]: ronization corrections found for the Cambridge algorithm in

_ the study of the mean jet rate are due to cancellations among
=B+ ByXx+ . S i )
B4=BotBX+B,Y, S corrections for the individual jet production rates. Apart from
and the very small values of the resolution parameteg,:
<10 32 for the individual rates the Durham clustering
C4=Co+ Cyx+Cyy+C,z+ Cyyx?+ Cy Xy +Cyy?, shows comparably smalffor y.,>10"2), or even much

(38 smaller hadronization corrections. In this subsection we
present the next-to-leading order production rates for four

where jets using both algorithms and compare the size of the radia-
C T tive corrections.
x= 2 y=_R. (39) The four-jet rates are defined as the ratio of the four-jet
Cr Cr cross section to the total hadronic cross section:
At next-to-leading order the ratibappears that is related to Tajet
the square of a cubic Casimir, Ra=——(Yew
tot
Np 3
_ bt teb
Co= 2 THTTTOTH(TITTY, (40 = 7°Ba(Youd + 7% CalYouw) = 5BaYed |, (41)

via z=C3/NCC,§. The Born and correction functio® and ~ where we usedr,,= oo(1+ 3 7). Setting the color charges
C; are independent of the underlying gauge group. In thdéo the SU3) values, we plot the scale independ&i(y.,,)
next section we present thig, andC, functions for various andCy(y.,) functions in Figs. 1 and 2 and tabulate the val-
four-jet observables. ues forCy(Yeu) in Table 1.
Comparing the values for the two Born functions, we see
. RESULTS that at leading order the Cambridge algorithm gives slightly
higher rates and the difference increases with decreasing
Four-jet observables can be classified into three majoy .. On the other hand, the correction functions become
groups:(i) four-jet rates(ii) four-jet event shapesiii) four-  smaller for Cambridge clustering with decreasing,. The

jet angular correlations. Detailed results for observables fa”resu|t of these opposite trends is that Khéactors, defined as
ing into all three classes were already presented in the litera-
Ca(You)

ture. Dixon and Signer gave full account of the next-to-
leading order four-jet rates with three differgi0, Durham K(Yeu =1+ 7( Vs) m' (42)

and Genevhgjet algorithms[11]. In Ref.[13] we confirmed !

their results. Among the four-jet event shapes the D paramare smaller for the Cambridge algorithm for small values of
eter, acoplanarity, and the Fox-Wolfram momefks and vy, which is demonstrated in Fig. 3.

I1, were calculated at Q@) in Refs.[13] and [14]. The The smallerK factors also mean smaller renormalization
results for the D parameter were confirm@f]. As for an- scheme dependence, which can be seen from comparing
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TABLE I. Correction functions to the four-jet rates for Durham
and Cambridge algorithms.

D
Yeut

C
Yeut

900 F T 17T | T T T T I T TT
= —— Durham
800 5_ --- Cambridge )
700 - s =(91.187 GeV) 1003 Yeur)
600 |- = ~0.9
2500 - = -1.0
> F E -1.1
AR 400 - E -1.2
300 - . = -13
200 - N E ~L4
2 3 -15
100 = -1.6
0 E 1 11 1 | [ 11 1 | 1 1 1 | | 1 L 1 | = 717
35 3.0 2.5 2.0 -15 -1.0 -1.8
lOgIO(YWt) -1.9
FIG. 1. The Born functiorB, for the four-jet rate as a function —-2.0
of the resolution variablg, with Durham(solid) and Cambridge —2.1
(dashedl algorithms. —22
-23

Figs. 4 and 5. The usual interpretation of the smaller scale 2.4
dependence is that the effect of the uncalculated higher or=2.5
ders are expected to be smaller in the case of Cambridge2.6
clustering. It is interesting to note that in the middlg, —2.7
region (10 3%<y.,<10 2), where the hadronization cor- —2.8
rections for the Cambridge clustering were found signifi-—2.9
cantly larger than for the Durham algorithm, the theoretical —3.0
uncertainty due to the renormalization scale ambiguity is-3.1
smallerfor the Cambridge than that for the Durham cluster-_3.»
ing. Of course, one has to keep in mind that the_33

(4.209-0.655)x 102
(9.449-0.220)x 10" *
(5.4110.055)x 10°
(1.769-0.011)x 10*
(4.3210.032)x 10
(8.893-0.034)x 10"
(1.619-0.005)x 107
(2.705-0.009)x 107
(4.2010.012)x 1¢?
(6.221-0.020)x 107
(8.730-0.029)x 107
(1.19%0.004)x 10°
(1.563-0.006)x 10°
(2.006:0.010)x 10°
(2.478-0.011)x 10°
(3.0070.024)x 10°
(3.542-0.023)x 10°
(4.029-0.033)x 10°
(4.469:0.052)x 10°
(4.797-0.067)x 10°
(4.869-0.099)x 10°
(4.878-0.120)x 10°
(4.482:0.166)x 10°
(3.430:0.256)x 10°
(1.783-0.300)x 10°

(4.375+0.655)x 102
(9.499+0.230)x 10!
(5.300+0.057)x 1¢°
(1.700+0.012)x 10*
(4.044+0.033)x 10
(8.142+0.038)x 10
(1.459+0.006)x 107
(2.400+0.010)x 107
(3.683+0.014)x 107
(5.403+0.021)x 107
(7.490+0.032)x 10
(1.009*+0.005)x 10°
(1.308+0.007)x 10°
(1.653+0.010)x 1C°
(2.023+0.012)x 1¢°
(2.402+0.025)x 1C°
(2.749+0.027)x 1C°
(3.020+0.036)x 10°
(3.198+0.063)x 10°
(3.220+0.077)x 10°
(2.999+0.108)x 10°
(2.608+0.132)x 10°
(1.678+-0.178)x 1C°
(—3.254 27.6)x 10
(—2.093+0.32)x 10°

u-dependence bands are not upper bounds on errors that
arise from truncation of the perturbation series, just sugges-
tions. In particular, if there is an artificial narrowing of the small values oy the fixed order perturbative prediction is
u-dependence bands, e.g., at a crossover point, they almd®t reliable, because the expansion parametery;,, loga-
certainly do not represent the size of the truncation error afithmically enhances the higher order corrections. One has to
that point. perform the all order resummation of the leading and next-
Four-jet fractions decrease very rapidly with increasingto-leading logarithmiaNLL) contributions. This resumma-
resolution parametey,,;. As a result, most of the available tion is possible for the Durham algorithm using the coherent

four-jet data are below,,=0.01. It is well known that for ~branching formalisnj29] and the procedure is the same for
the Cambridge algorithrif23]. The four-jet rate in the next-

to-leading logarithmic approximation is given pbg9]

5000 L I I | T 1T | T T
E gurh];ln(li 1_7 I I I I | | T T 17 | LI | T 17T | L I T ]
4000 = ---- Cambridge E -
E s=(91.187 GeVY’ 6 3
3000 - = = =
c 3 1.5 —
~ 2000 - = =
>§ = = = —
=~ 1000 __ - % = .
© - ] 213 =
0fF—— ] ME ) ]
E / 7 12 % —— Durham E
1000 =/ 3 na // --- Cambridge , | 3
R = s y $=(91.187 GeV)" | 3
00 = S X =1 E
Covvav v o by v by v g vy 17 10 E /// a E
3.5 -3.0 2.5 2.0 -1.5 -1.0 E | | | | | 3
09 I | | | | T | I | I I | [ 1
logo(Yeur) a5 3.0 25 20 15 10
logo(Yeur)

FIG. 2. The correction functiorC, for the four-jet rate as a
function of the resolution variablg., with Durham (solid) and
Cambridge(dashed algorithms.

FIG. 3. K factors as a function of the resolution varialylg, for
Durham(solid) and Cambridgddashed algorithms.
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Durham algorithm Cambridge algorithm
0.5 LI N I B 0.5 T [T T T T[T 11
C O Lo L O Lo
- B NLO C B NLO
0.4 — B NLL 0.4 — B NLL
= B NLL+K - B NLL+K
N 0.5<x,<2 B 0.5<x,<2
~ 03 5= (91.187 GeV)? ~03 5= (91.187 GeV)’
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FIG. 4. The QCD prediction for the four-jet rate with Durham FIG. 5. The QCD prediction for the four-jet rate with Cam-
clustering at Born levellight gray bandl and at next-to-leading bridge clustering at Born levelight gray band and at next-to-
order(dark bang. The two narrow bands show the four-jet rate in leading orderdark band. The two narrow bands show the four-jet
the NLL approximation K=0, lower bangland in improved NLL  rate in the NLL approximationK =0, lower bandland in improved
approximation(upper bang as explained in the text. The bands NLL approximation (upper bang as explained in the text. The
indicate the theoretical uncertainty due to the variation of the renorbands indicate the theoretical uncertainty due to the variation of the

malization scalex,, between 0.5 and 2. renormalization scalg,, between 0.5 and 2.
1+22 « 2

Ryt =2[A4(Q)]? —Ce| i K

' ; 2 Paglas,2)=Cr 1-z 27 1-z)° (45)
Q

X JQ dq Fq(qu) Ag(quO))
O P e -2+ 121 Y2
0g(@s,2)=2Ca| 7+~ +2(1=2)F 50 z(1-2))’

Q
+fQ dg I'(Q,q) Agy(9,Qo)
’ Pgq(@s,2)=TrN(Z*+ (1~ 2)?).

TheK coefficient is renormalization scheme dependent. In
the MS scheme it is given b§32]

+Ff(q’)Af(q’,Qo))} (43 (67 772) 10

q
foodq'(rg(q,q’>Ag(q',Qo)

— —TgN;¢. (46)

Performing thez integral in Eq.(44), one obtains the Suda-
In Eq. (43) the functionsA,(Q,Q,) are the Sudakov form kov factors as integrals of the emission probabilities
factors which express the probability of parton branchingl'a(Q.d) in the following form:
evolution from scale€,= Q/y. to scaleQ without resolv- 0
able branching. The Sudakov factors are defined in terms of Aq(Q,Qo)ZeXF( _J dq Fq(Q,q)), (47)
the P,(as(q),2) vertex probabilities as follows: Qo

Q
Ag(Q,Qo)=eXp( - JQ dq[Fg(Q,q)+Ff(q)]),

Qdg [ as(q)
Aa<Q,Qo>=exp( 2 | = | deoPalada),2)]. “8)
b JQyd 2@ 2
(44) A+(Q,Q )=M (49)
R0 A4(Q.Q0)
It was shown in Ref[30] that one can obtain an improved and the NLL emission probabilities are
theoretical prediction for the differential two-jet rate if the o @ @ 0 3
vertex probabilities are @aken at next'-t.o—leadlng o], r (Q,q)=—F as(q 14 as(q Klins-2| (50
which we also consider in our analysis: 4 T q 21 q 4
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2C» « a 11 Durham algorithm
Fg(Q,q): A S(q)[(l-i- s(q) K)Ing——}, 05 -

T q 2T q 12 g : T |-,__:\|\ T L I -

(5D SN T o]

0.4 — 5N F 05<x,<2 J —

N « C N ~of .

Ff(Q,Q):S_f s(q). (52) E \\\ \\\ 5025 ] ;

T q 0.3 — \-.} N o 01 - - —

We relate thea(q) strong coupling appearing in the emis- 5 | " b 37

sion prqbabilities to the strong poupling at the relevant renor- o2 — T EEY r

malization scaleg¢(w), according to the one-loop formula B 10g10(Yeu) ]

e LO ]

ag(u) 01— - NLO -

ag(q)= W(Sq ) (53 C —— NLO+NLL = ]

i 00 - — NLO+NLL+K . 1

wherew(q,qo) was defined in Eq(34), and we use Eq33) v b b b ]

for expressingrg(u) in terms ofag(M,)=0.118. We could - ((’)21 E 3 { E

also use a two-loop formula fats(q), but the result would .3 ) o O -

differ only in subleading logarithms. B S B ]

The result of this resummation together with itsrenormal- o2 | | |, 1ol
ization scale dependence is also shown in Figs. 4 amhb 3.5 3.0 25 2.0 15 -1.0

row band$. The lower band corresponds to the usual NLL logo(Yeu)

approximation K=0), and the upper band is the result of . . )
the improved resummation. We can see clearly from the fig- ~'C: 8- The QCD prediction for the four-jet rate with Durham
ures that the fixed-order and the NLL approximations differcmSte”ng in fixed order perturbation theory at leadidgtted and
significantly. One expects that for large valuesygf, the next-to-leading ordefdashed, and fixed order matched with re-

’ . L summed(dashed-dottedand improved resummegsolid) calcula-
former, and for small values of. the latter is the reliable ( o P eolid

» tion compared to ALEPH data obtained at tA& peak and cor-
description, therefore, the two results have to matched. rected to parton levelerror barg. The renormalization scale is set

The Durham and Cambridge four-jet rates can be reg, x,=1. The lower plot shows the relative differendg= (data—
summed at leading and next-to-leading logarithmic orderheory/theory, where theory means the next-to-leading order pre-

but they do not satisfy a simple exponentiatii88]. For giction matched with improved resummed calculation at 1. The
observables that do not exponentiate the viable matchingset shows the renormalization scale dependence of the “theory”

schemes are the R matching or the modified R matchingrediction with scale variation 0s5x,,<2.
[29,4]. We use R matching according to the following for-

mula: . .
Figure 6 deserves several remarks. First of all, we see that

the inclusion of the radiative corrections improves the fixed
7?(B,— B} + 173(C4—CZ”"' order description of the data using the natural sogle 1
for larger values of/.;. Secondly, the importance of resum-
mation in the smally, region is clearly seen, but it is still
, (54 not sufficient to describe the data at the natural scale, ne-
glected subleading terms are still importAr®n the other
whereB"- andC'* are the coefficients in the expansion of hand, the improved resummation seems to take into account
RV as in Eq.(41). just the right amount of subleading terms and it makes the

In Fig. 6 we show the theoretical prediction at the various®9reement between data and theory almost perfect over the

levels of approximation: in fixed order perturbation theory at/ho!€ Yeut region as can be seen from the lower plot. Al-
Born level (LO), at next-to-leading ordeiNLO), resummed  though forye,=>10""" 4, falls outside thex 5 % band, one
and R-matched predictiofNLO+NLL) and improved re- should keep in mind that in this region the error of the had-
summed and R-matched predictiNLO+NLL +K). Also ron to parton correction is very large. Also, for the “NLO
shown is the four-jet rate measured by the ALEPH Collabo-TNLL K predlcuon_\éve found remarkably small scale de-
ration at thez® peak[34] corrected to parton level using the Pendence foyq,>10"". This feature, however, should be
PYTHIA Monte Carlo prograni3s]. We used bin-by-bin cor- taken with care. _The improvement, obtained by including the
rection and the consistency of the correction was checked bjyv0-100p coefficient K, affects NNLL terms, but there are
using theHERWIG Monte Carlo prograni36]. The two pro- ther contributions of the same order th_at are not taken into
grams gave the same correction factor within statistical erro2CCOUNt(€.g., next-to-leading order running ef and other
The errors of the data are the scaled errors of the publishedynamical effects which is not the case for the 2-jet rate.
hadron level data, and we did not include any systematic

error due to the hadron to parton correction. In the inset we

indicated the renormalization scale dependence of the “NLO Our “NLO +NLL"” results differ from those in Ref[11], where
+NLL +K” prediction. a4(q) in calculatingR}"" was kept at the fixed(M;) value[27].

RE—match: RT‘L +

3
—5(Ba— By )
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The scale dependence of the “NHONLL +K” result would TABLE II. Correction functions to the differential distributions

consistently be under control only after the inclusion of theof they, variables for the Durham and Cambridge algorithm. The
complete set of NNLL terms. parameter values are at the lower edge of the corresponding histo-

Finally it is worth noting that for .= 10" 2% bothPYTHIA

gram bin.

andHERWIG yield less than 2 % hadronization correction. At
the same value of the resolution parameter the theoreticalp

D
Cy4

c
Cy4

prediction is insensitive to corrections beyond next-to-g ggq
leading ordethe NLO, NLO+NLL, NLO +NLL +K curves 0.005
cross, the renormalization scale dependence is srtfadire- 0.010
fore, at this accidental value gf,; the next-to-leading order

- 7 0.015
prediction agrees perfectly with the hadron level data. 0.020
. h 0.025

B. Four-jet event shapes 0.030

Four-jet event shapes were used extensively by the LEB.035
Collaborations for QCD studiel34,37]. In this subsection 0.040
we consider four shape variables, thedistributions for the  0.045
Durham and Cambridge algorithms, the thrust minbg;f) 0.050
and the C parameter for C values above 0.75, which are oftefgss
used in the experimental analyses. 0.060

In the case of event shape distributions we multiply theg gg5
normalized cross section with the value of the event shapg 57
parameter, so we use the parametrization 0.075

1 do 0.080
2(04)=04—7=(0y) 0.085
o dO, 0.090

Bo 0.095

= n()?B(04) + n(p) [5(04) 0.100

Cr 0.105

0.110

59 9115

0.120

X Inx2+C(0y)

(2.5230.425)x 10°
(2.2120.017)x 10°
(1.376:0.009)x 10°
(9.429-0.071)x 107
(6.79%0.070)X 107
(4.93@-0.063)x 107
(3.766:0.042)x 107
(2.88%0.037)x 107
(2.1640.033)x 107
(1.7540.026)x 107
(1.3140.025)x 107
(1.0240.021)x 107
(8.293 0.292)x 10
(6.30% 0.300)x 10
(4.636:0.180)x 10"
(3.516:0.117)x 10
(2.67%0.115)x 10
(2.27#0.216)x 10
(1.412:0.204)x 10
(1.08%0.057)x 10"
(7.4120.584)x 10°
(5.06%:0.537)x 10°
(2.81% 0.400)x 10°
(2.652:0.329)x 10°
(1.353:0.221)x 10°

(1.064*+0.350)x 10°
(1.857+0.019)x 10°
(1.166+0.011)x 10°
(8.144+ 0.080)x 107
(5.855+0.062)x 107
(4.346+0.051)X 10
(3.293+0.043)x 107
(2.553+0.039)x 10
(1.947+0.034)x 107
(1.580+0.027)x 107
(1.202+0.025)x 107
(9.508+0.213)x 10"
(7.692+0.296)x 10
(5.945+ 0.304)x 10t
(4.445+0.184)x 10"
(3.430+0.114)x 10*
(2.56Q+0.110)x 10*
(2.214+0.217)x 10
(1.395+0.206)x 10"
(1.056+0.059)x 10"
(7.377+0.588)x 1¢°
(5.121:x 0.529)x 10°
(2.914+0.399)x 10°
(2.428+0.301)x 10°
(1.516+0.183)x 10°

instead of Eq(32), in which case the average value of the

shape variable is easily obtained from the differential distri-

bution: We show the next-to-leading order perturbative prediction
in QCD for X(y,) in Fig. 7. In the same figure, the inset
shows theK(y,) factors of the distributions. The physical
cross sections for the two algorithms are very similar. The
K(y,) factors are quite large, but much smaller than in the
case of other four-jet event shape distributions. They depend
weakly on they, value fory,>0.1 and decrease rapidly with
decreasingy, belowy,=0.1. In the case of the Cambridge
C(O4) (57) algorithm the radiative corrections are 15—-30 % smaller than
B(O4) those for the Durham algorithm.

In order to definel ,,;,, we first have to define the thrust
and thrust major axg88]. The thrust aX|$1T is the direction
n which maximizes the expression

1
(O4)5= L dO, 2 (0y). (56)

Using this parametrization we define tle factors of the
differential distribution as

In the following we plot the physical cross sectianéO,),
the K(O,) factors and tabulate the correction functions
C(0,) for O4=y4, Tyinand C.

They, value denotes the transition value gy, at which,

when decreasing/,, the classification of a given event Z |5a.ﬁ|

changes from three jets to four jets. The advantage of this a

variable over the differential four-jet rate is that this variable T=max — |, (58)
can be defined on an event by event basis. Depending on the nT g [Pl

actual resolution variable one obtains §fg distribution for
th? Durham c_Iustermg and the; distribution for the Cam- where the sum runs over all final state hadrémspartons.
bridge clustering. We calculated ty,) andC(y,) func-

tions for both algorithms. TheB(y,) values equal the The thrust major axis is a three- vectnf _for which the
YeuB(Yeu) Values whery, =y, therefore, we tabulate only expressmn in Eq(58) is maximal with the constraint that
the C(y,) functions for the two algorithms in Table II. nTm is perpendicular t(mT, nT nT 0. In order to obtain
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0.25 L R T T T T T T TABLE Illl. Correction functions to the differential distributions
K 7 of the T, and C parameter event shape variables. The parameter
L e - values are at the lower edge of the corresponding histogram bin.
e T 17 To Cr c Cc
L g: Fy 1 - 0.00 0.75  (4.77%1.100)x 10°
o5 L e 1 0.02 (3.3190.270)x10*  0.76  (6.082-0.160)x 10°
Tt Lo 14 0.04 (2.381%0.082)x 10"  0.77  (4.610-0.089)x 10°
CE B T N . 0.06 (1.652-0.038)x 10"  0.78  (3.6630.063)x 10°
w — 00 002 004 006 008 01 0.12 —
L 4 0.08 (1.172:0.025)x 100 0.79  (2.904 0.042)x 10°
01— - 0.10 (8.600:0.130)x10°>  0.80  (2.406-0.031)x 10°
i i 0.12 (6.488-0.100)x10°>  0.81  (1.9480.026)x10°
B 7 0.14 (4.695-0.077)x10°>  0.82  (1.6250.024)x10°
0,05 — ] 0.16 (3.499:0.042)x10° 0.83  (1.365:0.023)x 10°
- . 0.18 (2.684-0.027)x10° 0.84  (1.1350.019)x 10°
L ] 0.20 (2.016:0.021)x 10>  0.85  (9.194-0.130)X 107
- Il 0.22 (1.4980.017)x10° 0.86  (7.906-0.110)x 10?
00, B 107 5 s 10" 024  (L1220013)x10° 0.87  (6.2930.092)x 107
Y4 0.26 (8.2470.100)x10°  0.88  (5.2170.084)x 107

0.28 (6.093:0.074)x10°  0.89  (4.296-0.066)X 107
0.30 (4.5010.180)x10°  0.90  (3.39%0.052)x 10
(3.026:0.057)x10* 091  (2.8150.061)X 107
(2.22%0.050)x 10° 0.92  (2.0750.057)X 107

the value ofT,,,, one evaluates the expression in the paren-o'36 (1549-0.046)<10° 093  (1.626-0.032)x10°
0.38 (1.095-0.028)x 10>  0.94  (1.2210.026)x 10

theses for a vector perpendicular to bot) andnr. 040  (7.100:0.210)x10' 0.95  (8.154 0.260)x 10
The C paramete39] is derived from the eigenvalues of 4, (4.437-0.180)x 10" 0.96  (5.1930.190)x 10"

FIG. 7. The next-to-leading order QCD prediction for thg
(solid) andyf (dashedl differential distributions with renormaliza-
tion scalex,,= 1. The inset shows thi¢ factors of the distributions.

the infrared safe momentum tensor 044  (2.6840.190)x10' 097  (3.165 0.130)x 10
- 0.46 (1.43%0.150)x 100  0.98  (1.312-0.094)x 10"
. PaPa ~ 0.48 6.447-0.560)x10°  0.99 2.7620.260)x 10°
=3 = /E 1Pal. (59 ( ) ( )
a |pa| a
where the sum oa runs over all final state hadrons apis Figures 8 and 9 show the leading and next-to-leading or-

der QCD prediction for th&@ ,;, and C parameter differential
distributions atx,= 1. The insets show thk factors which
are large in both cases indicating 100 % or larger radiative
corrections. As a result, the renormalization scale depen-
dence remains large, only the absolute normalization of the
distributions increases with a factor of more than 2 with the
C=3(MhatAoksthsha). (60 inclusion of the radiative corrections. This feature is demon-
strated in Fig. 10, where we show the scale dependence of
the leading and next-to-leading order prediction for the av-

theith component of the three-momentyy of hadrona in
the c.m. system. The tens@r is normalized to have unit
trace. In terms of the eigenvaluas of the 3X3 matrix 6,
the global shape parameter C is defined as

The kinematical limit of the C parameter for three-parton

processes is G 0.75. Therefore, in the region €[0.75,]] grage value of the thrust mingabove T —0.02) and C

the four-parton processes contribute to the leading order pr i . )
diction, and our program is capable to calculate the radiativé)""r""mete'(above G-0.79. The leading and next-to-leading
order curves run almost parallel downxg=0.2, only the

correction to the distribution. The results of such a calcula—I tter is shifted 1o | |
tion for the Born functionsBTmin and B¢ agree with the atter 1s shifted to farger values.

known results(see e.g.[40]) The Cy_ and Cc correction

functions are given in Table IlI.
In the case of event shape differential distributions the In this subsection we summarize the results of our radia-
next-to-leading order corrections should logarithmically di-tive correction calculations for the various four-jet like dis-
verge at the edge of the phase space. This divergence occuributions presented in previous publications and in this ar-
at zero for they, andT ,;, distributions and is regularized by ticle.
the multiplication with the value of the variablsee Eq. The QCD prediction at tree levéivith renormalization
(65)]. This is not the case for the C parameter, because Bcalex,=1) in general falls significantly below the mea-
diverges at G-0.75. Nevertheless, we obtained a finite andsured values for unnormalized distributions of four-jet ob-
positive contribution in the first bin owing to bin smearing asservables. Consequently, the calculation of the next-to-
we have checked explicitly by refining the bin width. leading order corrections to these cross sections is

C. Radiative corrections to four-jet observables: Summary
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Tonin FIG. 10. The renormalization scale dependence of the average
values of( T min)0.022Nd{C)¢ 75 at leading and next-to-leading order.

e
o [TITTm

FIG. 8. The leading-ordddashedand the next-to-leading order
(solid) QCD prediction for theT,,, variable with renormalization
scalex,=1. The inset shows thk factor of the distribution. and even smaller for the Cambridge algorithm. The scale

dependence for the latter algorithms is substantially reduced.
indispensable for attempting a serious comparison betweehhe agreement between data and theory for the Durham clus-
data and theory. Our calculations show that the correctiontgering is very good and extends to small valuey gf when
are very large and the agreement in the comparison improveme matches the fixed order prediction with improved re-
considerably with the inclusion of the radiative corrections.summed next-to-leading logarithmic approximation.
In particular, we found the following features. (2) In the case of event shape variables the corrections are

(1) In the case of four-jet rates, the radiative correctionsysually more than 100 %the K factors are larger than)2
are about 100% for JADE-type clustering algorithmsThe residual renormalization scale dependence is large indi-
[11,13, while for the Durham algorithm it is less than 60 % cating that even higher orders are important. One may con-

clude that, with the exception of the jet-relatgg distribu-

C parameter tions, these distributions cannot be reliably calculated in
fixed order perturbation theory and cannot be used for preci-
— NLO sion tests of QCD.

--- LO (3) In the case of normalized angular distributions the

s=(91.187 GeV)’ corrections are small as expectghe K factors are close to

x, =1 1) [12,15. The renormalization scale dependence is small,
which however, does not mean that the effect of the radiative
corrections on the measurement of the QCD color charges is
negligible. According to Ref.15], the measured value of the
Tr/Cg ratio may differ up to 25 % when leading, or next-to-
leading order QCD predictions are used in the color charge
fits.

)
|||I|||| T ||I|||||
4
|

53
T

I

]
e

IV. CONCLUSIONS

This paper dealt with the next-to-leading order calculation
of four-jet observables in electron-positron annihilation. We
E = gave details of the analytical calculation that lead to the con-
S I B AT N IRt struction of a Monte Carlo prografd1] which can be used

0.75 0.8 0.85 0.9 0.95 1.0 to calculate the differential distribution of any four-jet ob-
¢ servable at the O@) accuracy. The dipole method was used

FIG. 9. The leading-ordeidashediand the next-to-leading order for achieving the analytical cancellation of infrared diver-
(solid) QCD prediction for the C parameter with renormalization gences. We described that modification of the algorithm
scalex,= 1. The inset shows thk factor of the distribution. which we found useful from numerical point of view. How-

5]

T
o
53

10* T075 08 08 09 095 10
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ever, the modification is not essential as far as the theory iBosonV(Q) carrying total four-momentun® and n QCD
concerned. ~ partons =4, or 5 herg. The first subprocess is the produc-
Compact formulas were presented for the Born-level fivesign of a quark-antiquark pair ama—2 gluons. The second
parton helicity amplitqdes and for the Born—level four-partongpe is the production of two quark-antiquark paio§ equal,
color-correlated matrix elements which are necessary fo{)runequal flavorandn— 4 gluons. Finally, the third process

othe_r next-to-leading ord_er calculation_s, such as_the_next-tqs the production of a quark-antiquark pair, a light-gluino
leading order cross section of three-jet production in dee@)air andn—4 gluons:

inelastic scattering and that of vector boson plus two-jet pro-

duction in hadron collisions. We also gave a group indepent+ —p ) +|~(—pp)—V(Q)—q(p;) + g1(po) + - - -

dent decomposition of the Born-level five-parton matrix ele- _

ments. _ _ +0n-2(Pn-1)+a(Pn), (A1)
We calculated the next-to-leading order corrections to the

four-jet rates with the Durham and Cambridge jet clusterinq (=D +] (= v 1 a(p.) +

algorithms and to the differential distributions of tlyg, (=P (ZPD=V(Q)=a(P1)+a(P2) + Q(Ps)

thrust minor and C parametéat C=0.75) four-jet shape +Q(Pa) +91(Ps)+ - +dn_a(Ppn),
variables. In the case of four-jet rates the radiative correc-
tions were found to be large, but just acceptable. The renor- (A2)

malization scale dependence decreased significantly and the _ ~

fixed order result matched with the next-to-leading logarith-l " (= p)) + 1~ (= p1)—V(Q)—q(p1) +a(p2) + 9(p3)

mic approximation gave remarkably good agreement with ~

LEP data over a wide range of the resolution variable. The +9(Pa)+91(Ps) + - - - +n-a(Pn)-

high level of agreement implies that the QCD four-jet back- (A3)
ground toW= pair production at higher center of mass en-

ergies can be predicted in perturbation theory reliably. In thaVe have chosen the crossing invariant all particle outgoing
case of event shape variables the radiative corrections aridnematics with corresponding particle-antiparticle assign-
the renormalization scale dependence are unacceptably largeent, therefore, momentum conservation means
suggesting that the next-to-leading order prediction is not

reliable and even higher orders are important. PP P1T P2t Pt PatPst- - +pn=0. (A4)

We shall express the amplitudes in terms of color subampli-
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where{2,...n—1} denotes all permutations of the labels
(2,...h—1) andm(1,... n) are the color subamplitudes. In
In this appendix we present analytic formulas for the four-EQ. (A5) and in the following formulas the lepton labels are
and five-parton tree-level helicity amplitudes of the relevantsuppressed.
subprocesses. These amplitudes were first calculated in Ref. In the case of the four-fermion subprocesgpscesses
[21]. The reason for presenting our results here is twofold(A2) and (A3)] we decompose the helicity amplitudes as
On one hand we express the relevant color subamplitudes f@llows:
terms of Weyl spinorgk=), which were also employed in -
the case of the one-loop four-parton amplitui2g], while |1,%,2,
on the other we found that our expressions in the case of the '
four-quark processes are more compact and the correspond-
ing computer code is faster than earlier ones. Another new
feature of the amplitudes in this appendix is that we allow for
the existence of light fermionic degrees of freedom in the

APPENDIX A: HELICITY AMPLITUDES

hs sh h h
2,30 40,505, . ey

= 2 2 (-1P

X > (=1)PA4,(1,2,3,4,5....n), (AB)

adjoint representation of the gauge gralight gluinos. In 24
calculating the amplitudes, we used quark and gluon currents
[42,44] and standard helicity techniqug$3,44]. whereP =0 if the elements are in the canonical orfir,3),

We consider three subprocesses, each involving a vectar (2,4)] and P=1 if the elements are permutg(B,1), or

014020-12
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(4,2)]. The partial amplitudes!,, can be decomposed further
in color space. In the case of four-quark production,

Aal14.25:304) = T(1,2,34 M(172,2]2,3]2,41),
(A7)
where M(1?1,2?2,3 :) are the color subamplitudes and
T(1,2,3,4) is deflned by

T(1,2,3,4= Zt—t— (A8)

112 13la

In the case of four-quark plus one-gluon production, there

are four independent basis vectors in color space:

4
As(lq,zg,:aQ,zlg,sg)zzl Ti(1,2,3,4,5

XMi(1{1,22,37%4{ 8%), (A9)
whereT;(1,2,3,4,5) are the color basis vectors:
Na
T1(1,2,3,4,5= Z (t%t0); 7 17 o (A10)
Na
T,(1,2,3,4,5= > (tbt%), 7 t°— (A11)
b=1 112 7igiy
Na
T3(1,2,3,4,5= 2, t— (t%t°), T, (A12)
p=1 '1'2 34
Na
b
T4(l=2131415:b21 tili bta )I3I4 (A13)

The partial amplitudes for the proce@s3) can be written
in terms of the color subamplitudes of the proces2), only
the color basis differs. When=

Au(1q,25,35,45)=T(1,2,3,4M(1] 2';2 33 4h4),
(A14)
where
T(1,2,3,4= E t T F by (A15)
Finally, for n=5 we have
As(1q.2q,35.45.5)
4
=2, Ti(1.2.3.4,5M (L(1,22,3%,4,5), (A16)

where

PHYSICAL REVIEW 19 014020

Na

Ti(1234,8= 2, (1)1, Faa,, (A17)
Na

T5(1,2,3,45= E (1°6%); 7, Faa, (A18)
Na

T4(1,2,345=2, t'— (FSF?), ., (A19)
p=1 '1'2 374
Na

T4(1,23,4,5= 2, t'— (FPF%), . (A20)
p=1 't'2 374

In the following subsections we give explicit formulas for
the color subamplitudes with a common coefficient factored
out:

i
=262 AC M AL, .. M),
(A21)

hy
m(lfl, |

i
h4) — zezgzcm h15f .

345

M(1h12 “13
X A(1M,27 M1 33 47Na),
(A22)
hi o=h1 5N 1= N3 chey 4 .2.3~h,h
Mi(lfll,zf2 l,3f33,4f4 3 5'5)=2e?g cf'lf215f3f4§
X A;(1M1,27M1 33 473 5hs)
(A23)

M(l?l zf hy 3h3 4*h4) 2¢e gzc h1 A(lhl 2—hy 3h3 4,h3)
(A24)

Mi(171,2, ",3',47 e 8%) = 2e?g3Cy! "18

X A;(1M1,27M1 33 473 5hs) |
(A25)

with s=Q?=(p,+ p;)?. TheC coefficients contain the elec-
troweak couplings. If the vector bosow is y or Z° this
coefficient is defined by

hy he,

Cy "= (= Qo0 PSSy, (A26)
1

fifa

wheref,, f, are the flavor indices of the quark antiquark
pair that couples to the vector boson and

v+:25i|’120w
' sin26y,

—1+2sirf Oy

Y T sin20y, (27
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_ £1-2Qssif Oy L 2Qssirfoy

_ [i|(|+m)...|j]E(k{‘+kg)...<ki+|yM...|k-t>,
Vi = - Uy = —
Sin26yy

A28 j
Sin26y (A28) (A36)

are the left- and right-handed couplings of leptons andnd the two- and three-particle mvanarst;,s(kﬁkj).z and
quarks to neutral gauge bosons. In EG27),(A28) 6y, de- i E(ki+kj+k|)?. Labels 5 and 6 refer to the positron and
notes the Weinberg angl€); is the electric charge of the €lectron respectively. _

quark of flavorf in units ofe and the two signs in EA28) The two-quark two-gluon amplitudes are as follows:
correspond to ug+) and down () type quarks. The cou-
pling C contains the ratio of th&° and photon propagators,

_ (45)?[56]
A(Ly,20 30 A ) = — e (A37)
e . oo a3 % (12)(23)(34)
§)= ———"—,
z S— M%‘I’ IFZ MZ
. b o [16]%(56)
whereM; andT'; are the mass and width of ti#. A(1q.25.3;.4) =~ cr5roairan (A38)
. " = . [12][23][34]
If the vector bosorV is aW™ or aW™, then the couplings
take the form
hohe by g b oor e oo (3D[12)(45)(3|(1+2)|6)
Cfle 1_U| Ivfll PW(S)&leY (ASO) A(lq 12g 139 14q_)_ - <12>323t123
wheref, denotes the partner of quafk in the SU(2) dou- I (34)[42][16](5|(3+4)[2)
blet and, for the sake of simplicity, we set the Kobayashi- [34]s53to34
Maskawa mixing matrix to unity. In EA30) the left- and
right-handed couplings differ from the corresponding expres- (5/(3+4)[2)(3|(1+2)]6) (A39)
sions in Eqs(A27),(A28): (12)[34]s,3
1
v =vf=—=——, v, =v{=0. (A3 L [131%45)(2|(1+3)|6)
2\2sind Alda %% %) = Tasting
In this casePy(s) denotes the ratio of th&= and photon (282[16](5|(2+4)|3)
propagators, - (3D Syiom
s [13](24)[ 16](45)
Pw(s)= , (A32) — A40
whereM,, andT'\, are the mass and width of th™. _
The four-quark amplitudes are as follows:
1. Four-parton color subamplitudes
In this subsection, we present all four-parton color sub- AL 2= 3t 45y = — [13](52)(4[(1+3)[6)
amplitudes for the helicity configuratiohq=+ and h,= (g, q 3o Q)_ t134534
+. The amplitudes for the reversed helicity configurations
can be obtained from these amplitudes by applying parity N (42)[61](5((2+4)[3) (A41)
operation P, which amounts to making the substitutions 1234534 '

(ijy=(ki [k y=[ji1=(k{" [k ). The amplitudes when only
the lepton helicities are reversed can be obtained simply by
exchanging the lepton labels and flipping the lepton helicity A(j_;,%,36,48):A(1$,2§,45,36)_ (A42)

. . hy .h .
in the coupling factor< ' "1 We use the notation
1'2

(itm. . ]j)y=k{'kpdki | VY - - |kJ‘—’> (A33) 2. Five-parton color subamplitudes
In this subsection, we present all five-parton color subam-
[Im. . 1=KER K Yy - 1K), plitudes for the helicity configuratiom,=+ and h;=+.

(A34)  The amplitudes for the remaining helicity configurations can
be obtained from these amplitudes as in the4 case. La-
(l+my . y=(kE+kb) (kv K, bels 6 and 7 refer to the positron and electron respectively.
(A35) First we list the two-quark three-gluon amplitudes:
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oot ot gt BTy (65%67]
Allg 23, Eq)__<12><23><34><45>' (A43)
ALY 2304 5= (65)(4/(5+6)|7)([23](4](2+3)|1) <4|(1+2)|3>) (4/(5+6)[7)(6/(5+4)|3)
R P YE VT ViTo W 12 (12(23)(34[ 341 45|
(4l 2)|7(61(5+ 1353 [17)(6](1+ )]2)(497 53
(12)(24)[ 45]s34t 345 [45[(42) s34t 34t 167
[17)(45)[53] /<6|(1+7)|2>+<6|(1+7)|3>>_ [17)(45)[23]
(23)[34][45]t 17| (34) (24) (23)[34]t234t 167
(6](1+7)|2)(24)
34 +(6|(1+7)|3)), (A44)
‘ot gt ey (3D[12)(3[(1+2)[4)(3|(5+6)|7)(65) (3D[12](3|(1+2)|7)(65)(35)
Al 29 4 S (12)(34)sp3t 124567 " (12)(34)(45)Sp3t123
B (3[(1+2)|7)(61(1+7)[2)(35)*  (3[(1+2)|7)(6](5+3)|4)(35)[42]
(12)(23)(34)(45)[ 23]t 345 [23](12)(23)s34t345
B [42][17)(6](1+7)(2+4)|3)(35) [42](3[(5+6)|7)(65)([42](3[(2+4)[1) (3[(1+2)[4)
So3S3ato3dl 167 S23S34l567 \ tosy (12)
[17)(6](1+7)[2)(35)*((3I(5+4)[2) [42][54]
" Soataadt167 | (34)(45) " S3s (A45)
AL 25 3 4 5 [43]2<2|(3+4)|1><2|(5+6)|7><65>+[13]<2|(3+4)|1><2|(5+6)|7><65>
= SpaSa4t 234567 [12](34)(42)s3t 567
3 [13]%(2](1+3)|4)(2[(5+6)|7)(65) 3 [13]%(2|(1+3)|7)(65)(25)
[12](24)sy3t 124567 [12](24)(45)s3t123
3 [17](25)[43]%(6](1+7)(3+4)[2)  [13][17](25) ( (@_@
S23534t 234 167 [12]523<24>t345\<6|(5+4)|3> (45 (34
) (42| [17K6I(1+ 11329 @ 2 @)
OB+ g | elystutier | 20TV (a5 (3~ GBIy
(A46)
oo _[12][2|(3+4)(5+6)|7]<65>/<43>2_ (31 )_<31>2[12]2<4|(5+6)|7><65>
Allq 25 3 49.5) = Soalse7 | Sastoss  [341[42](12) (12)[24]s,3t 124 567
<31>[12]<3|(1+2)|7><6|(5+4)|2>+<3|(1+2)|7)<6|(1+7)|2>
(12)[24][45]sp3t123 (12)[34][45]s,3
[17]<6|(1+7)|2><3|(5+4)|2> [17]<6|(1+7)|2><5|(3+4)|2><43>2 (Ad7)
[34][45]sy3t 167 So3S34to3d 167
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_ {23 14][4](2+3)(5+6)|7](65
A(1§.2§.3g‘,4g+&q)=< )2 14][4|( )( )| 71(65)

S23S341 234 567
3 [14](3|(5+6)[7)(65)[42](2|(1+3)[4) +[43](3|(1+2)[4) 3 [14]<3|(1+2)|4>)
[42]s3it1ods67 | [23] [12]
_ [14)(65)(35 ([42)(2|(1+3)[7)+[43)(3](1+2)|7) B [14]<3|(1+2)|7>)
[42](45)Saut 12| [23] [12]
[141[17(6](5+3)|4)(35)° [17(6|(1+7)]4)(2](5+3)[4)(35)*
[12][24](45)S34t 345 [42](45) s34t 3t 167
3 [17)(6[(1+7)|4)(5[(2+3)[4)(35) 3 [17)(6](1+7)|4)(5](2+3)[4)(23)? (Ad8)
(45)[42][23]s34t 167 S23S34to3d 167 '

D i s -~ + gt a— ot 4= D e e~ + gt ot ot 1=
A(14.25.35 45 .5,) =P A(5¢ 453,25 I)lecr,  A(lg.2.35.45.5,)=P A5 435,20 T )se7.  (A49)

The four-quark one-gluon amplitudes have the form:

_ [15)(4](1+5)[3)(4](2+6)|7)(62)  [17)(6](1+7)|5)(42)*[23]

Al( 1; !2q:|35 145153—) =

(45)515534t 267 (45)s34t 234 167
_<4|(1+5)|7><6|(2+4)|3><42>+[53]<4|(3+5)|1>(4|(2+6)|7><62>
(15)(54) s34t 234 (45)S34t 3aet 267
[17)(6[(1+7)(3+5)|4)[35](42)
(45)s34t3aet167 ’ (ASD)
R :[13]2(51><4|(2+6)|7><62> [17)(6[(1+7)[3)(5((2+4)[3)(42)
Aullq 2y 30.%5:5) [35]S15534t 267 [35]S34to3d 167
B [13][17](6](2+4)[3)(42) [13](54)[3](4+5)(2+6)|7](62)
[15][53]s34t234 [ 35]S34t 345t 267
_[17]<6|(1+7)|3><54><2|(4+5)|3>
[35]S34tzadt167 ' (As1)
Ailq.20.30.455) )= Aully 245,355 ), Arllq 2030405, )= Ax(1y 248,355, (A52)
R — :_[53]<4|(3+5)|1><4|(2+6)|7><62>_[17]<6|(1+7)|3>[25]<42>2
Aa(lq 23304 %) (45)S3atzadt 267 (45)S5534t167
_ [13)(4](1+3)|5)(4](2+6)|7)(62)  [13](4](1+3)|7)(62)?
(45)s34t134 267 (45)(52) 834134
_[17]<6|(1+7)(3+5)|4>[35]<42>
(45)s34t3aet167 ' (Ao3)
R :_[13]<54>[3|(4+5)(2+6)|7](62> [13]%(41)(5|(2+6)|7)(62)
Aallq 24304 %) [ 35]S34t 345t 267 [35]S34t134 267
[17)(6[(1+7)|3)(54)(2[(4+5)|3) 3 [13](4|(1+3)|7)(6|(2+5)|3)
[35]S34tzast167 [35][52]s34t134
[17)(6[(1+7)|3)(52)(4[(2+5)|3)
[35]S25534t 167 ' (A54)
Az(1;,2;,35,43,5@=A2(1§,2q:,45,35,55), Az(lg,zqi,sg,%,sg)=A2(1§,2q:,45,35,5;), (A55)
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Ao(1] 253 45,5~ - [53](4|(3+5)[1)(4|(2+6)[7)(62) [17](6](1+7)(3+5)|4)[35](42)

Q'Y (45)S35t3adt 267 (45)Sastaad 167 ’
(A56)
_ 14](53)[4|(3+5)(2+6)|7]({62 17)(6[(1+7)|4)(53)(2|(3+5)|4
A3(1+’2Lv35'4i’5§):—[ 1(53)[4](3+5)(2+6)[71(62) = [171(6](1+7)|4)(53)(2|(3+5)| >’
9 Q [45]S3st 435t 267 [45]S3st43st167
(A57)
_ _ 13(5H[3|(4+5)(2+6)|7](62 17](6](1+7)|3)(54(2|(4+5)|3
A4(1+’}'35’47’5§):[ 1(54)[3](4+5)(2+6)|71(62)  [17](6](1+7)|3)(54)(2[(4+5)| >,
q Q [35]S4st3ast267 [35]S4st 345 167
(A58)
_ 54](3|(4+5)|1)(3|(2+6)|7){62 17|(6|(1+7)(4+5)|3)[45](32
A3 2 s - BB DIDBICOITE) | TSI+ DA+D)I[45(32)
a (35)S45tadt 267 (35)S4staadtier
(A59)
|
APPENDIX B: MATRIX ELEMENTS matical coefficients. In addition to the usual quadratic Ca-
. . : simirsCr andC,, we shall also use a cubic Casindg that
In this appendix we present analytic formulas for the: '
. s defined as
color-correlated four-parton Born-level matrix elements and
for the four-, five-parton Born-level matrix elements. The Na
calculation of the color-correlated four-parton amplitudes is Cs= >, Tr(taPt) Tr(t°t"t?). (B5)
a straightforward application of color algebra and the four- abc=1

parton helicity amplitudes. However, to our knowledge thes
results were not published previously. The uncorrelated colo
sum was first calculated in RgR21]. We present our results
in terms of the color subamplitudes of Appendix A. It is a
new feature of the matrix elements in this appendix that they 1. Four-parton color-summed matrix elements

are given in terms of group independent functions and eigen- | this subsection, we give explicit formulas for the color-
values of the quadratic Casimir operators of the underlyingsummed Born matrix elements for four final state partons.
gauge group. There are four different cases: the two-quark two-gluon pro-

Having the helicity amplitudes at our disposal, we calcU-cess and three four-fermion processgso unequal flavor
late the squared matrix elements summed over final staigark pairs, two equal flavor quark pairs and the two-quark
colors without and with color-correlation: two-gluino productioin The color summation is straightfor-
IMo(L, . 2= (L nllL ), =45 ward in each cases, we simply list the results:

(BL | My(14,24,34.49)]2

the following subsections we list the explicit formulas for
[Maf?, [ M2 and| M.

IMP, A= g1, AT T2, L Ay, =NCE{Im(1,,2,34,)+m(L;,3,24,)
(B2)

+2 Rem(1¢ ,2,3,4 ym(1;.,3,2,4 )*

where in the latter case we leave the helicity indices explicit am(lr,2.34,)m1e, 32.4,)%)

so that both correlated and uncorrelated helicity summation —xRe(M(1;.,2,3,4 )m(1;,3,2,4 )*)}, (B6)
is possible(Although we did not show the flavor indices, the ! * ! ¢

flavor summation is also left out, as will become clear later. | Ma(1q,22,30,40)|2

In the correlated case we have to insert the helicity matrix” © ' 479"

[see Eq(9)] =NCH -2 RaM(1¢,2;,,3,.4)

XM(L,.4,,3,2,)* )+ xReM (1,23 ,4,)
XM (11,432, )+ Y (IM(L4),21,,3,40,)1

+IM (114,322}, (B7)

HIY = Sy (ilVigIhg) - 8 (B3)
and in the uncorrelated case
HIY = Sy Sy -+ S (B4)
We evaluate the color sum in such a way that the matrix -
elements are given as polynomial expressions of the Casimita(1q.2q,35.45)[*=NCEx|M(1; .2 3,42,

invariants of the gauge group with group independent kine- (B8)
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wherex a@y are ratios of the quadratic Casimirsee Eg.
(39] andM(1¢,2,.3,.4,) is defined by

M(Lr,,2r,,31,.4,) =M (Lg,,2,30,4,) + M (314, 1,2

PHYSICAL REVIEW D 59 014020

3
C2

2

|Mi4k(1qizai3Q146)|2:_ {Ml()k+XMl)(k

ik ik 4y 2npik ik
+YMy+zZM; + XM+ Xy Myt

(B9) (B17)
_ where the nonzero element of the matrices
2. Four-parton color-correlated, color-summed matrix Mlk, Mlk’ M|k, Mlk, MK ’ MX are the following ones:
elements X y z xx Xy
In this subsection, we give explicit formulas for the color- MPZ=MP=MB=M3¥=-25;, (B19)
correlated, color-summed Born matrix elements for four final
state partons. We consider those four cases as in the previous M(1)3= M(2)4: 2S;,
subsection. The color summation is again fairly straightfor-
ward, therefore,_we only record the results. Mizz M)l(“: Misz M§4= 25, (B19)
For theV—qqgg subprocess
3 M=M= -3s;,
ik 2__ ¢ ik ik 2pgik
| M3 (14,24,34.49) 2 Mg+ XM+ XML, ME_M¥_2S,  MM—MZo2s,
(BlO) y y y y (BZO)
where the nonvanishing elements of the matrices 12_ g 34 14_ 123
: - : . M, =M:"=2S,, M;'=M:°=2S
k k k ; 15
My, M, ML are given by z z z z (B21)
14_
My '=2(S$+5,+S;), (B11) MB=M¥=-2(S,+S,),
M= —25 - 2S,-3S;, (B12) 1
* M=M= ME=M3= - s,
MEP=MP=M?=M¥=5,+5,+S;, (822
w 1 M 5= M%=Ss,
M= E(Sl+ S,+2S5), (B13
ME-ME--S MY-ME--s.
12 34 1
MXX:MXX:_E(SZ+S3)! 13 24
Mxy: Mxy:Sl+SZ
13+ 04 1 For this case th&; functions are defined as follows:
Mxx: Mxx: - E(Sl+83)y
— 2 hi ANy N3 gk 7 40l Shy Shh hy
Sl=M(1f11,2f22,3f33,4f:)*M(1f11,2f22,3f:,4f:), (B24)
1
M§§=§(Sl+82) — . hy hg oNg Shovk 7 40 by Shh ohy
S =M(1{140% 32,2  M(L{1,414.31.22), (825
and theS; functions are defined by
S, = M(lhl ha ghs 4“4)* I\W(lhi 4h"1 3hé 2hé)
_ hy oh, oha sNas % hi oh’ ah’ ANg f 7 g7 My LER PR £ R P
Si=m(1;],2%2,3',4 " m(1+,2"%2,3'3,4.1), (B14)
— . hy hg oNg Shovx 7 401 Sho Shh hy
h - } +M(L140 32,22 M(1{122,33.41%),
_ hs oh h, oh,
S=m(1;},3%9,2"2, 4 * m(11,8% 22, 4,%), (B195) (B26)
Y where M (1; ,2; 3, is given by Eq.(B9). Finally, for
83: m(1?1’2h2,3h3’4?4)* m(1?1'3h3'2h2'4|;4) (—..fi fy 3f3 4f4) g Yy EQ y
1 4 1 4 the V—qqgg subprocess
+m(1,318 202 A4y x my( 1M1 25 35 474 (B16) 3
f1 fq f1 fy |Mikl - 3 4)12= — —F ry ik 4 x2m ik
4( qr4q19g: g)| - 2 {X X+X xxS 1

In the case of four-quark production

(B27)
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where the nonvanishing elements of the matribé$ and

1
. T _ ot N2~ T
I\7lekx are given by TiT1(24)=T,T,(1-3) NCCF( Ce ZCA)’

(B35)
MZ=2|M (1,234 1%, (B28) L
TIT(1-3)=TiT,(24)= NCCF( Cr— ECA) (CE—Cp),
M= —ME=—M(1;,,2,3 4% (B36)
(B29)

C
TIT1(153,204)=TIT,(13,24)=C4— NcCFTR7A,
(B37)

M=M= MG=M5
1- 2
:§|M(1fl!2f213f3!4f4)| . E

TiT,= NCCFTR< Ce=3 CA) ,
(B39)

3. Five-parton color-summed matrix elements

. : . . 1 \?
In this subsection, we give explicit formulas for the color- TIT2(1<—>3) :TIT2(2<—>4) = NCCF( Ce— _CA) , (B39)
summed Born matrix elements for five final state partons. 2

There are again four different cases: the two-quark three- N

gluon process, the production of two equal, or unequal flavor TiT2(1-3,24)=Cs. (B40)

quark pairs plus a gluon and the two-quark two-gluino one- | . :
gluon production. Using these results, the square of the matrix element for any

In the case of the two-quark three-gluon process the colofrlavor configuration can be written in the form:

summation is straightforward and leads to the following X\ Ms(14.27.39,43,5 )2
pression: 4 9
=NLCHMo+xM,+yM,

X
NP ) F VSN
| Ms(1q,24,34,44,50)| _NCCF{MO 7 (M1+2Mo) +Z M+ XMyt XY My}, (B41)

NG where we have introduced the ratio
+Z(MO+ Mi+Msy) e,
B30 Cs (B42)
Z:
(B30) e
where and the following abbreviations:
2
Mo=| 2, (12348, . (B3 Mo=B+C+E, (B43)
M, = L 3C+2E+B B44
M,= >, |m(1,2,3,45)|% (B32) =~ 5l ), (B44)
{2’3’4} 1 5
M,=A+D, (B45)
and y

M,=F+G, (B46)

M;=—-2M,-2Re X {m(1;,2,3,4,5)*" 1
{234 M= Z(20+ E), (B47)

X(m(1f1!21413155)+m(lf1131214155)
1
~m(1;,4325))} (B33) Myy==5(F+D), (B48)
with {2,3,4}" denoting the cyclic permutations of the three
labels 2, 3 and 4. with the functionsA, B, C, D, E, F defined as

In the case of the four-quark one-gluon subprocesses we
have to evaluate the following color sums:

A= M, |2, B49
TITi=TiT,=NC2Te, (B34) 2 2 2 M (B49)
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B=—2Rd|\71|\71(2<—>4)* A'I"Iﬁ'lzhfgh'lzzzNCC'z:CA' (B57)
+MoMy(13)* + (13,2 4)), (B50)
— — — — S 2 2
C=—-2ReM;M(1<3)* + M,My(24)* T3T3=T4T4=NLCeCy, (B58)
+(13,2-4)), (B51)
— 1
- T — _ -
DzZRe(Z > MlMg), (B52) T1T2=NcCeCp| Cr ZCA),
{13 {24 (B59)
— c2
B=—2Re(M1+My(13,2-4)) T{To=TiTa= - NCe 2, (B60)
X (Mo(13)+My(24))* + (M7 M,)),
2
B53 e e c?
(853 TIT4:T£T3:NCCFTI (B6Y)
F=2ReM;M (13,25 4)*
_ _ _ 2
+M;1(1-3)M(2-4)* + (M= M),)), (B54) :‘rg’:’u:Nch%- (862

G=2ReM;M,(1-3,24)*
_ _ - Using these identities the square of the matrix element can
+My(1-3)My(24)* +(M1=My)),  (B55)  pe written in the form:

where
_ | Ms(1q,24,35,45,5¢) 2= NCE{ XM+ x2M i},
M l(1f112f213f314f4159) = M 1( 1f112f2,3f3,4f4,59) (863)
+M3(3y,.4,,11,,2,,5), where
(B56)
N M — | N 12
Ma(1r, .21, 3,4 ,.50) =Ma(1r, 21, 3, 4 ,.5) M=IM3+Mal*, (B64)

+Ma(3y,.4, 31,2 5y).

- ~ o 1 o
L Moo= Ma+ My|2+ SRe(M1+ M) (Mg + W4%)
For theV—qqggg process we have to calculate the fol-

lowing products of thél; color factors: —Re(M+ M) (My+Mg)*). (B65)
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