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Saturation effects in deep inelastic scattering at lowQ? and its implications on diffraction
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We present a model based on the concept of saturation for haihd small. With only three parameters
we achieve a good description of all deep inelastic scattering data betd@01. This includes a consistent
treatment of charm and a successful extrapolation into the photoproduction regime. The same model leads to
a roughly constant ratio of diffractive and inclusive cross sec{i80556-282(98)03023-9

PACS numbgs): 13.60.Hb, 12.38.Bx, 12.40.Nn

I. INTRODUCTION The recent low@? data from the DESYep collider
HERA [9,10] have triggered significant theoretical activity.
The basic concept of saturation in deep inelastic scatterintj) one class of modelgl1,26,13 the description of the data
(DIS) is related to the transition from high to lo@? as one is achieved by combining the nonperturbative vector meson
observes in the totay* p cross section. This type of satura- contribution[vector meson dominand®MD) mode] with
tion occurs when the photon wavelengti@Ileaches the size contributions based on perturbanvg QCD. Both models do
of the proton. We will include another aspect of saturation inn°t Use the concept of smadlsaturation.
our paper which is inherent to DIS at smal(smallx satu- Another class of model$13*—15 is based on Regge
ration). In this regime the partons in the proton form a densetheory. The total cross sectiar”” ? is the sum of contribu-
system with mutual interaction and recombination whichtions from different Reggeons. In particular in REE3] the
also leads to the saturation of the total cross se¢igrBoth  l€ading behavior is given by the sum of two Pomeron con-
aspects of saturation are closely linked to confinement anfibutions with “hard” and “soft” intercepts. Again the con-

unitarity. While the latter might be approached perturba-cept of the smalk saturation is not implemented in these

tively [2], the first is genuinely nonperturbative. The ap- analyges..The claim in Refl3] is that_ saturation at present
proach we choose here can be called QCD-inspired phenorr"?—nergles S not negded. However, in the true high energy
enology and follows the line of Ref§3—5]. It is in spirit asymptotics something has to happen. The hard Pomeron as

’ . . proposed in Ref.[13] would eventually overtake and
most similar to the ideas of the analysis[8]. strongly violate unitarity. Other approaches like those in

The bQSiS for our app_roach s th_e fact that the phmorhefs.[lG,lﬂ have imposed a logarithmic behavionrirfrom
splits up into a quark-anthuark paldipole), far upstream the very beginning and thus do not violate unitarity.
the proton target, which then scatters on the proton. In the The strategy we adopt in our analysis is the following. We

pure perturbative regime the reac.tion is mgdiated by Singledetermine the three free parameters of our model mentioned
gluon exchange which changes into multi-gluon exchang%ar"er,%,)\ andx,, by fits to all existing DIS data fok

when the saturation region is approached. The latter processg 51 \ye then study the obtained parametrization in the
can be interpreted as the interaction with a “semiclassic hotoproduction region, where a non-zero quark mass is re-
f'?ld I[ﬂa.MO?t |tmhpo(;'Fant fprt.us 'Sft?r? faﬁt tthat thz rt?]eChaE)quired to achieve a finite cross section. The quark mass is
nism leading fo the dissociation of the photon and the Subg,hsen sych that the photoproduction cross section is in

sequent scattering can be factorized and written in terms of ugh agreement with the data without having them included

photon W?VEE fténcltlon conchJIuFec:h_thh a qua;!(-anglqu?hrkin our fit. We found that the effective slope s of the cross
cross sectiordr [8]. In our analysis this cross section has €section [o~(W2) eff] interpolates between the “soft”

simple form &= oo{1 - ex{ ~r?/4R5(x) ]} wherer denotes  poraron value~0.08 and the “hard” value~0.29. We

the separation between the quark and antiquarkR%‘id the  would like to point out that the “soft” value is simply a
x-dependent saturation scal@j(x)=(x/xo)*. The func-  result of the extrapolation of our fits to the photoproduction
tional form of & can be different; it is important, however, region. After a first fit with only light quark flavors we per-
that for smallr it is proportional tor® (color transparendy  form a second fit which includes charm. We found again a
while for larger the cross section approaches a constangood description of all inclusive DIS data and in addition the
value. The latter behavior ensures saturation. The crucial ekorrect relative charm contribution. The model we use can be
ement in our analysis is the assumption that the saturatiostraightforwardly applied to DIS diffractive processes, lead-
scaleR, depends orx in such a way that with decreasing ing to the interesting result that the ratio of the diffractive
Bjorkenx one has to go to smaller distandésgherQ?) in  and inclusive cross section is roughly constant as a function
order to resolve the dense parton structure of the proton. Thef x and Q>.

boundary in the X,Q?)-plane along which saturation sets in  The content of the paper is the following. In Sec. Il we
is described by the “critical Iine,’szlle(x). introduce the theoretical details of the model and discuss its
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v 1 Y €=2(1-2)Q*+m¢. (4

Ko and K, are McDonald functions and the summation is
performed over the quark flavors. Th&p cross sections are
related to the structure functidf, in the following way:

F2(x,Q%)=F(x,Q%)+F(x,Q%) )
p p and
FIG. 1. Diagrammatical representation of the basic process as Q2
discussed in the text. Fri(x,Q%)=——07.(xQ%. (6)
T Qam

qualitative features. We then derive a simplified parametri- . . L . .
zation which illustrates the concept of the critical line. This The interaction of theyg pair with the proton is described

parametrization can also serve for a quick fit to the data. IrPy t?e .d'p%? crosstsecthm(lx,rl ) wh|tch |sthmodglles_l In Ol]frth
Sec. Il we describe our two fits and discuss their physicaFlna ysiS. ‘The most crucial element 1S the adoption of the

implications. Section 1V is devoted to the study of diffraction x-dependent radius
based on our model and Sec. V contains conclusions. 1 (

Ro(X)= Q_o

which scales the quark-antiquark separatiom the dipole

X N2

)

Il. MODELS FOR SATURATION Xo
For small values of the Bjorken variabbe the photon ;

wave function formalism has been established as a usef©0SS section

tool for calculating deep inelastic and related diffractive A 2 _ 22

cross sections fon* p scattering[3,4,8. It allows one to o(X,r9)=oog(f°), ®

separate between the wave function of the photon which degitn

scribes the dissociation of the photon into a quark-antiquark

pair and the interaction of the quark-antiquark pair with the R r

target. The photon wave function constitutes the calculable r= 2Ro(X) ©)

part of the process whereas the remainder is substantially

influenced by nonperturbative contributions and needs to bg,=1 GeV in Eq.(7) sets the dimension. The functignin

modelled. The corresponding diagram is shown in Fig. 1. WeEq. (8) is not completely constrained. Important, however, is

work in a frame where the photon with momentgrand the  the quadratic rise at smdiland the flattening off at largie

proton with momentunp are collinear. Accordingly, the dis- The latter behavior providesaturationof the cross section

tribution of the quark-antiquark pair is given in terms of 1), i.e. o.y*pzo_T+o_LwconSt for smaliQ2. At small?, on

and (1-2), the momentum fraction with respect 0 and  the other hand, we have a simple scaling behagimior
the relative transverse separationFor transverseT) and transparency o P~ 1/Q2, combined with the power-like

o . " .
Lgﬂggutﬂg?(l)lyn&)ap olarized photons the™p cross section dependence of E(g8) on x as typically observed in deep

' inelastic scattering. We choose the following simple ansatz
for the functiong:

1
oT,L(x,Q2)=fdzrfodZI‘I’T,L(z,r)IZ&(x,rZ), 1) (12)=1 e 10
g(f9)=1-e".

whereW?= (p+0)?, Q*= —q2 andXZQz/(WZJFQZ)- The  This ansatz recalls of eikonalization. It should be mentioned,
squared photon wave functiokir  is given by however, that a complete eikonal treatment requires the in-
corporation of a target profile function. The foifh0) would

Aem mean in this context that the gluonic density in the proton is

6
[Wr(zn)|?= A2 Z ef{[Z°+(1-2)*]e’K(er) evenly distributed over a certain area within a sharp bound-
ary and zero beyond. A more sophisticated treatment includ-
+mZK3(er)} (2) ing a realistic profile function can be found in RefS,6].
The corresponding result in these references can be roughly
and approximated by
bater, g(P%)=In(1+72) (11)

|q,L(Zir)|2:

21 10)252 212
ef{4Q“z°(1—-2)“Kg(er)}, (3 N .
4172 Ef: rl4Q7z JKlen)} 3 and shows a logarithmic growth at large distances.
For smallz one can as well think of a logarithmic modi-
for the transverse and longitudinal photons, respectively. Iffication as is motivated by the single gluon excharigee

the above formulas Ref.[4])
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FIG. 2. The profile of the dipole cross section for differéht The small arrows below the figure show how the indicated parameters
change wher decreasegfor W? fixed).

tion (14) exhibits the familiar short distance scaling behav-
: (12 jor; i.e., the corresponding structure functiéi(x,Q?) is
roughly constant irQ?.

Both alternativeg11) and(12) can be easily implemented ~ Let us now analyze the situation shown schematically in
in our formalism which we present in the forthcoming sec-Fig. 2b in which the size of the(q pair is bigger than the
tions. It turns out, however, that they are disfavored in oursaturation radius @>R,. For the small pair contribution to
analysis and we will not discuss them in detail. This does notrt We now obtain
mean that we contradict their physical implications. It might
be that a different approach could be reconciled with the

g(f?)=*#21In

1 1
+ =
r2

model (11) or (12). R 2 (w2 L1
In our analysis we fit the three parametarg, Xo and X\, o Jo dr 2] %o R_§+ JRz dr 2] %0
of the dipole cross sectidi®) and(10). Before going into the 0
details of the fits it is illuminating to perform a qualitative 1
analysis of the behavior of the cross sectibnin our model. ~ootog |09( QTRg) . (19
A. Qualitative analysis

In the following discussion we focus on the cross sectionWith respect to the power behavior @ the cross section
o1 in Eq. (1) which dominates oves, . We also neglect for can be viewed as being constant. The potential divergence
simplicity the quark mass. The important point in the quali-due to the logarithm will be regulated by the quark mass in
tative analysis is the behavior &f;(er) in Eq. (2) for small  our full analysis. The actual value of the mass plays an im-
values ofer: portant role in the description of the photoproduction region.
A similar analysis can be performed for “large” pairs for
1 which r>1/Q. The integration conditiorr <1 is now sat-
Ka(er)~—- 13 isfied whenz< 1/(r2Q?) and thez integration in Eq{(1) can
no longer be factored out. It has to be done before integrating
For large values otr the functionK, is exponentially sup- overr. The result in the end is the same as for small pairs. If
pressed. Thus in order to obtain the dominant contributionhe characteristic size of thgq dipole is less thamR,, the
we perform the integration in Eql) for er <1. scaling behavior is obtained. ForQ#R, the cross section
The photon virtuality introduces the scaleQlfor the & is constant inQ%. A more detailed analysis gives loga-
transverse dimension of thgq pair. A pair is considered rithmic modifications.
“small” when the conditionr <1/Q is satisfied and “large” So far in our discussion we have assumed a constant satu-
whenr>1/Q. Let us analyze the contribution to E¢l)  ration radius which allows a smooth transitionaf between
coming from small pairs for which the conditiomr  the scaling region of larg®? and the saturation region of
=yz(1-2)rQ<1 is satisfied for all values . In the case low Q? (low-Q? saturation. The main feature of our model,
1/Q<Ry, shown in Fig. 2a, the size of the smglj pairs is  however, is the fact that the saturation radRgsdepends on
much smaller than the saturation radius arie(r) X [Ro(x) ~x*2 with A>0]. In this way we have introduced
~aof2/RS. The cross sectiofil) exhibits the following be- another kind of saturation which can be called the small-

havior: saturation. In terms of the parton picture it is closely related
to the saturation of the gluon densitg9]. An important
90 1/Q2d 2o 1), 100 14 consequence is that for fixed/ the radiusR, becomesQ

IT RS Jo reler)’ Q°R3 (14 dependent which makes the saturation more dynamical. As

illustrated in Fig. 2 bothRy, and 1Q move towards each
where the integration over was factored out after the can- other; at a certain scal®=1/R,, they meet and then pass
cellation of thee factors. Thus for constant the cross sec- each other. Hence, the saturation occurs at higher values of
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Q2 than in a model with a fixe®,. In addition the transition
from high to lowQ? is faster. The line given by the condi-
tion

RH(x)= iz (16)
Q

will be called thecritical line. In the parton picture it would
describe the boundary of the critical dengit@]. The precise

PHYSICAL REVIEW D59 014017

saturation pattern is determined by the fits of the three pa-
rameters in Eq(8) to the existing DIS inclusive data.

B. Mellin transformation

In this section we briefly describe the technique we use to
perform the fits. In order to evaluate the cross sectigrwe
employ the Mellin transformation to factorize the wave func-
tion from the cross section. This reduces the number of nu-
merical integrations to 1 and allows for an easier discussion
of the scaling behavior:

|
) dv ) 1 ) dr12 r 1+2iv - )
or.L(X,Q ):f ﬁfd rjo dZ Wy (z,r) J T2\ o(X,r'?)

1/2+iv 2
dv | (%) Q3 m;
:UOJ’ 27 (?) & Hr o V,& G(v) 17)
where
H m; => 26a'em\/;r2(3/2+iy)[‘(1/2+iv) Q2+ 4m? 12-iv
(1+3iv)Q2+(3+2iv)m% _ Q? 2 i 1 L3 o2
: Q%+4m; - Q2+amz) |** §+IV’§,§'Q2+4m2
f 2 ;
+| (1=iw) Q2 3+ 2iv F l+ 1 3 Q2 -
- B ——+iv,z = ————
Q2+4m? 4 2n1 2 2'2 Q2+4m$
and
o[, mi S , 6o 7 T3(3/2+1v) [ Q%+4m?| "% " 16 (3,17 @ y
L V!E 4 €5 o7 4 I'2+iv) Q2 30271 E+IV’§'§’Q2+—4|’an _ (19

In addition, in Eq.(17),

G(v)= f:d”r2<f2>—3’2—”g<f2>. (20

In order to have the right threshold behavior and a smooth

transition in the limitQ?>—0 we also modify the Bjorken
variable

Q?%+4m?
XT.

X= (21

The Mellin transformation for the functional fortd0) of the

function g which defines the dipole cross section in our

analysis yields

(22

1
G(V):—F(—E—IV).

For the sake of completeness we also present the correspond-
ing expressions for the alternative models in Ed4) and
(12):

T
1/2+iv cosi mv)

G(v)= (23

and

T
1/2—iv cosimv)’

G(v)= (24)

The main purpose of introducing a mass is to have a finite
limit Q>—0. However, in the regio®=1 GeV, where we
mainly fit the data, the mass has little effect and one might as
well consider the case with zero mass. In this case the func-
tions (18) and (19) reduce to
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2 2 ole and therefore does not produce a logarithm. Since it is
H(v,0)=>, € Baen m /4ty il Eot the leading contribution, vl?/e will ignoreg it in the follow-
no T 27 16 14,2 \coshmwv) ing
sin(7v) T(3/2+iv) In the “soft” regime where &,/x)* Q(z,/Q2 is larger than

(25) 1 we close the contour in the upper plane and find the lead-
ing pole atv=i/2. For the transverse cross section together
with model (22) it is again a double pole leading to the

v —I'(=1/2—iv)

and following behavior of Eq(17):
Baey m L4+ V2 T 2 A A2
_ 2 em 7 X Q
Hy( v,0) Ef: €} 27 8 1+ 12 (COSK 77-1;)) In (;O) Q-g| . (28

. "
sinh(v) _T(3/2 IV.) ) (26) We can now combine the “hard” and the “soft” terms
mv  —I(=12-iv) given by Egs(27) and(28) into one expression

The resultg25) and(26) are much simpler than in the mas- PN 2
sive case and probably familiar to those readers who have o P(x Q2)=(ré[ 4(@) %4_1
calculated the Mellin transform of the quark-box diagram in ' Q?
momentum space. The only difference is the ratio of fhe

functions at the end of each expression which is a residue of X4 N Qg X AS Q?
the Fourier transform. + > —2In —| =t1|(, (29
We use formulag17)—(22) in our fits and perform the Q o/ Qo

integration overv numerically. The main virtue of this rep- where we have added 1 in the argument of the logarithms in

resentation is the quick convergence of the integrand in Ed. ” o ;
(17) which makes the numerical integration very fast. An-qbrder to“aIIO\{\,/ for a smooth transition between the “hard )
and the “soft” regimes. We have also introduced the param

other virtue is the rather simple analytical structure which . ; - X
. . . eters with a prime to indicate that the functional form should
allows to extract the leading scaling behaviorogf for large X o .
5 : X be refitted to get a good description. Although E2p) is a
as well as lowQ*, as will be demonstrated in the next sec- S - .
tion rather crude approximation of the original approach, it repro-
' duces the main features.
o o o As was discussed in our qualitative analysis we define the
C. Simplified parametrization and critical line saturation as the transition from short distances to long dis-
In this section we analyze the analytical structure of thetance with the characteristic scale given by the saturation
cross sectior(17) in the complexy-plane. We use the for- radiusRo(x). Looking at Eq.(29) we realize that the transi-
mulas(25) and (26) for the massless case. The position andtion from the “hard” into the “soft” regime occurs when
characteristics of the singularities in the compleglane de- (x(’)/x)“ Q3/Q? =1. This equality defines basically the same
termine the behavior of the analyzed cross section. In generatitical line as in our qualitative analysis of Sec. Il see
the v-integration runs along the real axis, and depending orEq. (16)]:
the argument>(0/x)”Q§/Q2 in Eq. (17) one can close the

contour in the upper or lower part of the complex plane. For , 1 X4 N 1
example, in the case of lar@@” and not too smalk (“hard” Q' ==1+%] = RZ) (30
regime the mentioned argument is less than 1 and the con- Qo o(X)

tour has to be closed in the lower plane. The first singularit
encountered is a pole at=—i/2. Depending on the model
for the dipole cross section given by EG2), (23) or (24), it
can be a double or triple pole. The mod&P) used in our
analysis leads to a double pole which generates a logarithmic
behavior of the cross sectidi7):

YThe precise location in thex(Q?)-plane and the slope of the
critical line is determined from the fits discussed in the fol-
lowing section.

Ill. DISCUSSION OF THE FITS

N A2 N 2 We will discuss separately fits with and without a charm
(ﬁ %In 1) Q_ 27 contribution. As we will see charm has a quite strong influ-
x| Q2 Xo Qg ' ence on the fit and causes the critical line to move towards

smaller scales. For the three light flavors we assume a com-

One should note that the logarithm is due to the photon wav&on mass of 140 MeV which leads to a reasonable predic-
function (the quark-box diagrajmand is related to the split- tion in the photoproduction region. The general dependence
ting of a gluon into a quark-antiquark pair. The factor in of the total cross section”" P on the guark mass is such that
front of the logarithm arises because +2=1 in Eq.(17)  the photoproduction cross section increases logarithmically
and simply reflects the basic scaling behaviorFgf com-  with decreasing mass and diverges in the limit of zero mass.
bined with a certain power behavior in One also recog- Thus the quark mass plays the role of a regulator for the
nizes that the longitudinal contributiq@4) has only a single photoproduction cross section.
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TABLE I. Fit results. “E 0.6 .
> B 05
oo (mb) A Xo x/(no.exp.po.) 3
o4
No charm 23.03 0.288 3.0410°4 441/372=1.18 5
With charm 29.12 0.277 0.410* 558/372=1.50 03
0.2
For our fit we use all available DIS-data below the 0.1
Bjorken variablex=0.01 combining systematic and statisti-

o

cal errors in quadrature. For the numerical evaluation we
have implemented formulad7)—(22).

A. Light flavors 06

dIog(Qz)

The results for our first fit with only light flavors are listed
in the first row of Table I. The corresponding plot in Fig. 3 & 4}
shows only a subset of the data that were fitted. The mos " 03
remarkable feature of the cross section in Fig. 3 is the turn 45
over of the curves towards sma&)i? values. This illustrates
the change between the scaling and saturation region for higc
and low Q?, respectively, and is well reproduced by our 0
model(solid lines. The critical line computed from E¢30) -0.1
is plotted across all curves and indicates the onset of saturc.
o 01, 1 0 101 e SOMeAher g, T0% Fic. 4. The ogatinic’soe of or T crrgodt
This line demonstrates that indeed the turnover occurs bastﬁ)ﬁoned as a function o@” andx. The line across the curves shows

" . . o . e position of the critical line.
cally along the critical line and is not significantly influenced
by the quark mass.

Figure 4 shows the logarithmi@?-slope ofF, computed
for fixed x and then plotted for fixetlV? as a function ofQ?
and x separately. These plots are inspired by an analysi
which was carried out by ZEUR0] to stipulate the devia-

01

tion from the conventional perturbative QC®QCD ap-
proach at low values o®? (see alsd21]). The remarkable
roperty of the presented plots is a distinct maximum for
ach of the slopes. The critical line lies slightly to the left of
the maxima in both plots, which might suggest that an alter-
native definition of the critical line could be introduced as

, ‘f being the path along the maxima.

I w=245 (x128)

In Fig. 5 we show the position of the critical line obtained
in our analysis in thex,Q?) plane. We observe that going
along the critical line fromx=10"* to x=10"° we increase
the saturation scale from approximately 1 Geup to
2 Ge\2. This means that even at a futuegp-collider we
_ expect only a rather small shift in the saturation scale. With
] great optimism it might go up to 3 Gé&\at a 1 TeV machine
. o RN ] which, nevertheless, reaches quite far into the perturbative
weso g e PR Me N 1 regime.

S AR = An important prediction resulting from our analysis is the
§ longitudinal structure functiofr; which is shown in Fig. 6.
As we seeF, constitutes roughly 20% df, for Q? around
3 ) 10 GeV?, which is a reasonable value.
" zmUsePC N N © We now concentrate on th&/? dependence of the total

[ w=140 x16)

| wensxg

-
o
T

W=75 oy

102

T T T T
5 5 &)

SR cross sections?"P for fixed Q2. We are particularly inter-
- ested in the effective slope of"P as a function ofV2. This
) SO O E SRR UUTH N Wk WA dependence is shown in Fig. 7 in a broad rang@bfalues
10’ 10’ 1 10 10 and in Fig. 8 with a particular interest for smaller values of

Q* (GeV?) Q?<6.5 GeV. Moving from high to lowQ? we see how the

* . . . .

FIG. 3. They*p cross section for various energies. The solid Slope of o” P flattens off indicating the low@? saturation.
lines show the fit results with a light quark mass of 140 MeV. TheOne can also recognize a slight curvature in particular for
dotted lines show the cross section with the same parameters b@”= 0. This is associated with saturation in energy.
with zero quark mass. The line across the curves indicates the po- A more explicit way of exposing saturation is achieved by
sition of the critical line. plotting the effective slopa. s computed from the relation
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FIG. 5. The position of the critical line in thex(Q?)-plane. The i i
narrow hatched area corresponds to the acceptance region ofyq 2L Ceonl w0l il l

HERA. The wide hatched region indicates the range for a future 1 10 10° 10° 10* 10° 10°

TeV ep-collider. The boundaries are lines of constgnt w2 (GeV?)

3 In( Vo FIG. 7. The totaly*p cross section as a function &% for
- ) (31) differentQ?-values. The dashed lines represent the lines of constant
eff™ In(W2) X as defined in Eq(21).

as a function ofQ? for fixed values ofk=(Q?+4m{)/(Q*  “soft” to the “hard” regime is clearly visible. Quite inter-

+W?). This means that we move along the dashed linegstingly, Ao;; at very low Q? turns out to be close to the

shown in Fig. 7 when computing the effective slope. Thestandard value of 0.08 for the soft Pomeron. This value is

resulting curve is shown in Fig. 9. The transition from the dependent on the choice of the quark mass which is not
completely constrained. However, if the mass is chosen such

L that the cross section in the photoproduction region roughly
F, agrees with the data, it automatically leads to the right value
14 . for the slope in this region. The other important feature of
smallx saturation is that with decreasifgthe slopeh.s;
12l ] also decreases, as can be inferred from Fig. 9. In the true
high energy asymptotics it would approach zero which is
W=245 related to the fact that in the complex plane of angular mo-
s w=210 7] mentumj the leading singularity for our model is located at
w=170 J =1.
08 [ W=140
W=115
w295 B. Charm
o8 it Charm gives a substantial contribution to the total cross
sectiono” P and cannot be ignored. We have performed a
] separate fit including charm but without introducing new pa-
rameters. Technically this means that in the basic formulas
1 (2)—(4) the sum over flavors has to be extended to include
charm with a mass of 1.5 GeV. Also effectedXsin the
] corresponding dipole cross secti(8),(10) since it contains

A P 3 the quark mas$see Eq.(21)]. We do not change the light
flavor mass and keep it equal to 140 MeV. The impact of
charm is shown in the second row of Table | and in the last
FIG. 6. F, andF,_ structure functions plotted as a function@f  three plots, Figs. 10—12. Th¢ of the fit has increased but is
for fixed energiedw. still acceptable. This is also reflected in Fig. 10 in which the

1072 10 1 10 10 10
Q% (GeV?)
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2 //

©

104k 0.15 (x64) |
//‘—“‘t‘ 020 (x32)

0.25 (x 16)

103k ’//Hﬁ' 0.30 (x8)

/’/”_“_‘W‘_—’ 0.40 (x4)

/M 050 (x2)

- . - G
102k 065 (x1) e
//// 3 T x=5-10"

/// 150 (x 1/2) 1.05 - x=10" ]
10 3.00 {(x 1/4) _|
/ ] 1 | | ! ! I I
) 3 -2 -1 2 3 1
650 (x 1/8) | 10 10 10 1 10 10 102 210
TE E FIG. 9. The effective slope iW? of the total cross section,

= = — = Nefs, plotted as a function ad? for fixedX. The solid line appears
10 10 10 10 2 2 twofold due to two different methods of calculation. One is based
WHGeV’) on the analytical expressidB1), the second is calculated from Fig.

. . . . ,2
FIG. 8. The same cross section as in Fig. 7 with the emphasis o% tl)ztaklng a pair of points along the lines of constént10™“ and
small-Q? values. U

agreement with the fitted data looks satisfactory. The most d"‘?,L =i j dsz'leN' (z,0)[2|5(x,r2)|2
important change is a shift of the critical line down to dt |_, 167 0 LS R
smaller scalegsee Fig. 1D (32
More visible is the effect of introducing charm in the
2_slope of F, shown in Fig. 11. The shape of the peak
becomes broader and the value of the slope at the high end
Q? andx increases. The main reason for broadening is the
fact that charm saturates at a much higher scale due to itg
high mass. We also see that the critical line moves farther &

8Pd perform the Mellin transformation as in Sec. Il A:

[ w=245 (c128)

| w=210 (x64) TS

away from the maxima. We still believe that the critical line ~ 44 i

characterizes the dynamical part of saturation in contrast tc — ; 1

the saturation for charm which is entirely due to its small [ w140 ct6 1

size and predominantly perturbative. But even a small size [ wetis x8)

contribution will at extremely largéV? be bigger than the 10°F 405 s N TR .

saturation radiuRy(x) and undergo smal-saturation. ‘u\ e e SN 1
A rough comparison with preliminary data on the - $ ]

charmed structure function shows a reasonable agreemel [ W=80 bx)
with the data at lowx. We have again looked at the effective 1
slopel ., shown in Fig. 12, and find a slight increase at the
low end ofQ? of about 10% as compared to our previous fit
with light flavors only.

(=
[

10

IV. IMPLICATION ON DIFFRACTION

) Vv.['n . .AK"M Nk
102 107" 1 10 10°
Q@ (GeV?)

R AT R TS

-

One of the important features of the wave function for-
malism is its flexible applicability for inclusive and diffrac-
tive scattering in DIS. We can immediately write down the
cross section for diffractive scattering using the photon waver|G. 10. They* p cross section including charm. The charm con-
function defined in Sec. l{see also Ref.18]), tribution itself is plotted as dotted line.
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o
o

W=245 B

dF,/dlog(Q?)
o
[3]
T

°
kS
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0 N
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— 06—
c 1
o 05| W=245 3
2 q
T -
& 105 |- x=10" ]
h-)

1 1 Il Il Il Il 1
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Q%GeV?)

FIG. 12. The effective slopk.¢; based on the charm fit. The inter-
cept is slightly higher at lowQ? as compared to Fig. 9.
FIG. 11. The logarithmicQ?-slope ofF, with charm. The dashed
line shows the charm contribution. transverse part which is now reduced to a single pole. Since
we are left with at least a single pole, the diffractive cross
do?, dv 1 section for transverse polarized photons has indeed the same
d—t’ =J 7 j d2rJ dzl\IfT,,_(z,r)|2 power behavior irx as the inclusiveyp cross sectiof27].
t=0 0 We also found in Sec. Il B, E¢26), that the inclusive
'2 142iv longitudinal cross section had only a single pole which dis-
dr’” (L) |6(%,r'2)|2 appears completely in the diffractive cross section. The con-
rrz \r’ ’ clusion is that the next pole at= —3i/2 becomes the lead-
—o? f dv
2
result for the longitudinal contribution also confirms the well
m? known higher twist nature of the diffractive cross section.
XHr v, GP(v). (33 It is important to note that the results discussed in this
Q section are derived without imposing cuts on the final state

except for the basic rapidity cut. In particular, there has no
cutoff being assumed for the transverse momentum of the

X

124w ing pole and the power 1Riv in Eq. (33) equals 2.
Xo|* Qb Consequently, the longitudinal part in diffractive scattering
X & rises at smalk two times as fast as in the inclusive case. Our

The only change appears to be the functidi(@. Provided

the integrand in the second line of E§3) has at least a final state partons. This allows us to use form(@3). In Ref.

zmggte tgotlr?ealgj':r;;rﬁzv\;vr?ag;ft;hsep&vgesratﬁg?:)/Irotrh\éVIitrTc:S: [22] a similar study led to a closely related statement about
P J the conservation of “anomalous dimensions.” In an ex-

SIVE as well as d|ffract|ve Cross section. The explicit Calcu'tended version with non-zero momentum transfer links can
lation of the function & defined by

be found to conformal invariance in the Regge lifi@8].

w _ AZ We can go a step further and calculate the ratio of the
GD(V)=J di?(f2) %2 v (1—-e )2 diffractive and inclusive cross section in the limit of large
0 Q2. This can be done by shifting the contour of the
= (2V2riv_ 2\ (= 1/2—iv) integration down the lower half of the complex plane, as was

_ done in Sec. Il C, and picking up the leading pole:
:(2_21/2+IV)G( V) (34)

D
reveals that &(v) is almost identical to &) except for a g __9% 3 In(2) '
factor which gives zero at=—i/2. This zero has a common Tiot  47B 6 In Q2+ 6\ In(x/xg) +6ye+1
origin for all sensible models and simply reflects the fact that
at small distances the cross section vanishes proportional towhere B denotes the diffractive slope. A mild logarithmic
r2 which in diffraction turns intar®. In Sec. 1l B, Eq.(25), dependence or is found in the ratio which gives a slight
we found a double pole at=i/2 in the integrand for the logarithmic rise with decreasing IncreasingQ? we find a

(39

014017-9
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logarithmic suppression which is due to the extra zero imamely, an almost constant ratio of diffractive and inclusive
GP(v) at v=—i/2. Taking the parameters found in our fit DIS cross section.
and the experimental value f& we find that the ratio turns Our model is basically phenomenological. It is remark-
out to be equal to a few percent. We have to note that able, however, that with only three fitted parameters we suc-
contribution of similar size is expected from the emission ofcessfully described the smadldata. The theoretical basis is
a gluon. This contribution will have the same power behavthe separation of the perturbative dissociation of the photon
ior in x as for the quarks and we expect a ratio of a similarinto a quark-antiquark pair and the subsequent interaction of
size. All contributions together will be of the order of 10%. the pair with the proton. The latter is modelled in an eikonal
More precise studies on diffraction based on the modeway. The main consequence is that we do not only have
discussed here will be presented elsewhéerg. saturation at lowQ?, but also saturation at low. The natu-
ral extension of our model would be the incorporation of a
perturbative treatment for larg@?. Also important is the
V. SUMMARY development of a microscopical picture behind saturation as

We have presented a model which provides a good det_)roposed in Ref25]. .
scription of all DIS data below=0.01 (including the pho- A real test fqr our que! WOU|d. by a futurep-coliider. .
toproduction data An important ingredient of our approach Our prediction is _thazt with increasing en_ergy_the saturation
is the presence of small-saturation. This is achieved by SCalé moves up iR% For a 1 TeV collider it would be
introducing an x-dependent saturation radiudky(x) roughly a factor of 2.
= (x/x0)M"? which we define with the help of two parameters.
These parameters, together with the overall normalization of
the cross section, were determined by fits to the DIS data. We thank Alan Martin, Jan Kwiecinski and Misha Ryskin
The parametrization obtained in this way was then extendetbr valuable discussions. K.G-B. thanks the Royal Society/
into the photoproduction region, showing reasonable agreeNATO for financial support and the Department of Physics
ment with the data there. A particular result of this extrapo-of the University of Durham for warm hospitality. This re-
lation is the effective Pomeron intercept of approximatelysearch has been supported in part the Polish State Committee
1.08. In the DIS region this effective intercept increases tdor Scientific Research grant 2 PO3B 089 13 and by the EU
the asymptotical value of 1.29. We have introduced a “criti- Fourth Framework Programme “Training and Mobility of
cal line” which marks the boundary of the saturation regionResearchers” Network, “Quantum Chromodynamics and
in the (x,Q?)-plane. Finally, we found an intriguing result the Deep Structure of Elementary Particles,” contract
when applying our model to diffractive scattering processesFMRX-CT98-0194(DG 12-MIHT).
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