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Saturation effects in deep inelastic scattering at lowQ2 and its implications on diffraction
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M. Wüsthoff
Department of Physics, University of Durham, Durham DH1 3LE, United Kingdom

~Received 29 July 1998; published 30 November 1998!

We present a model based on the concept of saturation for smallQ2 and smallx. With only three parameters
we achieve a good description of all deep inelastic scattering data belowx50.01. This includes a consistent
treatment of charm and a successful extrapolation into the photoproduction regime. The same model leads to
a roughly constant ratio of diffractive and inclusive cross section.@S0556-2821~98!03023-9#
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I. INTRODUCTION

The basic concept of saturation in deep inelastic scatte
~DIS! is related to the transition from high to lowQ2 as one
observes in the totalg* p cross section. This type of satura
tion occurs when the photon wavelength 1/Q reaches the size
of the proton. We will include another aspect of saturation
our paper which is inherent to DIS at smallx ~small-x satu-
ration!. In this regime the partons in the proton form a den
system with mutual interaction and recombination wh
also leads to the saturation of the total cross section@1#. Both
aspects of saturation are closely linked to confinement
unitarity. While the latter might be approached perturb
tively @2#, the first is genuinely nonperturbative. The a
proach we choose here can be called QCD-inspired phen
enology and follows the line of Refs.@3–5#. It is in spirit
most similar to the ideas of the analysis in@6#.

The basis for our approach is the fact that the pho
splits up into a quark-antiquark pair~dipole!, far upstream
the proton target, which then scatters on the proton. In
pure perturbative regime the reaction is mediated by sin
gluon exchange which changes into multi-gluon excha
when the saturation region is approached. The latter pro
can be interpreted as the interaction with a ‘‘semiclass
field’’ @7#. Most important for us is the fact that the mech
nism leading to the dissociation of the photon and the s
sequent scattering can be factorized and written in terms
photon wave function convoluted with a quark-antiqua
cross sectionŝ @8#. In our analysis this cross section has t
simple form ŝ5s0$12exp@2r2/4R0

2(x)#% where r denotes
the separation between the quark and antiquark andR0

2 is the
x-dependent saturation scale:R0

2(x)5(x/x0)l. The func-
tional form of ŝ can be different; it is important, howeve
that for smallr it is proportional tor 2 ~color transparency!
while for large r the cross section approaches a const
value. The latter behavior ensures saturation. The crucia
ement in our analysis is the assumption that the satura
scaleR0 depends onx in such a way that with decreasin
Bjorken x one has to go to smaller distances~higherQ2) in
order to resolve the dense parton structure of the proton.
boundary in the (x,Q2)-plane along which saturation sets
is described by the ‘‘critical line,’’Q251/R0

2(x).
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The recent low-Q2 data from the DESYep collider
HERA @9,10# have triggered significant theoretical activit
In one class of models@11,26,12# the description of the data
is achieved by combining the nonperturbative vector me
contribution@vector meson dominance~VMD ! model# with
contributions based on perturbative QCD. Both models
not use the concept of small-x saturation.

Another class of models@13–15# is based on Regge
theory. The total cross sectionsg* p is the sum of contribu-
tions from different Reggeons. In particular in Ref.@13# the
leading behavior is given by the sum of two Pomeron co
tributions with ‘‘hard’’ and ‘‘soft’’ intercepts. Again the con-
cept of the small-x saturation is not implemented in thes
analyses. The claim in Ref.@13# is that saturation at presen
energies is not needed. However, in the true high ene
asymptotics something has to happen. The hard Pomero
proposed in Ref. @13# would eventually overtake and
strongly violate unitarity. Other approaches like those
Refs.@16,17# have imposed a logarithmic behavior inx from
the very beginning and thus do not violate unitarity.

The strategy we adopt in our analysis is the following. W
determine the three free parameters of our model mentio
earlier,s0 ,l and x0 , by fits to all existing DIS data forx
<0.01. We then study the obtained parametrization in
photoproduction region, where a non-zero quark mass is
quired to achieve a finite cross section. The quark mas
chosen such that the photoproduction cross section is
rough agreement with the data without having them includ
in our fit. We found that the effective slopele f f of the cross
section @s;(W2)le f f# interpolates between the ‘‘soft’
Pomeron value'0.08 and the ‘‘hard’’ value'0.29. We
would like to point out that the ‘‘soft’’ value is simply a
result of the extrapolation of our fits to the photoproducti
region. After a first fit with only light quark flavors we per
form a second fit which includes charm. We found again
good description of all inclusive DIS data and in addition t
correct relative charm contribution. The model we use can
straightforwardly applied to DIS diffractive processes, lea
ing to the interesting result that the ratio of the diffracti
and inclusive cross section is roughly constant as a func
of x andQ2.

The content of the paper is the following. In Sec. II w
introduce the theoretical details of the model and discuss
©1998 The American Physical Society17-1
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qualitative features. We then derive a simplified parame
zation which illustrates the concept of the critical line. Th
parametrization can also serve for a quick fit to the data
Sec. III we describe our two fits and discuss their physi
implications. Section IV is devoted to the study of diffractio
based on our model and Sec. V contains conclusions.

II. MODELS FOR SATURATION

For small values of the Bjorken variablex the photon
wave function formalism has been established as a us
tool for calculating deep inelastic and related diffracti
cross sections forg* p scattering@3,4,8#. It allows one to
separate between the wave function of the photon which
scribes the dissociation of the photon into a quark-antiqu
pair and the interaction of the quark-antiquark pair with t
target. The photon wave function constitutes the calcula
part of the process whereas the remainder is substant
influenced by nonperturbative contributions and needs to
modelled. The corresponding diagram is shown in Fig. 1.
work in a frame where the photon with momentumq and the
proton with momentump are collinear. Accordingly, the dis
tribution of the quark-antiquark pair is given in terms ofz
and (12z), the momentum fraction with respect toq, and
the relative transverse separationr . For transverse (T) and
longitudinally (L) polarized photons theg* p cross section
takes the form@4,8#

sT,L~x,Q2!5E d2rE
0

1

dzuCT,L~z,r !u2ŝ~x,r 2!, ~1!

whereW25(p1q)2, Q252q2 and x5Q2/(W21Q2). The
squared photon wave functionCT,L is given by

uCT~z,r !u25
6aem

4p2 (
f

ef
2$@z21~12z!2#e2K1

2~er !

1mf
2K0

2~er !% ~2!

and

uCL~z,r !u25
6aem

4p2 (
f

ef
2$4Q2z2~12z!2K0

2~er !%, ~3!

for the transverse and longitudinal photons, respectively
the above formulas

FIG. 1. Diagrammatical representation of the basic proces
discussed in the text.
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e25z~12z!Q21mf
2 . ~4!

K0 and K1 are McDonald functions and the summation
performed over the quark flavors. Theg* p cross sections are
related to the structure functionF2 in the following way:

F2~x,Q2!5FT~x,Q2!1FL~x,Q2! ~5!

and

FT,L~x,Q2!5
Q2

4p2aem

sT,L~x,Q2!. ~6!

The interaction of theqq̄ pair with the proton is described
by the dipole cross sectionŝ(x,r 2) which is modelled in our
analysis. The most crucial element is the adoption of
x-dependent radius

R0~x!5
1

Q0
S x

x0
D l/2

, ~7!

which scales the quark-antiquark separationr in the dipole
cross section

ŝ~x,r 2!5s0g~ r̂ 2!, ~8!

with

r̂ 5
r

2R0~x!
. ~9!

Q051 GeV in Eq.~7! sets the dimension. The functiong in
Eq. ~8! is not completely constrained. Important, however,
the quadratic rise at smallr̂ and the flattening off at larger̂ .
The latter behavior providessaturationof the cross section
~1!, i.e. sg* p5sT1sL;const for smallQ2. At small r̂ , on
the other hand, we have a simple scaling behavior~color
transparency!, sg* p;1/Q2, combined with the power-like
dependence of Eq.~8! on x as typically observed in dee
inelastic scattering. We choose the following simple ans
for the functiong:

g~ r̂ 2!512e2 r̂ 2
. ~10!

This ansatz recalls of eikonalization. It should be mention
however, that a complete eikonal treatment requires the
corporation of a target profile function. The form~10! would
mean in this context that the gluonic density in the proton
evenly distributed over a certain area within a sharp bou
ary and zero beyond. A more sophisticated treatment inc
ing a realistic profile function can be found in Refs.@5,6#.
The corresponding result in these references can be rou
approximated by

g~ r̂ 2!5 ln~11 r̂ 2! ~11!

and shows a logarithmic growth at large distances.
For smallz one can as well think of a logarithmic mod

fication as is motivated by the single gluon exchange~see
Ref. @4#!

as
7-2
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FIG. 2. The profile of the dipole cross section for differentQ. The small arrows below the figure show how the indicated parame
change whenQ decreases~for W2 fixed!.
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g~ r̂ 2!5 r̂ 2 lnS 11
1

r̂ 2D . ~12!

Both alternatives~11! and~12! can be easily implemente
in our formalism which we present in the forthcoming se
tions. It turns out, however, that they are disfavored in o
analysis and we will not discuss them in detail. This does
mean that we contradict their physical implications. It mig
be that a different approach could be reconciled with
model ~11! or ~12!.

In our analysis we fit the three parameters,s0 , x0 andl,
of the dipole cross section~8! and~10!. Before going into the
details of the fits it is illuminating to perform a qualitativ
analysis of the behavior of the cross section~1! in our model.

A. Qualitative analysis

In the following discussion we focus on the cross sect
sT in Eq. ~1! which dominates oversL . We also neglect for
simplicity the quark mass. The important point in the qua
tative analysis is the behavior ofK1(er ) in Eq. ~2! for small
values ofer :

K1~er !;
1

er
. ~13!

For large values ofer the functionK1 is exponentially sup-
pressed. Thus in order to obtain the dominant contribut
we perform the integration in Eq.~1! for er ,1.

The photon virtuality introduces the scale 1/Q for the
transverse dimension of theqq̄ pair. A pair is considered
‘‘small’’ when the conditionr ,1/Q is satisfied and ‘‘large’’
when r .1/Q. Let us analyze the contribution to Eq.~1!
coming from small pairs for which the conditioner
5Az(12z)rQ,1 is satisfied for all values ofz. In the case
1/Q!R0 , shown in Fig. 2a, the size of the smallqq̄ pairs is
much smaller than the saturation radius andŝ(r )
;s0r̂ 2/R0

2. The cross section~1! exhibits the following be-
havior:

sT;
s0

R0
2 E

0

1/Q2

dr2e2S 1

e2r 2D r̂ 2;
1

Q2

s0

R0
2 ~14!

where the integration overz was factored out after the can
cellation of thee factors. Thus for constantx the cross sec-
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tion ~14! exhibits the familiar short distance scaling beha
ior; i.e., the corresponding structure functionF2(x,Q2) is
roughly constant inQ2.

Let us now analyze the situation shown schematically
Fig. 2b in which the size of theqq̄ pair is bigger than the
saturation radius 1/Q.R0 . For the small pair contribution to
sT we now obtain

sT;E
0

R0
2

dr2S 1

r 2Ds0

r 2

R0
2 1E

R0
2

1/Q2

dr2S 1

r 2Ds0

;s01s0 logS 1

Q2R0
2D . ~15!

With respect to the power behavior inQ2 the cross section
can be viewed as being constant. The potential diverge
due to the logarithm will be regulated by the quark mass
our full analysis. The actual value of the mass plays an
portant role in the description of the photoproduction regio

A similar analysis can be performed for ‘‘large’’ pairs fo
which r .1/Q. The integration conditioner ,1 is now sat-
isfied whenz,1/(r 2Q2) and thez integration in Eq.~1! can
no longer be factored out. It has to be done before integra
over r . The result in the end is the same as for small pairs
the characteristic size of theqq̄ dipole is less thanR0 , the
scaling behavior is obtained. For 1/Q*R0 the cross section
sT is constant inQ2. A more detailed analysis gives loga
rithmic modifications.

So far in our discussion we have assumed a constant s
ration radius which allows a smooth transition ofsT between
the scaling region of largeQ2 and the saturation region o
low Q2 ~low-Q2 saturation!. The main feature of our mode
however, is the fact that the saturation radiusR0 depends on
x @R0(x);xl/2 with l.0]. In this way we have introduced
another kind of saturation which can be called the smax
saturation. In terms of the parton picture it is closely rela
to the saturation of the gluon density@19#. An important
consequence is that for fixedW the radiusR0 becomesQ
dependent which makes the saturation more dynamical.
illustrated in Fig. 2 bothR0 and 1/Q move towards each
other; at a certain scaleQ51/R0 , they meet and then pas
each other. Hence, the saturation occurs at higher value
7-3
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Q2 than in a model with a fixedR0 . In addition the transition
from high to lowQ2 is faster. The line given by the cond
tion

R0
2~x!5

1

Q2
~16!

will be called thecritical line. In the parton picture it would
describe the boundary of the critical density@19#. The precise
o

ur

01401
saturation pattern is determined by the fits of the three
rameters in Eq.~8! to the existing DIS inclusive data.

B. Mellin transformation

In this section we briefly describe the technique we use
perform the fits. In order to evaluate the cross section~1! we
employ the Mellin transformation to factorize the wave fun
tion from the cross section. This reduces the number of
merical integrations to 1 and allows for an easier discuss
of the scaling behavior:
sT,L~x,Q2!5E dn

2p E d2rE
0

1

dzuCT,L~z,r !u2E dr82

r 82 S r

r 8D
112in

s~ x̃,r 82!

5s0E dn

2p F S x0

x̃ D l Q0
2

Q2G 1/21 in

HT,LS n,
mf

2

Q2D G~n! ~17!

where

HTS n,
mf

2

Q2D 5(
f

ef
2 6aem

2p

Ap

4

G2~3/21 in!G~1/21 in!

G~21 in! S Q214mf
2

Q2 D 1/22 in

3H F ~113in!Q21~312in!mf
2

Q214mf
2

2 inS Q2

Q214mf
2D 2G 2F1S 1

2
1 in,

1

2
;
3

2
;

Q2

Q214mf
2D

1F ~12 in!
Q2

Q214mf
2

2
312in

4 G 2F1S 2
1

2
1 in,

1

2
;

3

2
;

Q2

Q214mf
2D J ~18!

and

HLS n,
mf

2

Q2D 5(
f

ef
2 6aem

2p

Ap

4

G3~3/21 in!

G~21 in! S Q214mf
2

Q2 D 23/22 in
16

30 2F1S 3

2
1 in,

1

2
;
7

2
;

Q2

Q214mf
2D . ~19!
ond-

ite

t as
nc-
In addition, in Eq.~17!,

G~n!5E
0

`

dr̂2~ r̂ 2!23/22 ing~ r̂ 2!. ~20!

In order to have the right threshold behavior and a smo
transition in the limitQ2→0 we also modify the Bjorken
variable

x̃5x
Q214mf

2

Q2
. ~21!

The Mellin transformation for the functional form~10! of the
function g which defines the dipole cross section in o
analysis yields

G~n!52GS 2
1

2
2 in D . ~22!
th

For the sake of completeness we also present the corresp
ing expressions for the alternative models in Eqs.~11! and
~12!:

G~n!5
1

1/21 in

p

cosh~pn!
~23!

and

G~n!5
1

1/22 in

p

cosh~pn!
. ~24!

The main purpose of introducing a mass is to have a fin
limit Q2→0. However, in the regionQ*1 GeV, where we
mainly fit the data, the mass has little effect and one migh
well consider the case with zero mass. In this case the fu
tions ~18! and ~19! reduce to
7-4
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HT~n,0!5(
f

ef
2 6aem

2p

p

16

9/41n2

11n2 S p

cosh~pn! D
2

3
sinh~pn!

pn

G~3/21 in!

2G~21/22 in!
~25!

and

HL~n,0!5(
f

ef
2 6aem

2p

p

8

1/41n2

11n2 S p

cosh~pn! D
2

3
sinh~pn!

pn

G~3/21 in!

2G~21/22 in!
. ~26!

The results~25! and~26! are much simpler than in the ma
sive case and probably familiar to those readers who h
calculated the Mellin transform of the quark-box diagram
momentum space. The only difference is the ratio of theG
functions at the end of each expression which is a residu
the Fourier transform.

We use formulas~17!–~22! in our fits and perform the
integration overn numerically. The main virtue of this rep
resentation is the quick convergence of the integrand in
~17! which makes the numerical integration very fast. A
other virtue is the rather simple analytical structure wh
allows to extract the leading scaling behavior ofsT for large
as well as lowQ2, as will be demonstrated in the next se
tion.

C. Simplified parametrization and critical line

In this section we analyze the analytical structure of
cross section~17! in the complexn-plane. We use the for
mulas~25! and ~26! for the massless case. The position a
characteristics of the singularities in the complexn-plane de-
termine the behavior of the analyzed cross section. In gen
the n-integration runs along the real axis, and depending
the argument (x0 /x)l Q0

2/Q2 in Eq. ~17! one can close the
contour in the upper or lower part of the complex plane. F
example, in the case of largeQ2 and not too smallx ~‘‘hard’’
regime! the mentioned argument is less than 1 and the c
tour has to be closed in the lower plane. The first singula
encountered is a pole atn52 i /2. Depending on the mode
for the dipole cross section given by Eq.~22!, ~23! or ~24!, it
can be a double or triple pole. The model~22! used in our
analysis leads to a double pole which generates a logarith
behavior of the cross section~17!:

S x0

x D l Q0
2

Q2
lnF S x

x0
D l Q2

Q0
2G . ~27!

One should note that the logarithm is due to the photon w
function ~the quark-box diagram! and is related to the split
ting of a gluon into a quark-antiquark pair. The factor
front of the logarithm arises because 1/21 in51 in Eq. ~17!
and simply reflects the basic scaling behavior ofF2 com-
bined with a certain power behavior inx. One also recog-
nizes that the longitudinal contribution~24! has only a single
01401
ve

of

q.
-

e

d

ral
n

r

n-
y

ic

e

pole and therefore does not produce a logarithm. Since
not the leading contribution, we will ignore it in the follow
ing.

In the ‘‘soft’’ regime where (x0 /x)l Q0
2/Q2 is larger than

1 we close the contour in the upper plane and find the le
ing pole atn5 i /2. For the transverse cross section toget
with model ~22! it is again a double pole leading to th
following behavior of Eq.~17!:

lnF S x0

x D l Q0
2

Q2G . ~28!

We can now combine the ‘‘hard’’ and the ‘‘soft’’ term
given by Eqs.~27! and ~28! into one expression

sg* p~x,Q2!5s08H lnF S x08

x D l8 Q0
2

Q2
11G

1S x08

x D l8 Q0
2

Q2
lnF S x

x08
D l8 Q2

Q0
2

11G J , ~29!

where we have added 1 in the argument of the logarithm
order to allow for a smooth transition between the ‘‘hard
and the ‘‘soft’’ regimes. We have also introduced the para
eters with a prime to indicate that the functional form shou
be refitted to get a good description. Although Eq.~29! is a
rather crude approximation of the original approach, it rep
duces the main features.

As was discussed in our qualitative analysis we define
saturation as the transition from short distances to long
tance with the characteristic scale given by the satura
radiusR0(x). Looking at Eq.~29! we realize that the transi
tion from the ‘‘hard’’ into the ‘‘soft’’ regime occurs when
(x08/x)l8 Q0

2/Q2 51. This equality defines basically the sam
critical line as in our qualitative analysis of Sec. II A@see
Eq. ~16!#:

Q25
1

Q0
2 S x08

x D l8

5
1

R0
2~x!

. ~30!

The precise location in the (x,Q2)-plane and the slope of th
critical line is determined from the fits discussed in the f
lowing section.

III. DISCUSSION OF THE FITS

We will discuss separately fits with and without a cha
contribution. As we will see charm has a quite strong infl
ence on the fit and causes the critical line to move towa
smaller scales. For the three light flavors we assume a c
mon mass of 140 MeV which leads to a reasonable pre
tion in the photoproduction region. The general depende
of the total cross sectionsg* p on the quark mass is such th
the photoproduction cross section increases logarithmic
with decreasing mass and diverges in the limit of zero ma
Thus the quark mass plays the role of a regulator for
photoproduction cross section.
7-5
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For our fit we use all available DIS-data below th
Bjorken variablex50.01 combining systematic and statis
cal errors in quadrature. For the numerical evaluation
have implemented formulas~17!–~22!.

A. Light flavors

The results for our first fit with only light flavors are liste
in the first row of Table I. The corresponding plot in Fig.
shows only a subset of the data that were fitted. The m
remarkable feature of the cross section in Fig. 3 is the tu
over of the curves towards smallQ2 values. This illustrates
the change between the scaling and saturation region for
and low Q2, respectively, and is well reproduced by o
model~solid lines!. The critical line computed from Eq.~30!
is plotted across all curves and indicates the onset of sa
tion. For comparison we also show the corresponding cr
section when the quark mass is set to zero~dotted lines!.
This line demonstrates that indeed the turnover occurs b
cally along the critical line and is not significantly influence
by the quark mass.

Figure 4 shows the logarithmicQ2-slope ofF2 computed
for fixed x and then plotted for fixedW2 as a function ofQ2

and x separately. These plots are inspired by an anal
which was carried out by ZEUS@20# to stipulate the devia-

TABLE I. Fit results.

s0 ~mb! l x0 x2/(no.exp.po.)

No charm 23.03 0.288 3.0431024 441/37251.18
With charm 29.12 0.277 0.4131024 558/37251.50

FIG. 3. Theg* p cross section for various energies. The so
lines show the fit results with a light quark mass of 140 MeV. T
dotted lines show the cross section with the same parameter
with zero quark mass. The line across the curves indicates the
sition of the critical line.
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tion from the conventional perturbative QCD~PQCD! ap-
proach at low values ofQ2 ~see also@21#!. The remarkable
property of the presented plots is a distinct maximum
each of the slopes. The critical line lies slightly to the left
the maxima in both plots, which might suggest that an alt
native definition of the critical line could be introduced
being the path along the maxima.

In Fig. 5 we show the position of the critical line obtaine
in our analysis in the (x,Q2) plane. We observe that goin
along the critical line fromx51024 to x51025 we increase
the saturation scale from approximately 1 GeV2 up to
2 GeV2. This means that even at a futureep-collider we
expect only a rather small shift in the saturation scale. W
great optimism it might go up to 3 GeV2 at a 1 TeV machine
which, nevertheless, reaches quite far into the perturba
regime.

An important prediction resulting from our analysis is th
longitudinal structure functionFL which is shown in Fig. 6.
As we seeFL constitutes roughly 20% ofF2 for Q2 around
10 GeV2, which is a reasonable value.

We now concentrate on theW2 dependence of the tota
cross sectionsg* p for fixed Q2. We are particularly inter-
ested in the effective slope ofsg* p as a function ofW2. This
dependence is shown in Fig. 7 in a broad range ofQ2 values
and in Fig. 8 with a particular interest for smaller values
Q2,6.5 GeV2. Moving from high to lowQ2 we see how the
slope ofsg* p flattens off indicating the low-Q2 saturation.
One can also recognize a slight curvature in particular
Q250. This is associated with saturation in energy.

A more explicit way of exposing saturation is achieved
plotting the effective slopele f f computed from the relation

but
o-

FIG. 4. The logarithmicQ2-slope ofF2 for fixed energiesW,
plotted as a function ofQ2 andx. The line across the curves show
the position of the critical line.
7-6
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le f f5
] ln~sg* p!

] ln~W2!
~31!

as a function ofQ2 for fixed values ofx̃5(Q214mf
2)/(Q2

1W2). This means that we move along the dashed li
shown in Fig. 7 when computing the effective slope. T
resulting curve is shown in Fig. 9. The transition from t

FIG. 6. F2 andFL structure functions plotted as a function ofQ2

for fixed energiesW.

FIG. 5. The position of the critical line in the (x,Q2)-plane. The
narrow hatched area corresponds to the acceptance regio
HERA. The wide hatched region indicates the range for a futur
TeV ep-collider. The boundaries are lines of constanty.
01401
s
‘‘soft’’ to the ‘‘hard’’ regime is clearly visible. Quite inter-
estingly, le f f at very low Q2 turns out to be close to the
standard value of 0.08 for the soft Pomeron. This value
dependent on the choice of the quark mass which is
completely constrained. However, if the mass is chosen s
that the cross section in the photoproduction region roug
agrees with the data, it automatically leads to the right va
for the slope in this region. The other important feature
small-x saturation is that with decreasingx̃ the slopele f f
also decreases, as can be inferred from Fig. 9. In the
high energy asymptotics it would approach zero which
related to the fact that in the complex plane of angular m
mentumj the leading singularity for our model is located
j 51.

B. Charm

Charm gives a substantial contribution to the total cro
sectionsg* p and cannot be ignored. We have performed
separate fit including charm but without introducing new p
rameters. Technically this means that in the basic formu
~2!–~4! the sum over flavors has to be extended to inclu
charm with a mass of 1.5 GeV. Also effected isx̃ in the
corresponding dipole cross section~8!,~10! since it contains
the quark mass@see Eq.~21!#. We do not change the ligh
flavor mass and keep it equal to 140 MeV. The impact
charm is shown in the second row of Table I and in the l
three plots, Figs. 10–12. Thex2 of the fit has increased but i
still acceptable. This is also reflected in Fig. 10 in which t

FIG. 7. The totalg* p cross section as a function ofW2 for
differentQ2-values. The dashed lines represent the lines of cons
x̃ as defined in Eq.~21!.

of
1
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agreement with the fitted data looks satisfactory. The m
important change is a shift of the critical line down
smaller scales~see Fig. 10!.

More visible is the effect of introducing charm in th
Q2-slope of F2 shown in Fig. 11. The shape of the pe
becomes broader and the value of the slope at the high en
Q2 and x increases. The main reason for broadening is
fact that charm saturates at a much higher scale due t
high mass. We also see that the critical line moves fart
away from the maxima. We still believe that the critical lin
characterizes the dynamical part of saturation in contras
the saturation for charm which is entirely due to its sm
size and predominantly perturbative. But even a small s
contribution will at extremely largeW2 be bigger than the
saturation radiusR0(x) and undergo small-x saturation.

A rough comparison with preliminary data on th
charmed structure function shows a reasonable agree
with the data at lowx. We have again looked at the effectiv
slopele f f , shown in Fig. 12, and find a slight increase at t
low end ofQ2 of about 10% as compared to our previous
with light flavors only.

IV. IMPLICATION ON DIFFRACTION

One of the important features of the wave function fo
malism is its flexible applicability for inclusive and diffrac
tive scattering in DIS. We can immediately write down t
cross section for diffractive scattering using the photon w
function defined in Sec. II~see also Ref.@18#!,

FIG. 8. The same cross section as in Fig. 7 with the emphasi
small-Q2 values.
01401
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dsT,L
D

dt
U

t50

5
1

16p E d2rE
0

1

dzuCT,L~z,r !u2uŝ~x,r 2!u2,

~32!

and perform the Mellin transformation as in Sec. II A:

on

FIG. 9. The effective slope inW2 of the total cross section
le f f , plotted as a function ofQ2 for fixed x̃. The solid line appears
twofold due to two different methods of calculation. One is bas
on the analytical expression~31!, the second is calculated from Fig
7 by taking a pair of points along the lines of constantx̃51022 and
1024.

FIG. 10. Theg* p cross section including charm. The charm co
tribution itself is plotted as dotted line.
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dsT,L
D

dt
U

t50

5E dn

2p E d2rE
0

1

dzuCT,L~z,r !u2

3E dr82

r 82 S r

r 8D
112in

uŝ~ x̃,r 82!u2

5s0
2E dn

2p F S x0

x̃ D l Q0
2

Q2G 1/21 in

3HT,LS n,
mf

2

Q2D GD~n!. ~33!

The only change appears to be the function GD(n). Provided
the integrand in the second line of Eq.~33! has at least a
single pole atn52 i /2 we find the power behavior with re
spect to the Bjorken variablex to be the same for the inclu
sive as well as diffractive cross section. The explicit calc
lation of the function GD defined by

GD~n!5E
0

`

dr̂2~ r̂ 2!23/22 in~12e2 r̂ 2
!2

5~21/21 in22!G~21/22 in!

5~2221/21 in!G~n! ~34!

reveals that GD(n) is almost identical to G~n! except for a
factor which gives zero atn52 i /2. This zero has a commo
origin for all sensible models and simply reflects the fact t
at small distancesr the cross section vanishes proportional
r 2 which in diffraction turns intor 4. In Sec. II B, Eq.~25!,
we found a double pole atn5 i /2 in the integrand for the

FIG. 11. The logarithmicQ2-slope ofF2 with charm. The dashed
line shows the charm contribution.
01401
-

t

transverse part which is now reduced to a single pole. Si
we are left with at least a single pole, the diffractivegp cross
section for transverse polarized photons has indeed the s
power behavior inx as the inclusivegp cross section@27#.

We also found in Sec. II B, Eq.~26!, that the inclusive
longitudinal cross section had only a single pole which d
appears completely in the diffractive cross section. The c
clusion is that the next pole atn523i /2 becomes the lead
ing pole and the power 1/21 in in Eq. ~33! equals 2.
Consequently, the longitudinal part in diffractive scatteri
rises at smallx two times as fast as in the inclusive case. O
result for the longitudinal contribution also confirms the w
known higher twist nature of the diffractive cross section

It is important to note that the results discussed in t
section are derived without imposing cuts on the final st
except for the basic rapidity cut. In particular, there has
cutoff being assumed for the transverse momentum of
final state partons. This allows us to use formula~32!. In Ref.
@22# a similar study led to a closely related statement ab
the conservation of ‘‘anomalous dimensions.’’ In an e
tended version with non-zero momentum transfer links c
be found to conformal invariance in the Regge limit@23#.

We can go a step further and calculate the ratio of
diffractive and inclusive cross section in the limit of larg
Q2. This can be done by shifting the contour of then-
integration down the lower half of the complex plane, as w
done in Sec. II C, and picking up the leading pole:

sD

s tot
5

s0

4pB

3 ln~2!

6 ln Q216l ln~x/x0!16gE11
, ~35!

where B denotes the diffractive slope. A mild logarithmi
dependence onx is found in the ratio which gives a sligh
logarithmic rise with decreasingx. IncreasingQ2 we find a

FIG. 12. The effective slopele f f based on the charm fit. The inter
cept is slightly higher at lowQ2 as compared to Fig. 9.
7-9
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logarithmic suppression which is due to the extra zero
GD(n) at n52 i /2. Taking the parameters found in our
and the experimental value forB we find that the ratio turns
out to be equal to a few percent. We have to note tha
contribution of similar size is expected from the emission
a gluon. This contribution will have the same power beh
ior in x as for the quarks and we expect a ratio of a sim
size. All contributions together will be of the order of 10%

More precise studies on diffraction based on the mo
discussed here will be presented elsewhere@24#.

V. SUMMARY

We have presented a model which provides a good
scription of all DIS data belowx50.01 ~including the pho-
toproduction data!. An important ingredient of our approac
is the presence of small-x saturation. This is achieved b
introducing an x-dependent saturation radiusR0(x)
5(x/x0)l/2 which we define with the help of two parameter
These parameters, together with the overall normalizatio
the cross section, were determined by fits to the DIS d
The parametrization obtained in this way was then exten
into the photoproduction region, showing reasonable ag
ment with the data there. A particular result of this extrap
lation is the effective Pomeron intercept of approximat
1.08. In the DIS region this effective intercept increases
the asymptotical value of 1.29. We have introduced a ‘‘cr
cal line’’ which marks the boundary of the saturation regi
in the (x,Q2)-plane. Finally, we found an intriguing resu
when applying our model to diffractive scattering process
. B

,

/

8-
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namely, an almost constant ratio of diffractive and inclus
DIS cross section.

Our model is basically phenomenological. It is remar
able, however, that with only three fitted parameters we s
cessfully described the small-x data. The theoretical basis i
the separation of the perturbative dissociation of the pho
into a quark-antiquark pair and the subsequent interactio
the pair with the proton. The latter is modelled in an eikon
way. The main consequence is that we do not only h
saturation at lowQ2, but also saturation at lowx. The natu-
ral extension of our model would be the incorporation o
perturbative treatment for largeQ2. Also important is the
development of a microscopical picture behind saturation
proposed in Ref.@25#.

A real test for our model would by a futureep-collider.
Our prediction is that with increasing energy the saturat
scale moves up inQ2. For a 1 TeV collider it would be
roughly a factor of 2.
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