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I. INTRODUCTION takes off at HERA and even more so in the heavy ion colli-
sion experiments at the CERN Large Hadron Collider
Recent years have seen a surge of activity in the area ¢ HC). The curious situation with the present HERA data
the low x physics. Primarily this has been motivated by theonly adds motivation for studying the onset of the shadowing
new data from the DES¢p collider HERA[1], which has  physics.
greatly extended the available kinematic region for deep in- The shadowing regime can be approached in two ways.
elastic scatteringDIS). Data now exist at a Bjorkexas low  Decreasing? at fixed(small) x leads to the initial growth of
as 10°° and it was hoped initially that at such a lonand  the cross section &~ 2. This growth gradually slows down
relatively largeQ? one would see clearly a new class of and eventually(almos} stops when the unitarity bound is
perturbative phenomena, those that go under the genergdached. We will refer to this slowdown and the stop of the
name of “semihard physics.” First, one was hoping to seegrowth as the shadowing and the saturation, respectively.
unambiguous signs of the perturbative Balitskii-Fadin-Alternatively one can decreaseat a fixed value ofQ?.
Kuraev-Lipatov (BFKL) Pomeron[2], which predicts a Because of the growth of gluonic distributions, the cross sec-
steeply rising gluon distributiofand consequently DIS cross tion first should exhibit fast growttpowerwise according to
section as a function ofx at fixed Q% g(x)o(1/x)*Ne®s/™.  the BEKL prediction, which again should slow down and
Second, it was expected that in this kinematical region th&aturate. Our perspective in this paper will be the second one,
gluon densities will be large enough so that the semihardo that we will be dealing with the evolution of the uninte-
shadowing effects due to gluon recombinati@i will be-  grated gluon density with %/
come sizable. The physics of the nonlinear effects in DIS is basically the
In actual fact the situation turned out to be not quite sophysics of dense partonic systems. This statement perhaps
clear-cut. The DIS cross section does indeed rise quitdeeds some clarification. The physical picture of shadowing
steeply with 1%. It can be fit by a power of %/ although depends in large measure on the Lorentz frame used to de-
apparently not as large a power as predicted by the BFKIscribe the DIS process. In the rest frame of the nucleon the
formula [3]. The Gribov-Levin-Ryskin(GLR) parameterk  onset of shadowing corrections is due to the multiple scatter-
which is the physical parameter for the onset of shadowingng processes of the hadronic component of the phgéon
was estimated and was indeed found to be close to 1 withiquark-antiquark pajron the nucleon. This can be described
the HERA regimg5], which would suggest observable shad- by extension of the Glauber multiple scattering formalism to
owing corrections. Nevertheless, surprisingly enough all thehe context of QCI{5]. For multiple scattering to become
data are described very well by a simple straightforwardeffective the partonic system does not have to be particularly
Dokshitzer-Gribov-Lipatov-Altarelli-ParisiDGLAP) linear  dense. In this frame the onset of nonlinearitiesiltiple scat-
evolution[3]. The rise at lowx is then a consequence of the tering) is rather determined by the cross section of the scat-
standard perturbative evolution of “flat” partonic distribu- tering of the hadronic fluctuation on a parton in the nucleon
tions from a low initial scaleQé to Q2. The shadowing cor- [5]. The authors of Refl5] analyzed the corrections to the
rections to this perturbative evolution seem to be practicallyGlauber formula and concluded that once the rescattering
absent. In this sense higher twist corrections seem to be ibecomes important one also has to take into account correc-
relevant in the HERA regime. tions due to rescattering of gluons in the cascade produced
Still it is widely believed that these nonlinear effects mustby the quark-antiquark pair, into which the photon initially
make their presence felt when the partonic densities are higtuctuates. The saturation happens in the regime where the
enough. Even if it does not happeneap collisions, at HERA  gluon density in the photon is high.
they have a very good chance of being observed in DIS In the infinite momentum fram@MF), where the nucleon
experiments on nuclei at low if and when this program carries all the energy prior to collision, the picture is differ-

0556-2821/98/5d)/014015%24)/$15.00 59 014015-1 ©1998 The American Physical Society



JALILIAN-MARIAN, KOVNER, AND WEIGERT PHYSICAL REVIEW D 59 014015

ent. Lowx here means that one probes low longitudinal mo-coupling expansion and its validity is therefore restricted to
mentum and large wavelength fluctuations in the nucleomperturbative “semihard” shadowing effects. It is, however,
wave function. These long wavelength gluons are emitteshonperturbative in a different sense. In the standard pertur-
from the valence quarks and gluons in the nucleon. In thdation theory, the charge density is small and the standard
standard linear evolution equatiofBGLAP or BFKL) the  perturbative expansion is simultaneously an expansion in
interaction between these wee gluons is disregarded. Hovwpowers of the charge density. In this language, higher powers
ever, when their wavelength is large enough, the gluonsf the charge density appear as higher twist contributions
emitted by different valence partons overlap in space andalthough there is no one-to-one correspondence between the
interact. The first nontrivial effect of this interaction is the twist expansion and expansion in powers of the charge den-
recombination process, which slows down the growth of thesity). The McLerran-VenugopalatMV) method does not
gluon density and thereby leads to shadowiij The shad-  assume expansion in powers of color charge density and cor-

owing and saturation in this frame are both clearly effects Ofresponds to resummation of a particular type of higher twist

large partonic de”Sit_ﬁ’- o _ __ terms. In fact interesting saturation effects are expected when
Although the qualitative picture of saturation and unitari- . density is of order_®. This formulation is therefore
zation based on GLR-type recombination effects is very ap- s

pealing, reliable theoretical tools of dealing quantitativelyn"’uu.raIIy suneq for a discussion of the type of problems we
with finite density partonic systems are yet to be developed"?lre interested n. .
The original GLR equatiof4,7] truncates the series in the Ba§ed on this idea an approgch was deyeloped which
expansion in powers of density at the first nonlinear term. A€OMPINes the concept of the effective Lagrangian for the low
all such truncations it has intrinsically a very limited range ofX PIS with the Wilson renormalization group resummation
validity, since in general one expects that when the first nonf l€ading logarithmic corrections to the MV approximation
linear term becomes important the higher order terms will bd11,12. The main effect of the renormalization grotRG)
comparable to it in magnitude. The saturation of partonid®rocedure is the change in the color charge density distribu-
distributions and restoration of unitarity in the high energytion in the effective Lagrangian with 2/ The RG equation
(density limit of QCD is an outstanding problem which re- that governs the evolution of this distribution is the subject
mains unsolved although several approaches are being egf the present paper. It was shown in REf2] that in the
plored in the literatur¢8—10]. limit of small color charge densities this equation reduces to
In this paper we continue to develop a theoretical apthe celebrated BFKL equation. In R¢f.3] we have derived
proach to finite density partonic systems at lewlhe main  the general form of this evolution equation at a finite color
goal of this program is to derive the evolution equation forcharge density. In the present work we calculate the “coef-
the gluon density at smal without assuming that the den- ficients” in this renormalization group equation, which are in
sity is in any sense small. In previous papgtd-13 we fact rather “coefficient functions,” thereby providing the last
have described the main framework of our approach ant¢hgredient in the derivation of the full nonlinear evolution
have discussed several aspects of this evolution. In this worgquation valid to the leading logarithmic approximation at a
we complete the derivation of the full nonlinear evolution finite color charge density. We should stress that the calcu-
equation. lations presented here are only valid to leading ordetdn
The present approach is inspired by an idea of McLerrarrhe scale ofx, is therefore left undetermined in this frame-
and Venugopalap14] first formulated in the context of ul- work and the strong interaction coupling constant is treated
trarelativistic heavy ion collisions. The observation in Ref.as a momentum-independent constant, just like in the stan-
[14] is that there is a regime of high density and weak coudard BFKL equation. Higher order perturbative calculations
pling in which semiclassical methods should apply. It wasof the type of Ref[15] are needed to determine the appro-
therefore suggested that the leading sma@lue structure of  priate scale.
the nucleus is due to the classical gluon field which is created This paper is organized as follows. In Sec. Il we motivate
by the random color charges of energetic on-shell partonsand describe the form of the effective Lagrangian for the
The nonlinearities of the Yang-Mills equations exhibit them-physics of lowx gluons in DIS. In Sec. lll we describe in
selves already on this classical level and it is therefore possome detail the classical approximation to this effective La-
sible that they provide the necessary saturation mechanism giangian. It turns out that the proper treatment of this La-
low x. This approach assumes that the interaction of the flucgrangian requires a careful specification of the complete
tuations of the gluon field is weak. In this sense it is a weakgauge-fixing condition, and this is also done in Sec. Ill. We
then discuss the first quantum corrections to the classical
approximation, which obviate the need for a renormalization
We mention here that the same conclusion emerges from th80UP resummation, and the ph_ysicz_il i.nter.preta_tion of the
analysis carried out in the recent pag&ef. [6]). It was shown change of the color charge d_ensny Q|str|but!on with the RG
there, using the explicit BFKL expressions for the gluon density,flow. In Sec. IV we describe in detail the Wilson renormal-
that for a collision of two hadrons the shadowing first appears atzation group procedure as applied to our effective Lagrang-
low density in the frame where the two hadrons share the energian and derive the general form of the RG equation. Section
equally before the collision and at high density in the analogue o is the central section of this paper. It contains the calcula-
the IMF, where one hadron carries all the energy. The saturatiotion of the coefficient functions that appear in the RG equa-
again is the high density effect in both frames. tion. Finally, Sec. VI is devoted to a discussion of our re-
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sults. Several appendixes contain technical details of the Second, we can understand the dependence by consid-

calculation. ering the(light cone time scales characteristic of the prob-
We have tried to make this paper self-contained, andem. The relevant time scale for the lowphenomena is the

therefore have included some of the material already coninverse of the on-shell frequency of the soft gluohs:

tained in the earlier work11-13. «1/k™. The frequency of the fast modes is much loveer
«1/p* since their longitudinal momentum is higher, so that
Il. THE EFFECTIVE ACTION FOR LOW x DIS. k™/p~«1/x. Therefore, as far as the soft glue is concerned

the color charge source due to fast partons is effectively

Throughout this paper we will work in the infinite mo- giatic \We are therefore led to consider an interaction of the
mentum frame, where the hadron moves in the positive

direction with velocity close to the velocity of light and al- type
most infinite longitudinal momentur® ™ — . Also, we will
be working in the light cone gaugs™ =0. Sine=A"p(x)6(x7). ()
Our task now is to understand the structure of the effec-
tive Lagrangian for lovk DIS. First, it is well known that the The fast partons are represented in our effective Lagrang-

most important degrees of freedom at lavare gluons. In ian by the surface charge densitgx, ). A hadron of course
the framework of standard linear evolution equations, thds not described by a fixed single configuration of the color
evolution of gluons in the leading approximation is indepen-charge density(x, ). However, the crucial point is that the
dent of quarks, and the evolution of quarks is entirely drivenstructure of the fast component of the hadron is determined
by the gluonic distribution. We will therefore retain only on a much longer time scale than the time scale relevant for
gluons as our dynamical degrees of freedom and disregaiitie low x physics. It is fixed by the hadronic wave function,
quarks entirely. Importantly, the gluons that we treat as dybremsstrahlung processes that involve fast partons, etc.
namical degrees of freedom are only those which have a lowherefore, as far as the soft glue is concerned, there is no

longitudinal momentum, lower than some cutaff =xP*.  interference between the different configurationspx, ).
Our effective Lagrangian therefore has to be understood a# the lowx effective Lagrangian the hadron thus appears as
having a built-in longitudinal cutoff. an ensemble in which different configurationspdk, ) enter

So what is the Lagrangian that governs the interactions ofvith some statistical weight exp F[p]}. The partition func-
the low x gluons? First of all, of course, it must contain the tion for calculation of the soft glue characteristics of a had-
standard Yang-Mills interaction term ron must therefore have the form

. _
- J d*xz G? 1) f D[p,A]exp{—F[p]—l—1 f d*xG?+iS{A,p]}. (4)

J72 8 1 .
whereG*" s the gluon field strength tensor: At this point we do not specify the form of the functional

F[p]. In fact, as we shall see later this functional depends on

the longitudinal cutoffA™ which is imposed on the soft

The aluons with the low lonaitudinal momentum also in- fields. In other words, as one considers regions of lower and

g gituc - lower x, F changes. The flow of with the cutoff A " «x is

teract with the rest of the partons in the hadron, which have ; o :
e . described by a renormalization group equation of the form

larger longitudinal momentum. We will refer to those par-

tons as “fast” for notational convenience; we may think of

valence partons as their initial representatives. This interac- _

tion certainly cannot be neglected, but in the kinematics of dinix pl=asilpl. ®

the IMF and in the light cone gauge it is very simple. The

leading interaction is the eikonal vertéx Jeg, whereJig  This RG equation is precisely the evolution equation for the
is the color charge density due to the f?s't partons. charge density correlatofand consequently for the soft glue

~The dependence o, On x™ and x™ is very simple.  ghservableswhich we undertake to derive in this paper.
First, since the wavelength of the fast fields is much shorter Of course, in order to make quantitative statements about
than that of the dynamical soft gluons, the charge they prothe x dependence of we have to specify the initial condi-
duce is effectively concentratedat =0. Intuitively this can  tion for the evolution. This can be done in the perturbative
be understood in the following way. In the rest frame theregion at not too small a value of whereF can still be

valence partons are concentrated within the nucleon radiusxpanded in powers gf. The initial form of F can then be
from the center of the nucleon. When boosted to the infinitggken as

momentum frame due to Lorentz contraction they are

squeezed into a very thin pancake. This picture is a little too

naive for our fast partons since some of them have a much F:f dx. d X )~ (x 6
larger wavelength than the nucleon radius. However, as a Ldyip(X)p (XYL, ©
basic physical picture it is still correct. We therefore have

JToe5(x7). with

Ga"=0"Aa— d"AY+ 9fanAGA: - 2
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d?k
uix, ,yl)=5<bl>f o

e Y Bk, x0). (D)
Hereb, =(x, +y,)/2 is the impact paramete§(b,) is a
nucleon thickness functiorx, is the value ofx from which
we start evolvingF according to the RG equation and
#(k, ,x) is the unintegrated gluon densftythe relation be-
tween the parameter in the Gaussian! and¢, Eq.(7) will
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3 (%)= Ng (X)X oW e [A~TTaWye- L[A T},
) (11)

Expanding this expression for the current to lowest order in
the fieldA™ yields

Ja (0)=g8(x")pA(x.), (12)

become clear when in Sec. Ill we consider the perturbative

calculation of the gluon structure function based on the ef

fective Lagrangian in Sec. Il

One important question that we have not touched upon s

action. Although we have partially fixed the gauge by th
light cone gauge conditiod* =0, the action should still
preserve the residual gauge symmetry. This residual gau

symmetry group is comprised of gauge transformations with

gauge functions which do not depend »f. The naive
“Abelian” eikonal interaction term, Eq(3), does not pre-

e

which reproduces Eq3) and is the form of the current used
in Refs.[14,16. As explained in Ref{14], this form is only
Yalid in the gaugeA  (x~ =0)=0. In more general gauges
She current has to satisfy the covariant conservation condi-
tion

ge
(13

Our current(11) evidently complies with this requirement.

serve this gauge symmetry. The relevant generalization takéehis is a direct consequence of the residual gauge invariance.

the form

_l
Nc

X(X7,X, )}

Sint f d?x, dx™ 8(X ) p (X )H{TW_, .[A7]
()

Here T, are the SUK) color matrices in the adjoint repre-
sentation andV is the path-ordered exponential along #ie
direction in the adjoint representation of the SUJJ group:

W [AT1(x %))

:Pex;{—igf dx A, (X7, x7,x )Tyl (9)

This form is explicitly gauge invariant under the residua

gauge transformations with gauge functions which do not

depend orx~ and vanish ak* — + . RequiringF[ p] to be
gauge invariant, we also restore the gauge invariance of t
action under gauge transformations which do not vanish
x*— =+ but rather are periodic in™.

This form of the interaction consistently leads to a sourc

term in the corresponding Yang-Mills equation that repre-

sents classical colored particles moving along the light con
D,G*'=J3%6"", (10

with

All of the above considerations finally lead us to the fol-
lowing effective action for the low DIS:

S=if d2x, F[ p3(x )]—f d4x162+i—
1L 1L 4 N

c

x f A, dx” Sxtr{p(x IW_. LA 1(x ", x,)},
(14)

which is the starting point of our approach.

We end this section with a comment about the nature of
the action, Eq.14). Although we use the term “effective
action” when referring to it, it should be understood that it is
different in some important aspects from “classic” effective
Lagrangians, like for example the chiral effective Lagrangian

|of pion physics. The chiral effective Lagrangi&pIl?] de-
cribes the dynamics of low momentum pion fields, where
the momentum cutoff is determined by the mass of ¢he
h%article or, alternatively, the dimensionful pion couplihg,

R <4t . All the modes with momenta above the cutoff, as
well as all other heavy excitations of the fundamental theory
dp, ¢ mesons, etg, have been integrated out to arrive at this
effective Lagrangian. In this sense our effective Lagrangian
eis similar. The gluon fields have longitudinal momenta
bounded by the cutoffA™, while all higher momentum
modes are assumed to have been integrated out.

Importantly, the chiral physics has a sharp scale associ-
ated with it: f .. Consequentlyall modes of the pion field

with momentum lower than the cutoff are described well by
the chiral Lagrangian. In fact, the pions at low momenta
interact very weakly, with the strength proportional to

2 . . .
27 similar Gaussian form for the statistical weight was used inP“/f-. Therefore the perturbation theory in the chiral La-

[14,11] in the description of a large nucleus limit. In this case thegrangian framework is well behaved and does not lead to

Gaussian form is valid since the charge density is large and thérge corrections to the tree level results. Also, the descrip-
color charges that build it up are randomly distributed in colortion of the low momentum pions is insensitive to the change
space. of the cutoffA.
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In our case the situation is very different in this respectthought of as the calculation of the generalized “splitting
There is no sharp physical separation scale which wouldunctions” (which includes, however, the mixings between
separate high from low longitudinal momenta. The separaeperators of different twist and is not intrinsically organized
tion scaleA* we impose is arbitrary. The interaction does as an expansion in powers of@), while the second, non-
not die away as we go far below*. Therefore there is no perturbative part is parallel to the calculation of operator av-
reason to expect that our effective Lagrangian gives an aderages in the hadronic state. In the standard perturbation
equate description for the modes with momenta far below théheory, of course, one does not have to know the operator
cutoff. In fact, quite to the contrary as we shall see the peraverages in order to derive the evolution equation. As we
turbation theory in our effective theory gives larger correc-shall see, the exact same thing happens in our calculation. It
tions the farther we go below the cutoff. In this sense thiss only the perturbative part of the calculation that has to be
effective Lagrangian is inadequate for a description of mo-under control in order to derive the renormalization group
mentakt<A*. This is of course the manifestation of the equation forF. In this section therefore we will discuss the
absence of the physical separation séaléis means that if perturbation theory inxg at fixed p(x, ).
we want to describe low momenkd <A™, we have to cor-
rect the effective Lagrangian. The arguments presented A. Tree level
above, however, fix the form of all the terms in the Lagrang-
ian apart fromF[p]. If the form of the Lagrangian remains
the same under thk™ evolution, the only thing that can
change is the statistical weight "(*!.

Physically it is quite clear what should happen. As we
move to smaller values of the longitudinal momentiih,
all the gluons with momenta betwe&i andA ™ are trans-
ferred from the category of “soft”(or slow) into the cat-

As in every perturbative calculation the first step is to find
the classical solution to the equations of motion. The equa-
tions of motion that follow from the action, E¢14), are

g _
D"GW:N_ S(x7)pP(xy)

C

egory of “fast.” They cease to be dynamical degrees of X{ToWo oo i+ [A"ITaWyr [AT]} (19
freedom of interesthence the dynamical fields have a lower ] ] ) ] )
cutoff on the longitudinal momentubut give an extra con- As explained in the previous section, these equations are

tribution to the static color charge densiigx, ). Effectively, ~ invariant under the residual” independent gauge transfor-
therefore, as we go to lowex, the color charge density as Mation
seen by the soft glue changes. Since the distribution of the
charge density is governed by the statistical weight(*!,

this means thaf should change as we lower the longitudinal

cutoff A*. This is the physical origin of the renormalization

group flow we have referred to earlier. In the following sec-with
tion we will see explicitly how this happens. First, however,

let us describe how to set up the perturbation theory in the V(x)=exdiA(x, ,x7)], A—,+_ +.0. a7
present framework.

A—V (AR (16)

i
A+ -9
g

As a consequence, the equations of motion at fixédve
IIl. PERTURBATIVE CALCULATION an infinite number of solutions. To properly set up perturba-
OF GLUONIC OBSERVABLES tion theory, we should choose one of these solutions. Tech-
nically this is achieved by gauge fixing the residual gauge
The perturbation theory for the effective Lagrangian, Eq.freedom. There are of course many possible gauge fixings.
(14), was developed in Ref14]. It is organized in the fol- From the calculational point of view it is convenient to
lowing way. First one fixes the configuration of the color choose a gauge in which the classical solution is statfc (
charge density, and performs a perturbative expansianin independent It is important to realize that the condition of
at fixed p(x,). The charge density is not considered to bestaticity of the classical solution is still insufficient. Even
small; thus this perturbation theory is different from the stanthough it completely eliminates the gauge freedom of Eq.
dard one in that the calculation is performed in a nonvanish¢17), there are still many solutions to the equations of mo-
ing background field. In the second step the averaging ovetion. This is a consequence of the remaining gauge symmetry
p(x,) should be performed. This part of the calculation isof our problem, with gauge functions which do not vanish
contingent on knowledge &[ p] and is completely nonper- atx* — +, but rather are periodic iR*. With the transfor-
turbative. In fact the counterpart of this step in the standargnation Eq.(17) moded out, those are
perturbative analysis would be the specification of various
gluon operator averages in the hadronic state. Conceptually,

i
therefore, the first, perturbative part of the calculation can be A—V| A+ 507 AR
T
3In this respect our effective Lagrangian is more akin to “funda- p—=VipV,
mental” Lagrangians of renormalizeable field theories than to ef-
fective Lagrangians of the chiral physics type. V(x)=exgdiA(x,)]. (18
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To see that this is indeed the case, consider the equatiorthie measure in the path integral in E§4) must be modified
Eq. (15), for static fields(note that all static solutions have by the appropriate Fadeev-Popov determinant
vanishingA™):

‘ ‘ S(giAI(X™ — —=))defd;Di[Ai(Xx”——=)]}. (23
g0 A+ glA;,d"ATT=gp(x,)8(x7),

(19) This modification is harmless, since as we will see later the
ghosts do not contribute to leading orderdg, which is the
order to which we calculate.

It is important to realize that the gauge fixing, E82),
should be consistently used throughout the whole perturba-
tive calculation. This means that not only does it determine
the classical solution we have to pick, but also the form of
the propagator of the fluctuations Af, around this solution
to be used in the higher order perturbative calculations. In

Fil=0.

The general solution to this equation has the form

VRTLIpy Ut
A [P]—ga(x JU(x)dUN(x,)

[P \t this way all potential zero modes in the propagator are elimi-
* g O(=xIVIX)IVI(xL), (20 nated and the calculation is unambiguous. In the standard
perturbation theory, although in principle the situation is
where the SU) matricesU andV satisfy similar, in practice one can frequently get away without
specifying the gauge-fixing condition for the residual gauge
a[VIUa,(UTV)]=—g2VpV'. (21)  freedom. The light cone gauge conditié =0 eliminates

the major part of the zero-mode ambiguity and the rest of the

This equation 0bvi0us|y has a solution for aVYXL)_ The zero modes St.art CaUSing pr(?blems Only in hlgher orders. It
matrix V, which labels these solutions, is closely related toturns out that in our calculation we have to be much more
the gauge transformation matrix of E€L8), although this ~careful, and impose the residual gauge fixing properly al-
relation is rather subtle. Obviously any two solutions, Eq.ready in the lowest order. This is related to a nonstandard
(20), Aiv[p] andAiV’[p] are not related by a gauge transfor- behav!or Qf our flelds at infinity. On the classma_l level this
mation, since they solve the equation of motion witte beha\{lor is ObVIQUS from the fprm of the solut!on of the
samep, while the gauge transformation, E4.8), acts non-  €quations of motion, E¢(20), which does not vanish at
trivially on p. However, it is easy to see thtlte set of solu- — = We will come back to this question in Sec. V.
tions{A"[p]} with fixed p and arbitraryV is gauge equiva- Returning to Eq.(20) we see that in this gauge for a
lent to the set of solutiongAY'[VTpV]} with fixed V’ generic fixedp(x, ) there is a unique solution of the form
(which determines the asymptotics »at — —«) and arbi-
trarily rotatedp. Consequently, it would be redundant to take A= 0(X7) ai(x,),
into account all static classical solutions at fixedince we
are subsequently performing the unconstrained functional in- i
tegration ovep with a measure which is invariant under Eq. aj(X )= aU(XL)U”iUT(XL)y (24)
(18). We can therefore gauge fix this extra gauge freedom by
imposing, for example, a fixed boundary condition®nat  jth the matrixU(x,) determined by
X~ — —oo,

In this paper we will follow Ref[14] and choose as the

subsidiary gauge condition diai=—9gp. (25

) Any gluonic observable in the tree level approximation is
dA(XT X X ——=)=0. (22)  calculated as

This gauge has a nice feature thattat —oo, at all finite
values ofz (i.e., x”— —»), the vector potential is required (O[AM])=f D[ple FIPIO(A™=0, A=6(x")a[p).
to be the same as in the perturbative vacuéms 0. This (26)
seems very sensible, since at these times the hadron itself is
still at z——c and could not have changed the quantum  For example, the unintegrated gluon density defined as
state at any finite.
Note that this gauge condition eliminates both time- ~ta ~a
dependent gauge freedom, E47), and time-independent 90xky)=(a (ko )ax(x.k.)), 27
gauge freedom, Eq18). It is not ghost free, and therefore - .
wherea anda' are the light cone gluon creation and anni-
hilation operators, is given by

4Alternatively, one could impose a gauge condition @rby re-
quiring for example thap be a diagonal matrix. Our choice here is g(x,k, )= E(a?"(k )a?(—k ) (28)
dictated by calculational simplicity. L N TTARLIT LI
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Here the angular brackets denote averaging pveith the  the tree diagrams for one point function in the background

weight exg—F}. density. Using curly lines to represent gluons we have the
This has a simple representation in terms of the standarfbllowing graphical representation for the full classical solu-

Feynman diagrams. The classical field is given by the sum ofion b and the first few terms in its perturbative expansion:

gp

= umens §p + g 'wmmmmmyy + 0(/’3)

&

gre

(29

The distribution function(up to some simple kinematical know that in the standard calculation this lowest orxlele-
factorg is just the square of the field averaged opeffo the  pendence feeds back through the higher order graphs and
order p? it is related in a simple way to the color charge leads to large perturbative corrections at smaWe expect
density correlation function therefore that the same will happen in our perturbation

theory. Indeed, consider for example the graph in Fig. 1b,
1 which gives one of the contributions to the gluon density at
g(xk)=r2(p(k)p(—k.)) order as.
L This contribution was discussed in R¢L6], and it was
shown there that it is indeed of ordegln(1/x) relative to the
) A leading order result, Eq28), or in the low density limit, Eq.
= <3' i - 0 oy - O(p3)> (300  (30). The reason for this enhancement is that when the mo-
mentum on the external leg" is much smaller than the
maximal longitudinal momentum allowed in the field, there
where we have drawn the factors pfas diagonal lines to IS huge phase space available to the emitted gluorik ™
indicate that they are always associated with eikonal lines<A . The phase space integraldk’/k™) then gives the
along thex™ direction that correspond to the world lines of logarithmic enhancement factor.
the fast particles they represent. Carefully examining thex¢Inl/x corrections of Figs. 1b,

We stress that our goa| in this paper is to perform the2b, We see that it looks very similar to the JFree |e.V€| diagrams
calculation to all orders ip in the first order inas. Hence  Of Figs. 1a, 2a, except that the soft gluon is emitted not from
an expansion in powers @f as in Egs(29) and(30) would  the original charge density as depicted in Fig. 3a, but rather
not be sufficient for our purpose. However, the above reprefrom a modified charge density which in addition gacon-
sentations are helpful in visualizing the physical mechanisn@ins one extra gluon. One therefore can think of it as being
under|ying the running of the Charge density distributionemltted from the modified vertex of Flg 3b. Since the |arge
with 1/x. Also, even though our interest is in the phenomengForrection comes from the region <k, the emission from
of Shadowing and Saturation, which occur at |a|igeour the modified vertex is also eikonal. So the source for emis-
calculational procedure should be valid also at small color
charge density. In this limit we should recover the known
perturbative results, which in the present context is the
BFKL equation. Expansion to leading ordergdrof our result
will therefore be an important consistency check in the cal-
culation.

B. First order perturbative corrections . I T
FIG. 1. Diagram contributing to the gluon distribution at lowest

One prominent feature of qu28) is_ theful_l tree levelx  order in ag (but to all orders inp) (a) and a typical ordera,
dependence of the gluon density. It is precisely the same awrrection(b). The horizontal line represents a propagator in the
in the leading order in the standard perturbation theory. Weresence of the fullp-induced background field.
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11

the two cutoffs be not too big, IN("/A™") < 1/as.

To leading order in the coupling constant we should only
keep the terms up to second order in the fluctuation &g
in the expansion of the action around the classical solution

? ,E each step of the renormalization group procedure the ratio of

(a) (b) b (x):
FIG. 2. The smalp limit of the diagrams shown in Fig. 1: The 1 1
lowest order terms shown @) correspond to those in E¢B0). (b) S=- ZG(a)z— > 5AM[D’1(p)]’”5AV+ ga J*’
Is the smallp limit of Fig. 1b with all gluon propagators perturba-
tive. +0((a ) +iF[pl. (32

sion of very soft gluons with <A™ effectively has been The inverse propagator of the fluctuatip® ~*(p)]**, has a
modified. This modification has to be taken into account ifnontrivial dependence on the color charge density. Its ex-
we are to describe properly the soft glue distribution. Fortuplicit form is given in the next section, E¢57).

nately, the change in the charge density is s{mgarithmig We have introduced the modified color charge current
so that this is a perfect situation for the application of theJ*’, whose explicit form in terms of the fluctuation fields is
Wilson renormalization group ideas. We can integrate out

the fluctuations around the classical background perturba- JT =p(x,)8(x7)+ 837 +8J5 , (33
tively, gradually lowering the longitudinal momentum cutoff
A" on the remaining dynamical degrees of freedom. Thigvith
will generate the effective Lagrangian below the new cutoff
scale with modified=[ p]. As long as we keep the change in

the cutoff in every step of the RG small enough so that the
correction toF is small relative toF itself, the perturbative =45(x")
procedure is justified. The condition for that is[(A"

—OAN)AT]~1, adn[(AT—86AT)/AT]<1. In the next sec-

tion we describe in detail how to set up this renormalization X f dy [6(y" —x")—0(x"—y™)]
group procedure.

5‘J]J.ra(XL 7X+)

—2f3CPSAS(X=0)— gfabcpb(xg

IV. LOW x WILSON RENORMALIZATION GROUP XX 5A_C(y+’x_:0)} (34)
Let us introduce the following decomposition of the and
gauge field:
2
AL(X) = D(X) + SALX) +a,(X), BD  533x)= — 0 57 SAP(X)]SAT(X) - El— Po(x, ) 8(x)

C
where bi(x) is the solution of the classical equations of

motion, Eq.(24_1), andaAi(x) is the fluctuation field contain- Xf dy* 6A°(y* x, ,x"=0)
ing longitudinal momentum modesq® such that
AT—S6AT=AT'<g"<A™ while ais a soft field with mo-

mentak™ <A *’. Our aim is to integrate out the fluctuation xf dz" A%z ,x, ,x =0)

field 5A, in the path integral and compute the effective ac-

tion for the soft fielda,. This integration is performed X[ 6zt —yT)O(y" —x)tr(TATCTITP)
within the assumption that the fluctuations are small as com- L P aebocmd

pared to the classical fields}. More quantitatively, this HOXT=27)0(z" —y (T T°TTY)
requires that the coupling constant be smajk1 and at +0(z"—xT)O(x" —y ) (TAETITPTY) ], (35)

L+ The first term in bothsJ; ® and 8J; 2 arises from the expan-
sion of G? in the action while the rest of the terms propor-
tional top(x, ) are coming from the expansion of the Wilson
line term. The various terms with functions correspond to
different time orderings of the fields along the Wilson lines.
Since the longitudinal momentum af is much lower than
(a) (b) of 5A, we have qnly Kept the eikongl couplir(lg\e _Coupling_
to a~ only), which gives the leading contribution in this
FIG. 3. Original vertexa) and vertex modified by the emission Kinematics. The contributions #J; and 5J, are depicted in
of an additional fast gluoiib). “ +” components of momenta are Figs. 4 and 5, respectively. Obviously the first diagram in
ordered from top to bottom. Fig. 4 is nothing but our modified vertex of Fig. 3b, now cast

I+
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From this point of viewsp is therefore for all practical pur-
poses(light cone time independent. Technically this means
oA+ o8A+ Y that whenever we will need a correlation function &4’s,

we will expand it to leading order in the time derivatives
ey '

gl

+ 3\ — + +
FIG. 4. Diagrammatic representation&f, in terms of classical (Bp(x. x7)8p(yL .y ™)) =(dp(x, x7)p(y, X))+ (3'7)
and fluctuation fields. The coupling to @A, field has been indi-
cated by a curly line whereas slow modgghave been symbolized Corrections to this approximation are of ordgf/k™ ~x.
by dashed ones. . L .
We will therefore not indicate the time dependencepof
explicitly.
in a more precise language. All other terms are nontrivia| '€ Procedure now is the following. We first introduce

. o .
consequences of the presence of a background of fast “cladl® variablep” in the path integral by
sical” particles that are encoded in the source terrand a

careful treatment of the path integral over the modes in the iSla. oA
interval[A*,A’*]. D[p,&AM,alu]e' (2, . 0A, .p]

We have not written out explicitly terms higher order in
a” in the effective action. There are of course such terms , ,

. ; . . ’ =D A —p— A
which come from expanding the Wilson line part of the ac- f [p",p,0A 8, ]8(p" = p= Sp[ OA])

tion. Disregarding these terms gives the effective action with
the coupling of the field™ to the charge density of the form
a~J". However, imposing gauge invariance on the final re-
sult together with the requirement that the lineamin term

of the gauge-invariant action should coincide with the resul
of our calculation, the full gauge-invariant form of the effec-
tive action will be recovered. In the following therefore we
will concentrate on the linear terai J* only. Note that the
first term in EqQ.(35 does not have an explicit factor of
4(x™). However, we are only interested in its low longitudi- N B L

nal momentum components since it couples directlg tan explisS[p’.a“l;=exp —F'[p']— 7G%(a)+igap’(,
the effective action. In momentum space this contribution is (39
given by fa*°fdq*[q* 6AP(qT)18AS(—q* +k™). Since the

leading logarithmic contributions come from the regigh  with

>k™*, to this accuracy this expression does not depenki‘on

and can be therefore approximated &™) in coordinate

space. We then can define the modified surface color charge exp(—F'[p']}= | D[p,5A]8(p’' —p— Sp[ 5A])
density by

Xeis[a#ﬁAﬂ,p]_ (38)

Here 6p[ 6A] is the functional of the fluctuation fields de-
lfined by Egs.(34), (35), and (36). Now we first have to
integratedA,, at fixedp, and then integrate over.

This procedure generates the new effective action which
symbolically can be written as

: -1

83 (X, X7) = 8p(X,) 8(X7), ><ex4 —F[p]- §5AD [p]S6A;.

(40)

— - 51+ -

5P(XL)_f dx”8d7 (X, x7). (36 Of course, to leading order in Ind/only terms linear in
agnl/x should be kept irF’.
Formally 8p defined in this way is a function of* as well The integration over the fluctuation fiel#A , is the most
asx, . However, it is a function ofA’s which only have technically involved part of this procedure. We will describe
longitudinal momenta much larger than the momenta in thén detail this part of the calculation in the next section. The
soft field a. The (light cong time variation scale op is  structure of the result is, however, easy to understand from a
therefore ¢~ ~ q*/q? and is much larger than the typical simple counting of powers of the coupling constagt Con-
time variation scale of the on-shell modes of the field sider integration over the fluctuation fieldA, at fixed p.

6A dA
%, & dA
T, O .
%{1@ -+ JA + different time orderings
(]
[)

FIG. 5. Diagrammatic representation &3,. Symbols as in Fig. 4.
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The counting of the powers af is done most conveniently
after rescaling the fields and the charge density in the follow
ing way?

p—>§p,

dp— — dp. (41)
g

Explicitly for the rescaled charge density we have

p"'=p(x,)+3py +ps , (42)
with®
+a abc b Cry— 1 abc b
8pq 2(x, )= —2f3C%? SA7 (X =0)—§f p°(X,)
dey*[ﬁ(y*—X*)—H(X*—y*)]
XSAC(y*,x, ,x =0) (43

and
303 a(x):—fa‘t”f dx”[9" SAY () J6AF(x)
1 b + —C(yt -
TP ) | dyT oAy X, xT=0)
C

><fdz+5A‘d(z+,xL X~ =0)

x [facefbdegztx Ty a(x T —y 1)1, (44)

with

SThe reason for this rescaling can be traced back to (2§).
Simple counting of powers df in the tree level graphs shows that
for p of orderg~?2 all the tree level graphs are of the same order
(see Appendix A The classical field itself is the®(g™1). This is

PHYSICAL REVIEW D 59 014015

ai(XL):iU(XL)&iUT(XJ_)a (45)

ﬁiai=—p. (46)

In terms of the rescaled fields the coupling constadisap-
pears from the expressions fép, and appears only as the
overall factor 142 in the action. The propagator of the fluc-
tuation field is therefore of ordets. It immediately follows
from Eqgs.(43) and(44) that

<5p>5A:O(aS)l

(6pdp) sa=0(as), (47

while all other (connected correlation functions ofsp are
higher order ina. Since we are working to the lowest order
in g, we can neglect all these other terms. Therefore to
lowest order inag, after integrating ovepA at fixed p, we

are left with the weight function fosp, which generates
only connected one- and two-point functions. Such weight is
obviously a Gaussian. Introducing the notation

1
(6p%(X))sp=" asln;a'a(xi),

1
<5pa(XL 1X+)5pb(yi 1X+)>§A::as|n;Xab(XL vyi)!
(48)

we can write the result of théA , integration in the form

f D[p,p'1[Det x)]~ %exp(—Fp])

xex;{ -

X[ Xy ]

1
2 agIn1/x

1
!
Px ™ Px— asln; Ox

|

In the above equation we adopted a condensed notation: the
indicesx stand for the set of indices and coordinafes,a},

and repeated indices are understood to be sumfimee-
grated over/’

The calculation ofy and o is the subject of the following
section. However, knowledge of the general structure of the
p integral, Eq.(50), is sufficient to perform the integral over
p in Eq. (40) without the explicit knowledge of ando. The

(49

r__ _ |_
py=py~adn oy

also the magnitude of the field for which we expect to see the
nontrivial shadowing and saturation effects. For parametrically————

smaller color charge densities an expansion in powers of the cou-;

pling constant automatically implies an expansion also in powers o
p. Our primary interest is therefore in the charge densities of orde
-1

s

We have wused the identity 6(zF—yT)o(y" —x")
+O(x =z 0z —y ")+ 0z —xT)o(xT—y")=6(z" ~y") to
simplify the expression fobp3.

We note here that this result can be derived formally by intro-

fut:ing the variabley’ with the help of Lagrange multiplier

d
¢

&p'—p—p[oA)= f DAJee' o~ orlon) (50)

and subsequently integrating outin perturbation theory to order
ag.
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2, &
s>

[

FIG. 6. Diagrams contributing to. Note that these are all vir-

tual contributions resulting from contracting th#A lines of the
diagrams shown in Fig. 5.

reason is that the integrand in EGO) is a function very
sharply peaked around=p’'+O(«g), and the integral is

calculable in the steepest descent approximation. This was

done in Ref[13]. The result is very simple:

adn(1/x 52 5
F'—F4 SIn( )[Xuy B Xuv
2 ™" opudp,  Spudp,
SF  SF _6F Sxu,
T Xw T2 ——
opy  Op,  Opu Op,
do, _OF
+2——2—o0y|. (51)
opy opy

Taking the derivative with respect to Id¥ve obtain the
Wilson renormalization group equation for the functiofal

d E 52 c X uo
din(15)" 2| 5pop,  Spudhy
SF  SF _5F Sxu
- Xw —t2 ———
opy  Op,  Opu Gp,

So, _OF

+2——2—o,|. (52)
opy opy

This equation is extremely simple when written for the

weight functionZ=exp{—F}:

d Z= L& Z 0 Z 53
din(im) 2= % m[ XUU]—a[ oyl (53

Equations(52) and (53) provide the closed form of the

PHYSICAL REVIEW D59 014015

p s : -
Q + / N / o 1P Y o Cp) + / . /
. d i s ‘gf ! sy

FIG. 7. Diagrams contributing ta¢ln1/xy. Note that these arise
from contracting to factors of the diagrams shown in Fig. 4. For a
separate list of all nine contributions see Fig. 8.

d
d In(1/x) <px1' ’ 'pxn>

0<m<k<n+1

<px1' TPxp_ 1 Pxmiq
X Pxy_1Pxq” 'Panxmxk>

+ E <Px1"'px|_lpx|+1'"Pxno'x|> . (59

o<l<n+1

In particular, takingn=2 we obtain the evolution equa-
tion for the two point function

d In(1/) (pxpy) = as{(Xxy T PxOy+ pyoid}- (55)

This equation is useful in making contact with standard evo-
lution equations, since the correlator of the color charge den-
sity at weak fields is directly related to the unintegrated
gluon density in a hadrofil2]. Equation(55) can then be
straightforwardly rewritten as an evolution equation for the
gluon density.

V. SMALL FLUCTUATIONS IN THE BACKGROUND
FIELD: THE CALCULATION OF o AND x

In this section we calculate the one-point functierand
two-point correlation functiony of Sp(x,), Egs. (43) and
(44). First, note that these quantities are given by the Feyn-
man diagrams of Figs. 6 and 7, respectivigge Fig. 8 alsp

The propagator lines in these diagrams are the propaga-
tors of the fluctuation field$A in the nonvanishing back-
ground. This is the inverse of the opera[a))jV1 that appears
in Eq. (32).

At this point we see that the ghosts associated with our
gauge fixing do not contribute to ordes;. The interaction
of the ghost fields with the rescaled fluctuation field is of
order 1; see Eq(23). However, any insertion of a ghost

FYEN Ay

renormalization group equation in terms of the functionals
a[p] and x[p]. In the next section we will calculate these
two quantities.

Equation(53) can be written directly as evolution equa-
tion for the correlators of the charge density. Multiplying Eq.
(53) by py, **px, and integrating ovep yields

A%

FIG. 8. Explicit list of the diagrams contributing e.
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vertex will lead to an extra fluctuation propagator and this is  For simplicity we will temporarily omit the factor g in
proportional toas. We therefore forget about ghosts from front of the action, remembering to restore it in the expres-
now on. sions for the charge density by appropriately scaling the
Our goal therefore would seem to be the inversion ofsmall fluctuations propagator.
D;Vl. In fact our task is a little simpler than that, since we We have changed our notation from the previous section
only need to calculate the time-independent averageand  and denote the fluctuation field kay, rather thansA,. We
the equal time correlator iy. Those are determined by the should remember that the fluctuation fields contain longitu-
Wightman function of the fluctuation field,y rather than by ~ dinal momenta only above some scalé’. The question of
the Feynman propagator. The Wightman function satisfie§ow exactly to impose this cutoff is unimportant in the lead-
the homogeneous equation ing logarithmic approximation. We find it convenient to in-
troduce it through the infrared cutoff in coordinate space.
(56) The longitudinal coordinat&™ in our expressions therefore
varies between-L andL. Whenever it is harmless, we will
take the limitL—o, which corresponds to the big cutoff
Jatio AT/AT'>1.
Rather than writing down the eigenvalue equations for the
|quadratic Lagrangian, E@57) it is more convenient first to

D Dy=0

and is constructed from the eigenfunctionsiof! with the

zero eigenvalue. Our first task is therefore to find the zer

eigenfunctions ofD 1. For completeness we will present

also the eigenfunctions with nonzero eigenvalues, but wil o - S i

not construct explicitly the Feynman propagator. explicitly de_couple thea™ field. This is done by completing

For clarity we have split our calculation into three main t€ square in EqS7):

parts. We determine the eigenfunctions in Sec. VA, find

their proper normalization in Sec. V B, and use these results S— l{[a‘+ K-%(9"Da+2fa)]

to express the main quantities of interegtand o, in Sec. 2 X

V C, Egs.(108 and(109). o
XKyla~ +K Y(a*Da+2fa)],

A. Eigenfunctions of D, —[9*Da+2fa]K (9" Da+2fa],
The quadratic action for the fluctuation fields is +29%a0a—a[D25;+D;D]a;}. (61)
1 - L Defining
S= 2_gz{a>< Kxydy +2a" (0" Da+2fa)
+2(9+ai(9_ai+_ai[Dzéij‘FDiDj]aj}. (57)

a =a +K Yo" Da+2fa), (62

we see that it decouples from. Its correlator is given by
Here we are using the following condensed notation
‘ , (aya, )=K,y. (63
[fa]2(x",x",x,)=f2%(x ") a'*(x,)a®(x" x~,x,),
The correlator ofa™ is then easily calculable once we know
K1 and the correlators d; .
— — b b -\ .C\4b i
Da=Dj[a]ai=(9; 6"+ f*0(x7)ar)a, (58) The calculation oK~ is straightforward and is given in
. L Appendix A. The result is
andx denotes the space time coordinatésx' as well as the
color label. All repeated indices are summé@dtegrated

; ; 1 1 (x,)
over. The functione;(x,) is related top(x,) through Eg. K l=! - ZIx —v |+ = n(x MIx"|+Iv- 1= S
(46). The operatoK is 2| yl 2 DI+l 2M
X (X ,Y1)- (64)
Kab: _ ((9+)26ab+ fabc C5(X_)— . ab . .
xy p = The color matrix%»*°(x,) projects onto the nonzero eigen-
value subspace dfl. Together with the complementary pro-
=—[(87)28%°—2M3P5(x )], (59)  jector u it satisfies the relations
where we have defined uM=0, 7M=M (65
. . and
i if- p(x
M23(p~ x, )= __fabCPC(XL)E p—(_i) (60)
2p ptn=1, p’=u, n°=n. (66)

Note thatM is a color matrix locally defined in the transverse ~ We note that the operatdt, Eq. (59), has zero modes of
and frequency space, which does not dependon the form
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f3(x, ,x,p ) =wu2%f(x, ,p") (67) Now that we have disposed af we have to find eigen-
functions and eigenvalues of the operaﬁlﬁl[p] defined by
and is therefore strictly speaking noninvertible. The resultthe action, Eq(69). It is convenient to parametrize the fields
Eqg. (64), was obtained by excluding the zero modes andg; in the following way:
inverting K on the space of functions which does not include

the functions, Eq(67). The normalizable zero modes Kf al=0(x)[a, (x, ,x",x)+ 9. (x, ,x)]
cannot be completely neglected in E§7). Expandinga™ in , .
the basis of eigenfunctions ¢, +0(—x)[a"(x, ,x" x)+y_(x, ,xH]. (72

The reason we choose to use this parametrization is that the
a‘=J dia, fy, (68 equations of motionthe eigenvalue equationss derived
from Eq.(69) are first order iw* and contain coefficients of

. . _ ! . the form 6(x™). We therefore expect the eigenfunctions to
we see immediately that, drops out from the first term in e giscontinuous at~=0. Also, since the classical back-

Eq. (57) but not from the second term. As a resalf does  4round fields do not vanish at — o, we should allow the

not decouple froma; and Eq.(62) should be slightly modi-  same asymptotic behavior in the fluctuations. We have sepa-

fied. In addition to the term quadratic @ we have rated out for convenience the components of the figld
which do not vanish ag™ — 0 so that by definition

1 _
S=-— E[ﬁ+Da+2fa]xKXy1[(?+Da+2fa]y i

a. — o. (73)
X —*w
1
- 2
+d"ai0"a;~ 5a[D*5;+DiDj]a; Substituting Eq(72) into the action(69) we obtain
_ o . . 1 A
'f'a.()’)(L ’X+,U/ledx [(9 Da+2fa]x. (69) S:J dX— a—aua+a|++§a|+DJ2_a|+
0
Note thata, does not depend axi~ since the zero mode 0 _ A
of K is constant ik . The linear term ira~ in Eq. (69) is in +J7 dx"| 9 a g al+ EaLDLaL

fact nothing but the Gauss’ law constraint which remains
after integrating out th@™ component of the vector poten- HY +0 107 [y o 1+ [0 Y v —a Y ]
tial. As we stressed before, our effective Lagrangian is gauge
invariant under the residuat™ -independent non-Abelian i ID2 g I T2 S — gigia
gauge transformation. As a result, the Lagrangian expanded +3L17+[D18"=DiDjly, + vy [918"=d'd']y"}
to second order in the fluctuation field, E&7), preserves
the linearized version of this transformation. It is in fact 1 .. i i i i il i
straightforward to check that E¢57) is invariant under +51dy, —Dly_—alvy +vi Ji72d 10y, —Dlyt
—a[v), +vl, N +ag u{d'y, —D'y —al[v, +v" 1},
ai_>ai+Di[a])\(XL ,X+), af_}af_’_af)\(xi ,X+), a [v+ v+]} Olu’{ Y+ Y a [U+ v ]}
(70) (74

with D;[ a] of Eq. (58), provided\ (x, ,x")—+_.+,.0. The ~ Where
X~ -independent part oA~ imposes the Gauss’' law con-
straint that corresponds to this transformation in the La- v.=a.(x =0). (75)
grangian, Eq(57): -
The covariant derivative in this equation is

f dx‘KXya;+(a+Da+ 2fa),=0. (71 DiabE(ai 5ab+fab°ai°). (76)

Decouplinga~ is of course equivalent to integrating cait W& hope that the use of the same symbol as in(&8). does
from the path integral. This procedure solves Ed) fora~  NOt cause confusion. o
in terms ofa;, except for the component of this equation In this parametrization the linearized gauge transforma-

which is proportional to the zero mode Kf since this com- 10N acts as

ponent does not contaan . This component of the equation . _ ' _

is a constraint that involves only and should be kept intact 8y, =D'A, &y_=d'A, Say=0d A. (77)
in the path integral fom;, Eq. (69). The fielda, is just the

Lagrange multiplier that imposes this constraint. The equations for eigenfunctions are
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S - b 274
—0(x )~ 20"~ +D?]al,
oa .

+58(x7) 077[71— yl—vL+v£]+ai£07[é’y+

—D'y_—a(v++v_)]+ai,u,aa

=)a', (79

5S .
——=0(—x)[—20T9" +5°]a"

éa; _
+8(x7) (97[yi_—7i+—vi++vi_]

o o
+a ﬂ& [dy;—Dy_—a(vyt+v_)]+a'na,
=\a", (79

oS 1 i [ i
5y =d [y_+v,itv_]-d'una,
i+
o
—d 55 [dy+—Dy_—a(vy+v_)]
+L[D251-D'DIy,
=)\Lyi+, (80)

S o M
6—=—5 (¥, tvi+tv_]+D'uag +DI(9_a
Yi-

Xd [dy,—Dy_—a(vy+v_)]

+L[2 8 =d 911y =\Ly, (81)

where all the derivatives are with respect to transverse coor-
dinates unless explicitly specified. These equations are
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i _aipx’ 2
a, =evP J d°p,

X

Pt ‘
0(_X_)9XF{ i _tX__itht) vl (Py)
2p
2

+ 0(X‘)U*(XL)exp< i ziX‘—iptxt) [Uo 1(p.)
P

+O(—x7) Y (X)X Y |- (83

The frequency is a good quantum number since our back-
ground field is static. Here is the degeneracy label, which
labels independent solutions with the eigenvalue0 and
frequencyp™. In the free case it is conventionally chosen as
the transverse momentufm}={p;}. The matrixU(x,) is

the same SU{) matrix which defines the classical field, Eq.
(24). The auxiliary functionsy'. ,v'. are all determined in
terms of one vector function. We take this independent func-
tion asv’ .8 Then

i | dij i 1 j jk 11 k|, k
vl =] #1-2D' 501 || =20 ook
=20 o 2D
y+,|’ (92 U*,r D2 U+,r ’
'yL’rZO,
1
Qo= 2; dv —r- (84

For the eigenfunctions corresponding to eigenvalies
#0 there is no gauge invariance. Accordingly the functions
vanish at infinityy.. , .o=0 and the solution is

o[ oapE
O(—x7)exp i X —ipX
2p~

Xl ((p)+0x)UT(x,)

i _aip x* 2
a)\,p,r_ep fd Pt

supplemented by the constraint N+ p2
. | A i
Xex;{l 20 X —IPX¢ [UUIJF,r,)\(pL)] , (89
uldy+—=Dy-—a(v,+v_)]=0. (82 _
with
First consider the zero eigenvaliie=0. Because of the 7
gauge symmetry, the equations for eigenfunctions have an UL: v —ad—a(v,tv_)|. (86)
infinity of solutions forA =0. However, as stressed in Sec. da

Il we must work in a completely fixed gauge, which we
have chosen ag;a;(x”— —)=0. In the notation of this
section this meangy_=0. With this gauge fixing it is

8These expressions are valid up to terms of order The omitted
straightforward to find the solution

terms do not contribute to the leading order in Ir.1/
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We now have to construct a complete set of solutions, whichHere again we have kept the terms of ortiérand dropped
is tantamount to picking) ,(x, ) for every eigenvalue. as  the cross terms since

a complete basis of functions on the plane. This basis should

be chosen such that the solutions, EBB), are properly nor- i

malized and are orthogonal for different valuesr &f. f dx“a'y'~1L (90)

and this can be ignored at largie

Consider first the case when both eigenvalneand \’
~The orthonormality condition for the eigenfunctions gre nonzero. It follows from Eq86) that

B. Normalization of the eigenfunctions

Sl =sh', (91
J d“xaif'p_y (X)aif, o (X) whereSis an operator:

=0(N=N")S8(p"—p )o(r—=r"). (87 o

S=6"+4d' é_aa]' (92

Although for the purpose of our calculation we only need

eigenfunctions with the eigenvalue=0, it is convenient to  This operator satisfies

consider the orthonormality relation for arbitraxy The rea-

son is that if we taken=\', the factor6(A—\’) gives a [S,S'1=0, (93

divergent constant, and it is difficult to determine the nu-

merical coefficient in front of it. Taking. and\’ generic, and therefores 1S is unitary, so that

we can explicitly extract thé-function factor and determine

the coefficient. viv,=v*v_ (94)
Let us consider the scalar product

andM ,=M_. The orthonormality conditiori87) then be-

comes

fd“xaw (X)ay 5o o (X)
fd“xa'fp (x)awp (x)

2p~
=8p —p H|i———M_
L N =2775()\—)\’)§(p’—p”)2|p’|M_(r,r’).
.—Zp_ M,;+L(N_+N 88 o
|)\_)\,_i€ +FLIN-+N) (89 It is clear now that fo;x#0, we can take our orthonor-

malized basis to be
where

52bsier i N#£0. (96)

[0 (x,)=

1
iy e
:f A, 0™ ) (x)0™ L(x0), "

For =0, there will also be a nonvanishing contribution
from the term which involvesy, . The x™ integral in the
= | d2x X o' (x normalization condition, Eq87), gives a factor oL.. Com-
j il Do O, paring it with Eq.(95) at A=\’ we identify this factor as
47|p~|8(N—N\"). We are then left with

N_: f dZXJ_ 'yif")\’r(xj_)’yi_a:’;r’)\r(xl)i

M_+M,_ +N_+N,= —8(r—r'). (97)

mp~]

L= J d?x, YT,)\,r(XL)'yf:kr',)\'(Xl)' (89 Itis easy to see that .for the zero modes the relation b.et.ween
v_ andv , is also unitary. UsindM _ =M, and the explicit
expressions fory, we get

%0One could ask whether the presence of the Lagrange multiplier )
a, in the Lagrangian can modify the normalization condition for — 5(r—r’)=f d?x, d?y, v*'(x,)
the eigenfunctions. It is shown in Appendix B that this is not the 4mlp|

case, and the appropriate normalization condition is indeed Eq. i i
(87). X O"(x, rYL)U_,rr(YL)a (98)
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with We have regulated thi® dependence of the integrand by
moving slightly away fromx™ =0. At nonzerox~ we can
close the integration contour in the plane. At every fixed
sk_2gi i&k] value ofp~ the contour can be closed either in the upper or
5 in the lower half-plane, depending on the signxof. The
only contribution to the integral comes from the poleiat
( 5”'—D”ia') =0. If the contour is closed upstairs, the integral vanishes,
2

Oij(XL W)=

while if it is closed downstairs, there is a contributiomri2
Therefore for everyp™ the N\ integral gives a factor
] 2w 6(x~) or 27i#(—x"), depending on the sign gi~.

( 5kn_akiDn
az

><[5k'+2

Multiplying by 8(x™) and integrating ovex™ gives the fac-
tor 1/2 in either case. The result of theintegral is therefore
that it puts the propagator on shell£0) and gives the
(X, ,Y,). (99 numerical factorsri.
In the following formulas\ =0 is therefore assumed.
First, we calculatea™. In fact as is obvious from the
This relation means that for proper normalization oneexplicit expressions for the charge density, E¢&) and
should choose the functions_ | as eigenfunctions of the (44), we need onlya” (x~=0). Also, as can be easily
operatorO The normalization ob' , should not be 1, but checkeda™ does not contribute to the order Inl/and we
rather 14k wherek is the appropriate eigenvalue of the op- omit it in the following. Then, using Eq$83) and (62) we
eratorO. The degeneracy labeltherefore numbers the vec- find
tors of this particular basis. Sin€is a Hermitian operator,
its eigenfunctions form a complete basis, and therefore the

_( 5k|_DkiD|)
D2

X

o —za'iaj
az

basis of our eigenfunctions is also complete. Therefore we & (X" =0)=—K"%(0y")["Da+2fal(y")

have
L o=t DU+’p*,r(XL)

—jp_elP x| P L
p D2
2 ia *jb = —1jab
| e oo - e (CR (U W) | (103
(100 #

i i 1
Al of our results then will be expressed in terms OF The integration ovep™ andr is implied in this equation.

where The objectsf ,- , are the coefficients in the expansion of the
fields a; in the basis of the eigenfunctions of the operator
i -k f_l.
1| gk 20 _aiplliopt Dij ™
[0 1=] §*~2—-|{1+2|| 1-95D || 1-D 2
J J d
— 1kl | 4 _
1 . d a-(x)=Jd)\dp dra; , o- (X)) - . (104
_ N o P lj_o_ I iLN,pT.r NpTr
1 DDzD ] 5! 2(92 (101

Since our eigenfunctions are properly normaliz€g, have
C. Induced charge density the standard correlator

We are now ready to calculate the induced charge density
Sp. As was mentioned in the beginning of this section, since i
we are interested in the equal time correlations of the quc—<fA g Y=

. . ] . ) PTINpTr A+ie
tuation fieldsa; we will only need the on-shell propagators,
and therefore only eigenfunctions for the eigenvalue0. (105
To see this explicitly let us consider a typical expression we
have to evaluate in order to calculate the charge density coNow, using Eqs(43), (44), and(83) we find
relator:

SN—=N)S(p —p )S(r—r’).

i -=0)al -= SR §
(a'(x, ,x =0)a(y, ,x =0)) Spi=—geP x*gfabc[zab[vtp’r_'_v_‘p'r]c

:f dx” Adf. dp~d?k, d%p, gll12A+pLHkD2
€
b

—2p

Doy py 0 p |
i j* - 2 T T fo-rn (108
XF(k,p)ve \ (pov, (k)a(x7). (102 D¢ %
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and o3(x, )__fabc[(TIJ_ u)(th Ilk)](n v

[0}y, ,Xi)]ki

o0 y + 2630 (T — L) (k= 114) + %0
5'0;:_9 fa G U — —n— ! —
TP X[O™(y, ,y.)1§eD¢
b n m fe
*
MR SELNPERR UM % _2+¥(tm”—|mn)]
1 t (XL ’i)
_[U+,p*,r+v7,p*,r:|b‘yiC ’ /} 1 Di B . i cg
2 ponr __facefbdepb(XL) _2(t|1_|lj)__2
1 Dvypr dv_ ¢ Di 9 (XL Y1)
+_facefbdepb(xi) P (XL)
D2 1'7 Dk &I dh
c t t _ — i
X[O7 Xy, ,yL)]ngh{_z(tkl_m)__Z]
Dv* _ ™ d P o)
% +.p ',I”+ —-p- 'I" (X ) WYL
1
D? It — fabeRbe(x ), (109
fabc 0 dxTa+ b *C
- e x"[d a—,p*,r]a—,p*’,r' WhereRbC(xL) is
+f dx*[a*a ]a ) } 2 2
0 e RPS(x X, )= f d°p. d7q, tze*i(pL*CIL)XL
o (2m)% (2m) 2
xel(P™ =P~ ")x fp_'rf;_,vr,_ (107 . _
UL(pL)UtIC(qL) (pi)v*lc((h)
pi—d-ie pf—dftie
Now it is straightforward to evaluate and y. Sinceédp, (110

is linear ina;, clearly{8p,)=0. Also, 8p, is orderg while
8p, is orderg?. Therefore to orde only 8p; contributes
to x, and onlySp, contributes too. The frequency integral
is trivial. The only p~ dependence is in the normalization
factor 1/p~|, Eq.(100. The integral ovep~ then gives the

logarithmic factor which we identify with Ink/ T g D'DI! Li DID!

and we have defined the projection operators

Using the explicit expressions fer, andy, in terms of f ' Df '
v_ and the normalization condition, E¢LO0), we obtain
P L |
th=ol——, ll=—. (112
&L ‘9L

x*x )= fabCfdef| ab[(TH = L) (k= 1K) + 5k]c9

These expressions can be somewhat simplified. The inver-

[ k7c9 , o
4P D—I(t”‘—lik)— ‘9_ sion of O can be performed explicitly as far as the transverse
p 2 index structure is concerned.:
t 1 (XL ZL)

_1 — \ikn
X[0™ Xz, ,2.)]gh [(t=DO~Y(t—1D)13(x, .y,)

x4 [(TS=L!s)(tsh—|5N) + §n1fh 1 1
ae[( ) ) ] ={ x, 5ﬁb_2 J——D—
072 D2
D| an fh ab
+p° _Z(tln_|ln)_ _2] ] ., (109 o 1. 1
_ XS Y —=¢'——D! . 112
D; a7 R 72 D2 Yo (112

014015-17



JALILIAN-MARIAN, KOVNER, AND WEIGERT PHYSICAL REVIEW D 59 014015

Here(x}|---|yL) denotes the configu.ratiqn space matrix el- 1 D, 4\[D; 4
ement in a standard way. We also find it simpler to use the S=—+4+2| ———=|| —=——=
. : 2 D2 )\D? &
matrix notation
1 2 ! d ! +2—D 114
aiab: fabcaic, pab: fabcpc_ (113 a D2 52 @ D2 D2 @ {92' ( )
The rotational scalar operat&is defined as In terms of this operator we have

d; D;
2ai—{a,&};—{a,D}§

ab B 5 o di Dy s
XX,y ) =—1{ X, 74 27 o2

(9]_ Dj ab
X Zaj—;{a,&}—ﬁ{a,D} Y1/
a(x, )= fabe L K e B N il 1 B IR
o(x)= X 2( )82 2 2 2( )az 92 D2 Dz( )02
B e e e L AT R IR A e B PO Ao
~1[Bi [ Di 9 e
XS E—? E—'—; X, ) p(X ) —R(x}) . (115
|
Here{X,Y} denotes an anticommutator. relevant operators, but rather by a functional equation, Eq.

Equations(109), (108), and(115 are the central result of (52). The functional equation is equivalent, of course, to an
this paper. Those are expressions for the coefficient functiongfinite number of ordinary equations. This can be inter-
of the renormalization group equations as functions of theyreted as indicating that the lowRG flow has an infinite
charge density. These expressions do not look very simple number of relevant operators. This is a rare example of the
and clearly one will need to develop some intuition and arenormalization group flow in an infinite dimensional space
deeper understanding to be able to use them in either analytisf relevant couplings with all 8 functions” calculable ex-
or numeric calculations. This is the matter of future work. pjicitly.

For now we are content with being able to derive these ex- Much work remains to be done to understand the physics
plicit expressions. of the full nonlinear evolution equation. It is probably wise

As an important cross-check on our results, we haveirst to see whether one recovers the simpler known equa-
checked that in the weak field limit, expanding the renormal+ions as its particular limits. As we have mentioned, we have
ization group equatiori52) to leading order in the charge checked explicitly(see Ref[12] and Appendix ¢that in the
densityp, we recover the BFKL equation. The details of this |eading order expansion in powers of the charge density our
calculation are given in Appendix C. equation reduces to the BFKL equation. The diffusion-
limited aggregatioDLA) limit of the DGLAP evolution is
also obtained if we expand to leading ordepinimpose the
transverse momentum ordering in the rungs of the ladder in

The main result of this paper is the calculation of the onethe real diagrams of Fig. 8, and neglect the virtual contribu-
and two-point functions of the charge density induced by thdions of Fig. 6. With a little more work one should be able to
gluonic fluctuations. This completes in the formal sense theecover the GLR equatiof,7]. To this end one has to ex-
derivation of the renormalization group equation that de{pand our result to next to leading order in the charge density
scribes the flow of gluonic observables at lawccordingto  p and impose the DLA kinematics. Without imposing the
the ideology of Refs[11-13. We want to point out that, in DLA transverse momentum ordering the next to leading or-
fact, the flow is described not by one RG equation, as in aer expansion should reproduce the triple-Pomeron vertex.
theory with one running coupling constant, and not even by a These are important consistency checks on our calculation
finite set of equations, as in a theory with finite humber ofand they should certainly be performed. In the framework of

VI. DISCUSSION
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the full nonlinear problem, there are two very interesting
guestions which can be asked immediately. First, does the
flow described by Egs(52), (109, and (108 have a fixed
point. The presence of such a fixed point would mean in our
framework the saturation of gluonic observables at bow
Needless to say, if such a fixed point exists and the fixed gig. 9. part of the real contribution to the induced color charge.
point value of F[p] can be determined, it would be ex-

tremely interesting. It would describe a universal behavior ofSit due to these partons is considered to be static while
DIS observables at low, independent of the hadron that is yp P

: . > 1S . .
being considered. The statistical weight (! defines a two- 'Qf?fﬂ‘,‘? ol—l:;\}vr:;/élruC;iagggs]lilgsse]\!(v;:g rgg:ngnst?é\m does
dimensional Euclidean field theory. It is interesting to note ) ' ' Y

that the evolution equation itself does not contain any scale'?Ot have two sharply separated time scales, but rather a con-

Therefore, if the fixed point exists it could be scale invariant,gmrjitj/m t%f tlane ?Cilﬁs'n\/\fleratrﬁ lnte?tr?itlrllgso_lv_ﬁﬁr N Ordirtt?n
and in that case very likely also conformally invariahit erive the Lagrangian for the soft fie ose conta

. e Nt e - S
may be therefore possible to study it with the methods of'ght cone frequenciek ~ 11~ >k™. Thg fluctuation fields
two-dimensional conformal field theory. S6A would appear as fast modes relative gabut as slow

Second, even if the fixed point does not exist, it would berelative to soft fieldsa. The situation in fact is slightly more

interesting to investigate what is the impact of the law compllcated,.smce in principle the field modéa czontam
evolution on observables at small transverse momentunfiSO vastly different transverse momenta. Koep? they
Starting from some reasonable initial condition>atand @€ N factzfastezr thap; however, for very small transverse
evolving F to low enough values of, one could study the Momentaki<p7 the frequency of the5A field can be as
low k, behavior of the resulting two-dimensional theory. Small or even smaller thap~. The splitting in terms of
Again, it could be that at lovk, the two-dimensional theory longitudinal momente™ therefore does not exactly corre-
becomes conformal and can be analyzed analytically. spond to the Born-Oppenheimer-type splitting in terms of the

Another outstanding question is how to generalize thireguency. _ o .
approach to include not just DIS but also hadron-hadron col- The charge densityp that is induced by the fluctuations
lisions. An effective Lagrangian for the hadron collision in A accordingly contains two types of contributions. First,
multi-Regge kinematics was derived by Lipa{®}. It would ~ there are contributions with frequencies of order>p~.
be worthwhile to extend the renormalization group approactf hose come from the real diagrams of Fig. 8 with ordered
to this case. We note that the leading order of the perturbaransverse momentukf =p? . For convenience of reference
tive calculation for two hadron collision was considered inwe redraw one diagram from this set in Fig. 9. The frequency
[17] to first order inp and numerical work is in progress to of this component of the induced charge densgipf,se: is
understand the nonlinear effects to leading ordesdni18].  k?/k*™ > p?/p™*.

We want to conclude with a discussion of the physical There is another componefpgqwer Which comes from
picture of the difference between the BFKL limit and the low the unordered region of the transverse momekfta p? .
x DLA DGLAP limit as it emerges from our approach. Al- This component is in the same frequency range as the origi-
though this does not have a direct relation to the nonlineanal p. Since it is not contributed by faster modes, it is not a
problem considered in this paper, the observation can hop&orn-Oppenheimer-type contribution. In principle there is
fully help to put our approach in a more general perspectivealso a contribution from the region with opposite ordering

It is interesting to interpret our calculational procedurekf<pi, This component of the induced charge density
from the perspective of the Born-Oppenheimer approximawould contain frequencies which are even smaller than those
tion. The Born-Oppenheimer approximation is standard inn p. However, it is exactly canceled by the virtual correc-
systems that have two distinct time scales. One considers thRns of Fig. 6 as can be checked explicitly from the expres-
slow degree of freedo as a static background and solves sjon for the BEKL kernel?
the dynamics of the fast degree of freedofrwith given So, to reiterate, as we move to lowewe get two distinct
backgroundX. Integrating outY generates a change in the
Lagrangian forX. This is of course the standard procedure
for deriving effective Lagrangians in theories which containye hope this does not cause confusion. Indeed these modes are
well-separated fast and slow degrees of freedom. An eX«tast” if we consider their variation in time, since their energy is
ample is the chiral Lagrangian, where light pions are slowarge. However, in light cone time* =z+t these same modes are
and heavyp, ¢, etc., mesons are fast. From this point of aimost static, since their light cone time dependence is given by
view, in our case we would like to think of the partons with expfip™x*} andp~ is small. In this section we are interested in the
large longitudinal momenturp*>A* as the slow modes, light cone time variation.
since their frequencp™~ 1/p* is small'* The charge den-  20One can be tempted to think of these virtual corrections as the
Born-Oppenheimer type backreaction, which “renormalizes” the
effective distribution of the slow component of the charge density.
This is not the case since the contribution in the virtual diagrams
comes mostly from the low transverse momentum region in the
INote that those are the modes that we called “fast” in Sec. Il.integral, and is therefore due to slow modes in the loop.

9e thank M. Wisthoff for this observation.
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contributions. First, there is a Born-Oppenheimer-type conwith High Energy Electromagnetic Probes,” contract ERB
tribution. It appears because we ‘“renormalize” the notion of FMRX-CT96-0008.
staticity by including new(fastey modes in the category of
static. This is thedpasier- Physically, this relates to the APPENDIX A: HIGH AND LOW DENSITY SITUATIONS—
processes at small@rthat happen at ever faster time scales. THE PARAMETRIC SIZE OF p
Second, there is a new contribution to the charge density o ) ) ) ]
which has a long wavelength but also low frequency. Thisis The situation that interests us in this paper is the one
Spsiower- This is not a contribution of the Born- When the_ _color ch_arge density is high enough SO that the
Oppenheimer type and appears since the splitting in terms gonlinearities are _|mp0rtant. AI_read_y when looking at the
the longitudinal momentum does not strictly coincide with '€€ graph expansion of a classical field generated by a color
the spliting in terms of frequency. charge denS|ty>_, we are in a position to judge how bighas

Now, the DLA approximation to DGLAP assumes trans- o be parametrically foall of the terms to contribute equally
verse momentum ordering and therefore includes only® the result. _ _
8praster in the induced charge density. The BFKL evolution 10 do this we observe that one may build all diagrams
on the contrary includes both contributions. Therefore théhat make up the classical field starting from the linear term
DLA DGLAP includes in the induced density only contribu- ' p (A1)
tions which are faster than previously present, and is evolu-
tion simultaneously in the longitudinal momentum and fre-py stripping off a factoigp and replacing it successively by
guency. The BFKL evolution includes contributions which at ejther
every step in the evolution modify also the slow component
of the charge density, and is therefore evolution only in the gp gp
longitudinal momentum.

The Spgjower cONtribution to the BFKL kernel is known to
be problematic, since it creates a channel through which the §
nonperturbative small transverse momentum modes couple g 9
to the evolution. The result is the infamous random walk in
the transverse momentum spd@el9| in the asymptotic so-
lution of the BFKL equation. Our full nonlinear procedure is
similar to the BFKL approach in the sense that it does not 9p gp
discriminate between the field modes on the basis of their
frequency. Whether it still suffers from the same low trans-
verse momentum problem is not clear to us at this point. It isTo generate diagrams which are all of the same order we
possible that the nonlinearities in the equation suppress th@eed to simultaneously satisfy the equations
low transverse momentum contributions by generating a dy-

or g’ 9p

namical scale somewhat like what happens in finite tempera- gxordep)=g[gxordelp)]?, (A2)
ture and finite density equilibrium systems. It would be very
interesting to develop a renormalization group procedure in gx ordex p) =g gx ordex p)1°. (A3)

which the evolution parameter is not the longitudinal mo-
mentum(like in our approachand not the transverse mo- This fixes 1=g?X order(p), i.e., p to be of ordery™2.
mentum (like in the DGLAP evolution but rather directly It is therefore forp~0O(g~?) that the nonlinear effects

the time resolution scale. This kind of approach would condescribed by the RG evolution derived in this paper are
sider the contributions of low, modes at lowx as part of  physically important.

the initial condition rather than part of the evolution and

would thereby provide a cleaner separation of perturbative APPENDIX B: INVERTING K

and nonperturbative effects. A nonlinear evolution obtained

in this type of approach should be closely related to the non- In this appendix we invert the operatkirwhich appears

linear evolution equation of Laenen and LeyR0]. in the small fluctuation action
ACKNOWLEDGMENTS K)a(uya: —| (9%)25%+ fabcpcé\(x—)&i
We are grateful to Larry McLerran for numerous discus-
sions on a variety of topics related to the subject of this =—[(87)26%P—2M3Ps(x7)]. (B1)
paper. We have also benefited from interesting discussions
with A. Leonidov, E. Levin, A. White, and M. Wathoff. First, note that the frequency and the transverse coordi-

The work of J.J.M. was supported by DOE contract DOE-nate dependence & is trivial, and thereforgp™ andx, are
Nuclear DE-FG02-87ER-40328. A.K. was supported byconserved quantum numbers in this inversion. For the pur-
DOE contract DOE High Energy DE-AC02-83ER40105 andpose of this calculation we can imagine that the color matrix
PPARC. H.W. was supported by the EC Program “TrainingM has been diagonalized at every pointxin and we will

and Mobility of Researchers,” Network “Hadronic Physics therefore treat it formally as a number.
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Let f2(x) be the set of eigenfunctions &f 2(p+)2
ulu=————.
(p+)2+ M 2
dy K2(x,y)fP(p~,y ", x ) =Af3(p~,x",X,).
f y YTy (P 1) These are the eigenfunctions for “continuum” states, the
(B2) ones corresponding to positive eigenvalues.
Assuming for the moment that the eigenvalues are pos;itiveﬂvé\lfa)rt:?j th:;t?\'/r;c; trgh(’/ 3;123 t?’ienr];tgr)g\ghga:i beor:Carl]fgz- Ua-
the eigenfunctions have the form , P 9 o . 9 d
tion (B2) must also have negative eigenvalues and corre-
sponding “bound state” solutions. The bound state wave

—\ipTx - -
fo-x, (0= 0(=x")eP X UA(x, ,p7)+0(x") function must be symmetric under — —x~ and have the
L L same form as the continuum solution except tpat is
xX[eP X Fa(x, ,p7)+e P X G¥x, ,p )], imaginary. Requiring that it decay exponentially at large

(B3) we have

whereF and G are to be determined. Requiring thit be p*=iMo(M).
continuous ak™ =0 givesU?=F2+ G2, The first derivative ) ) )
of f2 should be discontinuous such tht when acting on it 1he €igenfunction then is
will cancel thed(x™) in Eqg. (B1). In other words, the dis- - -
continuity in the first derivative must be equal to the integral p=NVA[ O(x")e M +g(—x")eMx ], (B5)
of the delta function across the discontinuity. This gives
where N is a normalization factor an&¥/2 are the set of
- eigenfunctions oM with positive eigenvalue. The normal-

. sinp™x

:Uae'px—ia(x‘)p—fabcubpc(xL)_ (B4) ization factorN is easily calculated and is given /=M.
a + — (23 . . R . .
p It is easily checked that the set of our eigenfunctions is

complete. The completeness relation is

fa

cont

These eigenfunctions correspond to a positive eigenvalue

A=p 'Ef i [a%(x,p)]"[a"(y,p)]=8(x—y)&%". (B6)
(2m* ’ '

To determine the proper normalization of the “polarization _
vector” U? it is easier to work with the symmetric and an- This can be written as
tisymmetric combinations

do-
|=5(Xl—yl)f%'1(X_,y_,p_).

fisym=uicosp+x‘—i2 —— by
PP where for the continuum solutions we have
Xsinp™x [6(x)—6(—x7)]
-1
and 11=0(x7)0(y")| 5~ (IM[+M)8(x”+y")
a il12cinnty— —i 1 abep b _coinnty— —IM|(x™+y7) 1 - —
frasym=1UgsiNp ™ x _Iﬁf U, p°sinp™x™. X e y —§(|M|—M)0(—x —y7)
The antisymmetric functions vanish &t =0 and therefore X eMITHY D 4 5(x+y7)

are the same as foM =0. Their normalized form is just

d +
+f P 2sinp™x " sinpty~

o TO(x)o(—y")

2 syr=SIN(p™x7) 2.

aasym

. . . . . — 1 _ _
The overlap matrix for the symmetric eigenfunctions is 7(|M |+ M)a(x‘—y‘)e‘“\"“x -y7)

X
fdxi[f?a,p*)(x)]T[f?B,N’>(X)] —%(|M|—M)o(—x*+y*)
+ +7 UTU (fp)z
=8(p"—p"") 5 {1_(2p+p_)2 ; xe'M(X_y)—l—é(x_—y_)}
and we get (X, Yy ==X ,-y), (B7)
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while, for the bound state,

Expanding the above expression in powersedb order 1,
we get

1 — —
=5 (IM[+M)[O(x ) By e My ST BNV S NI
K=t = Loy Sl Tl

o) 6(—y )My )

Oy =Xyl (B8) _ s —p)a(x, -
2M 2\/56 (p p ) ( 1 yJ_),
All M-dependent terms cancel out between the two contribu-

tions. Performing th@ " integration and adding all the terms

establishes the completeness relatiB). where we have defined the projection operatp@nd u that

Now that we have the complete set of eigenfunctions, Weyrgject on nonzero and zero eigenvalue subspacés, oé-
are ready to invert the operati§r But first we should under-  gpectively:

stand the zero modgs*=0. These eigenfunctions do not

(B11)

vanish atx™ — £ and we should be careful with them, for _ _
. ; : uM=0, 7M=M, (B12)
example when integrating by parts. In fact when calculating
the propagator, these eigenfunctions should be excluded en- ) 5
tirely from the sum as explained in Sec. V. The convenient ptn=1, u=p =7 (B13)

way to do that is to regulate the factoalwhich enters in

the calculation of the propagator as

A
N+ et

1_
==

Note that the last term in E4B11) diverges in the limit
e—0. However, examining carefully the equations in Sec.
V, we see thak ~! always acts on a particular combination
of fields B which satisfies the constraiptB=0 by virtue of
Gauss’ law. We can therefore omit this term from the expres-
sion forK ~* altogether, which is what we did in the text, Eq.

taking the limite—0 at the end of the calculation. We use (64).

the same regulator to regulate a possible singulafity 0 in
the bound state eigenvalue:

1 M2
= .
M2 M4+ €
The propagatoK ~! is calculated as
K_l(X_,XL 1p_1y_1yL 1p_,)
1 o 3
= [Tt 0 )
X(p~=p )X —YyL)- (B9

The result is

K—1: -1 [e(x—_y—)[ei\Tf(X—y)_ie—\Tf(X—y)]

4i\/i—€

el We(x™+y7) e We(x™+y7)
M 608y ) M+ivie - M—\i e ]

e Me(x —y7) e ie(x™—y7)
OO0y M+i\/i—e - M—\/i—e ]

+(X‘.y‘—>—><‘,—y‘)]5(p‘—p")5(xl—yl).

(B10)

APPENDIX C: PROPER NORMALIZATION
OF EIGENFUNCTIONS

In this appendix we show how to properly normalize
eigenfunctions in a theory with a Lagrange multiplier field.
Consider a quadratic form

S:aiMijaj, i:].,...,N, (Cl)
where the variableg; are constrained bgn linear conditions

o

¢’a;=0, a=1,...m. (C2
Our problem is to invertM on the subspace whose vectors
satisfy EQ.(C2). This is the precise analogue of the system
we deal with in Sec. V. Let us assume thatralvectorsc{

are linearly independent. In that case they spannan
dimensional subspacg of the originalN-dimensional vector
spaceV. Let |* be an orthonormal basis on this subspace.
We can then construct the projection operator

Pijzlialja, (CS)

which projects orC.
Then instead of considering the matikwe should con-
sider

M=(1-P)M(1-P) (C4)

and invert it onV—C. The eigenvalue and eigenfunction
equations for this problem are
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order in p is just the charge-density two-point function

Ma=\(1-P)a C5 !
( ) €9 (p(k)p(—k,)). The BFKL equation should therefore be
or, alternatively, just the weak field limit of Eq(55).
To verify this we will need the expressions fg#® and o
(1-P)Ma=\a, expended to first order ip. Let us consider the contributions
of the real diagrams given bgp, in Eq. (106). Using the
c%a=0 expressions fop', andy, and 1D? expanded to first order
’ in «a,
Clearly the eigenfunctions have to be normalized in the stan-
dard way: i J v
' Ve= 20_'2 av_+(da)—— |
ala’ =6, . (C6) + +
The inverse oM on V—C is constructed as ) dv _ . J dv_
vh=2d'—+vl-2—| av_+(da) —|,
J J
Na* N L L 1
o CHEY
M—t=2 , (o)
» A 1 1
] — =5 F(datad) = (D1)
since DZ & o'?l( &’
o leads to
MM~ t=(1-P)MM " 1—2 afat*=P;. (C8
i ici i H : a abc] bﬁvg
An alternative to explicit construction of the projection Spl(x,)=—2f2*9 aPp® — pP——|. (D2)
operatorP is the introduction of the Lagrange multiplier %
field, as we did in Sec. V. We add to the Lagrangian the tern] .
n the momentum space representation
b“c“a. (C9 .
&I i d? PL pl ip (X, =Y ),,i
The eigenvalue equations we have to solve now are 2 = (2 )Zd Yi p_ze v_(y,). (D3)
t L
Ma+b“c*=\a, With these expressions we have
c“a=0. P
Sp3(x.) ag2facpel oo —pt—r
Now, sincePc*=c® and Pa=0, this equation gives pi(x.) pl(yi) g P ﬁL .
L
PMa+b%c*= (C10 0v t
x| afv’ —pe—n (D4)
Solving this forb® and substituting back into EGC10) we 7 y
obtain again Eq(C6). This proves that the eigenfunctions .
obtained through introduction of the Lagrange multiplier aretq this order the normalization Q)f: is
the same as in the straightforward calculation in which the
constraint is solved explicitly through constructionfflt is 11
clear then that the normalization of these functions should be (v'9(x )v*if(y,))=81595%(x, _yL)ﬂ 5 (D5)

the standard normalization, E(C6).

We then have

APPENDIX D: THE BFKL LIMIT OF THE GENERAL
EVOLUTION EQUATION

In this section we will show in some detail how our gen-
eral expressions fop?® ando? give the BFKL kernel. To do
so, we have to take the limit of small in the evolution
equation(52). In fact it is more convenient to consider di-
rectly the equation for the density correlation function, Eq.
(55). As was shown in Ref12], using Eqs(28) and(46) the
unintegrated gluon density(k,) (which is the quantity
which evolves according to the BFKL equatjoio leading

014015-23
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1
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Hila'®(x,)p(yL) = po(x ) @®(y,)]
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d’p, p' |
X —_elpi(xifyi)_k C(x €
f (2m)? pi pe(X)p°(y,)

2
Xf d Py ieipﬂ)&*)’ﬁ . (DG)
(2m)? p?

This expression coincides with Eg&3), (54) and, (55) in
[12]. Using &'= —(d'p/ 4%) we obtain

Spi(k,)pi(—ky)

29°N,
- (Sws | @p.oppt-p0)

k?

p(p, —k,)?

(D7)

This is precisely the real part of the BFKL kernel.

It is straightforward to repeat the above procedure for the
contribution of virtual diagramésp3(x,)), Eq.(107). In this
case, the ternR?® vanishes to ordes. Using our expanded
expressions fom, and y, and noticing thaty, starts at

order «, the first line in Eq.(107) gives

PHYSICAL REVIEW D 59 014015

i
ar
Xf dzpi dqu Py-dy
(2m)? (27)? p2q?

(30806 )= = et [y, iy, )

el (PL+a)(x ~Y.)

(DY)

This agrees with the corresponding term in Ré£]. In the
second line in the expression fép5, Eq.(107), we can take
the ordera® inside the brackets since there is already an
explicit factor ofp present. This gives

Spa(x,) gzl\"°|1/a )f
=— n
(0p3(X1))(2) (2m)° Xp(X,

d

2
(DY
P

which is exactly Eq.(50) in Ref. [12]. Collecting all the
contributions, substituting them into E5), and identify-

ing the density correlator with the unintegrated gluon density
¢ we obtain

d 9N [, k2
dinix Pk)=— fd

P
(2m3) " T p?(p, —k,)?
X[ (k) =2¢(p,)].
This is precisely the BFKL equatidr].

(D10)
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