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Wilson renormalization group for low x physics: Gluon evolution at finite parton density
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In this paper we derive the complete Wilson renormalization group equation which governs the evolution of
the gluon distribution and other gluonic observables at lowx and arbitrary density.@S0556-2821~98!02823-9#
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I. INTRODUCTION

Recent years have seen a surge of activity in the are
the low x physics. Primarily this has been motivated by t
new data from the DESYep collider HERA @1#, which has
greatly extended the available kinematic region for deep
elastic scattering~DIS!. Data now exist at a Bjorkenx as low
as 1025 and it was hoped initially that at such a lowx and
relatively largeQ2 one would see clearly a new class
perturbative phenomena, those that go under the gen
name of ‘‘semihard physics.’’ First, one was hoping to s
unambiguous signs of the perturbative Balitskii-Fad
Kuraev-Lipatov ~BFKL! Pomeron @2#, which predicts a
steeply rising gluon distribution~and consequently DIS cros
section! as a function ofx at fixed Q2: g(x)}(1/x)4Ncas /p.
Second, it was expected that in this kinematical region
gluon densities will be large enough so that the semih
shadowing effects due to gluon recombination@4# will be-
come sizable.

In actual fact the situation turned out to be not quite
clear-cut. The DIS cross section does indeed rise q
steeply with 1/x. It can be fit by a power of 1/x, although
apparently not as large a power as predicted by the BF
formula @3#. The Gribov-Levin-Ryskin~GLR! parameterk
which is the physical parameter for the onset of shadow
was estimated and was indeed found to be close to 1 wi
the HERA regime@5#, which would suggest observable sha
owing corrections. Nevertheless, surprisingly enough all
data are described very well by a simple straightforw
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP! linear
evolution@3#. The rise at lowx is then a consequence of th
standard perturbative evolution of ‘‘flat’’ partonic distribu
tions from a low initial scaleQ0

2 to Q2. The shadowing cor-
rections to this perturbative evolution seem to be practic
absent. In this sense higher twist corrections seem to b
relevant in the HERA regime.

Still it is widely believed that these nonlinear effects mu
make their presence felt when the partonic densities are
enough. Even if it does not happen inep collisions, at HERA
they have a very good chance of being observed in D
experiments on nuclei at lowx if and when this program
0556-2821/98/59~1!/014015~24!/$15.00 59 0140
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takes off at HERA and even more so in the heavy ion co
sion experiments at the CERN Large Hadron Collid
~LHC!. The curious situation with the present HERA da
only adds motivation for studying the onset of the shadow
physics.

The shadowing regime can be approached in two wa
DecreasingQ2 at fixed~small! x leads to the initial growth of
the cross section asQ22. This growth gradually slows down
and eventually~almost! stops when the unitarity bound i
reached. We will refer to this slowdown and the stop of t
growth as the shadowing and the saturation, respectiv
Alternatively one can decreasex at a fixed value ofQ2.
Because of the growth of gluonic distributions, the cross s
tion first should exhibit fast growth~powerwise according to
the BFKL prediction!, which again should slow down an
saturate. Our perspective in this paper will be the second
so that we will be dealing with the evolution of the unint
grated gluon density with 1/x.

The physics of the nonlinear effects in DIS is basically t
physics of dense partonic systems. This statement per
needs some clarification. The physical picture of shadow
depends in large measure on the Lorentz frame used to
scribe the DIS process. In the rest frame of the nucleon
onset of shadowing corrections is due to the multiple scat
ing processes of the hadronic component of the photon~a
quark-antiquark pair! on the nucleon. This can be describe
by extension of the Glauber multiple scattering formalism
the context of QCD@5#. For multiple scattering to becom
effective the partonic system does not have to be particul
dense. In this frame the onset of nonlinearities~multiple scat-
tering! is rather determined by the cross section of the sc
tering of the hadronic fluctuation on a parton in the nucle
@5#. The authors of Ref.@5# analyzed the corrections to th
Glauber formula and concluded that once the rescatte
becomes important one also has to take into account cor
tions due to rescattering of gluons in the cascade produ
by the quark-antiquark pair, into which the photon initial
fluctuates. The saturation happens in the regime where
gluon density in the photon is high.

In the infinite momentum frame~IMF!, where the nucleon
carries all the energy prior to collision, the picture is diffe
©1998 The American Physical Society15-1
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ent. Lowx here means that one probes low longitudinal m
mentum and large wavelength fluctuations in the nucle
wave function. These long wavelength gluons are emit
from the valence quarks and gluons in the nucleon. In
standard linear evolution equations~DGLAP or BFKL! the
interaction between these wee gluons is disregarded. H
ever, when their wavelength is large enough, the glu
emitted by different valence partons overlap in space
interact. The first nontrivial effect of this interaction is th
recombination process, which slows down the growth of
gluon density and thereby leads to shadowing@4#. The shad-
owing and saturation in this frame are both clearly effects
large partonic density.1

Although the qualitative picture of saturation and unita
zation based on GLR-type recombination effects is very
pealing, reliable theoretical tools of dealing quantitative
with finite density partonic systems are yet to be develop
The original GLR equation@4,7# truncates the series in th
expansion in powers of density at the first nonlinear term.
all such truncations it has intrinsically a very limited range
validity, since in general one expects that when the first n
linear term becomes important the higher order terms will
comparable to it in magnitude. The saturation of parto
distributions and restoration of unitarity in the high ener
~density! limit of QCD is an outstanding problem which re
mains unsolved although several approaches are being
plored in the literature@8–10#.

In this paper we continue to develop a theoretical
proach to finite density partonic systems at lowx. The main
goal of this program is to derive the evolution equation
the gluon density at smallx without assuming that the den
sity is in any sense small. In previous papers@11–13# we
have described the main framework of our approach
have discussed several aspects of this evolution. In this w
we complete the derivation of the full nonlinear evolutio
equation.

The present approach is inspired by an idea of McLer
and Venugopalan@14# first formulated in the context of ul
trarelativistic heavy ion collisions. The observation in R
@14# is that there is a regime of high density and weak c
pling in which semiclassical methods should apply. It w
therefore suggested that the leading smallx glue structure of
the nucleus is due to the classical gluon field which is crea
by the random color charges of energetic on-shell parto
The nonlinearities of the Yang-Mills equations exhibit the
selves already on this classical level and it is therefore p
sible that they provide the necessary saturation mechanis
low x. This approach assumes that the interaction of the fl
tuations of the gluon field is weak. In this sense it is a we

1We mention here that the same conclusion emerges from
analysis carried out in the recent paper~Ref. @6#!. It was shown
there, using the explicit BFKL expressions for the gluon dens
that for a collision of two hadrons the shadowing first appears
low density in the frame where the two hadrons share the en
equally before the collision and at high density in the analogue
the IMF, where one hadron carries all the energy. The satura
again is the high density effect in both frames.
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coupling expansion and its validity is therefore restricted
perturbative ‘‘semihard’’ shadowing effects. It is, howeve
nonperturbative in a different sense. In the standard per
bation theory, the charge density is small and the stand
perturbative expansion is simultaneously an expansion
powers of the charge density. In this language, higher pow
of the charge density appear as higher twist contributi
~although there is no one-to-one correspondence betwee
twist expansion and expansion in powers of the charge d
sity!. The McLerran-Venugopalan~MV ! method does not
assume expansion in powers of color charge density and
responds to resummation of a particular type of higher tw
terms. In fact interesting saturation effects are expected w
the density is of orderas

21 . This formulation is therefore
naturally suited for a discussion of the type of problems
are interested in.

Based on this idea an approach was developed wh
combines the concept of the effective Lagrangian for the l
x DIS with the Wilson renormalization group resummatio
of leading logarithmic corrections to the MV approximatio
@11,12#. The main effect of the renormalization group~RG!
procedure is the change in the color charge density distr
tion in the effective Lagrangian with 1/x. The RG equation
that governs the evolution of this distribution is the subje
of the present paper. It was shown in Ref.@12# that in the
limit of small color charge densities this equation reduces
the celebrated BFKL equation. In Ref.@13# we have derived
the general form of this evolution equation at a finite co
charge density. In the present work we calculate the ‘‘co
ficients’’ in this renormalization group equation, which are
fact rather ‘‘coefficient functions,’’ thereby providing the la
ingredient in the derivation of the full nonlinear evolutio
equation valid to the leading logarithmic approximation a
finite color charge density. We should stress that the ca
lations presented here are only valid to leading order inas .
The scale ofas is therefore left undetermined in this frame
work and the strong interaction coupling constant is trea
as a momentum-independent constant, just like in the s
dard BFKL equation. Higher order perturbative calculatio
of the type of Ref.@15# are needed to determine the appr
priate scale.

This paper is organized as follows. In Sec. II we motiva
and describe the form of the effective Lagrangian for t
physics of lowx gluons in DIS. In Sec. III we describe in
some detail the classical approximation to this effective L
grangian. It turns out that the proper treatment of this L
grangian requires a careful specification of the compl
gauge-fixing condition, and this is also done in Sec. III. W
then discuss the first quantum corrections to the class
approximation, which obviate the need for a renormalizat
group resummation, and the physical interpretation of
change of the color charge density distribution with the R
flow. In Sec. IV we describe in detail the Wilson renorma
ization group procedure as applied to our effective Lagra
ian and derive the general form of the RG equation. Sec
V is the central section of this paper. It contains the calcu
tion of the coefficient functions that appear in the RG eq
tion. Finally, Sec. VI is devoted to a discussion of our r
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WILSON RENORMALIZATION GROUP FOR LOWx . . . PHYSICAL REVIEW D59 014015
sults. Several appendixes contain technical details of
calculation.

We have tried to make this paper self-contained, a
therefore have included some of the material already c
tained in the earlier work@11–13#.

II. THE EFFECTIVE ACTION FOR LOW x DIS.

Throughout this paper we will work in the infinite mo
mentum frame, where the hadron moves in the positivz
direction with velocity close to the velocity of light and a
most infinite longitudinal momentumP1→`. Also, we will
be working in the light cone gaugeA150.

Our task now is to understand the structure of the eff
tive Lagrangian for lowx DIS. First, it is well known that the
most important degrees of freedom at lowx are gluons. In
the framework of standard linear evolution equations,
evolution of gluons in the leading approximation is indepe
dent of quarks, and the evolution of quarks is entirely driv
by the gluonic distribution. We will therefore retain on
gluons as our dynamical degrees of freedom and disre
quarks entirely. Importantly, the gluons that we treat as
namical degrees of freedom are only those which have a
longitudinal momentum, lower than some cutoffL15xP1.
Our effective Lagrangian therefore has to be understood
having a built-in longitudinal cutoff.

So what is the Lagrangian that governs the interaction
the low x gluons? First of all, of course, it must contain th
standard Yang-Mills interaction term

2E d4x
1

4
G2, ~1!

whereGmn is the gluon field strength tensor:

Ga
mn5]mAa

n2]nAa
m1g fabcAb

mAc
n . ~2!

The gluons with the low longitudinal momentum also i
teract with the rest of the partons in the hadron, which h
larger longitudinal momentum. We will refer to those pa
tons as ‘‘fast’’ for notational convenience; we may think
valence partons as their initial representatives. This inte
tion certainly cannot be neglected, but in the kinematics
the IMF and in the light cone gauge it is very simple. T
leading interaction is the eikonal vertexA2Jfast

1 , whereJfast
1

is the color charge density due to the fast partons.
The dependence ofJfast

1 on x2 and x1 is very simple.
First, since the wavelength of the fast fields is much sho
than that of the dynamical soft gluons, the charge they p
duce is effectively concentrated atx250. Intuitively this can
be understood in the following way. In the rest frame t
valence partons are concentrated within the nucleon ra
from the center of the nucleon. When boosted to the infin
momentum frame due to Lorentz contraction they
squeezed into a very thin pancake. This picture is a little
naive for our fast partons since some of them have a m
larger wavelength than the nucleon radius. However, a
basic physical picture it is still correct. We therefore ha
J1}d(x2).
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Second, we can understand thex1 dependence by consid
ering the~light cone! time scales characteristic of the pro
lem. The relevant time scale for the lowx phenomena is the
inverse of the on-shell frequency of the soft gluons:k2

}1/k1. The frequency of the fast modes is much lowerp2

}1/p1 since their longitudinal momentum is higher, so th
k2/p2}1/x. Therefore, as far as the soft glue is concern
the color charge source due to fast partons is effectiv
static. We are therefore led to consider an interaction of
type

Sint5A2r~x'!d~x2!. ~3!

The fast partons are represented in our effective Lagra
ian by the surface charge densityr(x'). A hadron of course
is not described by a fixed single configuration of the co
charge densityr(x'). However, the crucial point is that th
structure of the fast component of the hadron is determi
on a much longer time scale than the time scale relevant
the low x physics. It is fixed by the hadronic wave functio
bremsstrahlung processes that involve fast partons,
Therefore, as far as the soft glue is concerned, there is
interference between the different configurations ofr(x').
In the lowx effective Lagrangian the hadron thus appears
an ensemble in which different configurations ofr(x') enter
with some statistical weight exp$2F@r#%. The partition func-
tion for calculation of the soft glue characteristics of a ha
ron must therefore have the form

E D@r,A#expH 2F@r#2
i

4E d4xG21 iSint@A,r#J . ~4!

At this point we do not specify the form of the function
F@r#. In fact, as we shall see later this functional depends
the longitudinal cutoffL1 which is imposed on the sof
fields. In other words, as one considers regions of lower
lower x, F changes. The flow ofF with the cutoffL1}x is
described by a renormalization group equation of the for

d

d ln 1/x
F@r#5asD@r#. ~5!

This RG equation is precisely the evolution equation for
charge density correlators~and consequently for the soft glu
observables! which we undertake to derive in this paper.

Of course, in order to make quantitative statements ab
the x dependence ofF we have to specify the initial condi
tion for the evolution. This can be done in the perturbat
region at not too small a value ofx, whereF can still be
expanded in powers ofr. The initial form of F can then be
taken as

F5E dx'dy'r~x'!m21~x' ,y'!r~y'!, ~6!

with
5-3
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JALILIAN-MARIAN, KOVNER, AND WEIGERT PHYSICAL REVIEW D 59 014015
m~x' ,y'!5S~b'!E d2k'

~2p!2
eik'~x'2y'! f~k' ,x0!. ~7!

Here b'5(x'1y')/2 is the impact parameter,S(b') is a
nucleon thickness function,x0 is the value ofx from which
we start evolvingF according to the RG equation an
f(k' ,x) is the unintegrated gluon density.2 The relation be-
tween the parameter in the Gaussian,m21 andf, Eq.~7! will
become clear when in Sec. III we consider the perturba
calculation of the gluon structure function based on the
fective Lagrangian in Sec. II.

One important question that we have not touched upon
far is the question of the gauge invariance of our effect
action. Although we have partially fixed the gauge by t
light cone gauge conditionA150, the action should still
preserve the residual gauge symmetry. This residual ga
symmetry group is comprised of gauge transformations w
gauge functions which do not depend ofx2. The naive
‘‘Abelian’’ eikonal interaction term, Eq.~3!, does not pre-
serve this gauge symmetry. The relevant generalization ta
the form

Sint5
1

Nc
E d2x'dx2d~x2!ra~x'!tr$TaW2`,`@A2#

3~x2,x'!%. ~8!

Here Ta are the SU(N) color matrices in the adjoint repre
sentation andW is the path-ordered exponential along thex1

direction in the adjoint representation of the SU(Nc) group:

W2`,`@A2#~x2,x'!

5P expF2 igE dx1Aa
2~x1,x2,x'!TaG . ~9!

This form is explicitly gauge invariant under the residu
gauge transformations with gauge functions which do
depend onx2 and vanish atx1→6`. RequiringF@r# to be
gauge invariant, we also restore the gauge invariance of
action under gauge transformations which do not vanish
x1→6` but rather are periodic inx1.

This form of the interaction consistently leads to a sou
term in the corresponding Yang-Mills equation that rep
sents classical colored particles moving along the light co

DmGmn5J1dn1, ~10!

with

2A similar Gaussian form for the statistical weight was used
@14,11# in the description of a large nucleus limit. In this case t
Gaussian form is valid since the charge density is large and
color charges that build it up are randomly distributed in co
space.
01401
e
f-

o
e

ge
h

es

l
t

he
at

e
-
e:

Ja
1~x!5

g

Nc

d~x2!rb~x'!tr$TbW2`,x1@A2#TaWx1,`@A2#%.

~11!

Expanding this expression for the current to lowest orde
the fieldA2 yields

Ja
1~x!5gd~x2!ra~x'!, ~12!

which reproduces Eq.~3! and is the form of the current use
in Refs.@14,16#. As explained in Ref.@14#, this form is only
valid in the gaugeA2(x250)50. In more general gauge
the current has to satisfy the covariant conservation co
tion

D2J150. ~13!

Our current~11! evidently complies with this requiremen
This is a direct consequence of the residual gauge invaria

All of the above considerations finally lead us to the fo
lowing effective action for the lowx DIS:

S5 i E d2x'F@ra~x'!#2E d4x
1

4
G21

i

Nc

3E d2x'dx2d~x2!tr$r~x'!W2`,`@A2#~x2,x'!%,

~14!

which is the starting point of our approach.
We end this section with a comment about the nature

the action, Eq.~14!. Although we use the term ‘‘effective
action’’ when referring to it, it should be understood that it
different in some important aspects from ‘‘classic’’ effectiv
Lagrangians, like for example the chiral effective Lagrang
of pion physics. The chiral effective LagrangianL@Pa# de-
scribes the dynamics of low momentum pion fields, whe
the momentum cutoff is determined by the mass of thes
particle or, alternatively, the dimensionful pion couplingf p ,
p,4p f p . All the modes with momenta above the cutoff,
well as all other heavy excitations of the fundamental the
(r, f mesons, etc.!, have been integrated out to arrive at th
effective Lagrangian. In this sense our effective Lagrang
is similar. The gluon fields have longitudinal momen
bounded by the cutoffL1, while all higher momentum
modes are assumed to have been integrated out.

Importantly, the chiral physics has a sharp scale ass
ated with it: f p . Consequently,all modes of the pion field
with momentum lower than the cutoff are described well
the chiral Lagrangian. In fact, the pions at low momen
interact very weakly, with the strength proportional
p2/ f p . Therefore the perturbation theory in the chiral L
grangian framework is well behaved and does not lead
large corrections to the tree level results. Also, the desc
tion of the low momentum pions is insensitive to the chan
of the cutoffL.
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In our case the situation is very different in this respe
There is no sharp physical separation scale which wo
separate high from low longitudinal momenta. The sepa
tion scaleL1 we impose is arbitrary. The interaction do
not die away as we go far belowL1. Therefore there is no
reason to expect that our effective Lagrangian gives an
equate description for the modes with momenta far below
cutoff. In fact, quite to the contrary as we shall see the p
turbation theory in our effective theory gives larger corre
tions the farther we go below the cutoff. In this sense t
effective Lagrangian is inadequate for a description of m
mentak1!L1. This is of course the manifestation of th
absence of the physical separation scale.3 This means that if
we want to describe low momentak1!L1, we have to cor-
rect the effective Lagrangian. The arguments presen
above, however, fix the form of all the terms in the Lagran
ian apart fromF@r#. If the form of the Lagrangian remain
the same under thek1 evolution, the only thing that can
change is the statistical weighte2F[r] .

Physically it is quite clear what should happen. As w
move to smaller values of the longitudinal momentumk1,
all the gluons with momenta betweenk1 andL1 are trans-
ferred from the category of ‘‘soft’’~or slow! into the cat-
egory of ‘‘fast.’’ They cease to be dynamical degrees
freedom of interest~hence the dynamical fields have a low
cutoff on the longitudinal momentum!, but give an extra con-
tribution to the static color charge densityr(x'). Effectively,
therefore, as we go to lowerx, the color charge density a
seen by the soft glue changes. Since the distribution of
charge density is governed by the statistical weighte2F[r] ,
this means thatF should change as we lower the longitudin
cutoff L1. This is the physical origin of the renormalizatio
group flow we have referred to earlier. In the following se
tion we will see explicitly how this happens. First, howeve
let us describe how to set up the perturbation theory in
present framework.

III. PERTURBATIVE CALCULATION
OF GLUONIC OBSERVABLES

The perturbation theory for the effective Lagrangian, E
~14!, was developed in Ref.@14#. It is organized in the fol-
lowing way. First one fixes the configuration of the col
charge density, and performs a perturbative expansion inas
at fixed r(x'). The charge density is not considered to
small; thus this perturbation theory is different from the sta
dard one in that the calculation is performed in a nonvan
ing background field. In the second step the averaging o
r(x') should be performed. This part of the calculation
contingent on knowledge ofF@r# and is completely nonper
turbative. In fact the counterpart of this step in the stand
perturbative analysis would be the specification of vario
gluon operator averages in the hadronic state. Conceptu
therefore, the first, perturbative part of the calculation can

3In this respect our effective Lagrangian is more akin to ‘‘fund
mental’’ Lagrangians of renormalizeable field theories than to
fective Lagrangians of the chiral physics type.
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thought of as the calculation of the generalized ‘‘splittin
functions’’ ~which includes, however, the mixings betwee
operators of different twist and is not intrinsically organiz
as an expansion in powers of 1/Q2), while the second, non
perturbative part is parallel to the calculation of operator
erages in the hadronic state. In the standard perturba
theory, of course, one does not have to know the oper
averages in order to derive the evolution equation. As
shall see, the exact same thing happens in our calculatio
is only the perturbative part of the calculation that has to
under control in order to derive the renormalization gro
equation forF. In this section therefore we will discuss th
perturbation theory inas at fixedr(x').

A. Tree level

As in every perturbative calculation the first step is to fi
the classical solution to the equations of motion. The eq
tions of motion that follow from the action, Eq.~14!, are

DmGmn5
g

Nc

d~x2!rb~x'!

3tr$TbW2`,x1@A2#TaWx1,`@A2#%. ~15!

As explained in the previous section, these equations
invariant under the residualx2 independent gauge transfo
mation

A→VFA1
i

g
] GV†, ~16!

with

V~x!5exp@ iL~x' ,x1!#, L→x1→6`0. ~17!

As a consequence, the equations of motion at fixedr have
an infinite number of solutions. To properly set up perturb
tion theory, we should choose one of these solutions. Te
nically this is achieved by gauge fixing the residual gau
freedom. There are of course many possible gauge fixin
From the calculational point of view it is convenient
choose a gauge in which the classical solution is staticx1

independent!. It is important to realize that the condition o
staticity of the classical solution is still insufficient. Eve
though it completely eliminates the gauge freedom of E
~17!, there are still many solutions to the equations of m
tion. This is a consequence of the remaining gauge symm
of our problem, with gauge functionsL which do not vanish
at x1→6`, but rather are periodic inx1. With the transfor-
mation Eq.~17! moded out, those are

A→VFA1
i

g
] GV†,

r→V†rV,

V~x!5exp@ iL~x'!#. ~18!

-
f-
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To see that this is indeed the case, consider the equat
Eq. ~15!, for static fields~note that all static solutions hav
vanishingA2):

] i]
1Ai1g@Ai ,]1Ai #5gr~x'!d~x2!,

~19!

Fi j 50.

The general solution to this equation has the form

Ai
V@r#5

i

g
u~x2!U~x'!] iU

†~x'!

1
i

g
u~2x2!V~x'!] iV

†~x'!, ~20!

where the SU(N) matricesU andV satisfy

] i@V†U] i~U†V!#52g2VrV†. ~21!

This equation obviously has a solution for anyV(x'). The
matrix V, which labels these solutions, is closely related
the gauge transformation matrix of Eq.~18!, although this
relation is rather subtle. Obviously any two solutions, E
~20!, Ai

V@r# andAi
V8@r# are not related by a gauge transfo

mation, since they solve the equation of motion withthe
samer, while the gauge transformation, Eq.~18!, acts non-
trivially on r. However, it is easy to see thatthe set of solu-
tions $Ai

V@r#% with fixed r and arbitraryV is gauge equiva-
lent to the set of solutions$Ai

V8@V†rV#% with fixed V8
~which determines the asymptotics atx2→2`) and arbi-
trarily rotatedr. Consequently, it would be redundant to ta
into account all static classical solutions at fixedr since we
are subsequently performing the unconstrained functiona
tegration overr with a measure which is invariant under E
~18!. We can therefore gauge fix this extra gauge freedom
imposing, for example, a fixed boundary condition onAi at
x2→2`.4

In this paper we will follow Ref.@14# and choose as th
subsidiary gauge condition

] iAi~x1,x' ,x2→2`!50. ~22!

This gauge has a nice feature that att→2`, at all finite
values ofz ~i.e., x2→2`), the vector potential is require
to be the same as in the perturbative vacuum,Ai50. This
seems very sensible, since at these times the hadron its
still at z→2` and could not have changed the quantu
state at any finitez.

Note that this gauge condition eliminates both tim
dependent gauge freedom, Eq.~17!, and time-independen
gauge freedom, Eq.~18!. It is not ghost free, and therefor

4Alternatively, one could impose a gauge condition onr, by re-
quiring for example thatr be a diagonal matrix. Our choice here
dictated by calculational simplicity.
01401
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the measure in the path integral in Eq.~14! must be modified
by the appropriate Fadeev-Popov determinant

d„] iAi~x2→2`!…det$] iDi@Ai~x2→2`!#%. ~23!

This modification is harmless, since as we will see later
ghosts do not contribute to leading order inas , which is the
order to which we calculate.

It is important to realize that the gauge fixing, Eq.~22!,
should be consistently used throughout the whole pertu
tive calculation. This means that not only does it determ
the classical solution we have to pick, but also the form
the propagator of the fluctuations ofAm around this solution
to be used in the higher order perturbative calculations
this way all potential zero modes in the propagator are eli
nated and the calculation is unambiguous. In the stand
perturbation theory, although in principle the situation
similar, in practice one can frequently get away witho
specifying the gauge-fixing condition for the residual gau
freedom. The light cone gauge conditionA150 eliminates
the major part of the zero-mode ambiguity and the rest of
zero modes start causing problems only in higher orders
turns out that in our calculation we have to be much m
careful, and impose the residual gauge fixing properly
ready in the lowest order. This is related to a nonstand
behavior of our fields at infinity. On the classical level th
behavior is obvious from the form of the solution of th
equations of motion, Eq.~20!, which does not vanish atx2

→6`. We will come back to this question in Sec. V.
Returning to Eq.~20! we see that in this gauge for

generic fixedr(x') there is a unique solution of the form

Ai5u~x2!a i~x'!,

a i~x'!5
i

g
U~x'!] iU

†~x'!, ~24!

with the matrixU(x') determined by

] ia i52gr. ~25!

Any gluonic observable in the tree level approximation
calculated as

^O@Am#&5E D@r#e2F[r]O„A250, Ai5u~x2!ai@r#….

~26!

For example, the unintegrated gluon density defined a

g~x,k'!5^âl
†a~x,k'!âl

a~x,k'!&, ~27!

whereâ and â† are the light cone gluon creation and ann
hilation operators, is given by

g~x,k'!5
1

x
^a i

a~k'!a i
a~2k'!&. ~28!
5-6
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Here the angular brackets denote averaging overr with the
weight exp$2F%.

This has a simple representation in terms of the stand
Feynman diagrams. The classical field is given by the sum
l

e

ne
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the tree diagrams for one point function in the backgrou
density. Using curly lines to represent gluons we have
following graphical representation for the full classical so
tion b and the first few terms in its perturbative expansio
~29!
and

ion
1b,
at

o-

re

ms
om
r

ing
ge

is-

st

he
The distribution function~up to some simple kinematica
factors! is just the square of the field averaged overr. To the
order r2 it is related in a simple way to the color charg
density correlation function

g~x,k'!5
1

xk'
2 ^r~k'!r~2k'!&

~30!

where we have drawn the factors ofr as diagonal lines to
indicate that they are always associated with eikonal li
along thex1 direction that correspond to the world lines
the fast particles they represent.

We stress that our goal in this paper is to perform
calculation to all orders inr in the first order inas . Hence
an expansion in powers ofr as in Eqs.~29! and~30! would
not be sufficient for our purpose. However, the above rep
sentations are helpful in visualizing the physical mechan
underlying the running of the charge density distributi
with 1/x. Also, even though our interest is in the phenome
of shadowing and saturation, which occur at larger, our
calculational procedure should be valid also at small co
charge density. In this limit we should recover the know
perturbative results, which in the present context is
BFKL equation. Expansion to leading order inr of our result
will therefore be an important consistency check in the c
culation.

B. First order perturbative corrections

One prominent feature of Eq.~28! is the full tree levelx
dependence of the gluon density. It is precisely the sam
in the leading order in the standard perturbation theory.
s

e

-
m

a

r

e

l-

as
e

know that in the standard calculation this lowest orderx de-
pendence feeds back through the higher order graphs
leads to large perturbative corrections at smallx. We expect
therefore that the same will happen in our perturbat
theory. Indeed, consider for example the graph in Fig.
which gives one of the contributions to the gluon density
orderas .

This contribution was discussed in Ref.@16#, and it was
shown there that it is indeed of orderasln(1/x) relative to the
leading order result, Eq.~28!, or in the low density limit, Eq.
~30!. The reason for this enhancement is that when the m
mentum on the external legl 1 is much smaller than the
maximal longitudinal momentum allowed in the field, the
is huge phase space available to the emitted gluon,l 1,k1

,L1. The phase space integral* (dk1/k1) then gives the
logarithmic enhancement factor.

Carefully examining theasln1/x corrections of Figs. 1b,
2b, we see that it looks very similar to the tree level diagra
of Figs. 1a, 2a, except that the soft gluon is emitted not fr
the original charge densityr as depicted in Fig. 3a, but rathe
from a modified charge density which in addition tor con-
tains one extra gluon. One therefore can think of it as be
emitted from the modified vertex of Fig. 3b. Since the lar
correction comes from the regionl 1!k1, the emission from
the modified vertex is also eikonal. So the source for em

FIG. 1. Diagram contributing to the gluon distribution at lowe
order in as ~but to all orders inr) ~a! and a typical orderas

correction ~b!. The horizontal line represents a propagator in t
presence of the full,r-induced background field.
5-7
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JALILIAN-MARIAN, KOVNER, AND WEIGERT PHYSICAL REVIEW D 59 014015
sion of very soft gluons withl 1!L1 effectively has been
modified. This modification has to be taken into accoun
we are to describe properly the soft glue distribution. For
nately, the change in the charge density is slow~logarithmic!
so that this is a perfect situation for the application of t
Wilson renormalization group ideas. We can integrate
the fluctuations around the classical background pertu
tively, gradually lowering the longitudinal momentum cuto
L1 on the remaining dynamical degrees of freedom. T
will generate the effective Lagrangian below the new cut
scale with modifiedF@r#. As long as we keep the change
the cutoff in every step of the RG small enough so that
correction toF is small relative toF itself, the perturbative
procedure is justified. The condition for that is ln@(L1

2dL1)/L1# ;1, asln@(L12dL1)/L1# !1. In the next sec-
tion we describe in detail how to set up this renormalizat
group procedure.

IV. LOW x WILSON RENORMALIZATION GROUP

Let us introduce the following decomposition of th
gauge field:

Am
a ~x!5bm

a ~x!1dAm
a ~x!1am

a ~x!, ~31!

where bm
a (x) is the solution of the classical equations

motion, Eq.~24!, anddAm
a (x) is the fluctuation field contain

ing longitudinal momentum modesq1 such that
L12dL1[L18,q1,L1 while a is a soft field with mo-
mentak1,L18. Our aim is to integrate out the fluctuatio
field dAm in the path integral and compute the effective a
tion for the soft field am . This integration is performed
within the assumption that the fluctuations are small as c
pared to the classical fieldsbm

a . More quantitatively, this
requires that the coupling constant be smallas!1 and at

FIG. 2. The smallr limit of the diagrams shown in Fig. 1: The
lowest order terms shown in~a! correspond to those in Eq.~30!. ~b!
Is the smallr limit of Fig. 1b with all gluon propagators perturba
tive.

FIG. 3. Original vertex~a! and vertex modified by the emissio
of an additional fast gluon~b!. ‘‘ 1 ’’ components of momenta are
ordered from top to bottom.
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each step of the renormalization group procedure the rati
the two cutoffs be not too big, ln(L1/L18) ! 1/as.

To leading order in the coupling constant we should o
keep the terms up to second order in the fluctuation fielddAm
in the expansion of the action around the classical solu
bm

a (x):

S52
1

4
G~a!22

1

2
dAm@D21~r!#mndAn1ga2J18

1O„~a2!2
…1 iF @r#. ~32!

The inverse propagator of the fluctuation,@D21(r)#mn, has a
nontrivial dependence on the color charge density. Its
plicit form is given in the next section, Eq.~57!.

We have introduced the modified color charge curr
J18, whose explicit form in terms of the fluctuation fields

J185r~x'!d~x2!1dJ1
11dJ2

1 , ~33!

with

dJ1
1a~x' ,x1!

5d~x2!F22 f abca i
bdAi

c~x250!2
g

2
f abcrb~x'!

3E dy1@u~y12x1!2u~x12y1!#

3 3dA2c~y1,x250!G ~34!

and

dJ2
1a~x!52 f abc@]1dAi

b~x!#dAi
c~x!2

g2

Nc

rb~x'!d~x2!

3E dy1dA2c~y1,x' ,x250!

3E dz1dA2d~z1,x' ,x250!

3@u~z12y1!u~y12x1!tr~TaTcTdTb!

1u~x12z1!u~z12y1!tr~TaTbTcTd!

1u~z12x1!u~x12y1!tr~TaTdTbTc!#. ~35!

The first term in bothdJ1
1a anddJ2

1a arises from the expan
sion of G2 in the action while the rest of the terms propo
tional tor(x') are coming from the expansion of the Wilso
line term. The various terms withu functions correspond to
different time orderings of the fields along the Wilson line
Since the longitudinal momentum ofa2 is much lower than
of dA, we have only kept the eikonal coupling~the coupling
to a2 only!, which gives the leading contribution in thi
kinematics. The contributions todJ1 anddJ2 are depicted in
Figs. 4 and 5, respectively. Obviously the first diagram
Fig. 4 is nothing but our modified vertex of Fig. 3b, now ca
5-8
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in a more precise language. All other terms are nontriv
consequences of the presence of a background of fast ‘‘c
sical’’ particles that are encoded in the source termr and a
careful treatment of the path integral over the modes in
interval @L1,L81#.

We have not written out explicitly terms higher order
a2 in the effective action. There are of course such ter
which come from expanding the Wilson line part of the a
tion. Disregarding these terms gives the effective action w
the coupling of the fielda2 to the charge density of the form
a2J1. However, imposing gauge invariance on the final
sult together with the requirement that the linear ina2 term
of the gauge-invariant action should coincide with the res
of our calculation, the full gauge-invariant form of the effe
tive action will be recovered. In the following therefore w
will concentrate on the linear terma2J1 only. Note that the
first term in Eq. ~35! does not have an explicit factor o
d(x2). However, we are only interested in its low longitud
nal momentum components since it couples directly toa2 in
the effective action. In momentum space this contribution
given by f abc*dq1@q1dAi

b(q1)#dAi
c(2q11k1). Since the

leading logarithmic contributions come from the regionq1

@k1, to this accuracy this expression does not depend onk1

and can be therefore approximated byd(x2) in coordinate
space. We then can define the modified surface color ch
density by

dJ1~x' ,x2!5dr~x'!d~x2!,

dr~x'!5E dx2dJ1~x' ,x2!. ~36!

Formally dr defined in this way is a function ofx1 as well
as x' . However, it is a function ofdA’s which only have
longitudinal momenta much larger than the momenta in
soft field a. The ~light cone! time variation scale ofdr is
therefore 1/q2 ; q1/q'

2 and is much larger than the typica
time variation scale of the on-shell modes of the fielda.

FIG. 4. Diagrammatic representation ofdJ1 in terms of classical
and fluctuation fields. The coupling to adAm field has been indi-
cated by a curly line whereas slow modesam have been symbolized
by dashed ones.
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From this point of viewdr is therefore for all practical pur-
poses~light cone! time independent. Technically this mean
that whenever we will need a correlation function ofdr ’s,
we will expand it to leading order in the time derivatives

^dr~x' ,x1!dr~y' ,y1!&5^dr~x' ,x1!dr~y' ,x1!&1¯.
~37!

Corrections to this approximation are of orderq2/k2;x.
We will therefore not indicate the time dependence ofr
explicitly.

The procedure now is the following. We first introduc
the variabler8 in the path integral by

E D@r,dAm ,am#eiS[am ,dAm ,r]

5E D@r8,r,dAm ,am#d~r82r2dr@dA# !

3eiS[am ,dAm ,r] . ~38!

Here dr@dA# is the functional of the fluctuation fields de
fined by Eqs.~34!, ~35!, and ~36!. Now we first have to
integratedAm at fixedr, and then integrate overr.

This procedure generates the new effective action wh
symbolically can be written as

exp$ iS@r8,am#%5expH 2F8@r8#2
i

4
G2~a!1 igar8J ,

~39!

with

exp$2F8@r8#%5E D@r,dA#d~r82r2dr@dA# !

3expH 2F@r#2
i

2
dAD21@r#dAJ .

~40!

Of course, to leading order in ln1/x only terms linear in
asln1/x should be kept inF8.

The integration over the fluctuation fielddAm is the most
technically involved part of this procedure. We will describ
in detail this part of the calculation in the next section. T
structure of the result is, however, easy to understand fro
simple counting of powers of the coupling constantas . Con-
sider integration over the fluctuation fielddAm at fixed r.
FIG. 5. Diagrammatic representation ofdJ2. Symbols as in Fig. 4.
5-9
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JALILIAN-MARIAN, KOVNER, AND WEIGERT PHYSICAL REVIEW D 59 014015
The counting of the powers ofas is done most conveniently
after rescaling the fields and the charge density in the follo
ing way:5

Am→
1

g
Am ,

r→
1

g2
r,

dr→
1

g2
dr. ~41!

Explicitly for the rescaled charge density we have

r185r~x'!1dr1
11dr2

1 , ~42!

with6

dr1
1a~x'!522 f abca i

bdAi
c~x250!2

1

2
f abcrb~x'!

3E dy1@u~y12x1!2u~x12y1!#

3dA2c~y1,x' ,x250! ~43!

and

dr2
1a~x!52 f abcE dx2@]1dAi

b~x!#dAi
c~x!

1
1

Nc

rb~x'!E dy1dA2c~y1,x' ,x250!

3E dz1dA2d~z1,x' ,x250!

3@ f acef bdeu~z1x1!u~x12y1!#, ~44!

with

5The reason for this rescaling can be traced back to Eq.~29!.
Simple counting of powers ofg in the tree level graphs shows th
for r of order g22 all the tree level graphs are of the same ord
~see Appendix A!. The classical field itself is thenO(g21). This is
also the magnitude of the field for which we expect to see
nontrivial shadowing and saturation effects. For parametric
smaller color charge densities an expansion in powers of the
pling constant automatically implies an expansion also in power
r. Our primary interest is therefore in the charge densities of o
as

21 .
6We have used the identity u(z12y1)u(y12x1)

1u(x12z1)u(z12y1)1u(z12x1)u(x12y1)5u(z12y1) to
simplify the expression fordr2

a .
01401
-
a i~x'!5 iU ~x'!] iU

†~x'!, ~45!

] ia i52r. ~46!

In terms of the rescaled fields the coupling constantg disap-
pears from the expressions fordr, and appears only as th
overall factor 1/g2 in the action. The propagator of the fluc
tuation field is therefore of orderas . It immediately follows
from Eqs.~43! and ~44! that

^dr&dA5O~as!,

^drdr&dA5O~as!, ~47!

while all other ~connected! correlation functions ofdr are
higher order inas . Since we are working to the lowest orde
in as , we can neglect all these other terms. Therefore
lowest order inas , after integrating overdA at fixedr, we
are left with the weight function fordr, which generates
only connected one- and two-point functions. Such weigh
obviously a Gaussian. Introducing the notation

^dra~x'!&dA5:asln
1

x
sa~x'!,

^dra~x' ,x1!drb~y' ,x1!&dA5:asln
1

x
xab~x' ,y'!,

~48!

we can write the result of thedAm integration in the form

E D@r,r8#@Det~x!#21/2exp~2F@r#!

3expS 2
1

2 as ln 1/x
Frx82rx2asln

1

x
sxG

3@xxy
21#Fry82ry2asln

1

x
syG D . ~49!

In the above equation we adopted a condensed notation
indicesx stand for the set of indices and coordinates$x' ,a%,
and repeated indices are understood to be summed~inte-
grated! over.7

The calculation ofx ands is the subject of the following
section. However, knowledge of the general structure of
r integral, Eq.~50!, is sufficient to perform the integral ove
r in Eq. ~40! without the explicit knowledge ofx ands. The

r

e
y
u-
of
r

7We note here that this result can be derived formally by int
ducing the variabler8 with the help of Lagrange multiplier

d~r82r2dr@dA#!5ED@l#eil~r82r2dr[dA]! ~50!

and subsequently integrating outl in perturbation theory to orde
as .
5-10
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reason is that the integrand in Eq.~50! is a function very
sharply peaked aroundr5r81O(as), and the integral is
calculable in the steepest descent approximation. This
done in Ref.@13#. The result is very simple:

F85F1
asln~1/x!

2
Fxuv

d2

drudrv

F2
d2xuv

drudrv

2
dF

dru

xuv

dF

drv

12
dF

dru

dxuv

drv

12
dsu

dru

22
dF

dru

suG . ~51!

Taking the derivative with respect to ln1/x we obtain the
Wilson renormalization group equation for the functionalF:

d

d ln~1/x!
F5

as

2
Fxuv

d2

drudrv

F2
d2xuv

drudrv

2
dF

dru

xuv

dF

drv

12
dF

dru

dxuv

drv

12
dsu

dru

22
dF

dru

suG . ~52!

This equation is extremely simple when written for t
weight functionZ[exp$2F%:

d

d ln~1/x!
Z5asH 1

2

d2

drudrv

@Zxuv#2
d

dru

@Zsu#J . ~53!

Equations~52! and ~53! provide the closed form of the
renormalization group equation in terms of the function
s@r# and x@r#. In the next section we will calculate thes
two quantities.

Equation~53! can be written directly as evolution equ
tion for the correlators of the charge density. Multiplying E
~53! by rx1

¯rxn
and integrating overr yields

FIG. 6. Diagrams contributing tos. Note that these are all vir
tual contributions resulting from contracting thedA lines of the
diagrams shown in Fig. 5.
01401
as

s

.

d

d ln~1/x!
^rx1

¯rxn
&

5asF (
0,m,k,n11

^rx1
¯rxm21

rxm11
¯

3rxk21
rxk11

¯rxn
xxmxk

&

1 (
0, l ,n11

^rx1
¯rxl 21

rxl 11
¯rxn

sxl
&G . ~54!

In particular, takingn52 we obtain the evolution equa
tion for the two point function

d

d ln~1/x!
^rxry&5as$^xxy1rxsy1rysx&%. ~55!

This equation is useful in making contact with standard e
lution equations, since the correlator of the color charge d
sity at weak fields is directly related to the unintegrat
gluon density in a hadron@12#. Equation~55! can then be
straightforwardly rewritten as an evolution equation for t
gluon density.

V. SMALL FLUCTUATIONS IN THE BACKGROUND
FIELD: THE CALCULATION OF s AND x

In this section we calculate the one-point functions and
two-point correlation functionx of dr(x'), Eqs. ~43! and
~44!. First, note that these quantities are given by the Fe
man diagrams of Figs. 6 and 7, respectively~see Fig. 8 also!.

The propagator lines in these diagrams are the propa
tors of the fluctuation fieldsdA in the nonvanishing back
ground. This is the inverse of the operatorDmn

21 that appears
in Eq. ~32!.

At this point we see that the ghosts associated with
gauge fixing do not contribute to orderas . The interaction
of the ghost fields with the rescaled fluctuation field is
order 1; see Eq.~23!. However, any insertion of a ghos

FIG. 7. Diagrams contributing toasln1/xx. Note that these arise
from contracting to factors of the diagrams shown in Fig. 4. Fo
separate list of all nine contributions see Fig. 8.

FIG. 8. Explicit list of the diagrams contributing tox.
5-11
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vertex will lead to an extra fluctuation propagator and this
proportional toas . We therefore forget about ghosts fro
now on.

Our goal therefore would seem to be the inversion
Dmn

21 . In fact our task is a little simpler than that, since w
only need to calculate the time-independent average ins and
the equal time correlator inx. Those are determined by th
Wightman function of the fluctuation fieldDW rather than by
the Feynman propagator. The Wightman function satis
the homogeneous equation

D21DW50 ~56!

and is constructed from the eigenfunctions ofD21 with the
zero eigenvalue. Our first task is therefore to find the z
eigenfunctions ofD21. For completeness we will presen
also the eigenfunctions with nonzero eigenvalues, but
not construct explicitly the Feynman propagator.

For clarity we have split our calculation into three ma
parts. We determine the eigenfunctions in Sec. V A, fi
their proper normalization in Sec. V B, and use these res
to express the main quantities of interest,x and s, in Sec.
V C, Eqs.~108! and ~109!.

A. Eigenfunctions of Dµn
21

The quadratic action for the fluctuation fields is

S5
1

2g2
$ax

2Kxyay
212a2~]1Da12 f a!

12]1ai]
2ai12ai@D2d i j 1DiD j #aj%. ~57!

Here we are using the following condensed notation

@ f a#a~x1,x2,x'!5 f abcd~x2!a ic~x'!aib~x1,x2,x'!,

Da5Di@a#ai5„] id
ab1 f abcu~x2!a i

c
…ai

b , ~58!

andx denotes the space time coordinatesx6,xi as well as the
color label. All repeated indices are summed~integrated!
over. The functiona i(x') is related tor(x') through Eq.
~46!. The operatorK is

Kxy
ab52F ~]1!2dab1 f abcrcd~x2!

1

]2G
52@~]1!2dab22Mabd~x2!#, ~59!

where we have defined

Mab~p2,x'!5
i

2p2
f abcrc~x'![

i f •r~x'!

2p2
. ~60!

Note thatM is a color matrix locally defined in the transver
and frequency space, which does not depend onx2.
01401
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For simplicity we will temporarily omit the factor 1/g2 in
front of the action, remembering to restore it in the expr
sions for the charge density by appropriately scaling
small fluctuations propagator.

We have changed our notation from the previous sec
and denote the fluctuation field byam rather thandAm . We
should remember that the fluctuation fields contain long
dinal momenta only above some scaleL18. The question of
how exactly to impose this cutoff is unimportant in the lea
ing logarithmic approximation. We find it convenient to in
troduce it through the infrared cutoff in coordinate spa
The longitudinal coordinatex2 in our expressions therefor
varies between2L andL. Whenever it is harmless, we wil
take the limit L→`, which corresponds to the big cuto
ratio L1/L18@1.

Rather than writing down the eigenvalue equations for
quadratic Lagrangian, Eq.~57! it is more convenient first to
explicitly decouple thea2 field. This is done by completing
the square in Eq.~57!:

S5
1

2
$@a21K21~]1Da12 f a!#x

3Kxy@a21K21~]1Da12 f a!#y

2@]1Da12 f a#xKxy
21@]1Da12 f a#y

12]1ai]
2ai2ai@D2d i j 1DiD j #aj%. ~61!

Defining

ã25a21K21~]1Da12 f a!, ~62!

we see that it decouples fromai . Its correlator is given by

^ãx
2ãy

2&5Kx,y
21. ~63!

The correlator ofa2 is then easily calculable once we kno
K21 and the correlators ofai .

The calculation ofK21 is straightforward and is given in
Appendix A. The result is

K215H 2
1

2
ux22y2u1

1

2
h~x'!@ ux2u1uy2u#2

h~x'!

2M
J

3d~x' ,y'!. ~64!

The color matrixhab(x') projects onto the nonzero eigen
value subspace ofM . Together with the complementary pro
jector m it satisfies the relations

mM50, hM5M ~65!

and

m1h51, m25m, h25h. ~66!

We note that the operatorK, Eq. ~59!, has zero modes o
the form
5-12
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f a~x' ,x2,p2!5mabf ~x' ,p2! ~67!

and is therefore strictly speaking noninvertible. The res
Eq. ~64!, was obtained by excluding the zero modes a
invertingK on the space of functions which does not inclu
the functions, Eq.~67!. The normalizable zero modes ofK
cannot be completely neglected in Eq.~57!. Expandinga2 in
the basis of eigenfunctions ofK,

a25E dlal
2 f l , ~68!

we see immediately thata0
2 drops out from the first term in

Eq. ~57! but not from the second term. As a resulta0
2 does

not decouple fromai and Eq.~62! should be slightly modi-
fied. In addition to the term quadratic inã2 we have

S52
1

2
@]1Da12 f a#xKxy

21@]1Da12 f a#y

1]1ai]
2ai2

1

2
ai@D2d i j 1DiD j #aj

1a0,x' ,x1
2 mx'

E dx2@]1Da12 f a#x . ~69!

Note thata0
2 does not depend onx2 since the zero mode

of K is constant inx2. The linear term ina2 in Eq. ~69! is in
fact nothing but the Gauss’ law constraint which rema
after integrating out thea2 component of the vector poten
tial. As we stressed before, our effective Lagrangian is ga
invariant under the residualx2-independent non-Abelian
gauge transformation. As a result, the Lagrangian expan
to second order in the fluctuation field, Eq.~57!, preserves
the linearized version of this transformation. It is in fa
straightforward to check that Eq.~57! is invariant under

ai→ai1Di@a#l~x' ,x1!, a2→a21]2l~x' ,x1!,
~70!

with Di@a# of Eq. ~58!, providedl(x' ,x1)→x1→6`0. The
x2-independent part ofa2 imposes the Gauss’ law con
straint that corresponds to this transformation in the
grangian, Eq.~57!:

E dx2Kxyay
21~]1Da12 f a!x50. ~71!

Decouplingã2 is of course equivalent to integrating outa2

from the path integral. This procedure solves Eq.~71! for a2

in terms of ai , except for the component of this equatio
which is proportional to the zero mode ofK, since this com-
ponent does not containa2. This component of the equatio
is a constraint that involvesai only and should be kept intac
in the path integral forai , Eq. ~69!. The fielda0

2 is just the
Lagrange multiplier that imposes this constraint.
01401
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Now that we have disposed ofa2 we have to find eigen-
functions and eigenvalues of the operatorDi j

21@r# defined by
the action, Eq.~69!. It is convenient to parametrize the field
ai in the following way:

ai5u~x2!@a1
i ~x' ,x1,x2!1g1

i ~x' ,x1!#

1u~2x2!@a2
i ~x' ,x1,x2!1g2

i ~x' ,x1!#. ~72!

The reason we choose to use this parametrization is tha
equations of motion~the eigenvalue equations! as derived
from Eq.~69! are first order in]1 and contain coefficients o
the form d(x2). We therefore expect the eigenfunctions
be discontinuous atx250. Also, since the classical back
ground fields do not vanish atx2→`, we should allow the
same asymptotic behavior in the fluctuations. We have se
rated out for convenience the components of the fieldg6

i

which do not vanish asx2→6` so that by definition

a6
i →

x2→6`

0. ~73!

Substituting Eq.~72! into the action~69! we obtain

S5E
0

`

dx2F]2a1
i ]1a1

i 1
1

2
a1

i D'
2 a1

i G
1E

2`

0

dx2F]2a2
i ]1a2

i 1
1

2
a2

i D'
2 a2

i G
1@g1

i 1v1
i #]2@g2

i 1v2
i #1@]2g2

i v2
i 2]2g1

i v1
i #

1
1

2
L$g1

i @D'
2 d i j 2DiD j #g1

j 1g2
i @]'

2 d i j 2] i] j #g2
j %

1
1

2
$] ig1

i 2Dig2
i 2a i@v1

i 1v1
i #%

h

]a
]2$] jg1

j 2D jg2
j

2a j@v1
j 1v1

j #%1a0
2m$] ig1

i 2Dig2
i 2a i@v1

i 1v2
i #%,

~74!

where

v6
i 5a6

i ~x250!. ~75!

The covariant derivative in this equation is

Di
ab[~] id

ab1 f abca i
c!. ~76!

We hope that the use of the same symbol as in Eq.~58! does
not cause confusion.

In this parametrization the linearized gauge transform
tion acts as

dg1
i 5DiL, dg2

i 5] iL, da0
25]2L. ~77!

The equations for eigenfunctions are
5-13



oo
a

c.
e

ck-
h

as

q.

nc-

ns

JALILIAN-MARIAN, KOVNER, AND WEIGERT PHYSICAL REVIEW D 59 014015
dS

dai 1

5u~x2!@22]1]21D'
2 #a1

i

1d~x2!F]2@g2
i 2g1

i 2v1
i 1v2

i #1a i
h

]a
]2@]g1

2Dg22a~v11v2!#1a ima0
2G

5la1
i , ~78!

dS

dai 2

5u~2x2!@22]1]21]'
2 #a2

i

1d~x2!F]2@g2
i 2g1

i 2v1
i 1v2

i #

1a i
h

]a
]2@]g12Dg22a~v11v2!#1a ima0

2G
5la2

i , ~79!

dS

dg i 1

5]2@g2
i 1v1

i 1v2
i #2] ima0

2

2] i
h

]a
]2@]g12Dg22a~v11v2!#

1L@D'
2 d i j 2DiD j #g1

i

5lLg1
i , ~80!

dS

dg i 2

52]2@g1
i 1v11v2#1Dima0

21Di
h

]a

3]2@]g12Dg22a~v11v2!#

1L@]'
2 d i j 2] i] j #g2

j 5lLg2
i , ~81!

where all the derivatives are with respect to transverse c
dinates unless explicitly specified. These equations
supplemented by the constraint

m@]g12Dg22a~v11v2!#50. ~82!

First consider the zero eigenvaluel50. Because of the
gauge symmetry, the equations for eigenfunctions have
infinity of solutions forl50. However, as stressed in Se
III we must work in a completely fixed gauge, which w
have chosen as] iai(x

2→2`)50. In the notation of this
section this means]g250. With this gauge fixing it is
straightforward to find the solution
01401
r-
re

an

ap2,r
i

5eip2x1E d2pt

3F u~2x2!expS i
pt

2

2p2
x22 iptxtD v2,r

i ~pt!

1u~x2!U†~x'!expS i
pt

2

2p2
x22 iptxtD @Uv1,r

i #~p'!

1u~2x2!g2,r
i ~x'!1u~x2!g1,r

i G . ~83!

The frequency is a good quantum number since our ba
ground field is static. Herer is the degeneracy label, whic
labels independent solutions with the eigenvaluel50 and
frequencyp2. In the free case it is conventionally chosen
the transverse momentum$r %5$pi%. The matrixU(x') is
the same SU(N) matrix which defines the classical field, E
~24!. The auxiliary functionsg6

i ,v6
i are all determined in

terms of one vector function. We take this independent fu
tion asv2

i .8 Then

v1,r
i 5Fd i j 22Di

1

D2
D j GFd jk22] j

1

]2
]kGv2,r

k ,

g1,r
i 52DiF 1

]2
]v2,r2

1

D2
Dv1,r G ,

g2,r
i 50,

a0,r
2 52

1

]2
]v2,r . ~84!

For the eigenfunctions corresponding to eigenvaluesl
Þ0 there is no gauge invariance. Accordingly the functio
vanish at infinityg6,lÞ050 and the solution is

al,p,r
i 5eip2x1E d2ptF u(2x2)expS i

l1pt
2

2p2
x22 iptxtD

3v2,l,r
i ~pt!1u~x2!U†~x'!

3expS i
l1pt

2

2p2
x22 iptxtD @Uv1,r ,l

i ~p'!#G , ~85!

with

v1
i 5Fv2

i 2a i
h

]a
a~v11v2!G . ~86!

8These expressions are valid up to terms of order 1/L. The omitted
terms do not contribute to the leading order in ln 1/x.
5-14
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We now have to construct a complete set of solutions, wh
is tantamount to pickingvl,r

i (x') for every eigenvaluel as
a complete basis of functions on the plane. This basis sh
be chosen such that the solutions, Eq.~83!, are properly nor-
malized and are orthogonal for different values ofr ’s.

B. Normalization of the eigenfunctions

The orthonormality condition for the eigenfunction
al,p2,r

i is9

E d4xal,p2,r
ia

~x!al8,p28,r 8
ia

~x!

5d~l2l8!d~p22p28!d~r 2r 8!. ~87!

Although for the purpose of our calculation we only ne
eigenfunctions with the eigenvaluel50, it is convenient to
consider the orthonormality relation for arbitraryl. The rea-
son is that if we takel5l8, the factord(l2l8) gives a
divergent constant, and it is difficult to determine the n
merical coefficient in front of it. Takingl and l8 generic,
we can explicitly extract thed-function factor and determine
the coefficient.

Let us consider the scalar product

E d4xal,p2,r
ia

~x!al8,p28,r 8
ia

~x!

5d~p22p28!F i
2p2

l2l81 i e
M 2

2 i
2p2

l2l82 i e
M 11L~N21N1!G , ~88!

where

M 25E d2x'v2,l,r
ia ~x'!v2,r 8,l8

ia* ~x'!,

M 15E d2x'v1,l,r
ia ~x'!v1,r 8,l8

ia* ~x'!,

N25E d2x'g2,l,r
ia ~x'!g2,r 8,l8

ia* ~x'!,

N15E d2x'g1,l,r
ia ~x'!g1,r 8,l8

ia* ~x'!. ~89!

9One could ask whether the presence of the Lagrange multip
a0

2 in the Lagrangian can modify the normalization condition f
the eigenfunctions. It is shown in Appendix B that this is not t
case, and the appropriate normalization condition is indeed
~87!.
01401
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Here again we have kept the terms of orderL0 and dropped
the cross terms since

E dx2aig i;1/L ~90!

and this can be ignored at largeL.
Consider first the case when both eigenvaluesl and l8

are nonzero. It follows from Eq.~86! that

Sv1
i 5S†v2

i , ~91!

whereS is an operator:

S5d i j 1a i
h

]a
a j . ~92!

This operator satisfies

@S,S†#50, ~93!

and thereforeS21S† is unitary, so that

v1* v15v2* v2 ~94!

and M 15M 2 . The orthonormality condition~87! then be-
comes

E d4xal,p2,r j

ia
~x!al8,p28,r

j8
ia

~x!

52pd~l2l8!d~p22p28!2up2uM 2~r ,r 8!.

~95!

It is clear now that forlÞ0, we can take our orthonor
malized basis to be

@vb j#2,r
ai ~x'!5

1

A4pp2
dabd i j eir'x', lÞ0. ~96!

For l50, there will also be a nonvanishing contributio
from the term which involvesg1 . The x2 integral in the
normalization condition, Eq.~87!, gives a factor ofL. Com-
paring it with Eq.~95! at l5l8 we identify this factor as
4pup2ud(l2l8). We are then left with

M 21M 11N21N15
1

4pup2u
d~r 2r 8!. ~97!

It is easy to see that for the zero modes the relation betw
v2 andv1 is also unitary. UsingM 25M 1 and the explicit
expressions forg1 we get

1

4pup2u
d~r 2r 8!5E d2x'd2y'v2r* i ~x'!

3Oi j ~x' ,y'!v2,r 8
j

~y'!, ~98!

er

q.
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with

Oi j ~x' ,y'!5Fd ik22] i
1

]2
]kG

3H dkl12F S dkn2]k
1

]2
DnD S dnl2Dn

1

]2
] l D

2S dkl2Dk
1

D2
Dl D G J

3Fd l j 22] l
1

]2
] j G ~x' ,y'!. ~99!

This relation means that for proper normalization o
should choose the functionsv2,r

i as eigenfunctions of the
operatorO The normalization ofv2,r

i should not be 1, but
rather 1/Ak wherek is the appropriate eigenvalue of the o
eratorO. The degeneracy labelr therefore numbers the vec
tors of this particular basis. SinceO is a Hermitian operator
its eigenfunctions form a complete basis, and therefore
basis of our eigenfunctions is also complete. Therefore
have

E d2r'v2r
ia ~x'!v2r* jb~y'!5

1

4pup2u
@O21# i j

ab~x' ,y'!.

~100!

All of our results then will be expressed in terms ofO21

where

@O21# i j 5Fd ik22
] i]k

]2 G H 112F S 12]
1

]2
D D S 12D

1

]2
] D

2S 12D
1

D2
D D G J 21klFd l j 22

] l] j

]2 G . ~101!

C. Induced charge density

We are now ready to calculate the induced charge den
dr. As was mentioned in the beginning of this section, sin
we are interested in the equal time correlations of the fl
tuation fieldsai we will only need the on-shell propagator
and therefore only eigenfunctions for the eigenvaluel50.
To see this explicitly let us consider a typical expression
have to evaluate in order to calculate the charge density
relator:

^ai~x' ,x250!aj~y' ,x250!&

5E dx2
dl

l1 i e
dp2d2k'd2p'ei @~2l1p'

2
1k'

2
!/2p2# x2

3F~k' ,p'!v2,l,r
i ~p'!v2,l,r

j* ~k'!d~x2!. ~102!
01401
e
e
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We have regulated thel dependence of the integrand b
moving slightly away fromx250. At nonzerox2 we can
close the integration contour in thel plane. At every fixed
value ofp2 the contour can be closed either in the upper
in the lower half-plane, depending on the sign ofx2. The
only contribution to the integral comes from the pole atl
50. If the contour is closed upstairs, the integral vanish
while if it is closed downstairs, there is a contribution 2p i .
Therefore for everyp2 the l integral gives a factor
2p iu(x2) or 2p iu(2x2), depending on the sign ofp2.
Multiplying by d(x2) and integrating overx2 gives the fac-
tor 1/2 in either case. The result of thel integral is therefore
that it puts the propagator on shell (l50) and gives the
numerical factorp i .

In the following formulas,l50 is therefore assumed.
First, we calculatea2. In fact as is obvious from the

explicit expressions for the charge density, Eqs.~43! and
~44!, we need onlya2(x250). Also, as can be easily
checkedã2 does not contribute to the order ln1/x, and we
omit it in the following. Then, using Eqs.~83! and ~62! we
find

a2~x250!52K21~0,y2!@]1Da12 f a#~y2!

5 ip2eip2x1FDv1,p2,r~x'!

D2

1
]v2,p2,r~x'!

]2 G f p2,r . ~103!

The integration overp2 and r is implied in this equation.
The objectsf p2,r are the coefficients in the expansion of th
fields ai in the basis of the eigenfunctions of the opera
Di j

21:

ai~x!5E dldp2drai ,l,p2,r~x! f l,p2,r . ~104!

Since our eigenfunctions are properly normalized,f ’s have
the standard correlator

^ f l,p2,r f l8,p28,r 8
* &5

i

l1 i e
d~l2l8!d~p22p28!d~r 2r 8!.

~105!

Now, using Eqs.~43!, ~44!, and~83! we find

dr1
a52geip2x1 1

2
f abcH 2ab@v1,p2,r1v2,p2,r #

c

22rbFDv1,p2,r

Dt
2

1
]v2,p2,r

] t
2 G cJ f p2,r , ~106!
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and

dr2
a52g2H f abcFv1,p2,r

b v2,p28,r 8
* c

1
1

2
g1,p2,r

b
@v1,p28,r 8

* 1v2,p28,r 8
* #c

2
1

2
@v1,p2,r1v2,p2,r #

bg1,p28,r 8
* c G

1
1

Nc

f acef bderb~x'!FDv1,p2,r

Dt
2

1
]v2,p2,r

] t
2 G c

~x'!

3FDv1,p28,r 8
*

Dt
2

1
]v2,p28,r 8

*

] t
2 G d

~x'!

2 f abcF E
2`

0

dx2@]1a2,p2,r
b

#a2,p28,r 8
* c

1E
0

`

dx2@]1a1,p2,r
b

#a1,p28,r 8
* c G J

3ei ~p22p28!x1
f p2,r f p28,r 8

* . ~107!

Now it is straightforward to evaluates andx. Sincedr1

is linear inai , clearly ^dr1&50. Also, dr1 is orderg while
dr2 is orderg2. Therefore to orderas only dr1 contributes
to x, and onlydr2 contributes tos. The frequency integra
is trivial. The only p2 dependence is in the normalizatio
factor 1/up2u, Eq. ~100!. The integral overp2 then gives the
logarithmic factor which we identify with ln1/x.

Using the explicit expressions forv1 andg1 in terms of
v2 and the normalization condition, Eq.~100!, we obtain

xad~x' ,y'!5 f abcf de fH ab
i @~Ti j 2Li j !~ t jk2 l jk!1d ik#cg

1rbF Di

Dt
2 ~ t ik2 l ik!2

]k

]'
2 G cgJ

~x' ,z'!

3@O21~z' ,z̄'!#gh
kn

3H ae
l @~Tls2Lls!~ tsn2 l sn!1d ln# f h

1reF Dl

Dt
2 ~ t ln2 l ln!2

]n

]'
2 G f hJ

~y' ,z̄'!

, ~108!
01401
sa~x'!52 f abc@~Ti j 2Li j !~ t jk2 l jk!#~x' ,y'!
bd

3@O21~y' ,x'!#dc
ki

12 f abc@~Ti j 2Li j !~ t jk2 l jk!1d ik#~x' ,y'!
bd

3@O21~y' ,ȳ'!#de
knDc f

i

3F ]n

]'
2

1
Dm

Dt
2 ~ tmn2 l mn!G

~x' ,ȳ'!

f e

2
1

Nc

f acef bderb~x'!F Di

Dt
2 ~ t i j 2 l i j !2

] j

]'
2 G

~x' ,y'!

cg

3@O21~y' ,ȳ'!#gh
jl FDk

Dt
2 ~ tkl2 l kl!2

] l

]'
2 G

~x' ,ȳ'!

dh

2 f abcRbc~x'!, ~109!

whereRbc(x') is

Rbc~x'!5E d2p'

~2p!2

d2q'

~2p!2
pt

2e2 i ~p'2q'!x'

3F v2
ib~p'!v2*

ic~q'!

p'
2 2q'

2 2 i e
2

v1
ib~p'!v1*

ic~q'!

p'
2 2q'

2 1 i e
G
~110!

and we have defined the projection operators

Ti j [d i j 2
DiD j

D'
2

, Li j [
DiD j

D'
2

,

t i j [d i j 2
] i] j

]'
2

, l i j [
] i] j

]'
2

. ~111!

These expressions can be somewhat simplified. The in
sion ofO can be performed explicitly as far as the transve
index structure is concerned.:

@~ t2 l !O21~ t2 l !# i j
ab~x' ,y'!

5K x'Ud i j
ab22F S ] i

1

]2
2Di

1

D2D
3S21S 1

]2
] j2

1

D2
D j D abGUy'L . ~112!
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Here ^x'u¯uy'& denotes the configuration space matrix
ement in a standard way. We also find it simpler to use
matrix notation

a i
ab5 f abca i

c , rab5 f abcrc. ~113!

The rotational scalar operatorS is defined as
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1

D2
12S Di

D2
2

] i

]2D S Di

D2
2

] i

]2D
5

1

D2
22

1

]2
]a

1

D2
12

1

D2
Da

1

]2
. ~114!

In terms of this operator we have
xab~x' ,y'!52K x'UF2a i2$a,]%
] i

]2
2$a,D%

Di

D2GFd i j 22S ] i

]2
2

Di

D2D S21S ] j

]2
2

D j

D2D G
3F2a j2

] j

]2
$a,]%2

D j

D2
$a,D%G abUy'L ,

sa~x'!5 f abcH K x'U24
Di

D2
~D]!

] i

]2
22F ] i

]2
1

Di

D2
22

Di

D2
~D]!

1

]2GS21F ] i

]2
1

Di

D2
22

1

D2
~D]!

] i

]2G
14F Di

D2
~D]!

1

]2
2

] i

]2
~]D !

1

D2GS21
Di

D2Ux'L 1
1

Nc
K x'US Di

D2
1

] i

]2D S Di

D2
1

] i

]2D 22S Di

D2
1

] i

]2D S Di

D2
2

] i

]2D
3S21S D j

D2
2

] j

]2D S D j

D2
1

] j

]2D Ux'L r~x'!2R~x'!J bc

. ~115!
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Here$X,Y% denotes an anticommutator.
Equations~109!, ~108!, and~115! are the central result o

this paper. Those are expressions for the coefficient funct
of the renormalization group equations as functions of
charge densityr. These expressions do not look very simp
and clearly one will need to develop some intuition and
deeper understanding to be able to use them in either ana
or numeric calculations. This is the matter of future wo
For now we are content with being able to derive these
plicit expressions.

As an important cross-check on our results, we ha
checked that in the weak field limit, expanding the renorm
ization group equation~52! to leading order in the charg
densityr, we recover the BFKL equation. The details of th
calculation are given in Appendix C.

VI. DISCUSSION

The main result of this paper is the calculation of the o
and two-point functions of the charge density induced by
gluonic fluctuations. This completes in the formal sense
derivation of the renormalization group equation that d
scribes the flow of gluonic observables at lowx according to
the ideology of Refs.@11–13#. We want to point out that, in
fact, the flow is described not by one RG equation, as i
theory with one running coupling constant, and not even b
finite set of equations, as in a theory with finite number
ns
e

a
tic
.
-

e
l-

-
e
e
-

a
a
f

relevant operators, but rather by a functional equation,
~52!. The functional equation is equivalent, of course, to
infinite number of ordinary equations. This can be inte
preted as indicating that the lowx RG flow has an infinite
number of relevant operators. This is a rare example of
renormalization group flow in an infinite dimensional spa
of relevant couplings with all ‘‘b functions’’ calculable ex-
plicitly.

Much work remains to be done to understand the phys
of the full nonlinear evolution equation. It is probably wis
first to see whether one recovers the simpler known eq
tions as its particular limits. As we have mentioned, we ha
checked explicitly~see Ref.@12# and Appendix C! that in the
leading order expansion in powers of the charge density
equation reduces to the BFKL equation. The diffusio
limited aggregation~DLA ! limit of the DGLAP evolution is
also obtained if we expand to leading order inr, impose the
transverse momentum ordering in the rungs of the ladde
the real diagrams of Fig. 8, and neglect the virtual contrib
tions of Fig. 6. With a little more work one should be able
recover the GLR equation@4,7#. To this end one has to ex
pand our result to next to leading order in the charge den
r and impose the DLA kinematics. Without imposing th
DLA transverse momentum ordering the next to leading
der expansion should reproduce the triple-Pomeron verte

These are important consistency checks on our calcula
and they should certainly be performed. In the framework
5-18
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the full nonlinear problem, there are two very interesti
questions which can be asked immediately. First, does
flow described by Eqs.~52!, ~109!, and ~108! have a fixed
point. The presence of such a fixed point would mean in
framework the saturation of gluonic observables at lowx.
Needless to say, if such a fixed point exists and the fi
point value of F@r# can be determined, it would be ex
tremely interesting. It would describe a universal behavior
DIS observables at lowx, independent of the hadron that
being considered. The statistical weighte2F[r] defines a two-
dimensional Euclidean field theory. It is interesting to no
that the evolution equation itself does not contain any sc
Therefore, if the fixed point exists it could be scale invaria
and in that case very likely also conformally invariant.10 It
may be therefore possible to study it with the methods
two-dimensional conformal field theory.

Second, even if the fixed point does not exist, it would
interesting to investigate what is the impact of the lowx
evolution on observables at small transverse moment
Starting from some reasonable initial condition atx0 and
evolving F to low enough values ofx, one could study the
low k' behavior of the resulting two-dimensional theor
Again, it could be that at lowk' the two-dimensional theory
becomes conformal and can be analyzed analytically.

Another outstanding question is how to generalize t
approach to include not just DIS but also hadron-hadron
lisions. An effective Lagrangian for the hadron collision
multi-Regge kinematics was derived by Lipatov@8#. It would
be worthwhile to extend the renormalization group appro
to this case. We note that the leading order of the pertu
tive calculation for two hadron collision was considered
@17# to first order inr and numerical work is in progress t
understand the nonlinear effects to leading order inas @18#.

We want to conclude with a discussion of the physi
picture of the difference between the BFKL limit and the lo
x DLA DGLAP limit as it emerges from our approach. A
though this does not have a direct relation to the nonlin
problem considered in this paper, the observation can ho
fully help to put our approach in a more general perspect

It is interesting to interpret our calculational procedu
from the perspective of the Born-Oppenheimer approxim
tion. The Born-Oppenheimer approximation is standard
systems that have two distinct time scales. One considers
slow degree of freedomX as a static background and solv
the dynamics of the fast degree of freedomY with given
backgroundX. Integrating outY generates a change in th
Lagrangian forX. This is of course the standard procedu
for deriving effective Lagrangians in theories which conta
well-separated fast and slow degrees of freedom. An
ample is the chiral Lagrangian, where light pions are sl
and heavyr, f, etc., mesons are fast. From this point
view, in our case we would like to think of the partons wi
large longitudinal momentump1.L1 as the slow modes
since their frequencyp2; 1/p1 is small.11 The charge den-

10We thank M. Wüsthoff for this observation.
11Note that those are the modes that we called ‘‘fast’’ in Sec.
01401
e

r

d

f

e.
,

f

e

.

s
l-

h
a-

l

ar
e-

e.

-
n
he

x-

sity r due to these partons is considered to be static w
integrating out the fluctuation fieldsdA with momentaL1

.k1.L81. However, as stressed before, our system d
not have two sharply separated time scales, but rather a
tinuum of time scales. We are integrating overdA in order to
derive the Lagrangian for the soft fieldsa. Those contain
light cone frequenciesl2; 1/l 1 @k2. The fluctuation fields
dA would appear as fast modes relative tor but as slow
relative to soft fieldsa. The situation in fact is slightly more
complicated, since in principle the field modesdA contain
also vastly different transverse momenta. Fork'

2 >p'
2 they

are in fact faster thanr; however, for very small transvers
momentak'

2 !p'
2 the frequency of thedA field can be as

small or even smaller thanp2. The splitting in terms of
longitudinal momentak1 therefore does not exactly corre
spond to the Born-Oppenheimer-type splitting in terms of
frequency.

The charge densitydr that is induced by the fluctuation
dA accordingly contains two types of contributions. Fir
there are contributions with frequencies of orderk2@p2.
Those come from the real diagrams of Fig. 8 with order
transverse momentumk'

2 >p'
2 . For convenience of referenc

we redraw one diagram from this set in Fig. 9. The frequen
of this component of the induced charge densitydr f aster is
k'

2 /k1 @ p'
2 /p1.

There is another componentdrslower which comes from
the unordered region of the transverse momentak'

2 ;p'
2 .

This component is in the same frequency range as the o
nal r. Since it is not contributed by faster modes, it is no
Born-Oppenheimer-type contribution. In principle there
also a contribution from the region with opposite orderi
k'

2 !p'
2 . This component of the induced charge dens

would contain frequencies which are even smaller than th
in r. However, it is exactly canceled by the virtual corre
tions of Fig. 6 as can be checked explicitly from the expr
sion for the BFKL kernel.12

So, to reiterate, as we move to lowerx we get two distinct

.

We hope this does not cause confusion. Indeed these mode
‘‘fast’’ if we consider their variation in timet, since their energy is
large. However, in light cone timex15z1t these same modes ar
almost static, since their light cone time dependence is given
exp$ip2x1% andp2 is small. In this section we are interested in th
light cone time variation.

12One can be tempted to think of these virtual corrections as
Born-Oppenheimer type backreaction, which ‘‘renormalizes’’ t
effective distribution of the slow component of the charge dens
This is not the case since the contribution in the virtual diagra
comes mostly from the low transverse momentum region in
integral, and is therefore due to slow modes in the loop.

FIG. 9. Part of the real contribution to the induced color charg
5-19
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contributions. First, there is a Born-Oppenheimer-type c
tribution. It appears because we ‘‘renormalize’’ the notion
staticity by including new~faster! modes in the category o
static. This is thedr f aster. Physically, this relates to th
processes at smallerx that happen at ever faster time scale
Second, there is a new contribution to the charge den
which has a long wavelength but also low frequency. This
drslower. This is not a contribution of the Born
Oppenheimer type and appears since the splitting in term
the longitudinal momentum does not strictly coincide w
the splitting in terms of frequency.

Now, the DLA approximation to DGLAP assumes tran
verse momentum ordering and therefore includes o
dr f aster in the induced charge density. The BFKL evolutio
on the contrary includes both contributions. Therefore
DLA DGLAP includes in the induced density only contribu
tions which are faster than previously present, and is ev
tion simultaneously in the longitudinal momentum and f
quency. The BFKL evolution includes contributions which
every step in the evolution modify also the slow compon
of the charge density, and is therefore evolution only in
longitudinal momentum.

Thedrslower contribution to the BFKL kernel is known to
be problematic, since it creates a channel through which
nonperturbative small transverse momentum modes co
to the evolution. The result is the infamous random walk
the transverse momentum space@2,19# in the asymptotic so-
lution of the BFKL equation. Our full nonlinear procedure
similar to the BFKL approach in the sense that it does
discriminate between the field modes on the basis of t
frequency. Whether it still suffers from the same low tran
verse momentum problem is not clear to us at this point. I
possible that the nonlinearities in the equation suppress
low transverse momentum contributions by generating a
namical scale somewhat like what happens in finite temp
ture and finite density equilibrium systems. It would be ve
interesting to develop a renormalization group procedure
which the evolution parameter is not the longitudinal m
mentum~like in our approach! and not the transverse mo
mentum~like in the DGLAP evolution! but rather directly
the time resolution scale. This kind of approach would co
sider the contributions of lowk' modes at lowx as part of
the initial condition rather than part of the evolution a
would thereby provide a cleaner separation of perturba
and nonperturbative effects. A nonlinear evolution obtain
in this type of approach should be closely related to the n
linear evolution equation of Laenen and Levin@20#.
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APPENDIX A: HIGH AND LOW DENSITY SITUATIONS—
THE PARAMETRIC SIZE OF r

The situation that interests us in this paper is the o
when the color charge density is high enough so that
nonlinearities are important. Already when looking at t
tree graph expansion of a classical field generated by a c
charge densityr, we are in a position to judge how bigr has
to be parametrically forall of the terms to contribute equall
to the result.

To do this we observe that one may build all diagra
that make up the classical field starting from the linear te

~A1!

by stripping off a factorgr and replacing it successively b
either

To generate diagrams which are all of the same order
need to simultaneously satisfy the equations

g3order~r!5g@g3order~r!#2, ~A2!

g3order~r!5g2@g3order~r!#3. ~A3!

This fixes 15g23order(r), i.e., r to be of orderg22.
It is therefore forr;O(g22) that the nonlinear effects

described by the RG evolution derived in this paper
physically important.

APPENDIX B: INVERTING K

In this appendix we invert the operatorK which appears
in the small fluctuation action

Kxy
ab52F ~]1!2dab1 f abcrcd~x2!

1

]2G
52@~]1!2dab22Mabd~x2!#. ~B1!

First, note that the frequency and the transverse coo
nate dependence ofK is trivial, and thereforep2 andx' are
conserved quantum numbers in this inversion. For the p
pose of this calculation we can imagine that the color ma
M has been diagonalized at every point inx' and we will
therefore treat it formally as a number.
5-20
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Let f l
a(x) be the set of eigenfunctions ofK:

E dy2Kab~x,y! f b~p2,y2,x'!5l f a~p2,x2,x'!.

~B2!

Assuming for the moment that the eigenvalues are posit
the eigenfunctions have the form

f p2,x'

a
~x!5u~2x2!eip1x2

Ua~x' ,p2!1u~x2!

3@eip1x2
Fa~x' ,p2!1e2 ip1x2

Ga~x' ,p2!#,

~B3!

whereF and G are to be determined. Requiring thatf a be
continuous atx250 givesUa5Fa1Ga. The first derivative
of f a should be discontinuous such that]1 when acting on it
will cancel thed(x2) in Eq. ~B1!. In other words, the dis-
continuity in the first derivative must be equal to the integ
of the delta function across the discontinuity. This gives

f cont
a 5Ua

aeipx2 iu~x2!
sinp1x2

p1p2
f abcUa

brc~x'!. ~B4!

These eigenfunctions correspond to a positive eigenvalu

l5p12.

To determine the proper normalization of the ‘‘polarizati
vector’’ Ua

a it is easier to work with the symmetric and a
tisymmetric combinations

f asym
a 5Ua

acosp1x22 i
1

2p1p2
f abcUa

arc

3sinp1x2@u~x2!2u~2x2!#

and

f aasym
a 5 iU a

asinp1x22 i
1

2p1p2
f abcUa

brcsinp1x2.

The antisymmetric functions vanish atx250 and therefore
are the same as forM50. Their normalized form is just

f aasym
a 5sin~p1x2!da

a .

The overlap matrix for the symmetric eigenfunctions is

E dx2@ f
~a,p1!

a
~x!#†@ f

~b,p18!

a
~x!#

5d~p12p18!
U†U

2
F12

~ f •r!2

~2p1p2!2G ,

and we get
01401
e,

l

U†U5
2~p1!2

~p1!21M2
.

These are the eigenfunctions for ‘‘continuum’’ states, t
ones corresponding to positive eigenvalues.

Note that since tr(f •r)50, the matrixM has both nega-
tive and positive eigenvalues. Therefore the eigenvalue eq
tion ~B2! must also have negative eigenvalues and co
sponding ‘‘bound state’’ solutions. The bound state wa
function must be symmetric underx2→2x2 and have the
same form as the continuum solution except thatp1 is
imaginary. Requiring that it decay exponentially at largex2,
we have

p15 iM u~M !.

The eigenfunction then is

f bs
a 5NVa

a@u~x2!e2Mx2
1u~2x2!eMx2

#, ~B5!

where N is a normalization factor andVa
a are the set of

eigenfunctions ofM with positive eigenvalue. The norma
ization factorN is easily calculated and is given byN25M .

It is easily checked that the set of our eigenfunctions
complete. The completeness relation is

I[E d4p

~2p!4
@aa~x,p!#†@ab~y,p!#5d~x2y!dab. ~B6!

This can be written as

I 5d~x'2y'!E dp2

2p
I 1~x2,y2,p2!,

where for the continuum solutions we have

I 15u~x2!u~y2!F21

2
~ uM u1M !u~x21y2!

3e2uM u~x21y2!2
1

2
~ uM u2M !u~2x22y2!

3euM u~x21y2!1d~x21y2!

1E dp1

2p
2sinp1x2sinp1y2G1u~x2!u~2y2!

3F21

2
~ uM u1M !u~x22y2!e2uM u~x22y2!

2
1

2
~ uM u2M !u~2x21y2!

3euM u~x22y2!1d~x22y2!G
1~x2,y2→2x2,2y2!, ~B7!
5-21
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while, for the bound state,

I 15
1

2
~ uM u1M !@u~x2!u~y2!e2uM u~x21y2!

1u~x2!u~2y2!e2uM u~x22y2!

1~x2,y2→2x2,2y2!#. ~B8!

All M-dependent terms cancel out between the two contr
tions. Performing thep1 integration and adding all the term
establishes the completeness relation~B6!.

Now that we have the complete set of eigenfunctions,
are ready to invert the operatorK. But first we should under-
stand the zero modesp150. These eigenfunctions do no
vanish atx2→6` and we should be careful with them, fo
example when integrating by parts. In fact when calculat
the propagator, these eigenfunctions should be excluded
tirely from the sum as explained in Sec. V. The conveni
way to do that is to regulate the factor 1/l which enters in
the calculation of the propagator as

1

l
[

l

l21e4
,

taking the limit e→0 at the end of the calculation. We us
the same regulator to regulate a possible singularityM→0 in
the bound state eigenvalue:

1

M2
→

M2

M41e4
.

The propagatorK21 is calculated as

K21~x2,x' ,p2,y2,y' ,p28!

5E dl
1

l
f l,p2,x'

~x2! f l,p2,x'

* ~y2!

3d~p22p28!d~x'2y'!. ~B9!

The result is

K215
21

4iAi e
H u~x22y2!@eiAi e~x22y2!2 ie2Ai e~x22y2!#

1MFu~x2!u~y2!FeiAi e~x21y2!

M1 iAi e
2 i

e2Ai e~x21y2!

M2Ai e
G

1u~x2!u~2y2!FeiAi e~x22y2!

M1 iAi e
2 i

e2Ai e~x22y2!

M2Ai e
G

1~x2,y2→2x2,2y2!J d~p22p28!d~x'2y'!.

~B10!
01401
u-

e

g
n-
t

Expanding the above expression in powers ofe to order 1,
we get

K215H 2
1

2
ux22y2u1

1

2
h@ ux2u1uy2u#

2
h

2M
1

m

2A2e
J d~p22p28!d~x'2y'!,

~B11!

where we have defined the projection operatorsh andm that
project on nonzero and zero eigenvalue subspaces ofM, re-
spectively:

mM50, hM5M , ~B12!

m1h51, m25m, h25h. ~B13!

Note that the last term in Eq.~B11! diverges in the limit
e→0. However, examining carefully the equations in Se
V, we see thatK21 always acts on a particular combinatio
of fields B which satisfies the constraintmB50 by virtue of
Gauss’ law. We can therefore omit this term from the expr
sion forK21 altogether, which is what we did in the text, E
~64!.

APPENDIX C: PROPER NORMALIZATION
OF EIGENFUNCTIONS

In this appendix we show how to properly normaliz
eigenfunctions in a theory with a Lagrange multiplier fiel
Consider a quadratic form

S5aiM i j aj , i 51, . . . ,N, ~C1!

where the variablesai are constrained bym linear conditions

ci
aai50, a51, . . . ,m. ~C2!

Our problem is to invertM on the subspace whose vecto
satisfy Eq.~C2!. This is the precise analogue of the syste
we deal with in Sec. V. Let us assume that allm vectorsci

a

are linearly independent. In that case they span anm-
dimensional subspaceC of the originalN-dimensional vector
spaceV. Let l a be an orthonormal basis on this subspa
We can then construct the projection operator

Pi j 5 l i
al j

a , ~C3!

which projects onC.
Then instead of considering the matrixM we should con-

sider

M̃5~12P!M ~12P! ~C4!

and invert it onV2C. The eigenvalue and eigenfunctio
equations for this problem are
5-22
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M̃a5l~12P!a ~C5!

or, alternatively,

~12P!Ma5la,

caa50.

Clearly the eigenfunctions have to be normalized in the s
dard way:

ai
lai*

l85dl,l8 . ~C6!

The inverse ofM on V2C is constructed as

M̃ 215(
l

ai
laj*

l

l
, ~C7!

since

M̃ M̃ 215~12P!MM̃ 215(
l

ai
laj*

l5Pi j . ~C8!

An alternative to explicit construction of the projectio
operatorP is the introduction of the Lagrange multiplie
field, as we did in Sec. V. We add to the Lagrangian the te

bacaa. ~C9!

The eigenvalue equations we have to solve now are

Ma1baca5la,

caa50.

Now, sincePca5ca andPa50, this equation gives

PMa1baca50. ~C10!

Solving this forba and substituting back into Eq.~C10! we
obtain again Eq.~C6!. This proves that the eigenfunction
obtained through introduction of the Lagrange multiplier a
the same as in the straightforward calculation in which
constraint is solved explicitly through construction ofP. It is
clear then that the normalization of these functions should
the standard normalization, Eq.~C6!.

APPENDIX D: THE BFKL LIMIT OF THE GENERAL
EVOLUTION EQUATION

In this section we will show in some detail how our ge
eral expressions forxab andsa give the BFKL kernel. To do
so, we have to take the limit of smallr in the evolution
equation~52!. In fact it is more convenient to consider d
rectly the equation for the density correlation function, E
~55!. As was shown in Ref.@12#, using Eqs.~28! and~46! the
unintegrated gluon densityf(k') ~which is the quantity
which evolves according to the BFKL equation! to leading
01401
n-

e
e

e

.

order in r is just the charge-density two-point functio
^r(k')r(2k')&. The BFKL equation should therefore b
just the weak field limit of Eq.~55!.

To verify this we will need the expressions forxab andsa

expended to first order inr. Let us consider the contribution
of the real diagrams given bydr1 in Eq. ~106!. Using the
expressions forv1

i andg1 and 1/D2 expanded to first orde
in a,

g1
i 52

] i

]'
2 Fav21~]a!

]v2

]'
2 G ,

v1
i 52a i

]v2

]'
2

1v2
i 22

] i

]'
2 Fav21~]a!

]v2

]'
2 G ,

1

D'
2

5
1

]'
2

2
1

]'
2 ~]a1a]!

1

]'
2

, ~D1!

leads to

dr1
a~x'!522 f abcFabv2

c 2rb
]v2

c

] t
2 G . ~D2!

In the momentum space representation,

] i

] t
2 v2

i 5 i E d2p'

~2p!2
d2y'

pi

p'
2

eip'~x'2y'!v2
i ~y'!. ~D3!

With these expressions we have

dr1
a~x'!dr1

b~y'!54g2f acdf be fFacv2
d 2rc

]v2
d

]'
2 G

x'

3Faev2
f 2re

]v2
f

]'
2 G

y'

. ~D4!

To this order the normalization ofv i
i is

^v2
id~x'!v2*

j f ~y'!&5d i j dd fd2~x'2y'!
1

2p

1

2
. ~D5!

We then have

^dr1
a~x'!dr1

b~y'!&

5g2f acdf bed
1

p
ln 1/x

3H ac~x'!ae~y'!d2~x'2y'!

1 i @a ic~x'!re~y'!2rc~x'!a ie~y'!#
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3E d2p'

~2p!2

pi

p'
2

eip'~x'2y'!1rc~x'!re~y'!

3E d2p'

~2p!2

1

p'
2

eip'~x'2y'!J . ~D6!

This expression coincides with Eqs.~53!, ~54! and, ~55! in
@12#. Usinga i52(] ir/]2) we obtain

dr1
a~k'!dr1

a~2k'!

5
2g2Nc

~2p!3E d2p'ra~p'!ra~2p'!
k'

2

p'
2 ~p'2k'!2

. ~D7!

This is precisely the real part of the BFKL kernel.
It is straightforward to repeat the above procedure for

contribution of virtual diagramŝdr2
a(x')&, Eq.~107!. In this

case, the termRab vanishes to ordera. Using our expanded
expressions fora1 and g1 and noticing thatg1 starts at
ordera, the first line in Eq.~107! gives
P
.

D

.

s.

01401
e

^dr2
a~x'!&~1!52

g2

2p
f dbcf abcE d2y'rd~y'!

3E d2p'

~2p!2

d2q'

~2p!2

p'•q'

p'
2 q'

2
ei ~p'1q'!~x'2y'!.

~D8!

This agrees with the corresponding term in Ref.@12#. In the
second line in the expression fordr2

a , Eq.~107!, we can take
the ordera0 inside the brackets since there is already
explicit factor ofr present. This gives

^dr2
a~x'!&~2!52

g2Nc

~2p!3
ln 1/xra~x'!E d2p'

p'
2

, ~D9!

which is exactly Eq.~50! in Ref. @12#. Collecting all the
contributions, substituting them into Eq.~55!, and identify-
ing the density correlator with the unintegrated gluon dens
f we obtain

d

d ln1/x
f~k'!52

g2Nc

~2p!3E d2p'

k'
2

p'
2 ~p'2k'!2

3@f~k'!22f~p'!#. ~D10!

This is precisely the BFKL equation@2#.
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