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Chiral phase transition of QCD at finite temperature and density
from the Schwinger-Dyson equation
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We study the chiral phase transition of QCD at finite temperature and density by numerically solving the
Schwinger-Dyson equation for the quark propagator with the improved ladder approximation in the Landau
gauge. Using the solution we calculate a pion decay constant from a generalized version of the Pagels-Stokar
formula. The chiral phase transition point is determined by analyzing an effective potential for the quark
propagator. We find solutions for which chiral symmetry is broken while the value of the effective potential is
larger than that for the chiral symmetric vacuum. These solutions correspond to metastable states, and the
chiral symmetric vacuum is energetically favored. We present a phase diagram on the general temperature-
chemical potential plane, and show that phase transitions are of first order in wide range.
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I. INTRODUCTION while the energy was bigger than that for the symmetric
vacuum. It is interesting to study whether this kind of meta-
In QCD an approximate chiral symmetry exists at the La-stable state is derived by fully solving the SDE.
grangian level and it is spontaneously broken by the strong In this paper we study the chiral phase transition in QCD
gauge interaction. Accordingly approximate Nambu-at finite temperature and/or density by numerically solving
Go|dst0ne(NG) bosons appear, and pions are regarded ag’\e SDE USing the Matsubara formalism. As an order param-
NG bosons. In hot and/or dense matter, however, quark corfer we calculate the pion decay constant using a generalized

densates melt at some critical point, and chiral symmetry i¥€rsion of the Pagels-Stokar formulz9). We calculate the
value of the effective potential at the solution of the SDE to

getermine the chiral phase transition points. We show that
metastable states actually exist in a wide range. The order of
the phase transitions is determined by comparing the order
parameter with the effective potential. The phase transition is
of first order for a wide range &t+#0 andu#0.

The Schwinger-Dyson equatidSDE) is a powerful tool
for studying the qualitative structure of the chiral symmetry
breaking of QCD. By suitable choices of the running cou-
pling, in W.hiCh the asy_m_ptotic fr_eedom IS incorporated,_the This paper is organized as follows. An effective potential
SDE provu_jes a nontrivial solu.tlon for.the mass functlon.for the quark propagator is introduced at finite temperature
The behavior of the mass function at high energy is consisaqor density in Sec. II. The SDE is derived as a stationary
tent with that given by the operator product expansion techzqngition of the potential. In Sec. Il a formula for calculat-
nique (for a review, see, e.g., Ref2]). The SDE is under- jnq the pion decay constant is presented. Section IV is the
stood as a stationary condition of an effective potential formain part of this paper, where numerical solutions of the
the quark propagator, and the chiral broken solution is enerspg are shown. Values of the pion decay constant and the
getically favored by the effective potentig8—6]. effective potential are calculated from the solutions, and the

The SDE was applied for studying the chiral phase tranphase structure is studied. Finally a summary and discussion
sition of QCD at finite temperature and/or dengify-18]. In  are given in Sec. V.
many of those the chiral phase transition point was deter-
mined from the point where the mass function pion decay |, EFFECTIVE POTENTIAL AND SCHWINGER-DYSON
constankvanished without studying an effective potential. In EQUATION
Ref. [13] an effective potential for the mass function was
analyzed by using an approximate form of the momentum At zero temperature the effective action for the quark
dependence of the mass function. It was shown that thergropagatoiSr is given by[4,6]
were metastable states where chiral symmetry was broken

[[Se]=iTrin Se—Tr{i4Sc]—ikop| Sk, (2.1

*Electronic address: harada@physics.unc.edu. Present addregdiere x,p stands for the two-particle-irreduciblevith re-
Department of Physics, Nagoya University, Nagoya 464-8602spect to the quark linediagram contribution. In this paper
Japan. we take a first order approximation fef,p, in which the

"Electronic address: ashibata@post.kek.jp one-gluon exchange graph contributes:
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Kopl Se]=— NfNZCCZ f d*xd*yg? V[S]=TS f d3p3{|n def Se(p)]+ [ piSe(p)]}
u J (27)
XU[SE(X=Y)i 7, Se(y = X)i%,]D*"(x=y), 1 @ [ o
(2.2 NPLIPS e B
where the number of flavoN;) and of color N¢) and the Xtr[iSe(p) ¥,iSe(K) ¥, JiD*(k—p), 2.7

second Casimir coefficient of SNE) (C,) appear since we
factor color and flavor indices from the quark and gluonynere
propagators. In this expression, the quark propadatarar-
ries bispinor indices and the gluon propagafdt” carries
Lorenz indices. From the above effective action the effective
potential forSg is obtained by the usual procedure. In mo-

po=iu+up, u=(2m+1)xT,

ko=iv+u, v=02n+1l)wT (n,m=integey,

mentum space it is expressed as 2.8
d*p , and 2, and ¥, imply summations ovem and n, respec-
VISe]= 2 )4{|n def Se(p) ]+t PiSe(p)]} tively.
4 The argument of the running coupling should be taken as
1 d*p d%k (k—p)? for preserving chiral symmetrj23]. However, as is
+ —f - 2] - 4ngz(p,k) shown in Ref[23], the angular average, i.e., where the run-
2) i2m*) i2m)

ning coupling is a function in—p3+|p|2—k3+|k|?, is a
Xt[iSE(P) ¥,.iSe(K) y,]iD#*(k—p), (2.3  good approximation al=u=0. If we naively extend this
approximation, the running coupling will depend qn
where an overall factoNcN; is dropped. The running cou- However, the running coupling should not depend @n
pling g2(p,k) is introduced to improve the SDE to include Then in this paper we use the approximation where the run-
the aymptotic freedom of QCD. An explicit form of the run- ning coupling is a function in—(po_ﬂ)2+|5|2_(ko_ﬂ)2

ning coupling will be given below. In this paper we take the +|Kk|2. The explicit form of the running coupling {24]
Landau gauge for the gluon propagator:

1 " 20,k = (42 3 f{l (u2+x2+v2+y2
L , Y g°(p,k)=(4m n :
iD* (I)=I—2{g" BT (2.9 1INc—2N¢ Aécd
(
The general form of the full quark propagator is expressed l if te<t,
as t
a-1 1 (te—to)?—(t—tc)? .
iSe“(p)=A(p)b—B(p). (2.9 a={ = if te<t<teg,
te 2tE(te—te)
The SDE for the quark propagatSg is given as a stationary 1 (te—to)
condition of the above effective potentid] (see also, Ref. — F 2C if t<tc,
[6]). The SDE gives coupled equations farand B. If the (P 2t
running couplingg(p,k) is a function inp? andk?, i.e., if it (2.9
does not depend op-k, it is easy to show thaA(p?)=1 is )
a solution of the SDE in the Landau gauge with the laddeith
approximation. . .
Let us go to nonzero temperature and density. In the x=|p|, y=lk|. (2.10

imaginary time formalism20] the partition function is cal-
culated by the action given bisee, for reviews, e.g., Refs. Ay is a scale where the one-loop running coupling di-
[21,22) verges, and the value df 4 will be determined later from
the infrared structure of the present analysig.andtc are
N 3 — 0 parameters introduced to regularize the infrared behavior of
S= J; d"J’ d°x[ Locot wipy dl, 26 the running coupling. In the numerical analysis below, since
the dominant part of the mass function lies below the thresh-

whereT and x denote the temperature and chemical poten©!d ©f charm quark, we will také;=3 andNc=3. More-

tials associated with the quafkaryon number density, and ©Ver» We use fixed valueg=0.5 andtc=—2.0[2].

Laqcp takes the same form as the QCD Lagrangiail atu

=0. From the above action we obtain an effective potential

for the quark propagatds: similar to the one in Eq(2.3): The usualA ocp is determined from the ultraviolet structure.
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The general form of the full quark propagator, which is B(k)
invariant under the parity transformation, is given by B(p)=K(p,k)*ﬁ
[7,11,12,1% B-(k)—k

. dyy? B(k)
. — | = S
ISz (P)=A(p)B~B(P)+ C(PIP0Y°~ 5[7°.BID(P). TS | ke O A
(2.11
where
HereA~D are functions iy and|p| (as well asT and ), 5 2
. 3 1 u—uv)+(x+

although we writeA(p), etc. . o K(p,k)E—ngz(p,k)—In(( v)2 ( Y)2 .

It should be noticed that the effective potential in Eq. 2 2xXy '\ (u—v) +(x—y)
(2.7) is invariant under the tranfromation (2.19

> , - S In general caseB is a complex function. By using the
—(ila3,0\aT _ 0.1.3
Se(Po.P)—Se(Po.P) = (1Y 7" ¥ ) Se(Po, —P) (177 7). fact thatK(p,k) is a real function, it is easily shown that

B*(p) satisfies the same equation B¢§p*) does, where

p*#=(p°* p)=(—iu+pu,p). So these two are equal to

T . I. e . . .A T
whereS] implies transposition oS in spinor spacé.At each other up to a SignB* (p)=B(p*) or B*(p)—

=u=0 this is nothing but the time reversal symmetry. It is . : A
K 9 y y —B(p*). SinceB is an even function irpy at ©=0, the

natural to expect that this “time reversal” symmetry is not hoi ‘ " i o implies tha® i |
spontaneously broken. The existence of this “time reversa[¢10!ce Of posi ive(negativg sign implies thaB is real(pure

leads toD(p)=0. imaginary at u=0. HereB should be real at.=0; then,
Moreover, atu=0 the effective potential is invariant un- B*(p)=B(p* 21
der the following “charge conjugation:” (P)=B(p™). (2.19
. . _ After a solution of the SDE2.14) is substituted with the
SE(P)—=SE(P)=—(1Y*Y)SE(—p)(i1v*Y°). (2.13  approximate solutiod(p) —1=C(p)=0 into Eq.(2.7), the
effective potential becomes
We also assume that this symmetry is not spontaneously bro-

ken, and it implies that all the scalar functioAsB, andC V[Bsol=V[Bso]l — V[ B=0]

(as well asD) are even functions ipy=iu. As we men- 5 )

tioned above, aff=u=0, of courseC(p)=0, and A(p) 2 S fd 2 | Bso(P)—P

=1 in the Landau gaug€(p) #0 as well asA(p)# 1 does N ; = X n —p?

not imply chiral symmetry breaking, and nonz&¢p) is the

only signal of breaking in the present analysis. Then we con- Bgol(p)

siderA(p) —1=C(p)=0 as an approximate solution at gen- et (2.18
eralTandu. We note that a nonzeid(p) also breaks chiral Bso(P)—P

symmetry; however, this term does not contribute to the lo- . .
y y _ — whereB,, denotes a solution of E@2.15. This value of the
cal order parameter of chiral symmetryuyi)=— [tr S¢.

We ch £ i e . di effective potential is understood as the energy density of the
cuisce dogziva%vacuum of “ime reversal™ Invariance as dis-gq,tion. So the true vacuum should be determined by study-

) L . ing the value of the effective potential. When the value of
As in the case at = © =0, the SDE is given as a station- ing P

ary condition of the effective potentia2.7): V[Bg, | for a non.tr|V|aI solu.tlonBSO, is negatlve,. tﬁe chiral
broken vacuum is energetically favored. PositVMEBg, ],

43Kk however, implies that the chiral symmetric vacuum is a true
isei-8-T3 | SRSk vacuum.
X y,iD*"(k—p). (2.14 I1l. PION DECAY CONSTANT

At zero temperature and zero chemical potential the pion
By taking a trace and performing the three-dimensionaldecay constant is defined by the matrix element of the axial-
angle integratior(note that the present form of the running vector current between the vacuum and one-pion state:
coupling does not depend on the anglee obtain a self-

consistent equation fd: (0]35,,(0)|7°(q)) =16, (3.2

wherea andb denote isospin indices arj@ll:EyM VA
2In our convention, §°)* =1°, (y})* =" and (33)* = »°, while ~ an axial-vector current witfi® being a generator of SB).

(YA)*=— 9~ At finite temperature and density there are two distinct pion
3Actually, in the numerical calculation of the SDE in a bifurcation decay constantf25] according to space-time symmetry of
approximation, nd(p) #0 solution is obtained. the matrix element, which are defined by
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(0132,(0)] 7>(q))7.,,

:i5ab[v,u(v'q)f'n'LJ'_(g,uV_V,qu)quﬂ'T]! (32)

whereV"“=(1,6) is a vector of the medium. In this expres-
sion f, and f_ are defined in the zero-momentum limit

q~>0 [25]

PHYSICAL REVIEW D 59 014010

The approximation adopted by Pagels and Stokéf es-

sentially neglects derivatives of in the zero-momentum
limit (see, for reviews, e.g., Refl2,26]):

d J .
lim——=x(p;a) = lim—x(p;q)=0. (3.9

q_>0 | | q—>0{9q

The above pion decay constants are expressed by usmlq1IS apprOX|mat|on is the same as replacp(@ q) in Eq.

the amputated pion Bethe-SalpetBS) amplitudey as

VM(Vq)fWL+(g[LV_V VV)qu’JTT

2 f (2m)3

Xtr[ v, Y51 SE(P+a/2) x(p;Q)iSe(p—a/2)].

(3.3 with x(p;0), andreproduces the exact value bf at
T=0 in the ladder approximation within a small erf@].
Then we use the same approximation at fiflitend w in this
paper. Replacing(p;q) with x(p;0) in Eq.(3.3), differen-
tiating Eq. (3.3) with respect toq®, and takingg—O0 limit,
we obtain

i 5ab[v VafﬂTL+ (g;La_VaV )fw]

(3.3 N (D).
Ne Se(p
By using current conservation, it is shown that the pion mo-  ~ 2 f (27 )3 7’#7’5[ 2 X(p 0)iSe(p)
mentumq and the pion energy satisfy the dispersion re-
lation [25] Se(p)
+iSE(P)x(P; 0) || (3.9

fr.
=42 (3.4
L

Here we have incorporated the on-shell dispersion relation
(3.4). Then substituting Eq(3.7) into Eqg. (3.9) and taking

It is straightforward to obtain the pion decay constant ifthe V,V, part, we find
we have an explicit expression of the amputated pion BS

amplitude. Although it is generally quite difficult to obtain

the BS amplitude, one can determine it in the>0 limit
x(p;q=0) from the chiral Ward-Takahashi identity

iq“T§,(p—a/2,p+0a/2)

=S p—al)Tays+TaysSE (p+0a/2), (3.5

wherel“a is the axial-vector—quark—antiquark vertex func-

tion, and we have suppressed color indig&ote thatq® in

Eq. (3.5 is independent ofy; i.e., they do not generally
satisfy the pion on-shell dispersion relati¢8.4).] In the

zero-momentum Iimitﬁ, q°—0 (the on-shell limit of the
pion), I

iT§,(p—a/2,p+q/2)

q.a°~0

9" f 7]

1 .
X———x(P.OTa, (3.6

0 wq
where w2=(f .+/f)|q|?>. Substituting Eq.(3.6) into Eq.

(3.5 and taking the zero-momentum limit, we find

R 2
x(p;0)= f—LB(p)%, 3.7

where we have used (p)=0 in S(p).

aM is dominated by the pion-exchange contribution

)
50)[Bp) b0 |

(B?(p) — p?)?

f2 = 4NCTE f
(3.10

where we performed a three-dimensional angle integration. If

the mass functiorB(p) is a function inp?=p2—p?, this
agrees with the formula derived in R¢L4]. We also obtain
a similar formula forf 1 by selecting thed,,,—V,V,) part:

X dB(p)
dxe B p)(B() 3 ﬂx)

(B?(p) — p?)?

f7TTf7T|_ 4NCT2 f
(3.11

wheref , on the left hand side appears from the normaliza-
tion of y (see Eq(3.7)).

It is convenient to define a space-time averaged pion de-
cay constant by

1 J
ffrE f‘n’LZgMQE[VM(V' q)fﬂ'L+ (gp,v_v/.tvv)qyf 7TT]

1 2
:Z(wa+3f7rTf7TL)- (312

This expression agrees with Pagels-Stokar fornjd at
T=0 andu=0 after replacing the integral variables.

In the formula(3.10 we need a derivative d8(p) with
respect tq,. However, what is obtained by solving the SDE

014010-4
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(2.19 is a function in discrete=(2n+ 1)« T. To obtain the the property(2.17) we can restrict this region from 0 to.
derivative an “analytic continuation” iru from a discrete  Then we will perform a procedure similar to that foandy:
variable to a continuous variable is needed. This “analytic

continuation” is done by using the SDR.15) itself: Un=In(Un/Aged,  Va=IN(vn/Aged =Ag+AU-N,
AUV_AlR
dB(p) K(p,k)  B(k) n=0,1,...Ny—1, AU=————. (4.4
Po———=Po ——— . (313 Ny—1
dPo dPo  B?(k)—k

In the case off # 0 we truncate the infinite sum of the Mat-
IV. NUMERICAL ANALYSIS subara frequency at a finite numbey; :

In this section we will numerically solve the SDE.15
and calculate the effective potential and the pion decay con- E - Z
stantf (T) defined in Eq(3.12 for the casesl) T=0 and
pn#0,(2) T#0 and =0, and(3) T#0 andu#0, sepa- The above Eq94.1)—(4.5 set the regularizations adopted in
rately. The essential parameters in the present analysis atieis paper. We will check that the results are independent of
A gcq@ndtg in the running coupling2.9). In this paper we fix  the regularizations.
t=0.5 and the value of\ ;4 is determined by calculating Solving the SDE is done by an iteration method:
the pion decay constant through the Pagels-Stokar formula
[19] at T=w=0. Most results are presented by the ratio to Boia(k)
pion decay constant a&f=x=0. When we present actual Bnew(p)=K(p,k)m- (4.9
values, we use the value of the pion decay constant in the old

chiral limit, f,=88 MeV [27]. (This value off. yields  siarting from a trial function, we stop the iteration if the
A qe=582 MeV.) following condition is satisfied:

(4.5

A. Preliminary

o il st (sl
. : _ eAge™ 41"
Here we will summarize the framework of the numerical 4" [\ 8LSe(P) o) \ OLS(P) ot
analysis done below. Variablesandy in Eq. (2.10 take _ _ t _
continuous values from 0 t@. To solve the SDE numeri- [Boa(P) = Bre(P) I TBo(P) ~Breu(P)].
cally we first introduce new variableX and Y as X 4.7
=In(}Aqcd andY=In(y/Aq.d). These variables take values
from —o to «. Dominant contributions to the decay con-
stant and the effective potential lie around 0; ixegry is
aroundA .4, as shown later. Then we introduce ultraviolet
and infrared cutoff(,Y e [\ |g,\yy]. Finally, we descretize
X andY at Ny points evenly:

with suitably smalle. To obtain the second line we have
used the fact thaA(p) —1=C(p) =0 is an approximate so-
lution. This condition is natural in the sense that the station-
ary condition of the effective potential is satisfied within a
required error. In this paper we use=10 1°,

Xi,Yi:)\|R+AX'i, i=0,1,...,NX—1, B.T=0 andu#O
As we discussed in the previous subsection the infinite
_ Ay AR Matsubara frequency sum becomes an integration over the
AX= ————. 4.9 : ! s
Ny—1 continuous variablel or v at T=0. Descretizations of these

variables as well ax andy are done as in Eq<$4.1) and
Accordingly integrations ovex andy are replaced with ap- (4.4). We use the following choice of infrared and ultraviolet
propriate summations cutoffs:

X,Ye[—4.9,29,
f dx,f dy—>AXZ eXi, AXZ eV, 4.2 [ 3
U,Ve[-10.0,2.9. (4.8)

We extract the derivative d(p) with respect tox, which is

used in the formula fof _r in Eq. (3.1, from three points For initial trial functions we use the following two types:

by using a numerical differentiation formula: (A)  B(P)=Beo(P)|7=uco
—u=0>
XﬁB(X) 24B(Xi+1)_3BA(Xi)_B(Xi+2). B Bip)- 0.1Aqq  for U,=<Uyy and X;<Xyo,
XA g 24X P=lo otherwise,
4.3 4.9

In the case ofT=0 the Matsubara frequency sum be- whereBgy(p)|t-,—o is a solution of the SDE af = =0,
comes an integration overor v from —« to . By using andU, andX; are descretized variables as in E¢s1) and
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Uvx
Uuvu

(a) (b)

FIG. 1. Solution of the SDE at/f,=0.3 for Ny =70, Nx=60: (a) real part,(b) imaginary part. The scal&,is indicated by 0 orJ
and X axes. Each number on the top of the vertical axis is the maximum value BffReor ImB/f ..

Integrand of  f;2(W) Integrand of -V

(a) (b)

FIG. 2. Integrands ofa) f,z,(,u) and (b) —V[Bsm] at u/f .=0.3 forNy=70, Nx=60. The upper 9/10 of each figure is clipped.

SV,
T T T T T
12 k
§
11} R
]
L]
n
1k - .
09 | 40,30) © i
50,40) +
(60,50) ©
(70,60) x
08| E
1 1 1 3 1
o7 1 2 3 4 5 u'”;‘

FIG. 3. Typical values of _(u)/f , for four choices of the size of descretizatio,Ny)=(40,30), (50,40), (60,50), and (70,60).
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VIBSDJ”:

0 T T T T T

-05 | .

o

38F

O S
PN
(=X=1

X0+ 6

25 E
%
+
3l J
]
-35 Y & _
_4 1 1 1 1 i
1 2 3 4 5 uly;

FIG. 4. Typical values OV[BSO,]/f‘,‘T for four choices of the size of descretizatioN,Nx) =(40,30), (50,40), (60,50), and (70,60).

(4.4). To check the validity of the cutoffs in Eq&4.8 we  £ig 3 and that o[ B, ]/ f~ in Fig. 4 for four choices of the
show (a) the real part andb) the imaginary part_of the so- gjze of descretizationN,, ,WNx)=(40,30), (50,40), (60,50),
lution in Fig. 1, and integrands ¢ f2(u), (0) —V[Bglin  and (70,60). This shows that the choiceNy(,Ny)
Fig. 2, at u/f,=3.0 for (Ny,Nyx)=(70,60) by using the =(70,60) is large enough for the present purpose.
initial trial function (A). Figure 1a) shows that the real part Now we show the resultant values bf(w)/f . for two
becomes small abov& 4. This behavior is similar to that choices of initial trial functions in Fig. 5. Below/f,=3.0
of the solution atT=w=0. The dependence ox of the both trial functions converge to the same nontrivial solution.
imaginary part is similar to that of the real part. Since theThe value off .(«) increases slightly. ChoicéB) in Egs.
imaginary part is an odd function in it becomes zero in the (4.9 converges to the trivial solution abovg/f,.=3.0.
infrared region ofl. Figure 2 shows that the dominant part of However, the trial function(A) converges to a nontrivial
each integrand lies within the integration range. These implyolution, and the resultant value df(u«) increases. Above
that the choice of range in Eq&t.8) is enough. ulf.=6.8,(A) also converges to the trivial solution. In the
Next let us study the dependence of the results on the sizange 3.6< u/f .<6.8 two initial trial functions converge to
of descretization. We show typical values bf(u)/f . in different solutions: one corresponds to the chiral broken

LW,
14 T T T T T T
12 | za®
o a “
o o]
o
. o
18 ... L. B p
08
06 A) @
B) x
04} .
02| ]
........................................................................................ e
o : x " ' x nl,
1 2 3 4 5 6 7

FIG. 5. u dependence of (n)/f, at T=0 for two choices of the initial trial functionéA) and(B) in Eq. (4.9).
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Vi 4
VIB .l If?
10 T 1 T T T T
8+ [ Q-
o
a}
6 I 4
4L 4
a
(A) o
(B) *
2r 4
o
2]
o
(1 R R Moo Mo W P Qe
a
o
2 | a .
o
L] ] a » a a
4l : . : . . Via
1 2 3 4 5 6 7 H n

FIG. 6. u dependence of the effective potenﬁ_lé[lBsm]/fj‘T atT=0.

vacuum and another to the symmetric vacuum. Moreovemal symmetric vacuum is the true vacuum. Chiral symmetry

the trivial solution is always a solution of the S_E(E.lS). is restored at the point where the Valueﬁstol] becomes
Then we have to study which of the vacua is the truepositive: the chiral phase transition occursuat 460 MeV
vacuum. wulf.=5.23). Since the value of the pion decay constant

As we discussed in Sec. II, the true vacuum is determineganishes discontinuously at that point, the phase transition is
by studying the effective potential. We show the value of theglearly of first order. The nontrivial solutions for 5.23
effective potentiaM[ B, ]/f% in Fig. 6. Since the value for <ulf_<6.8 correspond to metastable states, which were
the trivial solution is already subtracted from the expressiorshown in Ref[13] by assuming a momentum dependence of
in Eq. (2.18, a positive(negativé value ofV[Bsol] implies  the mass function. The result here obtained by solving the
that the energy of the chiral broken vacuum is largerSDE (2.15 agrees qualitatively with their result.

(smalley than that of the symmetric vacuum. For 3.0

< ulf,<5.23,V[Bggl(a)< V[ Bsoll(s)= 0, which implies that C.T#0 andp=0

the chiral broken vacuum is elergetically favored. On the At nonzero temperature we perform the Matsubara fre-
other hand, for 5.28 u/f ;<6.8,V[Bg,l(a)>0, and the chi- quency sum by truncating it at some finite number. Integra-

ALY A
1.06 T T T T T
[ ]
1.04 | 4
510,60 4
16,60) +
12 b (20,60) o R
1F J
a
098 | E
0.96 | B
094 . -
0.92 L L 1 L A T
0.4 0.6 0.8 1 12 1.4 16 ”;‘

FIG. 7. Values off (T)/f, atT/f,=0.5, 1.0, and 1.5 for three choices of the truncation pdifpt=10, 15, and 20.
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0 02 04 06 08 1 ; : . ”
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FIG. 8. Temperature dependencedaff .(T)/f, and(b) V[Bsm]/ff;.

tion over the spatial momentum is done as shown in Eqschange in the low temperature region. It increases once
(4.1 and(4.2. We have checked that the integration rangearoundT/f .~ 0.7 and decreases to zero above that point, and
given in the first line of Eqs(4.9) is large enough for the finally reaches zero around f .= 1.89. Differently from the
present purpose. Since the trial functi@) converges to the previous case, the value of the potential reaches zero around
same solution aéA) for small u in the case off =0, it may  the temperature where the decay constant vanishes. Since
be enough to use the trial functidA) for studying the phase there are numerical errors in the present analysis, we cannot
structure. Here and henceforth we use the trial function otlearly show whether the decay constant and the potential
type (A) only. First, we check the dependences of the resultsanish simultaneously. Our result shows that the chiral phase
on the truncation. In Fig. 7 we show the valuesfofT)/f,  transition is of second order or of very weak first order, and
atT/f_=0.5, 1.0, and 1.5 for three choices of the truncationthat the critical temperature is arouiid=166 MeV.

point: N,=10, 15, and 20. It is clear that the choibg,

Ny=20 is large enough as the truncation point for the D. T#0 and u#0
present purpose.

__The resultant temperature dependence$ ¢f)/f and Now, we solve the SDE when bothand x are nonzero.
V[Bgol/ fj‘T are shown in Fig. 8. The value 6f(T) does not Infrared and ultraviolet cutoffs fox integration are fixed as
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FIG. 9. Temperature dependencesf ofT) /f . for u/f =1, 2, 3, 4, and 5.

in the first equation of Eq94.8), and the sizes of descreti- of the pion decay constant vanish. Then the phase transitions
zations are fixed to beNy ,Nyx)=(20,60). are clearly of first order as in the caseTof 0 andp#0. To

In the previous subsections we found that the phase trarstudy phase transitions for smallgrwe concentrate on the
sition atT=0 and u#0 is of first order, while that al  temperature dependences around the phase transition points.
#0 andu =0 is of second order or of very weak first order. Shown in Figs. 11 and 12 are the temperature dependences
Then one can expect phase transitions of first order for smaflf the pion decay constant and the effective potential for
T and largew, and those of weak first order for largeand /f.=0.25, 0.5, and 0.75 together with those foif .= 1.
small w. First, we show the temperature dependence Ogor w!f_=0.5, 0.75, and 1.0 the values of the pion decay
f(T)/f, in Fig. 9 and that ofV[Bg,]/f% in Fig. 10 for  constant approach zero as if the phase transitions are of sec-
wlf.=1,2,3,4, and 5. Figure 9 shows that in all the casesnd order. However, the values of the effective potential be-
the values of the pion decay constant increase once arour$me positive before the values of the decay constant
T~f, and decrease above that. These, especiallyfdr,  reaches zero. Then we conclude that the phase transitions for
=1 and 2, behave as if the phase transitions are of secong/f_=0.5, 0.75, and 1.0 are clearly of first order. On the
order. However, it is clear from Fig. 10 that the values of thegther hand, the phase transition fotf .= 0.25 is of second
effective potentiaV[ B, become positive before the values order or of very weak first order.

WB sol] [f;‘

R4 ® &

1r a X B
+ a
2 + [a] X a
+
R + v s o] X a

+
3L o x A -

g8 @ 2 B : m g © %

N -y
4 - X x X 4 E
A A
5 . . . . . . . . . Tlf
0 0.2 0.4 0.6 08 1 12 1.4 186 18 2 ke

FIG. 10. Temperature dependence of the effective poteﬁ[iagoﬂ/fi for w/f,=1, 2, 3, 4, and 5.
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FIG. 11. Temperature dependenced ofT)/f , for u/f ,=0.25, 0.5, 0.75, and 1.0.

Finally we show a phase diagram derived by the preserthe value of the effective potential for the broken vacuum
analysis in Fig. 13. As was expected, the phase transitionsecame bigger than that for the symmetric vacuum before
for small T and largeu are of first order, and those for large the value of the pion decay constant vanished. The phase
T and smallu are of second order or of very weak first order. transition is clearly of first order. On the other hand, Tor

#0 and =0 the value of the effective potential for the
V. SUMMARY AND DISCUSSION broken vacuum reached that for the symmetric vacuum
around the temperature where the value of the pion decay

We analyzed the phase structure of QCD at finite tem-constant vanished. The phase transition is of second order or
perature and density by solving the self-consistentvery weak first order. We presented the resultant phase dia-
Schwinger-Dyson equation for the quark propagator with thegram on a generdl-u plane. Phase transitions are clearly of
improved ladder approximation in the Landau gauge. A piorfirst order in most cases, and for smallthey are of second
decay constant was calculated by using a generalized versiander or very weak first order. Our results show that it is
of the Pagels-Stokar formula. The chiral phase transitionmportant to use the effective potential to study the phase
point was determined by an effective potential for the propastructure at finite temperature and density.

gator. When we raised the chemical potengialvith T=0, Finally, some comments are in order. Generally the run-
VIB.llf?
0.15 T T T T T T T
o1} o 0 ]
: 4
-
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ok O . . pUSURUORRRURRR I n..r.a..'?....,.x.....wwx,.._
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+ a x
01} + a X .
a x
+ x
-0.15 - a E
x
a
02| x 10 g
o] 075 +
X 05 a
0252 025 x ]
x “”;:
03 s . . . . . . T,
1.72 1.74 1.76 1.78 1.8 1.82 1.84 1.86 1.88

FIG. 12. Temperature dependence of the effective poteﬁiago,]/fi for u/f,,=0.25, 0.5, 0.75, and 1.0.
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FIG. 13. Phase diagram obtained by the present analysis. Points indicatedaby the phase transition points of first order and points
by + of second order or very weak first order.

ning coupling should include the term from vacuum polar-to apply the method used in this paper. A new method to
ization of quarks and gluons at finite temperature and densolve the SDE may be needed. We expect that the inclusion
sity. Moreover, the gluons at high temperature acquire amf the deviations oA—1 andC from zero does not change
electric screening mass of ordgl [28]. We dropped these the structure of the phase transition shown in the present
effects, and used a running coupling and a gluon propagatqjaper.

of the same forms aT=u=0. (The same approximation

was used in Ref[17].) These effects can be included by

using different running couplings and gluon propagators ACKNOWLEDGMENTS
which depend explicitly off andu such as in Ref4.13,16.
The approximation oA—1=C=0 might not be good for We would like to thank Professor Paul Frampton, Profes-

high tempreture and/or density. However, inclusion of thesor Taichiro Kugo, Professor Jack Ng, Professor Ryan
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