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Chiral phase transition of QCD at finite temperature and density
from the Schwinger-Dyson equation
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We study the chiral phase transition of QCD at finite temperature and density by numerically solving the
Schwinger-Dyson equation for the quark propagator with the improved ladder approximation in the Landau
gauge. Using the solution we calculate a pion decay constant from a generalized version of the Pagels-Stokar
formula. The chiral phase transition point is determined by analyzing an effective potential for the quark
propagator. We find solutions for which chiral symmetry is broken while the value of the effective potential is
larger than that for the chiral symmetric vacuum. These solutions correspond to metastable states, and the
chiral symmetric vacuum is energetically favored. We present a phase diagram on the general temperature-
chemical potential plane, and show that phase transitions are of first order in wide range.
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I. INTRODUCTION

In QCD an approximate chiral symmetry exists at the L
grangian level and it is spontaneously broken by the str
gauge interaction. Accordingly approximate Namb
Goldstone~NG! bosons appear, and pions are regarded
NG bosons. In hot and/or dense matter, however, quark c
densates melt at some critical point, and chiral symmetr
restored~for recent reviews, see, e.g., Ref.@1#!. To study the
chiral phase transition we need a nonperturbative treatm

The Schwinger-Dyson equation~SDE! is a powerful tool
for studying the qualitative structure of the chiral symme
breaking of QCD. By suitable choices of the running co
pling, in which the asymptotic freedom is incorporated, t
SDE provides a nontrivial solution for the mass functio
The behavior of the mass function at high energy is con
tent with that given by the operator product expansion te
nique ~for a review, see, e.g., Ref.@2#!. The SDE is under-
stood as a stationary condition of an effective potential
the quark propagator, and the chiral broken solution is en
getically favored by the effective potential@3–6#.

The SDE was applied for studying the chiral phase tr
sition of QCD at finite temperature and/or density@7–18#. In
many of those the chiral phase transition point was de
mined from the point where the mass function~or pion decay
constant! vanished without studying an effective potential.
Ref. @13# an effective potential for the mass function w
analyzed by using an approximate form of the moment
dependence of the mass function. It was shown that th
were metastable states where chiral symmetry was bro
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while the energy was bigger than that for the symme
vacuum. It is interesting to study whether this kind of me
stable state is derived by fully solving the SDE.

In this paper we study the chiral phase transition in QC
at finite temperature and/or density by numerically solvi
the SDE using the Matsubara formalism. As an order para
eter we calculate the pion decay constant using a genera
version of the Pagels-Stokar formula@19#. We calculate the
value of the effective potential at the solution of the SDE
determine the chiral phase transition points. We show t
metastable states actually exist in a wide range. The orde
the phase transitions is determined by comparing the o
parameter with the effective potential. The phase transitio
of first order for a wide range atTÞ0 andmÞ0.

This paper is organized as follows. An effective potent
for the quark propagator is introduced at finite temperat
and/or density in Sec. II. The SDE is derived as a station
condition of the potential. In Sec. III a formula for calcula
ing the pion decay constant is presented. Section IV is
main part of this paper, where numerical solutions of t
SDE are shown. Values of the pion decay constant and
effective potential are calculated from the solutions, and
phase structure is studied. Finally a summary and discus
are given in Sec. V.

II. EFFECTIVE POTENTIAL AND SCHWINGER-DYSON
EQUATION

At zero temperature the effective action for the qua
propagatorSF is given by@4,6#

G@SF#5 iTr ln SF2Tr@ i ]”SF#2 ik2PI@SF#, ~2.1!

where k2PI stands for the two-particle-irreducible~with re-
spect to the quark line! diagram contribution. In this pape
we take a first order approximation fork2PI, in which the
one-gluon exchange graph contributes:

ss:
,
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k2PI@SF#52
NfNCC2

2 E d4xd4yg2

3tr@SF~x2y!igmSF~y2x!ign#Dmn~x2y!,

~2.2!

where the number of flavor (Nf) and of color (NC) and the
second Casimir coefficient of SU(NC) (C2) appear since we
factor color and flavor indices from the quark and glu
propagators. In this expression, the quark propagatorSF car-
ries bispinor indices and the gluon propagatorDmn carries
Lorenz indices. From the above effective action the effect
potential forSF is obtained by the usual procedure. In m
mentum space it is expressed as

V@SF#5E d4p

i ~2p!4
$ ln det@SF~p!#1tr@p” iSF~p!#%

1
1

2E d4p

i ~2p!4E d4k

i ~2p!4
C2g2~p,k!

3tr@ iSF~p!gmiSF~k!gn# iD mn~k2p!, ~2.3!

where an overall factorNCNf is dropped. The running cou
pling g2(p,k) is introduced to improve the SDE to includ
the aymptotic freedom of QCD. An explicit form of the run
ning coupling will be given below. In this paper we take t
Landau gauge for the gluon propagator:

iD mn~ l !5
1

l 2Fgmn2
l ml n

l 2 G . ~2.4!

The general form of the full quark propagator is expres
as

iSF
21~p!5A~p!p”2B~p!. ~2.5!

The SDE for the quark propagatorSF is given as a stationary
condition of the above effective potential@4# ~see also, Ref.
@6#!. The SDE gives coupled equations forA and B. If the
running couplingg(p,k) is a function inp2 andk2, i.e., if it
does not depend onp•k, it is easy to show thatA(p2)51 is
a solution of the SDE in the Landau gauge with the lad
approximation.

Let us go to nonzero temperature and density. In
imaginary time formalism@20# the partition function is cal-
culated by the action given by~see, for reviews, e.g., Refs
@21,22#!

S5E
0

1/T

dtE d3x@LQCD1mc̄g0c#, ~2.6!

whereT andm denote the temperature and chemical pot
tials associated with the quark~baryon! number density, and
LQCD takes the same form as the QCD Lagrangian atT5m
50. From the above action we obtain an effective poten
for the quark propagatorSF similar to the one in Eq.~2.3!:
01401
e

d

r

e

-

l

V@SF#5T(
u
E d3pW

~2p!3
$ ln det@SF~p!#1tr@p” iSF~p!#%

1
1

2
T2(

u,v
E d3pW

~2p!3E d3kW

~2p!3
C2g2~p,k!

3tr@ iSF~p!gmiSF~k!gn# iD mn~k2p!, ~2.7!

where

p05 iu1m, u5~2m11!pT,

k05 iv1m, v5~2n11!pT ~n,m5 integer!,
~2.8!

and (u and (v imply summations overm and n, respec-
tively.

The argument of the running coupling should be taken
(k2p)2 for preserving chiral symmetry@23#. However, as is
shown in Ref.@23#, the angular average, i.e., where the ru
ning coupling is a function in2p0

21upW u22k0
21ukW u2, is a

good approximation atT5m50. If we naively extend this
approximation, the running coupling will depend onm.
However, the running coupling should not depend onm.
Then in this paper we use the approximation where the r
ning coupling is a function in2(p02m)21upW u22(k02m)2

1ukW u2. The explicit form of the running coupling is@24#

g2~p,k!5~4p!2
3

11NC22Nf
l̄F lnS u21x21v21y2

Lqcd
2 D G ,

l̄~ t !55
1

t
if tF,t,

1

tF
1

~ tF2tC!22~ t2tC!2

2tF
2~ tF2tC!

if tC,t,tF ,

1

tF
1

~ tF2tC!

2tF
2

if t,tC,

~2.9!

with

x[upW u, y[ukW u. ~2.10!

Lqcd is a scale where the one-loop running coupling
verges, and the value ofLqcd will be determined later from
the infrared structure of the present analysis.1 tF and tC are
parameters introduced to regularize the infrared behavio
the running coupling. In the numerical analysis below, sin
the dominant part of the mass function lies below the thre
old of charm quark, we will takeNf53 andNC53. More-
over, we use fixed valuestF50.5 andtC522.0 @2#.

1The usualLQCD is determined from the ultraviolet structure.
0-2
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CHIRAL PHASE TRANSITION OF QCD AT FINITE . . . PHYSICAL REVIEW D59 014010
The general form of the full quark propagator, which
invariant under the parity transformation, is given
@7,11,12,15#

iSF
21~p!5A~p!p”2B~p!1C~p!p0g02

i

2
@g0,p” #D~p!.

~2.11!

HereA;D are functions inp0 andupW u ~as well asT andm),
although we writeA(p), etc.

It should be noticed that the effective potential in E
~2.7! is invariant under the tranfromation

SF~p0 ,pW !→SF8 ~p0 ,pW !5~ ig1g3g0!SF
T~p0 ,2pW !~ ig0g1g3!,

~2.12!

whereSF
T implies transposition ofSF in spinor space.2 At T

5m50 this is nothing but the time reversal symmetry. It
natural to expect that this ‘‘time reversal’’ symmetry is n
spontaneously broken. The existence of this ‘‘time revers
leads toD(p)50.

Moreover, atm50 the effective potential is invariant un
der the following ‘‘charge conjugation:’’

SF~p!→SF8 ~p!52~ ig2g0!SF
T~2p!~ ig2g0!. ~2.13!

We also assume that this symmetry is not spontaneously
ken, and it implies that all the scalar functionsA, B, andC
~as well asD) are even functions inp05 iu. As we men-
tioned above, atT5m50, of courseC(p)50, and A(p)
51 in the Landau gauge.C(p)Þ0 as well asA(p)Þ1 does
not imply chiral symmetry breaking, and nonzeroB(p) is the
only signal of breaking in the present analysis. Then we c
siderA(p)215C(p)50 as an approximate solution at ge
eralT andm. We note that a nonzeroD(p) also breaks chira
symmetry; however, this term does not contribute to the
cal order parameter of chiral symmetry,^c̄c&52* tr SF .
We choose a vacuum of ‘‘time reversal’’ invariance as d
cussed above.3

As in the case atT5m50, the SDE is given as a station
ary condition of the effective potential~2.7!:

iSF
21~p!2p”5T(

v
E d3kW

~2p!3
C2g2~p,k!gmiSF~kf !

3gniD mn~k2p!. ~2.14!

By taking a trace and performing the three-dimensio
angle integration~note that the present form of the runnin
coupling does not depend on the angle!, we obtain a self-
consistent equation forB:

2In our convention, (g0)* 5g0, (g1)* 5g1 and (g3)* 5g3, while
(g2)* 52g2.

3Actually, in the numerical calculation of the SDE in a bifurcatio
approximation, noD(p)Þ0 solution is obtained.
01401
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B~p!5K~p,k!*
B~k!

B2~k!2k2

[T(
v
E dyy2

2p2
K~p,k!

B~k!

B2~k!2k2
, ~2.15!

where

K~p,k![
3

2
C2g2~p,k!

1

2xy
lnS ~u2v !21~x1y!2

~u2v !21~x2y!2D .

~2.16!

In general casesB is a complex function. By using the
fact that K(p,k) is a real function, it is easily shown tha
B* (p) satisfies the same equation asB(p* ) does, where
p* m5(p0* ,pW )5(2 iu1m,pW ). So these two are equal t
each other up to a sign,B* (p)5B(p* ) or B* (p)5
2B(p* ). SinceB is an even function inp0 at m50, the
choice of positive~negative! sign implies thatB is real~pure
imaginary! at m50. HereB should be real atm50; then,

B* ~p!5B~p* !. ~2.17!

After a solution of the SDE~2.14! is substituted with the
approximate solutionA(p)215C(p)50 into Eq.~2.7!, the
effective potential becomes

V̄@Bsol#[V@Bsol#2V@B50#

5
2

p2
T(

u
E dxx2F2 lnS Bsol

2 ~p!2p2

2p2 D
1

Bsol
2 ~p!

Bsol
2 ~p!2p2G , ~2.18!

whereBsol denotes a solution of Eq.~2.15!. This value of the
effective potential is understood as the energy density of
solution. So the true vacuum should be determined by stu
ing the value of the effective potential. When the value
V̄@Bsol# for a nontrivial solutionBsol is negative, the chiral
broken vacuum is energetically favored. PositiveV̄@Bsol#,
however, implies that the chiral symmetric vacuum is a tr
vacuum.

III. PION DECAY CONSTANT

At zero temperature and zero chemical potential the p
decay constant is defined by the matrix element of the ax
vector current between the vacuum and one-pion state:

^0uJ5m
a ~0!upb~q!&5 idabqm f p , ~3.1!

wherea andb denote isospin indices andJ5m
a 5c̄gmg5Tac is

an axial-vector current withTa being a generator of SU(Nf).
At finite temperature and density there are two distinct p
decay constants@25# according to space-time symmetry o
the matrix element, which are defined by
0-3
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^0uJ5m
a ~0!upb~q!&T,m

5 idab@Vm~V•q! f pL1~gmn2VmVn!qn f pT#, ~3.2!

whereVm5(1,0W ) is a vector of the medium. In this expre
sion f pL and f pT are defined in the zero-momentum lim
q→0 @25#.

The above pion decay constants are expressed by u
the amputated pion Bethe-Salpeter~BS! amplitudex̂ as

Vm~V•q! f pL1~gmn2VmVn!qn f pT

52
NC

2
T(

u
E d3p

~2p!3

3tr@gmg5iSF~p1q/2!x̂~p;q!iSF~p2q/2!#.

~3.3!

By using current conservation, it is shown that the pion m
mentumqW and the pion energyq0 satisfy the dispersion re
lation @25#

q0
25

f pT

f pL
uqW u2. ~3.4!

It is straightforward to obtain the pion decay constan
we have an explicit expression of the amputated pion
amplitude. Although it is generally quite difficult to obtai
the BS amplitude, one can determine it in theq→0 limit
x̂(p;q50) from the chiral Ward-Takahashi identity

iqmG5m
a ~p2q/2,p1q/2!

5SF
21~p2q/2!Tag51Tag5SF

21~p1q/2!, ~3.5!

whereG5m
a is the axial-vector–quark–antiquark vertex fun

tion, and we have suppressed color indices.@Note thatq0 in
Eq. ~3.5! is independent ofqW ; i.e., they do not generally
satisfy the pion on-shell dispersion relation~3.4!.# In the
zero-momentum limitqW , q0→0 ~the on-shell limit of the
pion!, G5m

a is dominated by the pion-exchange contributio

iG5m
a ~p2q/2,p1q/2!

→
qW ,q0→0

i @Vm~V•q! f pL1~gmn2VmVn!qn f pT#

3
1

q0
22vq

2
x̂~p,0!Ta , ~3.6!

where vq
25( f pT / f pL)uqW u2. Substituting Eq.~3.6! into Eq.

~3.5! and taking the zero-momentum limit, we find

x̂~p;0!5
2

f pL
B~p!g5 , ~3.7!

where we have usedD(p)50 in SF(p).
01401
ing
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The approximation adopted by Pagels and Stokar@19# es-
sentially neglects derivatives ofx̂ in the zero-momentum
limit ~see, for reviews, e.g., Refs.@2,26#!:

lim
qW→0

]

]uqW u
x̂~p;q!5 lim

qW→0

]

]q0
x̂~p;q!50. ~3.8!

This approximation is the same as replacingx̂(p;q) in Eq.
~3.3! with x̂(p;0), andreproduces the exact value off p at
T50 in the ladder approximation within a small error@2#.
Then we use the same approximation at finiteT andm in this
paper. Replacingx̂(p;q) with x̂(p;0) in Eq. ~3.3!, differen-
tiating Eq. ~3.3! with respect toqa, and takingq→0 limit,
we obtain

idab@VmVa f pL1~gma2VaVm! f p#

52
NC

2
T(

u
E d3p

~2p!3
trFgmg5H i

2

SF~p!

]pa
x̂~p;0!iSF~p!

1 iSF~p!x̂~p;0!
i

2

SF~p!

]pa J G . ~3.9!

Here we have incorporated the on-shell dispersion rela
~3.4!. Then substituting Eq.~3.7! into Eq. ~3.9! and taking
the VmVa part, we find

f pL
2 54NCT(

u
E dxx2

2p2

B~p!S B~p!2p0

]B~p!

]p0
D

„B2~p!2p2
…

2
,

~3.10!

where we performed a three-dimensional angle integration
the mass functionB(p) is a function inp25p0

22pW 2, this
agrees with the formula derived in Ref.@14#. We also obtain
a similar formula forf pT by selecting the (gma2VmVa) part:

f pTf pL54NCT(
u
E dxx2

2p2

B~p!S B~p!2
x

3

]B~p!

]x D
„B2~p!2p2

…

2
,

~3.11!

where f pL on the left hand side appears from the normaliz
tion of x̂ ~see Eq.~3.7!!.

It is convenient to define a space-time averaged pion
cay constant by

f p
2 [ f pL

1

4
gma

]

]qa
@Vm~V•q! f pL1~gmn2VmVn!qn f pT#

5
1

4
~ f pL

2 13 f pTf pL!. ~3.12!

This expression agrees with Pagels-Stokar formula@19# at
T50 andm50 after replacing the integral variables.

In the formula~3.10! we need a derivative ofB(p) with
respect top0 . However, what is obtained by solving the SD
0-4
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~2.15! is a function in discreteu5(2n11)pT. To obtain the
derivative an ‘‘analytic continuation’’ inu from a discrete
variable to a continuous variable is needed. This ‘‘analy
continuation’’ is done by using the SDE~2.15! itself:

p0

]B~p!

]p0
5p0

]K~p,k!

]p0

B~k!

B2~k!2k2
. ~3.13!

IV. NUMERICAL ANALYSIS

In this section we will numerically solve the SDE~2.15!
and calculate the effective potential and the pion decay c
stant f p(T) defined in Eq.~3.12! for the cases~1! T50 and
mÞ0, ~2! TÞ0 and m50, and ~3! TÞ0 and mÞ0, sepa-
rately. The essential parameters in the present analysis
Lqcd andtF in the running coupling~2.9!. In this paper we fix
tF50.5 and the value ofLqcd is determined by calculating
the pion decay constant through the Pagels-Stokar form
@19# at T5m50. Most results are presented by the ratio
pion decay constant atT5m50. When we present actua
values, we use the value of the pion decay constant in
chiral limit, f p588 MeV @27#. ~This value of f p yields
Lqcd.582 MeV.)

A. Preliminary

Here we will summarize the framework of the numeric
analysis done below. Variablesx and y in Eq. ~2.10! take
continuous values from 0 tò . To solve the SDE numeri
cally we first introduce new variablesX and Y as X
[ ln(x/Lqcd) andY[ ln(y/Lqcd). These variables take value
from 2` to `. Dominant contributions to the decay co
stant and the effective potential lie around 0; i.e.,x or y is
aroundLqcd, as shown later. Then we introduce ultravio
and infrared cutoffsX,YP@l IR ,lUV#. Finally, we descretize
X andY at NX points evenly:

Xi ,Yi5l IR1DX• i , i 50,1, . . . ,NX21,

DX5
lUV2l IR

NX21
. ~4.1!

Accordingly integrations overx andy are replaced with ap
propriate summations

E dx,E dy→DX(
i

eXi, DX(
i

eYi. ~4.2!

We extract the derivative ofB(p) with respect tox, which is
used in the formula forf pT in Eq. ~3.11!, from three points
by using a numerical differentiation formula:

x
]B~x!

]x U
x/Lqcd5eXi

.
4B~xi 11!23B~xi !2B~xi 12!

2DX
.

~4.3!

In the case ofT50 the Matsubara frequency sum b
comes an integration overu or v from 2` to `. By using
01401
c

n-

are

la

e

l

the property~2.17! we can restrict this region from 0 tò.
Then we will perform a procedure similar to that forx andy:

Un5 ln~un /Lqcd!, Vn5 ln~vn /Lqcd!5L IR1DU•n,

n50,1, . . . ,NU21, DU5
LUV2L IR

NU21
. ~4.4!

In the case ofTÞ0 we truncate the infinite sum of the Ma
subara frequency at a finite numberNU :

(
n52`

`

→ (
n52NU21

NU

. ~4.5!

The above Eqs.~4.1!–~4.5! set the regularizations adopted
this paper. We will check that the results are independen
the regularizations.

Solving the SDE is done by an iteration method:

Bnew~p!5K~p,k!
Bold~k!

Bold
2 ~k!2k2

. ~4.6!

Starting from a trial function, we stop the iteration if th
following condition is satisfied:

«Lqcd
6 .

1

4
trF S dV

d@SF~p!#old
D †S dV

d@SF~p!#old
D G

5@Bold~p!2Bnew~p!#†@Bold~p!2Bnew~p!#,

~4.7!

with suitably small«. To obtain the second line we hav
used the fact thatA(p)215C(p)50 is an approximate so
lution. This condition is natural in the sense that the stati
ary condition of the effective potential is satisfied within
required error. In this paper we use«510210.

B. T50 and µÞ0

As we discussed in the previous subsection the infin
Matsubara frequency sum becomes an integration over
continuous variableu or v at T50. Descretizations of thes
variables as well asx and y are done as in Eqs.~4.1! and
~4.4!. We use the following choice of infrared and ultraviol
cutoffs:

X,YP@24.9,2.9#,

U,VP@210.0,2.8#. ~4.8!

For initial trial functions we use the following two types:

~A! B~p!5Bsol~p!uT5m50 ,

~B! B~p!5H 0.1Lqcd for Un<U20 and Xi<X10,

0 otherwise,
~4.9!

whereBsol(p)uT5m50 is a solution of the SDE atT5m50,
andUn andXi are descretized variables as in Eqs.~4.1! and
0-5



.

MASAYASU HARADA AND AKIHIRO SHIBATA PHYSICAL REVIEW D 59 014010
FIG. 1. Solution of the SDE atm/ f p50.3 for NU570, NX560: ~a! real part,~b! imaginary part. The scaleLqcd is indicated by 0 onU
andX axes. Each number on the top of the vertical axis is the maximum value of ReB/ f p or Im B/ f p .

FIG. 2. Integrands of~a! f p
2 (m) and ~b! 2V̄@Bsol# at m/ f p50.3 for NU570, NX560. The upper 9/10 of each figure is clipped.

FIG. 3. Typical values off p(m)/ f p for four choices of the size of descretization, (NU ,NX)5(40,30), (50,40), (60,50), and (70,60)
014010-6
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FIG. 4. Typical values ofV̄@Bsol#/ f p
4 for four choices of the size of descretization, (NU ,NX)5(40,30), (50,40), (60,50), and (70,60)
-

t
t

he

of
p

si

n.

l

e

en
~4.4!. To check the validity of the cutoffs in Eqs.~4.8! we
show ~a! the real part and~b! the imaginary part of the so
lution in Fig. 1, and integrands of~a! f p

2 (m), ~b! 2V̄@Bsol# in
Fig. 2, at m/ f p53.0 for (NU ,NX)5(70,60) by using the
initial trial function ~A!. Figure 1~a! shows that the real par
becomes small aboveLqcd. This behavior is similar to tha
of the solution atT5m50. The dependence onx of the
imaginary part is similar to that of the real part. Since t
imaginary part is an odd function inu, it becomes zero in the
infrared region ofu. Figure 2 shows that the dominant part
each integrand lies within the integration range. These im
that the choice of range in Eqs.~4.8! is enough.

Next let us study the dependence of the results on the
of descretization. We show typical values off p(m)/ f p in
01401
ly

ze

Fig. 3 and that ofV̄@Bsol#/ f p
4 in Fig. 4 for four choices of the

size of descretization, (NU ,NX)5(40,30), (50,40), (60,50),
and (70,60). This shows that the choice (NU ,NX)
5(70,60) is large enough for the present purpose.

Now we show the resultant values off p(m)/ f p for two
choices of initial trial functions in Fig. 5. Belowm/ f p53.0
both trial functions converge to the same nontrivial solutio
The value of f p(m) increases slightly. Choice~B! in Eqs.
~4.9! converges to the trivial solution abovem/ f p53.0.
However, the trial function~A! converges to a nontrivia
solution, and the resultant value off p(m) increases. Above
m/ f p56.8, ~A! also converges to the trivial solution. In th
range 3.0<m/ f p<6.8 two initial trial functions converge to
different solutions: one corresponds to the chiral brok
FIG. 5. m dependence off p(m)/ f p at T50 for two choices of the initial trial functions~A! and ~B! in Eq. ~4.9!.
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FIG. 6. m dependence of the effective potentialV̄@Bsol#/ f p
4 at T50.
ve

u

ne
th
r
io

e
.0

th

try

ant
n is
3
ere
of
the

re-
ra-
vacuum and another to the symmetric vacuum. Moreo
the trivial solution is always a solution of the SDE~2.15!.
Then we have to study which of the vacua is the tr
vacuum.

As we discussed in Sec. II, the true vacuum is determi
by studying the effective potential. We show the value of
effective potentialV̄@Bsol#/ f p

4 in Fig. 6. Since the value fo
the trivial solution is already subtracted from the express
in Eq. ~2.18!, a positive~negative! value of V̄@Bsol# implies
that the energy of the chiral broken vacuum is larg
~smaller! than that of the symmetric vacuum. For 3
<m/ f p,5.23,V̄@Bsol# (A),V̄@Bsol# (B)50, which implies that
the chiral broken vacuum is energetically favored. On
other hand, for 5.23<m/ f p<6.8, V̄@Bsol# (A).0, and the chi-
01401
r,

e

d
e

n

r

e

ral symmetric vacuum is the true vacuum. Chiral symme
is restored at the point where the value ofV̄@Bsol# becomes
positive: the chiral phase transition occurs atm5460 MeV
(m/ f p55.23). Since the value of the pion decay const
vanishes discontinuously at that point, the phase transitio
clearly of first order. The nontrivial solutions for 5.2
<m/ f p<6.8 correspond to metastable states, which w
shown in Ref.@13# by assuming a momentum dependence
the mass function. The result here obtained by solving
SDE ~2.15! agrees qualitatively with their result.

C. TÞ0 and µ50

At nonzero temperature we perform the Matsubara f
quency sum by truncating it at some finite number. Integ
FIG. 7. Values off p(T)/ f p at T/ f p50.5, 1.0, and 1.5 for three choices of the truncation point:NU510, 15, and 20.
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FIG. 8. Temperature dependences of~a! f p(T)/ f p and ~b! V̄@Bsol#/ f p
4 .
q
g

o
ul

io

he

nce
and

und
ince

nnot
tial
ase
nd
tion over the spatial momentum is done as shown in E
~4.1! and ~4.2!. We have checked that the integration ran
given in the first line of Eqs.~4.8! is large enough for the
present purpose. Since the trial function~B! converges to the
same solution as~A! for smallm in the case ofT50, it may
be enough to use the trial function~A! for studying the phase
structure. Here and henceforth we use the trial function
type ~A! only. First, we check the dependences of the res
on the truncation. In Fig. 7 we show the values off p(T)/ f p

at T/ f p50.5, 1.0, and 1.5 for three choices of the truncat
point: NU510, 15, and 20. It is clear that the choiceNU
NU520 is large enough as the truncation point for t
present purpose.

The resultant temperature dependences off p(T)/ f p and
V̄@Bsol#/ f p

4 are shown in Fig. 8. The value off p(T) does not
01401
s.
e

f
ts

n

change in the low temperature region. It increases o
aroundT/ f p;0.7 and decreases to zero above that point,
finally reaches zero aroundT/ f p51.89. Differently from the
previous case, the value of the potential reaches zero aro
the temperature where the decay constant vanishes. S
there are numerical errors in the present analysis, we ca
clearly show whether the decay constant and the poten
vanish simultaneously. Our result shows that the chiral ph
transition is of second order or of very weak first order, a
that the critical temperature is aroundTc5166 MeV.

D. TÞ0 and µÞ0

Now, we solve the SDE when bothT andm are nonzero.
Infrared and ultraviolet cutoffs forx integration are fixed as
0-9
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FIG. 9. Temperature dependences off p(T) / f p for m/ f p51, 2, 3, 4, and 5.
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he
in the first equation of Eqs.~4.8!, and the sizes of descret
zations are fixed to be (NU ,NX)5(20,60).

In the previous subsections we found that the phase t
sition at T50 and mÞ0 is of first order, while that atT
Þ0 andm50 is of second order or of very weak first orde
Then one can expect phase transitions of first order for sm
T and largem, and those of weak first order for largeT and
small m. First, we show the temperature dependence
f p(T)/ f p in Fig. 9 and that ofV̄@Bsol#/ f p

4 in Fig. 10 for
m/ f p51, 2, 3, 4, and 5. Figure 9 shows that in all the ca
the values of the pion decay constant increase once aro
T; f p and decrease above that. These, especially form/ f p

51 and 2, behave as if the phase transitions are of sec
order. However, it is clear from Fig. 10 that the values of t
effective potentialV̄@Bsol# become positive before the value
01401
n-

ll

f

s
nd

nd
e

of the pion decay constant vanish. Then the phase transit
are clearly of first order as in the case ofT50 andmÞ0. To
study phase transitions for smallerm we concentrate on the
temperature dependences around the phase transition p
Shown in Figs. 11 and 12 are the temperature depende
of the pion decay constant and the effective potential
m/ f p50.25, 0.5, and 0.75 together with those form/ f p51.
For m/ f p50.5, 0.75, and 1.0 the values of the pion dec
constant approach zero as if the phase transitions are of
ond order. However, the values of the effective potential
come positive before the values of the decay cons
reaches zero. Then we conclude that the phase transition
m/ f p50.5, 0.75, and 1.0 are clearly of first order. On t
other hand, the phase transition form/ f p50.25 is of second
order or of very weak first order.
FIG. 10. Temperature dependence of the effective potentialV̄@Bsol#/ f p
4 for m/ f p51, 2, 3, 4, and 5.
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FIG. 11. Temperature dependences off p(T)/ f p for m/ f p50.25, 0.5, 0.75, and 1.0.
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Finally we show a phase diagram derived by the pres
analysis in Fig. 13. As was expected, the phase transit
for smallT and largem are of first order, and those for larg
T and smallm are of second order or of very weak first orde

V. SUMMARY AND DISCUSSION

We analyzed the phase structure of QCD at finite te
perature and density by solving the self-consist
Schwinger-Dyson equation for the quark propagator with
improved ladder approximation in the Landau gauge. A p
decay constant was calculated by using a generalized ve
of the Pagels-Stokar formula. The chiral phase transit
point was determined by an effective potential for the pro
gator. When we raised the chemical potentialm with T50,
01401
nt
ns

.

-
t
e
n
ion
n
-

the value of the effective potential for the broken vacuu
became bigger than that for the symmetric vacuum bef
the value of the pion decay constant vanished. The ph
transition is clearly of first order. On the other hand, forT
Þ0 and m50 the value of the effective potential for th
broken vacuum reached that for the symmetric vacu
around the temperature where the value of the pion de
constant vanished. The phase transition is of second orde
very weak first order. We presented the resultant phase
gram on a generalT-m plane. Phase transitions are clearly
first order in most cases, and for smallm they are of second
order or very weak first order. Our results show that it
important to use the effective potential to study the ph
structure at finite temperature and density.

Finally, some comments are in order. Generally the r
FIG. 12. Temperature dependence of the effective potentialV̄@Bsol#/ f p
4 for m/ f p50.25, 0.5, 0.75, and 1.0.
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FIG. 13. Phase diagram obtained by the present analysis. Points indicated byL are the phase transition points of first order and poi
by 1 of second order or very weak first order.
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ning coupling should include the term from vacuum pol
ization of quarks and gluons at finite temperature and d
sity. Moreover, the gluons at high temperature acquire
electric screening mass of ordergT @28#. We dropped these
effects, and used a running coupling and a gluon propag
of the same forms atT5m50. ~The same approximation
was used in Ref.@17#.! These effects can be included b
using different running couplings and gluon propagat
which depend explicitly onT andm such as in Refs.@13,16#.

The approximation ofA215C50 might not be good for
high tempreture and/or density. However, inclusion of
deviations ofA21 andC from zero requires a large numbe
for truncating the Matsubara frequency, and it is not effici
.

on
d

ld

D

01401
-
n-
n

or

s

e

t

to apply the method used in this paper. A new method
solve the SDE may be needed. We expect that the inclu
of the deviations ofA21 andC from zero does not chang
the structure of the phase transition shown in the pres
paper.
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