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Single transverse-spin asymmetries in hadronic pion production
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We analyze single transverse-spin asymmetries for hadronic pion production at large transverse momenta
using QCD factorization. In the large- region, leading contributions to the asymmetries are naturally pro-
duced by twist-3 parton correlation functions that couple quark fields and gluon field strengths. With a simple
model for these matrix elements, leading-order asymmetries calculated from QCD are consistent with data on
pion production from Fermilab, and can be used to predict single-spin asymmetries at BNL RHIC. We argue
that our perturbative calculation for the asymmetries is relevant to pion transverse momenta as low as a few
GeV.[S0556-282198)07423-3

PACS numbe(s): 12.38.Bx, 13.85.Ni, 13.88.e

[. INTRODUCTION been completely straightforward. It was pointed out long ago
[6] that QCD perturbation theory predicts vanishing single
Perturbative quantum chromodynami@3CD) has been transverse-spin asymmetries at higlt. Efremov and
successful in interpreting and predicting spin-averaged scafferyaev later pointed out that a nonvanishing single
tering cross sections at large momentum transfer. SincEansverse-spin asymmetry can be obtained in PQCD if one
quarks and gluons carry spin, we expect QCD to apply t@oes beyond the leading powér8]. However, the relatively
hard spin-dependent scattering as well. However, high enlarge size and peaking in the forward direction of observed
ergy experiments with a polarized beam and/or target haveffects remained a difficultjQ].
provided many theoretical challenges. For example, data on Some time ago, using the example of hadronic direct pho-
the spin asymmetries in deep-inelastic scatteipdS) of  ton production10], we demonstrated that single transverse-
polarized leptons on polarized hadrdd$ sparked a wave of spin asymmetries can be consistently evaluated in terms of
theoretical effort in understanding the nature of the nucleon’'gieneralized factorization theorems in perturbative QCD.
spin[2]. The asymmetries are presented as a sum of terms, each of
A spin asymmetry is the difference of two spin-dependentwhich consists of a convolution of a twist-2 parton distribu-
cross sections, with opposite directions of polarization, dition from the unpolarized hadron, a twist-3 quark-gluon cor-
vided by their sum. Asymmetries can be obtained with bottrelation function from the polarized hadron, and a short-
beams(or beam and targgpolarized or only one bearfor  distance partonic hard part calculable in perturbative QCD.
targe}) polarized. The former is a double spin asymmetry,The twist-3 quark-gluon correlation functions reflect the in-
and the latter a single spin asymmetry. Depending on théeraction of quarks with the color field of the hadron
direction of the polarization, we can have longitudinal-spin[10,12,13. In order to test this formalism, we need to have
asymmetries, if the polarization is along the beam directionmore than one physical process to extract information on
and/or transverse-spin asymmetries, when the spin is polathese new and fundamental correlation functions, and to test
ized perpendicular to the beam direction. their universality. Recent work has explored their role in the
Because of parity and time-reversal invariance, singleDrell-Yan proces$14]. In this paper, we will not explore the
longitudinal-spin asymmetries for single-particle inclusive physical interpretation of the correlation functions beyond
production vanish for the strong interactions. However, exwhat is currently in the literature. Rather, we concentrate on
perimentally significant single transverse-spin asymmetriethe extension of the formalism to pion production.
have been observed ik production, as well as pion produc- In the forward region for pion production, whexg is
tion, for almost twenty yearg3,4]. These single transverse- large, we shall argue that leading contributions to the asym-
spin asymmetries are of the order of ten or more percentetry depend on only one twist-3 matrix elemégiven in
Experimental results on pion production have been very conEq. (25) below], which couples two quark fields and one
sistent, and the effects persist to pion transverse momenta gfuon field strength. This is the same matrix element that
several GeV, into the hard-scattering region, where perturbagives the leading contribution to single transverse-spin asym-
tive QCD (PQCD has had success in describing spin-metries in direct photon productiofl0]. With a simple
averaged cross sectioffs]. The extension of the PQCD for- model for this twist-3 matrix element, we show that signifi-
malism to spin-dependent cross sections, however, has noant asymmetries can be generated, and that the asymmetries
increase naturally as a functionxf. Our simple model has
two parameters: one for the normalization, and the other for
*On leave from Department of Physics and Astronomy, lowathe relative sign between the up and down quark correlation
State University, Ames, lowa 50011. functions. Extrapolating from measured single transverse-
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spin asymmetries inr™ and 7~ production in proto(i)-  effects can arise in the context of twist-3 factorization theo-
proton collisions[4], we fix these two parameters in our rems, but our explicit models will be based for simplicity on
model. We can then derive both the sign and shape of thehiral-even parton distributions only.

asymmetries forr® production, as well as pion production in ~ The twist-three analysis described here is in some sense a
collisions with a polarized antiproton beam. Our results areninimalist approach, depending on only light-cone variables,
consistent with data from Fermilab experiments. The modethich we hope can serve as a benchmark for models which
then predicts the normalizationxz and transverse- include both light-cone and transverse degrees of freedom.
momentum dependence of the asymmetries at higher ene@ther descriptions of single-spin asymmetries are based on
gies. These predictions can be tested at the BNL Relativistiowltiquark interactiong23] and orbital motion[24]. Inter-
Heavy lon Collider(RHIC). esting comparisons of different approaches may be found in

The naive expectation for the twist-3 asymmethy,, is  [25] and[26].

M1, with \ a nonperturbative scale from the twist-3 matrix ~ Our paper is organized as follows. In Sec. Il, we define
element and the transverse momentum of the observedsingle transverse-spin asymmetries in single particle produc-
particle. A pure 14 dependence, however, decreases quicklytion in hadronic collisions. We introduce generalized factor-
as |t increases, and becomes ill-defined whens small. ization formulas for the asymmetries, identify terms that we
Consequently, one might worry that the rangel pfwhere ~ expect to dominate in the large-region, review the factor-
the asymmetry is not too small, whilg is large enough to ization procedure at twist-three and leading order, and recall
use PQCD, is very limited, and that the region to studythe leading-order spin-averaged cross sections to which we
twist-3 physics might be too limited to be interesting. In fact,compare. In Sec. Ill, we present our explicit calculations of
we shall see below that single transverse-spin asymmetrigdngle transverse-spin asymmetries in hadronic pion produc-
are a very good observable to study twist-3 physics perturtion. We express these asymmetries in terms of short-
batively. distance partonic cross sectiofmefficient functiong cal-

In contrast to the naive expectation, for the kinematics oftulated in perturbative QCD, and non-perturbative twist-3
the Fermilab data, tha/l; contribution toAy is not the matrix elements. Using a simple model for the twist-3 matrix
dominant source of the asymmetry. From dimensional analyelements, we compare our calculated asymmetries with ex-
sis alone, the asymmetry, admits two types of contribu- Perimental data in Sec. IV. Finally, in Sec. V, we give a
tions, which are proportional to\l;/(—U) as well as Summary of our results, and an_ouFIook f_or the subjgct. We
M1/(=T)~Ml, with U and T Mandelstam variables. have also included an appendix, in which we review the
Their relative contributions can be determined by perturba@pplication of parity and time reversal symmetry, and iden-
tive calculation. For large, where the asymmetry is large tify the list of ch_lral-even_ and chiral-odd twist-3 d|str|but|_ons
experimentallyV is larger tharT, but we shall show in this and fragmentation functions that can contribute to the single-
paper that the coefficient for thel;/(—U) term is much SPIn asymmetry for pion production.
larger than that of th&/I; term in this regiorfsee Eq(76)].

As we will see in Sec. V, the transverse momentum depen-  ||. SINGLE TRANSVERSE-SPIN ASYMMETRIES
dence of the asymmetry is actually quite mild fgr from o _ _
less than 2 up to 6 GeV at-=0.4, where much of the A. Definition and general considerations

Fermilab data were collected. This conclusion is very en- Single spin asymmetries are introduced for reactions in

couraging for future applications of perturbative QCD be-which only one particle is polarized. For example, consider

yond the level of leading twist. single-particle inclusive production in a high energy colli-
Our method and results can be generalized to singlgion,

transverse-spin asymmetries in other single particle produc-

tion. With the extracted information on twist-3 matrix ele- A(P,S)+B(P")—C(l)+X, (1)

ments, we can predict both the sign and magnitude of single

transverse-spin asymmetries for any inclusive single-particlevhere A and B are the initial particles, withA polarized,

production, such as for direct photons, kaons, or other hadwvhereC is the observed particlgsay, a piof of momentum

rons. I, and whereX represents all other particles in the final state.
Related work on single-spin asymmetries involves the in{n order to fix the kinematics, we choose the center of mass

corporation of parton transverse momenta, either in partoframe of the incoming hadrons, with theaxis along the

distributions [15,16 or fragmentation functiong17-19.  momentum of the polarized hadron. We introduce two four-
There is considerable evidence that at transverse momentayctors n* andn*,

the range of a few GeV, K;-smearing” effects can be im-

portant[5,2_0] in spin—averaged cross sections. It wquld seem A=A A ) =(1,0,0p),

natural to include them in the same range for single-spin

asymmetries as well. Whether they should be thought of as

the dynamical source of the asymmetry remains to be seen. n#=(0,1,0r), @)
The fragmentation analysis requires the introduction of

“chiral-odd” distribution functions[17,19, which combine Wwith n2=0=n? andn-n=1. The incoming hadrons’ mo-
with the leading-twist transversity functidi21,22 to pro- menta areP“~n*\/S/2, andP’#~n*\/S/2, respectively. In-
duce nonvanishing asymmetries. We shall discuss how thesgriants at the hadron level are defined as
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S=(P+P’")2~2P-P’

l U
T=(P—1)?~—-2P-|
U=(P'—1)2~-2P' I, )
where hadron masses are neglected. Given(Bgwe next >
introduce
P,ST
21, T-U ) ) _ . .
Xp=—== 5 FIG. 1. Inclusive lepton-hadron deep-inelastic scattering, with
\/§ the target hadron polarized transversely.
21+ whereL(l) andL(l") are unpolarized incoming and outgo-
X7= s (4 ing leptons of momentd,and!’, respectively, andi(P,5;)

represents the polarized target hadron with its siirper-
pendicular to the beam momentum. In the approximation of
one-photon exchange, as shown in Fig. 1, the inclusive cross
sectiono(Sy) can be expressed as

We now introduces(1,5) as the cross section of the pro-
cess given in Eq(1). The spin-averaged cross section for
single-particle inclusive production may be represented as

0-(§T)OCLMVW,U,V(§T)! (10)

o()=z[a(l,8)+0a(,-9)], (5

N| =

where the leptonic tensoL,*”, is symmetric, and the had-

ronic tensor is given in terms of matrix elements of electro-
and the corresponding spin-dependent cross section as  magnetic currents,

Applying parity and time-reversalRT) and translation in-
The single spin asymmetry is often defined as a dimensioniariance to the matrix element in E¢l1), we obtain the
less ratio of spin-dependent and spin-averaged cross sectio@llowing relation:

A0(|,§)E%[U(',g)_(f(l,_g)]. (6)

Ao(1,9) o(1,9-0o(l,—3) (P51l ()], (WP, Sr)=(P, =1l 1(0)] ()P, ).
o) o8 tall,—8) ™ (12)
Combining Egs(11) and(12), we find

A(l,§)=

A single longitudinal-spin asymmetry is denotedAgs, and

a single transverse-spin asymmetryfqg. We shall be con- W,,.(81) =W, (—Sy). (13
cerned in this paper with,, . For differential cross sections,
the asymmetry can be defined as From Eq.(6), we obtain the spin-dependent cross section for

inclusive deep-inelastic scattering,
E,d3Ao(1,57)/d3 R , R R
An(list) == miaer ®) Ao (7)o LH W, (81) =W, (— 87)]

= LMV[W,U.V(S)T) _WV,LL(§T)]

whereE,d3¢/d®l andE,d®Ao/d®l are the Lorentz invariant

spin-averaged and spin-dependent cross section, respec- =0, (14)

tively. In this paper, we will concentrate on single . ] ) ]

transverse-spin asymmetries in the forward redian, large ~ Where in the second line we use Efj3) and in the third the

Xz) Where the asymmetries are largpéL symmetry ofI_J‘_V when the Iepton is unpolarized. Fr(_)m Egs.
Due to the symmetries of fundamental interactions, it is(7) and(14), it is clear that the single transverse-spin asym-

possible to have a vanishing single transverse-spin asymm&€try for inclusive deep-inelastic scatteriny', vanishes

try, even though the corresponding total cross seaiins) to lowest order inagy .

itself is finite. For example, it was pointed out by Christ and In hadron-hadron scattering, in contrast, the presence of

Lee over 30 years ad@7] that time-reversal invariance for- multiple (initial-state or final-stajeinteractions prevents a

bids single transverse-spin asymmetries in inclusive deepsimple decomposition like Eq(10), and allows single

inelastic scatteringDIS) to lowest order inagy. Let us  transverse-spin asymmetries for final-state photons as well as

review the reason. hadrons[8,10]. Experimentally, data from Fermilab show
Consider a general inclusive lepton-hadron deep-inelastitarge single transverse-spin asymmetries in single pion pro-
scattering, which is the analog of Ed), duction[4], and at the same time, show no apparent single
transverse-spin asymmetries in prompt photon production in
L()+H(P,S)—L(")+X, (9)  the centrallow xg) region[28].
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FIG. 3. Sketch of single pion production in spin-averaged
hadron-hadron collisions.

1 cc ~<P,§T| z/xFF*T?l/| P'.§T>’ with F*Toc[[.)*,DT].,'WhereDM is the
covariant derivative. Therefore, in addition to parton mass
effects, single transverse-spin asymmetries can be propor-
tional to the twist-3 matrix elementby_ and T¢ [8,10,29.

FIG. 2. Quark-quark scattering diagrams that give a nonvanishThese twist-3 matrix elements involve three field operators
ing single transverse-spin asymmetry in laggereactiond 6]. (yI'D1yy,yI'F 1, or with the quark fields replaced by
gluon field strength$30]). Also, different choices for the
Experiments at Fermilab for pionm(",#°) and prompt Dirac matricesl” in the operators give different twist-3 ma-
photon production were carried out with a 200 GeV polar-trix elements(see the Appendjx10].
ized proton(or antiproton beam on an unpolarized proton  Because of their odd numbers of field operators, three-
target. The observed single transverse-spin asymmetries 8¢ld twist-3 matrix elements do not have the probability in-
inclusive single pion production can be as large as 20 tderpretation of parton distributions, which are proportional to
30 % in the forward region. In addition to the large values ofmatrix elements of twist-2 operatorg;l“zp or F*'tF* 1. In
the asymmetries, a number of other interesting features afgrinciple, however, they are as fundamental as the parton
evident in the data. For example, a strong rise of the asymdistributions. Measurements of twist-3 distributions, or
metries withxg was observed for all pion charges. When thethree-field correlation functions, provide us new opportuni-
beam was switched from polarized proton to polarized antities to study QCD dynamics.
proton, the same sign of the asymmetry was observed for

w°, while the sign of the asymmetry for*, as well as7~, B. Factorization and the valence quark approximation
changed. Both beams had opposite signs of the asymmetries . .
of WE and PP g Y As we have seen, spin-dependent asymmetries for had-

]ronic pion production with one hadron transversely polarized
single transverse-spin asymmetries by Kane, Pumplin, an}é?r,:;]seh gzlig?r;?]c;r\?;ggg };agztﬁ;ﬂn.mNect)PVZPIiglngovr?-lluezsdin
Repko(KPR) [6]. KPR calculated the single transverse-spin gie tra pin asy y sig ‘eading

power contributions. According to the basic factorization

asymmetry for single hadrofpion) production in terms of a X : :
QCD parton model. By calculating the quark-quark Scatter:;(r;??r:gm?ogdla,cg:)enI?)?gm?oﬁov\\//\iltehr Ii\ ?'t?’:;ggggg?%ﬁ;::&%‘
ing diagrams shown in Fig. 2, KPR found that the nonvan, canp be factorizedpintofour sg arated functions, as
ishing single transverse-spin asymmetry for lapgereac- Tk tched in Eia. 3 P '
tions is proportional to the quark massAy=T, sketched in FH1g. 5,
~mg(P,S|yI'¢|P,S1), where, for examplel'=y* ysyr. _s o
Consequently, the asymmetry vanishes in the scaling limit Ta+B—== 24 Paa(X)® Ppa(X")® a4 p_.c®Dc_(2),
(mg—0). Although this calculation does not explain the ob- (15)
served large single transverse-spin asymmetf&3g], the
fact that the result is proportional to the quark mass indicatewhere = ,,,. represents the sum over parton flavors: quark,
that the single transverse-spin asymmetry is a twist-3 effecantiquark and gluon. In Eq15), ¢ a(X) and ¢ps(Xx’) are
in QCD perturbation theor}8,10,29. probability densities to find partoa of momentumxP in
QCD dynamics, however, is much richer than the partorhadron A and partonb of momentumx’P’ in hadronB,
model. In addition to the parton mass effects just discussedespectively. As noted above, they may be interpreted in
there are other twist-3 contributions. Because quarks are no¢érms of expectation values in the hadronic state of two-field
exactly parallel to the incgming ha}fjron beam, twist-3 contri-matrix elements, for exampkel' or F*tF 1. D._. .(2) is
butions also arise from “intrinsic” transverse momentum, he fragmentation function for a partanof momentump,
which is proportional toTkT~(P,§T|¢F(9T¢|P,§T>. In addi-  =1/zto fragment into a pion of momentumandas,,p_. iS
tion, there are twist-3 contributions from the interference be-@ short-distance partonic pafthe Born cross section plus
tween a quark state and a quark-gluon state, which is propogorrectiong, calculable perturbatively order-by-order dry.
tional to TAT~<P1§T|ZI‘AT¢|P1§T>- Because of gauge The symbol® in Eq. (15 represents the convolution over

invariance.T. and T. are not independent. and can be the corresponding parton momentum fraction. In terms of the
invar » At Indep ’ Lorentz invariant differential cross section, Ed5) can be

combined to formTDT~<P,§T|JFDT¢|P,§T>, and/or T written as[5]

Perturbative QCD was first used to study the effects o
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d*opipn dz d%6a1pc) Do n(2)
E—got =, f dXPaya(X) J dX’ dpya(X’) f — | E gt e (16)
del Y z d°p. z

The predictive power of Eq16) depends on independent measurements of the non-perturbative funetipns¢,s and
D._..., and the calculation of the partonic p&d36,.,p . ./d%p..

Just as for most other physical observables calculated in perturbative QCD, the predictive power of the theory for twist
three relies on factorization theoreff®l]. Physical observables that depend on the transverse polarization of a single hadron
are typically power corrections to the total cross section, in comparison with spin-averaged or longitudinally polarized
spin-dependent cross sections. In 82|, for a physical observable with a large momentum tran§femwe extended the
factorization program taD(1/Q?) corrections for spin-averaged hadron-hadron cross sections, afid 83 to O(1/Q)
corrections in spin-dependent cross sections.

Following the generalized factorization theor¢i,33, the transverse spin-dependent cross section for lgrgeons,
Ao(Sy), can be written in much the same way as the spin-averaged cross sectiofl5Eqs a sum of three generic
higher-twist contributions, each of which can also be factorized into four functions,

AaA+BH7<§T>=§C BINX1,X2,57) ® Poya(X ) ®Ha i po(ST)® D, (2)
2 0004 ST)® (X1 X)) @ Hy (ST @ Do (2)

+ gc SALAX,87)® dpya(X ) ©H, (S ®DE) (21,2,)

+higher power corrections, a7

whereX ;. represents sums over parton flavors: quark, anti€lasses of functions begin to contribute. This complexity is
quark and gluon, and wheig,z(x’) andD._, .(z) are stan-  particularly difficult to sort out for physical observables to
dard twist-two parton distributions and fragmentation func-which leading-twist terms contribute. The combination of
tions, respectively. In Eq17), the first term corresponds to small effects and complex parametrizations has made the ex-
the process sketched in Fig(a# and the second and third traction of higher twist distributions from the data difficult,
terms correspond to the ones sketched in Fig).4 .

For the first term in Eq(17), nonvanishing contributions Posr

P,sy
to Ao(Sy) come from twist-3 parton distributiongorrela-
tion functiong ¢§’A(xl,x2,§T) in the polarized hadron. For ~ E% 3 ®
the second and third terms, the contributions\te(Sy) in-

volve the twist-2 transversity distributionsq{ZA(x,Sr)

[21,22. Because the operator in the transversity distribution P’ ] \ é) / \ /
requires an even number gfmatrices[21,27], the second ® ﬂ ®

term and third terms in Eq17) also include a twist-3, chiral- b ¢ ™

odd parton distributiong{3(x; ,x5) from the unpolarized (a)

hadronB, or a twist-3, chiral-odd fragmentation function,

D® (z,,2,). In the factorized form of Eq17), PT invari- Pst

. . P,sy
ance may be applied in a manner analogous to the treatment
of the DIS cross section given above. In this case, however, - v
PT invariance allows nonzerdy for a limited number of ~ ®

functions, as discussed in the Appendix.

As in the spin-averaged cross section, Eld), the hard- \a
scattering function$l . ,_..(S1) are the only factors in Eq. 7 ® )‘t ®
(17) that are calculable in QCD perturbation theory. The cal-
culation of theH’s depends on the explicit definitions of the
twist-3 distributions, for examplesA(x;,x2,57), and the
predictive power of Eq(17) relies on the universality of the FIG. 4. Factorization of a typical forward scattering amplitude
new twist-3 distributiong11,33. contributing to the spin-dependent cross section for hadronic pion
Equation(17) illustrates the typical complexity of higher- production: (a) with chiral-even three-parton matrix elemeiib)
twist analysis: even at first nonleading twist, whole newwith chiral-odd transversity.

b € ™
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despite the considerable effort that has been invested in theeam. That isX, in Eq. (17) now runs over only up and
formalism [34,35.1 The vanishing of single-spin asymme- down valence quarks, coupled with a single gluon field.
tries at leading power solves one of these problems, the In presenting this argument, we are well aware that in
masking of higher twist by leading twist. Beyond this, how- principle the flavor content of the twist three distributions
ever, it is clear that to fully disentangle all of the functions may be totally different than those of twist two. Neverthe-
contributing to Eq(17) would require a constellation of data less, we consider it by far more natural to assume that three-
and a level of analysis far beyond what is currently availablefield correlations at large; will be dominated by the same
Turning specifically to the first term in E4L7), we observe flavors as in the two-field, parton distribution, case. We rec-
that the indesa refers to pairs of partons, and that the func-9nize that this remains, however, an assumption. In our

tions ¢§3£ are correspondingly functions of two momentum case, it means that we shall keep only valence quarks from

fractions. In addition, even assuming that we knew this set o e polarized beam, accompanied in twist-3 by gluons. In
' ' 9 articular, we shall not consider three-gluon matrix elements

functions, we would still be faced with the chiral-odd distri- 53 ]
butions and fragmentation functions in the second and thir We now turn to the question of “soft gluons.” To antici-

sums in Eq(17). We would like to suggest, however, that by 416 the twist-three asymmetry involves only two classes of

restricting ourselves to the limited kinematic range of IargeContributions inH .., (X1 ,X,). One of these is proportional to

xg for the observed particle, we may simplify the analysis(s(xl_xz)’ and the other té(x,), i =1,2. The first case sets

greatly, and construct a simple model that explains the availt-he momentum carried by the gluon field in the twist-3 ma-

able data, and that provides extrapolations to higher energiqﬁx element into the hard scattering to zero, leaving the mo-

and momentum transfers. . menta carried by the two quark fields in the combination
We are going to present a calculation of the laxge- JE Ty di 2in th d f th K fiel
asymmetry at moderate or lardge, in terms of the chiral yF_ "4 diagonal. In the second, one of the quar lelds

even functions¢§£(x1,x2,§T) only [first line of EqQ.(17)]. or zZ/;').carries vanishing momenta. We refer to these two pos-
In these functions, we will consider only combinations of SiPilities as “soft gluon” and “soft fermions” poles, respec-
valence quark flavors with gluons. We will not find it neces-tively [10]. Soft gluon terms are t%/g[;wally. accompanied by
sary to specify these functions for all valuesaf and x., derivatives of the parton funcnom_sa,A, _Wh|le soft fermion

but only for the linex;=x,, at which the gluon carries van- terms are not. We have emphasized in R&@] that terms
ishingly small momentum fraction. We will refer to this set that involve derivatives with respect to distributions tend to

of simplifications as thealence quark-soft gluoapproxima-  be strongly enhanced near the edges of phase space, relative
tion below. In this model, we thus neglect potential contri-t0 those without derivatives. We shall see thIS'Ir? our explicit
butions from the transversity, coupled with the chiral-oddmodel below. We shall assume, in fact, that it is this effect
twist-3 distributions and fragmentation functions identified that is primarily responsible for the experimentally-observed
in the Appendix. We hope to explore these contributiongise in single-spin asymmetries towaxﬂzl.. We therefore
elsewhere, but in the absence of independent information oftggest that only terms in which such derivatives occur need
the transversity, it seems natural to test the plausibility of &€ kept, in order to describe the large-single-spin asym-
model based on chiral-even distributions alone. metry. In summary, only soft-gluon terms, from the first line
First, consider our restriction to valence quarks. Givenof EQ. (17) produce the shape of the large asymmetries ob-
that single transverse-spin asymmetries were measured $@rved in the data in the forward region, and for these terms
Fermilab with a 200 GeV polarized bedm], only partons = X1=X2- o _
[a andb in Eq. (16)] with large momentum fractions will be To set the stage for the explicit calculations of the next
relevant for largexg or |+. Because parton-to-pion fragmen- Section, we first give an example of leading-order factoriza-
tation functions vanish az— 1, the effective momentum of tion at twist three for the spin-dependent cross section, fol-
the fragmenting partorp.=1/z, should be much larger than lowing the method of Ref.10]. This will enable us to trace
the pion momentunh. Therefore, the dominant contribution the origin of twist-three spin distributions, and of the poles
to the cross sections in the central region should come frorf@t underline the valence quark-soft gluon approximation
x~x' in Eq. (17), with, in addition,x much larger thanx; ~ that we have just described.
~0.25, which corresponds tolt~4 GeV at Epean
=200 GeV. In our calculation we will concentrate on the
forward region, wheresg is large. Similarly, in this region
the dominant contributions to the cross section come from  The twist-3 correlation functionsg3A(xy,%,,87), de-
considerably larger thaxy (i.e.,x>0.25) even for relatively pend on two parton momentum fractions, while twist-2 par-
small I;. For largex, there are few gluons or sea quarks ton distributions, which are probability densities, depend on
from the beam hadron. Therefore, in our numerical calculaonly one. Considering the effort and data needed to deter-
tions, we will keep only valence quarks from the polarizedmine the parton distributions, it appears a difficult task to get
a full description of these twist-3 distributions. From the

C. Twist-3 factorization at leading order

we may note recent progress based on models of higher twist in
deeply inelastic scattering and fragmentation inspired by renorma- °Note, there are no “soft gluons” in the short-distance functions
lon analysiq 36—38. H.
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a\\ c a c
2P P:n

b/ b 1

o ——
= k, kp ‘n
i i ‘ - E y-P P, ZL
—S 13
FIG. 5. General Feynman diagrams contributing to the partonic

partsH in Eq. (17). (a) (b)

2m

| h ibuti s i FIG. 7. General diagram that gives a leading contribution to
general Feynman graphs contributing to tis in Eq. (17), Ao (Sy): (a) before separation of spinor trace and Lorentz indices,

as shown in Fig. 5, it is also clear that there are many diag, leading contribution after separation of spinor trace and Lorentz
grams, even at lowest order. Their treatment is simplified;ygices.

however, by taking advantage of the relation of the asymme-
try to the pole structure oH [10]. This will enable us to
evaluateA o(S7) in Eq. (17) efficiently. Indeed, we will find
that Ao(S;) depends on the twist-3 distributions through

only a single independent momentum fraction, with the othequark momenta, and is the Lorentz index for the gluon

fraction fixed by a pole. To see how this comes about, W&iaid. We work, as in Ref.10], in Feynman gauge. To derive

consider a specific set of contributions, associated with th% factorized expression for these contributions, we must
three classes of diagrams shown in Fig. 6. We first discus eparate spinor and color traces, as well as sums over vector

the analysis of these diagrams according to the method QT orentz indices between the functiofisand S

Ref.[10], and then briefly discuss other possibilities, review- After separation of all traces by a Fierz projectitsee

N9 .why we expect thpse of Fig. 6 to dominate the asymmeAppendix), the two functionsl andS are connected only by
try in the largexg region.

L . the two momentum integrals that they share. The leading
In our valence quark-soft gluon approximation, intro-

duced in the last subsection, the fermion fla@ofrom the contributions of the general diagram shown in Figa) £an

polarized hadron in Figs. 5 and 6 runs over valence quarkgzg)n gﬁéecp;ﬁssgﬁﬂt?gntgi factorized diagrams shown in Fig.

only, while partonb from the unpolarized hadron can be a

|P,Sr), while the bottom part includes the hard subprocess,
as well as the target hadron matrix element and the final-state
rpion fragmentation function. In Fig. k; andk, are valence

gluon, valence quark or sea quark. We start from these three 1 d*k, d*k,

classes of diagrams, and derive below the factorized form for dAo(Sr)= 25 E J’ 2m? 2m)?

the spin-dependent cross sectioho(Sy). The hard- é

scattering diagrams of Fig. 6 are all embedded in the overall X [Ta(Ky Ko ,57)Sa(Kq ko)1, (18

process shown in Fig.(&). The top part of this general dia-
gram is proportional to the expectation value of an operator

: : . . where 1/5 is a flux factor,X, runs over only valence fla-
of the form A, in the polarized incoming hadron state vors, T.(ky ,k,.5r) is proportional to the matrix element of

the operator, (Z)[ ¢,y AT ¢,]12P*2, and S,(k,k,)
represents the bottom part of the general diagram shown in
Fig. 7(b). The function S,(kq,k,) is contracted with
[(1/2)y-PP,]C,/(27), where the facto(2m) is due to the
normalization of twist-3 matrix element, which we will
specify below. The color factdt, is left from the factoriza-
tion of color traces betweeil (kq,k,,5r) and S;(kq,k»)

Ky Ka sy, .

> ) N [10]. With the function T,(k;,ks,87)c Ay, the corre-
! b ! spondingC, is defined for all valence flavors as
+
B 2 B
(®) (CRij= NZ=1 (t%)ij (19

with N=3 colors,B the gluon color index, and with quark
+ color indicesij. The matrix ([B)”- is the SU3) generator in
the defining representation of the group.

The next step in the factorization procedure is the “col-

© linear” expansior{ 32,33, which will enable us to reduce the

FIG. 6. Three classes of quark-gluon diagrams contributing tdour-dimensional integrals in E¢18) to convolutions in the
the spin-dependent cross sectidr(S;): (a) diagrams with an  momentum fractions of partons, as in Efj7). ExpandingS,
initial-state pole(b) and(c) diagrams with a final-state pole. Sym- in the partonic momenta; andk,, aroundk;=x;P and
bols B andij are color indices for the gluon and quarks. k,=x,P, respectively, we have

014004-7
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JS
Sa(Kq,kp) =Sa(X1,%2) + O-)_k;(xlaxz)(kl_xlp)p ky 7 ka
Sa
+ ——(X1,X2) (Ko—=X5P)P+--- . (20
kb

This expansion, substituted in §d.8), allows us to integrate
over three of the four components of each of the loop mo- K T ke
mentak; . The top part of the diagrami, then becomes a
twist-three light cone matrix element, convoluted with the
terms of Eq.(20) in the remaining fractional momentum . .
variablesx; . xP xP

As stressed in Ref$8,10], some of the matrix elements
that result from the collinear expansion can have nontrivial (b)

spin-dependence. It is at this stage that the pole structure of £ g Eactorization of a general diagram contributing to
the hard scattering begins to play an important role. In factg i .y of Eq. (23): (a) separation of target hadroth) separa-
as shown in Refs[8,10] and below, nonzero spin depen- (o of final-state pion.
dence is foundnly from pole terms in the hard scattering.
Without these poles, the symmetries of the strong interaction
force the asymmetry to vanish, in muc_h the same fashion here the integration ovex; (or x,) will be fixed by the
for DIS above. Indeed, the poles provide exactly the sort o di le inS. / ok d wheree?s™ is defined
multiple interactions that are absent in DIS at lowest order i O1TeSPONdINgG pole s, /ok,, and wheree IS define
QED. The first term in the expansion, EQO), S,(X1,X5),
does not contribute toAo(Sy) when combined with _
Ta(kq,k,,87) in Eqg. (18), because it lacks true initial- or ePSTM=¢eP7h'S n N, (29
final-state interactions. We will therefore drop it below. 7

Let us next look for poles in the diagrams of Fig. 6 from ) W) ) _
the remaining terms in E¢20), and identify the relevant The functionTi’(x,,x;) for flavor a in Eq. (23) is one of
twist-three matrix element. All of the diagrams in Fig. 6 the twist-3 distributions introduced in RdfL0],
provide a pole ak;=X, whenk;=x;P(i=1,2). As we will
show below, these poles have the property that

dy, dy;
W) _ [ Ddyz
TFa (X1'X2) f 477
9IS, 9IS, b g —
gk X1:Xe) == Sip (Xa.Xa), (1) X @aP Y1 HeT )Pz (P&, (0) y*
2 1

, » _ _ X[, (y,) 1a(y)IP.ST).  (25)
for x;,=X,. This equality is to be interpreted in the sense of
distributions, sinces, is singular atx; =X, . Substituting Eq.

(21) into Eq.(20) and neglecting higher order derivatives, we The ordered exponentials of the gauge field that make this

matrix element gauge invariant have been suppressed

have
[32,33. It is easy to show thaT(F\Q is real. Parity ensures
that TR~ "™, and time reversal invariance then implies
Sy(kq ko)~ %(Xl,xz)[w”"(kz—kl) ] (22) thatitis an even function of; andx,,
kb o
T (X1,%2) =TV (X5,X1). 26
where the projection operates”? is defined asw”’=g’? Fa( 1%2) Fa( 2:Xa) (9

—nPn’. Substituting Eq(22) into Eq. (18) and performing
the integration over the non-longitudinal components of theThese properties are valuable in isolating nonvanishing
k's, we derive asymmetries. For instance, the fact tigf) is real ensures

that only the poles o8 in Eqg. (23) can contribute.

Having factorized the twist-3 distributiom”), we now

factorize the remaining functiofii e”™""9S,/dk,] in Eq.

(23) into a perturbatively calculable partonic patt ., .., a
TV (%1, %) corresponding target parton distributigi,z and a fragmen-

Fa \ 71720 tation functionD_, .. At the leading power, diagrams con-
tributing to S,(k, ,k,) can be represented as in Figag and
(23 can be factorized as

1
dAo(Sn)=5g ; J dx,dx,

X

iePST”F—(gsa(x X5)
akg "2
2 K6=0

014004-8
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dk’ grams, calculable in perturbation theory, with standard
Sa(k1-k2)~% f W[Ma+b(k1-k21k,)8b(k,aP,)] twist-2 fragmentation functions,
dx’ M p(Ky, Ko, X" )~ fdzH —c(K1, Ko, X", pc=1/2
%E J’ TMsz(klakZ’X,)st/B(X,)y (27) a+b( 1:R2 ) ; a+b c( 1:R82 Pc )

XDe¢_.A(z=l/py), (28)

where X, runs over all parton flavors, angys(x’) is @  where theH,,,, .. are given by the diagrams of Fig. 6. The
twist-2 parton distribution for flavob, for the unpolarized  fragmentation function®._, .(z=1/p.) are also defined as
target hadrorB. We use the matrix element definitions of matrix elements in Ref.39].

twist-2 parton distributions given in Ref39]. Similarly, as Finally, substituting Eq(28) into Eq. (27), and Eq.(27)
shown in Fig. 8b), the factorM,  ,(k;,k,,x") in Eq. (27) into Eq. (23), we derive a factorized expression v (Sy)
can be further factorized into a convolution of Feynman dia-in the form of Eq.(17),

dx’
aso(sn=s S [ 4202 [ T duatx’) [ deacgT0x 3

J
X |iepsTn —Haipoc(ki=Xx1P,ko=x,P,x",p.=1/2)

kP

: (29

0 __
k‘270

where the integration over either or x, can be done by H,,,_.(ki,ks,X',pc) with respective tk; have the follow-
using the pole inH,.,_.. This results in a factorization ing features:
with only a single momentum fraction for each of the incom- o0 , 2 . .
ing hadrons, similar to that for the spin-averaged cross seél) Eli/nal:o) i%((:; |)s gl;/:So?uE)Lng; fo) g/a):(a)r]l_(j(vl)t(sx c;((;n;r;tt)eL:
tion in Eq. (16), with ¢,,4(Xx) replaced byT(FV)(x,x). In or- T prop
, i T Ta integration by parts;
der to use this factorized formula for single transverse- spn@ (9ldk;) on a propagator that is potentially on-shell
asymmetries in pion production, in the following section we changes a single pole to a double pole, and the resulting

will evaluate the diagrams shown in _F'g 6 with off-shell integration over the double pole makes the contribution
momenteak; andk,. In each case, we will verify Eq21), or Ao (S ional / ) )
equivalently, observe that to Ao (Sy) proportional to g/9x) T (X,X);

’ (3) (a/3k;) on an off-shell propagator does not change the

pole structure, and its contribution oo (Sy) is propor-
(30) tional to T(FV)(x,x) without a derivative;

(4) (al9k;) onk;-dependence in the numerator gives contri-

butions toA o(57) proportional toT&)(x,x) without de-
rivatives.

oH oH
(9k - (X1,X2=X1) = — &k ——(X1,X=X),

where, again, the equality is to be interpreted in terms of
distributions.

As we have pointed out earlier, we are interested in the
asymmetries in the forward region, whegeis large. Asym-
metries in this region are dominated by large net momentum

Before entering into the detailed calculations of the hard{ractionx from the polarized beam parton, coupled with rela-
scattering function#d, ... in Eq. (29), we return to issue tively small momentum fractiox’ from the partons of the
of why we believe that the dominant contribution is given by unpolarized target hadron. Since all distributions vanish as a
the T in Eq. (29). We have already indicated that this is power for largex, as (1-x)” with 5>0, (@19x) TE(%,%)

due to the derivative structure of these contributions. Let ug> TE”(x,X) whenx—1. Therefore, in the forward region,

see how these derivatives arise. terms proportional to derivative of the dlstrlbut|oﬁ's‘FV)
From the diagrams shown in Fig. 6, with the momenta dominate. In order to simplify our calculations of the largest

andx’P’ fixed, we get four typical sources &f (i=1,2) effect, we keep only these terms. Thus, in Sec. Il we will

dependence(l) k-dependence id(L (k;)?) with L the mo-  keep only those contributions corresponding to itéfsand

mentum of the unobserved final-state partoi2)  (2) listed above.

ki-dependence in the propagators which go on-shell when Turning, finally, to other possible contributions in Eq.

kl—kz, (3) k;-dependence in the off-shell propagators, and(17), we observe that it is only the matrix elemérl”) that

(4) k; dependence in the numerators. The derivatives oinherits derivative terms, as a result of the collinear expan-

D. Leading contributions in the forward region

014004-9
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Ed3o_a§z bodz fl dx 1
+ + BT s & ), 7ZPe?]  isturn
(2)

dx’ ( . —xTlz
<J S - ssrurl e
(b)

where 2, runs over up and down valence quarks, ahd
FIG. 9. Sample leading order Feynman diagrams contributing t@ver quarks and antiquarks. In §§3), the integration limits

the cross section of hadronic single pion production. Zmin @andXmin, and variablex are given by
. ) ) —(T+U)
sion involving soft gluon poles. Soft fermion poles, of the Zmin= —s " \/x,2:+x$,

sort discussed in Ref$8,10] have no such derivatives at
leading order. Soft-fermion poles also do not correspond to

the valence quark approximation identified above, since they Xiin= L/Z

require one of the quark fields to carry zero momentum frac- S+T/z

tion. These features of the calculation follow exactly the

same pattern as for direct photon production, as treated in X' = —xT/z (34)
Ref.[10], and we shall not repeat them here. It is only nec- xS+U/z’

essary to emphasize that ti€”) contributions from Fig. 6 ' . .
are the complete set of derivative contributions at twist thre hereS,T,U are defined in Eq(3), andx andxr in Eq. (4).

and leading order, for the firéthiral even term in Eq.(17). (3h3? sahrzr;g/iz:]agt}:{eapartonic parts,y .c andoaq-.c. in Eq.

E. Spin-averaged cross sections for hadronic pion production

Oag—c™ Oac

In order to evaluate the asymmetries, defined in @.
we need to compute the leading-order spin-averaged cross
section. QCD perturbation theory has been generally suc-
cessful with experimental data on spin-averaged cross sec- 4
tions for inclusive single-pion production at large transverse &,, .= 8¢ —(
momentun(5]. At leading order inxg, only 2—2 Feynman 9
diagrams, shown in Fig. 9, contribute d36,.,_,./d%p.. R
In terms of scattering amplitudes, the leading order —-8( & 4 t2+0?
E.d35 .. ../d3p. can be expressed §5] + 8aq9qc E(_) + 5aq§< > ) ;

da—a+b~>C: 1
¢ d°p, 167

2 Moo o208+ E+0), (3D (35)

wheres,t,0 are defined in Eq(32).

_ Since we are interested in the large region, we have
whereM is the spin-averaged amplitude. In B81), invari-  p*s-p- and T<U<S. Therefore, leading contributions to
ants at the parton level are given by the cross section given in E¢83) come from thet-channel

diagrams[the first diagrams in Fig. (® and Fig. 9b)], or
5=(XP+x'P')2=xx'S, equivalently, the 17 term (i.e., first term in Eq. (358 and

Eg. (35b). Consequently, for leading contributions in the for-

ward region, incoming partoa has the same flavor as frag-
t=(xP— Pe)2=xT/z, (32 menting partorc. Therefore, in the valence quark approxi-

mation, we keep onl{p,,_, .+ for =* production;D_, .- for

7r~ production, although we keep bofh,_, .0 andDy_, 0
0=(x'P'—py)?=x'Ulz, for 7% production.

U—

. . IIl. CALCULATION OF THE ASYMMETRY
whereS, T andU are defined in Eq(3).

In the valence quark approximation, using #unction In this section, we present our calculation of the single
in Eq. (31 to fix the x’-integration in Eq.(16), we find the  transverse-spin asymmetries in pion production in the va-
spin-averaged cross section for pion production at leadingence quark-soft gluon approximation described in the previ-
order in ag, ous section. We derive analytic expressions for the spin-
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dependent cross sectiodo(l,st), which is needed to X -— 1P
evaluate the asymmetries. Pe 2
A. Quark-gluon subprocesses with initial-state interactions x’/
Consider the two diagrams with poles from initial-state A o
interactions, as shown in Fig(&. We parametrize the par- FIG. 10. Two-parton forward scattering amplitude contributing
ton momente; as to the partonic hard pati, ,(x,x’,p.) in Eq. (43).

k1:X1P+k1T, and k2:X2P+k2Tl (36) L(lexz)Egs[(ZX’P,'P)gpﬁ_(X’P’)ppﬂ_(X,P,)ﬁPp]

—i
X .
[X'P'+(xo—X)P]°+ie

with the kiT two-dimensional transverse momenta. The re-
maining momentum components do not enter at twist three.

The pole in the diagram at the left of Fig(ah is given in -1
these terms by =gs(—|)gpﬁ(m) , (409
1 1 _ -
(X P +ky— k)€ (X~ X)X S+ (K, — Ky )2 Hie’ R(Xl'XZ):gs(")gpﬂ(m)' (40b)
(37)

whereL andR represent the diagrams at left and at right,

respectively. In Eq(40), gs= V4 mas is the strong coupling.

) ) i In the following discussion, we absorb the overa#ti() in

ishes ak; —0. The diagram on the right has the same fea£q (40) into the color factor for the subprocess. Using the

ture. Therefore, following the arguments of Sec. Il D above distribution identity

the leading contribution té& o (S;) in the diagrams in Fig.

6(a) is from the derivative of the phase spaédunction 1 _p

Only' Xz_xliif_
LetL, andL, be the momenta of the unobserved partons

in the diagrams to the left and right, respectively in Fig6 for the poles in Eq(40) and keeping the imaginary contri-

We have bution of the pole, we can express the contributions of the

diagrams in Fig. @) as

The derivative of this pole with respect k@T (or le) van-

1
Xo2— X1

Fimé(X—Xq), 41

Li=X'P' +Xx;P+ky —pc, Lo=xX'P'+xP+ky —pc.

(38) W(HaL(XLXZaX,apc)"’HaR(leXZaX,apc))
2
Taking the derivative with respect td andk5, we obtain g ,
g pect i :F;Hzaz(xzyx Pe)
J H _ ’ 2
(9_k’{ 5(Li):(_2pcp)5/(Li)’ (393 X[imo(x, Xz)(2pcp)]5 (L), (429
~ e (Ha (X0, X2, X", Pe) + Hap (X1, X2 X", Pe))
1
@ 8(L?)=0, (39b)
2 Os ’
= RHz—»z(lex 'Pe)
H ’ 2
e 8(L3)=0, (390 X[imé(xa=x1)(2pc )16"(L7), (42b

where subscriptg, andag represent the left and right dia-
9 grams of Fig. ). In Eq. (42), Ho_»(X;,x',pc) with i
K 5(L§)=(—2pcp)5’(L§). (390 =1,2 is proportional to the imaginary part of the=2 par-
2 tonic forward scattering amplitude shown in Fig. 10,

In deriving these relations, we have used thds a trans-

verse index. After taking the derivative with respect to khe
on thes-functions, we can sé¢_to zero in the remainder of o
each diagram. For the diagrams in Figa6the poles giving Wwhere the matrix element squard¥}, , .|? is the same
the leading contributions are from as that in Eq(31), except for the color facto(;'g, due to the

1 _
Hao2(Xi X' ,Po) = 75—z IMasg.cl’Cg, (43
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extra initial-state interaction. Combining Eq49) and (40), kao—k, ka—k,

the factorCL1 is given by the color structure of the partonic + o o +
diagrams shown in Fig.(6), contracted with a common fac- § g
tor[(—i)2/(N2—1)](tB)ij , whereB andij are color indices

for the gluon and quarks from the polarized hadron. The Pctki—ke P Pc Potki—kg
factor 1/27 in Eq. (42) was explained in the text following (a) (b)

Eq. (18), and the factor ¥, is due to the definition of . . N .
H, »(X;,X',pe), Where incoming quark lines are contracted FIQ. 11. Sketch for the effective diagrams giving the I_eadlng
with (1/2)y-(x,P). Equation(42) shows that Eq(30) is poles in Eq(48): (a) pole to the left of the cutib) pole to the right
satisfied wherk;_=0. of the cut.

Substituting Eq(42a into Eg. (29), we have a complete
factorized form for the spin-dependent cross section from th

diagrams shown in Fig.(8), for any smooth functiorF-(x). Using Eq.(45), we thus re-

write EjdAoy(sy)/d®l as

dAoy(Sr) dz

E— 97T — D, . (z dAcl (&) o2 1 dz
e — =2 | S0
d-l S ac¢ Jgy, 2
xfdx’G(x’)fdx'l*F‘Q(x,x) J—l dx 1 Jr dx’
s (s e X xSvUIZ ) X
0- —
% Ec—ﬁ%), (44)
d°pc sy —xT/z i 1
) ) X T Xsturz) %€ x'S+T/z
where the factor ¥7 is due to the phase space difference
betweend®l/(2)%2E, and d®p./(27)32E,, and the par- T
. A~ 3 . . J F (ny)
tonic hard partEcdAd,, 4 ./d°pc, is given by XG(X')| = x— | ———
IX X
~ | =
—dA Ua+gﬁc(ST) =g GSTpanCI
c d3p S g | AL A
c XHagHC(s,t,u)) . (47)
nal 2or/a tan
X mlMaJrgﬂJ 5(S+t+u) .

wherez,,, andx,, are given in Eq(34), andS, T andU are
(45) defined in Eq(3). In Eq. (47), the spin-dependent cross sec-
tion E,dAa'g(sT)/d?’I has almost the same factorized form as

In Egs.(44) and(45), superscript indicates the contribution the Spin-averaged cross section shown in(@§). The extra
from a partonic subprocess with an initial-state pole, andactor of 1z is due to the replacement ,‘Pfc by | in the
subscriptg represents the quark-gluon subprocess. In derive-tensor of Eq(45). The dimension of 1{’'S+T/z) due to
ing Eq. (44), we renamed the integration variablg in Eq. the derivative of thes-function is balanced by the dimension
(42) asx. The factorized spin-dependent cross section giver?f | in the e—tgnsorvand the dimension of the twist-three cor-
in Eq. (44) is very similar to the factorized form for the relation functlonT(Fa)(x,x). In our definition, the twist-three
spin-averaged cross section in Efj6), with the unpolarized correlation function has the dimensions of energy. The par-
parton distribgtion{?/?m(x) replaced by the twist-three cor- tonic hard partH}, ..(8,t,0), in Eq. (47) plays the role of
relat|pn functlonTF_ (_x,x). The partonlc hard part in _Eq. Fagc in EQ. (33). Itis given byclg|Mla+g~>c|2 in Eq. (45),
(45) is also very similar FO that In Eq.31)..For_ the SPIN- \yhich represents the-22 matrix element squared in Eq.
dependent case, the derivative of théunction is just the

o ; ; (43), but with a different color factor due to the extra initial-
derivative with respect to the parton momentkmin Ed.  gi5te interaction.

(20), which comes from the collinear expansion. The factor
€TPe"" in Eq. (45) is necessary for a nonvanishing asymme-

try B. Quark-gluon subprocesses with final-state interactions
After partial integration ovek, we can reexpress the de-  The diagrams shown in Fig(I) represent final-state in-
rivative of the &-function as teractions of the fragmenting parton. As with the contribu-

tions from initial-state interactions, these diagrams also have

a derivative with respect t&] and k5 of the phase space

Ssfunction associated with the unobserved final-state parton,

of momentumL or L,. Similarly to Eq.(40), the final-state

poles giving leading contributions are given by, as sketched
(46) in Fig. 11,

J dx8’ (3+t+0)F(x)

_f dx P L?F
T ) X'S+T/z (S+t+0) X ()
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L (Xt X0) =0 - )7-P7~(pc+(X1—Xz)P) L (ke ko )=0ery- v-Py-(pctki—kz)
1:X2)=0s( 7" Pc (pc+(X1_X2)P)2+i€ 102 =057 Pc (pc+k1_k2)2+i€
~gi(y-p )(— (484 - !
VP —xptie)” ~ 97 Pl d = xt xo(ky ko) i€
1 v-(ki.— Ky )y-P
R(X17X2)%gs(7'pc)(T)v (48b) - I . (50)
Xg~ Xy~ le 2P pc[X1—Xo+Xo(Ky ko) +i€] |’
where the factor ¢-p;) will be absorbed into the 22 \\nerex. is defined as
hard-scattering function. Similarly to E7), we obtain the 0
contribution from the derivative of thé-function for a final- 2(ky,— ko) et (ka,—ka)?
state interaction, Xo(Ky Ko )= 2P p
Cc
dAof(S)  of 1 dz 0 ask;. and k, —0. 51
' #min In deriving Eq.(50), we used the parametrization of E§6),
1 dx 1 dx’ and the relationg?=0, P?~0, and 2-p.>0. Applying
J; _ YMJ > (a/alff’) to L(k.lT,sz), and IettingkiT (i=1,2) goto ;ero,
mn the first term in Eq(50) develops a double pole, while the
—xT/z | 1 second term remains a single pole,
r_ Stinn
X O\ X ST Uz) %€ <(X’S+T/Z) J (ks =0k, =0) ( Os )
—op EKL =UK =0)=7Y-Pe| 55+
| —x2 TR (x,) di T 2P-p.
XG(X)| —X— | —
X X _ -
X ( 2pCP) (Xl_X2+iE)2
XHE, (ﬁﬂ))} (49) _ Py — -
aome (7p7 P) (Xl_X2+iE)

where superscripF denotes the final-state interaction. The J

only difference betweerE,dAog(sT)/d3l in Eq. (49 and Z_WL(leZO’kZTZO)' (52
EidAay(sr)/d?l in Eq. (47) is the color factors in the par- 2

tonic hard parts. The hard paﬁggﬁc(é,f,a) in Eq. (49 is  Since we keep only contributions proportional to
given by C5[M, , o|2, which has the same kinematic de- (#/7X) TE”(x,X), we neglect the single-pole term in E§2)

pendence abigg_,c(é,f,ﬂ) in Eq. (47), but a different color in the following discussion, and use
factor, Cg, due to different color structures in final-state d d
compared to initial-state interactions. Similarly@, Cf is (9_|(§L(le:0’k2T:0): - (9_kgL(k1T:0’k2T:O)
computed by contracting the matti2/(N?—1)](t )ij» EQ.
(19), into the diagrams. s

In addition to the contribution from the derivative of the =Y pc(ﬂ)
Sfunction, the diagrams shown in Figi§ also give leading
contributions, proportional to d{dx)T)(x,x), from the (2p.)
double pole which results when the derivativ# dk;) acts Pe, (X,—Xp+i€)?
on a propagator that goes on-shellxat=x,. Consider the (53)
final-state interaction in the diagram at the left in Fig(dl1
The pole giving the leading contribution is from the factor Similarly, for the diagram at the right in Fig. (), we have

X

1 y-Py- (Ko, —ky)
X2_Xl+ Xo(sz,le) - | € 2P. pC[XZ_X1+ Xo(sz,le) - | 6]

¥ (Pctko—ky)y P
S (petky—ky)—ie

Y Pe,
(54)

R( le’ kZT) = g

v pc:gs{

wherex, is defined in Eq(51). Taking the derivative with respect ¢, we have
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(=2pc) o—x—ie)| (55)

J 9s
é)kp R( le 0 k2T 0) &kp R( le 0 sz )~ Y- pc(Tpc

Equations(53) and (55) show that the double-pole contributions from diagrams in Fi{b) 8atisfy Eq.(30). Keeping only
these double-pole terms, as in E423, we now have

8HD Os L ) 1

0kp (X11X21X pC)NE H2~>2(X17X21X 1pc) (Zp(;p) (Xl_X2+iE)2 2Ppc ’ (566)

O’)HD g R ’ 1

K2 (X1 Xp, X' pc)N_ HZ o(X1,X2,X",Pe) (_chp)(xz—xl—ie)z 2P-p.)’ (56b)
Cc

whereD, andDg denote the double-pole contributions from the left and right diagram in Fiy, &spectively. In Eq(56),
Héaz(xl,xz,x’,pc) and HzRéz(xl,xz,x’,pc) are 2—2 partonic parts corresponding to the left and right diagrams shown in
Fig. 12. They have the limits

1
HIéﬂZ(Xl X2 1X’ ’ pC)Xl*?XZZ X_2 H2~>2(X2 1X, ’ pC)! (573)

1
Hg—»Z(Xl X2 1X, ) pC)Xz_’Xlz X_l H2—>2(X1 :X, ’ pc): (57b)

whereH,_,»(X;,X’,p;) with i=1,2 are the same as in E@L2).
Recalling thatTg is real, it is evident from Eq(29) that we need the imaginary part of/¢k5)Hp and (@/dk5)Hp_ in

order to get a real contribution to the spin-dependent cross section. For double pole terms like thos€56aEgsd (56b),
the imaginary part is given by

F(X1,X2) (58)

1 ) J
f dxlm F(Xl,XZ)ZJ' Xm[—IW(s(Xl—Xz)] &—)(1

for any smooth functior (x4,x,). Using Eq.(57), we have following relation:

J
iEpSTnn (HD (X11X2!X pC)+HD (Xl,Xz,X pC)):|

(V)
f dxld X2TFa (Xl !XZ) akp

:gS 2Ppc [ f dXZ
+f dx,

ST nn

d
~Q,lsﬁf XHzez(XX pc)[——(T(V)(X X))|.

J L ’ (V)
- (9_)(1(H2*>2(X1 1 X2, X 7pC)TFa (Xl 1X2))

szl]

In deriving Eq.(59), we have used the symmetry propef§’(x;,x,) =T (x,,x1), Eq. (26) [10],

X =Xy

d
= 7 22006 X ) TR (X1, 0))

(59

d d d
x T =2 2T )| =27 xx)| (60)

Xp=X

X=X

and Eq.(57). In addition, we have used the approximation

: (61)

apnt )TV ! ' 7w
- a_xl(Hz_’Z(Xl’XZ’X apc)TFa (X1,X2)) %X_Z Ho o(X2,X",pe)| — é,_xl(TFa(XlaXZ))

X1=X3 X=X

demanding as usual a derivative B .
Substituting Eq(59) into the cross section Eq29), we obtain the leading double-pole contributions from the diagrams
shown in Fig. 6b)
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EdAag(§T) as f dx 1 fdx’ . —xTiz
K] Zmlnz CHW(Z)X.TXS-I—U/Z X X T Xsrurz

1
ngfsT'”i_—T)G(X’)

whereT=—2P-| is defined in Eq(3), and the partonic hard pairtagﬂc 3,t,0) is normalized to have

— —(T<V>(x X)) |H 5,t,0), (62

ag—»c

§,1,0)=HL, (510, (63)

with Hgg%(s,f,a) the same partonic hard part derived from the contribution of the derivative at-ilmection, and given in
Eq. (49).
In addition to the diagrams in Fig(If), there is another type of diagram with final-state interactions, as shown in(E)g. 6
In this case the final-state interactions taken place on an unobserved final-state parton. The diagrams on the left and right are
the same, except for the final-state propagator and the argument of the phasé-gpat®n. The total partonic contribution
from these two diagrams can be expressed as

1 l
HCL(klakZlX,1pC)+HCR(klrk2!x,!pc): W ( 2) 5(L ) F(klka!X,lpC)l (64)
1

where the momentha; andL, are defined in Eq(38). The functionF(k;,k,,x",p;) represents the common factor of two
diagrams in Fig. &); it has the symmetry property

F(klka!X,!pc):F(k21klixr=pc)' (65)

From Eq.(64), combining the symmetry properties of E¢86) and(65), we readily show that the leading contribution of the
diagrams in Fig. &) to the spin-dependent cross sectjon Eqg. (29)] vanishes.

C. Quark-quark and quark-antiquark subprocesses

In this subsection, we present the leading contributions to the spin-dependent cross section from quark-quark and quark-
antiquark subprocesses.

Based on the same arguments following E2j/), the leading contributions from diagrams with initial-state interactions,
shown in Fig. 183), come only from the derivative of the phase spadenction. By analogy to Eq47), we obtain

£ dA oy (Sy) aS 2 1 dx 1 J dx’ . —XxTlz
! d3l 2 28 De-.x(2) i X XStUlZ ] X X XS+ Uz
stlnn 1 ’ J TQQ(X'X) | atn
X gs€°T STT2 Eq: q(x") x|l Hag—c(5:1,0) | |, (66)

where the partonic hard pam;q%(@:,f,a) is given by the 2-2 quark-quark(quark- antiquar}(diagrams shown in Fig. 14.

Compared to the spin-averaged casgqﬂc(s,t,u) plays the same role dg,, .. in Eq. (33). In fact, H! qﬂc(s,t,u) is given

by the same Feynman diagrams needed to calcdlgie ., but, with different color factorsr;q, due to the extra initial-state

interactions. Similarly toC! C' is given by the color structures of the diagrams shown in Figa)lZontracted with

[2/(N2— 1)](tB)IJ , WhereB andu are color indices for the gluon and quarks from the polarized hadron, respectively.
Contributions from the derivatives of the phase sp&éenctions of the diagrams with final-state interactions shown in Fig.

13(b) are given by

dAof($y) af 1odx 1 dx’ —xT/z
9T _ TS E - - - =
B S & me z DCH”(Z)L X xS+U/zf x' 5()( xS+U/z

min

07

T(F\Q(x,X)

X

Eq(X)

Higc(3.1, a)”. (67

stlnn
X gs€T <(x 'S+ T/z
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where superscrigf represents the final-state interactions. The partonic hard-scattering fumtgpgc(é,f,a), has the same

functional form asH Lq%(é,f,a) in Eq. (66), with a different color factocg , because of the final-state interactions. As with
Cg, Cg is given by the color structure of the diagrams shown in Figbjl.Zontracted witH 2/(N?— 1)](tB)iJ- .
In addition to the contributions given in E7) from the derivative of theé-function, the diagrams in Fig. 18) also have
leading contributions from double-pole terms. Just as for the contributions from the quark-gluon subprocesses, given in Eq.
(62), the quark-quark and quark-antiquark double-pole contributions take the form

dAoQ(Sr) ol

E == dZD f
I P 7z c—n(2)

Xmin

1 dx 1 jdx’ ) —xT/z
X XxS+U/z X X_xS+U/z

Zmin

1 d 2
xgsesT'”i_—T)g A(x)| = = (TE(x,%)) |Hgq o(8.1,0), €8

where the hard-scattering function found from the doubleshown in Fig. 16a). The color of the incoming gluon from

pole, HD, . o(3,1,0), is equal toH}, ..(5,1,0) in Eq. (67). the unpolarized hadron is averaged, and the colors of the
incoming quarks and the extra gluon from the polarized had-
ron are contracted with—2i/(N°~1)](t®);;, as explained

D. Calculation of the partonic hard scattering functions in the text following Eq.(43).

In Egs.(47), (49), (62), (66), (67) and(68), we have pre- Finally, the Cg are the color factors of the same—2
sented factorized expressions for leading contributions to theiagrams with an extra final-state quark-gluon interaction,
spin-dependent cross sectioB,dA o (3;)/d3l, for quark- illustrated by the diagram shown in Fig. (b§. Similarly to
gluon, quark-quark and quark-antiquark subprocesses. TGy, the color of the incoming gluon from the unpolarized
complete our derivation of the spin-dependent cross sectioffjadron is averaged, and the colors of the incoming quarks
in this subsection we outline the calculation of the partonicand the extra gluon from the polarized hadron are contracted

hard scattering functionwggﬁc, Hggﬁc, Hlaq% and  with [2/(N?~1)](tB);;, as mentioned in the text after Eq.
ngﬂc_ We recall that the subscriptsandF refer to initial- (49). Our results for all these color factors are collected in

and final-state interactions, respectively. The other two hard able I. )
scattering functions, associated with derivatives on final-state For quark-quark(or quark-antiquark subprocesses, the
propagators 0,~,|y,.|51>%C and ng%, are equal tOHEch partonic hard scattering functionsl,, .. anq Hagc are
and ng%: respectively. given by the same quark-quartkr quark-antiquark2— 2

For the quark-gluon subprocesses, the partonic hard scat-
tering functionsH}, .. andHf, . are given by the same
guark-gluon 2-2 Feynman diagrams as shown in Fig. 15,
which are actually the same diagrams contributing to the
spin-averaged partonic pafggy ¢, in EQ.(353. Incoming
quark lines are contracted by (1A2)(xP), and incoming
gluon lines are contracted by (1/2)@p)-

Let Cy, Cy, andCy be the color factors for processes . o .
that are spin-averaged, spin-dependent with an initial-state ! e !
interaction, and spin-dependent with a final-state interaction, +
respectively. The facto€, for each diagram shown in Fig.
15 is simply the standard color factor for that diagram, with
an average over initial-state quark and gluon color. (b)

EachC'g is given by the color factor of the diagram with

one extra initial-state three-gluon vertex. An example is

AKi kay

(e)

FIG. 13. Three classes of quark-quddc antiquark diagrams
(a) (b) contributing to the spin-dependent cross secthan(S;): (a) dia-
grams with an initial-state poléb) and(c) diagrams with a final-
FIG. 12. Effective quark-gluon-2 2 diagrams with the thin line state pole. Symbol8 andij are color indices for the gluon and
of momentum X,—X;)P representing momentum flow that is a quarks.
result of the extra final-state interaction.

014004-16



SINGLE TRANSVERSE-SPIN ASYMMETRIESN . . . PHYSICAL REVIEW D 59 014004

N P h %7'(’(?) j i ) i
B
" -— P
FIG. 14. Effective quark-quarkand antiquark2—2 diagrams
contributing to the partonic hard partdgq .- (a) (®)

Feynman diagrams as shown in Fig. 17, which are the same FIG. 16. Sample diagrams with initial-state and final-state inter-
diagrams contributing to the spin-averaged partonic crossctions, used to calculate the color facta@§,and Cy in Table I.
section,d,q.¢c in Eq. (35b). Incoming quark lines from the o )
polarized hadron are contracted by (12JxP), and incom-  €nces to the asymmetries in protprproton compared with
ing quark (or antiquark lines from the unpolarized hadron antiprotor{7)-proton collisions.

are contracted by (1/3) (x'P’). From Table | and Table Il, we can construct all the nec-

As with the quark-gluon subprocesse,, c' andCf essary partonic hard scattering functions. For the spin-

a . ) ; .
are respectively the color factors for subprocesses that afl/€raged cross section, the hard-scattering function for the

spin-averaged, spin-dependent with an initial-state interacdu@rk-gluon subprocessra, . in Eq. (35, is found by
tion, and spin-dependent with a final-state interaction. Th&°MbINing the entries in the columns Bartonic Partsand

C, for the individual diagrams shown in Fig. 17 are the colorCy i Table 1. For the quark-quarkor antiquark subpro-
factors for each diagram, with a standard average ovef€SS€STag—c in Ed. (35D is found by combining entries
initial-state quarkor antiquark color. Thecg’s are found by from th.e columns oPartonic Part_swnh Cqin _Table Il. For .
including an extra initial-state three-gluon interaction in thethe spin-dependent cross section, the twist-three partonic

2.2 process|for example, Fig. 1&)] averaging the color Nnard scattering f“nCt'ongﬁc is found byl combining en-
of the quark(or antiquark from the unpolarized hadron, and t1€s In the columns oPartonic PartsandC, in Table I. In .
contracting the colors of the incoming quarks and the extrdh® same way, one can read off c;ther partonic hard scattering
gluon from the polarized hadron wifl2/(N2—1)](t8);;, as  functions, Hyq ., Haq.c and Hyq . from Table | and
mentioned following Eq(66). The C{ are found from the ~Table II.

same 2-2 diagrams, now with one extra final-state quark-

gluon interactionillustrated by the diagram shown in Fig. V. NUMERICAL RESULTS FOR SINGLE TRANSVERSE-

18(b)]. In exactly the same fashion as f@.,, the colors SPIN ASYMMETRIES

from the unpolarized hadron are averaged, and the colors y5ing derived expressions for the single transverse-spin

: : 2

from tge polarized hadron are contracted wit@/(N asymmetries in previous section, we are now ready to de-

—1)](t%);; [as mentioned in connection with E@7)]. velop numerical estimates @y for inclusive single pion
Our results for the quark-quark and quark-antiquark C°|°rproduction.

factors are summarized in Table Il. Notice the sign differ-
ence for the coefficient of M in the color factor N?+ 4N
—4)/(32N), between graphs related by reversing the arrow
of a quark or antiquark line. These will give slight differ- ~ The application of perturbative QCD to observables in-
volving hadrons in the initial state relies on factorization

theoremg31] and on the universality of the nonperturbative,
long-distance distributions. For the single transverse-spin
asymmetries discussed in this paper, a test of the perturbative
formalism requires in principle an independent extraction of

@) ®) @ the spin-dependent twist-three distributiog&:A(x; ,x,) in-
troduced in Eq(17). As we have observed, there is a variety

of twist-three distributions, dependent in general on a pair of
momentum fractions. It would require extensive measure-
ments to pin down all of these functions. However, for

@ © ® single-spin asymmetries in the forward region, we have ar-
gued above, and in Rdf10], that the dominant contribution
may depend primarily on only a single twist-three distribu-

tion, T(F\;)(x,x), at equal values of its two arguments. Assum-
ing this to be the case, it could be possible to infer the form
of T(FV)(x,x) from single transverse-spin asymmetriesminh
@ () W a’ . . . .
and/orzr~ production, and then use it to predict asymmetries

FIG. 15. All 22 quark-gluon diagrams contributing to par- in the production ofz°, direct photon or other particles, at
tonic hard partsH g . . least approximately.

A. Model for the twist-3 distribution: T&(x,x)
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JIANWEI QIU AND GEORGE STERMAN

PHYSICAL REVIEW D59 014004

TABLE I. Partonic hard parts and corresponding color factors for quark-gluon and antiquark-gluon

(indicated by barred lettersubprocesses. Feynman diagrams are shown in FigC&S.C' , andC

F
g are

color factors for spin-averaged, spin-dependent with initial-state interaction, and spin-dependent with final-
state interaction subprocess, respectively. The explicit facterk) (are due to the sign difference between
quark and antiquark propagators with the same momentum. Calculations were done in Feynman gauge.

Diagram Partonic Parts Cy Cy o
& 1 N? 1
(@ 41 2 2 A1) T 2(N—1)
—0 N?-1 1 1
® 5 o : ANFNE-T)
© 8 N?—1 1 1
25 AN? 4N?—1) AN(N?-1)
ME . N , 1
(d) (+l)2_%_ (-2 (+l)m (+l)m
8 . N 1
(e) ( I)Z_'f_ (+|)4 (—I)m (_|)m
0 a1 G 1
) ( I)Z_f. (+i)3z 0 (—l)m
_[a] o 1
() HI)ZE_ ()7 0 Sy
(h 0 - . -
() 0 - : :
& 1 N? 1
@ 41 EZ} 2 4N?—1) _2(N2—1)(_1)
— -0 N2-1 1 1
(®) 5 N : e Y
8 N?—1 1 1
@ & W @D o= Y
8] - N 1
(d) ( I)Z_E_ (+i)z (+l)m (—l)m(—l)
3] - N 1
Gl (+1)2)~ (=13 (—l)m (+l)m(—1)
Lt]
%) (+2 > (—} 0 (H) g (1)
q TN
~Ja] _ 1
@ (=2 (+1)3 0 () ze=p Y
® 0o : - -
0} 0 - - ;

In order to compare our calculated asymmetries to the
existing data, we need to assume an initial functional form
for the twist-3 distributionT(”(x,x). To help motivate our

model, we compare the operator definitionTét)(x,x) with

that of a twist-2 quark distribution,(x) of flavor a. From
Eq. (25), we have
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i N a c a el where\ (with dimensions of energyis a normalization con-
E 3 Ei 3 g stant, which will be fixed by the data; and whekg=
b b b S i_l,O, depending on ﬂavcm.. Note that we propose the re-
@ ®) © lation Eq.(71) only for relatively largex, where the corre-
lations of quarks with the gluon field may be simplified. This
as_ e a a P restriction limits somewhat the utility of low moments Bf
E 3 Ez E g in estimates of its magnitudd 3]. For the parameters, in
L . = . T Eq. (71), we shall see that the data suggest the choices

@ © ® Ky

k,2=+1 and P 1 (proton),

a a a ’
[+
[ c - i
) ) } { ki=—1 and —=-1 (antiproton, (72

® () ) Kd

L1111}
9000
[111]
9000

where the second line follows from the first by using charge

a
S - - conjugation invariance ifi . In the valence quark approxi-
mation, discussed in the previous sections, we further as-
sume thatks=0. Of course, Eq(71) is simply a model, and
o (k) o the true functional form of the twist-three distribution
T(F\Q(x,x) should be determined by detailed comparison with
experiment. The purpose of our model is to have a functional
form that we can use to begin such a comparison with the
[+ c
(m)

important, but still limited, data that are available.
(@)

FIG. 17. All 2—2 quark-quarkand antiquark diagrams con- B. Single transverse-spin asymmetries in pion production

tributing to partonic hard part$iag_.. . Single transverse-spin asymmetries for pions were been
measured at Fermilab by the E704 Collaboration with 200
where subscripta is quark flavor. Correspondingly, from GeV polarized proton and antiproton beams on an unpolar-
Ref. [39] we have for the quark distribution ized proton targeft4]. In this subsection, we use the Fermilab
data to estimate the value af in Eq. (71), and check the
dy™ . - — B consistency of our model.
600~ | S &Y (Pl (0)y by IP). (70
1. Absolute sign of the single transverse-spin asymmetry

As above, we suppress ordered exponentials of the gauge !N order to compare the experimental data on the asym-
fieal(j' (:()rT]F)Eirir1£} EE(]S;(ESE» \A/itt] ('7())’ tr](a ()F)Eiriit()r (jeafir]ir]gg rT1f3tr|EEf;,/\pd y \Alltf1 our (:Eil(:ljlfit'()r]f; in Sec. |||, we r](E(B(j to f|)(

TM(x,x) is the same as for the spin-averaged quark distrifh® absolute sign ofy.
a . . According to Ref[4], positive values of\ correspond to
bution, except for the term in the square brackets. This fac y

tor. however. d not introd xplicitdependenceor farger cross sections for production #f to the beam’deft
or, however, does not Introduce expliaraependenceot when the beam particle spin is verticallpward as sketched
y-dependence in coordinate spad@ased on this similarity

. s ; in Fig. 19. We choose our coordinate system such that the
of the operators, we model the twist-3 distribution with the 9 Y

following functional form. inspired by th ik distrib beam direction is along the-axis, and the direction of the
otiowing tunctional form, inspired by the qua SUBU heam spin is along the-axis, as shown in Fig. 19. Conse-
tions themselves,

quently, the experimental beamlsft corresponds to the
—y-direction in our coordinate system, and

TE)(X,X) = K2\ Ga(X), (71) -
(AN)exp™> 0> € 751170, (73
B
J i ! x (s1)
. Left, Ay>0
z (beam)

y

(@ (®)
FIG. 19. Sketch for the coordinate system: the polarized beam is

FIG. 18. Sample diagrams with initial-state and final-state inter-along thez-axis and the beam particle spin along thexis. Posi-
actions, used to calculate the color factdt%,and Cg in Table II. tive Ay corresponds to an excess of events in thg-direction.
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TABLE II. Partonic hard parts and corresponding color factors for subprocesses involving quarks and/or
antiquarks. Feynman diagrams are shown in Fig. 17. In diagrajren( () both fermion arrows have been
reversed, relative téi) and (j). C,, Cg, and Cg are color factors for spin-averaged, spin-dependent with
initial-state interaction, and spin-dependent with final-state interaction, respectively. Flavor iadioed
correspond to the flavor of the quathkr antiquark from the polarized hadron and unpolarized hadron,
respectively, and is the flavor of fragmenting quark. The explicit factors 1) are due to the sign difference
between quark and antiquark propagators with the same momentum. Calculations were done in Feynman

gauge.
Diagrams Partonic Parts Cq Cy Cc
@ ) 407 N2—-1 N2—4N—4 1
2| IN? 32N 4N?
) ) §2+0° 5 N2—1 N?+4N—4 L 1
2| 4N? 32N ) 4N?
© ) 32+0° 5 N2—1 N2+ 4N—4 1 L
2 [ 4N? 3N ae (7
@ ) 32+02 5 N2-1 N?—4N-4 L 1 L
2 [ 4N? an (Y ae
© 32412 N?-1 N2-4N-4 N%+4N—4
2| g7 | % aNZ 3N 3N
0 X 32412 5 NZ-1 N2+4N—-4 NZ2—4N—4
0z |be 4N? 32N 32N
© §2+12 N2—1 N2+4N—4 L N2—4N—4 L
2|~z | %e N2 aNn Y N Y
) 32412 N?-1 N2—4N—4 L N2+4N—-4 1
2- 02 -5bC 4N2 32N ( ) 32N )
. [ 82] N2—1 N2+1 1
@i 2 = BabBac TR N T
u
. §? N2-1 N2+1 1
(J) 2 ’f_’\ 5ab5bC 4N3 4N3 W
u
@ X 32—5 5 N2—1 N+ 1
ol e NG N e Y
& X 32"5 N N2—1 NZ+1 . Lo
) fal e g e Y ae Y
2402 N1 1 N2+4N—4
K - o
k) 2—g |% aN? NS 32N
i t2+02] NZ-1 1 N%2—4N—4
2~ % aN? N2 3N
[t2+ 02 N?—1 1 N?— 4N — 4
m — (=
( ) 2- ,SZ | 5a 4N2 4N2 ( l) 32N ( l)
R N2+ 4N—4
N 2
) A il nt - N Y
|7 &% |% 4N aN?
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Equation(73) fixes the absolute sign & presented in Sec.

[ll, and dictates our choice,=+1 in Eq.(72).

2. Leading single transverse-spin asymmet(ﬁ[:?x)T(F\;)(x,x)

PHYSICAL REVIEW D 59 014004

contributions from the terms discussed in itefhsand(2) of
Sec. Il D, because those discussed in ité®snd(4) lack a
derivative on the twist-three distribution. To be consistent
with our approximation, we rewrite the contributions in Egs.
(47), (49), (62), (66), (67) and (68) in terms of an explicit

only] factor of (&/ax)T(F\;)(x,x), neglecting derivatives of other

As explained in Sec. Ill, we are interested A in the  factors. Combining all leading contributions to the spin-
forward region, where it is largest experimentally. In deriv-dependent cross section, in a manner similar to the spin-
ing Egs.(47), (49), (62), (66), (67) and (68), we kept only  averaged cross section in E§3), we obtain

- d3Aa(§T)_a§2 fl dzD fl dx 1 f dx’ o —xTlz
@ s& ), ZPeP ] Skstuiz ] x O X T xsrunz
Istnn
Amay — L TV(%, %) || G ) ABag .ot D a(x)AG 74
XNadmag m _Xé?_X Fa(X-X) (x") Oag—c > a(x’) Oag—c|s (74
|
whereX, runs over up and down valence quarks. The inte- 9 (-0 8 9 (38 0
gration limits in Eq.(74) are the same as those defined in Eq. — | — |t =z
(33). The spin-dependent partonic cross sectiahi&og . 32\ § —d 16\t t
andAa,, .. are given by (763

For quark-quarKor antiquark scattering, the color factors of
Aboq o=—| H st.0)+H" 8.0 individual subprocess depend on quark or antiquark, as
Tag-c ag—cl ) Hagcl ) shown in Table II. For partoa a quark(corresponding to a
polarized proton beamwe have
a R _
+| = | Hag (3, 1,0) |, (759 A 4 (8+0%\|21 1 a
t AGgq—q= = - —+ = 1+=
9 t2 64 8 t
Abaq .c=—|HL o B0 +HE, (51,0 A 4| -51+1 1 0
Oag—c™ aq—»c(sr ) aq—»C(S! Q) Oqq'—q 9 12 _64 8 :
1] R 2.2 N
+[ =Moo (310) |, (75b) Ap . oA [Ert) 2 s 0
t O'qql*}q/— " N
9 0] 64 64 t
where the minus sign is fror®™'""= — €'sT"" and where all Ao = 4 (&+17)[51 21 1 a
the partonic hard-scattering functions have been given in Tq9'—a" g O 64 64 i
Sec. Il In deriving Eq(75), (X' S+ T/z)/(—T/z)=0/t was
used. From the information given in Table I, we find the A5 -8 /(810 1 1 a
following explicit expression foAG,4 ., taking N=3: Tq0-9~ 57 ai/l 8" 8 :
A su\l9 1 0 Ao _4(+e?)[ 1 51 1+a
A(Tagﬂczﬁac 2 1_'f_2 1_6+§ 1 ? quﬂq’_g §7 g a ?
4(-0 &§\[63 1 L Q AG 4 (2402 1 21 1+a
+—-|—+—|——— 1+ O == | —= —=——= =
ol & —a/|128 64 : AR 64 t
(76b)
§ 0 1 a . . -
=+ =+ |1+ For a polarized antiproton beam, similar formulas for
t t/|16 8 t AGgp . can be derived from Table Il. From Eq83) and
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FIG. 20. Single transverse-spin asymmetry as a functiorgof FIG. 21. Single transverse-spin asymmetry as a functiorgof

for #* and 7~ production with a polarizedntiprotonbeam. Here  for #* and 7~ production with a polarizegroton beam. Data are
and in the following five figures, data are from R§4] at /S from Ref.[4]. Theory curves are evaluated at transverse momentum
=20 GeV andl; up to 1.5 GeV. Theory curves are evaluated atl=4 GeV and withA =0.80 GeV.

transverse momenturiy =4 GeV and\=0.080 GeV at the same

center-of-mass energy.

_ 051 _ v\35
xd,(x) B(0545 X" (1—=X)>, (77b)
(76), we see that the underlying partonic cross sections for
spin-dependent and spin-averaged cases are similar, other 1 B(1.5/4 B(1.54.5 .
than the factors in square brackets. xXS(x)=8 5—2 B(054 B(0545 (1—-x),
(779
3. Comparison with the Fermilab data
Because of limited phase space, most of the Fermilab data ~ XG(X) =3(1-x)°. (779

in Ref.[4] were collected at relatively small values of trans- ) _ ) )
verse momenta, ranging up to 4 GeV fof in the central Here, B(x,y) is the beta function. For pion fragmentation
region (where Ay is smal), and up to only 1.5 GeV for functions, we rely on Rei{4Q]. Using the simplified parton
7=, 7% in the forward region, wher, is large. In general, distributions of Eqs(77a—d in the spin-averaged cross sec-
a transverse momentum of even 2 GeV is considered tolon. and in the model for the twist-three distribution given
small to apply perturbative QCD reliably to single-particle Py EQ. (71), we evaluatedAy as the ratio of the spin-
inclusive cross sections, because of their steep dependeng@Pendent cross section in E(4) to the spin-averaged
onl. This strong dependence makes the cross sections sef0SS section, E¢33). _

sitive to higher-twist effects not associated directly with spin, N Fig. 20, along with experimental data from Ref], we
such as intrinsic transverse momentum, hadronic scales, an@Vve plotted our calculatetly for " and= ™ production in

of course, yet higher powers inl3/ One consequence of _the scattering of a pqlanzed antiproton beam on an unpolar-
these effects is to regularize the cross sectioh;at0. For ~ 12€d proton target. Similarly, in Fig. 21, we plot the asym-

the asymmetry, however, the strongest power dependence SR¢lries with a polarized proton beam. In Fig. 22, W?Fc;rom-
1/1; cancels in the ratio of the spin-dependent and spinPa@r€ theory and experiment in the asymmetries

averaged cross sections, leaving at mdét in A . In fact production with a polarized antiproton beam and a polarized
as we will show belowAy does not behave numerically proton beam. The data presented in Figs. 20, 21 and 22 are
even as steeply as|2/in most of the range where the data 2veraged over the range of transverse momenta, up to 1.5
were collected. This suggests that our calculationAqris GeV. All of the calculations in these figures, however, were

perturbatively stable and may be meaningfully compared@ied out aiy~4 GeV, with a normalization constant
with the data. =0.080 GeV, adjusted to give a rough match to the data.

For simplicity in our numerical estimates, we employed W& Will come back to the choice dfy in a moment. This
the following simple parametrizations, without scaling viola- limitation notwithstanding, fixing the single overall normal-

tion, for twist-two parton distributiongL0]: ization constant), is enough to give theoretical predictions
— 051 _v\3 For the purpose of this comparison, we neglect correlations be-
XU, (X)= X“(1—x)°, 77 .
b(X) B(0.5,4) ( ) (773 tweenxg andl; in the data.
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FIG. 22. Single transverse-spin asymmetry as a functiorzof FIG. 24. Single transverse-spin asymmetry as a functiorgof
for 70 production with polarized antiproton and proton beams. Datafor =+ and~ production with a polarizegroton beam. Data are
are from Ref.[4]. Theory curves are evaluated at transverse mofrom Ref.[4]. Theory curves are evaluatedlg=1.5 GeV and\
mentuml+=4 GeV and with\ =0.080 GeV. =0.070 GeV.

that are consistent with the shapes and relative signs and4 GeV. Clearly, the normalizations and shapes of the
normalizations of all the experimental data. asymmetries dt;=4 GeV and=1.5 GeV are very similar,
Now let us consider to the question of how best to choosevith an only slightly different normalization factor. We con-
|+ for the comparison with the data. Given the naive expecsider this stability very encouraging. Such consistency is
tation thatAy~ 1/, the extracted value of might be ex-  strong evidence that the twist-three formalism of perturbative
pected to depend strongly on the valuelefat which we  QCD can be applied to single transverse-spin asymmetries at
evaluate the asymmetries. Surprisingly, however, the pertumoderate transverse momenta. We will give a further discus-
bative prediction for the asymmetries in this momentum re-sion of this point in the next section.
gion is not very sensitive the precise valuelgf Thus, in We close this section with a few comments on the conse-
Figs. 23, 24, and 25, we present the same asymmetries asduiences of our model of ¢ [Egs. (71) and (72), with A
the foregoing three figures, now evaluated g+ 1.5 GeV.  ~0.080 GeV] for single-spin asymmetries in direct photon
For this value, we find a good match to the data by choosingroduction. Compared to the ansatz Tgr proposed in Ref.
A=0.070 GeV, not too different from the value foundlat

0.3 L B B B
0.4 || / [ o rr°,pp
25 | I 0o —
§— : [ oTTo e
I ) 1] oz | Vs =20GCev ]
02 oo o Ip = 1.5 GeV 1
e
i ,%" A = 70 MeV
i 2 onr ]
z 00 [ {} _
0.0 - —
02 ™ s = 20 cev. pp ]
lp = 1.5 GeV 1
X = 70 MeV _o.1 Ll L [P
R P A NN I B 0 02 04 06 08
' 0 0.2 0.4 0.6 0.8 X
Xp

FIG. 25. Single transverse-spin asymmetry as a functiorgof
for 0 production with a polarized antiproton, along with the same
asymmetry obtained with a polarized proton beam. Data are from
Ref. [4]. Theory curves are evaluated =1.5 GeV and\
=0.070 GeV.

FIG. 23. Single transverse-spin asymmetry as a functiorgof
for #* and ™ production with a polarizedntiprotonbeam. Data
are from Ref[4]. Theory curves are evaluatedlat=1.5 GeV and
A=0.070 GeV.
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[10], the two main differences are, first, the relative minus(74). The approximate 1/(x xg) behavior in the ratio of the
sign between the down and up quark matrix elements, andlerivative of the twist-three correlation function to the cor-
second, a decrease in the overall normalizakiphelow 100  responding twist-two parton distribution is the dominant fea-
MeV. The modified normalization is consistent with the ture of the twist-three asymmetry, and is responsible for the
bound proposed in Ref13]. Both of these features are sug- observed growth ofA in the largexg region. However,
gested by comparison to the data for pion production, whiclwhenxg is too close to 1, our formula will need to be modi-
is only now possible. The effects of the both changes wouldied, and even higher twist contributions should be consid-
be to reduce the cross section estimates given in [Réf, ered[41,47.

although the second is more important than the first, because The factord/(—U) andl/(—T) in Eq. (78) reflect the
the down quark’s charge is small. In any case, the (28  twist-three nature of the asymmetrfy. Combining Egs.
which limit the direct photon asymmetry is at low , where  (3) and(4), we express the invariants, andT, in terms of
either model predicts a small effect. Xg andl:

S
2 2
V. SUMMARY AND DISCUSSION U=-— > [ VXg+XT+Xg] (799

In this section, we summarize and interpret the main fea-

tures of our results and provide a few thoughts on future S

development on this subject. T=- > [\/szer%—xF]. (79b
We have presented a calculation of single transverse-spin

asymmetriesAN, for hadronic pion production at large- . When xg=0, bothU and T are equal td1/S. From Eq.
This calculation was based on a “valence quark-soft gluon”(78) we conclude that the asymmetry>xat=0 should have
apprQX|m_at|on. In this app_rOXImatlon, we k_ept_ only thosea very mild, probably linear dependence on the pion’s trans-
contributions toAy proportional to the derivative of the verse momentumAy must vanish at;=0). Our analytical
twist-3 quark gluon correlation functiondX)TEQ(X,X),  results in Eq.(74), however, are not accurate for the asym-
wherea denotes a valence quark flavor, and where the equahetry nearx-=0, because of the large- approximation
arguments infl= imply zero gluon momentum fraction. OUr ysed in our calculations. But, from the general structure of
results for spin-dependent single-spin cross sections aige asymmetry, we believe that weak transverse momentum
given in Eq.(74). The ratio of the spin-dependent cross sec-yependence at-=0 for Ay should be a more general con-
tion in Eq. (74) and the spin-averaged cross section in Eq¢|ysion.

(33) definesAy for hadronic pion production. The spin- |t y_sx_ the invariantsU and T in Eq. (79) have the

dependent cross section, E@4) has two types of contribu- following approximate dependence bpandxe,
tions: quark-gluon and quark-quafr antiquarl, which are

given by AG,q . in EQ. (769 and AG g, ¢ in EQ. (76Db), U— —XgS, (803
respectively. All of these calculations are strictly leading or-

der; we anticipate that a large part of higher order corrections |$

will cancel in the asymmetry. Our model for the twist-3 ma- T—— ot (80b)

trix elementTg is given in Egs(71) and(72). We have not

investigated the evolution properties of these matrix ele'ConsequentIy in the larger region, the asymmetryAy
ments here. We expect this to be an interesting subject, by have two typical contributionsy/I+ and\i-/S, respec-
we do not anticipate that evolution will require qualitative tively. If the \/17 contribution dominates, perturbative QCD

It

1+0

char)ges In our conclus_lons. . ) calculations of the asymmetry may be relatively sensitive to
_ Single transverse-spin asymmetries are a twist-three effe¢ty, ortyrhative effects, because of its singular behavior at
in QCD perturbation theory. After taking the_ ratio of Eq;. I:=0. On the other hand, QCD perturbation theory may pro-
(74) and (33), the asymmetry has the following schematic ;e 5 reliable calculation of the asymmetries when the
dependence on kinematic variables in the laxgeegion: N +/S term is relatively important. In Fig. 26, we plot the
transverse momentum dependence of the asymmetky at
B) (79) =0.4, where most data were collected. The asymmetries for
T/ 1-xg’ both #* and 7~ have a quite weak dependence on pion’s
transverse momentum fof>2 GeV. This suggests that per-
where the invariantd) and T are defined in Eq(3). In Eq.  turbative calculations for the asymmetries are reliable for a
(78), the prefactod +/(—U) comes directly from the factor Wide range of the experimental kinematics.
€ST/(—1) in the spin-dependent cross section in E&f). The remarkable. feapure of mild transverse momentum de-
The combinatiori 1+ O(U/T)] is left over from the partonic Pendence, shown in Fig. 26, can be easily traced toEg).
cross sections in Eq76), after the cancelation of the domi- For the quark-gluon subprocess, once the dominaitde-
nant 12 dependence in the ratio. The normalization paramPendence has canceled in the asymmetry, the coefficient of
eter A comes from our model of the twist-three correlation 0/t is much smaller than the corresponding constant term.
functions, TY(x,x) in Eq. (71). Finally, the factor 1/(1  Similarly, for quark-quark and antiquark subprocess, the co-
—xg) for xg large is associated with)(ox) T&)(x,x) in Eq.  efficient of 0/t is also much smaller than the constant term,
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FIG. 26. Single transverse-spin asymmetry fof and 7~ pro-
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FIG. 28. Single transverse-spin asymmetry fof, =~ and =°

duction with a polarizeghrotonbeam as a function of pion’s trans- production with a polarized proton beam, as a function of pion

verse momentunh; . Theory curves are evaluatedsat=0.4, /S

=20 GeV and\=0.080 GeV.

except for terms proportional to (17 and 1#%. The latter,

however, are suppressed h§/3? relative to the leading
terms in the forward region. In summary, the small coeffi-
cients for(l/t terms assure that tHe/(—T) dependence in
Eq. (78) does not dominate thk./(—U) dependence. We
verify this conclusion by plotting the fractional contributions
to the #© asymmetry from the 14 U) term and the 1/
(=T) term, respectively, as a function of pion’s transvers

transverse momentuti . Theory curves are evaluatedxgi= 0.4,
JS=200 GeV and\=0.80 GeV.

asymmetry will scale with 14 in this region. For the kine-
matics of the Fermilab data, this scaling region is not yet
reached. In Fig. 26, the steep increase of the asymmetries for
<2 GeV indicates the dominance of thél contribution,

and probably signals that the perturbative calculations are
relatively less reliable i+ is much less than 2 GeV. The
eslight increase wheh;— 6 GeV signals an effect of the edge

momentum in Fig. 27. It is evident that contribution from Of Phase space. Clearly, the high energies of the polarized

1/(—U) term is comparable with 14 T) term for the region

of our interest.

If xe—1, or U/T~x2S/I3>1, the asymmetry will be
eventually dominated by tha/l; terms. Therefore, the

1.0 —

Fraction of Contribution to Ay(n™")

0.2 Vs = 20 GeV, pp
xp = 0.4
00 A = 80 MeV
b Cle
0 2 4 6

FIG. 27. Fractional contribution from 14U) and 1/(T)
terms to the single transverse-spin asymmetryrdfproduction as

RHIC proton beam would make it possible to check these
predictions. In Fig. 28, we show the-dependence ok for
xg=0.4 at\/S=200 GeV. Compared to Fig. 26 at Fermilab
energies, thd;/U term is relatively suppressed, and the
model predicts a steepéy-dependence and, in general, a
smaller, but still substantial, asymmetry. Figure 29 shows the
asymmetry as a function o atlt=4 GeV. These are ex-
amples only; the model can be used to predigtover any
kinematic range that is experimentally convenient, so long as
it is in the forward region.

In summary, we have calculated the single transverse-spin
asymmetry for hadronic pion production in perturbative
QCD. With only one normalization parameterand a rela-
tive sign of polarized twist-3 valence quark distributions, our
numerical results are consistent with Fermilab data on the
asymmetry for both the sign and shape, as well as relative
normalizations. In addition, we have demonstrated that per-
turbative calculation of the asymmetries is applicable even
for pion momenta as small as a few GeV. This conclusion is
very encouraging for future applications of perturbative
QCD beyond the leading twist. Our method can be easily
generalized to calculate the single transverse-spin asymme-
tries for inclusive production of other particles. The planned
polarized beam at RHIC affords an exciting opportunity to

a function of pion transverse momentum. Theory curves are evaluest these, and related ideas on the spin structure of the
ated atxg=0.4, \/S=20 GeV and\ =0.080 GeV.

nucleon.
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0 M T derivative or a field strength. It will be convenient to start by
I ] discussing the expectation values of combinations of these
-7 ] fields in position space. We thus introduce
0.1 —

D}(y1.,Y2,8)=(P,s|#(0)TD(y) ¢(y1)|P,s)  (Al)

Fl(Y1,Y2,9) =<P,S|E(O)I‘n#F”‘(y2) P(y1)|P,s),

5 00 (A2)
. ] with T a Dirac matrix. We defindd'=igs' —gA', and we
N~ adopt the kinematics and notation of Sec. Il A; in particular,
o4 B \'\; n* is defined in Eq(2). In these matrix elements, the index
| vs =200 GeV, pp h i is assumed to be transverse. This alone is enough to make
Iy = 4 GeV 1 the matrix element twist-3; the Dirac projection must not
A = 80 MeV ] raise the twist further. The relevant terms in the Fierz pro-
—02 IR T B B jection between the distribution for a hadron of momentum
0o o2 x°‘4 06 08 P~=n*/S/2 and the hard scattering are then given by
F
FIG. 29. Single transverse-spin asymmetry fof, =~ and 7° Saar 5bb,:% (Y- Map( Y- Mprar

production with a polarized proton beam, as a function of pion
transverse momentuiy . Theory curves are evaluatedxat= 0.4, 1
VS=200 GeV and\ =0.080 GeV. + 2 (v nys)anl Y5y Mprar
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APPENDIX
In this appendix, we identify twist-3 distributions and I'=5T"°, (A5)
fragmentation functions that can contribute to the sums in the et
collinear expansion, Eq17). The factorization in Eq(17) I'=opn(TT*7)7, (A6)

enables us to apply parity and time-reverdRll§ invariance . . 13 1 .
to hadron-hadron scattering in a manner similar to their c:IasWIth dr=*1, where7=iy"y*=7 " Is atime-reversal ma-

sic application to inclusive DIS, reviewed in Sec. Il A. Thus, trix that acts as
it will be natural to study the symmetry properties of pos- T(y")* T=1y (A7)
. . lu’ .
sible matrix elements.
We will identify terms of the type discussed in connection Specifically, for the vector, axial-vector and tensor cases we
with Eq. (29), that is, with integrals over two quark momen- have
tum fractionsx, andx,. Furthermore, we require that be

set equal tax, by a “gluonic” pole at x;=x, in the hard n-y: 6n,=1 (A8)

scattering[see EQ.(47)], in accordance with our valence

quark-soft gluon approximation. Let us concentrate first on N-yYs: On.yy=-1 (A9)

parton distributions, and return at the end to fragmentation

functions. (no)” Sngyr=—1. (A10)
Twist-3 distributions From the expectation values; and D} we define parton

distributions by Fourier transforms with respect to light-cone

As men_tioned in Sec. e, the_derivat!on 'of terms in Ed- momenta, and if desired transverse momenta as well,
(17) involving quarks requires a Fierz projection of the Dirac

indices linking the distribution or fragmentation function andt<rD>i(X1,k1,x2,k2,s)
the hard scattering. A schematic illustration was given in Fig.
7. The collinear expansion then isolates twist-three fermion iK1 y1+i(Ko—Kq)-yori
. . . . . = 1°Y1Ti(ka=ky)-yzpyl
matrix elements with two quark fields and either a covariant J dy,dy,€ Dr(y1,Y2,9), (A11)

014004-26



SINGLE TRANSVERSE-SPIN ASYMMETRIESN . . . PHYSICAL REVIEW D 59 014004

t(FF)i(xl,kl,xz,kz,s) with & defined in Eq(A6). Note the extra minus sign in the
second case, which reflects tieT properties of the field
strength tensor.

From Eqgs.(A17)—(A20), we can derive constraints on the
spin-averaged,
where we definedy;=dy~d?y, with y a two-dimensional
transverse vector, and-y=x;py  —k-y. In the following,
we study constraints on spin-dependence that follow from (t{° )>(X1,X2)—— (112 (X1,X2,8) + 1} (X1,X2, —5)]
the reality and symmetry properties of these matrix elements (A21)
in QCD. This will enable us to identify the relevant contri-
butions to the sums in Eq17).

N f dyldyZékl‘y1+i(k27kl).y2Fil"(yl Y2 ,S), (Alz)

and spin-dependent

Reality and symmetry o 1 o) o)
i _ - _ i
The reality properties of the matrix elemer(1) and At (Xe %) =5 [ (0, %2,8) =117 Xy X2, = )]
(A2) are conveniently expressed as (A22)

[Dr(=Y1,~Y2,9]*=Dr(y1,y1=Y2.8), (Al3)  istributions for each choice of operator=D,F and Dirac
_ _ structure I'. Specifically, the spin-dependent distributions
[Fr(=Y1,—¥2,9)]* =Fr(y1,y1—¥2.5), At At and At ) and the spin-averaged distribu-
(A14) (D)i (D)i (F)i
t|ons<tn_775>, (t(neyi) @NA(ty ) are imaginary and vanish at
which relate, of course, expectation values with the sam&;=xX,. They therefore cannot be associated with gluon
spins. Invariance under time reversal and parity, on the othguoles in Eq.(17), and are nonleading in the valence quark-
hand imply that soft gluon approximation introduced in Sec. Il B.

Di(Y1.Y2.5) = 8rDr(Y1.Y1—Y2.—9), (A15) Leading terms at twist-3

The remaining distributions are real and nonzeroxat
=X, in general. For the first sum in EQL7), we need a real,
chiral-even, spin-dependent parton distribution. The only one
in which spins are reversed. is At (x1,X,), which is equal, up to a constant, 1",

Relations for parton distributiort i andt(FF)' are easy to Eq. (29),
derive by inserting the reality and symmetry relations into
the Fourier transforms of Eq$A11) and(A12), and chang-
ing integration variables. Because in this paper we are con-
centrating on the collinear expansion, with convolutions inV
light-cone momenta only, we shall suppress transverse md?"
menta in the arguments of the distributions, and exhibit only
the momentum fraction variables in the following formu-

Fir(yl,yzls): - 5FFir(y1,y1_Y2,_S),
(Al6)

At (xq %)= — 4w T (xg,xp),  (A23)

where the tensor structure follows from parity invariance ap-
lied to the matrix element.

For the second sum in Edq17), we need a chiral-odd
spin-averageddistribution, to give a nonzero trace in the

las. Relations for transverse-momentum distributions ar@ard scattering amplitude when paired with the transversity

found by simply reinserting thk; arguments, alongside the distribution[22],
corresponding momentum fractions. With this understood,

the reality conditions give éq(x):f dZL; &P (P 5[ 3(0)

(67 (02, 9) " =t (k. x1,8),  (AL7) i
N N x5 (0)isysy(y mIPs).  (A24)
[tg—‘ )I(XJ_!XZIS)]* :t% )l(Xz,Xl,S),

(A18) : : . I
Here again there is only a single contribution,
in which we note that the momentum arguments are ex(t(ng)1>(xl,x2) Parity invariance implies that
changed. The even parts of the twist-3 distributions are real, ()i
the odd parts imaginary. k o)1) (X1,%2) is of the form
Similarly, from PT invariance, we find

Sij
()i U 7o)
'[(rD)i(Xl,XZ,S):5Ft§‘D)i(X2,X1,—S), (A19) <t(n‘r)1>(xl’XZ) am 2 T (x1.%2), (A25)
P, ,%0,8) = — 51t (x5, %1, — ), where the scalar distribution!”) is defined by analogy to

(A20) T, Eq.(25),
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dy; dy;

eile’’y;Lr+i(x2—x1)P”y£r
A

T(FU)(Xl,Xz):f

1 _
x5 2 (P8 [4(0) (Mo, Flr(y;)

Xi(y;)|P',s").

In these expressions we have takeft* in the minusz di-

(A26)

rection, in accordance with the kinematics of the unpolarized
hadron in Sec. Il A. In Ref[10] the possibility of such a

term was noted.

Fragmentation at twist-3

Turning to the third term in Eq17), we must deal with
twist-3 chiral-even fragmentation functions, which are trans-

forms of matrix elements of the general form
d(y1,y2,.0 =2 T(ma)0l¢(0)]1,X)

X(I,X|D'(y2) ¢(y)|0)] (A7)

F‘”(yl,yz,I):; Tr[ ()0 (0)|1,X)

X(1XImy F#(y2) i(y1)|0)], (A28)

with the sum over inclusive fingbuf) states/X,l), wherel
is the momentum of the observed particle. The veofbis

defined by analogy t@* in Eq. (2), as a lightlike velocity
vector in the direction opposite to,=1#/l,. The trace is

PHYSICAL REVIEW D59 014004

dy,dy,
d(”)(Zl.Zz)ZJ T

Xalr)(yl Y2 vl)

e—il -nyy 12y =il -nyy(1z,—1/z9)

(A29)

f(tf)(zl,zz): f w g il-nyy/zy=il-nyy(1izy—1/z9)
T

X T (y1,y2,0). (A30)

The constraints of reality are different for these fragmen-
tation functions than for the distributions, because the sums
over states in EqgA27) and(A28) are incomplete. We find
that

A" (—y1,=y2,1)= 2 T M)(0l#(0)D' (y1 =)

X1 X)(1, X[ 4(y1)[0)] (A31)

T (—y1, =2 =3 TH([M0)i (0l HOmF* (y1-Y)

XXM X gy )[0)]. (A32)

As Collins has emphasizdd7], time-reversal does not con-
strain fragmentation functions in the same manner as distri-
butions, because T reverses the roles of in and out states. To
the extent that a sum over in and out states is the same in
these functions, symmetry undeil would imply thatd(?) is
purely imaginary, whilef(?) is real. These properties can,
however, be modified by phases associated with final state
interactions. Indeed, this is the mechanism by which Artru
et al. [19] derive single-spin asymmetries starting from a

over Dirac indices. There is no analog of the spin variable inmodel for fragmentation functions with intrinsic transverse
this case, although extensions to production of polarized pamomenta. Such functions can be thought of as extensions of
ticles [3] should be straightforward. We have used the cond(?), finite distances from the light cone. Following the pro-
straints of parity in forming scalar fragmentation functions, cedure of Sec. Il above, we can derive hard-scattering coef-
depending on two momentum fractions. In momentum spacécients for either function. We reserve this for future inves-

they are

tigation.
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