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Single transverse-spin asymmetries in hadronic pion production
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We analyze single transverse-spin asymmetries for hadronic pion production at large transverse momenta
using QCD factorization. In the largexF region, leading contributions to the asymmetries are naturally pro-
duced by twist-3 parton correlation functions that couple quark fields and gluon field strengths. With a simple
model for these matrix elements, leading-order asymmetries calculated from QCD are consistent with data on
pion production from Fermilab, and can be used to predict single-spin asymmetries at BNL RHIC. We argue
that our perturbative calculation for the asymmetries is relevant to pion transverse momenta as low as a few
GeV. @S0556-2821~98!07423-2#

PACS number~s!: 12.38.Bx, 13.85.Ni, 13.88.1e
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I. INTRODUCTION

Perturbative quantum chromodynamics~QCD! has been
successful in interpreting and predicting spin-averaged s
tering cross sections at large momentum transfer. S
quarks and gluons carry spin, we expect QCD to apply
hard spin-dependent scattering as well. However, high
ergy experiments with a polarized beam and/or target h
provided many theoretical challenges. For example, data
the spin asymmetries in deep-inelastic scattering~DIS! of
polarized leptons on polarized hadrons@1# sparked a wave o
theoretical effort in understanding the nature of the nucleo
spin @2#.

A spin asymmetry is the difference of two spin-depend
cross sections, with opposite directions of polarization,
vided by their sum. Asymmetries can be obtained with b
beams~or beam and target! polarized or only one beam~or
target! polarized. The former is a double spin asymmet
and the latter a single spin asymmetry. Depending on
direction of the polarization, we can have longitudinal-sp
asymmetries, if the polarization is along the beam directi
and/or transverse-spin asymmetries, when the spin is po
ized perpendicular to the beam direction.

Because of parity and time-reversal invariance, sin
longitudinal-spin asymmetries for single-particle inclusi
production vanish for the strong interactions. However,
perimentally significant single transverse-spin asymmet
have been observed inL production, as well as pion produc
tion, for almost twenty years@3,4#. These single transverse
spin asymmetries are of the order of ten or more perc
Experimental results on pion production have been very c
sistent, and the effects persist to pion transverse momen
several GeV, into the hard-scattering region, where pertu
tive QCD ~PQCD! has had success in describing sp
averaged cross sections@5#. The extension of the PQCD for
malism to spin-dependent cross sections, however, has
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been completely straightforward. It was pointed out long a
@6# that QCD perturbation theory predicts vanishing sing
transverse-spin asymmetries at highpT . Efremov and
Teryaev later pointed out that a nonvanishing sin
transverse-spin asymmetry can be obtained in PQCD if
goes beyond the leading power@7,8#. However, the relatively
large size and peaking in the forward direction of observ
effects remained a difficulty@9#.

Some time ago, using the example of hadronic direct p
ton production@10#, we demonstrated that single transvers
spin asymmetries can be consistently evaluated in term
generalized factorization theorems in perturbative QCD@11#.
The asymmetries are presented as a sum of terms, eac
which consists of a convolution of a twist-2 parton distrib
tion from the unpolarized hadron, a twist-3 quark-gluon c
relation function from the polarized hadron, and a sho
distance partonic hard part calculable in perturbative QC
The twist-3 quark-gluon correlation functions reflect the
teraction of quarks with the color field of the hadro
@10,12,13#. In order to test this formalism, we need to ha
more than one physical process to extract information
these new and fundamental correlation functions, and to
their universality. Recent work has explored their role in t
Drell-Yan process@14#. In this paper, we will not explore the
physical interpretation of the correlation functions beyo
what is currently in the literature. Rather, we concentrate
the extension of the formalism to pion production.

In the forward region for pion production, wherexF is
large, we shall argue that leading contributions to the asy
metry depend on only one twist-3 matrix element@given in
Eq. ~25! below#, which couples two quark fields and on
gluon field strength. This is the same matrix element t
gives the leading contribution to single transverse-spin as
metries in direct photon production@10#. With a simple
model for this twist-3 matrix element, we show that signi
cant asymmetries can be generated, and that the asymm
increase naturally as a function ofxF . Our simple model has
two parameters: one for the normalization, and the other
the relative sign between the up and down quark correla
functions. Extrapolating from measured single transver
©1998 The American Physical Society04-1
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spin asymmetries inp1 and p2 production in proton~↑!-
proton collisions@4#, we fix these two parameters in ou
model. We can then derive both the sign and shape of
asymmetries forp0 production, as well as pion production i
collisions with a polarized antiproton beam. Our results
consistent with data from Fermilab experiments. The mo
then predicts the normalization,xF and transverse
momentum dependence of the asymmetries at higher e
gies. These predictions can be tested at the BNL Relativ
Heavy Ion Collider~RHIC!.

The naive expectation for the twist-3 asymmetry,AN , is
l/ l T , with l a nonperturbative scale from the twist-3 matr
element andl T the transverse momentum of the observ
particle. A pure 1/l T dependence, however, decreases quic
as l T increases, and becomes ill-defined whenl T is small.
Consequently, one might worry that the range ofl T where
the asymmetry is not too small, whilel T is large enough to
use PQCD, is very limited, and that the region to stu
twist-3 physics might be too limited to be interesting. In fa
we shall see below that single transverse-spin asymme
are a very good observable to study twist-3 physics per
batively.

In contrast to the naive expectation, for the kinematics
the Fermilab data, thel/ l T contribution to AN is not the
dominant source of the asymmetry. From dimensional an
sis alone, the asymmetryAN admits two types of contribu
tions, which are proportional tol l T /(2U) as well as
l l T /(2T);l/ l T , with U and T Mandelstam variables
Their relative contributions can be determined by pertur
tive calculation. For largexF , where the asymmetry is larg
experimentally,U is larger thanT, but we shall show in this
paper that the coefficient for thel l T /(2U) term is much
larger than that of thel/ l T term in this region@see Eq.~76!#.
As we will see in Sec. V, the transverse momentum dep
dence of the asymmetry is actually quite mild forl T from
less than 2 up to 6 GeV atxF50.4, where much of the
Fermilab data were collected. This conclusion is very
couraging for future applications of perturbative QCD b
yond the level of leading twist.

Our method and results can be generalized to sin
transverse-spin asymmetries in other single particle prod
tion. With the extracted information on twist-3 matrix el
ments, we can predict both the sign and magnitude of sin
transverse-spin asymmetries for any inclusive single-part
production, such as for direct photons, kaons, or other h
rons.

Related work on single-spin asymmetries involves the
corporation of parton transverse momenta, either in pa
distributions @15,16# or fragmentation functions@17–19#.
There is considerable evidence that at transverse momen
the range of a few GeV, ‘‘kT-smearing’’ effects can be im
portant@5,20# in spin-averaged cross sections. It would se
natural to include them in the same range for single-s
asymmetries as well. Whether they should be thought o
the dynamical source of the asymmetry remains to be s
The fragmentation analysis requires the introduction
‘‘chiral-odd’’ distribution functions@17,19#, which combine
with the leading-twist transversity function@21,22# to pro-
duce nonvanishing asymmetries. We shall discuss how th
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effects can arise in the context of twist-3 factorization the
rems, but our explicit models will be based for simplicity o
chiral-even parton distributions only.

The twist-three analysis described here is in some sen
minimalist approach, depending on only light-cone variabl
which we hope can serve as a benchmark for models wh
include both light-cone and transverse degrees of freed
Other descriptions of single-spin asymmetries are based
multiquark interactions@23# and orbital motion@24#. Inter-
esting comparisons of different approaches may be foun
@25# and @26#.

Our paper is organized as follows. In Sec. II, we defi
single transverse-spin asymmetries in single particle prod
tion in hadronic collisions. We introduce generalized fact
ization formulas for the asymmetries, identify terms that
expect to dominate in the large-xF region, review the factor-
ization procedure at twist-three and leading order, and re
the leading-order spin-averaged cross sections to which
compare. In Sec. III, we present our explicit calculations
single transverse-spin asymmetries in hadronic pion prod
tion. We express these asymmetries in terms of sh
distance partonic cross sections~coefficient functions!, cal-
culated in perturbative QCD, and non-perturbative twis
matrix elements. Using a simple model for the twist-3 mat
elements, we compare our calculated asymmetries with
perimental data in Sec. IV. Finally, in Sec. V, we give
summary of our results, and an outlook for the subject.
have also included an appendix, in which we review t
application of parity and time reversal symmetry, and ide
tify the list of chiral-even and chiral-odd twist-3 distribution
and fragmentation functions that can contribute to the sing
spin asymmetry for pion production.

II. SINGLE TRANSVERSE-SPIN ASYMMETRIES

A. Definition and general considerations

Single spin asymmetries are introduced for reactions
which only one particle is polarized. For example, consid
single-particle inclusive production in a high energy col
sion,

A~P,sW !1B~P8!→C~ l !1X, ~1!

where A and B are the initial particles, withA polarized,
whereC is the observed particle~say, a pion! of momentum
l , and whereX represents all other particles in the final sta
In order to fix the kinematics, we choose the center of m
frame of the incoming hadrons, with thez-axis along the
momentum of the polarized hadron. We introduce two fo
vectors,n̄m andnm,

n̄m[~ n̄1,n̄2,n̄T![~1,0,0T!,

nm[~0,1,0T!, ~2!

with n̄2505n2, and n̄•n51. The incoming hadrons’ mo
menta arePm;n̄mAS/2, andP8m;nmAS/2, respectively. In-
variants at the hadron level are defined as
4-2
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SINGLE TRANSVERSE-SPIN ASYMMETRIES IN . . . PHYSICAL REVIEW D 59 014004
S5~P1P8!2'2P•P8

T5~P2 l !2'22P• l

U5~P82 l !2'22P8• l , ~3!

where hadron masses are neglected. Given Eq.~3!, we next
introduce

xF5
2l z

AS
5

T2U

S
,

xT5
2l T

AS
. ~4!

We now introduces( l ,sW) as the cross section of the pro
cess given in Eq.~1!. The spin-averaged cross section f
single-particle inclusive production may be represented a

s~ l ![
1

2
@s~ l ,sW !1s~ l ,2sW !#, ~5!

and the corresponding spin-dependent cross section as

Ds~ l ,sW ![
1

2
@s~ l ,sW !2s~ l ,2sW !#. ~6!

The single spin asymmetry is often defined as a dimens
less ratio of spin-dependent and spin-averaged cross sec

A~ l ,sW ![
Ds~ l ,sW !

s~ l !
5

s~ l ,sW !2s~ l ,2sW !

s~ l ,sW !1s~ l ,2sW !
. ~7!

A single longitudinal-spin asymmetry is denoted asAL , and
a single transverse-spin asymmetry asAN . We shall be con-
cerned in this paper withAN . For differential cross sections
the asymmetry can be defined as

AN~ l ,sT!5
Eld

3Ds~ l ,sWT!/d3l

Eld
3s~ l !/d3l

, ~8!

whereEld
3s/d3l andEld

3Ds/d3l are the Lorentz invarian
spin-averaged and spin-dependent cross section, res
tively. In this paper, we will concentrate on sing
transverse-spin asymmetries in the forward region~i.e., large
xF) where the asymmetries are largest@4#.

Due to the symmetries of fundamental interactions, it
possible to have a vanishing single transverse-spin asym
try, even though the corresponding total cross sections( l ,sW)
itself is finite. For example, it was pointed out by Christ a
Lee over 30 years ago@27# that time-reversal invariance for
bids single transverse-spin asymmetries in inclusive de
inelastic scattering~DIS! to lowest order inaEM . Let us
review the reason.

Consider a general inclusive lepton-hadron deep-inela
scattering, which is the analog of Eq.~1!,

L~ l !1H~P,sWT!→L~ l 8!1X, ~9!
01400
n-
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ec-
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whereL( l ) andL( l 8) are unpolarized incoming and outgo
ing leptons of momenta,l andl 8, respectively, andH(P,sWT)
represents the polarized target hadron with its spinsWT per-
pendicular to the beam momentum. In the approximation
one-photon exchange, as shown in Fig. 1, the inclusive c
sections(sWT) can be expressed as

s~sWT!}LmnWmn~sWT!, ~10!

where the leptonic tensor,Lmn, is symmetric, and the had
ronic tensor is given in terms of matrix elements of elect
magnetic currents,

Wmn~sWT!}^P,sWTu j m
† ~0! j n~y!uP,sWT&. ~11!

Applying parity and time-reversal (PT) and translation in-
variance to the matrix element in Eq.~11!, we obtain the
following relation:

^P,sWTu j m
† ~0! j n~y!uP,sWT&5^P,2sWTu j n

†~0! j m~y!uP,2sWT&.
~12!

Combining Eqs.~11! and ~12!, we find

Wmn~sWT!5Wnm~2sWT!. ~13!

From Eq.~6!, we obtain the spin-dependent cross section
inclusive deep-inelastic scattering,

Ds~sWT!}Lmn@Wmn~sWT!2Wmn~2sWT!#

5Lmn@Wmn~sWT!2Wnm~sWT!#

50, ~14!

where in the second line we use Eq.~13! and in the third the
symmetry ofLmn when the lepton is unpolarized. From Eq
~7! and ~14!, it is clear that the single transverse-spin asy
metry for inclusive deep-inelastic scattering,AN

DIS , vanishes
to lowest order inaEM .

In hadron-hadron scattering, in contrast, the presenc
multiple ~initial-state or final-state! interactions prevents a
simple decomposition like Eq.~10!, and allows single
transverse-spin asymmetries for final-state photons as we
hadrons@8,10#. Experimentally, data from Fermilab sho
large single transverse-spin asymmetries in single pion p
duction @4#, and at the same time, show no apparent sin
transverse-spin asymmetries in prompt photon productio
the central~low xF) region @28#.

FIG. 1. Inclusive lepton-hadron deep-inelastic scattering, w
the target hadron polarized transversely.
4-3
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JIANWEI QIU AND GEORGE STERMAN PHYSICAL REVIEW D59 014004
Experiments at Fermilab for pion (p6,p0) and prompt
photon production were carried out with a 200 GeV pol
ized proton~or antiproton! beam on an unpolarized proto
target. The observed single transverse-spin asymmetrie
inclusive single pion production can be as large as 20
30 % in the forward region. In addition to the large values
the asymmetries, a number of other interesting features
evident in the data. For example, a strong rise of the as
metries withxF was observed for all pion charges. When t
beam was switched from polarized proton to polarized a
proton, the same sign of the asymmetry was observed
p0, while the sign of the asymmetry forp1, as well asp2,
changed. Both beams had opposite signs of the asymme
of p1 andp2.

Perturbative QCD was first used to study the effects
single transverse-spin asymmetries by Kane, Pumplin,
Repko~KPR! @6#. KPR calculated the single transverse-sp
asymmetry for single hadron~pion! production in terms of a
QCD parton model. By calculating the quark-quark scatt
ing diagrams shown in Fig. 2, KPR found that the nonva
ishing single transverse-spin asymmetry for large-pT reac-
tions is proportional to the quark mass:AN}Tm

;mq^P,sWTuc̄GcuP,sWT&, where, for example,G5g1g5gT .
Consequently, the asymmetry vanishes in the scaling l
(mq→0). Although this calculation does not explain the o
served large single transverse-spin asymmetries@6,7#, the
fact that the result is proportional to the quark mass indica
that the single transverse-spin asymmetry is a twist-3 ef
in QCD perturbation theory@8,10,29#.

QCD dynamics, however, is much richer than the par
model. In addition to the parton mass effects just discus
there are other twist-3 contributions. Because quarks are
exactly parallel to the incoming hadron beam, twist-3 con
butions also arise from ‘‘intrinsic’’ transverse momentum
which is proportional toTkT

;^P,sWTuc̄G]TcuP,sWT&. In addi-
tion, there are twist-3 contributions from the interference
tween a quark state and a quark-gluon state, which is pro
tional to TAT

;^P,sWTuc̄GATcuP,sWT&. Because of gauge

invariance,TkT
and TAT

are not independent, and can b

combined to formTDT
;^P,sWTuc̄GDTcuP,sWT&, and/or TF

FIG. 2. Quark-quark scattering diagrams that give a nonvan
ing single transverse-spin asymmetry in large-pT reactions@6#.
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;^P,sWTuc̄GF1
TcuP,sWT&, with F1

T}@D1,DT#, whereDm is the
covariant derivative. Therefore, in addition to parton ma
effects, single transverse-spin asymmetries can be pro
tional to the twist-3 matrix elementsTDT

and TF @8,10,29#.
These twist-3 matrix elements involve three field operat
(c̄GDTc,c̄GF1

Tc, or with the quark fields replaced b
gluon field strengths@30#!. Also, different choices for the
Dirac matricesG in the operators give different twist-3 ma
trix elements~see the Appendix! @10#.

Because of their odd numbers of field operators, thr
field twist-3 matrix elements do not have the probability i
terpretation of parton distributions, which are proportional
matrix elements of twist-2 operators,c̄Gc or F1

TF1
T . In

principle, however, they are as fundamental as the pa
distributions. Measurements of twist-3 distributions,
three-field correlation functions, provide us new opportu
ties to study QCD dynamics.

B. Factorization and the valence quark approximation

As we have seen, spin-dependent asymmetries for h
ronic pion production with one hadron transversely polariz
vanish at large momentum transfer@6#. Nonvanishing values
of the single transverse-spin asymmetry signal non-lead
power contributions. According to the basic factorizati
theorems@31#, the leading power spin-averaged cross sect
for the production of a pion with large transverse moment
l T can be factorized intofour separated functions, a
sketched in Fig. 3,

sA1B→p5(
abc

fa/A~x! ^ fb/B~x8! ^ ŝa1b→c^ Dc→p~z!,

~15!

where (abc represents the sum over parton flavors: qua
antiquark and gluon. In Eq.~15!, fa/A(x) andfb/B(x8) are
probability densities to find partona of momentumxP in
hadronA and partonb of momentumx8P8 in hadronB,
respectively. As noted above, they may be interpreted
terms of expectation values in the hadronic state of two-fi
matrix elements, for examplec̄Gc or F1

TF1
T . Dc→p(z) is

the fragmentation function for a partonc of momentumpc
5 l /z to fragment into a pion of momentuml , andŝa1b→c is
a short-distance partonic part~the Born cross section plu
corrections!, calculable perturbatively order-by-order inas .
The symbol^ in Eq. ~15! represents the convolution ove
the corresponding parton momentum fraction. In terms of
Lorentz invariant differential cross section, Eq.~15! can be
written as@5#

h-

FIG. 3. Sketch of single pion production in spin-averag
hadron-hadron collisions.
4-4
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El

d3sA1B→p

d3l
5(

abc
E dxfa/A~x!E dx8fb/B~x8!E dz

z S Ec

d3ŝa1b→c

d3pc
D Dc→p~z!

z
. ~16!

The predictive power of Eq.~16! depends on independent measurements of the non-perturbative functions,fa/A , fb/B and
Dc→p , and the calculation of the partonic partEcd

3ŝa1b→c /d3pc .
Just as for most other physical observables calculated in perturbative QCD, the predictive power of the theory f

three relies on factorization theorems@31#. Physical observables that depend on the transverse polarization of a single h
are typically power corrections to the total cross section, in comparison with spin-averaged or longitudinally po
spin-dependent cross sections. In Ref.@32#, for a physical observable with a large momentum transferQ, we extended the
factorization program toO(1/Q2) corrections for spin-averaged hadron-hadron cross sections, and in@11,33# to O(1/Q)
corrections in spin-dependent cross sections.

Following the generalized factorization theorem@11,33#, the transverse spin-dependent cross section for largel T pions,
Ds(sWT), can be written in much the same way as the spin-averaged cross section, Eq.~15!, as a sum of three generi
higher-twist contributions, each of which can also be factorized into four functions,

DsA1B→p~sWT!5(
abc

fa/A
~3! ~x1 ,x2 ,sWT! ^ fb/B~x8! ^ Ha1b→c~sWT! ^ Dc→p~z!

1(
abc

dqa/A
~2! ~x,sWT! ^ fb/B

~3! ~x18 ,x28! ^ Ha1b→c9 ~sWT! ^ Dc→p~z!

1(
abc

dqa/A
~2! ~x,sWT! ^ fb/B~x8! ^ Ha1b→c8 ~sWT! ^ Dc→p

~3! ~z1 ,z2!

1higher power corrections, ~17!
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where(abc represents sums over parton flavors: quark, a
quark and gluon, and wherefb/B(x8) andDc→p(z) are stan-
dard twist-two parton distributions and fragmentation fun
tions, respectively. In Eq.~17!, the first term corresponds t
the process sketched in Fig. 4~a!, and the second and thir
terms correspond to the ones sketched in Fig. 4~b!.

For the first term in Eq.~17!, nonvanishing contributions
to Ds(sWT) come from twist-3 parton distributions~correla-
tion functions! fa/A

(3) (x1 ,x2 ,sWT) in the polarized hadron. Fo
the second and third terms, the contributions toDs(sWT) in-
volve the twist-2 transversity distributionsdqa/A

(2) (x,sWT)
@21,22#. Because the operator in the transversity distribut
requires an even number ofg-matrices@21,22#, the second
term and third terms in Eq.~17! also include a twist-3, chiral-
odd parton distributionfb/B

(3) (x18 ,x28) from the unpolarized
hadronB, or a twist-3, chiral-odd fragmentation function
Dc→p

(3) (z1 ,z2). In the factorized form of Eq.~17!, PT invari-
ance may be applied in a manner analogous to the treatm
of the DIS cross section given above. In this case, howe
PT invariance allows nonzeroAN for a limited number of
functions, as discussed in the Appendix.

As in the spin-averaged cross section, Eq.~15!, the hard-
scattering functionsHa1b→c(sWT) are the only factors in Eq
~17! that are calculable in QCD perturbation theory. The c
culation of theH ’s depends on the explicit definitions of th
twist-3 distributions, for examplefa/A

(3) (x1 ,x2 ,sWT), and the
predictive power of Eq.~17! relies on the universality of the
new twist-3 distributions@11,33#.

Equation~17! illustrates the typical complexity of higher
twist analysis: even at first nonleading twist, whole ne
01400
i-

-

n

ent
r,

l-

classes of functions begin to contribute. This complexity
particularly difficult to sort out for physical observables
which leading-twist terms contribute. The combination
small effects and complex parametrizations has made the
traction of higher twist distributions from the data difficul

FIG. 4. Factorization of a typical forward scattering amplitu
contributing to the spin-dependent cross section for hadronic p
production: ~a! with chiral-even three-parton matrix element,~b!
with chiral-odd transversity.
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JIANWEI QIU AND GEORGE STERMAN PHYSICAL REVIEW D59 014004
despite the considerable effort that has been invested in
formalism @34,35#.1 The vanishing of single-spin asymme
tries at leading power solves one of these problems,
masking of higher twist by leading twist. Beyond this, ho
ever, it is clear that to fully disentangle all of the functio
contributing to Eq.~17! would require a constellation of dat
and a level of analysis far beyond what is currently availab
Turning specifically to the first term in Eq.~17!, we observe
that the indexa refers to pairs of partons, and that the fun
tions fa/A

(3) are correspondingly functions of two momentu
fractions. In addition, even assuming that we knew this se
functions, we would still be faced with the chiral-odd dist
butions and fragmentation functions in the second and t
sums in Eq.~17!. We would like to suggest, however, that b
restricting ourselves to the limited kinematic range of lar
xF for the observed particle, we may simplify the analy
greatly, and construct a simple model that explains the av
able data, and that provides extrapolations to higher ener
and momentum transfers.

We are going to present a calculation of the largexF
asymmetry at moderate or largel T , in terms of the chiral
even functionsfa/A

(3) (x1 ,x2 ,sWT) only @first line of Eq. ~17!#.
In these functions, we will consider only combinations
valence quark flavors with gluons. We will not find it nece
sary to specify these functions for all values ofx1 and x2 ,
but only for the linex15x2 , at which the gluon carries van
ishingly small momentum fraction. We will refer to this s
of simplifications as thevalence quark-soft gluonapproxima-
tion below. In this model, we thus neglect potential con
butions from the transversity, coupled with the chiral-o
twist-3 distributions and fragmentation functions identifi
in the Appendix. We hope to explore these contributio
elsewhere, but in the absence of independent information
the transversity, it seems natural to test the plausibility o
model based on chiral-even distributions alone.

First, consider our restriction to valence quarks. Giv
that single transverse-spin asymmetries were measure
Fermilab with a 200 GeV polarized beam@4#, only partons
@a andb in Eq. ~16!# with large momentum fractions will be
relevant for largexF or l T . Because parton-to-pion fragmen
tation functions vanish asz→1, the effective momentum o
the fragmenting parton,pc5 l /z, should be much larger tha
the pion momentuml . Therefore, the dominant contributio
to the cross sections in the central region should come f
x;x8 in Eq. ~17!, with, in addition,x much larger thanxT
'0.25, which corresponds tol T'4 GeV at Ebeam
5200 GeV. In our calculation we will concentrate on th
forward region, wherexF is large. Similarly, in this region
the dominant contributions to the cross section come fromx
considerably larger thanxT ~i.e., x.0.25) even for relatively
small l T . For largex, there are few gluons or sea quar
from the beam hadron. Therefore, in our numerical calcu
tions, we will keep only valence quarks from the polariz

1We may note recent progress based on models of higher twi
deeply inelastic scattering and fragmentation inspired by renor
lon analysis@36–38#.
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beam. That is,(a in Eq. ~17! now runs over only up and
down valence quarks, coupled with a single gluon field.

In presenting this argument, we are well aware that
principle the flavor content of the twist three distributio
may be totally different than those of twist two. Neverth
less, we consider it by far more natural to assume that th
field correlations at largexi will be dominated by the same
flavors as in the two-field, parton distribution, case. We r
ognize that this remains, however, an assumption. In
case, it means that we shall keep only valence quarks f
the polarized beam, accompanied in twist-3 by gluons.
particular, we shall not consider three-gluon matrix eleme
@30#.

We now turn to the question of ‘‘soft gluons.’’ To antici
pate, the twist-three asymmetry involves only two classes
contributions inHabc(x1 ,x2). One of these is proportional to
d(x12x2), and the other tod(xi), i 51,2. The first case set
the momentum carried by the gluon field in the twist-3 m
trix element into the hard scattering to zero, leaving the m
menta carried by the two quark fields in the combinati
c̄F1Tc diagonal.2 In the second, one of the quark fields~c

or c̄) carries vanishing momenta. We refer to these two p
sibilities as ‘‘soft gluon’’ and ‘‘soft fermions’’ poles, respec
tively @10#. Soft gluon terms are typically accompanied b
derivatives of the parton functionsfa/A

(3) , while soft fermion
terms are not. We have emphasized in Ref.@10# that terms
that involve derivatives with respect to distributions tend
be strongly enhanced near the edges of phase space, re
to those without derivatives. We shall see this in our expl
model below. We shall assume, in fact, that it is this effe
that is primarily responsible for the experimentally-observ
rise in single-spin asymmetries towardxF51. We therefore
suggest that only terms in which such derivatives occur n
be kept, in order to describe the large-xF single-spin asym-
metry. In summary, only soft-gluon terms, from the first lin
of Eq. ~17! produce the shape of the large asymmetries
served in the data in the forward region, and for these te
x15x2 .

To set the stage for the explicit calculations of the ne
section, we first give an example of leading-order factori
tion at twist three for the spin-dependent cross section,
lowing the method of Ref.@10#. This will enable us to trace
the origin of twist-three spin distributions, and of the pol
that underline the valence quark-soft gluon approximat
that we have just described.

C. Twist-3 factorization at leading order

The twist-3 correlation functions,fa/A
(3) (x1 ,x2 ,sWT), de-

pend on two parton momentum fractions, while twist-2 p
ton distributions, which are probability densities, depend
only one. Considering the effort and data needed to de
mine the parton distributions, it appears a difficult task to
a full description of these twist-3 distributions. From th

in
a- 2Note, there are no ‘‘soft gluons’’ in the short-distance functio
H.
4-6
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general Feynman graphs contributing to theH ’s in Eq. ~17!,
as shown in Fig. 5, it is also clear that there are many d
grams, even at lowest order. Their treatment is simplifi
however, by taking advantage of the relation of the asymm
try to the pole structure ofH @10#. This will enable us to
evaluateDs(sWT) in Eq. ~17! efficiently. Indeed, we will find
that Ds(sWT) depends on the twist-3 distributions throug
only a single independent momentum fraction, with the ot
fraction fixed by a pole. To see how this comes about,
consider a specific set of contributions, associated with
three classes of diagrams shown in Fig. 6. We first disc
the analysis of these diagrams according to the metho
Ref. @10#, and then briefly discuss other possibilities, revie
ing why we expect those of Fig. 6 to dominate the asymm
try in the large-xF region.

In our valence quark-soft gluon approximation, intr
duced in the last subsection, the fermion flavora from the
polarized hadron in Figs. 5 and 6 runs over valence qua
only, while partonb from the unpolarized hadron can be
gluon, valence quark or sea quark. We start from these t
classes of diagrams, and derive below the factorized form
the spin-dependent cross sectionDs(sWT). The hard-
scattering diagrams of Fig. 6 are all embedded in the ove
process shown in Fig. 7~a!. The top part of this general dia
gram is proportional to the expectation value of an opera
of the form c̄Asc in the polarized incoming hadron sta

FIG. 5. General Feynman diagrams contributing to the parto
partsH in Eq. ~17!.

FIG. 6. Three classes of quark-gluon diagrams contributing
the spin-dependent cross sectionDs(sWT): ~a! diagrams with an
initial-state pole,~b! and~c! diagrams with a final-state pole. Sym
bols B and i j are color indices for the gluon and quarks.
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uP,sWT&, while the bottom part includes the hard subproce
as well as the target hadron matrix element and the final-s
pion fragmentation function. In Fig. 7,k1 andk2 are valence
quark momenta, ands is the Lorentz index for the gluon
field. We work, as in Ref.@10#, in Feynman gauge. To deriv
a factorized expression for these contributions, we m
separate spinor and color traces, as well as sums over ve
Lorentz indices between the functionsT andS.

After separation of all traces by a Fierz projection~see
Appendix!, the two functionsT andS are connected only by
the two momentum integrals that they share. The lead
contributions of the general diagram shown in Fig. 7~a! can
then be represented by the factorized diagrams shown in
7~b!, and can be written as

dDs~sWT![
1

2S (
a
E d4k1

~2p!4

d4k2

~2p!4

3@Ta~k1 ,k2 ,sWT!Sa~k1 ,k2!#, ~18!

where 1/2S is a flux factor,(a runs over only valence fla
vors, Ta(k1 ,k2 ,sWT) is proportional to the matrix element o
the operator, (2p)@c̄ag1A1ca#/2P12, and Sa(k1 ,k2)
represents the bottom part of the general diagram show
Fig. 7~b!. The function Sa(k1 ,k2) is contracted with
@(1/2)g•PPs#Ca /(2p), where the factor~2p! is due to the
normalization of twist-3 matrix elementT, which we will
specify below. The color factorCa is left from the factoriza-
tion of color traces betweenTa(k1 ,k2 ,sWT) and Sa(k1 ,k2)
@10#. With the function Ta(k1 ,k2 ,sWT)}c̄Ac, the corre-
spondingCa is defined for all valence flavorsa as

~Ca
B! i j 5S 2

N221D ~ tB! i j , ~19!

with N53 colors,B the gluon color index, and with quar
color indicesi j . The matrix (tB) i j is the SU~3! generator in
the defining representation of the group.

The next step in the factorization procedure is the ‘‘c
linear’’ expansion@32,33#, which will enable us to reduce th
four-dimensional integrals in Eq.~18! to convolutions in the
momentum fractions of partons, as in Eq.~17!. ExpandingSa
in the partonic momenta,k1 and k2 , aroundk15x1P and
k25x2P, respectively, we have

ic

o

FIG. 7. General diagram that gives a leading contribution
Ds(sWT): ~a! before separation of spinor trace and Lorentz indic
~b! leading contribution after separation of spinor trace and Lore
indices.
4-7
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Sa~k1 ,k2!5Sa~x1 ,x2!1
]Sa

]k1
r ~x1 ,x2!~k12x1P!r

1
]Sa

]k2
r ~x1 ,x2!~k22x2P!r1¯ . ~20!

This expansion, substituted in Eq.~18!, allows us to integrate
over three of the four components of each of the loop m
mentaki . The top part of the diagramTa then becomes a
twist-three light cone matrix element, convoluted with t
terms of Eq.~20! in the remaining fractional momentum
variablesxi .

As stressed in Refs.@8,10#, some of the matrix element
that result from the collinear expansion can have nontriv
spin-dependence. It is at this stage that the pole structur
the hard scattering begins to play an important role. In fa
as shown in Refs.@8,10# and below, nonzero spin depen
dence is foundonly from pole terms in the hard scatterin
Without these poles, the symmetries of the strong interac
force the asymmetry to vanish, in much the same fashio
for DIS above. Indeed, the poles provide exactly the sor
multiple interactions that are absent in DIS at lowest orde
QED. The first term in the expansion, Eq.~20!, Sa(x1 ,x2),
does not contribute toDs(sWT) when combined with
Ta(k1 ,k2 ,sWT) in Eq. ~18!, because it lacks true initial- o
final-state interactions. We will therefore drop it below.

Let us next look for poles in the diagrams of Fig. 6 fro
the remaining terms in Eq.~20!, and identify the relevan
twist-three matrix element. All of the diagrams in Fig.
provide a pole atx15x2 whenki5xi P( i 51,2). As we will
show below, these poles have the property that

]Sa

]k2
r ~x1 ,x2!52

]Sa

]k1
r ~x1 ,x2!, ~21!

for x15x2 . This equality is to be interpreted in the sense
distributions, sinceSa is singular atx15x2 . Substituting Eq.
~21! into Eq.~20! and neglecting higher order derivatives, w
have

Sa~k1 ,k2!'
]Sa

]k2
r ~x1 ,x2!@vrs~k22k1!s#, ~22!

where the projection operatorvrs is defined asvrs[grs

2n̄rns. Substituting Eq.~22! into Eq. ~18! and performing
the integration over the non-longitudinal components of
k’s, we derive

dDs~sWT!5
1

2S (
a
E dx1dx2

3F i ersTnn̄
]Sa

]k2
r ~x1 ,x2!G

k
2
r50

TFa

~V!~x1 ,x2!,

~23!
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where the integration overx1 ~or x2) will be fixed by the
corresponding pole in]Sa /]k2 , and whereersTnn̄ is defined
as

ersTnn̄5ersmnsWTs
nmn̄n . ~24!

The functionTFa

(V)(x1 ,x2) for flavor a in Eq. ~23! is one of

the twist-3 distributions introduced in Ref.@10#,

TFa

~V!~x1 ,x2!5E dy1
2dy2

2

4p

3eix1P1y1
2

1 i ~x22x1!P1y2
2

^P,sWTuc̄a~0!g1

3@esTsnn̄Fs
1~y2

2!#ca~y1
2!uP,sWT&. ~25!

The ordered exponentials of the gauge field that make
matrix element gauge invariant have been suppres
@32,33#. It is easy to show thatTFa

(V) is real. Parity ensures

that TFa

(V);ernn̄s, and time reversal invariance then implie

that it is an even function ofx1 andx2 ,

TFa

~V!~x1 ,x2!5TFa

~V!~x2 ,x1!. ~26!

These properties are valuable in isolating nonvanish
asymmetries. For instance, the fact thatTFa

(V) is real ensures

that only the poles ofS in Eq. ~23! can contribute.
Having factorized the twist-3 distributionTF

(V) , we now
factorize the remaining function@ i ersTnn̄]Sa /]k2# in Eq.
~23! into a perturbatively calculable partonic partHa1b→c , a
corresponding target parton distributionfb/B and a fragmen-
tation functionDc→p . At the leading power, diagrams con
tributing toSa(k1 ,k2) can be represented as in Fig. 8~a!, and
can be factorized as

FIG. 8. Factorization of a general diagram contributing
Sa(k1 ,k2) of Eq. ~23!: ~a! separation of target hadron,~b! separa-
tion of final-state pion.
4-8
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Sa~k1 ,k2!'(
b
E d4k8

~2p!4 @Ma1b~k1 ,k2 ,k8!Bb~k8,P8!#

'(
b
E dx8

x8
Ma1b~k1 ,k2 ,x8!fb/B~x8!, ~27!

where (b runs over all parton flavors, andfb/B(x8) is a
twist-2 parton distribution for flavorb, for the unpolarized
target hadronB. We use the matrix element definitions
twist-2 parton distributions given in Ref.@39#. Similarly, as
shown in Fig. 8~b!, the factorMa1b(k1 ,k2 ,x8) in Eq. ~27!
can be further factorized into a convolution of Feynman d
m
e

p
e
ll
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rd
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is

u
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-

grams, calculable in perturbation theory, with standa
twist-2 fragmentation functions,

Ma1b~k1 ,k2 ,x8!'(
c
E dzHa1b→c~k1 ,k2 ,x8,pc5 l /z!

3Dc→p~z5 l /pc!, ~28!

where theHa1b→c are given by the diagrams of Fig. 6. Th
fragmentation functionsDc→p(z5 l /pc) are also defined as
matrix elements in Ref.@39#.

Finally, substituting Eq.~28! into Eq. ~27!, and Eq.~27!
into Eq. ~23!, we derive a factorized expression forDs(sWT)
in the form of Eq.~17!,
dDs~sWT!5
1

2S (
abc

E dzDc→p~z!E dx8

x8
fb/B~x8!E dx1dx2TFa

~V!~x1 ,x2!

3F i ersTnn̄
]

]k2
r Ha1b→c~k15x1P,k25x2P,x8,pc5 l /z!G

k
2
r50

, ~29!
ll
ting
ion

the

tri-

the

tum
la-

s a

,

st
ill

q.

an-
where the integration over eitherx1 or x2 can be done by
using the pole inHa1b→c . This results in a factorization
with only a single momentum fraction for each of the inco
ing hadrons, similar to that for the spin-averaged cross s
tion in Eq. ~16!, with fa/A(x) replaced byTFa

(V)(x,x). In or-

der to use this factorized formula for single transverse-s
asymmetries in pion production, in the following section w
will evaluate the diagrams shown in Fig. 6 with off-she
momentak1 andk2 . In each case, we will verify Eq.~21!, or
equivalently, observe that

]H

]k2r

~x1 ,x25x1!52
]H

]k1r

~x1 ,x25x1!, ~30!

where, again, the equality is to be interpreted in terms
distributions.

D. Leading contributions in the forward region

Before entering into the detailed calculations of the ha
scattering functionsHa1b→c in Eq. ~29!, we return to issue
of why we believe that the dominant contribution is given
the TFa

(V) in Eq. ~29!. We have already indicated that this

due to the derivative structure of these contributions. Let
see how these derivatives arise.

From the diagrams shown in Fig. 6, with the momentapc
and x8P8 fixed, we get four typical sources ofki ( i 51,2)
dependence:~1! ki-dependence ind(L(ki)

2) with L the mo-
mentum of the unobserved final-state parton,~2!
ki-dependence in the propagators which go on-shell w
k15k2 , ~3! ki-dependence in the off-shell propagators, a
~4! ki-dependence in the numerators. The derivatives
-
c-

in

f

-

s

n
d
f

Ha1b→c(k1 ,k2 ,x8,pc) with respective toki have the follow-
ing features:

~1! (]/]ki)d(L(ki)
2) gives d8(L(xi P)2), and its contribu-

tion to Ds(sWT) is proportional to (]/]x)TF
(V)(x,x) after

integration by parts;
~2! (]/]ki) on a propagator that is potentially on-she

changes a single pole to a double pole, and the resul
integration over the double pole makes the contribut
to Ds(sWT) proportional to (]/]x)TF

(V)(x,x);
~3! (]/]ki) on an off-shell propagator does not change

pole structure, and its contribution toDs(sWT) is propor-
tional to TF

(V)(x,x) without a derivative;
~4! (]/]ki) on ki-dependence in the numerator gives con

butions toDs(sWT) proportional toTF
(V)(x,x) without de-

rivatives.

As we have pointed out earlier, we are interested in
asymmetries in the forward region, wherexF is large. Asym-
metries in this region are dominated by large net momen
fractionx from the polarized beam parton, coupled with re
tively small momentum fractionx8 from the partons of the
unpolarized target hadron. Since all distributions vanish a
power for largex, as (12x)b with b.0, (]/]x)TF

(V)(x,x)
@TF

(V)(x,x) when x→1. Therefore, in the forward region
terms proportional to derivative of the distributionsTF

(V)

dominate. In order to simplify our calculations of the large
effect, we keep only these terms. Thus, in Sec. III we w
keep only those contributions corresponding to items~1! and
~2! listed above.

Turning, finally, to other possible contributions in E
~17!, we observe that it is only the matrix elementTF

(V) that
inherits derivative terms, as a result of the collinear exp
4-9
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sion involving soft gluon poles. Soft fermion poles, of th
sort discussed in Refs.@8,10# have no such derivatives a
leading order. Soft-fermion poles also do not correspond
the valence quark approximation identified above, since t
require one of the quark fields to carry zero momentum fr
tion. These features of the calculation follow exactly t
same pattern as for direct photon production, as treate
Ref. @10#, and we shall not repeat them here. It is only ne
essary to emphasize that theTF

(V) contributions from Fig. 6
are the complete set of derivative contributions at twist th
and leading order, for the first~chiral even! term in Eq.~17!.

E. Spin-averaged cross sections for hadronic pion production

In order to evaluate the asymmetries, defined in Eq.~8!,
we need to compute the leading-order spin-averaged c
section. QCD perturbation theory has been generally s
cessful with experimental data on spin-averaged cross
tions for inclusive single-pion production at large transve
momentum@5#. At leading order inas , only 2→2 Feynman
diagrams, shown in Fig. 9, contribute toEcd

3ŝa1b→c /d3pc .
In terms of scattering amplitudes, the leading ord
Ecd

3ŝa1b→c /d3pc can be expressed as@5#

Ec

dŝa1b→c

d3pc
5

1

16p2ŝ
uM̄a1b→cu2d~ ŝ1 t̂1û!, ~31!

whereM̄ is the spin-averaged amplitude. In Eq.~31!, invari-
ants at the parton level are given by

ŝ5~xP1x8P8!25xx8S,

t̂5~xP2pc!
25xT/z, ~32!

û5~x8P82pc!
25x8U/z,

whereS, T andU are defined in Eq.~3!.
In the valence quark approximation, using thed-function

in Eq. ~31! to fix the x8-integration in Eq.~16!, we find the
spin-averaged cross section for pion production at lead
order inas ,

FIG. 9. Sample leading order Feynman diagrams contributin
the cross section of hadronic single pion production.
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as
2

S (
a,c

E
zmin

1 dz

z2 Dc→p~z!E
xmin

1 dx

x

1

xS1U/z

3E dx8

x8
dS x82

2xT/z

xS1U/zDqa~x!

3FG~x8!ŝag→c1(
q

q~x8!ŝaq→cG , ~33!

where (a runs over up and down valence quarks, and(q
over quarks and antiquarks. In Eq.~33!, the integration limits
zmin andxmin , and variablex are given by

zmin5
2~T1U !

S
5AxF

21xT
2,

xmin5
2U/z

S1T/z
,

x85
2xT/z

xS1U/z
, ~34!

whereS,T,U are defined in Eq.~3!, andxF andxT in Eq. ~4!.
The short-distance partonic parts,ŝag→c and ŝaq→c , in Eq.
~33!, are given by@5#

ŝag→c5dacF2S 12
ŝû

t̂2 D 1
4

9
S 2û

ŝ
1

ŝ

2û
D 1S ŝ

t̂
1

û

t̂
D G ;

~35a!

ŝaq→c5dac

4

9 S ŝ21û2

t̂2 D 1dqc

4

9
S ŝ21 t̂2

û2 D
1daqdqc

28

27 S ŝ2

ût̂
D 1daq̄

4

9
S t̂21û2

ŝ2 D ,

~35b!

whereŝ, t̂ ,û are defined in Eq.~32!.
Since we are interested in the largexF region, we have

pc
1@pc

2 and T!U<S. Therefore, leading contributions t
the cross section given in Eq.~33! come from thet-channel
diagrams@the first diagrams in Fig. 9~a! and Fig. 9~b!#, or
equivalently, the 1/t̂2 term ~i.e., first term! in Eq. ~35a! and
Eq. ~35b!. Consequently, for leading contributions in the fo
ward region, incoming partona has the same flavor as frag
menting partonc. Therefore, in the valence quark approx
mation, we keep onlyDu→p1 for p1 production;Dd→p2 for
p2 production, although we keep bothDu→p0 and Dd→p0

for p0 production.

III. CALCULATION OF THE ASYMMETRY

In this section, we present our calculation of the sing
transverse-spin asymmetries in pion production in the
lence quark-soft gluon approximation described in the pre
ous section. We derive analytic expressions for the sp

to
4-10
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SINGLE TRANSVERSE-SPIN ASYMMETRIES IN . . . PHYSICAL REVIEW D 59 014004
dependent cross section,Ds( l ,sT), which is needed to
evaluate the asymmetries.

A. Quark-gluon subprocesses with initial-state interactions

Consider the two diagrams with poles from initial-sta
interactions, as shown in Fig. 6~a!. We parametrize the par
ton momentaki as

k15x1P1k1T
, and k25x2P1k2T

, ~36!

with the ki T
two-dimensional transverse momenta. The

maining momentum components do not enter at twist th
The pole in the diagram at the left of Fig. 6~a! is given in
these terms by

1

~x8P81k22k1!21 i e
'

1

~x22x1!x8S1~k2T
2k1T

!21 i e
.

~37!

The derivative of this pole with respect tok2T
~or k1T

) van-

ishes aski T
→0. The diagram on the right has the same fe

ture. Therefore, following the arguments of Sec. II D abo
the leading contribution toDs(sWT) in the diagrams in Fig.
6~a! is from the derivative of the phase spaced-function
only.

Let L1 andL2 be the momenta of the unobserved parto
in the diagrams to the left and right, respectively in Fig. 6~a!.
We have

L1[x8P81x1P1k1T
2pc , L2[x8P81x2P1k2T

2pc .
~38!

Taking the derivative with respect tok1
r andk2

r , we obtain

]

]k1
r d~L1

2!5~22pcr
!d8~L1

2!, ~39a!

]

]k2
r d~L1

2!50, ~39b!

]

]k1
r d~L2

2!50, ~39c!

]

]k2
r d~L2

2!5~22pcr
!d8~L2

2!. ~39d!

In deriving these relations, we have used thatr is a trans-
verse index. After taking the derivative with respect to theki
on thed-functions, we can setki T

to zero in the remainder o
each diagram. For the diagrams in Fig. 6~a!, the poles giving
the leading contributions are from
01400
-
e.

-
,

s

L~x1 ,x2![gs@~2x8P8•P!grb2~x8P8!rPb2~x8P8!bPr#

3
2 i

@x8P81~x22x1!P#21 i e

5gs~2 i !grbS 21

x12x22 i e D , ~40a!

R~x1 ,x2!5gs~2 i !grbS 21

x22x11 i e D , ~40b!

whereL and R represent the diagrams at left and at rig
respectively. In Eq.~40!, gs5A4pas is the strong coupling.
In the following discussion, we absorb the overall (2 i ) in
Eq. ~40! into the color factor for the subprocess. Using t
distribution identity

1

x22x16 i e
5PF 1

x22x1
G7 ipd~x22x1!, ~41!

for the poles in Eq.~40! and keeping the imaginary contr
bution of the pole, we can express the contributions of
diagrams in Fig. 6~a! as

]

]k2
r „HaL

~x1 ,x2 ,x8,pc!1HaR
~x1 ,x2 ,x8,pc!…

5
gs

2px2
H2→2~x2 ,x8,pc!

3@ ipd~x12x2!~2pcr
!#d8~L2

2!, ~42a!

2
]

]k1
r „HaL

~x1 ,x2 ,x8,pc!1HaR
~x1 ,x2 ,x8,pc!…

5
gs

2px1
H2→2~x1 ,x8,pc!

3@ ipd~x22x1!~2pcr
!#d8~L1

2!, ~42b!

where subscriptsaL andaR represent the left and right dia
grams of Fig. 6~a!. In Eq. ~42!, H2→2(xi ,x8,pc) with i
51,2 is proportional to the imaginary part of the 2→2 par-
tonic forward scattering amplitude shown in Fig. 10,

H2→2~xi ,x8,pc!5
1

16p2 uM̄a1g→c
I u2Cg

I , ~43!

where the matrix element squared,uM̄a1g→c
I u2, is the same

as that in Eq.~31!, except for the color factor,Cg
I , due to the

FIG. 10. Two-parton forward scattering amplitude contributi
to the partonic hard partH2→2(x,x8,pc) in Eq. ~43!.
4-11
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extra initial-state interaction. Combining Eqs.~19! and ~40!,
the factorCg

I is given by the color structure of the parton
diagrams shown in Fig. 6~a!, contracted with a common fac
tor @(2 i )2/(N221)#(tB) i j , whereB andi j are color indices
for the gluon and quarks from the polarized hadron. T
factor 1/2p in Eq. ~42! was explained in the text following
Eq. ~18!, and the factor 1/x1 is due to the definition of
H2→2(x1 ,x8,pc), where incoming quark lines are contract
with (1/2)g•(x1P). Equation ~42! shows that Eq.~30! is
satisfied whenki T

50.
Substituting Eq.~42a! into Eq. ~29!, we have a complete

factorized form for the spin-dependent cross section from
diagrams shown in Fig. 6~a!,

El

dDsg
I ~sWT!

d3l
5(

a,c
E dz

z2 Dc→p~z!

3E dx8G~x8!E dxTFa

~V!~x,x!

3S Ec

dDŝa1g→c
I ~sWT!

d3pc
D , ~44!

where the factor 1/z2 is due to the phase space differen
betweend3l /(2p)32El and d3pc /(2p)32Ec , and the par-
tonic hard part,EcdDŝa1g→c

I /d3pc , is given by

Ec

dDŝa1g→c
I ~sWT!

d3pc
5gse

sTpcnn̄Cg
I

3F 1

16p2ŝ
uM̄a1g→c

I u2d8~ ŝ1 t̂1û!G .
~45!

In Eqs.~44! and~45!, superscriptI indicates the contribution
from a partonic subprocess with an initial-state pole, a
subscriptg represents the quark-gluon subprocess. In de
ing Eq. ~44!, we renamed the integration variablex1 in Eq.
~42! asx. The factorized spin-dependent cross section gi
in Eq. ~44! is very similar to the factorized form for th
spin-averaged cross section in Eq.~16!, with the unpolarized
parton distributionfa/A(x) replaced by the twist-three cor
relation functionTF

(V)(x,x). The partonic hard part in Eq
~45! is also very similar to that in Eq.~31!. For the spin-
dependent case, the derivative of thed-function is just the
derivative with respect to the parton momentumki in Eq.
~20!, which comes from the collinear expansion. The fac
esTpcnn̄ in Eq. ~45! is necessary for a nonvanishing asymm
try.

After partial integration overx, we can reexpress the de
rivative of thed-function as

E dxd8~ ŝ1 t̂1û!F~x!

5E dx

x8S1T/z
d~ ŝ1 t̂1û!F2

]

]x
F~x!G ~46!
01400
e

e

d
-

n

r
-

for any smooth functionF(x). Using Eq.~45!, we thus re-
write EldDsg

I (sT)/d3l as

El

dDsg
I ~sWT!

d3l
5

as
2

S (
a,c

E
zmin

1 dz

z3 Dc→p~z!

3E
xmin

1 dx

x

1

xS1U/z E dx8

x8

3dS x82
2xT/z

xS1U/zDgse
sTlnn̄S 1

x8S1T/zD
3G~x8!F2x

]

]x
S TFa

~V!~x,x!

x

3Hag→c
I ~ ŝ, t̂ ,û!D G , ~47!

wherezmin andxmin are given in Eq.~34!, andS, T andU are
defined in Eq.~3!. In Eq. ~47!, the spin-dependent cross se
tion EldDsg

I (sT)/d3l has almost the same factorized form
the spin-averaged cross section shown in Eq.~33!. The extra
factor of 1/z is due to the replacement ofpc by l in the
e-tensor of Eq.~45!. The dimension of 1/(x8S1T/z) due to
the derivative of thed-function is balanced by the dimensio
of l in the e-tensor and the dimension of the twist-three co
relation functionTFa

(V)(x,x). In our definition, the twist-three

correlation function has the dimensions of energy. The p
tonic hard part,Hag→c

I ( ŝ, t̂ ,û), in Eq. ~47! plays the role of

ŝag→c in Eq. ~33!. It is given byCg
I uM̄a1g→c

I u2 in Eq. ~45!,
which represents the 2→2 matrix element squared in Eq
~43!, but with a different color factor due to the extra initia
state interaction.

B. Quark-gluon subprocesses with final-state interactions

The diagrams shown in Fig. 6~b! represent final-state in
teractions of the fragmenting parton. As with the contrib
tions from initial-state interactions, these diagrams also h
a derivative with respect tok1

r and k2
r of the phase space

d-function associated with the unobserved final-state par
of momentumL1 or L2 . Similarly to Eq.~40!, the final-state
poles giving leading contributions are given by, as sketch
in Fig. 11,

FIG. 11. Sketch for the effective diagrams giving the leadi
poles in Eq.~48!: ~a! pole to the left of the cut;~b! pole to the right
of the cut.
4-12
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L~x1 ,x2![gs~g•pc!
g•Pg•„pc1~x12x2!P…

„pc1~x12x2!P…21 i e

'gs~g•pc!S 1

x12x21 i e D , ~48a!

R~x1 ,x2!'gs~g•pc!S 1

x22x12 i e D , ~48b!

where the factor (g•pc) will be absorbed into the 2→2
hard-scattering function. Similarly to Eq.~47!, we obtain the
contribution from the derivative of thed-function for a final-
state interaction,

El

dDsg
F~sWT!

d3l
5

as
2

S (
a,c

E
zmin

1 dz

z3 Dc→p~z!

3E
xmin

1 dx

x

1

xS1U/z E dx8

x8

3dS x82
2xT/z

xS1U/zDgse
sTlnn̄S 1

x8S1T/zD
3G~x8!F2x

]

]x
S TFa

~V!~x,x!

x

3Hag→c
F ~ ŝ, t̂ ,û!D G , ~49!

where superscriptF denotes the final-state interaction. Th
only difference betweenEldDsg

F(sT)/d3l in Eq. ~49! and
EldDsg

I (sT)/d3l in Eq. ~47! is the color factors in the par

tonic hard parts. The hard partHag→c
F ( ŝ, t̂ ,û) in Eq. ~49! is

given by Cg
FuM̄a1g→c

I u2, which has the same kinematic d

pendence asHag→c
I ( ŝ, t̂ ,û) in Eq. ~47!, but a different color

factor, Cg
F , due to different color structures in final-sta

compared to initial-state interactions. Similarly toCg
I , Cg

F is
computed by contracting the matrix@2/(N221)#(tB) i j , Eq.
~19!, into the diagrams.

In addition to the contribution from the derivative of th
d-function, the diagrams shown in Fig. 6~b! also give leading
contributions, proportional to (]/]x)TF

(V)(x,x), from the
double pole which results when the derivative (]/]ki) acts
on a propagator that goes on-shell atx15x2 . Consider the
final-state interaction in the diagram at the left in Fig. 11~a!.
The pole giving the leading contribution is from the facto
01400
L~k1T
,k2T

![gsg•pcFg•Pg•~pc1k12k2!

~pc1k12k2!21 i e G
5gsg•pcF 1

x12x21x0~k1T
,k2T

!1 i e

2
g•~k1T

2k2T
!g•P

2P•pc@x12x21x0~k1T
,k2T

!1 i e#G , ~50!

wherex0 is defined as

x0~k1T
,k2T

![
2~k1T

2k2T
!•pc1~k1T

2k2T
!2

2P•pc

→0 as k1T
and k2T

→0. ~51!

In deriving Eq.~50!, we used the parametrization of Eq.~36!,
and the relationspc

250, P2'0, and 2P•pc.0. Applying
(]/]ki

r) to L(k1T
,k2T

), and lettingki T
( i 51,2) go to zero,

the first term in Eq.~50! develops a double pole, while th
second term remains a single pole,

]

]k1
r L~k1T

50,k2T
50!5g•pcS gs

2P•pc
D

3F ~22pcr
!

1

~x12x21 i e!2

2~grg•P!
1

~x12x21 i e!G
52

]

]k2
r L~k1T

50,k2T
50!. ~52!

Since we keep only contributions proportional
(]/]x)TF

(V)(x,x), we neglect the single-pole term in Eq.~52!
in the following discussion, and use

]

]k2
r L~k1T

50,k2T
50!52

]

]k1
r L~k1T

50,k2T
50!

'g•pcS gs

2P•pc
D

3F ~2pcr
!

1

~x12x21 i e!2G .
~53!

Similarly, for the diagram at the right in Fig. 11~b!, we have
R~k1T
,k2T

![gsFg•~pc1k22k1!g•P

~pc1k22k1!22 i e Gg•pc5gsF 1

x22x11x0~k2T
,k1T

!2 i e
2

g•Pg•~k2T
2k1T

!

2P•pc@x22x11x0~k2T
,k1T

!2 i e#Gg•pc ,

~54!

wherex0 is defined in Eq.~51!. Taking the derivative with respect toki
r , we have
4-13
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]

]k2
r R~k1T

50,k2T
50!52

]

]k1
r R~k1T

50,k2T
50!'g•pcS gs

2P•pc
D F ~22pcr

!
1

~x22x12 i e!2G . ~55!

Equations~53! and ~55! show that the double-pole contributions from diagrams in Fig. 6~b! satisfy Eq.~30!. Keeping only
these double-pole terms, as in Eq.~42a!, we now have

]HDL

]k2
r ~x1 ,x2 ,x8,pc!'

gs

2p
H2→2

L ~x1 ,x2 ,x8,pc!F ~2pcr
!

1

~x12x21 i e!2G S 1

2P•pc
D , ~56a!

]HDR

]k2
r ~x1 ,x2 ,x8,pc!'

gs

2p
H2→2

R ~x1 ,x2 ,x8,pc!F ~22pcr
!

1

~x22x12 i e!2G S 1

2P•pc
D , ~56b!

whereDL andDR denote the double-pole contributions from the left and right diagram in Fig. 6~b!, respectively. In Eq.~56!,
H2→2

L (x1 ,x2 ,x8,pc) andH2→2
R (x1 ,x2 ,x8,pc) are 2→2 partonic parts corresponding to the left and right diagrams show

Fig. 12. They have the limits

H2→2
L ~x1 ,x2 ,x8,pc!x1→x2

5
1

x2
H2→2~x2 ,x8,pc!, ~57a!

H2→2
R ~x1 ,x2 ,x8,pc!x2→x1

5
1

x1
H2→2~x1 ,x8,pc!, ~57b!

whereH2→2(xi ,x8,pc) with i 51,2 are the same as in Eq.~42!.
Recalling thatTF is real, it is evident from Eq.~29! that we need the imaginary part of (]/]k2

r)HDL
and (]/]k2

r)HDR
in

order to get a real contribution to the spin-dependent cross section. For double pole terms like those in Eqs.~56a! and~56b!,
the imaginary part is given by

E dx1

1

~x12x21 i e!2 F~x1 ,x2!5E dx1@2 ipd~x12x2!#F ]

]x1
F~x1 ,x2!G ~58!

for any smooth functionF(x1 ,x2). Using Eq.~57!, we have following relation:

E dx1dx2TFa

~V!~x1 ,x2!F i ersTnn̄
]

]k2
r „HDL

~x1 ,x2 ,x8,pc!1HDR
~x1 ,x2 ,x8,pc!…G

5gs

esTpcnn̄

2P•pc H E dx2F2
]

]x1
„H2→2

L ~x1 ,x2 ,x8,pc!TFa

~V!~x1 ,x2!…G
x15x2

1E dx1F2
]

]x2
„H2→2

R ~x1 ,x2 ,x8,pc!TFa

~V!~x1 ,x2!…G
x25x1

J
'gs

esTlnn̄

2P• l E dx

x
H2→2~x,x8,pc!F2

]

]x
„TFa

~V!~x,x!…G . ~59!

In deriving Eq.~59!, we have used the symmetry propertyTF
(V)(x1 ,x2)5TF

(V)(x2 ,x1), Eq. ~26! @10#,

]

]x
„TFa

~V!~x,x!…52F ]

]x1
„TFa

~V!~x1 ,x!…G
x15x

52F ]

]x2
„TFa

~V!~x,x2!…G
x25x

, ~60!

and Eq.~57!. In addition, we have used the approximation

F2
]

]x1
„H2→2

L ~x1 ,x2 ,x8,pc!TFa

~V!~x1 ,x2!…G
x15x2

'
1

x2
H2→2~x2 ,x8,pc!F2

]

]x1
„TFa

~V!~x1 ,x2!…G
x15x2

, ~61!

demanding as usual a derivative ofTF
(V) .

Substituting Eq.~59! into the cross section Eq.~29!, we obtain the leading double-pole contributions from the diagra
shown in Fig. 6~b!
014004-14
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El

dDsg
D~sWT!

d3l
5

as
2

S (
a,c

E
zmin

1 dz

z2 Dc→p~z!E
xmin

1 dx

x

1

xS1U/z E dx8

x8
dS x82

2xT/z

xS1U/zD
3gse

sTlnn̄S 1

2TDG~x8!F2
]

]x
„TFa

~V!~x,x!…GHag→c
D ~ ŝ, t̂ ,û!, ~62!

whereT522P• l is defined in Eq.~3!, and the partonic hard partHag→c
D ( ŝ, t̂ ,û) is normalized to have

Hag→c
D ~ ŝ, t̂ ,û!5Hag→c

F ~ ŝ, t̂ ,û!, ~63!

with Hag→c
F ( ŝ, t̂ ,û) the same partonic hard part derived from the contribution of the derivative of thed-function, and given in

Eq. ~49!.
In addition to the diagrams in Fig. 6~b!, there is another type of diagram with final-state interactions, as shown in Fig.~c!.

In this case the final-state interactions taken place on an unobserved final-state parton. The diagrams on the left and
the same, except for the final-state propagator and the argument of the phase spaced-function. The total partonic contribution
from these two diagrams can be expressed as

HcL
~k1 ,k2 ,x8,pc!1HcR

~k1 ,k2 ,x8,pc!5F 1

L1
21 i e

d~L2
2!1

1

L2
22 i e

d~L1
2!GF~k1 ,k2 ,x8,pc!, ~64!

where the momentaL1 and L2 are defined in Eq.~38!. The functionF(k1 ,k2 ,x8,pc) represents the common factor of tw
diagrams in Fig. 6~c!; it has the symmetry property

F~k1 ,k2 ,x8,pc!5F~k2 ,k1 ,x8,pc!. ~65!

From Eq.~64!, combining the symmetry properties of Eqs.~26! and~65!, we readily show that the leading contribution of th
diagrams in Fig. 6~c! to the spin-dependent cross section@or Eq. ~29!# vanishes.

C. Quark-quark and quark-antiquark subprocesses

In this subsection, we present the leading contributions to the spin-dependent cross section from quark-quark an
antiquark subprocesses.

Based on the same arguments following Eq.~37!, the leading contributions from diagrams with initial-state interactio
shown in Fig. 13~a!, come only from the derivative of the phase spaced-function. By analogy to Eq.~47!, we obtain

El

dDsq
I ~sWT!

d3l
5

as
2

S (
a,c

E
zmin

1 dz

z3 Dc→p~z!E
xmin

1 dx

x

1

xS1U/z E dx8

x8
dS x82

2xT/z

xS1U/zD
3gse

sTlnn̄S 1

x8S1T/zD(q
q~x8!F2x

]

]x
S TFa

~V!~x,x!

x
Haq→c

I ~ ŝ, t̂ ,û!D G , ~66!

where the partonic hard part,Haq→c
I ( ŝ, t̂ ,û) is given by the 2→2 quark-quark~quark-antiquark! diagrams shown in Fig. 14

Compared to the spin-averaged case,Haq→c
I ( ŝ, t̂ ,û) plays the same role asŝaq→c in Eq. ~33!. In fact, Haq→c

I ( ŝ, t̂ ,û) is given
by the same Feynman diagrams needed to calculateŝaq→c , but, with different color factors,Cq

I , due to the extra initial-state
interactions. Similarly toCg

I , Cq
I is given by the color structures of the diagrams shown in Fig. 13~a!, contracted with

@2/(N221)#(tB) i j , whereB and i j are color indices for the gluon and quarks from the polarized hadron, respectively.
Contributions from the derivatives of the phase spaced-functions of the diagrams with final-state interactions shown in F

13~b! are given by

El

dDsq
F~sWT!

d3l
5

as
2

S (
a,c

E
zmin

1 dz

z3 Dc→p~z!E
xmin

1 dx

x

1

xS1U/z E dx8

x8
dS x82

2xT/z

xS1U/zD
3gse

sTlnn̄S 1

x8S1T/zD(q
q~x8!F2x

]

]x
S TFa

~V!~x,x!

x
Haq→c

F ~ ŝ, t̂ ,û!D G , ~67!
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where superscriptF represents the final-state interactions. The partonic hard-scattering function,Haq→c
F ( ŝ, t̂ ,û), has the same

functional form asHaq→c
I ( ŝ, t̂ ,û) in Eq. ~66!, with a different color factorCq

F , because of the final-state interactions. As w
Cg

F , Cq
F is given by the color structure of the diagrams shown in Fig. 13~b!, contracted with@2/(N221)#(tB) i j .

In addition to the contributions given in Eq.~67! from the derivative of thed-function, the diagrams in Fig. 13~b! also have
leading contributions from double-pole terms. Just as for the contributions from the quark-gluon subprocesses, give
~62!, the quark-quark and quark-antiquark double-pole contributions take the form

El

dDsq
D~sWT!

d3l
5

as
2

S (
a,c

E
zmin

1 dz

z2 Dc→p~z!E
xmin

1 dx

x

1

xS1U/z E dx8

x8
dS x82

2xT/z

xS1U/zD
3gse

sTlnn̄S 1

2TD(
q

q~x8!F2
]

]x
„TFa

~V!~x,x!…GHaq→c
D ~ ŝ, t̂ ,û!, ~68!
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where the hard-scattering function found from the dou
pole,Haq→c

D ( ŝ, t̂ ,û), is equal toHaq→c
F ( ŝ, t̂ ,û) in Eq. ~67!.

D. Calculation of the partonic hard scattering functions

In Eqs.~47!, ~49!, ~62!, ~66!, ~67! and~68!, we have pre-
sented factorized expressions for leading contributions to
spin-dependent cross section,EldDs(sWT)/d3l , for quark-
gluon, quark-quark and quark-antiquark subprocesses.
complete our derivation of the spin-dependent cross sec
in this subsection we outline the calculation of the parto
hard scattering functionsHag→c

I , Hag→c
F , Haq→c

I and
Haq→c

F . We recall that the subscriptsI andF refer to initial-
and final-state interactions, respectively. The other two h
scattering functions, associated with derivatives on final-s
propagators only,Hag→c

D and Haq→c
D , are equal toHag→c

F

andHaq→c
F , respectively.

For the quark-gluon subprocesses, the partonic hard s
tering functionsHag→c

I and Hag→c
F are given by the same

quark-gluon 2→2 Feynman diagrams as shown in Fig. 1
which are actually the same diagrams contributing to
spin-averaged partonic part,ŝag→c , in Eq. ~35a!. Incoming
quark lines are contracted by (1/2)g•(xP), and incoming
gluon lines are contracted by (1/2)(2gab).

Let Cg , Cg
I , and Cg

F be the color factors for processe
that are spin-averaged, spin-dependent with an initial-s
interaction, and spin-dependent with a final-state interact
respectively. The factorCg for each diagram shown in Fig
15 is simply the standard color factor for that diagram, w
an average over initial-state quark and gluon color.

EachCg
I is given by the color factor of the diagram wit

one extra initial-state three-gluon vertex. An example

FIG. 12. Effective quark-gluon 2→2 diagrams with the thin line
of momentum (x22x1)P representing momentum flow that is
result of the extra final-state interaction.
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shown in Fig. 16~a!. The color of the incoming gluon from
the unpolarized hadron is averaged, and the colors of
incoming quarks and the extra gluon from the polarized h
ron are contracted with@22i /(N221)#(tB) i j , as explained
in the text following Eq.~43!.

Finally, the Cg
F are the color factors of the same 2→2

diagrams with an extra final-state quark-gluon interacti
illustrated by the diagram shown in Fig. 16~b!. Similarly to
Cg

I , the color of the incoming gluon from the unpolarize
hadron is averaged, and the colors of the incoming qua
and the extra gluon from the polarized hadron are contrac
with @2/(N221)#(tB) i j , as mentioned in the text after Eq
~49!. Our results for all these color factors are collected
Table I.

For quark-quark~or quark-antiquark! subprocesses, th
partonic hard scattering functions,Haq→c

I and Haq→c
F are

given by the same quark-quark~or quark-antiquark! 2→2

FIG. 13. Three classes of quark-quark~or antiquark! diagrams
contributing to the spin-dependent cross sectionDs(sWT): ~a! dia-
grams with an initial-state pole,~b! and ~c! diagrams with a final-
state pole. SymbolsB and i j are color indices for the gluon an
quarks.
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Feynman diagrams as shown in Fig. 17, which are the s
diagrams contributing to the spin-averaged partonic cr
section,ŝaq→c in Eq. ~35b!. Incoming quark lines from the
polarized hadron are contracted by (1/2)g•(xP), and incom-
ing quark ~or antiquark! lines from the unpolarized hadro
are contracted by (1/2)g•(x8P8).

As with the quark-gluon subprocesses,Cq , Cq
I , andCq

F

are respectively the color factors for subprocesses that
spin-averaged, spin-dependent with an initial-state inte
tion, and spin-dependent with a final-state interaction. T
Cq for the individual diagrams shown in Fig. 17 are the co
factors for each diagram, with a standard average o
initial-state quark~or antiquark! color. TheCq

I ’s are found by
including an extra initial-state three-gluon interaction in t
2→2 process,@for example, Fig. 18~a!# averaging the color
of the quark~or antiquark! from the unpolarized hadron, an
contracting the colors of the incoming quarks and the ex
gluon from the polarized hadron with@2/(N221)#(tB) i j , as
mentioned following Eq.~66!. The Cq

F are found from the
same 2→2 diagrams, now with one extra final-state qua
gluon interaction@illustrated by the diagram shown in Fig
18~b!#. In exactly the same fashion as forCq

I , the colors
from the unpolarized hadron are averaged, and the co
from the polarized hadron are contracted with@2/(N2

21)#(tB) i j @as mentioned in connection with Eq.~67!#.
Our results for the quark-quark and quark-antiquark co

factors are summarized in Table II. Notice the sign diffe
ence for the coefficient of 4N in the color factor (N264N
24)/(32N), between graphs related by reversing the arr
of a quark or antiquark line. These will give slight diffe

FIG. 14. Effective quark-quark~and antiquark! 2→2 diagrams
contributing to the partonic hard parts,Haq→c .

FIG. 15. All 2→2 quark-gluon diagrams contributing to pa
tonic hard parts,Hag→c .
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ences to the asymmetries in proton~↑!-proton compared with
antiproton~↑!-proton collisions.

From Table I and Table II, we can construct all the ne
essary partonic hard scattering functions. For the sp
averaged cross section, the hard-scattering function for
quark-gluon subprocess,ŝag→c in Eq. ~35a!, is found by
combining the entries in the columns ofPartonic Partsand
Cg in Table I. For the quark-quark~or antiquark! subpro-
cesses,ŝaq→c in Eq. ~35b! is found by combining entries
from the columns ofPartonic Partswith Cq in Table II. For
the spin-dependent cross section, the twist-three part
hard scattering functionHag→c

I is found by combining en-
tries in the columns ofPartonic PartsandCg

I in Table I. In
the same way, one can read off other partonic hard scatte
functions, Hag→c

F , Haq→c
I and Haq→c

F from Table I and
Table II.

IV. NUMERICAL RESULTS FOR SINGLE TRANSVERSE-
SPIN ASYMMETRIES

Having derived expressions for the single transverse-s
asymmetries in previous section, we are now ready to
velop numerical estimates ofAN for inclusive single pion
production.

A. Model for the twist-3 distribution: TF
„V…

„x,x…

The application of perturbative QCD to observables
volving hadrons in the initial state relies on factorizatio
theorems@31# and on the universality of the nonperturbativ
long-distance distributions. For the single transverse-s
asymmetries discussed in this paper, a test of the perturba
formalism requires in principle an independent extraction
the spin-dependent twist-three distributions,fa/A

(3) (x1 ,x2) in-
troduced in Eq.~17!. As we have observed, there is a varie
of twist-three distributions, dependent in general on a pai
momentum fractions. It would require extensive measu
ments to pin down all of these functions. However, f
single-spin asymmetries in the forward region, we have
gued above, and in Ref.@10#, that the dominant contribution
may depend primarily on only a single twist-three distrib
tion, TFa

(V)(x,x), at equal values of its two arguments. Assu

ing this to be the case, it could be possible to infer the fo
of TFa

(V)(x,x) from single transverse-spin asymmetries inp1

and/orp2 production, and then use it to predict asymmetr
in the production ofp0, direct photon or other particles, a
least approximately.

FIG. 16. Sample diagrams with initial-state and final-state int
actions, used to calculate the color factors,Cg

I andCg
F in Table I.
4-17
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TABLE I. Partonic hard parts and corresponding color factors for quark-gluon and antiquark-
~indicated by barred letters! subprocesses. Feynman diagrams are shown in Fig. 15.Cg , Cg

I , andCg
F are

color factors for spin-averaged, spin-dependent with initial-state interaction, and spin-dependent with
state interaction subprocess, respectively. The explicit factors (21) are due to the sign difference betwee
quark and antiquark propagators with the same momentum. Calculations were done in Feynman ga

Diagram Partonic Parts Cg Cg
I Cg

F

~a! 4F12
ŝû

t̂2
G 1

2 2
N2

4~N221!
2

1

2~N221!

~b! 2F2û

ŝ G N221

4N2
2

1
4

1

4N2~N221!

~c! 2F ŝ

2ûG N221

4N2

1

4~N221!

1

4N2~N221!

~d! ~1i!2Fŝ
t̂
G (2 i ) 1

4 ~1i!
N2

4~N221!
~1i!

1

4~N221!

~e! ~2i!2Fŝ
t̂
G (1 i ) 1

4 ~2i!
N2

4~N221!
~2i!

1

4~N221!

~f! ~2i!2Fû
t̂
G (1 i ) 1

4 0 ~2i!
1

4~N221!

~g! ~1i!2Fû
t̂
G (2 i ) 1

4 0 ~1i!
1

4~N221!

~h! 0 - - -
~i! 0 - - -

(ā) 4F12
ŝû

t̂2
G 1

2
N2

4~N221!
2

1

2~N221!
~21!

(b̄) 2F2û

ŝ G N221

4N2
1
4

1

4N2~N221!
~21!

(c̄) 2F ŝ

2ûG N221

4N2 2
1

4~N221!

1

4N2~N221!
~21!

(d̄) ~2i!2Fŝ
t̂
G (1 i ) 1

4 ~1i!
N2

4~N221!
~2i!

1

4~N221!
~21!

(ē) ~1i!2Fŝ
t̂
G (2 i ) 1

4 ~2i!
N2

4~N221!
~1i!

1

4~N221!
~21!

( f̄) ~1i!2Fû
t̂
G (2 i ) 1

4 0 ~1i!
1

4~N221!
~21!

(ḡ) ~2i!2Fû
t̂
G (1 i ) 1

4 0 ~2i!
1

4~N221!
~21!

(h̄) 0 - - -

( ī ) 0 - - -
th
rm
In order to compare our calculated asymmetries to
existing data, we need to assume an initial functional fo
for the twist-3 distribution,TFa

(V)(x,x). To help motivate our

model, we compare the operator definition ofTFa

(V)(x,x) with

that of a twist-2 quark distributionqa(x) of flavor a. From
Eq. ~25!, we have
01400
e
TFa

~V!~x,x!5E dy2

4p
eixP1y2

^P,sWTuc̄a~0!g1

3F E dy2
2esTsnn̄Fs1~y2

2!G
3ca~y2!uP,sWT&, ~69!
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where subscripta is quark flavor. Correspondingly, from
Ref. @39# we have for the quark distribution

qa~x!5E dy2

4p
eixP1y2

^Puc̄a~0!g1ca~y2!uP&. ~70!

As above, we suppress ordered exponentials of the ga
field. Comparing Eqs.~69! with ~70!, the operator defining
TFa

(V)(x,x) is the same as for the spin-averaged quark dis

bution, except for the term in the square brackets. This
tor, however, does not introduce explicitx-dependence~or
y-dependence in coordinate space!. Based on this similarity
of the operators, we model the twist-3 distribution with t
following functional form, inspired by the quark distribu
tions themselves,

TFa

~V!~x,x![kalqa~x!, ~71!

FIG. 17. All 2→2 quark-quark~and antiquark! diagrams con-
tributing to partonic hard parts,Haq→c .

FIG. 18. Sample diagrams with initial-state and final-state in
actions, used to calculate the color factors,Cq

I andCq
F in Table II.
01400
ge

i-

c-

wherel ~with dimensions of energy! is a normalization con-
stant, which will be fixed by the data; and whereka5
61,0, depending on flavora. Note that we propose the re
lation Eq. ~71! only for relatively largex, where the corre-
lations of quarks with the gluon field may be simplified. Th
restriction limits somewhat the utility of low moments ofTF
in estimates of its magnitude@13#. For the parameterska in
Eq. ~71!, we shall see that the data suggest the choices

ku511 and
ku

kd
521 ~proton!,

k ū521 and
k ū

k d̄
521 ~antiproton!, ~72!

where the second line follows from the first by using char
conjugation invariance inTF . In the valence quark approxi
mation, discussed in the previous sections, we further
sume thatks50. Of course, Eq.~71! is simply a model, and
the true functional form of the twist-three distributio
TFa

(V)(x,x) should be determined by detailed comparison w

experiment. The purpose of our model is to have a functio
form that we can use to begin such a comparison with
important, but still limited, data that are available.

B. Single transverse-spin asymmetries in pion production

Single transverse-spin asymmetries for pions were b
measured at Fermilab by the E704 Collaboration with 2
GeV polarized proton and antiproton beams on an unpo
ized proton target@4#. In this subsection, we use the Fermila
data to estimate the value ofl, in Eq. ~71!, and check the
consistency of our model.

1. Absolute sign of the single transverse-spin asymmetry

In order to compare the experimental data on the as
metries,AN , with our calculations in Sec. III, we need to fi
the absolute sign ofAN .

According to Ref.@4#, positive values ofAN correspond to
larger cross sections for production ofp0 to the beam’sleft
when the beam particle spin is verticallyupward, as sketched
in Fig. 19. We choose our coordinate system such that
beam direction is along thez-axis, and the direction of the
beam spin is along thex-axis, as shown in Fig. 19. Conse
quently, the experimental beam’sleft corresponds to the
2y-direction in our coordinate system, and

~AN!exp.0⇔e l TsTnn̄.0. ~73!

-
FIG. 19. Sketch for the coordinate system: the polarized bea

along thez-axis and the beam particle spin along thex-axis. Posi-
tive AN corresponds to an excess of events in the2y-direction.
4-19
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TABLE II. Partonic hard parts and corresponding color factors for subprocesses involving quarks

antiquarks. Feynman diagrams are shown in Fig. 17. In diagrams ( i)̄ and ( j̄) both fermion arrows have bee
reversed, relative to~i! and ~j!. Cq , Cq

I , andCq
F are color factors for spin-averaged, spin-dependent w

initial-state interaction, and spin-dependent with final-state interaction, respectively. Flavor indicesa andb
correspond to the flavor of the quark~or antiquark! from the polarized hadron and unpolarized hadro
respectively, andc is the flavor of fragmenting quark. The explicit factors (21) are due to the sign differenc
between quark and antiquark propagators with the same momentum. Calculations were done in F
gauge.

Diagrams Partonic Parts Cq Cq
I Cq

F

~a! 2Fŝ21û2

t̂2
Gdac

N221

4N2

N224N24

32N
2

1

4N2

~b! 2F ŝ21û2

t̂2 Gdac
N221

4N2

N214N24

32N
~21! 2

1

4N2

~c! 2F ŝ21û2

t̂2 Gdac
N221

4N2

N214N24

32N
2

1

4N2 ~21!

~d! 2F ŝ21û2

t̂2 Gdac
N221

4N2

N224N24

32N
~21! 2

1

4N2 ~21!

~e! 2F ŝ21 t̂2

û2 Gdbc

N221

4N2

N224N24

32N

N214N24

32N

~f! 2F ŝ21 t̂2

û2 Gdbc

N221

4N2

N214N24

32N

N224N24

32N

~g! 2F ŝ21 t̂2

û2 Gdbc

N221

4N2

N214N24

32N
~21!

N224N24

32N
~21!

~h! 2F ŝ21 t̂2

û2 Gdbc

N221

4N2

N224N24

32N
~21!

N214N24

32N
~21!

~i! 2F ŝ2

t̂ û
Gdabdac 2

N221

4N3

N211

4N3

1

4N3

~j! 2F ŝ2

t̂ û
Gdabdbc 2

N221

4N3

N211

4N3

1

4N3

( ī ) 2Fŝ2

t̂û
Gdabdac 2

N221

4N3

N211

4N3 ~21!
1

4N3 ~21!

( j̄ ) 2Fŝ2

t̂û
Gdabdbc 2

N221

4N3

N211

4N3 ~21!
1

4N3 ~21!

~k! 2F t̂21û2

ŝ2 Gdab̄

N221

4N2 2
1

4N2 ~21!
N214N24

32N

~l! 2F t̂21û2

ŝ2 Gdab̄

N221

4N2 2
1

4N2

N224N24

32N

~m! 2F t̂21û2

ŝ2 Gdab̄

N221

4N2 2
1

4N2 ~21!
N224N24

32N
~21!

~n! 2F t̂21û2

ŝ2 Gdab̄

N221

4N2 2
1

4N2

N214N24

32N
~21!
014004-20
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Equation~73! fixes the absolute sign ofAN presented in Sec
III, and dictates our choiceku511 in Eq. ~72!.

2. Leading single transverse-spin asymmetry [„/x…TF a

„V…

„x,x…
only]

As explained in Sec. III, we are interested inAN in the
forward region, where it is largest experimentally. In der
ing Eqs.~47!, ~49!, ~62!, ~66!, ~67! and ~68!, we kept only
te
q

he

01400
contributions from the terms discussed in items~1! and~2! of
Sec. II D, because those discussed in items~3! and~4! lack a
derivative on the twist-three distribution. To be consiste
with our approximation, we rewrite the contributions in Eq
~47!, ~49!, ~62!, ~66!, ~67! and ~68! in terms of an explicit
factor of (]/]x)TFa

(V)(x,x), neglecting derivatives of othe
factors. Combining all leading contributions to the spi
dependent cross section, in a manner similar to the s
averaged cross section in Eq.~33!, we obtain
El

d3Ds~sWT!

d3l
5

as
2

S (
a,c

E
zmin

1 dz

z2 Dc→p~z!E
xmin

1 dx

x

1

xS1U/z E dx8

x8
dS x82

2xT/z

xS1U/zD
3A4pasS e lsTnn̄

z~2û!
D F2x

]

]x
TFa

~V!~x,x!GFG~x8!Dŝag→c1(
q

q~x8!Dŝaq→cG , ~74!
f
as

or
where(a runs over up and down valence quarks. The in
gration limits in Eq.~74! are the same as those defined in E
~33!. The spin-dependent partonic cross sections,Dŝag→c
andDŝaq→c are given by

Dŝag→c52FHag→c
I ~ ŝ, t̂ ,û!1Hag→c

F ~ ŝ, t̂ ,û!

1S û

t̂
D Hag→c

D ~ ŝ, t̂ ,û!G , ~75a!

Dŝaq→c52FHaq→c
I ~ ŝ, t̂ ,û!1Haq→c

F ~ ŝ, t̂ ,û!

1S û

t̂
D Haq→c

D ~ ŝ, t̂ ,û!G , ~75b!

where the minus sign is fromesTlnn̄52e lsTnn̄, and where all
the partonic hard-scattering functions have been given
Sec. III. In deriving Eq.~75!, (x8S1T/z)/(2T/z)5û/ t̂ was
used. From the information given in Table I, we find t
following explicit expression forDŝag→c taking N53:

Dŝag→c5dacH 2S 12
ŝû

t̂2 D F 9

16
1

1

8 S 11
û

t̂
D G

1
4

9
S 2û

ŝ
1

ŝ

2û
D F 63

128
2

1

64 S 11
û

t̂
D G

1S ŝ

t̂
1

û

t̂
D F 9

16
1

1

8 S 11
û

t̂
D G
-
.

in

1F 9

32
S 2û

ŝ
2

ŝ

2û
D G1F 9

16 S ŝ

t̂
2

û

t̂
D G J .

~76a!

For quark-quark~or antiquark! scattering, the color factors o
individual subprocess depend on quark or antiquark,
shown in Table II. For partona a quark~corresponding to a
polarized proton beam!, we have

Dŝqq8→q5
4

9 S ŝ21û2

t̂2 D F21

64
1

1

8 S 11
û

t̂
D G

Dŝqq̄8→q5
4

9 S ŝ21û2

t̂2 D F51

64
1

1

8 S 11
û

t̂
D G

Dŝqq8→q85
4

9
S ŝ21 t̂2

û2 D F21

64
2

51

64 S 11
û

t̂
D G

Dŝqq̄8→q̄5
4

9
S ŝ21 t̂2

û2 D F51

64
2

21

64 S 11
û

t̂
D G

Dŝqq→q5
28

27 S ŝ2

ût̂
D F10

8
1

1

8 S 11
û

t̂
D G

Dŝqq̄→q85
4

9
S t̂21û2

ŝ2 D F2
1

8
2

51

64 S 11
û

t̂
D G

Dŝqq̄→q̄85
4

9
S t̂21û2

ŝ2 D F2
1

8
2

21

64 S 11
û

t̂
D G .

~76b!

For a polarized antiproton beam, similar formulas f
Dŝ q̄b→c can be derived from Table II. From Eqs.~33! and
4-21
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~76!, we see that the underlying partonic cross sections
spin-dependent and spin-averaged cases are similar,
than the factors in square brackets.

3. Comparison with the Fermilab data

Because of limited phase space, most of the Fermilab
in Ref. @4# were collected at relatively small values of tran
verse momenta, ranging up to 4 GeV forp0 in the central
region ~where AN is small!, and up to only 1.5 GeV for
p6,p0 in the forward region, whereAN is large. In general,
a transverse momentum of even 2 GeV is considered
small to apply perturbative QCD reliably to single-partic
inclusive cross sections, because of their steep depend
on l T . This strong dependence makes the cross sections
sitive to higher-twist effects not associated directly with sp
such as intrinsic transverse momentum, hadronic scales,
of course, yet higher powers in 1/l T . One consequence o
these effects is to regularize the cross section atl T50. For
the asymmetry, however, the strongest power dependenc
1/l T cancels in the ratio of the spin-dependent and sp
averaged cross sections, leaving at mostl/ l T in AN . In fact,
as we will show below,AN does not behave numericall
even as steeply as 1/l T in most of the range where the da
were collected. This suggests that our calculation forAN is
perturbatively stable and may be meaningfully compa
with the data.

For simplicity in our numerical estimates, we employ
the following simple parametrizations, without scaling viol
tion, for twist-two parton distributions@10#:

xuv~x!5
2

B~0.5,4!
x0.5~12x!3, ~77a!

FIG. 20. Single transverse-spin asymmetry as a function ofxF

for p1 andp2 production with a polarizedantiprotonbeam. Here
and in the following five figures, data are from Ref.@4# at AS
520 GeV andl T up to 1.5 GeV. Theory curves are evaluated
transverse momentuml T54 GeV andl50.080 GeV at the same
center-of-mass energy.
01400
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d

xdv~x!5
1

B~0.5,4.5!
x0.5~12x!3.5, ~77b!

xS~x!58F1

2
22

B~1.5,4!

B~0.5,4!
2

B~1.5,4.5!

B~0.5,4.5!G~12x!7,

~77c!

xG~x!53~12x!5. ~77d!

Here, B(x,y) is the beta function. For pion fragmentatio
functions, we rely on Ref.@40#. Using the simplified parton
distributions of Eqs.~77a–d! in the spin-averaged cross se
tion, and in the model for the twist-three distribution give
by Eq. ~71!, we evaluatedAN as the ratio of the spin-
dependent cross section in Eq.~74! to the spin-averaged
cross section, Eq.~33!.

In Fig. 20, along with experimental data from Ref.@4#, we
have plotted our calculatedAN for p1 andp2 production in
the scattering of a polarized antiproton beam on an unpo
ized proton target. Similarly, in Fig. 21, we plot the asym
metries with a polarized proton beam. In Fig. 22, we co
pare theory and experiment in the asymmetries forp0

production with a polarized antiproton beam and a polariz
proton beam. The data presented in Figs. 20, 21 and 22
averaged over the range of transverse momenta, up to
GeV. All of the calculations in these figures, however, we
carried out atl T;4 GeV, with a normalization constantl
50.080 GeV, adjusted to give a rough match to the da3

We will come back to the choice ofl T in a moment. This
limitation notwithstanding, fixing the single overall norma
ization constant,l, is enough to give theoretical prediction

3For the purpose of this comparison, we neglect correlations
tweenxF and l T in the data.

t

FIG. 21. Single transverse-spin asymmetry as a function ofxF

for p1 andp2 production with a polarizedproton beam. Data are
from Ref.@4#. Theory curves are evaluated at transverse momen
l T54 GeV and withl50.80 GeV.
4-22



a

os
ec

tu
re

as

in

the

-
is

ive
s at
us-

se-

n

at
o

e
rom

SINGLE TRANSVERSE-SPIN ASYMMETRIES IN . . . PHYSICAL REVIEW D 59 014004
that are consistent with the shapes and relative signs
normalizations of all the experimental data.

Now let us consider to the question of how best to cho
l T for the comparison with the data. Given the naive exp
tation thatAN;1/l T , the extracted value ofl might be ex-
pected to depend strongly on the value ofl T at which we
evaluate the asymmetries. Surprisingly, however, the per
bative prediction for the asymmetries in this momentum
gion is not very sensitive the precise value ofl T . Thus, in
Figs. 23, 24, and 25, we present the same asymmetries
the foregoing three figures, now evaluated atl T51.5 GeV.
For this value, we find a good match to the data by choos
l50.070 GeV, not too different from the value found atl T

FIG. 22. Single transverse-spin asymmetry as a function ofxF

for p0 production with polarized antiproton and proton beams. D
are from Ref.@4#. Theory curves are evaluated at transverse m
mentuml T54 GeV and withl50.080 GeV.

FIG. 23. Single transverse-spin asymmetry as a function ofxF

for p1 andp2 production with a polarizedantiprotonbeam. Data
are from Ref.@4#. Theory curves are evaluated atl T51.5 GeV and
l50.070 GeV.
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54 GeV. Clearly, the normalizations and shapes of
asymmetries atl T54 GeV andl T51.5 GeV are very similar,
with an only slightly different normalization factor. We con
sider this stability very encouraging. Such consistency
strong evidence that the twist-three formalism of perturbat
QCD can be applied to single transverse-spin asymmetrie
moderate transverse momenta. We will give a further disc
sion of this point in the next section.

We close this section with a few comments on the con
quences of our model ofTF @Eqs. ~71! and ~72!, with l
;0.080 GeV# for single-spin asymmetries in direct photo
production. Compared to the ansatz forTF proposed in Ref.

a
-

FIG. 24. Single transverse-spin asymmetry as a function ofxF

for p1 andp2 production with a polarizedproton beam. Data are
from Ref. @4#. Theory curves are evaluated atl T51.5 GeV andl
50.070 GeV.

FIG. 25. Single transverse-spin asymmetry as a function ofxF

for p0 production with a polarized antiproton, along with the sam
asymmetry obtained with a polarized proton beam. Data are f
Ref. @4#. Theory curves are evaluated atl T51.5 GeV and l
50.070 GeV.
4-23
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@10#, the two main differences are, first, the relative min
sign between the down and up quark matrix elements, a
second, a decrease in the overall normalizationl, below 100
MeV. The modified normalization is consistent with th
bound proposed in Ref.@13#. Both of these features are su
gested by comparison to the data for pion production, wh
is only now possible. The effects of the both changes wo
be to reduce the cross section estimates given in Ref.@10#,
although the second is more important than the first, beca
the down quark’s charge is small. In any case, the data@28#
which limit the direct photon asymmetry is at lowxF , where
either model predicts a small effect.

V. SUMMARY AND DISCUSSION

In this section, we summarize and interpret the main f
tures of our results and provide a few thoughts on fut
development on this subject.

We have presented a calculation of single transverse-
asymmetries,AN , for hadronic pion production at largexF .
This calculation was based on a ‘‘valence quark-soft gluo
approximation. In this approximation, we kept only tho
contributions toAN proportional to the derivative of the
twist-3 quark gluon correlation function, (]/]x)TFa

(V)(x,x),
wherea denotes a valence quark flavor, and where the eq
arguments inTF imply zero gluon momentum fraction. Ou
results for spin-dependent single-spin cross sections
given in Eq.~74!. The ratio of the spin-dependent cross se
tion in Eq. ~74! and the spin-averaged cross section in E
~33! defines AN for hadronic pion production. The spin
dependent cross section, Eq.~74! has two types of contribu
tions: quark-gluon and quark-quark~or antiquark!, which are
given by Dŝag→c in Eq. ~76a! and Dŝab→c in Eq. ~76b!,
respectively. All of these calculations are strictly leading
der; we anticipate that a large part of higher order correcti
will cancel in the asymmetry. Our model for the twist-3 m
trix elementTF is given in Eqs.~71! and ~72!. We have not
investigated the evolution properties of these matrix e
ments here. We expect this to be an interesting subject,
we do not anticipate that evolution will require qualitativ
changes in our conclusions.

Single transverse-spin asymmetries are a twist-three e
in QCD perturbation theory. After taking the ratio of Eq
~74! and ~33!, the asymmetry has the following schema
dependence on kinematic variables in the largexF region:

AN;l
l T

~2U ! F11OS U

T D G 1

12xF
, ~78!

where the invariants,U andT are defined in Eq.~3!. In Eq.
~78!, the prefactorl T /(2U) comes directly from the facto
e lsTnn̄/(2û) in the spin-dependent cross section in Eq.~74!.
The combination@11O(U/T)# is left over from the partonic
cross sections in Eq.~76!, after the cancelation of the dom
nant 1/t̂2 dependence in the ratio. The normalization para
eter l comes from our model of the twist-three correlati
functions, TF

(V)(x,x) in Eq. ~71!. Finally, the factor 1/(1
2xF) for xF large is associated with (]/]x)TF

(V)(x,x) in Eq.
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~74!. The approximate 1/(12xF) behavior in the ratio of the
derivative of the twist-three correlation function to the co
responding twist-two parton distribution is the dominant fe
ture of the twist-three asymmetry, and is responsible for
observed growth ofAN in the large-xF region. However,
whenxF is too close to 1, our formula will need to be mod
fied, and even higher twist contributions should be cons
ered@41,42#.

The factorsl T /(2U) andl T /(2T) in Eq. ~78! reflect the
twist-three nature of the asymmetry,AN . Combining Eqs.
~3! and ~4!, we express the invariants,U andT, in terms of
xF and l T :

U52
S

2
@AxF

21xT
21xF# ~79a!

T52
S

2
@AxF

21xT
22xF#. ~79b!

When xF50, both U and T are equal tol TAS. From Eq.
~78!, we conclude that the asymmetry atxF50 should have
a very mild, probably linear dependence on the pion’s tra
verse momentum (AN must vanish atl T50). Our analytical
results in Eq.~74!, however, are not accurate for the asym
metry nearxF50, because of the largexF approximation
used in our calculations. But, from the general structure
the asymmetry, we believe that weak transverse momen
dependence atxF50 for AN should be a more general con
clusion.

If xF@xT , the invariantsU and T in Eq. ~79! have the
following approximate dependence onl T andxF ,

U→2xFS, ~80a!

T→2
l T
2

xF
. ~80b!

Consequently, in the largexF region, the asymmetry,AN ,
will have two typical contributions,l/ l T andl l T /S, respec-
tively. If the l/ l T contribution dominates, perturbative QC
calculations of the asymmetry may be relatively sensitive
nonperturbative effects, because of its singular behavio
l T50. On the other hand, QCD perturbation theory may p
vide a reliable calculation of the asymmetries when
l l T /S term is relatively important. In Fig. 26, we plot th
transverse momentum dependence of the asymmetry axF
50.4, where most data were collected. The asymmetries
both p1 and p2 have a quite weak dependence on pion
transverse momentum forl T.2 GeV. This suggests that pe
turbative calculations for the asymmetries are reliable fo
wide range of the experimental kinematics.

The remarkable feature of mild transverse momentum
pendence, shown in Fig. 26, can be easily traced to Eq.~76!.
For the quark-gluon subprocess, once the dominant 1/t̂2 de-
pendence has canceled in the asymmetry, the coefficien
û/ t̂ is much smaller than the corresponding constant te
Similarly, for quark-quark and antiquark subprocess, the
efficient of û/ t̂ is also much smaller than the constant ter
4-24
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except for terms proportional to 1/û2 and 1/ŝ2. The latter,
however, are suppressed byt̂2/ ŝ2 relative to the leading
terms in the forward region. In summary, the small coe
cients forû/ t̂ terms assure that thel T /(2T) dependence in
Eq. ~78! does not dominate thel T /(2U) dependence. We
verify this conclusion by plotting the fractional contribution
to the p1 asymmetry from the 1/(2U) term and the 1/
(2T) term, respectively, as a function of pion’s transve
momentum in Fig. 27. It is evident that contribution fro
1/(2U) term is comparable with 1/(2T) term for the region
of our interest.

If xF→1, or U/T;xF
2S/ l T

2@1, the asymmetry will be
eventually dominated by thel/ l T terms. Therefore, the

FIG. 26. Single transverse-spin asymmetry forp1 andp2 pro-
duction with a polarizedprotonbeam as a function of pion’s trans
verse momentuml T . Theory curves are evaluated atxF50.4, AS
520 GeV andl50.080 GeV.

FIG. 27. Fractional contribution from 1/(2U) and 1/(2T)
terms to the single transverse-spin asymmetry ofp1 production as
a function of pion transverse momentum. Theory curves are ev
ated atxF50.4, AS520 GeV andl50.080 GeV.
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asymmetry will scale with 1/l T in this region. For the kine-
matics of the Fermilab data, this scaling region is not
reached. In Fig. 26, the steep increase of the asymmetrie
l T,2 GeV indicates the dominance of thel/ l T contribution,
and probably signals that the perturbative calculations
relatively less reliable ifl T is much less than 2 GeV. Th
slight increase whenl T→6 GeV signals an effect of the edg
of phase space. Clearly, the high energies of the polar
RHIC proton beam would make it possible to check the
predictions. In Fig. 28, we show thel T-dependence ofAN for
xF50.4 atAS5200 GeV. Compared to Fig. 26 at Fermila
energies, thel T /U term is relatively suppressed, and th
model predicts a steeperl T-dependence and, in general,
smaller, but still substantial, asymmetry. Figure 29 shows
asymmetry as a function ofxF at l T54 GeV. These are ex
amples only; the model can be used to predictAN over any
kinematic range that is experimentally convenient, so long
it is in the forward region.

In summary, we have calculated the single transverse-
asymmetry for hadronic pion production in perturbati
QCD. With only one normalization parameterl and a rela-
tive sign of polarized twist-3 valence quark distributions, o
numerical results are consistent with Fermilab data on
asymmetry for both the sign and shape, as well as rela
normalizations. In addition, we have demonstrated that p
turbative calculation of the asymmetries is applicable ev
for pion momenta as small as a few GeV. This conclusion
very encouraging for future applications of perturbati
QCD beyond the leading twist. Our method can be ea
generalized to calculate the single transverse-spin asym
tries for inclusive production of other particles. The plann
polarized beam at RHIC affords an exciting opportunity
test these, and related ideas on the spin structure of
nucleon.

u-

FIG. 28. Single transverse-spin asymmetry forp1, p2 andp0

production with a polarized proton beam, as a function of p
transverse momentuml T . Theory curves are evaluated atxF50.4,
AS5200 GeV andl50.80 GeV.
4-25
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APPENDIX

In this appendix, we identify twist-3 distributions an
fragmentation functions that can contribute to the sums in
collinear expansion, Eq.~17!. The factorization in Eq.~17!
enables us to apply parity and time-reversal (PT) invariance
to hadron-hadron scattering in a manner similar to their c
sic application to inclusive DIS, reviewed in Sec. II A. Thu
it will be natural to study the symmetry properties of po
sible matrix elements.

We will identify terms of the type discussed in connecti
with Eq. ~29!, that is, with integrals over two quark mome
tum fractions,x1 andx2 . Furthermore, we require thatx1 be
set equal tox2 by a ‘‘gluonic’’ pole at x15x2 in the hard
scattering@see Eq.~47!#, in accordance with our valenc
quark-soft gluon approximation. Let us concentrate first
parton distributions, and return at the end to fragmenta
functions.

Twist-3 distributions

As mentioned in Sec. II C, the derivation of terms in E
~17! involving quarks requires a Fierz projection of the Dir
indices linking the distribution or fragmentation function a
the hard scattering. A schematic illustration was given in F
7. The collinear expansion then isolates twist-three ferm
matrix elements with two quark fields and either a covari

FIG. 29. Single transverse-spin asymmetry forp1, p2 andp0

production with a polarized proton beam, as a function of p
transverse momentuml T . Theory curves are evaluated atxF50.4,
AS5200 GeV andl50.080 GeV.
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derivative or a field strength. It will be convenient to start
discussing the expectation values of combinations of th
fields in position space. We thus introduce

DG
i ~y1 ,y2 ,s!5^P,suc̄~0!GDi~y2!c~y1!uP,s& ~A1!

FG
i ~y1 ,y2 ,s!5^P,suc̄~0!GnmFim~y2!c~y1!uP,s&,

~A2!

with G a Dirac matrix. We defineDi[ i ] i2gAi , and we
adopt the kinematics and notation of Sec. II A; in particul
nm is defined in Eq.~2!. In these matrix elements, the inde
i is assumed to be transverse. This alone is enough to m
the matrix element twist-3; the Dirac projection must n
raise the twist further. The relevant terms in the Fierz p
jection between the distribution for a hadron of momentu
Pm5n̄mAS/2 and the hard scattering are then given by

daa8dbb85
1

4
~g•n!ab~g•n̄!b8a8

1
1

4
~g•ng5!ab~g5g•n̄!b8a8

1
1

4 (
b

„~ns!b…ab„~ n̄s!b
…b8a81¯ , ~A3!

where omitted terms raise the twist, and where we defin

~ns!b[nmsmb. ~A4!

For an opposite-moving hadron, with momentumP8m

5nmAS/2, we exchange the roles ofnm and n̄m. The matri-
ces above have the properties

G5g0G†g0, ~A5!

G5dG~T G* T!†, ~A6!

with dG561, whereT[ ig1g35T 21 is a time-reversal ma-
trix that acts as

T ~gm!* T5gm . ~A7!

Specifically, for the vector, axial-vector and tensor cases
have

n•g: dn•g51 ~A8!

n•gg5 : dn•gg5
521 ~A9!

~ns!n: d~ns!n521. ~A10!

From the expectation valuesFG
i and DG

i we define parton
distributions by Fourier transforms with respect to light-co
momenta, and if desired transverse momenta as well,

tG
~D !i~x1 ,k1 ,x2 ,k2 ,s!

5E dy1dy2eik1•y11 i ~k22k1!•y2DG
i ~y1 ,y2 ,s!, ~A11!
4-26
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tG
~F !i~x1 ,k1 ,x2 ,k2 ,s!

5E dy1dy2eik1•y11 i ~k22k1!•y2FG
i ~y1 ,y2 ,s!, ~A12!

where we definedyi[dy2d2y, with y a two-dimensional
transverse vector, andki•y[xipy22k•y. In the following,
we study constraints on spin-dependence that follow fr
the reality and symmetry properties of these matrix eleme
in QCD. This will enable us to identify the relevant contr
butions to the sums in Eq.~17!.

Reality and symmetry

The reality properties of the matrix elements~A1! and
~A2! are conveniently expressed as

@DG
i ~2y1 ,2y2 ,s!#* 5DG

i ~y1 ,y12y2 ,s!, ~A13!

@FG
i ~2y1 ,2y2 ,s!#* 5FG

i ~y1 ,y12y2 ,s!,
~A14!

which relate, of course, expectation values with the sa
spins. Invariance under time reversal and parity, on the o
hand imply that

DG
i ~y1 ,y2 ,s!5dGDG

i ~y1 ,y12y2 ,2s!, ~A15!

FG
i ~y1 ,y2 ,s!52dGFG

i ~y1 ,y12y2 ,2s!,
~A16!

in which spins are reversed.
Relations for parton distributionstG

(D) i andtG
(F) i are easy to

derive by inserting the reality and symmetry relations in
the Fourier transforms of Eqs.~A11! and ~A12!, and chang-
ing integration variables. Because in this paper we are c
centrating on the collinear expansion, with convolutions
light-cone momenta only, we shall suppress transverse
menta in the arguments of the distributions, and exhibit o
the momentum fraction variablesxi in the following formu-
las. Relations for transverse-momentum distributions
found by simply reinserting thek i arguments, alongside th
corresponding momentum fractions. With this understo
the reality conditions give

@ tG
~D !i~x1 ,x2 ,s!#* 5tG

~D !i~x2 ,x1 ,s!, ~A17!

@ tG
~F !i~x1 ,x2 ,s!#* 5tG

~F !i~x2 ,x1 ,s!,
~A18!

in which we note that the momentum arguments are
changed. The even parts of the twist-3 distributions are r
the odd parts imaginary.

Similarly, from PT invariance, we find

tG
~D !i~x1 ,x2 ,s!5dGtG

~D !i~x2 ,x1 ,2s!, ~A19!

tG
~F !i~x1 ,x2 ,s!52dGtG

~F !i~x2 ,x1 ,2s!,
~A20!
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with dG defined in Eq.~A6!. Note the extra minus sign in th
second case, which reflects thePT properties of the field
strength tensor.

From Eqs.~A17!–~A20!, we can derive constraints on th
spin-averaged,

^tG
~O!i&~x1 ,x2![

1

2
@ tG

~O!i~x1 ,x2 ,s!1tG
~O!i~x1 ,x2 ,2s!#

~A21!

and spin-dependent

DtG
~O!i~x1 ,x2![

1

2
@ tG

~O!i~x1 ,x2 ,s!2tG
~O!i~x1 ,x2 ,2s!#

~A22!

distributions for each choice of operatorO5D,F and Dirac
structure G. Specifically, the spin-dependent distributio
Dtn•g

(D) i , Dtn•gg5

(F) i and Dt (ns) j
(F) i and the spin-averaged distribu

tions^tn•gg5

(D) i &, ^t (ns) j
(D) i & and^tn•g

(F) i& are imaginary and vanish a

x15x2 . They therefore cannot be associated with glu
poles in Eq.~17!, and are nonleading in the valence quar
soft gluon approximation introduced in Sec. II B.

Leading terms at twist-3

The remaining distributions are real and nonzero atx1
5x2 in general. For the first sum in Eq.~17!, we need a real,
chiral-even, spin-dependent parton distribution. The only o
is Dtn•g

(F) i(x1 ,x2), which is equal, up to a constant, toTF
(V) ,

Eq. ~25!,

Dtn•g
~F !i~x1 ,x2!524penn̄isTF

~V!~x1 ,x2!, ~A23!

where the tensor structure follows from parity invariance a
plied to the matrix element.

For the second sum in Eq.~17!, we need a chiral-odd
spin-averageddistribution, to give a nonzero trace in th
hard-scattering amplitude when paired with the transver
distribution @22#,

dq~x!5E dy2

2p
eixP1y2

^P,suc̄~0!

3
i

2
~ns! isig5c~y2n!uP,s&. ~A24!

Here again there is only a single contributio
^t (ns) j

(F) i &(x1 ,x2). Parity invariance implies tha

^t (ns) j
(F) i &(x1 ,x2) is of the form

^t ~ns! j
~F !i &~x1 ,x2!54p

d i j

2
TF

~s!~x1 ,x2!, ~A25!

where the scalar distributionTF
(s) is defined by analogy to

TF
(V) , Eq. ~25!,
4-27
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TF
~s!~x1 ,x2!5E dy1

1dy2
1

4p
eix1P82y1

1
1 i ~x22x1!P82y2

1

3
1

2 (
s8

^P8,s8uc̄~0!~ n̄s! j n̄rF j r~y2
1!

3c~y1
1!uP8,s8&. ~A26!

In these expressions we have takenP8m in the minus-z di-
rection, in accordance with the kinematics of the unpolariz
hadron in Sec. II A. In Ref.@10# the possibility of such a
term was noted.

Fragmentation at twist-3

Turning to the third term in Eq.~17!, we must deal with
twist-3 chiral-even fragmentation functions, which are tra
forms of matrix elements of the general form

d̄~s!~y1 ,y2 ,l !5(
X

Tr@~nls! i^0uc̄~0!u l ,X&

3^ l ,XuDi~y2!c~y1!u0&# ~A27!

f̄ ~s!~y1 ,y2 ,l !5(
X

Tr@~nls! i^0uc̄~0!u l ,X&

3^ l ,Xunl m
Fm i~y2!c~y1!u0&#, ~A28!

with the sum over inclusive final~out! statesuX,l &, wherel
is the momentum of the observed particle. The vectornl

m is
defined by analogy tonm in Eq. ~2!, as a lightlike velocity
vector in the direction opposite ton̄l[ l m/ l 0 . The trace is
over Dirac indices. There is no analog of the spin variable
this case, although extensions to production of polarized
ticles @3# should be straightforward. We have used the c
straints of parity in forming scalar fragmentation function
depending on two momentum fractions. In momentum sp
they are
ro
n

01400
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n
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,
e

d~s!~z1 ,z2!5E dy1dy2

4p
e2 i l •ny1 /z12 i l •ny2~1/z221/z1!

3d̄~s!~y1 ,y2 ,l ! ~A29!

f ~s!~z1 ,z2!5E dy1dy2

4p
e2 i l •ny1 /z12 i l •ny2~1/z221/z1!

3 f̄ ~s!~y1 ,y2 ,l !. ~A30!

The constraints of reality are different for these fragme
tation functions than for the distributions, because the su
over states in Eqs.~A27! and~A28! are incomplete. We find
that

d̄~s!* ~2y1 ,2y2 ,l !5(
X

Tr@~ n̄ls! i^0uc̄~0!Di~y12y2!

3u l ,X&^ l ,Xuc~y1!u0&# ~A31!

f̄ ~s!* ~2y1 ,2y2 ,l !5(
X

Tr@~ n̄ls! i^0uc̄~0!n̄mFm i~y12y2!

3u l ,X&^ l ,Xuc~y1!u0&#. ~A32!

As Collins has emphasized@17#, time-reversal does not con
strain fragmentation functions in the same manner as di
butions, because T reverses the roles of in and out states
the extent that a sum over in and out states is the sam
these functions, symmetry underPT would imply thatd̄(s) is
purely imaginary, whilef̄ (s) is real. These properties can
however, be modified by phases associated with final s
interactions. Indeed, this is the mechanism by which Ar
et al. @19# derive single-spin asymmetries starting from
model for fragmentation functions with intrinsic transver
momenta. Such functions can be thought of as extension
d̄(s), finite distances from the light cone. Following the pr
cedure of Sec. III above, we can derive hard-scattering c
ficients for either function. We reserve this for future inve
tigation.
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