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Spin density matrix of top quark pairs produced in electron-positron annihilation
including QCD radiative corrections
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We calculate the spin density matrix of top quark pairs for the reaaiom —ttX to orderag. As an
application we show next-to-leading order results for a variety of spin observables fUTﬂyetem. These
include the top quark and antiquark polarizations &ndpin-spin correlations as a function of the center-of-
mass energy and of the top quark scattering angle for arbitrary longitudinal polarization of the electron-positron
beam.[S0556-282(98)00423-4

PACS numbsdis): 14.65.Ha, 12.38.Bx, 13.88¢

[. INTRODUCTION An alternative approach to the analysis of spin effects in
top quark production and decay is the computation of the
Among the six known quark flavors known to date, therelevant helicity amplitudes. This was accomplished at next-
top quark is of particular interest: Its large mass implies thato-leading order in12], where also a Monte Carlo event
very high energies are involved in the production and decagenerator for the case of semileptonic decays was con-
of this particle, which in turn allows for tests of the funda- structed.
mental interactions at these high energy scales. Moreover, The outline of the rest of this paper is as follows. We start
the interactions of the top quark can be studied in greatein Sec. Il by introducing the spin density matrix formalism
detail than those of the lighter particles since the top quarkand apply it to the reactioe™e™—tt at leading order. In
essentially behaves like a free, but extremely short-livedSec. Il we compute the QCD radiative corrections to the
particle. With a mass ah~ 175 GeV, the lifetime of the top results of Sec. Il. Section IV contains numerical results for a
quark is about %10 % s. This short lifetime effectively variety of spin observables. We exhibit their dependence on
cuts off the long distance QCD dynamics. In particular, thethe c.m. energy and on the top quark scattering angle and
top quark polarization is not diluted by hadronization andfurther study the effects of electron beam polarization.
thus becomes an additional observable to test perturbative
QCD or, more generally, short distance physics. Il. KINEMATICS AND LEADING ORDER RESULTS
An ideal machine to study the properties of top quarks in
detail would be a high-luminosity, high-energetice™ lin-
ear collider. The physics potential of such a machine is de
scribed for example ifl]. We just mention here that at
center-of-mass energies in the rangs=400—1000 GeV,
an annual yield of the order of ¥Qop quark pairs may be
expected. _ e'(p)e”(p-)—(¥*.Z)—tkot(k)X, (2.1
For the proces®’e” —ttX, a detailed analysis of top
quark spin effects has been performed in the Born approxiynere e (e*) denotes an electrofpositron andt(t_) de-
mation in[2]. Recen'tly, the correlations between the spins Ofscribes a togtanti)quark with massn. We work in leading
top quarks and antiquarks have been studied extensively igder in the electroweak coupling and in next-to-leading or-
leading order_also |r|j_3]. The production cross sections for yer in the strong couplingrs= gi/(4w). To this order the
top quarks with Iongltgdlng[4], transversg5], and trans- unspecified resK can be only a gluon. The amplitude for the
verse norma[2,6] polarization are known to orders. The Jeaction(Z.l) can be written in the following form:
longitudinal spin-spin correlations have also been calculate
in next-to-leading ordefNLO) [7,8]. Polarization phenom-
ena in top quark pair production near threshold have been dra

In this section we review some basic kinematics and the
concept of the spin density matrix formalism. To set up the
notation, we start with a closer look at the amplitude for the
process

investigated |r[9] Tﬂ:T{X(S)U_(p+)(gs')’,¢_QZYM'}’S)U(D—)
A convenient theoretical framework to discuss spin phe- .
nomena is the concept of the spin density matrix, and the ><(gth“—g;A“)+u(p+)yﬂu(p,)(—QtV“)}.

main objective of this paper is to present results for the full
spin density matrix of thét system to ordetyg. This allows
for a systematic study of spin effects &e”—ttX. For In Eq. (2.2, s=(p.+p-)2 Q; denotes the electric charge
phenomenological applications, our results should be suppleyf the top quark in units oé= 47, and ng;a gfa are the

mented by the decay matrices at NLO for the differeahd  vector- and the axial-vector couplings of a fermion of tfpe
t decay channelgl0,11]. i.e.

2.2
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g,=T5—2Q;siPdy (23 gpepy=Qrfblpy T 20, QiRex(s) f¥gpy)
and +97x(9)*f5py) (2.13
f_of
9a=T3, (2.9 9pe Py, = 9L X ()T E&py) » (2.14
in particular g¢= — 3+ 2 sirfd,, go=—3 for an electron, VA . , o o
andg'=3—% sirfdy, g;,=3 for a top quark, withd, de- Ipcipyy= ~ JaQiRex(S) TEepy)—9,9alX(S)|*f5gpy) .
noting the weak mixing angle. The functiaifs) is given by (2.19
VA_ .
X(S): S (2 5) gpc(pv)zlgtaQtImX(S) fg%:(PV)’ (2167
4 sirf 9ycoS dy s—m3+imzl5’ '
where
wherem; andI'; stand for the mass and the width of the
boson.(We keep here the width of thg boson because it fEe=(1=M_N)(g57+095) —2(A - —\4)g;0s,
will be relevant for an application of our results boquark (2.17
production at theZ resonance.The amplitudesv,, ,A,, in
Eq. (2.2 encode information on the decay of the vector bo- FY7=1— X X\
; T T £ : pCc— 4+ ANy (2.18
son into thett andttg final states. In particular they depend
on the momentum and the polarization of the outgoing par- 7 S . o
ticles. Considering only longitudinal polarization for the in- fov=(A_=X)(9,°+095) —2(1-N_N4)0,0,,
coming electrons and/or positrons and neglecting the lepton (2.19
masses leads to
fEU=A_—Ny, (2.20
16m2a?
|Thi|2=——2—[LP#*HES+LPVerHEY]  (2.6) . . .
S fRe=—(1-A_A)g5+(A_—Np)gs, (22D
for the square of Eq(2.2). The lepton tensors PC(PVIrv
read f=(1-NN)gs—(A_—r)gf, (222

[ PCur— p,ipz_Fp’jrpfj—g”‘Verp, 2.7

and

LPVir=— (2.9

P MY AP O
e p0p+p—'

The tensorH} S("¥) describing the decay of a polarized
boson can be written as

PC(PV)_ WV WV, AA AA
H,uv( )_gPC(PV)H » T OpcipviH iy

y7
VA VA VA_ VA_
+gPC(+PV)HMu++gPC(PV)HW (29
with
VV_
HYY=V, V%, (2.10
AA_
HAR=A, A%, (2.1
and
HY =V, AL £ALVE . (2.12

The couplingmy (Xe{PC,PV}, Ye{VV,AA VA, VA_})
in Eq. (2.9 are given by

with A _ (A ) denoting the longitudinal polarization of the
. 1 . VA_

electron (positron) beam. The couplmgsgPC(Pv) are for-

mally of higher order in the electroweak couplings. The

structureHX’j* will therefore not be discussed further. For

top quark production, where/s>m;, one should set the
width I"; of the Z boson to zero for consistency.

The (unnormalized spin density matrix for the reaction
(2.1) may be defined by

paa’,B,B’
=S (t(k (ke e )X|T]e* (py Aa)e(p_ L))

X(t(ky,B)t(ke, B)XIT e (ps hy)e (P ),
(2.23

wherea,a’,3,8’ are the spin indices of the outgoing top
(anti-)quarks. The sunZ in Eq. (2.23 runs over all unob-
served degrees of freedom such as the color of the outgoing
particles or the polarization of the emitted gluon. In Eg.
(2.23 one should read the combinatia’ (B88’) on the
left-hand side as a shorthand notation for a multi-index built

For a right-handed electrapositron, A - =+ 1.
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from a,a’ (B,8'). To calculate the spin density matrix it is -~ p-
convenient to use a different representation which follows p= m (2.29
immediately from the concept of the density matrix: B
—— o -k
ST @ (P Mo)e (po Ao)—t(ke )k, X2 =Tk (2.39
j— 1 - 1 - ~ ~
=Tr pz(}l+st~(r)®§(l+$~(r) . (2.29 . pxk
n=— (2.3)
lpxK|

Heres(s)) is the unit polarization of the tofanti-)quark in
the rest frame of the tofanti)quark? and o; are the usual where the three-momenfaandk are defined irete™ c.m.
Pauli matrice_s. With® we denote the tensor product _be- system. In Eq(2.289 we suppress for simplicity the addi-
tween the spin space of the quark and the antiquark. Using ifion) indicesy, X. For the case of the three-parton final state
Eq. (2.24 a decomposition of the spin density matpxof 5 gimjlar decomposition can be used. A detailed discussion
the form of the properties ofp under discrete symmetry transforma-
tions is given in[13]. In leading ordef O(a2)] the non-
p=al®l+B"-o®1+1®0 B +Cjoi®0j, (229  vanishing entries in the density matrice® read

the density matrix can be easily calculated by a comparison

of the polarization independent parts, terms proportional to ayy=2-p41-2%), (2.32
si (Si), and terms proportional tq;S;j on the left-hand side
and_ the right-hand side of Eq2.24). More precisely we Cg,sv=—/32(1—22)1 (2.33
define
PC
C4,VV: 2, (2.34)
p=4772a2NC;< g;pé (2.26
' PC 2,2 2
Cooy=2[(1—r)°z°+ B°], (2.35
(Xe{PC,PV}, Ye{VV,AAVA,}), with sw=2l Al
1 1 145, Covy=—2(1-1)z, (2.36
TN pY5 (148 0)® S (145 0)|= - 2 2 LHL,,
c
(2.27) brh’=2r, (2.37
whereN¢ is the number of colors, angii are the couplings
as given in Eqs(2.13—(2.16. For the density matriceg: by =2(1-1)z, (2.39
we use a representation as in Eg.25. It is useful to de-
. . X,i . _ . _
c_ompoie the polarizationBy'~ and thg spin-spin .correla aiﬁ=,82(1+22), (2.39
tions Cy j; further. For the two-parton final state it is conve-
nient to write
Cona=BA(1—2?), (2.40
“=bip+bsk+bzn,
Caan= 267, (2.4
Cij=Co0ij t &ijk(C1p T CoKi+ C3Nny) oe ,
“ A “ A Ceapn=2B°2, 2.4
+C4pi pJ +C5ki kj 6AA B ( 2
+Ce(lai|2j+f’j|2i)+c7(l3iﬁj+E’jﬁi) byAx =2B%, (2.43
+cg(king+kiny), (2.29 + e
. biva, =2Brz, (2.49
with
byva =2B[1+(1-1)7’], (2.49
2We define the rest frame of the outgoing t@mti-)quark as the
rest system which is obtained by a rotation-free Lorentz-boost from aPV —487 (2.46
the center-of-mass system of thée™ -pair. VA, ! :
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Cova =4B(1-r1)z, (2.47) 1 B (1
SVA: T0= 55 167 Jfldz Trlpo]

chva =2pr, (2.48
o oVAs = %WazNCBJ dz(gplabs+ghrakhs), (2.51)
wherez=p-k, 8= \1—4m?/s, andr=2m//s is the scaled
top quark mass.

The leading order differential cross sectidoro(s,s;) is
related to the leading order density matpix as follows:

yielding the well-known result

_BZ
1 1 1 UO:UPtNCIB( 2 apet B2ape |, (2.52
o(8.8)= 5 Tr po§<1+é~a>®§<1+§-a>}dRz, _
with
(2.49
with 4a?
d3k, ke A
dRy= o(2m)"3(p+ +p-—k—kyp).

(27)32Kk? (277)32k Within the framework of the spin density matrix formalism it
(2.50 is easy to calculate spin observables. For instance, at leading
order the polarization of the top quark projected onto its

The total cross section for example can be obtained from momentum direction can be obtained from

Jt,dzTr

k- Zs1
Po| K- 5@
J11dz Trpo]

2f1—1d29p (ZblvF/’xCer;vF/;C)*’g (ZvaF(/V ;vF\,/V)‘Lg ;AZV

(k-8)=

T PC . AAPC
4f% dz(gplayy +Opcana

VA,

- 28950 (254
- (3—Bz)gpc+2ﬂ29§é’ '

whereS,=(0/2) ®1 is the top quark spin operatdiThe spin  formalism enables one to calculate efficiently the expectation
operator of the top antiquark 87=1® (o6/2).] As another values of spin observables. A more exhaustive analysis of
example consider the following spin-spin correlation, whichspin observables together with next-to-leading order numeri-
is in leading order proportional to the so-called longitudinalcal results will be presented in Sec. IV.

spin-spin correlation studied iiv,8]:

JtdzTr

0.” IIl. QCD RADIATIVE CORRECTIONS

ok ok g | |
2 2 The QCD corrections at order to the expectation values
fildz Tt po] of spin observables are given by_the contributions from one-
loop virtual corrections te" e~ —tt and from the real gluon
1(1+BZ)9VV+2329AA v .o _ ] i )
- . (2.5 emission process” e —ttg at leading orQer. We first give
4 (3—BHgpi+2B°gpe some details of the computation of the virtual corrections.
Both infrared (IR) and ultraviolet (UV) singularities
The examples above show that the spin density matrixyhich appear in the one-loop integrals of the virtual correc-
tions are treated within the framework of dimensional regu-
larization ind=4—2¢ space-time dimensions. We use the 't
3t is interesting to note that the above results remain unchangetiooft—Veltman prescription14] to treat the ys matrix
in d=4—2¢ space-time dimensions if one keeps they) polar-  present in the axial vector current part of the vertex correc-
ization vector in 4 dimensions. tion in d dimensions. It is well known that this prescription

((k-S)(k-sSp)=

014001-4
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violates certain Ward identities. They are restored by addindpy first computing the interference between the renormalized
a finite countertermi15]. Note that no ambiguities arise from one-loop amplitude and the Born amplitude for given polar-
the IR poles of the loop integrals. This follows from the factzation vectorss,, s and then extracting""™@ as described
that the coefficient in front of the IR divergent scalar one-in Sec. Il below Eq.(2.24). Note that the necessary trace
loop integral is independent of if the Z(y) polarization  algebra can now be performed id=4 dimensions. In
vector is kept in 4 dimensions. particular, the projectors (#ys# 7)/2 can be kept in 4
The UV singularities are removed by appropriate counterdimensions. '

terms fixed by on-shell renormalization conditions for the We now discuss the contributions from real gluon emis-
quark. After renormalization one obtains UV finite vertex sion. We isolate the soft gluon singularities by splitting the

corrections for the vector and the axial vector parts of thett_g phase space into a soft and a hard gluon region. The soft

amplitude to Ord.eb‘s' ) . , . gluon region is defined by the condition
The renormalized amplitude still contains an IR singular-

ity which appears as a single pole ia and which Js

multiplies—up to a factor—the Born amplitude. This singu- Eg=Xmin %" 3.1

larity is cancelled in infrared safe quantities by a correspond-

ing singularity from the real gluon emission process. ThewhereEg is the gluon energy in the c.m. system ang, is

latter singularity is obtained from the phase space integratioa sufficiently small quantity. The hard gluon region is the

of the squared matrix element fer e”—ttg over the re- complement of the soft region. In the limit where the gluon

gion of phase space where the gluon is soft. momentunk, goes to zero one can neglégtin the numera-
The virtual corrections to the density matrix are obtainedtor of 7;;(e*e~ —ttg), which leads to

- kg—0 . 2Kk m? m? P -
P(e € —>ttg) > aTasLE (ktkg)(kfkg) - (ktkg)2 - (k?kg)Z pO(e e _)tt) ( 2
Using Eqg.(3.2) in the whole soft gluon region leads to the approximation
d?= Kk, Js _ _
o +ta— ~ o, — ,soft
f (2m) —12Eg® Xmin 2 Eq p(e"e —ttg)~Spo(e’e tt)=p>" (3.3

where the soft facto8 is given by

d?- ( Js H 2kiky m? mz]

S:477asC,:f m(a Xmin "~ Eg (kikg) (ktkg)  (kikg)?  (kikg)?

- @, 1 (477_“2)5 5 7511 5 2 . 1 2

= 5 Ceiamg | s ) O L 5| 2B+ (L BIIn(w) ~2¢In(w)+ (L4 B7)| Lis1—w) + gIn2(w) ||| +O(e).
(3.9

Here, Ce=(N2—1)/(2No), B=\1—-4m?/s, and w =10"° the systematic error due to this approximation is
=(1-pB)/(1+B). The scaleu is introduced in Eq(3.4) to  smaller than 1 per mil in all our numerical results. This can
keep the strong coupling constant dimensionless$ dimen-  be nicely checked by varying,, between, say, I and
sions. The dependence pncancels in the sum of the virtual 10 ® and numerically extrapolating to zero.
and soft contribution$. The sum of the virtual and soft contributions to the den-

For finite Xi,, the sum of the contributions from the soft sity matrixp is finite and can be written in a compact form as
and hard gluon region differs from the exact result by termdollows:
of orderx,,,, because of the soft gluon approximation. The We define

sum becomes exact fox,,—0. With the choice Xpi, 1
Ag
L= 27TCF

2 [2B8+(1+B%)In(w)]

“Note that the leading order density matyiy in Eq. (3.2 does
not depend ore (cf. footnote 3. Therefore, no additional finite X
terms are generated when multiplying the pole of the soft factor
S with pg. In particular, no spurious terms due to the presence of
ys arise in the soft region. +(1+ B?)[4Li)1— w)+In*(w)— 772]}, (3.5

_ np2
In(xﬁqm)—ln(l 4'8 )+2
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and use as further abbreviations

ds
K_ECF,
l;=—«kB In(w),
l,=(2- )4,
1
|3:E Il'

Then,

lim (pvirtual+ psoﬂ) — Lp0+pres'5

e—0

where the nonvanishing building blocks p§ are listed in
Egs.(2.32—(2.48. The matrixp"™tis also decomposed ac-
expanded like in
Egs.(2.25, (2.28. The nonvanishing entries of the various
that make upp"stread(we suppress here the

cording to Eq.(2.26) with matricespy

matricespy "'

index “rest” for aesthetic reasons

abs=(1+22)1,,

b= — Kkt BzN1- 22,

PC _ 2
Coyv=—(1=291y,

PC _
Cavv=2l1,

cEoy=2[1+(1-n)Z2]l,,

Chov=—2(2-1)ly,
by =rl1,
ok =2(2-1)l4,
Cowy=— k7T B\1-22,
ahs=(1+22),,
Chia=(1-22)15,
CZEA:_ZIL

PC _

X,rest

(3.6

3.7

(3.9

(3.9

(3.10

(3.11

(3.12

(3.13

(3.19

(3.19

(3.19

(3.17

(3.18

(3.19

(3.20

(3.2)

(3.22

(3.23

PHYSICAL REVIEW B9 014001

bj =221, (3.24
biya”=—2r(B2-2)ls, (3.29

boya” =[2(1+2)+1(B?~2)Z]l;, (320
Chva, = —2xm(1-pA)\1-2, (3.27)
Cova, = kmZ[2(1- ) +(B2-2)r]V1-2%, (3.29
a\'jX+=4zI3, (3.29

bava =kt (B°=2)\1-2, (3.30

Cva, =27[1(B%~2)+2]ls, (3.3)
Chva, = T(B7=2)l5. (3.32

For a given observable, the contributions from gluons
with energyEg>xmin\/§/2 are calculated by a numerical in-
tegration over the hard gluon region of the three-body phase
space. The spin density matrpi®{e*e”—ttg) for the
hard gluon emission process is obtained by evaluating the
left-hand side of Eq(2.24) for X=g. The individual matri-
cesp}"@are rather lengthy and we do not list them in this
paper. We just mention here that instead of the expansion
(2.28 of B*, Cj; with respect top, k, andn that was used
for the two-parton final state, we found it more convenient
for the three-parton final state in the hard gluon region to use
as basis vectors, /| k|, ki/|ki, and k< k7)/|k X ki{. Note
that the matrixp"®4{e*e”—ttg) does not contain any sin-
gularities and that the whole computation can be performed
in d=4 dimensions.

IV. NUMERICAL RESULTS

In this section we present next-to-leading order results for
expectation values of a variety of spin observables. For an
observableD we use the notation

Ag ai
(0)=(0)o+ ?<0>1+O —2| 4.1
2
o=0 +a—50' +0|— (4.2
ot 01 72 .
whereg is the total cross section fa*e™ —ttX and
@ —1 ! JdRT @ 4.3
< >O_O'_02_S 2 r{pO }! ( )

014001-6



SPIN DENSITY MATRIX OF TOP QUARK PAIFRS . .. PHYSICAL REVIEW D 59 014001
TABLE I. Expectation values of the observables listed in E@s6)—(4.20 in terms of the quantitie$O;)o, as defined in Egs.
(4.2)—(4.4) for different c.m. energies\ . =0 and\ _=0,= 1. For the expectation values not listed in the table we have, as discussed in the

text, (O 9=(01 2 and(Vsg=0.

c.m. energy in GeV

400 500 800 1000

A (Oio (e (Oi)o (Oi)1 (Oi)o (01 (Oi)o (Oi)1

— —0.4870 0.039 —0.4608 0.125 —0.4014 0.309 —0.3760 0.377
<01> 0 —0.2048 0.024 —0.1867 0.064 —0.1554 0.133 —0.1438 0.156

+ 0.4811 —0.052 0.4499 —-0.139 0.3895 —-0.302 0.3654 —0.363

- —0.1686 —0.191 —0.2578 —0.216 —0.3397 —0.118 —0.3581 —0.059
<(92> 0 —0.0583 —0.065 —0.0870 —-0.070 —0.1120 —0.036 —0.1173 —0.017

+ 0.2099 0.225 0.3094 0.228 0.3927 0.102 0.4104 0.040

- —0.1686 —0.185 —0.2578 —0.165 —0.3397 0.113 —0.3581 0.267
<52> 0 —0.0583 —0.063 —0.0870 —0.053 —0.1120 0.040 —-0.1173 0.090

+ 0.2099 0.218 0.3094 0.167 0.3927 -0.165 0.4104 —0.334

— 0 —0.332 0 —0.232 0 —-0.121 0 —0.093
<03> 0 0 —0.356 0 —0.246 0 —-0.127 0 —0.097

+ 0 —-0.413 0 —-0.279 0 —-0.140 0 —-0.106

— 0.25 —0.015 0.25 —0.087 0.25 —-0.310 0.25 —0.418
<O4> 0 0.25 —0.015 0.25 —0.086 0.25 —0.307 0.25 —0.414

+ 0.25 —0.015 0.25 —0.084 0.25 —0.300 0.25 —0.405

- 0 —0.002 0 —0.016 0 —0.062 0 —0.082
<(97> 0 0 —0.002 0 —-0.017 0 —0.065 0 —0.086

+ 0 —0.003 0 —0.019 0 —0.071 0 —0.094

- 0.2392 —0.033 0.2240 —0.095 0.2006 —-0.224 0.1927 —-0.280
<Og> 0 0.2375 —0.037 0.2205 —0.100 0.1957 —0.225 0.1876 —0.278

+ 0.2332 —0.046 0.2123 —-0.111 0.1848 —0.225 0.1765 —-0.272

— 0.1173 0.039 0.1606 0.030 0.2128 —-0.142 0.2258 —0.244
(Og) 0 0.1182 0.041 0.1620 0.031 0.2137 —-0.143 0.2265 —0.246

+ 0.1206 0.045 0.1652 0.032 0.2157 —-0.147 0.2279 —0.249

— 0.1580 0.162 0.2191 0.107 0.2442 -0.141 0.2417 —0.247
<010> 0 0.1693 0.170 0.2323 0.106 0.2560 —0.155 0.2528 —0.264

+ 0.1968 0.189 0.2630 0.102 0.2823 —0.187 0.2770 —0.303

— 0 0.330 0 0.222 0 0.097 0 0.066
<Oll.> 0 0 0.114 0 0.075 0 0.032 0 0.022

+ 0 —0.410 0 —0.266 0 -0.112 0 —-0.076

- 0 0.181 0 0.225 0 0.189 0 0.160
(O19) 0 0 0.077 0 0.093 0 0.076 0 0.064

+ 0 —0.177 0 —0.213 0 —0.174 0 —0.146

-1

05 |

(b)

-1

-0.5 0

FIG. 1. Expectation valu¢©O,8(z—2')) to order ag for a fixed valueas=0.1 and\,=0. In (a) (b) the c.m. energy is set tg's

=500 GeV (/s=1TeV). The solid line is the result for_ =0, the dashed line fok_ = —1, and the dotted line fox _=+1.
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05 e 05 | e

FIG. 2. Same as Fig. 1, but fd©,5(z—2")).

11 , =p-
<0>l:__ dRZTr{|im(psoﬁ+pV|rtuaI)O} Ol p Sta (4-6)
(0] 25 €0
01=p- S, 4.7
+ f dRsO (Eq—Xminy/s/2) Tr{ p" 0} RS
0. 7 i 0,=k-S, (4.9
— >00—o- (4.4
0,=k- S, (4.9
Here,dR; is given in Eq.(2.50 and 2 ol
Pk B dkg , O3=n-§, (4.10
dR32(27T)32k? (277)32ktg(277)32k8(2ﬂ-) B
Os=n-5, (4.11)
X 8(py+p-—ki—ki—Kg). (4.5 ?
We consider the following set of observables: 0,=5- S, (4.12
LA LA AL AL AL L R
03 | gJ Os=p-(§XS), (4.13
L £

0.2

0.1

O 1 a1 1 "
-1 -0.5 0 0.5 1
z o . M Y " 1 PR S T
FIG. 3. Expectation valué0,8(z—z2')) to ordera; for a fixed -1 -0.5 0 0.5 1
value a;=0.1, A, =A_=0, and c.m. energies/§=400 GeV z
(dashed ling \/s=500 GeV (solid line), \/s=800 GeV (dotted
line), and \/s= 1000 GeV(dash-dotted ling FIG. 4. Same as Fig. 3, but fd0g5(z—2")).
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0.3
0.2

0.1

FIG. 5. Same as Fig. 3, but fd0y8(z—2")). FIG. 6. Same as Fig. 3, but f@¢,,6(z—2")).

N The expectation value&D,), and (Og), are given in ana-
Op=k-(§X ), (419 ytic form in Eqs.(2.5£§§9nél(2.55),<resZpectiver.
Several constraints are imposed by discrete symmetries
. on the expectation values of the observalfe§)—(4.20. An
O7=n-(§X$S), (4.19 unpolarizede™ e~ initial state is an eigenstate of the com-
bined charge conjugatiorC) and parity ) transformation.
CP invariance of the interactions considered here then im-

Op=(P-S)(P-S), (4.18 plies((91>=_<51) and{Os)=0. Further, differences between
(O,) and{O,) as well as nonzero values f00s) and(O-,)
@QZ(R.S{)(Q.SD, (4.17 can only be generated by the contributions from hard gluon
CP CP

emission, sinc&s— S, ki— —ki, and siice we havk,=
_a c c ~ —k; for a final state consisting solely ofta pair (recall that
010=(p-S)(k-S)+(k-S)(p- S, (4.18 the three-momenta are defined in taée™ c.m. system
From invariance under tme time reversal operafioit fol-
0= (p-S)(N-SH+(n-S)(p-SD, (4.19 lows that nonzerdOs), (Os), (Oe), <Oll_>, and{O1,) can
only be generated by absorptive parts in the scattering am-
plitude. To orderas this means thatOg) is exactly zero due
O1=(k-S)(n-SH+(n- ) (k- S. to CP invariance, while{O3)=(03), (O17), and(Oy,) get
(4.20 nonzero, albeit small, contributions from the imaginary parts

1.02 T T T

0.98

0.94 1 1 1 1 1 L
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

FIG. 7. The functiork ,(z) defined in Eq(4.23. In (a) (b) the c.m. energy is set tgs=500 GeV (Js=1 TeV). The solid line is the
result forh =0, the dashed line fox_= —1, and the dotted line fox_=+1.
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1.05 T 1.02 —————————————

1
' 0.98
0.95 !
e ' 0.96
0.9 .’ - [
0.94
085 MRS ST TR NS S T SR (N SN ST ST SN NN S T S
-1 -0.5 0 0.5 1
FIG. 8. The functionK,(z) defined in Eq.4.23 for A, =\ _ FIG. 9. Same as Fig. 8, but fdtg(z).
=0 and c.m. energie§'s=400 GeV (dashed ling /s=500 GeV
(solid line), ys=800 GeV(dotted ling, and/s=1000 GeV(dash- S ek C oA,
dotted ling. ((p-S)(k-S)+(k-S)(p-Sp))
o
of the one-loop integrals appearing in the virtual corrections =0.2770- 0-303f=0-2674, (4.22

[cf. the functionsb3yy”, baya’ , andcgyy, Crgya, in Egs.

(312),(33@,(319),(327),(32&, respectivelﬂ’. A" the where we again set = 0.1.

above arguments also hold for the case of polarized electrons A global characteristic of all the expectation values of the
(and/or positrons although in that case the initial state has gpservables(4.6)—(4.20 is that the QCD corrections are
no definiteCP parity. This is because the net effect €®  quite small. The quantityrs/7X |(O;)1/{O;)e| ranges, for
transformation of the initial state k- — —\ .. in our formu-  ponzero(,), and (a fixed value of a;=0.1, between 1.9
las, and hence the couplingg are left unchangeftf. Eds.  per mil (for (0,) at y5=400 GeV and all three choices of

(213-(2.22]. _ A_) and 5.3% (amusingly also for(®,), but at \s
In Table I we list our results for the expectation values of = 1000 GeV and\ - =—1).6
Egs.(4.6)—(4.20 in terms of the quantitie§;), ; as defined To check our calculation, we compared our numerical

in Egs.(4.1)—(4.4. We choose four different c.m. energies, yajue for the order correction to the total cross sectien
namely ys=400, 500, 800, and 1000 GeV. The positronwith the value one gets by using the analytic formula as
beam is always assumed to be unpolarized, while for thgjven for example inf16] and found excellent agreement.
electron beam the three cases=0,*1 are considered. As Npote that the longitudinal spin-spin correlatioR'") studied
numerical input we usen;=91.187 GeV, an on-shell top in [8] is, at next-to-leading ordemnot proportional to our
quark mass ofn=175 GeV, and sifi%,=0.2236. expectation valuéOs): The former would correspond in our

The table shows that the top quark and antiquark are pro- .. .. : P L— ;
duced highly polarized and also that the spin-spin correlz;)[]Otatlon (0 the expectation valud(k,- S)(kr: S)), which

. - L nl leading order i |te 4 . T mpar r
tions are large. For example, the polarizatiaf the top only at leading order is equal 16 4(Og). To compare ou

. . results for P'""), we reproduced Figs. 1 and 2 of RE8] and
quark projected onto the beam axis\a=500 GeV and for ;4 agrfeerr?ent P 9 k8]
A_=+1 amounts to '

We now study the distributions of our expectation values
with respect ta, the cosine of the top quark scattering angle
in the c.m. system. These distributions are defined as
(0;8(z—2")); i.e., we do not average over but over all
other kinematic variables.
where we setas=0.1. As another example, consider the The distributions 031 14(z—2")) are not shown, since

2(p-S)=0.8998- O.278% =0.8910,  (4.21)

spin-spin correlation/ O;,) at ys=1TeV, also for\_= they can be easily constructed from the listed analytic for-
+1: mulas forb3,c;g. We also do not show the distribution

5The polarization is conventionally defined 2gimesthe expec- ®At leading order{0,)=1/4, since the reaction proceeds through
tation value of the spin operator. a single spin-1 boson.
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1.06 P/—m—m——y————7+—rr7 reflected in the rather weak dependence of the spin-spin cor-
relations(O0, 919 ON A_ (cf. Table ). Note that the distri-
butions typically rise ag— + 1.

To illustrate the impact of th®(«) corrections, we plot
in Figs. 7-10 the K-factors”

K (2)= (0;8(2—2")) o+ agl m{0;8(z—2")),
' (0;8(z—2'))0o
for i=1 [Figs. 7a),7(b)], andi=4,8,9 (Figs. 8,9,10. The
K-factors show a strong dependence both on the cosine of

the scattering angle and on the c.m. energy. They vary be-
tween 0.88 and 1.04.

(4.23

0.95

V. CONCLUSIONS

The production of top quark pairs i@"e~ annihilation
involves a variety of spin phenomena. We have performed a
-1 -0.5 0 0.5 1 systematic study of these effects to orderand including

7 beam polarization effects using the spin density matrix for-
malism. Apart from a significant polarization of the top

quarks and antiquarks, the spinstaindt_are also strongly
correlated. The QCD corrections to the leading order results

<O|7‘5(Z_Z’)>' since a_ccc?rdingf_to dTabIe ' ”E)e expect?]tionfor the expectation values of all spin observables considered
value (O7) varies (again for a fixedas=0.1) between the are at the percent level or smaller. The spin effects intthe

tiny values—0.6x 10" % and — 0.3%. : ; ; . g
Figures 1a) and b) show, to NLO accuracy, the distri- production will manifest themselves in the angular distribu

bution (O, 8(z—2')) at c.m energies/s=500 GeV and tions of thet andt_decay products. For a phenomenological
Js=1 Te\} respectively ;‘ov.\ —0+1.In this and all the analysis of these angular distributions, one can combine the
following p;lots we Seta;z 01 Nc’)?e .that the distribution results presented in this paper with spin decay matrices com-

gets more peaked near +1 as the c.m. energy rises. This puted to next-to-leading order accuracy for the different

feature is less pronounced in the distributig,8(z—z')) ~ @ndt decay modes.
depicted in Figs. @),2(b). In Figs. 3—6 we show the distri-
butions for different spin-spin correlations, namely
(O48016(z—2")). In these figures, the c.m. energy is varied  We would like to thank W. Bernreuther for many enlight-
betweens=400 GeV andys=1 TeV, while the electron ening discussions and for his comments on the manuscript.
polarization is set ta._=0. The results for other choices of This work was supported by BMBF, contract 057AC9EP.
N\ _ do not differ much from the ones shown. This is alsoA.B. was supported by Deutsche Forschungsgemeinschaft.

FIG. 10. Same as Fig. 8, but fét,(2z).
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