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Field-theoretical approach to coherence in neutrino oscillations
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We study the conditions for the existence of neutrino oscillations in the field-theoretical approach which
combines neutrino production and detection processes in a single Feynman graph. The ‘‘oscillating neutrino’’
is represented by an inner line of this graph where, due to the macroscopic distanceL between source and
detector, the neutrino propagators for neutrinos with definite mass are replaced by the projection operators into
the neutrino states on mass shell. We use as a concrete model reaction the neutrino source and detector as given
in the LSND experiment and we carefully take into account the finite lifetime of the stopped muons which
provide then̄m beam. We show that the field-theoretical approach provides a solid method to locate all possible
conditions and allows one to separate unambiguously their different origins. Some of these conditions are
independent ofL whereas others state that coherence is lost whenL exceeds a certain ‘‘coherence length.’’
Also it turns out that, at least in the concrete situation considered here, the concept of neutrino wave packets
is not supported by the field-theoretical approach for realistic experimental conditions, i.e., the neutrino energy
spread is incoherent in origin.@S0556-2821~99!04201-0#

PACS number~s!: 14.60.Pq, 03.65.2w
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I. INTRODUCTION

The standard treatment of neutrino oscillations@1,2# pro-
vides a beautiful and simple picture of this important ph
nomenon. With the mixing matrix relating the left-hand
neutrino flavor fields with the left-handed neutrino ma
eigenfields defined bynLa5( jUa jnL j (a5e,m,t,...) it al-
lows one to derive the oscillation probabilities for antineut
nos:

Pn̄a→ n̄b
5U(

j
Ub j* Ua j expS 2 i

mj
2L

2En
DU2

5(
j

uUb j u2uUa j u2

12 ReH (
j .k

Ub j* Ua jUbkUak* expS 2 i
Dmjk

2 L

2En
D J ,

~1.1!

valid in the ultrarelativistic limit withDmjk
2 [mj

22mk
2 where

m1<m2<... denote the neutrino masses,L is the distance
between neutrino source and detector andEn is the neutrino
energy. The probability for neutrinos is obtained from E
~1.1! by the substitutionU→U* . In the following, Greek
indices always indicate neutrino flavors and Latin indic
mass eigenstates or fields. However, after a closer look
discovers that the standard derivation of Eq.~1.1! needs
clarification in several points~see, e.g., Ref.@3# for a sum-
mary of these problems!. This has first been attempted b
using neutrino wave packets@4–12#, whereas Ref.@3# has
pioneered the idea of considering the complete neut
production-detection chain using only those quantities for
description of neutrino oscillations which are really observ
or manipulated in oscillation experiments@13–15# in order to
obtain unambiguous results. See also Ref.@16# for a sort of
0556-2821/98/59~1!/013011~10!/$15.00 59 0130
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combined field theory–wave packet approach. The pres
interest in theoretical treatments of neutrino oscillations c
be phrased by the following question:Under which condi-
tions is formula (1.1) valid?Since the neutrino wave packe
formalism does not work with the physical observables
find the field-theoretical approach treating neutrino prod
tion and detection@13# the most appropriate, unambiguou
and general way to analyze the problem of coherence in n
trino oscillations. In particular, when several quantities d
fining a length are involved, an improvement of the wa
packet approach is called for in order to distinguish the ro
and origins of these lengths.

The transition probability~1.1! is given by the square o
the sum over the amplitudes of the neutrino mass eigenst
i.e., by a coherent summation over the mass eigenstates
first term in the second line of Eq.~1.1! represents the purely
incoherent summation over the mass eigenstates wherea
second term denotes the interference terms. The exponen
exp(2i2pL/Ljk

osc) with the oscillation lengths defined by

L jk
osc[

4pEn

Dmjk
2 ~1.2!

show the oscillatory behavior of the transition probability
a function ofL/En . Equation~1.1! is a theoretical expressio
without regard to an actual experimental situation. In t
description of a neutrino oscillation experiment it is possib
that, after taking into account the experimental conditio
some or all of the interference terms drop out as a con
quence of certain averaging or suppression mechanisms
discussed in the following. Note that the effect of su
mechanisms is equivalent to a partial or complete incohe
summation over the neutrino mass eigenstates.

One such class of mechanisms is given by all effects le
ing to an energy spread of the neutrino beam. It has b
shown in Ref.@7# that if we label such effects bya then each
©1998 The American Physical Society11-1
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W. GRIMUS, P. STOCKINGER, AND S. MOHANTY PHYSICAL REVIEW D59 013011
of these effects giving an energy spreadDEa leads to a co-
herence length

La; jk
coh 5L jk

osc En

DEa
~1.3!

independent of the fact of whether this spread has to be
terpreted as a coherent or incoherent effect. In the contex
a neutrino energy spread ‘‘incoherent’’ means that sin
neutrinos have a definite energy but the neutrino beam ha
energy spread whereas by ‘‘coherent’’ it is understood th
single neutrino state is a superposition of different energi1

Note, however, that in the field-theoretical approach the
tions ‘‘incoherent’’ and ‘‘coherent’’ energy spread hav
well-established and precise definitions: ‘‘incoheren
means that the summation over different neutrino ener
happens in the cross section of the total production-detec
process whereas a summation over different neutrino e
gies in the amplitude is called a ‘‘coherent’’ energy sprea2

In the following we adhere to these definitions and refer
reader to Sec. VI for a clarification of the notion of neutrin
energy in the field-theoretical approach where the oscilla
neutrinos occur in an inner line of the combined productio
detection Feynman graph. Having different oscillati
lengths in the process under discussion, then clearly the
evant coherence length is given by@17#

L jk
coh[min

a
La; jk

coh . ~1.4!

Both kinds of neutrino energy spread, coherent and inco
ent, lead to a loss of the oscillation pattern ifL.L jk

coh and
cannot be distinguished experimentally@7#. Apart from the
condition L&L jk

coh other conditions have to be fulfilled fo
the oscillation pattern to be present which do not depend
L @3,13,14#.

In this paper we will use the Liquid Scintillation Neutrin
Detector~LSND! experiment@18# with the process

m1→e11ne1 n̄m  
n osc

n̄e1p→n1e1 ~1.5!

as a model for our investigation for two reasons: first of a
the n̄m neutrino source (m1) is unstable and we want t
extend the field-theoretical approach of Ref.@13# by taking
into account the finite lifetime of the source; secondly, th
is a claim made in Ref.@19# that in the LSND experiment the
condition for coherence is not fulfilled. In the following, w
will discuss in detail the effects of

~1! the quantum-mechanical uncertainties of momentum
energy of the initial particles involved in the productio

1The notion of a neutrino wave packet is synonymous with
presence of a coherent neutrino energy spread.

2Hence, whether the summation over neutrino mass eigenstat
the summation over neutrino energies is concerned, ‘‘cohere
refers to a summation in the amplitude whereas ‘‘incoherent’’ ref
to a summation over squares of amplitudes.
01301
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and detection processes represented by the width
their respective wave packets or stationary states,

~2! the finite lifetime of the neutrino source particle,
~3! the uncertainties in the measurements of energies

momenta of the particles in the final state of neutri
production and, in particular, of the detection process

We are not able to take into account the interaction of
neutrino source particle~the m1 in our case! or the interac-
tion of particles in the final state of the source process~in our
case the positron originating from them1 decay! with the
matter background in which the source particle is genera
~in LSND this background is water! in the field-theoretical
treatment. We will only comment on the second of the
effects in the last section of the paper. In the wave pac
approach it is said that the interaction of the particles in
source process with the matter background interrupt neut
emission and estimates of these effects are used to deter
the ‘‘size of the neutrino wave packet’’@2#.

To include the finite lifetime of the neutrino source of th
process~1.5! we combine field theory with the Weisskop
Wigner approximation@20# in Sec. II. In Sec. III we calcu-
late the amplitude for the reaction~1.5! by taking into ac-
count that the distanceL between the source and the detec
is macroscopic. This is achieved by using a theorem pro
in Ref. @13# and an integral discussed in detail in the appe
dix of the present paper. In Sec. IV we derive conditions
the existence of neutrino oscillations independent ofL, while
in Sec. V we study some aspect of the cross section of
total production-detection process concerning the finite l
time of the source. All the conditions for neutrino oscill
tions obtained in Secs. IV and V—whether dependent onL
or not—are discussed in detail in Sec. VI where we a
study the problem raised in Ref.@19# and try to elucidate the
nature of the neutrino energy spread.

II. PERTURBATION THEORY
AND WEISSKOPF-WIGNER APPROXIMATION

To fix the notation we shortly repeat the basics of tim
dependent perturbation theory. We consider a system
scribed by the HamiltonianH5H01H1 whereH0 and H1
are not explicitly time-dependent. The eigenvalues a
eigenvectors ofH0 will be denoted as in the relationH0f j
5Ejf j where $f j% is a complete orthonormal system o
states. For an arbitrary statec5( j cj (0)f j at t50, the
Schrödinger equation gives the time evolutionc(t)
5( j cj (t)f je

2 iE j t where the coefficientscj (t) obey the re-
lations

i ċ j~ t !5(
k

ck^f j uH1fk&e
i ~Ej 2Ek!t5(

k
ck^f j uH1,int~ t !fk&,

~2.1!

and

H1,int~ t ![eiH 0tH1~0!e2 iH 0t ~2.2!

defines the interaction Hamiltonian in the interaction pictu

e

or
t’’
s

1-2
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Let us now study them1 decay and the ‘‘subsequent
detection ofn̄e by n̄e1p→e11n. The interaction Hamil-
tonian is given by

H15HS
11HS

21HD
11HD

2 , ~2.3!

where the indicesS andD denote source and detection, r
spectively, andHS

1 and HD
1 are given by the Hamiltonian

densities

H S
15

GF

&
m̄gr~12g5!nSn̄eg

r~12g5!e,

HD
15

GF

&
cosqCn̄Dgl~12g5!en̄gl~12gAg5!p

~2.4!

describing muon and neutron decay, respectively, and

nS[Um jn j , nD[Ue jn j . ~2.5!

Actually, n̄e in Eq. ~2.4! should be replaced byUe j* n̄ j ; how-
ever, this has no effect on the final result for neutrinos mu
lighter than the mass of the muon. The Hamiltonians with
superscript1 are the Hermitian conjugates of those whi
carry the minus sign.

Let us now sketch how to incorporate the finite mu
lifetime in perturbation theory@20#. To this end we take into
accountHD only when it occurs together withci(t) @see the
initial conditions~2.7!# but takeHS in all instances. With this
proviso the following states and coefficients are involved
perturbation theory:

initial state

m1; p ↔ci , f i

intermediate states

e1,ne ,n̄S ; p ↔cj8 , f j8

m1; e1,n,nD ↔ck9 fk9

e1,ne ,n̄S ; e1,n,nD ↔cj ^ k- , f j ^ k-

final state

e1,ne ; e1,n ↔cf , f f .

~2.6!

The initial conditions for the coefficients are given by

ci~0!51 and cf~0!5cj8~0!5ck9~0!5cj ^ k- ~0!50.
~2.7!

The differential equations for the coefficients are

i ċ i~ t !.(
j

cj8~ t !^f i uHS, int
2 ~ t !f j8&, ~2.8!

i ċ f~ t !5(
j

cj8~ t !^f f uHD, int
1 ~ t !f j8&

1(
k

ck9~ t !^f f uHS, int
1 ~ t !fk9&, ~2.9!

i ċ j8~ t !.ci~ t !^f j8uHS, int
1 ~ t !f i&, ~2.10!
01301
h
e

i ċk9~ t !.ci~ t !^fk9uHD, int
1 ~ t !f i&

1(
j

cj ^ k- ~ t !^fk9uHS, int
2 ~ t !f j ^ k- &, ~2.11!

i ċ j ^ k- ~ t !.ck9~ t !^f j ^ k- uHS, int
1 ~ t !fk9&. ~2.12!

With these approximations we get a closed system
ci ,cj8 ,ck9 ,cj ^ k- . If we insert Eq.~2.12! into Eq. ~2.11! we
arrive at

i ċk9~ t !.ci~ t !^fk9uHD, int
1 ~ t !f i&

2 i(
j

^fk9uHS, int
2 ~ t !f j ^ k- &E

0

t

dt8ck9~ t8!

3^f j ^ k- uHS, int
1 ~ t8!fk9&. ~2.13!

However, looking at the intermediate states~2.6!, we see that
the equations

^f j ^ k- uHS, int
1 ~0!fk9&5^f j8uHS, int

1 ~0!f i& and

Ek92Ej ^ k- 5Ei2Ej8 ~2.14!

hold trivially because in the first matrix elemente1,n,nD
and in the second second matrix element the proton are
spectators. Inserting Eq.~2.14! into Eq. ~2.13! then with a
partial integration the second term of Eq.~2.13! is written as

2 i(
j

AjFei ~Ei2Ej8!~ t2t8!

2 i ~Ei2Ej8!
ck9~ t8!U

0

t

2E
0

t

dt8
ei ~Ei2Ej8!~ t2t8!

2 i ~Ei2Ej8!
ċk9~ t8!G , ~2.15!

where

Aj[u^f j8uHS, int
1 ~0!f i&u2. ~2.16!

We neglect now the term withċ j9 in Eq. ~2.15! because it is
of higher order and replaceEi2Ej8 by Ei2Ej81 i e (e↓0) in
Eq. ~2.15! to have a well-defined expression. Sinceck9(0)
50 we obtain

2 i(
j

Aj

e[ i ~Ei2Ej8!2e] ~ t2t8!

2 i ~Ei2Ej8!1e
ck9~ t8!U

0

t

5(
j

Aj

ck9~ t !

Ei2Ej81 i e

5F(
j

Aj PS 1

Ei2Ej8
D 2 ip(

j
Ajd~Ei2Ej8!Gck9~ t !

5S DEi2
i

2
G D ck9~ t !, ~2.17!

where P denotes Cauchy’s principal value andG the total
decay width of the muon. We neglect in the following th
energy shiftDEi or we can think it being already incorpo
rated in the muon mass. Hence we get

i ċk9~ t !.ci~ t !^fk9uHD, int
1 ~ t !f i&2

i

2
Gck9~ t !. ~2.18!
1-3
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With similar arguments one obtains@20#

ci~ t !.e2~1/2!Gt ~2.19!

and therefore

ck9~ t !.2 i E
0

t

dt8^fk9uHD, int
1 ~ t8!f i&e

2~1/2!Gt. ~2.20!

Using Eqs.~2.9! and ~2.10! we get the final result

cf~ t !.~2 i !2E
0

t

dt1E
0

t1
dt2

3^f f ku@HD, int
1 ~ t1!HS, int

1 ~ t2!e2~1/2!Gt2

1HS, int
1 ~ t1!e2~1/2!Gt1HD, int

1 ~ t2!#f i&. ~2.21!

This formula corresponds to the intuitive expectation. Ap
from starting the time integration at the initial timet i50
instead oft i52` we have the usual time-ordered produ
with the finite lifetime incorporated in the exponentials.

III. THE AMPLITUDE

With Eq. ~2.21!, the Hamiltonian densities~2.4!, and Eq.
~2.2! we can write for the amplitude of the process~1.5! in
the limit t→`

A5~2 i !2^ne~pn8!,eS
1~peS8 !;eD

1~peD8 !,n~pn8!u

3TF E
0

`

dt1E d3x1E
0

`

dt2E d3x2

3H S, int
1 ~x1!e2~1/2!Gt1HD, int

1 ~x2!G um1;p&, ~3.1!
-

01301
t

t

where T is the time-ordering symbol. We assume that t
muon m1 and the protonp are localized at the coordinate
xWS and xWD , respectively. We imagine the proton being t
nucleus of a hydrogen atom and bound in a molecule. Th
fore we assume the proton state as stationary whereas
decaying muon will be described by a free wave packet w
an average momentum equal to zero. This situation co
sponds to the LSND experiment where them1 is assumed to
decay at rest. Since neutrino production and detection
localized atxWS andxWD , respectively, the spinors of the initia
particles can be written in coordinate space as

cp~x!5cp~xW2xWD!e2 iEpt ~3.2!

and

cm~x!5E d3p

~2p!3/2 c̃m~pW !e2 i „pW •xW2Em~pW !t…3eipW •xWS, ~3.3!

respectively, withEm(pW )5Amm
2 1pW 2. The functioncp(yW ) is

peaked atyW50W and the wave packetc̃m(pW ) in momentum
space is peaked around the average momentum^pW &50W . The
final particles will be described by plane waves.

With the neutrino propagators of the mass eigenstate n
trinos

^0uT@n j~x1!n̄ j~x2!#u0&

5 i E d4q

~2p!4

q”1mj

q22mj
21 i e

e2 iq•~x12x2! ~3.4!

we obtain the amplitude
A5~2 i !2
GF

2 cosqC

2 E d3p

~2p!3/2 E
0

`

dt1E d3x1E
0

`

dt2E d3x2E d4q

~2p!4 e2 iq•~x12x2!

3exp$ i ~pn81peS8 !•x11 i ~pn81peD8 !•x2%exp$ i @pW •xW12Em~pW !t12pW •xWS#%e2~1/2!Gt1e2 iEpt2

3 c̄̃m~pW !gr~12g5!i(
j

Um j

q”1mj

q22mj
21 i e

Ue j* gl~12g5!ve~peD8 !

3JS
r~pn8 ,peS8 !ūn~pn8!gl~12gAg5!cp~xW22xWD! ~3.5!

with

JS
r~pn8 ,peS8 !5ūne

~pn8!gr~12g5!ve~peS8 !. ~3.6!
We start with the integration overt1 where we have to cal
culate the integral

E
0

`

e2 i „q02En82EeS8 1Em~pW !…t1e2~1/2!Gt1dt1

5
1

i „q02En82EeS8 1Em~pW !…1 1
2 G

. ~3.7!
For the integration overt2 we use the relation

lim
t→`

E
0

t

eiEt2dt25 iPS 1

ED1pd~E!. ~3.8!

Hence a factor
1-4
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iPS 1

q01En81EeD8 2Ep
D 1pd~q01En81EeD8 2Ep!

~3.9!

appears in the amplitude. Furthermore, in the integra
over xW2 we use the relation

~2p!23/2E d3xe2 ikW•xW f ~xW1bW !5eikW•bW f̃ ~kW !, ~3.10!
o

a
e
ll

th
r

01301
n

where f̃ is the Fourier transform off . The integration over
xW1 is again trivial leading to the delta function

~2p!3d~qW 2pW n82pW eS8 1pW !. ~3.11!

Thus we obtain
A52
GF

2 cosqC

2
i(

j
E d3pE d4q

~2p!4 exp$2 ipW •xWS2 i ~pW n81pW eD8 1qW !•xWD%~2p!3d~qW 2pW n82pW eS8 1pW !

3
1

i ~q01ES!1 1
2 G

F iPS 1

q01ED
D1pd~q01ED!G c̄̃m~pW !gr~12g5!Um j

q”1mj

q22mj
21 i e

Ue j* gl

3~12g5!ve~peD8 !JS
r~pn8 ,peS8 !ūn~pn8!gl~12gAg5!c̃p~qW 1pW n81pW eD8 !, ~3.12!
de

where we have defined

ES[Em~pW !2En82EeS8 and ED[En81EeD8 2Ep .
~3.13!

The integration overpW can easily be carried out because
the delta function~3.11! and leads to the amplitude

A52
GF

2 cosqC

2
e2 ipW 1•xWS2 ipW 2•xWD

3 i(
j
E d4q

2p
e2 iqW •LW

1

i ~q01ES!1 1
2 G

3Fpd~q01ED!1 iPS 1

q01ED
D G c̄̃m~pW 12qW !

3gr~12g5!Um j

q”1mj

q22mj
21 i e

Ue j* gl~12g5!ve~peD8 !

3JS
r~pn8 ,peS8 !ū~pn8!gl~12gAg5!c̃p~qW 1pW 2!, ~3.14!

where

pW 1[pW n81pW eS8 , pW 2[pW n81pW eD8 and LW [xWD2xWS .
~3.15!

Note that as a consequence of the integration overpW we have
ES5Em(2qW 1pW 1)2En82EeS8 , i.e., ES is now a function of
qW .

Now only the integration overq remains. Since we have
delta function ofq0 within the brackets, the integration of th
first of the two terms of the amplitude is trivial. We wi
show in the Appendix that theq0 integration in the second
term, which contains Cauchy’s principal value, leads in
limit of a macroscopic distanceL to the same result. In othe
words, in the limit of macroscopicL we have simply
2pd(q01ED) from the t2 integration. In this limit we can
f

e

apply a theorem proved in Ref.@13# to perform thed3q
integration and calculate the leading term of the amplitu
for largeL:

A `5(
j

Um jUe j* eiq jLA j
`

5
GF

2 cosqC

2

2p2

L
i(

j
Um jUe j* eiq jL

1

i ~ES j2ED!1 1
2 G

3 c̄̃m~pW 11qj lW !gr~12g5!~2k” j1mj !gl

3~12g5!ve~peD8 !JS
r~pn8 ,peS8 !

3ū~pn8!gl~12gAg5!c̃p~2qj lW1pW 2!, ~3.16!

where the definition ofA j
` is obvious, lW is the unit vector

pointing from the neutrino source to the detection point,kj
are the momenta of the intermediate neutrinos and

kj[S ED

qj lW
D , qj[AED

2 2mj
2. ~3.17!

Note that

ES j5Em~qj lW1pW 1!2En82EeS8 ~3.18!

because by virtue of the theorem in Ref.@13# for eachj the
vector qW has to be replaced by2qj lW. The irrelevant phase
factor occurring in the first line of Eq.~3.14! has been
dropped inA `.

IV. COHERENCE CONDITIONS INDEPENDENT OF L

Inspecting Eq.~3.16! it is evident that oscillations involv-
ing mj

22mk
2 can only take place if@3,13#

uqj2qku&sS and uqj2qku&sD , ~4.1!
1-5
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wheresS andsD are the widths ofc̃m andc̃p , respectively.
We call conditions~4.1! amplitude coherence condition
~ACC!. If they are not fulfilled, either by the source wav
packet or the detector wave packet, thenA j

`3A k
`'0

( j Þk) which means that the term labeled byjk is sup-
pressed in Eq.~1.1!. In the ultrarelativistic limit Eq.~4.1! is
rephrased as

Dmjk
2

2ED
&sS,D . ~4.2!

Denoting bysxS,xD the widths of the wave functionscm(x)
and cp(x) in coordinate space, respectively, then, with t
uncertainty relationssxS,xDsS,D>1/2, Eq.~4.2! is rewritten
as

sxS,xD&
1

4p
L jk

osc, ~4.3!

where we have made the identificationEn5ED @see Eqs.
~3.16! and ~3.17!#.

The amplitudeA j
` contains the factor

1

i ~ES j2ED!1 1
2 G

, ~4.4!

which leads to a condition analogous to Eq.~4.1! for neu-
trino oscillations to take place:

uES j2ESku&
1
2 G. ~4.5!

In the following this condition will be called source wav
packet–finite lifetime condition~SFC!. In the ultrarelativistic
limit and with sS!mm we obtain

ES j2ESk'2
Dmjk

2

2mmED
~ED1 lW•pW 1! ~4.6!

and, assuming that ACC holds, we observe thatuEDlW1pW 1u
&sS is valid @see the argument ofc̃m in A ` ~3.16!# and
therefore Eq.~4.5! is rewritten as

Dmjk
2 sS

mmED
&G. ~4.7!

DefiningDvm[sS /mm as a measure for the spread in velo
ity of the muon wave packet and with the muon lifetim
tm51/G we can interpret Eq.~4.7! as

Dvmtm&
1

4p
L jk

osc. ~4.8!

V. THE COHERENCE LENGTH DUE TO THE FINITE
m LIFETIME

Having performed all the integrations in the amplitude
the limit L→`, we will discuss some aspect of the integr
tion in the cross section. There we have integrations of
form d3p8/2E8 for each particle in the final state, i.e., in o
casene and eS

1 in the source process andn and eD
1 in the

detector process. In general these integrations cannot be
01301
-

-
e

er-

formed without knowledge of the source and detector wa
functions. However, for

G!sS,D ~5.1!

the factors

$„i ~ES j2ED!1G/2…3„2 i ~ESk2ED!1G/2…%21 ~5.2!

in the cross section can be used to apply Cauchy’s theo
in order to obtain the coherence length associated with
finite muon lifetime. We assume that the ACC and SFC
valid and integrating over momenta of the final state of
detector leads to an integration in the variableED over a
particular interval containingES j ; j such that the length
DED of this interval fulfills G!DED!sS,D . This allows us
to write ED5ĒD1« whereĒD denotes the central value o
the interval which we define as

ĒD[^ES j&, ~5.3!

where^ES j& denotes the mean value of theES j and the inte-
gration variable« varies overu«u<DED/2. From the SFC it
follows thatĒD'ES j ; j which is exact up to terms of orde
G. With Dmjk

2 .0 andqj2qk'2Dmjk
2 /2ED we observe that

the « integration over the interval on the real axis can
closed via a half-circle in the upper half-plane since the
dius of the half-circle is much larger thanG and therefore the
factors~5.2! make the part of the path in the upper half-pla
negligible in the integral. Because of Eq.~5.1! and DED
!sS,D this integration does not affect the source and det
tor wave functions to a good approximation. Then Cauch
theorem states that the result of the integration is given
making the replacement

ED→ED
~0!5ĒD1

i

2
G ~5.4!

in the absolute square ofA ` ~3.16!. InsertingED
(0) into the

exponential2 iDmjk
2 L/2ED we see that the cross sectio

contains the damping factor

expS 2
Dmjk

2 G

4ĒD
2

L D . ~5.5!

As we will discuss in the next section the requirement~5.1!
is very likely to be fulfilled for LSND with the decay width
of the muon beingG'3310216 MeV. ĒD can still be
thought of as being identical withED ~3.13! for all practical
purposes because thisG is so small thatDED can be chosen
smaller than any achievable accuracy forED in a real experi-
ment.

VI. DISCUSSION

The characteristics of the field-theoretical approach.In
this paper we have used the field-theoretical approach to
cuss neutrino oscillations as we have done in Ref.@13#. In
this approach the whole process of neutrino production
detection is represented by a single Feynman graph such
the oscillating neutrinos are associated with theinner line of
1-6
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the graph. However, because of the macroscopic dista
between neutrino source and detector this inner line is
shell @see Eq.~3.16!# for each neutrino with definite mas
according to a theorem proven in Ref.@13#. In the present
paper we have incorporated the finite lifetime of the neutr
source which is given in our concrete example of the LSN
experiment@see Eq.~1.5!# by a positively charged muon
whose decay is responsible for then̄m neutrinos with which
the experiment is performed. The finite lifetime of the ne
trino source prevented us from using ordinary perturbat
theory with an initial timet i52`. Instead we took advan
tage of the Weisskopf-Wigner approximation which allow
us to taket i50 and to combine in this way the finite muo
lifetime with perturbation theory.

With the help of the above-mentioned theorem all integ
tions in the amplitude of the combined production-detect
process could be performed in the asymptotic limitL→`.
From the requirementA j

`'A k
` ~3.16! we derived the am-

plitude coherence conditions~ACC! ~4.1!, ~4.2! and the
source wave packet–finite lifetime condition~SFC! ~4.5!,
~4.7!. For a given mass-squared differenceDmjk

2 these three
conditions are the prerequisites for neutrino oscillations
they are not fulfilled, the term with exp(2iDmjk

2 L/2En) is
suppressed in the oscillation probability which means tha
neutrino oscillations with respect toDmjk

2 are possible. Here
we have identified the neutrino energyEn with ED ~3.13!
which is justified in view of the definition ofqj ~3.17! oc-
curring in the exponentialseiq jL of A ` ~3.16!. ACC and SFC
are both independent ofL, therefore no coherence length
are associated with them. In coordinate space Eq.~4.1! sim-
ply means that the oscillation length must be larger than
widths of the production and detection wave functions@see
Eq. ~4.3!#. The ACC were among the main results of Re
@3# and@13# and an analogous condition in the framework
the wave packet approach was recently emphasized in
@12#. The SFC~4.5! says that the spreading of the muo
wave function3 during the muon lifetime should be less tha
the oscillation length in order not to wash out neutrino os
lations @see Eq.~4.8!#. In Ref. @13# this condition was not
found because it was assumed that the source wave fun
is stationary. Clearly, in such a case the energy of the n
trino source is fixed and does not depend onmj and, conse-
quently, no SFC is present.

Discussion of the LSND experiment.Coming back to the
LSND experiment,sS represents the momentum spread
the stopped muon and an estimate of it is given bysS
&0.01 MeV @21#. For the detector proton bound in CH2
groups~mineral oil! @18# it is reasonable to assume that
coordinate space its wave function has a spread of arou
Å and consequentlysD;231023 MeV. Dropping now the
indices of the mass-squared difference, with representa
valuesDm2;1 eV2 and En;30 MeV we obtainDm2/2En

;10214 MeV and we conclude that the amplitude coheren
conditions are very well fulfilled in the LSND experimen
Performing an analogous estimate with the SFC we

3The muon wave function is non-stationary.
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Dm2sS /mmEn&3310218 MeV!G'3310216 MeV with
the numbers we used before for the ACC. From this res
we conclude that also the SFC is valid in the context of
LSND experiment, though, surprisingly, the margin is on
given by two orders of magnitude. Note that for the AC
this margin is eleven orders of magnitude.

In Ref. @19# it was found thatDm2/En&G should hold for
coherent neutrino oscillations. This condition is not fulfille
for LSND. In this paper with the field-theoretical treatme
we could not recover this condition which looks like the fir
ACC ~4.2! with sS replaced byG. In this context we want to
stress the following: in the process~1.5! there are three dif-
ferent lengths, namely the sizes of the wave packets of
neutrino source of order 1/sS and of the detector particle o
order 1/sD , wheresS andsD are the widths ofc̃m andc̃p ,
respectively, and the length 1/G associated with the finite
lifetime of the source. Each of these lengths is uniquely
fined and the function of each of them uniquely determin
in the field-theoretical framework. However, in the wa
packet approach the distinction betweensS , sD , andG is
not so clear and each of the three lengths could be assoc
with the size of the neutrino wave packet and possibly le
to erroneous conclusions.

The characteristics of neutrino oscillations.We want to
emphasize that in the field-theoretical approach the notio
a neutrino wave packet does not exist and the question
whether the neutrino energy or neutrino momentum is fix
or both can vary only make sense in connection with
processes of production and detection. This is because
parameters associated with particles of the exterior legs
the Feynman graph, i.e, with those particles which are m
nipulated in the experiment, determine the neutrino osci
tions. Let us notice that, for fixed momenta of the final st
particles of the production and the detection processes,
Eq. ~3.16! the oscillation probability has the form

Pn̄m→ n̄e
~L !}U(

j
A j

`Um jUe j* eiq jLU2

~6.1!

and we can imagine that the phase factorseiq jL represent the
plane waves of the different neutrinos mass eigenstates.
will use this fact to compare the wave packet approach w
the result of this paper. We arrive at the following charact
istics of neutrino oscillations in our field-theoretical a
proach:

~1! We have chosen the detector wave function, i.e.,
wave function of the proton, to be a bound state a
therefore the detector wave function does not spread
time. This looks physically very reasonable to us mea
ing that the detector is always on and waiting~see, how-
ever, Ref.@15# for a discussion of source and detect
with a temporal resolution!. As a consequence we hav
En5ED @see Eqs.~3.13!, ~3.16!, and ~3.17!# and Eq.
~6.1! suggests that neutrino oscillations take place
tween neutrinos with the same energy but with differe
momentaqj @13#.

~2! The identificationEn5ED allows us to determine the
neutrino energy with arbitrary accuracy by measuri
1-7
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the energies of the particles in the final state of the
tector process, in our case the neutron and the dete
positron, with arbitrary accuracy. Therefore, one c
limit the averaging over the neutrino energy to an ar
trarily small interval—of course, in practice at the e
pense of the number of events—and make any cohere
length arbitrarily long by performing only detector m
nipulations@see Eq.~1.3!#. This so-called restoration o
coherence is trivial in our approach. It agrees with o
servations in the wave packet treatment@7,11#. We find
no upper limit to the coherence lengths in contrast
Ref. @12#, which is due to the fact that we assume th
the detector is sensitive to energies and momenta of
particles produced in the detector process wherea
Ref. @12#, it is assumed that the detector measuresneu-
trino wave packetsof a certain width.

~3! Taking the field-theoretical approach to neutrino oscil
tions seriously, assuming that the detector particle is
tially in a stationary state and that the observation
particles associated with the neutrino detection is d
by energy and momentum measurements, we com
the inevitable conclusion that there are no neutrino w
packets in neutrino oscillations because all summati
over neutrino energies happen in the cross section
are thus incoherent summations.4 Our assumptions in-
clude the cases that some particles are not detected
or that cuts in energy and momentum are made. In a
tion, any further measurements of observables comm
ing with the energy and momentum operators perform
by the detector do not change our conclusion@7#. We
think that our conclusion is correct for realistic expe
ments. If one assumes instead that, with respect to
particles in the final state of the detection process,
detector is sensitive to wave packets of some form t
our conclusion is not valid. However, we do not know
such a detector exists.

The coherence lengths.Let us now assume that the AC
and SFC hold, and study the effects of different ene
and/or momentum averaging mechanisms which all lead
specific coherence lengths. In the light of the above disc
sion all coherence lengths result from incoherent neutr
energy spreads. There are three types of coherence len
@7# associated with our neutrino production and detect
processes~1.5!:

~a! LA
coh due to the finite muon lifetime,

~b! LB
coh due to the interruption of the neutrino emissio

because of collisions of the source positron with t
background, and

4Though in this paper we consider a neutrino source at rest,
conclusion and points~1!,~2! are also valid for accelerator neutrino
because the arguments leading to it depend on the neutrino d
tion process and not on the production. Formulated in another w
it is thedetectorwhich through its properties determines the natu
of the neutrino energy spread.
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~c! LC
coh due to the neutrino energy spread introduced

the usual imperfect energy measurements of the p
ticles observed with a realistic detector.

According to Eq.~5.5! the first of the coherence lengths
given by

LA
coh5

4En
2

Dm2G
. ~6.2!

This coherence length appears if the energy averag
amounts to a summation ofED over an interval much large
thanG ~see Sec. V!. With 1/G corresponding to 659 m an
Dm2;1 eV2, En;30 MeV this coherence length is aroun
200 light years and completely irrelevant for the LSN
experiment5 and, therefore, apart from its effect in the SF
the finite lifetime of the muon could have been neglected
was done in Ref.@13# with the lifetime of the neutrino source
nucleus. However, the main point in the investigation ofLA

coh

was rather to see how it emerges in the field-theoretical tr
ment. It is interesting to note thatLA

coh enters into the cross
section through exp(2L/LA

coh). We have obtained this form
of the damping factor forG!sS ,sD . If this condition is not
fulfilled the damping factor depends on the form of the fun
tionsc̃m ,c̃p . In the approach using Gaussian wave packe
corresponding damping factor has the for
exp$2(L/Lcoh)2% @12#, however, it is not obvious how to
compare this factor with the previous one and which coh
ence length is meant withLcoh.

LB
coh is not included in our treatment because we do

know how to deal with random collisions of the source po
itron with the matter background and the associated heur
coherence length~1.3! in the field-theoretical approach. S
here we only repeat the arguments found in the literat
about the neutrino wave packet approach. There one
mates the mean free path of the positron from them1 decay
in the matter background wherem1 is produced. In the
LSND experiment this background consists of water@18#
and according to the rule of thumb presented in Ref.@2# this
mean free path of the positron is of the order of centimete
Then in the heuristic approach one would estimate the
l B of the neutrino wave packet to be of the same order
magnitude@2#. Thus, adopting the wave packet approac
one would estimateLB

coh;En
2l B /Dm2 which is something

like four orders of magnitude smaller thanLA
coh, but still

astronomical, making the previous consideration of the
herence length originating from the finite muon lifetime~or a
wave packet size of orderl A;ctm5659 m! spurious.

The coherence length@7# LC
coh5LoscEn /DEn , whereDEn

comes from the inability to measureEn5ED better than at a
certain realistic experimental accuracy, is the only relev
coherence length in practice@17#. In the LSND experiment

is

ec-
y,

5Note that even this coherence length could theoretically be o
come by measuringED with a precision better thanG and choosing
events withED in a given interval of sizeDED smaller thanG
~compare Sec. V and point 2 in this section!.
1-8
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@18# the detector positron and neutron are detected in c
cidence and, in addition, the energy of the positron is m
sured. We guess thatDEn is of the order of 5 MeV@18#, thus
LC

coh is probably not more than several times the oscillat
length. This is many orders of magnitude smaller than
astronomical coherence lengthsLA,B

coh .
Summary.Let us summarize the main points. We ha

confined ourselves to situations where the neutrino sourc
at rest; thus the present investigation is not straightforwa
applicable to high energy neutrinos~see, however, Ref.@14#
for a field-theoretical discussion of accelerator neutrino
periments!. We have assumed that the wave function of
detector particle is stationary. Then the field-theoretical
proach to neutrino oscillations is completely static and th
are no explicit time averages necessary as in the wave pa
approach. With the field-theoretical method we have cla
fied, using the model reaction~1.5!, the roles of the widths
sS , sD , andG in neutrino oscillations where these width
are associated with the source, the detector and the fi
lifetime of the source, respectively. To check the validity
the ACC ~4.2! and the SFC~4.7! in a real experiment con
crete values ofsS and sD have to be chosen. Making
plausible guess forsD and usingsS&0.01 MeV @21# in the
case of LSND, the ACC are very well fulfilled and also th
SFC seems to hold safely. Finally, if our method is a corr
approach to neutrino oscillations then, in experiments w
the realistic detector properties assumed in this paper, o
lations take place between neutrino mass eigenstates wit
same energy but different momenta, there are no neut
wave packets and the coherence length in neutrino osc
tions results from an incoherent neutrino energy spread.
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APPENDIX: INTEGRATION OVER q0

We consider the integrals
s-
1

-
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I n5 i E
2`

`

dq0

1

i ~q01ES!1 1
2 G

3PS 1

q01ED
D ~q0!n

q0
22qW 22mj

21 i e
, ~A1!

wheren50,1 andP denotes Cauchy’s principal value. W
will calculate this integral with the help of the residue calc
lus which gives the formula

E dxPS 1

x2x0
D f ~x!5

1

2 S E
CR

1E
CL

D dx
1

x2x0
f ~x!

~A2!

for a function f which is analytic along the real axis. Th
pathsCR and CL lead along the real axis except close tox
5x0 where the pointx5x0 is circumvented to its right or to
its left in the complex plane, respectively. In our casex0
52ED and f has three poles of first order at

q0
~1!52ES1

i

2
G, q0

~2!5AqW 21mj
22 i e and

q0
~3!52AqW 21mj

21 i e. ~A3!

Since we have only one pole below the real axis we close
contour below. Then we obtain

I n52p i H x0
n

~x02q0
~1!!~x02q0

~2!!~x02q0
~3!!

1
2~q0

~2!!n

~q0
~2!2x0!~q0

~2!2q0
~1!!~q0

~2!2q0
~3!!J . ~A4!

In the second part of Eq.~A4! we useED.0 and perform
the limit e→0 without getting a singular integrand. The in
tegral I n depends onqW and appears in the amplitude in th
following way:

A5E d3qF~qW !I ~qW !e2 iqW •LW , ~A5!

where F can be read off from Eq.~3.14!. For the second
term of I n we can use Lemma 3 of Ref.@13# to show that it
decreases likeL22 for L→`. Since we are only interested i
the leading term}L21 of the amplitude for largeL we can
neglect the contribution of the second term ofI n . It is then
easy to show that the first term in the integral~A4! gives
exactly the contribution to the amplitudeA ` ~3.16! as the
term with pd(q01ED).
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