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Relations between two-dimensional models from dimensional reduction
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In this work we explore the consequences of dimensional reduction of the 3D Maxwell-Chern-Simons and
some related models. A connection between topological mass generation in 3D and mass generation according
to the Schwinger mechanism in 2D is obtained. In addition, a series of relationships is established by resorting
to dimensional reduction and duality interpolating transformations. Non-Abelian generalizations are also
pointed out[S0556-282(198)02022-(

PACS numbds): 11.15.Tk

The search for mechanisms of mass generation to gaugerformed on the time variable leading to the Euclidean ver-
particles without destroying the related symmetry has beesions of the two-dimensional models here dealt with.
one of the most important tasks of theoretical physics in the Consider three-dimensional Minkowskian spacetime as
last decades. Some ingenious strategies have been developed R* where3, is a two-dimensional Minkovsky space with
which lead to alternatives to the traditional approach of symarbitrary topology. In this spacetime we take the Maxwell-
metry breaking. For instance, in three-dimensional spaceChern-Simons action
times the addition of a Chern-Simons term to the Maxwell
term in the _Lagrangian leads to th(_a massive character o_f the L= EF Favy Ee“V“A E 1)
gauge particleg1]. The non-Abelian counterpart of this 4~ 2 movae
mechanism is also understood to lead to mass generation
although the analysis can be made in terms only of an ap- This Abelian vector field is massivedf) and presents
proximate approach such asNléxpansior2]. gauge symmetryA ,—A , + (1/e) d,«) [1]. This model is a
Generalizations of this mechanism to higher dimensiongaradigm for so-called topological mass generation where
require the introduction of higher rank gauge fields, indicat-the term “topological” stems from the fact that the second
ing that mass generation mechanisms are very sensitive #6rm does not couple to the metric but only to torsion, not
the underlying dimensionality of spacetime. On the othercontributing to the energy-momentum tensor. Now reduce
hand, since long ago the mechanism of Schwinger is knowthe spacetime dimension by considering field configurations
to lead to the massive character of two-dimensional QEDNdependent of the variable’ alongR* and averaging over
[3]. Here the interaction between fermions and gauge fieldd- In this new Lagrangian there is an induced gauge symme-
is the sole mechanism responsible for the phenomenon. ~ Iry. Let the “0” and “1” components be labeled by Latin

- . 0 X} . _ 2 H
We show here that these mechanisms are in fact closefpdices such as '], k, ...,” and define¢=A" The A'
related. Indeed by a simple dimensional reduction th leld remains a vector- gauge f|e_ld whige turns out tq be a
Maxwell-Chern-Simons Lagrangian is transformed at the?hseudoscalar ga;ugel-l?varlanft t';']eldl_m Thelad.ynaglc_s ?jf
bosonized Schwinger model Lagrangig]j. This illustrates IS subspace of solu |ons,.o € Lagrangians obtaine
. 2 . ; noting thatlL is reduced td_":
how seemingly distinct phenomena are indeed manifesta-

tions in different dimensions of the same basic mechanism.

At the same time interesting relations between three- L'=—3 F”Fij+ 39 $did— ‘9¢EijFiJ- 2
dimensional models have been brought about by an interpo- _ _ _ .
lating field mechanism. The Maxwell-Chern-Simaih4CS) The resulting modef3] is the bosonized version of two-

model, for instance, has been related to the self-dual modélimensional QED as obtained through path integral methods
[4,5]. We explore this relation in this article. The duality [7]. The ¢ field is then interpreted as the scalar associated
transformations are used =3 and the resulting models With the fermion field after its bosonization and the param-
are dimensionally reduced. This makes clear some uneeter ¢ is identified with the charge/2\/ . Its kinetic term
pected links between two-dimensional models. comes from the bosonization of the fermion Lagrangian

The three-dimensional models with the Chern-Simons acwhile the interaction term, after integrating by parts, ex-
tion have been useful in the description of the statistical mepresses the minimal coupling with the bosonized current
chanics of planar systems, such as the quantum Hall effezﬁﬂ/\/;)e”ajgb. In this version the mass generation is due to
and possibly supercondutivity]. The dimensional reduc- interaction between the fermion and vector fields. These two
tion here discussed may be useful for the description of equidiverse mechanisms are thus related by dimensional reduc-
librium properties of these systems provided the reduction ision.

0556-2821/98/58.2)/1277014)/$15.00 58 127701-1 ©1998 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW D 58 127701

We consider next the addition of the fermionic field in If a translation is made on the auxiliary fields —a'
three dimensions: +€'9;¢, andeo— ¢— € 9A;, these fields decouple and the
bosonized Schwinger model Lagrangian describes the dy-
namics of the fieldsA' and ¢. With the interpolating La-
grangian it is thus possible to describe the bosonized
Schwinger model. On the other hand, the translations on the
After dimensional reduction the Lagrangian turns out to be original fields

1 0 —
L=—ZFMVFMV+§EMV(IA;LFVLY+I¢D¢' 3

L'=—$FIF+ 30 ¢paip— 0 Fl+iyDy—eyy y.
“ A‘—>A‘+ia‘

26
The last term that couples the fermionic to the scalar field in
two dimensions is a requirement of dimensional reduction.
The fermion field can be bosonized in terms of the pseudo- 1
scalar field¢’, resulting in the Lagrangian d— b+ 59 % 9

-1 . 1 -
LI:TFIJFij+§aI¢(9i¢_ 0¢6”Fij . . . ) .
in the interpolating Lagrangian, result in the decoupled La-

1 grangian
+50¢' ¢ +epdsin2me’, (5)
. 1. 1, 1
whereu is a regulator parameter. L=sa'a— 52— €| —ofj— 0¢F; |, (10)
Dimensional reduction leads to relations between interest- 2 2 40

ing two- and three-dimensional models. At the same time

there are some relations between three-dimensional models . ) .

that have been brought about by the technique of interpolatNich incorporates the Proca action. The decoupling trans-
ing duality transformations. For instanp#], an interpolating ~ formation(9) shows how the fermion field should be treated
mechanism leads from th@belian) Maxwell-Chern-Simons after bosonization in the dual formulation. For instance the

to the self-dual action, which in Minkowski spacetime readseXPressions of the fermion field correlation functions in
terms of the Mandelstan-like formulas remain the same as in

1 1 the Schwinger model but with the translation made accord-
Ssp=58"8,~ ;5 €uad "3, (6)  ing to Egs.(9).
The interpolating mechanism in three dimensions can be

while an alternative derivation based on the Hamiltonian for_extended and should not be restricted to the transformation

malism leads to the same relatif]. Let us investigate the of the Maxwell term. Let us consider this possibility in some

relationships that can be uncovered from the use of dimerd®t@il: Start with the interpolatingvlinkowskian generating

sional reduction together with the duality transformation.funCtIonaI
The direct dimensional reduction of the self-dual action, set-
ting a’= ¢, leads to

1 1 Z[J]=f DA“Da“exr{iJ d3x(—£1—1(|:w)2

. 1 .
L=za'a—z¢’+—¢iflop, (7)
2° 7" 2 497" P ) , )
- -va,S"ya,+6a,S"yA,+I*A,

7 CED

wheref') = 9'al — gla’. The integration over the field gives
rise to the Maxwell term for tha' field, resulting in theD
=2 Proca model. We have thus established a relationship. Y wr .

between the bosonized Schwinger mo¢@®l and the Proca bith 5~ =€ fa and y an arbitrary .oper.atértha: com-
model since both are derived through dimensional reductioﬁn,Utes with S*”. Making the translation in the* field
from models related by duality transformations. The mas@ “=a*+2y~'A* it is readily seen that the* field de-
spectra of both models are the same. This relationship can @uples and what remains is the generating functional of the
established directly in two-dimensional models, along theMCS model. If the translation is made however, on #te
lines of [4], as we show now. In the Schwinger model thefield, A“=A"*—¢(y/0J) $*"a,, it results in a new factor-
reexpression of both the Maxwell and the Klein-Gordonization of the generating functional:

terms in terms of auxiliary fieldg anda', respectively, is

made by replacing the bosonized Schwinger model Lagrang-

ian with the interpolating Lagrangian The operatory should satisfyfd?x ByA=[d?x AyB, for any
. o o N fields A and B. For instance,y can be any power of the
L=3a'a— 3 ¢’—€j(pd Al— 3 pdal—0¢pF"). (8)  D'Alembertian operator.

127701-2



BRIEF REPORTS PHYSICAL REVIEW D 58 127701

The higher-order terms in the it/ expansion that lead to

. 1 ! !
Z[J]:j DA'“eXI{IJ dZX( - Z(FMV)2+JMAM> higher-derivative terms do not concerns us here.
Considering the zeroth-order term, the massive Thirring

_ 6? model in 3D is reduced to the self-dual model Lagrangian:
foa”“ex |fd2x -

7 () "y

1 1
P Ssp= f d3x| —A*A ,— =€e*" A 0,A, . (17)
_ Z,yalus/uv,yav_ GJM%a,u, 292 w2 iz

12

. , i We see thus that the mapping between the Schwinger model
Apart from the contribution of thé\" Maxwell field the 54 the dimensionally reduced 3D self-dual model points to
most interesting aspect of the action is encoded in the one fof gjation between the 3D Thirring and the 2D Schwinger
the a* field. Contrary to what happens in the Maxwell- ,5dels.
Chern-Simons original action now the highest derivative is \ye consider once again, to clarify the reduction method,
associated to the odd-parity operaB” and not to the Max-  the dimensional reduction of this mod@?7) with an alter-

well like term for a“. As we have seen the operatpris  npative procedure. We proceed now by rewriting tefield
quite general and can be chosen according to conveniengg terms of its dual:

establishing the connection of the MCS model to a family of
models. w— uvay A
We apply the dimensional reduction in this dual model. Af=etd,Aa (18

Defining ¢ =a? the resulting action foa* reduces to ) ~ ) )
Settinge=A,, and assuming no dependencefnthe action

62 Y (17) is reduced to a modified version of the bosonized
L=- nyij(D)_lvf” + 77«9'@(5)_17’&# Schwinger model:
+ 2 yeef, 13 5= [ d - —F, Bt (40)+ s00elE, |. (19
47@ YTij - = 4g2 ij 292 P 2 peFij |-

Relationships are so established between (t@sonizedl  The introduction of the first-order term inri/as in Eq.(16)
Schwinger model and a family of two-dimensional models. yje|ds the additional terms

The self-dual action can also be interpreted as the hyper-
massive limit of the 3D Thirring model. Indeed, it has been 1
recently showrj9] that the partition function for the 3D mas- S,
sive Thirring model is reduced in the one-loop approxima-

tion to the self-dual model action. One starts with the Euclid-, iy correct the modified Schwinger action. The Lagrang-
ean partition function for the massive Thirring model:

ian (19) coincides with the one that we have obtained by

o means of the dual interpolating mechanism for the Maxwell

zThzf DA*D yD term in the Maxwell-Chern-Simons action and the direct di-
mensional reduction of the dual field3) for the special

1 value of the parametep?=[].

2 1 i 1~ =ij
:67Tm d<x Eal(,DDa (,D_ZF”F s (20)

It is interesting to relate the modified Schwinger model
(19) to a fermionic model in two dimensions. It is not diffi-
(14) cult to guess that the fermionization of it will lead to the
action of a canonical fermion with derivative coupling

X ex —f d3x(Z(iﬁ+gA+m)lﬂ+i(A”)2
29

Integration over the fermionic field leads to the fermionic

, _ ~ 1~
determinant sf=f d?x z/;(i/a—ieDA)z/;—Z(Fij)z . (21
iD|] & (1"t "
In Det( J) = nzl ra— i¢9+m) : (15 In order to see this, let us decouple the fermion field. We

perform the chiral rotation

At the one-loop level the computation has been completely
performed[9] in the strong mass limit so that

1
ZTh:J' DA“exr{—zf d3x

F2,+ 0((1/m)2))

¢’=eVSD¢+iD’7¢, (22)

Z’ :Ee%mﬁ*iﬂﬂy (23

1 1

—Z(A’“)Z-i‘ EAME”VQU"VACY
g Whereﬂizeijaj¢+ d;m. The Jacobian associated with this
decoupling transformation can be computed with the

: (16)  Fujikawa method10]. The Wick rotated X°—x?) expres-
sions of the Dirac operator and its adjoint are

* 12mm

127701-3



BRIEF REPORTS

De=y%(d,+ie0Ay) + yL(9,+iedA,) (24)
and
Di=—12(0,+iedA,) + y (9, +iedA,). (25
By choosing the basis of eigenfunctions,

D Dggn: ﬁgna (26)
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This effective action is the same as the one obtained from
integration on the scalar field in the acti¢i9), thus estab-
lishing the equivalence with the fermionic modatl).

We have obtained a series of relationships that occur
among two-dimensional models having their origin in their
relation to three-dimensional models. The topologically mas-
sive Maxwell-Chern-Simons action leads through dimen-
sional reduction to the bosonized Schwinger model. The
massive aspect of both models is obtained with basically the

same mechanism. On the other hand, the Maxwell-Chern-

the Jacobian of the transformation turns out to be expressiblgjmons action is related to the self-dual action through an

as

J(x):exp(—zieJ d’>x0 ¢l (x) |, (27
with
1= lim X &lyséae MM, (29)
M—o N
A straightforward computation leads to
|(X)_ DEIJFI] ) (29
so that
e’ o~
J(X):ex _zfd XF”DF,J . (30)

interpolating field machinery. An extension of this machin-
ery allows for its representation also in terms of a family of
models which are in general nonlocal. For a specific member
of this family instead of nonlocallity we obtain a model with
higher derivatives. This relationship can also be understood
as a relation among the two-dimensional model and the hy-
permassive Thirring model in three dimensions.

It would be interesting to try to develop a better under-
standing of the two-dimensional models that result from the
dimensional reductions of the non-Abelian counterparts of
the models here dealt with. In particular the non-Abelian
Maxwell-Chern-Simons model will be led to the two-
dimensional Yang-Mills field interacting with thé¢pseu-
do)scalar field in the adjoint representation with the addi-
tional ee" ¢F; gauge-invariant topological interaction term.
Is there an interpretation of this model as the bosonized form
of some 2D model? In addition, the bosonization in three
dimensions raises the question of whether the dimensional
reduction of the expression of the bosonized fermion field in

The effective action for the vector field after integrating outthree dimension$11,5 is related to the Mandelstam for-
the fermionic variable and returning to Minkowski spacetimemula. Another interesting aspect of dimensional reduction is

turns out to be

Seff: f dZX

e -
——FijDFij}. (3D)

_E(Eij)2
4 2

whether useful information about the charge and flux carried
by particles in 3D models may be obtained starting from
their corresponding 2D models. These questions are pres-
ently under investigation.
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