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Relations between two-dimensional models from dimensional reduction
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In this work we explore the consequences of dimensional reduction of the 3D Maxwell-Chern-Simons and
some related models. A connection between topological mass generation in 3D and mass generation according
to the Schwinger mechanism in 2D is obtained. In addition, a series of relationships is established by resorting
to dimensional reduction and duality interpolating transformations. Non-Abelian generalizations are also
pointed out.@S0556-2821~98!02022-0#
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The search for mechanisms of mass generation to ga
particles without destroying the related symmetry has b
one of the most important tasks of theoretical physics in
last decades. Some ingenious strategies have been deve
which lead to alternatives to the traditional approach of sy
metry breaking. For instance, in three-dimensional spa
times the addition of a Chern-Simons term to the Maxw
term in the Lagrangian leads to the massive character of
gauge particles@1#. The non-Abelian counterpart of thi
mechanism is also understood to lead to mass genera
although the analysis can be made in terms only of an
proximate approach such as 1/N expansion@2#.

Generalizations of this mechanism to higher dimensi
require the introduction of higher rank gauge fields, indic
ing that mass generation mechanisms are very sensitiv
the underlying dimensionality of spacetime. On the oth
hand, since long ago the mechanism of Schwinger is kno
to lead to the massive character of two-dimensional Q
@3#. Here the interaction between fermions and gauge fie
is the sole mechanism responsible for the phenomenon.

We show here that these mechanisms are in fact clo
related. Indeed by a simple dimensional reduction
Maxwell-Chern-Simons Lagrangian is transformed at
bosonized Schwinger model Lagrangian@3#. This illustrates
how seemingly distinct phenomena are indeed manife
tions in different dimensions of the same basic mechani
At the same time interesting relations between thr
dimensional models have been brought about by an inte
lating field mechanism. The Maxwell-Chern-Simons~MCS!
model, for instance, has been related to the self-dual m
@4,5#. We explore this relation in this article. The duali
transformations are used inD53 and the resulting model
are dimensionally reduced. This makes clear some un
pected links between two-dimensional models.

The three-dimensional models with the Chern-Simons
tion have been useful in the description of the statistical m
chanics of planar systems, such as the quantum Hall e
and possibly supercondutivity@6#. The dimensional reduc
tion here discussed may be useful for the description of e
librium properties of these systems provided the reductio
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performed on the time variable leading to the Euclidean v
sions of the two-dimensional models here dealt with.

Consider three-dimensional Minkowskian spacetime
S3R1 whereS is a two-dimensional Minkovsky space wit
arbitrary topology. In this spacetime we take the Maxwe
Chern-Simons action

L52
1

4
FmnFmn1

u

2
emnaAmFna . ~1!

This Abelian vector field is massive (u2) and presents
gauge symmetry„Am→Am1 (1/e) ]ma… @1#. This model is a
paradigm for so-called topological mass generation wh
the term ‘‘topological’’ stems from the fact that the seco
term does not couple to the metric but only to torsion, n
contributing to the energy-momentum tensor. Now redu
the spacetime dimension by considering field configurati
independent of the variablex2 alongR1 and averaging over
it. In this new Lagrangian there is an induced gauge symm
try. Let the ‘‘0’’ and ‘‘1’’ components be labeled by Latin
indices such as ‘‘i , j , k, . . . , ’ ’ and definef5A2. The Ai

field remains a vector gauge field whilef turns out to be a
pseudoscalar gauge-invariant field inS. The dynamics of
this subspace of solutions of the LagrangianL is obtained
noting thatL is reduced toL8:

L852 1
4 Fi j Fi j 1

1
2 ] if] if2ufe i j Fi j . ~2!

The resulting model@3# is the bosonized version of two
dimensional QED as obtained through path integral meth
@7#. The f field is then interpreted as the scalar associa
with the fermion field after its bosonization and the para
eteru is identified with the chargee/2Ap . Its kinetic term
comes from the bosonization of the fermion Lagrang
while the interaction term, after integrating by parts, e
presses the minimal coupling with the bosonized curr
(1/Ap)e i j ] jf. In this version the mass generation is due
interaction between the fermion and vector fields. These
diverse mechanisms are thus related by dimensional re
tion.
©1998 The American Physical Society01-1
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We consider next the addition of the fermionic field
three dimensions:

L52
1

4
FmnFmn1

u

2
emnaAmFna1 i c̄D” c. ~3!

After dimensional reduction the Lagrangian turns out to b

L852 1
4 Fi j Fi j 1

1
2 ] if] if2ufe i j Fi j 1 i c̄D” c2ec̄g5cf.

~4!

The last term that couples the fermionic to the scalar field
two dimensions is a requirement of dimensional reducti
The fermion field can be bosonized in terms of the pseu
scalar fieldf8, resulting in the Lagrangian

L85
21

4
Fi j Fi j 1

1

2
] if] if2ufe i j Fi j

1
1

2
] if8] if81emfsin2Apf8, ~5!

wherem is a regulator parameter.
Dimensional reduction leads to relations between inter

ing two- and three-dimensional models. At the same ti
there are some relations between three-dimensional mo
that have been brought about by the technique of interpo
ing duality transformations. For instance@4#, an interpolating
mechanism leads from the~Abelian! Maxwell-Chern-Simons
to the self-dual action, which in Minkowski spacetime rea

SSD5
1

2
amam2

1

4u
emnaam]naa, ~6!

while an alternative derivation based on the Hamiltonian f
malism leads to the same relation@8#. Let us investigate the
relationships that can be uncovered from the use of dim
sional reduction together with the duality transformatio
The direct dimensional reduction of the self-dual action, s
ting a25w, leads to

L5
1

2
aiai2

1

2
w21

1

4u
e i j f

i j w, ~7!

wheref i j 5] iaj2] jai . The integration over thew field gives
rise to the Maxwell term for theai field, resulting in theD
52 Proca model. We have thus established a relation
between the bosonized Schwinger model~2! and the Proca
model since both are derived through dimensional reduc
from models related by duality transformations. The m
spectra of both models are the same. This relationship ca
established directly in two-dimensional models, along
lines of @4#, as we show now. In the Schwinger model t
reexpression of both the Maxwell and the Klein-Gord
terms in terms of auxiliary fieldsw and ai , respectively, is
made by replacing the bosonized Schwinger model Lagra
ian with the interpolating Lagrangian

L5 1
2 aiai2

1
2 w22e i j ~w] iAj2 1

2 f] iaj2ufFi j !. ~8!
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If a translation is made on the auxiliary fieldsai→ai

1e i j ] jf, andw→w2e i j ] iAj , these fields decouple and th
bosonized Schwinger model Lagrangian describes the
namics of the fieldsAi and f. With the interpolating La-
grangian it is thus possible to describe the bosoni
Schwinger model. On the other hand, the translations on
original fields

Ai→Ai1
1

2u
ai ,

f→f1
1

2u
w, ~9!

in the interpolating Lagrangian, result in the decoupled L
grangian

L5
1

2
aiai2

1

2
w22e i j S 1

4u
w f i j 2ufFi j D , ~10!

which incorporates the Proca action. The decoupling tra
formation~9! shows how the fermion field should be treat
after bosonization in the dual formulation. For instance
expressions of the fermion field correlation functions
terms of the Mandelstan-like formulas remain the same a
the Schwinger model but with the translation made acco
ing to Eqs.~9!.

The interpolating mechanism in three dimensions can
extended and should not be restricted to the transforma
of the Maxwell term. Let us consider this possibility in som
detail. Start with the interpolating~Minkowskian! generating
functional

Z@J#5E DAmDamexpF i E d3xS 2
1

4
~Fmn!2

2
u

4
gamSmngan1uamSmngAn1JmAmD G , ~11!

with Smn5eman]a and g an arbitrary operator1 that com-
mutes with Smn. Making the translation in theam field
a8m5am12g21Am it is readily seen that theam field de-
couples and what remains is the generating functional of
MCS model. If the translation is made however, on theAm

field, Am5A8m 2u (g/h) Smnan , it results in a new factor-
ization of the generating functional:

1The operatorg should satisfy*d2x BgA5*d2x AgB, for any
fields A and B. For instance,g can be any power of the
D’Alembertian operator.
1-2
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Z@J#5E DA8m expF i E d2xS 2
1

4
~Fmn8 !21JmAm8 D G

3E DamexpF i E d2xS 2
u2

4
g f mn~h !21g f mn

2
u

4
gamSmngan2uJm

g

h
amD G . ~12!

Apart from the contribution of theA8 Maxwell field the
most interesting aspect of the action is encoded in the one
the am field. Contrary to what happens in the Maxwe
Chern-Simons original action now the highest derivative
associated to the odd-parity operatorSmn and not to the Max-
well like term for am. As we have seen the operatorg is
quite general and can be chosen according to conveni
establishing the connection of the MCS model to a family
models.

We apply the dimensional reduction in this dual mod
Defining w5a2 the resulting action foram reduces to

L52
u2

4
g f i j ~h !21g f i j 1

u2

2
g] iw~h !21g] iw

1
u

4
gwe i j g f i j . ~13!

Relationships are so established between the~bosonized!
Schwinger model and a family of two-dimensional mode

The self-dual action can also be interpreted as the hy
massive limit of the 3D Thirring model. Indeed, it has be
recently shown@9# that the partition function for the 3D mas
sive Thirring model is reduced in the one-loop approxim
tion to the self-dual model action. One starts with the Euc
ean partition function for the massive Thirring model:

ZTh5E DAmDc̄Dc

3expF2E d3xS c̄~ i ]”1gA” 1m!c1
1

2g2
~Am!2D G .

~14!

Integration over the fermionic field leads to the fermion
determinant

lnFDetS iD”

i ]” D G5 (
n51

n5`
~21!n11

n
trS A”

i ]”1mD n

. ~15!

At the one-loop level the computation has been comple
performed@9# in the strong mass limit so that

ZTh5E DAmexpF2
1

2 E d3xS 1

g2
~Am!21

1

4p
Amemna]nAa

1
1

12pm
Fmn

2 1O„~1/m!2
…D G . ~16!
12770
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The higher-order terms in the 1/m expansion that lead to
higher-derivative terms do not concerns us here.

Considering the zeroth-order term, the massive Thirr
model in 3D is reduced to the self-dual model Lagrangia

SSD5E d3xS 1

2g2
AmAm2

1

2
emnaAm]nAaD . ~17!

We see thus that the mapping between the Schwinger m
and the dimensionally reduced 3D self-dual model points
a relation between the 3D Thirring and the 2D Schwing
models.

We consider once again, to clarify the reduction meth
the dimensional reduction of this model~17! with an alter-
native procedure. We proceed now by rewriting theAm field
in terms of its dual:

Am5emna]nÃa . ~18!

Settingw5Ã2, and assuming no dependence inx2, the action
~17! is reduced to a modified version of the bosoniz
Schwinger model:

S5E d2xS 2
1

4g2
F̃ i j F̃

i j 1
1

2g2
~] iw!21

1

2
hwe i j F̃ i j D . ~19!

The introduction of the first-order term in 1/m as in Eq.~16!
yields the additional terms

S15
1

6pmE d2xS 1

2
] iwh] iw2

1

4
F̃ i j F̃

i j D , ~20!

which correct the modified Schwinger action. The Lagran
ian ~19! coincides with the one that we have obtained
means of the dual interpolating mechanism for the Maxw
term in the Maxwell-Chern-Simons action and the direct
mensional reduction of the dual field~13! for the special
value of the parameterg25h.

It is interesting to relate the modified Schwinger mod
~19! to a fermionic model in two dimensions. It is not diffi
cult to guess that the fermionization of it will lead to th
action of a canonical fermion with derivative coupling

Sf5E d2xF c̄~ i /]2 iehA”̃ !c2
1

4
~ F̃ i j !

2G . ~21!

In order to see this, let us decouple the fermion field. W
perform the chiral rotation

c85eg5hf1 i hhc, ~22!

c̄85c̄eg5hf2 i hh, ~23!

where Ãi5e i j ] jf1] ih. The Jacobian associated with th
decoupling transformation can be computed with t
Fujikawa method@10#. The Wick rotated (x0→x2) expres-
sions of the Dirac operator and its adjoint are
1-3
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D” E5g2~]21 iehÃ2!1g1~]11 iehÃ1! ~24!

and

D” E
†52g2~]21 iehÃ2!1g1~]11 iehÃ1!. ~25!

By choosing the basis of eigenfunctions,

D” E D” E
†jn5ln

2jn , ~26!

the Jacobian of the transformation turns out to be express
as

J~x!5expS 22ieE d2xhfI ~x! D , ~27!

with

I ~x!5 lim
M→`

(
n

jn
†g5jne2~ln

2/M2!. ~28!

A straightforward computation leads to

I ~x!5
e

4p
he i j F̃ i j , ~29!

so that

J~x!5expS 2
ie2

2pE d2xF̃i j hF̃ i j D . ~30!

The effective action for the vector field after integrating o
the fermionic variable and returning to Minkowski spacetim
turns out to be

Seff5E d2xF2
1

4
~ F̃ i j !22

e2

2p
F̃ i j hF̃ i j G . ~31!
tt

m

12770
le

t

This effective action is the same as the one obtained fr
integration on the scalar field in the action~19!, thus estab-
lishing the equivalence with the fermionic model~21!.

We have obtained a series of relationships that oc
among two-dimensional models having their origin in th
relation to three-dimensional models. The topologically m
sive Maxwell-Chern-Simons action leads through dime
sional reduction to the bosonized Schwinger model. T
massive aspect of both models is obtained with basically
same mechanism. On the other hand, the Maxwell-Che
Simons action is related to the self-dual action through
interpolating field machinery. An extension of this machi
ery allows for its representation also in terms of a family
models which are in general nonlocal. For a specific mem
of this family instead of nonlocallity we obtain a model wit
higher derivatives. This relationship can also be underst
as a relation among the two-dimensional model and the
permassive Thirring model in three dimensions.

It would be interesting to try to develop a better unde
standing of the two-dimensional models that result from
dimensional reductions of the non-Abelian counterparts
the models here dealt with. In particular the non-Abeli
Maxwell-Chern-Simons model will be led to the two
dimensional Yang-Mills field interacting with the~pseu-
do!scalar field in the adjoint representation with the ad
tional ee i j fFi j gauge-invariant topological interaction term
Is there an interpretation of this model as the bosonized fo
of some 2D model? In addition, the bosonization in thr
dimensions raises the question of whether the dimensio
reduction of the expression of the bosonized fermion field
three dimensions@11,5# is related to the Mandelstam for
mula. Another interesting aspect of dimensional reduction
whether useful information about the charge and flux carr
by particles in 3D models may be obtained starting fro
their corresponding 2D models. These questions are p
ently under investigation.
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